-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.py
165 lines (132 loc) · 4.36 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import requests
from bs4 import BeautifulSoup
import pandas as pd
import re
import csv
from lxml import etree
# function for data collecting
def subject_analysis(subjects, index):
subject = subjects.pop(0)
page = requests.get(subject)
soup_in = BeautifulSoup(page.text, 'html.parser')
title = soup_in.find('span', class_ = 'header--course-and-subject__main').text
pattern = '([\w]{4}[\d]{5})'
head = re.findall(pattern, title)
course = title[:-12]
code = head[0]
fac, field = faculty(code)
availability = soup_in.find_all("tr")[1].td
divs = availability.find_all('div')
sems = []
sems_reg = []
pattern = 'Semester \d|Summer|Winter'
for i in range(len(divs)):
offer = divs[i].text
sems.append(offer)
head = re.findall(pattern, offer)
sems_reg.append(head)
sem1 = "Not Offered"
sem2 = "Not Offered"
summer = "Not Offered"
winter = "Not Offered"
if (["Semester 1"] in sems_reg):
sem1 = "Offered"
if (["Semester 2"] in sems_reg):
sem2 = "Offered"
if (["Summer"] in sems_reg):
summer = "Offered"
if (["Winter"] in sems_reg):
winter = "Offered"
print(str(index+1) +". "+course," - ", code)
df.loc[index] = [course, code, field, fac, sem1, sem2, summer, winter]
# function for data collecting
# function to retrieve subjects
def collect_subjects(subjects):
layer = soup.find_all('a', class_ = 'search-result-item__anchor')
for i in range(len(layer)):
href = layer[i]['href']
next_url = base_url + href
subjects.append(next_url)
# function to retrieve subjects
# function to retrieve faculty
def faculty(code):
status = False
code = code[:-5]
xmltree = etree.parse("faculties.xml")
root = xmltree.getroot()
for faculties in root:
for fields in faculties:
#print(fields.get('name')," - ", fields.get('code'))
if code == fields.get('code'):
fac = faculties.get('name')
field = fields.get('name')
status = True
break
if (status):
break
try:
return fac, field
except:
return 'Others', 'Others'
# function to retrieve faculty
# open csv file
FILENAME = 'Subjects.csv'
file = open(FILENAME ,'w+')
writer = csv.writer(file)
# open csv file
# open xml file
f = open("faculties.xml", "r")
text = f.read()
# open xml file
# create dataframe
df = pd.DataFrame(columns = ['Subject', 'Code', 'Area of study', 'Faculty',
'Semester 1', 'Semester 2', 'Summer term', 'Winter term'])
# create dataframe
# url set up
base_url = 'https://handbook.unimelb.edu.au/'
url = 'https://handbook.unimelb.edu.au/search?types%5B%5D=subject&year=2021&subject_level_type%5B%5D=undergraduate&subject_level_type%5B%5D=Honours&study_periods%5B%5D=semester_1%7Csemester_1_%28early-start%29%7Csemester_1_%28extended%29&study_periods%5B%5D=semester_2%7Csemester_2_%28early-start%29%7Csemester_2_%28extended%29&study_periods%5B%5D=summer_term&study_periods%5B%5D=winter_term&area_of_study%5B%5D=all&org_unit%5B%5D=all&campus_and_attendance_mode%5B%5D=all&page=1&sort=_score%7Cdesc'
page = requests.get(url)
soup = BeautifulSoup(page.text, 'html.parser')
# url set up
# scraping page 1
index = 0
pages = []
subjects = []
collect_subjects(subjects)
while(subjects):
subject_analysis(subjects, index)
index += 1
next_page = soup.find('a', rel = 'next')['href']
next_url = base_url + next_page
pages.append(next_url)
# scraping page 1
# web scraping
while(pages):
# parse current page
url = pages.pop(0)
page = requests.get(url)
soup = BeautifulSoup(page.text, 'html.parser')
# parse current page
# retrieve next page
try:
next_page = soup.find('a', rel = 'next')['href']
next_url = base_url + next_page
pages.append(next_url)
except TypeError:
k = 0
# retrieve next page
# retrieve subjects in current page
collect_subjects(subjects)
# retrieve subjects in current page
# collect data in subjects page
while(subjects):
subject_analysis(subjects, index)
index += 1
# collect data in subjects page
# web scraping
# copy data to csv file
df.index += 1
df.to_csv(r'Subjects.csv')
# copy data to csv file
file.close()
f.close()