-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08_dqn_rainbow.py
executable file
·172 lines (133 loc) · 5.73 KB
/
08_dqn_rainbow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/env python3
import gym
import ptan
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tensorboardX import SummaryWriter
from lib import dqn_model, common
# n-step
REWARD_STEPS = 2
# priority replay
PRIO_REPLAY_ALPHA = 0.6
BETA_START = 0.4
BETA_FRAMES = 100000
# C51
Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)
class RainbowDQN(nn.Module):
def __init__(self, input_shape, n_actions):
super(RainbowDQN, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.fc_val = nn.Sequential(
dqn_model.NoisyLinear(conv_out_size, 256),
nn.ReLU(),
dqn_model.NoisyLinear(256, N_ATOMS)
)
self.fc_adv = nn.Sequential(
dqn_model.NoisyLinear(conv_out_size, 256),
nn.ReLU(),
dqn_model.NoisyLinear(256, n_actions * N_ATOMS)
)
self.register_buffer("supports", torch.arange(Vmin, Vmax+DELTA_Z, DELTA_Z))
self.softmax = nn.Softmax(dim=1)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
batch_size = x.size()[0]
fx = x.float() / 256
conv_out = self.conv(fx).view(batch_size, -1)
val_out = self.fc_val(conv_out).view(batch_size, 1, N_ATOMS)
adv_out = self.fc_adv(conv_out).view(batch_size, -1, N_ATOMS)
adv_mean = adv_out.mean(dim=1, keepdim=True)
return val_out + (adv_out - adv_mean)
def both(self, x):
cat_out = self(x)
probs = self.apply_softmax(cat_out)
weights = probs * self.supports
res = weights.sum(dim=2)
return cat_out, res
def qvals(self, x):
return self.both(x)[1]
def apply_softmax(self, t):
return self.softmax(t.view(-1, N_ATOMS)).view(t.size())
def calc_loss(batch, batch_weights, net, tgt_net, gamma, device="cpu"):
states, actions, rewards, dones, next_states = common.unpack_batch(batch)
batch_size = len(batch)
states_v = torch.tensor(states).to(device)
actions_v = torch.tensor(actions).to(device)
next_states_v = torch.tensor(next_states).to(device)
batch_weights_v = torch.tensor(batch_weights).to(device)
# next state distribution
# dueling arch -- actions from main net, distr from tgt_net
# calc at once both next and cur states
distr_v, qvals_v = net.both(torch.cat((states_v, next_states_v)))
next_qvals_v = qvals_v[batch_size:]
distr_v = distr_v[:batch_size]
next_actions_v = next_qvals_v.max(1)[1]
next_distr_v = tgt_net(next_states_v)
next_best_distr_v = next_distr_v[range(batch_size), next_actions_v.data]
next_best_distr_v = tgt_net.apply_softmax(next_best_distr_v)
next_best_distr = next_best_distr_v.data.cpu().numpy()
dones = dones.astype(np.bool)
# project our distribution using Bellman update
proj_distr = common.distr_projection(next_best_distr, rewards, dones, Vmin, Vmax, N_ATOMS, gamma)
# calculate net output
state_action_values = distr_v[range(batch_size), actions_v.data]
state_log_sm_v = F.log_softmax(state_action_values, dim=1)
proj_distr_v = torch.tensor(proj_distr).to(device)
loss_v = -state_log_sm_v * proj_distr_v
loss_v = batch_weights_v * loss_v.sum(dim=1)
return loss_v.mean(), loss_v + 1e-5
if __name__ == "__main__":
params = common.HYPERPARAMS['pong']
params['epsilon_frames'] *= 2
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
env = gym.make(params['env_name'])
env = ptan.common.wrappers.wrap_dqn(env)
writer = SummaryWriter(comment="-" + params['run_name'] + "-rainbow")
net = RainbowDQN(env.observation_space.shape, env.action_space.n).to(device)
tgt_net = ptan.agent.TargetNet(net)
agent = ptan.agent.DQNAgent(lambda x: net.qvals(x), ptan.actions.ArgmaxActionSelector(), device=device)
exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=params['gamma'], steps_count=REWARD_STEPS)
buffer = ptan.experience.PrioritizedReplayBuffer(exp_source, params['replay_size'], PRIO_REPLAY_ALPHA)
optimizer = optim.Adam(net.parameters(), lr=params['learning_rate'])
frame_idx = 0
beta = BETA_START
with common.RewardTracker(writer, params['stop_reward']) as reward_tracker:
while True:
frame_idx += 1
buffer.populate(1)
beta = min(1.0, BETA_START + frame_idx * (1.0 - BETA_START) / BETA_FRAMES)
new_rewards = exp_source.pop_total_rewards()
if new_rewards:
if reward_tracker.reward(new_rewards[0], frame_idx):
break
if len(buffer) < params['replay_initial']:
continue
optimizer.zero_grad()
batch, batch_indices, batch_weights = buffer.sample(params['batch_size'], beta)
loss_v, sample_prios_v = calc_loss(batch, batch_weights, net, tgt_net.target_model,
params['gamma'] ** REWARD_STEPS, device=device)
loss_v.backward()
optimizer.step()
buffer.update_priorities(batch_indices, sample_prios_v.data.cpu().numpy())
if frame_idx % params['target_net_sync'] == 0:
tgt_net.sync()