-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqat_export.py
114 lines (97 loc) · 3.35 KB
/
qat_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import paddle
import yaml
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
from paddleseg.cvlibs import Config
from paddleseg.utils import logger, utils
from qat_config import quant_config
from qat_train import skip_quant
from export import SavedSegmentationNet
from paddleslim import QAT
def parse_args():
parser = argparse.ArgumentParser(description='Model export.')
parser.add_argument(
"--config",
dest="cfg",
help="The config file.",
default=None,
type=str,
required=True)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the exported model',
type=str,
default='./output')
parser.add_argument(
'--model_path',
dest='model_path',
help='The path of model for export',
type=str,
default=None)
parser.add_argument(
'--without_argmax',
dest='without_argmax',
help='Do not add the argmax operation at the end of the network',
action='store_true')
parser.add_argument(
'--with_softmax',
dest='with_softmax',
help='Add the softmax operation at the end of the network',
action='store_true')
return parser.parse_args()
def main(args):
os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'
cfg = Config(args.cfg)
net = cfg.model
skip_quant(net)
quantizer = QAT(config=quant_config)
quant_net = quantizer.quantize(net)
logger.info('Quantize the model successfully')
if args.model_path:
utils.load_entire_model(quant_net, args.model_path)
logger.info('Loaded trained params of model successfully')
if not args.without_argmax or args.with_softmax:
new_net = SavedSegmentationNet(quant_net, args.without_argmax,
args.with_softmax)
else:
new_net = net
new_net.eval()
save_path = os.path.join(args.save_dir, 'model')
input_spec = [
paddle.static.InputSpec(shape=[None, 3, None, None], dtype='float32')
]
quantizer.save_quantized_model(new_net, save_path, input_spec=input_spec)
yml_file = os.path.join(args.save_dir, 'deploy.yaml')
with open(yml_file, 'w') as file:
transforms = cfg.export_config.get('transforms', [{
'type': 'Normalize'
}])
data = {
'Deploy': {
'transforms': transforms,
'model': 'model.pdmodel',
'params': 'model.pdiparams'
}
}
yaml.dump(data, file)
logger.info(f'Model is saved in {args.save_dir}.')
if __name__ == '__main__':
args = parse_args()
main(args)