-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathes9_2.py
428 lines (354 loc) · 13.8 KB
/
es9_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import math
import numpy as np
from plot import plot, plot_trajectory, plot_covariance_2d
class UserCode:
def __init__(self):
#process noise
pos_noise_std = 0.005
yaw_noise_std = 0.005
self.Q = np.array([
[pos_noise_std*pos_noise_std,0,0],
[0,pos_noise_std*pos_noise_std,0],
[0,0,yaw_noise_std*yaw_noise_std]
])
#measurement noise
z_pos_noise_std = 0.005
z_yaw_noise_std = 0.03
self.R = np.array([
[z_pos_noise_std*z_pos_noise_std,0,0],
[0,z_pos_noise_std*z_pos_noise_std,0],
[0,0,z_yaw_noise_std*z_yaw_noise_std]
])
# state vector [x, y, yaw] in world coordinates
self.x = np.zeros((3,1))
# 3x3 state covariance matrix
self.sigma = 0.01 * np.identity(3)
self.Kp_psi = 1.0
self.Kp_xy = 2.0
self.Kp_xy_sq = 0.1
self.Kd_xy = 0.4
self.ev_idx = 0
self.wp_idx = 0
self.wp_dist = 0.5
self.t = 0.0
self.waypoints = [
# M
[1.5, 0.5],
[3.0, 0.5],
[4.5, 0.5],
[3.5, 2.0],
[1.5, 3.5],
[3.0, 3.5],
[4.5, 3.5],
# U
[7.0, 5.5],
[5.5, 5.5],
[4.0, 5.5],
[4.0, 7.0],
[4.0, 8.5],
[5.5, 8.5],
[7.0, 8.5],
# T
[9.5, 9.5],
[9.5, 11.0],
[9.5, 12.5],
[8.0, 11.0],
[6.5, 11.0],
]
self.wp_vel = [
# M
[1.0, 0.0],
[1.0, 0.0],
[0.0, 0.0],
[-0.7, 0.7],
[0.0, 0.0],
[1.0, 0.0],
[1.0, 0.0],
# U
[0.0, 0.0],
[-1.0, 0.0],
[0.0, 0.5],
[1.0, 0.0],
[0.5, 0.0],
[1.0, 0.0],
[0.8, 0.1],
# T
[0.0, 0.5],
[0.0, 1.0],
[-0.5, 0.0],
[-1.0, 0.0],
[0.0, 0.0],
]
self.events = [
(lambda: True,
lambda: self.setDecoupled(np.array([[0.0], [0.0]]),
np.array([[4.5], [0.5]]))),
(lambda: self.x[0, 0] >= 0.5,
lambda: self.setKeep()),
#(lambda: self.x[0, 0] >= 2.5,
# lambda: self.setStop(1.0)),
(lambda: self.x[0, 0] >= 4.0,
lambda: self.setDecoupled(np.array(self.x[0:2, 0]),
np.array([[1.5], [3.5]]))),
]
def setDecoupled(self, base, target):
self.base = base
self.target = target
self.controller = self.computeControlDecoupled
def setStop(self, stopRate):
self.stopRate = stopRate
self.stopStartTime = self.t
self.controller = self.computeControlStop
def setKeep(self):
self.controller = self.computeControlKeep
def selectDesiredSpeed(self):
return self.rv_norm + 6.0
def computeControlDecoupled(self):
baseVect = self.normalizeVect(self.target - self.base)
rot = np.hstack([baseVect, np.dot(np.array([[0, -1], [1, 0]]), baseVect)])
pos = np.dot(rot.T, self.x[0:2, 0] - self.base)
vel = np.dot(rot.T, self.rv)
cont = np.array([[self.selectDesiredSpeed()], [-self.Kp_xy * pos[1, 0]]])
return np.dot(rot, cont)
def computeControlStop(self):
#return np.array([[0.0], [0.0]])
direct = self.rv / self.rv_norm
if self.rv_norm <= 3.0:
norm = 0.0
else:
norm = self.rv_norm - 6.0
return norm * direct
if self.rv_norm <= 2.0:
return np.array([[0.0], [0.0]])
time = self.t - self.stopStartTime
coeff = max(0.0, 1.0 - time * self.stopRate)
return coeff * self.rv
def computeControlKeep(self):
return self.rv
def computeControl(self):
rot = self.rotation(self.x[2, 0])
self.rv = np.dot(rot, self.lv)
self.rv_norm = self.computeNorm(self.rv)
xy_cont = self.controller()
return np.dot(rot.T, xy_cont), self.Kp_psi * (-self.x[2, 0])
# wp = self.next_wp()
# if wp is not None:
# target = np.array([wp]).T
# target_vel = np.array([self.next_vel()]).T
# #xy_P = self.Kp_xy * np.dot(rot, self.normalizeVect(target - self.x[0:2, 0]))
# xy_vect = np.dot(rot, target - self.x[0:2, 0])
# xy_norm = math.sqrt(np.dot(xy_vect.T, xy_vect)[0, 0])
# xy_dir = xy_vect / xy_norm
# xy_P = (self.Kp_xy + self.Kp_xy_sq * xy_norm) * xy_vect
# xy_D = self.Kd_xy * np.dot(rot, target_vel - self.lv)
# return xy_P + xy_D, 0.0 # self.Kp_psi * (-self.x[2, 0])
# else:
# return np.zeros(2,1), 0.0
def get_markers(self):
'''
place up to 30 markers in the world
'''
markers = self.waypoints + [
[0.0, 0.0],
[5.0, 4.0],
[6.0, 4.5],
[8.0, 9.0],
[9.0, 9.0],
]
return markers
def next_wp(self):
if self.wp_idx < len(self.waypoints):
return self.waypoints[self.wp_idx]
else:
return None
def next_vel(self):
if self.wp_idx < len(self.waypoints):
return self.wp_vel[self.wp_idx]
else:
return None
def verify_wp(self):
wp = self.next_wp()
if wp is None:
return
if (self.x[0] - wp[0])**2 + (self.x[1] - wp[1])**2 <= self.wp_dist**2:
print "Time %f: found waypoint %f, %f" % (self.t, wp[0], wp[1])
self.wp_idx += 1
def verify_event(self):
if self.ev_idx == len(self.events):
return
cur_ev = self.events[self.ev_idx]
while cur_ev[0]():
cur_ev[1]()
self.ev_idx += 1
if self.ev_idx == len(self.events):
return
cur_ev = self.events[self.ev_idx]
def rotation(self, yaw):
'''
create 2D rotation matrix from given angle
'''
s_yaw = math.sin(yaw)
c_yaw = math.cos(yaw)
return np.array([
[c_yaw, -s_yaw],
[s_yaw, c_yaw]
])
def normalizeYaw(self, y):
'''
normalizes the given angle to the interval [-pi, +pi]
'''
while(y > math.pi):
y -= 2 * math.pi
while(y < -math.pi):
y += 2 * math.pi
return y
def computeNorm(self, x):
return math.sqrt(np.dot(x.T, x)[0, 0])
def normalizeVect(self, x):
return x / self.computeNorm(x)
def visualizeState(self):
# visualize position state
plot_trajectory("kalman", self.x[0:2])
plot_covariance_2d("kalman", self.sigma[0:2,0:2])
plot("speed", self.rv_norm)
def predictState(self, dt, x, u_linear_velocity, u_yaw_velocity):
'''
predicts the next state using the current state and
the control inputs local linear velocity and yaw velocity
'''
x_p = np.zeros((3, 1))
x_p[0:2] = x[0:2] + dt * np.dot(self.rotation(x[2]), u_linear_velocity)
x_p[2] = x[2] + dt * u_yaw_velocity
x_p[2] = self.normalizeYaw(x_p[2])
return x_p
def calculatePredictStateJacobian(self, dt, x, u_linear_velocity, u_yaw_velocity):
'''
calculates the 3x3 Jacobian matrix for the predictState(...) function
'''
s_yaw = math.sin(x[2])
c_yaw = math.cos(x[2])
dRotation_dYaw = np.array([
[-s_yaw, -c_yaw],
[ c_yaw, -s_yaw]
])
F = np.identity(3)
F[0:2, 2] = dt * np.dot(dRotation_dYaw, u_linear_velocity)
return F
def predictCovariance(self, sigma, F, Q):
'''
predicts the next state covariance given the current covariance,
the Jacobian of the predictState(...) function F and the process noise Q
'''
return np.dot(F, np.dot(sigma, F.T)) + Q
def calculateKalmanGain(self, sigma_p, H, R):
'''
calculates the Kalman gain
'''
return np.dot(np.dot(sigma_p, H.T), np.linalg.inv(np.dot(H, np.dot(sigma_p, H.T)) + R))
def correctState(self, K, x_predicted, z, z_predicted):
'''
corrects the current state prediction using Kalman gain, the measurement and the predicted measurement
:param K - Kalman gain
:param x_predicted - predicted state 3x1 vector
:param z - measurement 3x1 vector
:param z_predicted - predicted measurement 3x1 vector
:return corrected state as 3x1 vector
'''
x = x_predicted + np.dot(K, z - z_predicted)
x[2] = self.normalizeYaw(x[2])
return x
def correctCovariance(self, sigma_p, K, H):
'''
corrects the sate covariance matrix using Kalman gain and the Jacobian matrix of the predictMeasurement(...) function
'''
return np.dot(np.identity(3) - np.dot(K, H), sigma_p)
def predictMeasurement(self, x, marker_position_world, marker_yaw_world):
'''
predicts a marker measurement given the current state and the marker position and orientation in world coordinates
'''
z_predicted = Pose2D(self.rotation(x[2]), x[0:2]).inv() * Pose2D(self.rotation(marker_yaw_world), marker_position_world);
return np.array([[z_predicted.translation[0], z_predicted.translation[1], z_predicted.yaw()]]).T
def calculatePredictMeasurementJacobian(self, x, marker_position_world, marker_yaw_world):
'''
calculates the 3x3 Jacobian matrix of the predictMeasurement(...) function using the current state and
the marker position and orientation in world coordinates
:param x - current state 3x1 vector
:param marker_position_world - x and y position of the marker in world coordinates 2x1 vector
:param marker_yaw_world - orientation of the marker in world coordinates
:return - 3x3 Jacobian matrix of the predictMeasurement(...) function
'''
mat = np.zeros((3,3))
xc = x[0]
yc = x[1]
psi = x[2]
xm = marker_position_world[0]
ym = marker_position_world[1]
mat[0, 0] = -math.cos(psi)
mat[0, 1] = -math.sin(psi)
mat[0, 2] = -math.sin(psi)*(xm-xc) + math.cos(psi)*(ym-yc)
mat[1, 0] = math.sin(psi)
mat[1, 1] = -math.cos(psi)
mat[1, 2] = -math.cos(psi)*(xm-xc) - math.sin(psi)*(ym-yc)
mat[2, 2] = -1.0
return mat
def state_callback(self, t, dt, linear_velocity, yaw_velocity):
'''
called when a new odometry measurement arrives approx. 200Hz
:param t - simulation time
:param dt - time difference this last invocation
:param linear_velocity - x and y velocity in local quadrotor coordinate frame (independet of roll and pitch)
:param yaw_velocity - velocity around quadrotor z axis (independent of roll and pitch)
:return tuple containing linear x and y velocity control commands in local quadrotor coordinate frame (independent of roll and pitch), and yaw velocity
'''
self.t = t
self.x = self.predictState(dt, self.x, linear_velocity, yaw_velocity)
self.lv = linear_velocity
self.yv = yaw_velocity
F = self.calculatePredictStateJacobian(dt, self.x, linear_velocity, yaw_velocity)
self.sigma = self.predictCovariance(self.sigma, F, self.Q);
self.verify_wp()
self.verify_event()
controls = self.computeControl()
self.visualizeState()
return controls
def measurement_callback(self, marker_position_world, marker_yaw_world, marker_position_relative, marker_yaw_relative):
'''
called when a new marker measurement arrives max 30Hz, marker measurements are only available if the quadrotor is
sufficiently close to a marker
:param marker_position_world - x and y position of the marker in world coordinates 2x1 vector
:param marker_yaw_world - orientation of the marker in world coordinates
:param marker_position_relative - x and y position of the marker relative to the quadrotor 2x1 vector
:param marker_yaw_relative - orientation of the marker relative to the quadrotor
'''
z = np.array([[marker_position_relative[0], marker_position_relative[1], marker_yaw_relative]]).T
z_predicted = self.predictMeasurement(self.x, marker_position_world, marker_yaw_world)
H = self.calculatePredictMeasurementJacobian(self.x, marker_position_world, marker_yaw_world)
K = self.calculateKalmanGain(self.sigma, H, self.R)
self.x = self.correctState(K, self.x, z, z_predicted)
self.sigma = self.correctCovariance(self.sigma, K, H)
self.visualizeState()
class Pose2D:
def __init__(self, rotation, translation):
self.rotation = rotation
self.translation = translation
def inv(self):
'''
inversion of this Pose2D object
:return - inverse of self
'''
inv_rotation = self.rotation.transpose()
inv_translation = -np.dot(inv_rotation, self.translation)
return Pose2D(inv_rotation, inv_translation)
def yaw(self):
from math import atan2
return atan2(self.rotation[1,0], self.rotation[0,0])
def __mul__(self, other):
'''
multiplication of two Pose2D objects, e.g.:
a = Pose2D(...) # = self
b = Pose2D(...) # = other
c = a * b # = return value
:param other - Pose2D right hand side
:return - product of self and other
'''
return Pose2D(np.dot(self.rotation, other.rotation), np.dot(self.rotation, other.translation) + self.translation)