-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathforests.py
930 lines (803 loc) · 42.3 KB
/
forests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
import myutils
import time
import sklearn
from sklearn.ensemble import RandomForestRegressor
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.cluster import MiniBatchKMeans
import affinity
import multiprocessing
from optparse import OptionParser
from sklearn.externals import joblib
import numpy
import matplotlib.pyplot as plt
import os
import random
from operator import itemgetter
import math
MAX_DIST = 1e6
MAKE_TEST_SET = True
VISUALIZE = False
SAVEFIGS = False
DEFAULT_N_TEST_ENTRIES = 150000
DISPLAY_PREDICTION_STATS = False
CV_TEST_SET = True
def fix_predictions(data, predictions,ground_truth=None, findRadii=False, findAngle=False):
n_entries = data.shape[0]
#findAngle=True
if findAngle:
angles_deg = numpy.linspace(5,90,50)
else:
angles_deg = [70]
for angle_deg in angles_deg:
min_angle = angle_deg * math.pi/180
min_dist = 0.25
max_dist = 25.0
n_points = 0
total_diff = 0
for i in xrange(n_entries):
entry = data[i]
n_coordinates = myutils.get_n_coordinates(entry)
n_features = myutils.get_n_features(n_coordinates)
start_lng = entry[3]
start_lat = entry[4]
start_point = numpy.array([start_lng, start_lat])
end_lng = entry[n_features - 2]
end_lat = entry[n_features - 1]
end_point = numpy.array([end_lng, end_lat])
prediction = numpy.array(predictions[i,:2])
if myutils.HaversineDistance(end_point,start_point)>min_dist and myutils.HaversineDistance(end_point,prediction)>min_dist and myutils.HaversineDistance(end_point,prediction)<max_dist:
v1 = start_point - end_point
v2 = prediction - end_point
angle = math.acos(numpy.dot(v1,v2)/(numpy.linalg.norm(v1)*numpy.linalg.norm(v2)))
if abs(angle)<min_angle:
if ground_truth is not None:
current_dist = myutils.HaversineDistance(predictions[i],ground_truth[i])
if not findAngle:
predictions[i,:2] = end_point
new_dist = myutils.HaversineDistance(end_point,ground_truth[i])
diff = current_dist - new_dist
total_diff += diff
n_points += 1
#print "angle = %f, initial dist=%f, new dist=%f (diff = %f) v1=%s v2=%s" % (angle*180/math.pi,current_dist, new_dist, current_dist - new_dist, str(v1), str(v2))
print "angle=%f fix: (n_points=%d, avg diff=%f, overall diff=%f)" % (angle_deg, n_points, total_diff/n_points, total_diff/n_entries)
if ground_truth is not None:
print "After angl fix: (angle n_points=%d, avg diff=%f): dist=%f, RMSLE=%f" % ( n_points, total_diff/n_points,
myutils.mean_haversine_dist(predictions, ground_truth),
myutils.RMSLE(predictions, ground_truth) )
else:
print "angle=%d fix: (n_points=%d)" % (angle, n_points)
if findRadii:
new_predictions = numpy.copy(predictions)
PoIs_in = numpy.array([[-8.6700702383 , 41.2372374113 , 57551 , 3.9853980226],
[-8.6392450734 , 41.2352520798 , 1123 , 0.8015774616],
[-8.5853810611 , 41.1489010799 , 41497 , 0.6673817203],
[-8.6891782384 , 41.208825618 , 1876 , 0.616149212 ],
[-8.6198240356 , 41.129867372 , 5969 , 0.5186517291],
[-8.6222218511 , 41.1185072727 , 1071 , 0.4643102125],
[-8.6137321114 , 41.1332629603 , 3664 , 0.4513865872],
[-8.6350034654 , 41.1399629178 , 6183 , 0.4083454977],
[-8.5759057989 , 41.143087217 , 4788 , 0.4049651032],
[-8.5920084995 , 41.1055389173 , 955 , 0.3788037772],
[-8.654467468 , 41.1817302333 , 11901 , 0.3449968659],
[-8.5662229289 , 41.1744146818 , 5003 , 0.3442417021],
[-8.6912356773 , 41.1948618792 , 849 , 0.3431452011],
[-8.5838467866 , 41.1640426139 , 7556 , 0.3216473446],
[-8.688404 , 41.167548 , 1836 , 0.3154678223 ]])
PoIs_sorted = PoIs_in[PoIs_in[:,2].argsort()]
PoIs = []
assert (ground_truth is not None)
for poi in PoIs_sorted:
radii = numpy.linspace(0,5,101)
best_diff = 0
best_radius = 0
for radius in radii[1:]:
n_points = 0
total_diff = 0
for i in xrange(n_entries):
if myutils.HaversineDistance(predictions[i], poi)<radius:
n_points += 1
if ground_truth is not None:
current_dist = myutils.HaversineDistance(predictions[i],ground_truth[i])
new_dist = myutils.HaversineDistance(poi,ground_truth[i])
diff = current_dist - new_dist
total_diff += diff
#print "close to poi (<%f), initial dist=%f, new dist=%f (diff = %f) gt=%s" % (radius, current_dist, new_dist, diff, str(ground_truth[i]))
new_predictions[i,:2] = poi[:2]
if total_diff > best_diff:
best_radius = radius
best_diff = total_diff
PoIs.append([poi[0], poi[1], best_radius])
print "PoIs %s: best radius=%f (diff=%f)" % (str(poi[:2]), best_radius, best_diff/n_entries)
print "PoIs=%s" % str(PoIs)
else:
PoIs = [[ -8.691204, 41.19495, 0.102041],
[ -8.592004, 41.10555, 0.000000],
[ -8.622204, 41.11855, 0.408163],
[ -8.639204, 41.23535, 0.204082],
[ -8.688404, 41.16755, 0.408163],
[ -8.689204, 41.20875, 0.408163],
[ -8.613804, 41.13315, 0.204082],
[ -8.575804, 41.14315, 0.510204],
[ -8.566204, 41.17435, 0.510204],
[ -8.619804, 41.12995, 0.408163],
[ -8.635004, 41.13995, 0.408163],
[ -8.583804, 41.16395, 0.000000],
[ -8.654404, 41.18175, 0.408163],
[ -8.585404, 41.14895, 0.714286],
[ -8.670004, 41.23735, 3.163265]]
n_points = 0
total_diff = 0
for poi in PoIs:
radius = poi[2]
for i in xrange(n_entries):
if myutils.HaversineDistance(predictions[i], poi)<radius:
n_points += 1
if ground_truth is not None:
current_dist = myutils.HaversineDistance(predictions[i],ground_truth[i])
new_dist = myutils.HaversineDistance(poi,ground_truth[i])
diff = current_dist - new_dist
total_diff += diff
#print "close to poi (<%f), initial dist=%f, new dist=%f (diff = %f) gt=%s" % (radius, current_dist, new_dist, diff, str(ground_truth[i]))
predictions[i,:2] = poi[:2]
if ground_truth is not None:
print "After PoIs fix (n_points=%d, diff=%f): dist=%f, RMSLE=%f" % ( n_points, total_diff/n_points, myutils.mean_haversine_dist(predictions, ground_truth),
myutils.RMSLE(predictions, ground_truth) )
else:
print "Poi fix (n_points=%d)" % (n_points)
def get_model_filename(options, n_coordinates):
assert not (options.noRF and options.GBRT)
if options.GBRT:
filename_lon = "%s/model_gbrt_lon_%d_%d.pkl" % (options.dir, options.n_train, n_coordinates)
filename_lat = "%s/model_gbrt_lat_%d_%d.pkl" % (options.dir, options.n_train, n_coordinates)
filename_t = "%s/model_gbrt_t_%d_%d.pkl" % (options.dir, options.n_train, n_coordinates)
return [filename_lon, filename_lat, filename_t]
else:
filename = "%s/model_%d_%d.pkl" % (options.dir, options.n_train, n_coordinates)
return [filename]
def available_models(options, model_sizes):
avail = []
for size in model_sizes:
found = True
for f in get_model_filename(options, size):
if not os.path.isfile(f):
print "%s missing, skipping model %d" % (f, size)
found = False
break
if found:
avail.append(size)
print "model list: %s" % str(avail)
return avail
def get_model_id(model_sizes, n_coordinates):
model = 0
for j in xrange(len(model_sizes)):
if model_sizes[j]<=n_coordinates:
model = model_sizes[j]
return model
def report(grid_scores, n_top=10):
top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top]
for i, score in enumerate(top_scores):
print("Model with rank: {0}".format(i + 1))
print("Mean validation score: {0:.3f} (std: {1:.3f})".format(
score.mean_validation_score,
numpy.std(score.cv_validation_scores)))
print("Parameters: {0}".format(score.parameters))
print("")
# Plot CV scores of a 2D grid search
def plotGridResults2D(x, y, x_label, y_label, grid_scores):
scores = [abs(s[1]) for s in grid_scores]
scores = numpy.array(scores).reshape(len(x), len(y))
plt.figure()
plt.imshow(scores, interpolation='nearest', cmap=plt.cm.RdYlGn)
plt.xlabel(y_label)
plt.ylabel(x_label)
plt.colorbar()
plt.xticks(numpy.arange(len(y)), y, rotation=45)
plt.yticks(numpy.arange(len(x)), x)
plt.title('Validation accuracy')
def train(options):
n_coordinates = options.n_coordinates
assert n_coordinates != 0
n_entries = options.n_train
n_estimators = options.n_estimators
directory = options.dir
if not os.path.exists(directory):
os.makedirs(directory)
data,target,dummy_ids = myutils.load_data_ncoords(filename = options.input_train,
max_entries = n_entries,
n_coordinates=n_coordinates,
total_records=1e6)
print "splitting data into training/test sets..."
ratio_test_entries = 0.05
data_train,data_test,target_train,target_test = train_test_split(data,
target,
test_size=ratio_test_entries)
n_test_entries = data_test.shape[0]
if not options.noRF:
print "building RF model with %d coordinates ..." % n_coordinates
model_rf = sklearn.ensemble.RandomForestRegressor(n_estimators=n_estimators, n_jobs=-1, oob_score=False)
model_rf.fit(data_train,target_train)
print "computing RF predictions..."
predictions_rf = model_rf.predict(data_test)
dist = 0
log_time = 0
for i in xrange(n_test_entries):
p1 = target_test[i]
p2 = predictions_rf[i]
dist += myutils.HaversineDistance( p1, p2)
t1 = target_test[i,2] + (n_coordinates-1)*myutils.TIME_STEP
t2 = predictions_rf[i,2] + (n_coordinates-1)*myutils.TIME_STEP
log_time += (numpy.log(t1+1) - numpy.log(t2+1))**2
print "Mean haversine distance: %f, RMSLE=%f" % (dist/n_test_entries, numpy.sqrt(log_time/n_test_entries))
filename = "%s/model_%d_%d.pkl" % (directory, n_entries, n_coordinates)
print "saving model into %s..." % filename
joblib.dump(model_rf, filename)
if options.GBRT:
print "building longitute GBRT model with %d coordinates..." % n_coordinates
n_gbrt = options.n_gbrt_estimators
model_lon = sklearn.ensemble.GradientBoostingRegressor(max_leaf_nodes = n_entries/10, n_estimators=n_gbrt)
model_lon.fit(data_train,target_train[:,0])
filename = "%s/model_gbrt_lon_%d_%d.pkl" % (directory, n_entries, n_coordinates)
print "saving model into %s..." % filename
joblib.dump(model_lon, filename)
print "building latitude GBRT model with %d coordinates..." % n_coordinates
model_lat = sklearn.ensemble.GradientBoostingRegressor(max_leaf_nodes = n_entries/10, n_estimators=n_gbrt)
model_lat.fit(data_train,target_train[:,1])
filename = "%s/model_gbrt_lat_%d_%d.pkl" % (directory, n_entries, n_coordinates)
print "saving model into %s..." % filename
joblib.dump(model_lat, filename)
print "building time GBRT model with %d coordinates..." % n_coordinates
model_t = sklearn.ensemble.GradientBoostingRegressor(max_leaf_nodes = n_entries/10, n_estimators=n_gbrt)
model_t.fit(data_train,target_train[:,2])
filename = "%s/model_gbrt_t_%d_%d.pkl" % (directory, n_entries, n_coordinates)
print "saving model into %s..." % filename
joblib.dump(model_t, filename)
print "computing GBRT predictions..."
predictions_gbrt = numpy.zeros([n_test_entries, myutils.TARGET_LEN])
predictions_gbrt[:,0] = model_lon.predict(data_test)
predictions_gbrt[:,1] = model_lat.predict(data_test)
predictions_gbrt[:,2] = model_t.predict(data_test)
dist = 0
log_time = 0
for i in xrange(n_test_entries):
p1 = target_test[i]
p2 = predictions_gbrt[i]
dist += myutils.HaversineDistance( p1, p2)
t1 = target_test[i,2] + (n_coordinates-1)*myutils.TIME_STEP
t2 = predictions_gbrt[i,2] + (n_coordinates-1)*myutils.TIME_STEP
log_time += (numpy.log(t1+1) - numpy.log(t2+1))**2
print "Mean haversine distance: %f, RMSLE=%f" % (dist/n_test_entries, numpy.sqrt(log_time/n_test_entries))
if (not options.noRF) and (options.GBRT):
print "Averaging predictions..."
predictions_avg = (predictions_gbrt + predictions_rf)/2
dist = 0
log_time = 0
for i in xrange(n_test_entries):
p1 = target_test[i]
p2 = predictions_avg[i]
dist += myutils.HaversineDistance( p1, p2)
t1 = target_test[i,2] + (n_coordinates-1)*myutils.TIME_STEP
t2 = predictions_avg[i,2] + (n_coordinates-1)*myutils.TIME_STEP
log_time += (numpy.log(t1+1) - numpy.log(t2+1))**2
print "Mean haversine distance: %f, RMSLE=%f" % (dist/n_test_entries, numpy.sqrt(log_time/n_test_entries))
def hypertune(options):
n_coordinates = options.n_coordinates
assert n_coordinates != 0
n_entries = options.n_train
n_estimators = options.n_estimators
directory = options.dir
data,target,dummy_ids = myutils.load_data_ncoords(filename = options.input_train,
max_entries = n_entries,
n_coordinates=n_coordinates,
total_records=-1)
n_entries = data.shape[0]
# create a scorer function out of our evaluation metric
scorer = sklearn.metrics.make_scorer(myutils.mean_haversine_dist, greater_is_better=False)
# range of hyperparameters to try
n_estimators_range = numpy.array([1, 10, 20, 25, 50, 100, 200])
max_depth_range = numpy.array([11, 35, 101, 251, 401, 501, 1000, 10000])
# criss Grid search object
grid = GridSearchCV(sklearn.ensemble.RandomForestRegressor(),
{'max_depth' : max_depth_range,
'n_estimators' : n_estimators_range},
cv=sklearn.cross_validation.KFold(n_entries, n_folds=10), n_jobs=-1,
scoring=scorer)
grid.fit(data,target)
report(grid.grid_scores_)
plotGridResults2D(max_depth_range, n_estimators_range, 'max depth', 'n estimators', grid.grid_scores_)
plt.show()
######################
def predict(options):
directory = options.dir
all_model_sizes = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51,
52, 53, 54, 57, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72,
73, 76, 78, 79, 80, 83, 84, 85, 94, 97, 107, 110, 111, 112, 115,
134, 137, 138, 152, 155, 157, 163, 164, 192, 215, 220, 225, 238,
267, 327, 361, 369, 387, 400]
#model_sizes = [1, 51, 107]
model_sizes = available_models(options, all_model_sizes)
# we must have a model for the shortest trips
assert (1 in model_sizes)
print "loading test data..."
if MAKE_TEST_SET:
n_test_entries = DEFAULT_N_TEST_ENTRIES
n_entries = min(200000, 100 * n_test_entries)
data,target,ids = myutils.load_data_dense(filename=options.input_test,
max_entries = n_entries,
max_coordinates=500,
skip_records=0,
total_records=-1)
if CV_TEST_SET:
data_test,ground_truth,ids_test = myutils.make_test_data_cv(data,
target,
ids,
n_entries=n_test_entries)
else:
data_test,ground_truth,ids_test = myutils.make_test_data_dense(data,
target,
ids,
n_entries=n_test_entries,
randomize = False)
else:
data_test,dummy_target,ids_test = myutils.load_data_dense(filename='../data/test.csv',
max_entries = 320,
max_coordinates=400)
n_test_entries = data_test.shape[0]
print "predicting %d entries..." % n_test_entries
n_predicted = 0
total_dist = 0
total_log_time = 0
predictions = numpy.zeros([n_test_entries,myutils.TARGET_LEN])
visu = myutils.VisualizeTrip()
for model_size in model_sizes:
entry_indices = []
for i in xrange(n_test_entries):
n_coordinates = myutils.get_n_coordinates(data_test[i])
model_fit = get_model_id(model_sizes, n_coordinates)
if model_fit == model_size:
entry_indices.append(i)
if len(entry_indices)>0:
# build input data
n_features = myutils.get_n_features(model_size)
# create vector to inculde all test samples for this model
X = numpy.zeros([len(entry_indices),n_features])
for idx,val in enumerate(entry_indices):
X[idx] = data_test[val,0:n_features]
# open model and predict
fname = get_model_filename(options, model_size)
if options.GBRT:
print "Opening GBRT model %s" % fname[0]
model_lon = joblib.load(fname[0])
print "Opening GBRT model %s" % fname[1]
model_lat = joblib.load(fname[1])
print "Opening GBRT model %s" % fname[2]
model_t = joblib.load(fname[2])
Y = numpy.zeros([len(entry_indices),myutils.TARGET_LEN])
Y[:,0] = model_lon.predict(X)
Y[:,1] = model_lat.predict(X)
Y[:,2] = model_t.predict(X)
else:
print "Opening RF model %s" % fname[0]
model = joblib.load(fname[0])
# predict all test samples for this model
Y = model.predict(X)
for idx,val in enumerate(entry_indices):
predictions[val,0:2] = Y[idx,0:2]
if Y[idx,2]<=0:
print "!!!! time prediction=%f" % Y[idx,2]
predictions[val,2] = max(0,Y[idx,2]) + (model_size-1)*myutils.TIME_STEP
if MAKE_TEST_SET:
# compare against ground truth
dest_truth = ground_truth[val,0:2]
p2 = predictions[val,0:2]
dist = myutils.HaversineDistance( dest_truth, p2)
dist_string = "haversine_dist=%.2f" % dist
total_dist = total_dist + dist
t1 = ground_truth[val,2]
t2 = predictions[val,2]
log_time = (numpy.log(t1+1) - numpy.log(t2+1))**2
total_log_time += log_time
time_diff_string = "time diff=%ds, gt=%d (root log=%.3f,running=%f)" % (int(t2-t1),
int(t1),
numpy.sqrt(log_time),
numpy.sqrt(total_log_time/(n_predicted+1)))
fig_filename = "fig_%05.2f_%05.2f_%d.png" % (dist, log_time, val)
else:
dist_string = ""
time_diff_string = ""
dest_truth = None
fig_filename = "fig_%d_%s.png" % (val,ids_test[val])
if SAVEFIGS:
plt.figure(val)
visu(myutils.get_polyline(data_test[val]),predictions[val],dest_truth)
plt.savefig(fig_filename)
n_predicted = n_predicted + 1
if DISPLAY_PREDICTION_STATS:
air_distance, land_distance = myutils.get_trip_stats(data_test[val])
if air_distance>0:
ratio = land_distance/air_distance
else:
ratio = 0
print "[%d/%d] Processing TRIP_ID='%s' ncoords=%d dist_ratio=%.2f model=%d %s %s" % (n_predicted,
n_test_entries,
ids_test[val],
n_coordinates,
ratio,
model_size,
dist_string,
time_diff_string)
if MAKE_TEST_SET:
print "Average dist=%f, RMSLE=%f" % (myutils.mean_haversine_dist(predictions, ground_truth),
myutils.RMSLE(predictions, ground_truth) )
myutils.save_predictions(predictions,
ids_test,
dest_filename='out-destination.csv',
time_filename='out-time.csv')
if VISUALIZE:
plt.close("all")
max_figures = 4
trips_per_figure = max(1,int(n_test_entries/max_figures))
for i in xrange(n_test_entries):
if i%trips_per_figure ==0:
plt.figure(i/trips_per_figure+1)
# visualize
if MAKE_TEST_SET:
truth = ground_truth[i]
else:
truth = None
visu(myutils.get_polyline(data_test[i]),predictions[i],truth)
plt.show()
def train_and_test():
assert(0)
def gen_commands(options):
data_test,dummy_target,ids_test = myutils.load_data_dense(filename='../data/test.csv',
max_entries = 320,
max_coordinates=400)
n_test_entries = data_test.shape[0]
size_list = []
for i in xrange(n_test_entries):
s = myutils.get_n_coordinates(data_test[i])
if not (s in size_list):
size_list.append(s)
size_list.sort()
if options.GBRT:
gbrt = "--GBRT --ngbrtestimators=%d" % options.n_gbrt_estimators
else:
gbrt = ""
if options.noRF:
norf = "--noRF"
else:
norf = ""
for size in size_list:
print "python forests.py --train --dir %s -c %d -n %d -e %d %s %s " % (options.dir,
size,
options.n_train,
options.n_estimators,
gbrt,
norf)
return 0
def stats(options):
n_entries = options.n_train
data,target,ids = myutils.load_data_dense(max_entries = n_entries,
max_coordinates=200,
total_records=1.5*1e6,
load_taxi_id=True)
drivers = {}
for i in xrange(n_entries):
air_distance, land_distance = myutils.get_trip_stats(data[i])
if air_distance>5:
taxi_id = myutils.get_taxi_id(data[i])
ratio = land_distance/air_distance
if taxi_id in drivers:
d = drivers[taxi_id]
drivers[taxi_id] = [(d[0]*d[1]+ratio)/(d[1]+1), d[1]+1]
else:
drivers[taxi_id] = [ratio, 1]
print drivers
def split(options):
ratio = 10
fin = open(options.input_train,'rb')
ftrain = open('mytrain.csv','w')
ftest = open('mytest.csv','w')
n_parsed = 0
for line in fin:
if n_parsed == 0:
# write header to both files
ftrain.write(line)
ftest.write(line)
elif n_parsed % ratio ==0:
ftest.write(line)
else:
ftrain.write(line)
n_parsed += 1
fin.close()
ftrain.close()
ftest.close()
def train_step2(options):
print "loading test data..."
directory = options.dir
n_test_entries = DEFAULT_N_TEST_ENTRIES
n_entries = min(200000, 100 * n_test_entries)
data,target,ids = myutils.load_data_dense(filename=options.input_test,
max_entries = n_entries,
max_coordinates=500,
skip_records=0,
total_records=-1)
if CV_TEST_SET:
data_made,ground_truth,ids_test = myutils.make_test_data_cv(data,
target,
ids,
n_entries=n_test_entries)
else:
data_made,ground_truth,ids_test = myutils.make_test_data_dense(data,
target,
ids,
n_entries=n_test_entries,
randomize = False)
# how many test entries did we generate?
n_test_entries = data_made.shape[0]
print "average number of coordinates: %f" % myutils.test_set_stats(data_made)
print "loading previous prediction..."
predictions, prediction_ids = myutils.load_predictions(destination_file=options.input_destination_prediction,
time_file=options.input_time_prediction,
n_entries = n_test_entries)
print "mean gt=%s" % (str(numpy.mean( ground_truth[:,2] )) )
diff = ground_truth - predictions
print "min=%s mean=%s max=%s" % (str(numpy.min(diff,axis=0)), str(numpy.mean(diff,axis=0)), str(numpy.max(diff,axis=0)) )
print "Average dist=%f, RMSLE=%f" % (myutils.mean_haversine_dist(predictions, ground_truth),
myutils.RMSLE(predictions, ground_truth) )
#model_ransac = sklearn.linear_model.RANSACRegressor(sklearn.linear_model.LinearRegression())
#n_subset = int(n_test_entries/2)
#predictions_ransac = numpy.zeros([n_test_entries-n_subset,myutils.TARGET_LEN])
#print predictions[:n_subset,2].shape
#print ground_truth[:n_subset,2].shape
#model_ransac.fit(predictions[:n_subset,2:3], ground_truth[:n_subset,2])
#predictions_ransac[:,2:3] = model_ransac.predict(predictions[n_subset:,2:3])
#print "coefs: %s intercept:%s" % (str( model_ransac.estimator_.coef_), str(model_ransac.estimator_.intercept_) )
#print "After RANSAC: dist=%f, RMSLE=%f" % (myutils.mean_haversine_dist(predictions_ransac, ground_truth[n_subset:]),
#myutils.RMSLE(predictions_ransac, ground_truth[n_subset:]) )
fix_predictions(data_made, predictions, ground_truth, findRadii=False)
#print "building new feature vectors..."
#data_nf = myutils.make_2nd_step_features(data_made, predictions)
#
#print "splitting set..."
#[data_train, data_test,
# data_nf_train, data_nf_test,
# predictions_train, predictions_test,
# target_train, target_test] = train_test_split(data_made,
# data_nf,
# predictions,
# ground_truth,
# test_size=n_test_entries/4)
#
#print "Before training: train set average dist=%f, RMSLE=%f" % (myutils.mean_haversine_dist(predictions_train, target_train),
# myutils.RMSLE(predictions_train, target_train))
#print "Before training: test set average dist=%f RMSLE=%f" % (myutils.mean_haversine_dist(predictions_test, target_test),
# myutils.RMSLE(predictions_test, target_test))
#
#print "building model..."
#model = sklearn.ensemble.RandomForestRegressor(n_estimators=500, n_jobs=-1)
#model.fit(data_nf_train,target_train)
#print str(model.feature_importances_)
#
#model_name = "%s/model_2nd_step.pkl" % directory
#print "saving model into %s..." % model_name
#if not os.path.exists(directory):
# os.makedirs(directory)
#joblib.dump(model, model_name)
#
#print "computing predictions..."
#predictions_train_2nd_step = model.predict(data_nf_train)
#predictions_test_2nd_step = model.predict(data_nf_test)
#
#print "After training: train set average dist=%f RMSLE=%f" % (myutils.mean_haversine_dist(predictions_train_2nd_step, target_train),
# myutils.RMSLE(predictions_train_2nd_step, target_train))
#print "After training: test set average dist=%f RMSLE=%f" % (myutils.mean_haversine_dist(predictions_test_2nd_step, target_test),
# myutils.RMSLE(predictions_test_2nd_step, target_test))
#
#print "trying to post-process predictions..."
#fix_predictions(data_test, predictions_test_2nd_step, target_test)
def predict_step2(options):
directory = options.dir
n_test_entries = 320
print "loading test set..."
data_test,dummy_target,ids_test = myutils.load_data_dense(filename='../data/test.csv',
max_entries = n_test_entries,
max_coordinates=400)
print "average number of coordinates: %f" % myutils.test_set_stats(data_test)
print "loading previous prediction..."
predictions, prediction_ids = myutils.load_predictions(destination_file=options.input_destination_prediction,
n_entries = n_test_entries)
#print "building new feature vectors..."
#data = myutils.make_2nd_step_features(data_test, predictions)
#
#model_name = "%s/model_2nd_step.pkl" % directory
#print "loading 2nd step model '%s'..." % model_name
#model = joblib.load(model_name)
#
#print "making 2nd step predictions..."
#predictions_test_2nd_step = model.predict(data)
#assert(n_test_entries == predictions_test_2nd_step.shape[0])
#
#print "making time predictions..."
#myutils.adjust_predict_time(data_test, predictions_test_2nd_step)
fix_predictions(data_test, predictions, ground_truth=None)
predictions_test_2nd_step = predictions
myutils.save_predictions(predictions_test_2nd_step,
ids_test,
dest_filename='out-destination-2ndstep.csv',
time_filename='out-time-2ndstep.csv')
def cluster(options):
n_coordinates = 1
n_entries = options.n_train
directory = options.dir
print "loading data..."
dummy_data,target,dummy_ids = myutils.load_data_ncoords(filename = options.input_train,
max_entries = n_entries,
n_coordinates=n_coordinates,
total_records=1e6)
print "finding clusters..."
n_clusters = 1000
km = MiniBatchKMeans(n_clusters=n_clusters, batch_size=5*n_clusters, init='random', n_init=20)
km.fit(target)
if not os.path.exists(directory):
os.makedirs(directory)
model_name = "%s/model_cluster.pkl" % directory
print "saving model into %s" % model_name
joblib.dump(km, model_name)
def merge(options):
files = options.merge.split(',')
assert len(files)==2
if MAKE_TEST_SET:
n_test_entries = DEFAULT_N_TEST_ENTRIES
n_entries = min(200000, 100 * n_test_entries)
data,target,ids = myutils.load_data_dense(filename=options.input_test,
max_entries = n_entries,
max_coordinates=500,
skip_records=0,
total_records=-1)
if CV_TEST_SET:
data_made,ground_truth,ids_test = myutils.make_test_data_cv(data,
target,
ids,
n_entries=n_test_entries)
else:
data_made,ground_truth,ids_test = myutils.make_test_data_dense(data,
target,
ids,
n_entries=n_test_entries,
randomize = False)
# how many test entries did we generate?
n_test_entries = data_made.shape[0]
else:
n_test_entries = 320
assert options.merge_ratio != ""
merge_ratio = eval(options.merge_ratio)
print "Merge ratio = %f" % merge_ratio
if "dest" in files[0]:
predictions1, prediction1_ids = myutils.load_predictions(destination_file=files[0],
n_entries = n_test_entries)
predictions2, prediction2_ids = myutils.load_predictions(destination_file=files[1],
n_entries = n_test_entries)
else:
assert "time" in files[0]
predictions1, prediction1_ids = myutils.load_predictions(destination_file=None,
time_file=files[0],
n_entries = n_test_entries)
predictions2, prediction2_ids = myutils.load_predictions(destination_file=None,
time_file=files[1],
n_entries = n_test_entries)
assert(cmp(prediction1_ids, prediction2_ids)==0)
if MAKE_TEST_SET:
print "Prediction #1: dist=%f RMSLE=%f" % (myutils.mean_haversine_dist(predictions1, ground_truth),
myutils.RMSLE(predictions1, ground_truth))
print "Prediction #2: dist=%f RMSLE=%f" % (myutils.mean_haversine_dist(predictions2, ground_truth),
myutils.RMSLE(predictions2, ground_truth))
scores = []
ratios, step = numpy.linspace(0,1,51,retstep=True)
for ratio in ratios:
predictions_merged = (ratio * predictions1 + (1-ratio) * predictions2)
dist = myutils.mean_haversine_dist(predictions_merged, ground_truth)
RMSLE = myutils.RMSLE(predictions_merged, ground_truth)
scores.append(dist+RMSLE)
print "[ratio=%f] Merged Prediction: dist=%f RMSLE=%f" % (ratio, dist, RMSLE)
merge_ratio = numpy.argmin(scores)*step
print "Best ratio = %f" % (merge_ratio)
merged_prediction = (merge_ratio * predictions1 + (1-merge_ratio) * predictions2)
myutils.save_predictions(merged_prediction,
prediction1_ids,
dest_filename='out-destination-merged.csv',
time_filename='out-time-merged.csv')
def main():
affinity.set_process_affinity_mask(0, 2**multiprocessing.cpu_count()-1)
parser = OptionParser()
parser.add_option("-c", "--ncoordinates", dest="n_coordinates", type="int",
help="specify number of coordinates", default=0)
parser.add_option("-n", "--ntrain", dest="n_train", type="int",
help="specify number of coordinates", default=1000)
parser.add_option("-e", "--nestimators", dest="n_estimators", type="int",
help="specify number of RF estimators", default=100)
parser.add_option("-d", "--dir", dest="dir", type="string",
help="input/output directory", default='models')
parser.add_option("-t", "--train",
action="store_true", dest="train", default=False,
help="train only")
parser.add_option("-p", "--predict",
action="store_true", dest="predict", default=False,
help="predict")
parser.add_option("-g", "--generate",
action="store_true", dest="gen_commands", default=False,
help="generate train commands")
parser.add_option("-s", "--stats",
action="store_true", dest="stats", default=False,
help="generate train commands")
parser.add_option("", "--split",
action="store_true", dest="split", default=False,
help="split training file into train and test sets (90/10%)")
parser.add_option("", "--input_train",
dest="input_train", default='../data/mytrain.csv',
help="input training file")
parser.add_option("", "--input_test",
dest="input_test", default='../data/mytest.csv',
help="input test file")
parser.add_option("", "--train_step2",
action="store_true", dest="train_step2", default=False,
help="adjust previous prediction")
parser.add_option("", "--predict_step2",
action="store_true", dest="predict_step2", default=False,
help="adjust previous prediction")
parser.add_option("", "--input_dest_prediction",
dest="input_destination_prediction", default='out-destination.csv',
help="input destination prediction file")
parser.add_option("", "--input_time_prediction",
dest="input_time_prediction", default=None,
help="input time prediction file")
parser.add_option("", "--hypertune",
action="store_true", dest="hypertune", default=False,
help="hyper parameter tuning")
parser.add_option("", "--cluster",
action="store_true", dest="cluster", default=False,
help="final destination clustering")
parser.add_option("", "--noRF",
action="store_true", dest="noRF", default=False,
help="no Random Forest")
parser.add_option("", "--GBRT",
action="store_true", dest="GBRT", default=False,
help="Gradient Boosted Regression Tree")
parser.add_option("", "--merge",
dest="merge", default=None,
help="merge two predictions")
parser.add_option("", "--mergeratio",
dest="merge_ratio", default="",
help="merge ratio")
parser.add_option("", "--ngbrtestimators", dest="n_gbrt_estimators", type="int",
help="specify number of GBRT estimators", default=100)
(options, args) = parser.parse_args()
if options.train:
train(options)
elif options.predict:
predict(options)
elif options.gen_commands:
gen_commands(options)
elif options.stats:
stats(options)
elif options.split:
split(options)
elif options.train_step2:
train_step2(options)
elif options.predict_step2:
predict_step2(options)
elif options.hypertune:
hypertune(options)
elif options.merge is not None:
merge(options)
elif options.cluster:
cluster(options)
else:
train_and_test()
if __name__ == '__main__':
t0 = time.time()
main()
print "Elapsed time: %f" % (time.time() - t0)