forked from cvlab-epfl/tf-lift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
260 lines (219 loc) · 10.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# config.py ---
#
# Filename: config.py
# Description: Configuration module.
# Author: Kwang Moo Yi
# Maintainer: Kwang Moo Yi
# Created: Wed Jun 28 13:08:23 2017 (+0200)
# Version:
# Package-Requires: ()
# URL:
# Doc URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
# Adapted from original code at
# https://github.com/carpedm20/simulated-unsupervised-tensorflow
#
#
# Change Log:
#
#
#
# Code:
import argparse
import getpass
import json
import os
from utils.config import get_patch_size
def str2bool(v):
return v.lower() in ("true", "1")
arg_lists = []
parser = argparse.ArgumentParser()
username = getpass.getuser()
def add_argument_group(name):
arg = parser.add_argument_group(name)
arg_lists.append(arg)
return arg
# ----------------------------------------
# Network
net_arg = add_argument_group("Network")
net_arg.add_argument("--kp_input_size", type=int, default=48, help="")
net_arg.add_argument("--kp_filter_size", type=int, default=25, help="")
net_arg.add_argument("--kp2_num_layers", type=int, default=5, help="")
net_arg.add_argument("--kp_base_scale", type=float, default=2.0, help="")
net_arg.add_argument("--kp_com_strength", type=float, default=10.0, help="")
net_arg.add_argument("--kp_num_fc_units", type=int, default=0, help="For module lift_kp_noghh")
# net_arg.add_argument("--ori_input_size", type=int, default=28, help="")
net_arg.add_argument("--ori_input_size", type=int, default=64, help="")
net_arg.add_argument("--desc_input_size", type=int, default=64, help="")
net_arg.add_argument("--desc_support_ratio", type=float, default=6.0, help="")
# Module selection
net_arg.add_argument("--module_kp", type=str, default="lift_kp", help="")
net_arg.add_argument("--module_ori", type=str, default="lift_ori", help="")
net_arg.add_argument("--module_desc", type=str, default="lift_desc", help="")
# Batch-norm on-off
net_arg.add_argument("--use_input_batch_norm", type=str2bool, default=False, help="")
net_arg.add_argument("--use_batch_norm", type=str2bool, default=True, help="")
# Data compatibility option
net_arg.add_argument("--old_data_compat", type=str2bool, default=False, help="Use hard-mined, non-augmented set")
# Orientation detector options
net_arg.add_argument("--use_augmented_set", type=str2bool, default=False, help="Use/extract the dataset for augmented rotations")
net_arg.add_argument("--augment_rotations", type=str2bool, default=False, help="")
net_arg.add_argument("--use_dropout_ori", type=bool, default=False, help="")
net_arg.add_argument("--ori_activation", type=str, default="ghh", choices=["ghh", "tanh"], help="")
# Descriptor options
net_arg.add_argument("--desc_activ", type=str, default="relu", help="Descriptor activation")
net_arg.add_argument("--desc_pool", type=str, default="avg_pool", help="Descriptor pooling")
net_arg.add_argument("--use_subtractive_norm", type=str2bool, default=False, help="Descriptor subtractive normalization")
net_arg.add_argument("--use_hardest_anchor", type=str2bool, default=True, help="Use hardest anchor")
net_arg.add_argument("--use_triplet_loss", type=str2bool, default=True, help="Triplet loss")
net_arg.add_argument("--triplet_loss_margin", type=float, default=5, help="Triplet loss margin")
# Use old mean/std
# net_arg.add_argument("--use_old_mean_std", type=str2bool, default=False, help="")
net_arg.add_argument("--mean_std_type", type=str, default="hardcoded",
choices=["hardcoded", "old", "dataset", "sample", "batch"], help="")
# ----------------------------------------
# Loss Function
loss_arg = add_argument_group("Loss")
loss_arg.add_argument("--alpha_overlap", type=float, default=1e0, help="")
loss_arg.add_argument("--alpha_classification", type=float, default=1e-8,
help="")
loss_arg.add_argument("--alpha_margin", type=float, default=4.0, help="")
# for joint training
loss_arg.add_argument("--alpha_kp", type=float, default=1e0, help="")
loss_arg.add_argument("--alpha_desc", type=float, default=1e0, help="")
loss_arg.add_argument("--kp_scoremap_softmax_strength",
type=float, default=10.0, help="")
# ----------------------------------------
# Data
data_arg = add_argument_group("Data")
data_arg.add_argument("--use_local", type=str2bool, default=True, help="")
data_arg.add_argument("--nchannel", type=int, default=1, help="")
data_arg.add_argument("--data_type", type=str, default="eccv2016", help="")
data_arg.add_argument("--data_name", type=str, default="piccadilly", help="")
data_arg.add_argument(
"--data_dir", type=str, help=(
"The directory containing the dataset. "
"Will look for {data_dir}/{data_name}"
), default="/cvlabdata2/home/{}/Datasets/".format(username),
)
data_arg.add_argument(
"--temp_dir", type=str, help=(
"The temporary directory where data related cache will be stored."
), default="/cvlabdata2/home/{}/Temp/".format(username),
)
data_arg.add_argument(
"--scratch_dir", type=str, help=(
"The temporary directory that will be used as cache."
"We have this since the large data is typically stored in a "
"network share"
), default="/scratch/{}/Temp/".format(username),
)
data_arg.add_argument(
"--pair_dir", type=str, help=(
"Creating pairs are time consuming. "
"We store the pair in this directory. "
"This behavior might be removed in the future. "
), default="./pairs",
)
data_arg.add_argument("--regen_pairs", type=str2bool, default=True, help="")
# ----------------------------------------
# Task
task_arg = add_argument_group("Task")
task_arg.add_argument("--task", type=str, default="train",
choices=["train", "test"],
help="")
task_arg.add_argument("--subtask", type=str, default="desc",
choices=["kp", "ori", "desc", "joint"],
help="")
task_arg.add_argument("--logdir", type=str, default="", help="")
task_arg.add_argument("--finetune", type=str, default="kp", help="e.g. 'kp+ori+desc'")
# ----------------------------------------
# Training
train_arg = add_argument_group("Train")
train_arg.add_argument("--random_seed", type=int, default=1234, help="")
train_arg.add_argument("--batch_size", type=int, default=128, help="")
train_arg.add_argument("--pair_interval", type=int, default=1, help="")
train_arg.add_argument("--pair_use_cache", type=str2bool,
default=True, help="")
train_arg.add_argument("--max_step", type=int, default=1e8, help="")
train_arg.add_argument("--optimizer", type=str, default="adam",
choices=["adam", "rmsprop", "sgd"],
help="")
train_arg.add_argument("--learning_rate", type=float, default=1e-3, help="")
train_arg.add_argument("--max_grad_norm", type=float, default=-1.0, help="")
train_arg.add_argument("--check_numerics", type=str2bool,
default=True, help="")
train_arg.add_argument("--tqdm_width", type=int, default=79, help="")
train_arg.add_argument("--mining_sched", type=str, default="none",
help="Scheduler: 'none', 'step', 'smooth'")
train_arg.add_argument("--mining_base", type=int, default=1,
help="Starting number of batches")
train_arg.add_argument("--mining_step", type=int, default=0,
help="Add one batch every these many (0 to disable)")
train_arg.add_argument("--mining_ceil", type=int, default=0,
help="Max number of batches (0 to disable)")
# Pretrain information to force in if needed
train_arg.add_argument("--pretrained_kp", type=str, default="", help="")
train_arg.add_argument("--pretrained_ori", type=str, default="", help="")
train_arg.add_argument("--pretrained_desc", type=str, default="", help="")
train_arg.add_argument("--pretrained_joint", type=str, default="", help="")
# ----------------------------------------
# Validation
valid_arg = add_argument_group("Validation")
valid_arg.add_argument("--validation_interval", type=int, default=1e3, help="")
valid_arg.add_argument("--validation_rounds", type=int, default=100, help="")
valid_arg.add_argument("--neg_per_pos", type=float, default=100.0, help="")
valid_arg.add_argument("--valid_method", type=str, default="desc", help="")
# ----------------------------------------
# Test
test_arg = add_argument_group("Test")
test_arg.add_argument("--test_img_file", type=str, default="", help="")
test_arg.add_argument("--test_kp_file", type=str, default="", help="")
test_arg.add_argument("--test_out_file", type=str, default="", help="")
test_arg.add_argument("--test_num_keypoint", type=int, default=1000, help="")
test_arg.add_argument("--test_scl_intv", type=int, default=4, help="")
test_arg.add_argument("--test_min_scale_log2", type=int, default=1, help="")
test_arg.add_argument("--test_max_scale_log2", type=int, default=4, help="")
test_arg.add_argument("--test_kp_use_tensorflow",
type=str2bool, default=True, help="")
test_arg.add_argument("--test_nearby_ratio", type=float, default=1.0, help="")
test_arg.add_argument("--test_nms_intv", type=int, default=2, help="")
test_arg.add_argument("--test_edge_th", type=float, default=10.0, help="")
train_arg = add_argument_group("Misc")
loss_arg.add_argument("--usage", type=float, default=0.96, help="Force GPU memory usage")
def get_config(argv):
config, unparsed = parser.parse_known_args()
# Sanity checks
if config.augment_rotations and not config.use_augmented_set:
config.use_augmented_set = True
print('-- Forcing use_augmented_set = True')
if config.augment_rotations and config.subtask is "desc":
raise RuntimeError("Rotation augmentation is incompatible "
"with descriptor training.")
if config.old_data_compat and (
config.use_augmented_set or config.augment_rotations):
raise RuntimeError("Options incompatible with legacy data generation.")
if config.subtask == 'joint':
what = config.finetune.split('+')
if ("kp" not in what) and ("ori" not in what) and \
("desc" not in what):
raise RuntimeError("Nothing to finetune? Check --finetune")
# Create the prefix automatically from run command
if config.logdir == "":
config.logdir = "-".join(argv)
config.logdir = os.path.join("logs",
config.logdir.replace("main.py", ""))
return config, unparsed
def save_config(model_dir, config):
param_path = os.path.join(model_dir, config.subtask, "params.json")
print("[*] MODEL dir: %s" % model_dir)
print("[*] PARAM path: %s" % param_path)
with open(param_path, "w") as fp:
json.dump(config.__dict__, fp, indent=4, sort_keys=True)
#
# config.py ends here