Closed
Description
What happened?
I have two 24gb 7900xtx and i've noticed when I try to offload models to them that are definitely within their specs I get OOM errors. @0cc4m
Name and Version
.\server.exe -m ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf -ngl 100
What operating system are you seeing the problem on?
Windows
Relevant log output
PS Z:\llama_vulkan2> .\server.exe -m ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf -ngl 100
INFO [ main] build info | tid="22172" timestamp=1717686385 build=3091 commit="2b338967"
INFO [ main] system info | tid="22172" timestamp=1717686385 n_threads=8 n_threads_batch=-1 total_threads=16 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 27 key-value pairs and 723 tensors from ..\gguf_models\Cat-Llama-3-70B-instruct-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = Cat-Llama-3-70B-instruct
llama_model_loader: - kv 2: llama.block_count u32 = 80
llama_model_loader: - kv 3: llama.context_length u32 = 8192
llama_model_loader: - kv 4: llama.embedding_length u32 = 8192
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 28672
llama_model_loader: - kv 6: llama.attention.head_count u32 = 64
llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 8: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 10: general.file_type u32 = 15
llama_model_loader: - kv 11: llama.vocab_size u32 = 128258
llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,128258] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,128258] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,280147] = ["─á ─á", "─á ─á─á─á", "─á─á ─á─á", "...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 128257
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 128001
llama_model_loader: - kv 21: tokenizer.chat_template str = {% for message in messages %}{% if lo...
llama_model_loader: - kv 22: general.quantization_version u32 = 2
llama_model_loader: - kv 23: quantize.imatrix.file str = /models/Cat-Llama-3-70B-instruct-GGUF...
llama_model_loader: - kv 24: quantize.imatrix.dataset str = /training_data/groups_merged.txt
llama_model_loader: - kv 25: quantize.imatrix.entries_count i32 = 560
llama_model_loader: - kv 26: quantize.imatrix.chunks_count i32 = 88
llama_model_loader: - type f32: 161 tensors
llama_model_loader: - type q4_K: 441 tensors
llama_model_loader: - type q5_K: 40 tensors
llama_model_loader: - type q6_K: 81 tensors
llm_load_vocab: special tokens cache size = 258
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128258
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 80
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 28672
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 70B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 70.55 B
llm_load_print_meta: model size = 39.59 GiB (4.82 BPW)
llm_load_print_meta: general.name = Cat-Llama-3-70B-instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128257 '<|im_end|>'
llm_load_print_meta: PAD token = 128001 '<|end_of_text|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128257 '<|im_end|>'
ggml_vulkan: Found 2 Vulkan devices:
Vulkan0: AMD Radeon RX 7900 XTX | uma: 0 | fp16: 1 | warp size: 64
Vulkan1: AMD Radeon RX 7900 XTX | uma: 0 | fp16: 1 | warp size: 64
llm_load_tensors: ggml ctx size = 1.10 MiB
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: CPU buffer size = 563.63 MiB
llm_load_tensors: Vulkan0 buffer size = 20038.81 MiB
llm_load_tensors: Vulkan1 buffer size = 19940.68 MiB
...................................................................................................
llama_new_context_with_model: n_ctx = 8192
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: Vulkan0 KV buffer size = 1312.00 MiB
llama_kv_cache_init: Vulkan1 KV buffer size = 1248.00 MiB
llama_new_context_with_model: KV self size = 2560.00 MiB, K (f16): 1280.00 MiB, V (f16): 1280.00 MiB
llama_new_context_with_model: Vulkan_Host output buffer size = 0.98 MiB
llama_new_context_with_model: Vulkan0 compute buffer size = 1104.00 MiB
llama_new_context_with_model: Vulkan1 compute buffer size = 1104.00 MiB
llama_new_context_with_model: Vulkan_Host compute buffer size = 32.01 MiB
llama_new_context_with_model: graph nodes = 2566
llama_new_context_with_model: graph splits = 3
ggml_vulkan: Device memory allocation of size 939524096 failed.
ggml_vulkan: vk::Device::allocateMemory: ErrorOutOfDeviceMemory
PS Z:\llama_vulkan2> .\server.exe -m ..\gguf_models\dolphin-2.6-mixtral-8x7b.Q6_K.gguf -ngl 100
INFO [ main] build info | tid="6684" timestamp=1717686213 build=3091 commit="2b338967"
INFO [ main] system info | tid="6684" timestamp=1717686213 n_threads=8 n_threads_batch=-1 total_threads=16 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 25 key-value pairs and 995 tensors from ..\gguf_models\dolphin-2.6-mixtral-8x7b.Q6_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = cognitivecomputations_dolphin-2.6-mix...
llama_model_loader: - kv 2: llama.context_length u32 = 32768
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 14336
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 9: llama.expert_count u32 = 8
llama_model_loader: - kv 10: llama.expert_used_count u32 = 2
llama_model_loader: - kv 11: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: llama.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: general.file_type u32 = 18
llama_model_loader: - kv 14: tokenizer.ggml.model str = llama
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,32002] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 16: tokenizer.ggml.scores arr[f32,32002] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 17: tokenizer.ggml.token_type arr[i32,32002] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 32000
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {{ bos_token }}{%- set ns = namespace...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 32 tensors
llama_model_loader: - type q8_0: 64 tensors
llama_model_loader: - type q6_K: 834 tensors
llm_load_vocab: special tokens cache size = 261
llm_load_vocab: token to piece cache size = 0.1637 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32002
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 4
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 14336
llm_load_print_meta: n_expert = 8
llm_load_print_meta: n_expert_used = 2
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 8x7B
llm_load_print_meta: model ftype = Q6_K
llm_load_print_meta: model params = 46.70 B
llm_load_print_meta: model size = 35.74 GiB (6.57 BPW)
llm_load_print_meta: general.name = cognitivecomputations_dolphin-2.6-mixtral-8x7b
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 32000 '<|im_end|>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: PAD token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOT token = 32000 '<|im_end|>'
ggml_vulkan: Found 2 Vulkan devices:
Vulkan0: AMD Radeon RX 7900 XTX | uma: 0 | fp16: 1 | warp size: 64
Vulkan1: AMD Radeon RX 7900 XTX | uma: 0 | fp16: 1 | warp size: 64
llm_load_tensors: ggml ctx size = 1.25 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: CPU buffer size = 102.55 MiB
llm_load_tensors: Vulkan0 buffer size = 19334.84 MiB
llm_load_tensors: Vulkan1 buffer size = 17162.72 MiB
....................................................................................................
llama_new_context_with_model: n_ctx = 32768
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: Vulkan0 KV buffer size = 2176.00 MiB
llama_kv_cache_init: Vulkan1 KV buffer size = 1920.00 MiB
llama_new_context_with_model: KV self size = 4096.00 MiB, K (f16): 2048.00 MiB, V (f16): 2048.00 MiB
llama_new_context_with_model: Vulkan_Host output buffer size = 0.24 MiB
ggml_vulkan: Device memory allocation of size 2248148992 failed.
ggml_vulkan: vk::Device::allocateMemory: ErrorOutOfDeviceMemory