-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
755 lines (582 loc) · 25.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
import re, sys, string, unicodedata, os, itertools, pickle, copy, fasttext, joblib
from collections import Counter, OrderedDict, defaultdict
from glob import glob
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import h5py
import tqdm
import pyhocon
from tokenization import convert_to_unicode, FullTokenizer
#############
## Classes ##
#############
class Dataset():
def __init__(self, docs, id_to_tag, feature_size, feature_num):
"""See base class.
Args:
file_dict: dict. k: portion name (e.g train, dev, test)or dev_brown for srl
v: path to that portion
train_key: the key in file_dict that refer to train portion.
It is used to get tag mapping
use_iobul: convert tags from iob to iobul
"""
self.docs = docs
self.instances = None
self.id_to_tag = id_to_tag
self.tags_num = len(id_to_tag)
self.feature_size = feature_size
self.feature_num = feature_num
self.max_sent = -1
self.word_to_emb = None
self.word_to_char = None
def get_word_list(self):
vocab = []
for doc in self.docs:
for instance in doc:
vocab += instance.orig_tokens
return vocab
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, doc_id, sent_num, orig_tokens, orig_tags, orig_features,
bert_tokens, orig_to_tok_map, bert_tags, bert_features):
"""Constructs a InputExample.
Args:
tokens: list. A list of string where each item is a word of the original tokenization.
sent_idx: list. The sent_num of each tokens in tokens.
tags: list. Tags for each token in tokens.
features: (Optional) list. A list of features associated with each token.
"""
self.orig_tokens = orig_tokens
self.orig_tags = orig_tags
self.orig_features = orig_features
self.orig_guids = ["%s_%s" % (doc_id, sent_num)] * len(self.orig_tokens)
self.orig_to_tok_map = orig_to_tok_map
# bert
self.bert_tokens = bert_tokens
self.bert_tags = bert_tags
self.bert_features = bert_features
self.bert_guids = ["%s_%s" % (doc_id, sent_num)] * len(self.bert_tokens)
def merge(self, instance):
self.orig_to_tok_map += [i+len(self.bert_tokens) for i in instance.orig_to_tok_map]
for scheme in ["orig", "bert"]:
for att in ["tokens", "tags", "features", "guids"]:
nw = getattr(self, "%s_%s" %(scheme, att)) + getattr(instance, "%s_%s" %(scheme, att))
setattr(self, "%s_%s" %(scheme, att), nw)
def to_tfrecord(self, tokenizer, max_seq_length, seq_split="bert",
encoders=None, word_to_emb=None, is_bert_emb=False):
"""Converts a single `InputExample` into a single `TFRecord`."""
tokens = getattr(self, "%s_tokens" % seq_split)
tags = getattr(self, "%s_tags" % seq_split)
feats = copy.deepcopy(getattr(self, "%s_features" % seq_split))
# set word begin as index
if seq_split == "bert":
input_ids = tokenizer.convert_tokens_to_ids(tokens)
segment_ids = [0] * len(input_ids)
if not is_bert_emb:
for i in range(len(self.bert_tokens)):
if i in self.orig_to_tok_map:
segment_ids[i] = 1
else:
input_ids = [word_to_emb[tok] for tok in tokens] if word_to_emb else [0] * len(tokens)
segment_ids = [1] * len(input_ids)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
feats.append([0] * len(feats[0]))
if len(input_ids) > max_seq_length:
print(len(self.orig_tokens), len(input_ids), self.orig_tokens)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(feats) == max_seq_length
positions, ids, weights = list(range(len(tokens))), copy.deepcopy(tags), [1.0] * len(tokens)
# if the scheme is bert than don't predict on intermidiare pieces or "[SEP]"
for i in range(len(tokens)):
if (seq_split == "bert" and i not in set(self.orig_to_tok_map)) or tokens[i] == "[SEP]":
weights[i] = 0.0
while len(positions) < max_seq_length:
positions.append(0)
ids.append(0)
weights.append(0.0)
assert len(positions) == max_seq_length
assert len(ids) == max_seq_length
assert len(weights) == max_seq_length
features = OrderedDict()
features["input_ids"] = _create_int_feature(input_ids)
features["input_mask"] = _create_int_feature(input_mask)
features["segment_ids"] = _create_int_feature(segment_ids)
features["feat_ids"] = _create_int_feature(feats)
if encoders:
for enc_name, arr in encoders:
features["%s_emb" % enc_name] = _create_float_feature(arr)
features["masked_lm_positions"] = _create_int_feature(positions)
features["masked_lm_ids"] = _create_int_feature(ids)
features["masked_lm_weights"] = _create_float_feature(weights)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
return tf_example
def to_numpy(self, config, max_seq_length, portion,
encoders=None, word_to_emb=None, word_to_char=None):
features = OrderedDict()
input_ids = [word_to_emb[tok] for tok in self.orig_tokens] if word_to_emb else [0] * len(self.orig_tokens)
if word_to_char:
char_ids = [word_to_char[tok] for tok in self.orig_tokens]
else:
char_ids = [[0] * config.max_char_len] * len(self.orig_tokens)
segment_ids = [1] * len(input_ids)
feat_ids = copy.deepcopy(self.orig_features)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
feat_ids.append([0] * len(feat_ids[0]))
char_ids.append([0] * len(char_ids[0]))
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(feat_ids) == max_seq_length
assert len(char_ids) == max_seq_length
positions, ids, weights = \
list(range(len(self.orig_tokens))), copy.deepcopy(self.orig_tags), [1.0] * len(self.orig_tokens)
while len(positions) < max_seq_length:
positions.append(0)
ids.append(0)
weights.append(0.0)
assert len(positions) == max_seq_length
assert len(ids) == max_seq_length
assert len(weights) == max_seq_length
features["input_ids"] = np.array(input_ids, dtype=np.int32)
features["input_mask"] = np.array(input_mask, dtype=np.int32)
features["segment_ids"] = np.array(segment_ids, dtype=np.int32)
features["feat_ids"] = np.array(feat_ids, dtype=np.int32)
features["char_ids"] = np.array(char_ids, dtype=np.int32)
for enc_name, file_input in encoders:
if getattr(config, "use_%s" % enc_name):
features["%s_emb" % enc_name] = _set_elmo(file_input, portion, self, max_seq_length, reshape=False)
features["label_positions"] = np.array(positions, dtype=np.int32)
features["label_ids"] = np.array(ids, dtype=np.int32)
features["label_weights"] = np.array(weights, dtype=np.float32)
return features
def decode_pred(self, predictions, id_to_tag, seq_split="bert"):
tokens = getattr(self, "%s_tokens" % seq_split)
tags = getattr(self, "%s_tags" % seq_split)
guids = getattr(self, "%s_guids" % seq_split)
sentences, sentence = [], []
prv_id = guids[0]
for idx, (word, tag, pred, guid) in enumerate(zip(tokens, tags, predictions[:len(tags)], guids)):
if seq_split == "bert":
# if seq_split is "bert" drop intermidiare pieces
if idx not in self.orig_to_tok_map:
continue
# if it's first piece than get original token
word = self.orig_tokens[self.orig_to_tok_map.index(idx)]
tag, pred = id_to_tag[tag], id_to_tag[pred]
line = " ".join([word, tag, pred])
if guid == prv_id:
sentence.append(line)
elif sentence:
# remove "[SEP]" tokens from the end of the sentence
sentences.append("\n".join(sentence[:-1]))
sentence = [line]
prv_id = guid
if sentence:
sentences.append("\n".join(sentence[:-1]))
return "\n\n".join(sentences)
def decode_feature(self, features):
guids = self.bert_guids
tokens = defaultdict(list)
for idx in self.orig_to_tok_map:
guid = guids[idx]
doc_id, sent_num = guid.split("_")
feat = features[idx,...]
tokens[(int(doc_id), int(sent_num))].append(feat)
tokens = sorted(tokens.items(), key=lambda x: x[0])
sentences = []
for (doc_id, sent_num), tok_lst in tokens:
sentences.append((doc_id, sent_num, np.stack(tok_lst, 0)))
return sentences
def len(self, seq_split="bert"):
return len(getattr(self, "%s_tokens" % seq_split))
###################
## Tags Methods ##
###################
def get_tag_map(files, use_iobul=False):
tags = []
for filename in files:
tags += [line.strip().split()[-1] for line in open(filename, 'r').readlines() if line.strip() and " " in line]
tags = [tag for tag, _ in Counter(tags).most_common()]
tag_to_id = _convert_to_iobul(tags) if use_iobul else dict([(tag, idx) for idx, tag in enumerate(tags)])
id_to_tag = _iobul_to_iob(tag_to_id)
return tag_to_id, id_to_tag
def iob_to_iob2(tags):
prev = "O"
for i in range(len(tags)):
tag = tags[i].replace("B-", "").replace("I-", "")
if tags[i].startswith("I-") and not prev.endswith("-"+tag):
tags[i] = "B-"+tag
prev = tags[i]
return tags
def _iobul_to_iob(tag_to_id):
id_to_tag = {}
for tag, id in tag_to_id.items():
if tag.startswith('U-'):
id_to_tag[id] = re.sub(r'^U-(.+)$', r'B-\1',tag)
elif tag.startswith('L-'):
id_to_tag[id] = re.sub(r'^L-(.+)$', r'I-\1',tag)
else:
id_to_tag[id] = tag
return id_to_tag
def _convert_to_iobul(tags):
tag_to_id, ul, count = {}, {"B-": "U-", "I-": "L-"}, 0
for tag in tags:
tag_to_id[tag] = count
count += 1
if tag[:2] in ul:
tag = re.sub(r'^(%s)' % tag[:2], ul[tag[:2]], tag)
tag_to_id[tag] = count
count += 1
return tag_to_id
def convert_tags(tags, tag_to_id, use_iobul=False):
tags = iob_to_iob2(tags)
if not use_iobul:
return [tag_to_id[tag] for tag in tags]
tags_lst = []
for i in range(len(tags)):
if tags[i] == "O":
tags_lst.append(0)
continue
tag = re.sub(r'^B-|^I-', '', tags[i])
if i != len(tags) - 1 and tags[i].startswith('B-') and not tags[i + 1].startswith('I-'):
tags_lst.append(tag_to_id['U-' + tag])
elif i != len(tags) - 1 and tags[i].startswith('B-') and tags[i + 1].startswith('I-'):
tags_lst.append(tag_to_id['B-' + tag])
elif i != len(tags) - 1 and tags[i].startswith('I-') and tags[i + 1].startswith('I-'):
tags_lst.append(tag_to_id['I-' + tag])
elif i != len(tags) - 1 and tags[i].startswith('I-') and not tags[i + 1].startswith('I-'):
tags_lst.append(tag_to_id['L-' + tag])
# last index
elif i == len(tags) - 1 and tags[i].startswith('I-'):
tags_lst.append(tag_to_id['L-' + tag])
elif i == len(tags) - 1 and tags[i].startswith('B-'):
tags_lst.append(tag_to_id['U-' + tag])
return tags_lst
def replace_parantheses(word):
word = word.replace('/.', '.')
dico = {'-LRB-': '(', '-RRB-': ')', '-LSB-': '[', '-RSB-': ']', '-LCB-': '{', '-RCB-': '}'}
return dico[word] if word in dico else word
######################
### Tokens Methods ###
######################
def wp_tokenizer(tokenizer, orig_tokens, orig_tags, orig_features=None):
"""
orig_tokens = ["John", "Johanson", "'s", "house"]
bert_tokens == ["john", "johan", "##son", "'", "s", "house", "[SEP]"]
orig_to_tok_map == [1, 2, 4, 6]
"""
### Output
bert_tokens = []
# Token map will be an int -> int mapping between the `orig_tokens` index and
# the `bert_tokens` index.
orig_to_tok_map = []
# bert_tokens.append("[CLS]")
for idx, orig_token in enumerate(orig_tokens):
orig_to_tok_map.append(len(bert_tokens))
if orig_token == "[MASK]":
bert_tokens.extend(orig_token)
else:
bert_tokens.extend(tokenizer.tokenize(orig_token))
# add "[SEP]" at the end of orig_token
orig_to_tok_map.append(len(bert_tokens))
orig_tokens.append("[SEP]")
orig_tags.append(0)
orig_features.append([0] * len(orig_features[0]))
# add "[SEP]" at the end of bert_token
bert_tokens.append("[SEP]")
bert_tags = [0] * len(bert_tokens)
bert_features = [[0] * len(orig_features[0])] * len(bert_tokens) if orig_features else None
# print(orig_tokens)
# print(orig_tags)
# print(len(orig_tokens), len(orig_tags), len(bert_tags))
for idx, val in enumerate(orig_to_tok_map):
bert_tags[val] = orig_tags[idx]
if orig_features:
bert_features[val] = orig_features[idx]
return bert_tokens, orig_to_tok_map, bert_tags, bert_features
def normalize_token(token):
"""Convert some tokens in ontonotes"""
token = _strip_accents(token)
dico = {'-LRB-': '(', '-RRB-': ')',
'-LSB-': '[', '-RSB-': ']',
'-LCB-': '{', '-RCB-': '}',
'/.': '.', '/?': '?', '/-': '-'}
if not token:
print("Replacing empty token by -")
token = "-"
return dico[token] if token in dico else token
def _strip_accents(s):
return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')
def shape_feature(s, b_idx=0):
"""
Capitalization feature:
0 = all upper
1 = first letter upper
2 = one capital (not first letter)
3 = punctuation
4 = numeric
5 = contain no alphanum
6 = all lower
"""
if s in list(string.punctuation) or s in ["``", "''"]:return 3 + b_idx
try:
float(s)
return 4 + b_idx
except ValueError:
pass
if not s.isalnum():return 5 + b_idx
if s.lower() == s:return 6 + b_idx
if s.upper() == s:return 0 + b_idx
if s[0].upper() == s[0]:return 1 + b_idx
return 2 + b_idx
def get_char_maping(word_to_id, max_char_len=32):
words = [*word_to_id]
char_to_id, _ = zip(*Counter("".join(words)).most_common())
char_to_id = dict([(v, k + 2) for k, v in enumerate(char_to_id[:86])])
char_to_id = {**char_to_id, **{"<PAD>": 0, "<OOV>": 1}}
# get word_to_char_features
word_to_char = {}#np.zeros((len(word_to_id), max_char_len), np.int32)
for word in words:
lst = []
for c in "<" + word + ">":
c = char_to_id[c] if c in char_to_id else char_to_id["<OOV>"]
lst.append(c)
lst = lst[:max_char_len]
if len(lst) < max_char_len:
pad = [0] * (max_char_len - len(lst))
pad_left, pad_right = pad[:len(pad)//2], pad[len(pad)//2:]
lst = pad_left + lst + pad_right
word_to_char[word] = lst + [0] * (max_char_len - len(lst))
return word_to_char
def _create_int_feature(values):
if isinstance(values[0], list):
return tf.train.Feature(int64_list=tf.train.Int64List(value=
np.array(values, dtype=np.int64).reshape(-1).tolist()))
else:
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def _create_float_feature(values):
if not isinstance(values, list):
return tf.train.Feature(float_list=tf.train.FloatList(value=values.reshape(-1).tolist()))
else:
return tf.train.Feature(float_list=tf.train.FloatList(value=values))
##################################
### Methods to merge instances ###
##################################
def split_long_sent(tokenizer, tokens, tags, shapes):
"""This method is never used"""
max_len = 384
lst = [tokenizer.tokenize(w) for w in tokens]
lst = [item for sublist in lst for item in sublist]
output = []
if len(lst) >= max_len * 2:
# print(len(lst))
idx = len(tokens) // 3
output.append({"orig_tokens": tokens[:idx], "orig_tags": tags[:idx], "orig_features": shapes[:idx]})
output.append({"orig_tokens": tokens[idx:idx*2], "orig_tags": tags[idx:idx*2], "orig_features": shapes[idx:idx*2]})
output.append({"orig_tokens": tokens[idx*2:], "orig_tags": tags[idx*2:], "orig_features": shapes[idx*2:]})
elif len(lst) >= max_len:
# print(len(lst))
idx = len(tokens) // 2
output.append({"orig_tokens": tokens[:idx], "orig_tags": tags[:idx], "orig_features": shapes[:idx]})
output.append({"orig_tokens": tokens[idx:], "orig_tags": tags[idx:], "orig_features": shapes[idx:]})
else:
output.append({"orig_tokens": tokens, "orig_tags": tags, "orig_features": shapes})
return output
def doc_level_aggregation(inst_lst, max_seq_length, seq_split="bert", doc_agr=True, consecutif=False):
# if max_seq_length is set to None means that
# we predict sentence by row so return instances as it
if not max_seq_length or not doc_agr:
return inst_lst
rm = set()
for i in range(len(inst_lst)):
if i in rm:
continue
for j in range(i+1, len(inst_lst)):
if j in rm:
continue
inst1, inst2 = inst_lst[i], inst_lst[j]
if inst1.len(seq_split) + inst2.len(seq_split) < max_seq_length:
inst1.merge(inst2)
rm.add(j)
elif consecutif:
break
return [inst for idx, inst in enumerate(inst_lst) if idx not in rm]
def dataset_level_aggregation(docs, max_seq_length, data_agr=True, seq_split="bert"):
""" Merge 2 docs only if each contains one instance
and thier sum is less than max_seq_length
"""
docs_idx = [idx for idx, inst_lst in enumerate(docs) if len(inst_lst) == 1 and data_agr]
rm = set()
for i in range(len(docs_idx)):
if docs_idx[i] in rm:
continue
for j in range(i + 1, len(docs_idx)):
if docs_idx[j]in rm:
continue
inst1, inst2 = docs[docs_idx[i]][0], docs[docs_idx[j]][0]
if inst1.len(seq_split) + inst2.len(seq_split) < max_seq_length:
inst1.merge(inst2)
rm.add(docs_idx[j])
docs[docs_idx[i]] = [inst1]
docs = [doc for idx, doc in enumerate(docs) if idx not in rm]
# construct a list of input examples
instances = [item for sublist in docs for item in sublist]
return instances
#########################
### Word EMB Methods ####
#########################
def get_embeddings(config, dataset):
vocab = []
for name, data in dataset.items():
vocab += data.get_word_list()
vocab = set(vocab)
word_to_emb, emb_matrix, word_to_char_mapping = get_emb_data(config, vocab)
fix_emb_matrix = get_distance_embedings(config, word_to_emb)
return emb_matrix, word_to_emb, word_to_char_mapping, fix_emb_matrix
def get_emb_data(config, data_vocab):
# load pre-trained embeddings
pretrained = []
words = []
emb_size = 100
with open(config["wemb_file"], 'r') as f:
for line in f:
vals = line.rstrip().split(' ')
if len(vals) > 2:
words.append(vals[0])
pretrained.append([float(x) for x in vals[1:]])
emb_size = len(pretrained[-1])
emb_vocab = {k: v for v, k in enumerate(words)}
# '[SEP]' is the end sentence embeding in '</s>' SSKIP
emb_vocab['[SEP]'] = emb_vocab['</s>']
# get embedding vocab and matrix
vocab_out = set()
word_mapping = {}
for word in data_vocab:
if word in emb_vocab:
word_mapping[word] = emb_vocab[word]
elif word.lower() in emb_vocab:
word_mapping[word] = emb_vocab[word.lower()]
elif re.sub('\d', '0', word.lower()) in emb_vocab:
word_mapping[word] = emb_vocab[re.sub('\d', '0', word.lower())]
else:
vocab_out.add(word)
print("Embeddings coverage: %2.2f%%" % ((1 - (len(vocab_out) / len(data_vocab))) * 100))
word_to_emb = {}
# also use '[SEP]' as pad . It's ignored anyway ||| add embedding to unk
vectors = [pretrained[emb_vocab['[SEP]']],
np.random.uniform(-(3. / emb_size) ** .5, (3. / emb_size) ** .5, (emb_size)).tolist(),
np.random.uniform(-(3. / emb_size) ** .5, (3. / emb_size) ** .5, (emb_size)).tolist()]
word_to_emb["[MASK]"] = 2
for w, idx in word_mapping.items():
word_to_emb[w] = len(vectors)
vectors.append(pretrained[idx])
for w in vocab_out:
word_to_emb[w] = 1
vectors = np.asarray(vectors)
word_to_char_mapping = get_char_maping(word_to_emb)
return word_to_emb, vectors, word_to_char_mapping
def get_distance_embedings(config, word_to_id):
embedding_matrix = fasttext.load_model(config["ls_model_file"])
id_to_tag = {v: k for k, v in joblib.load(config["figer_tag_file"]).items()}
tags_vectors = {key: np.asarray(embedding_matrix[value]) for key, value in id_to_tag.items()}
tags_norm_vectors = {key: value / np.linalg.norm(value, ord=2) for key, value in tags_vectors.items()}
cosine = np.zeros((len(word_to_id), len(id_to_tag) + 2), dtype=np.float16)
for key, value in word_to_id.items():
rank = np.asarray(embedding_matrix[normalize_token(key).lower()])
rank = _most_similar_tag(rank, tags_norm_vectors, 'cosine')
min_v, max_v = np.amin(rank), np.amax(rank)
vec = -1 + 2. * (rank - min_v) / (max_v - min_v)
cosine[value] = np.append(vec, np.append(max_v, min_v))
return cosine
def _most_similar_tag(vec, vec_lst, metric):
vec_norm = vec / np.linalg.norm(vec, ord=2)
out = []
for i in range(len(vec_lst)):
if metric == 'cosine':
out.append(np.dot(vec_lst[i], vec_norm))
elif metric == 'euclidean':
out.append(np.linalg.norm(vec_lst[i] - vec))
return np.asarray(out, dtype=np.float16)
def _set_elmo(input_file, name, instance, max_seq_length, reshape=True):
def get_key_idx(orig_guids, key):
begin = -1
for idx, guid in enumerate(orig_guids):
if guid == key and begin == -1:
begin = idx
elif guid != key and begin != -1 or idx == len(orig_guids)-1:
return begin, idx
raise ValueError("Something Wrong!!!!!")
doc_lst = [list(map(int, guid.split("_"))) for guid in instance.orig_guids]
arr = None
for doc_id, sent_lst in itertools.groupby(doc_lst, lambda x: x[0]):
sent_lst = sorted(set([sent_num for _, sent_num in sent_lst]))
file_key = "%s_%s" %(name, doc_id)
group = input_file[file_key]
_, lm_size, lm_layers = group[str(0)][...].shape
arr = np.zeros([max_seq_length, lm_size, lm_layers], dtype=np.float32)
for sent_num in sent_lst:
begin, end = get_key_idx(instance.orig_guids, "%s_%s" % (doc_id, sent_num))
if end - begin == group[str(sent_num)].shape[0]-1:
arr[begin:end, ...] = group[str(sent_num)][:-1,...]
else:
arr[begin:end, ...] = group[str(sent_num)][...]
# if arr.shape[-1] > arr.shape[-2]:
# arr = np.einsum('lij->lji', arr)
if reshape:
arr = arr.reshape([max_seq_length, -1])
return arr
#########################
### Ontonotes Methods ###
#########################
def load_onto_file(filename):
words = []
tags = []
sent_words = []
tags_gold = []
with open(filename) as data_file:
for line in data_file:
if line.strip():
vals = line.strip().split()
if vals[0] in ['#begin', '#end']:
continue
words.append(replace_parantheses(vals[3]))
tags.append(vals[10])
elif len(words) > 0:
tags = transform_onto_tags(tags)
sent_words.append(copy.deepcopy(words))
tags_gold.append(copy.deepcopy(tags))
words = []
tags = []
return sent_words, tags_gold
def transform_onto_tags(lst):
tags = ["O"] * len(lst)
flag = False
cur = "O"
for i in range(len(lst)):
if lst[i][0] == "(" and not flag:
cur = lst[i].replace("(", "").replace(")", "").replace("*", "")
tags[i] = "B-" + cur
if lst[i][-1] != ")":
flag = True
elif flag and lst[i].startswith("*"):
tags[i] = "I-" + cur
if lst[i][-1] == ")":
flag = False
return tags