-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepMachine.py
52 lines (46 loc) · 2.02 KB
/
deepMachine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from skimage.transform import resize
from sklearn.externals import joblib
import templatematching
import os.path
class DeepMachineLearning():
def __init__(self):
self.letters = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D',
'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y', 'Z'
]
def learn(self, objects_to_classify, modelDir, tuple_size):
model = self.load_model(modelDir)
return self.classify_objects(objects_to_classify, model, tuple_size)
def classify_objects(self, objects, model, tuple_resize):
"""
uses the predict method in the model to predict the category(character)
that the image belongs to
Parameters
___________
objects: Numpy array
"""
classificationResult = []
for eachObject in objects:
eachObject = resize(eachObject, tuple_resize)
eachObject = eachObject.reshape(1, -1)
result = model.predict(eachObject)
probabilities = model.predict_proba(eachObject)
result_index = self.letters.index(result[0])
prediction_probability = probabilities[0, result_index]
# template matching when necessary
if result[0] in templatematching.confusing_chars and prediction_probability < 0.15:
print 'here'
result[0] = templatematching.template_match(result[0],
eachObject, os.path.join(os.path.dirname(os.path.realpath(
__file__)), 'training_data', 'train20X20'))
classificationResult.append(result)
return classificationResult
def load_model(self, model_dir):
"""
loads the machine learning using joblib package
model_dir is the directory for the model
loading of the model has nothing to do with the classifier used
"""
model = joblib.load(model_dir)
return model