forked from eric-moreno/IN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDDB_dataGenerator_keras.py
139 lines (121 loc) · 4.65 KB
/
DDB_dataGenerator_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import print_function
import os
import numpy as np
import pandas as pd
import util
import setGPU
import glob
import sys
import tqdm
import argparse
import keras
from keras.layers import Input
from keras.callbacks import ModelCheckpoint, EarlyStopping
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
test_path = '/storage/group/gpu/bigdata/BumbleB/convert_20181121_ak8_80x_deepDoubleB_db_pf_cpf_sv_dl4jets_test/'
train_path = '/storage/group/gpu/bigdata/BumbleB/convert_20181121_ak8_80x_deepDoubleB_db_pf_cpf_sv_dl4jets_train_val/'
NBINS = 40 # number of bins for loss function
MMAX = 200. # max value
MMIN = 40. # min value
N = 60 # number of charged particles
N_sv = 5 # number of SVs
n_targets = 2 # number of classes
params_2 = ['track_ptrel',
'track_erel',
'track_phirel',
'track_etarel',
'track_deltaR',
'track_drminsv',
'track_drsubjet1',
'track_drsubjet2',
'track_dz',
'track_dzsig',
'track_dxy',
'track_dxysig',
'track_normchi2',
'track_quality',
'track_dptdpt',
'track_detadeta',
'track_dphidphi',
'track_dxydxy',
'track_dzdz',
'track_dxydz',
'track_dphidxy',
'track_dlambdadz',
'trackBTag_EtaRel',
'trackBTag_PtRatio',
'trackBTag_PParRatio',
'trackBTag_Sip2dVal',
'trackBTag_Sip2dSig',
'trackBTag_Sip3dVal',
'trackBTag_Sip3dSig',
'trackBTag_JetDistVal'
]
params_3 = ['sv_ptrel',
'sv_erel',
'sv_phirel',
'sv_etarel',
'sv_deltaR',
'sv_pt',
'sv_mass',
'sv_ntracks',
'sv_normchi2',
'sv_dxy',
'sv_dxysig',
'sv_d3d',
'sv_d3dsig',
'sv_costhetasvpv'
]
def main(args):
""" Main entry point of the app """
#Convert two sets into two branch with one set in both and one set in only one (Use for this file)
params = params_2
params_sv = params_3
from data import H5Data
files = glob.glob(train_path + "/newdata_*.h5")
files_val = files[:5] # take first 5 for validation
files_train = files[5:] # take rest for training
label = 'new'
outdir = args.outdir
os.system('mkdir -p %s'%outdir)
batch_size = 1024
data_train = H5Data(batch_size = batch_size,
cache = None,
preloading=0,
features_name='training_subgroup',
labels_name='target_subgroup',
spectators_name='spectator_subgroup')
data_train.set_file_names(files_train)
data_val = H5Data(batch_size = batch_size,
cache = None,
preloading=0,
features_name='training_subgroup',
labels_name='target_subgroup',
spectators_name='spectator_subgroup')
data_val.set_file_names(files_val)
n_val=data_val.count_data()
n_train=data_train.count_data()
print("val data:", n_val)
print("train data:", n_train)
from ddb import model_DeepDoubleXReference
keras_model = model_DeepDoubleXReference(inputs = [Input(shape=(N,len(params))),Input(shape=(N_sv,len(params_sv)))],
num_classes = n_targets, scale_hidden = 2,
hlf_input = None, datasets = ['cpf', 'sv'])
keras_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc'])
keras_model.summary()
early_stopping = EarlyStopping(monitor='val_loss', patience=20)
model_checkpoint = ModelCheckpoint('%s/keras_model_best.h5'%outdir, monitor='val_loss', save_best_only=True)
callbacks = [early_stopping, model_checkpoint]
keras_model.fit_generator(data_train.inf_generate_data_keras(),
validation_data = data_val.inf_generate_data_keras(),
epochs=200,
steps_per_epoch=np.ceil(n_train/batch_size),
validation_steps=np.ceil(n_val/batch_size),
callbacks = callbacks)
if __name__ == "__main__":
""" This is executed when run from the command line """
parser = argparse.ArgumentParser()
# Required positional arguments
parser.add_argument("outdir", help="Required output directory")
args = parser.parse_args()
main(args)