-
Notifications
You must be signed in to change notification settings - Fork 1
/
usingFinalKnn.py
211 lines (168 loc) · 8.37 KB
/
usingFinalKnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import pandas as pd
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
import argparse
import sys
class Books:
def __init__(self):
self.books = pd.read_csv('./Book/Books.csv')
self.users = pd.read_csv('./Book/Users.csv')
self.ratings = pd.read_csv('./Book/Ratings.csv')
# Splitting Explicit and Implicit user ratings
# we are removing the rating set which is having the rating as 0
self.ratings_explicit = self.ratings[self.ratings.bookRating != 0]
self.ratings_implicit = self.ratings[self.ratings.bookRating == 0]
# Each Books Mean ratings and Total Rating Count
self.average_rating = pd.DataFrame(
self.ratings_explicit.groupby('ISBN')['bookRating'].mean())
self.average_rating['ratingCount'] = pd.DataFrame(
self.ratings_explicit.groupby('ISBN')['bookRating'].count())
self.average_rating = self.average_rating.rename(
columns={'bookRating': 'MeanRating'})
# To get a stronger similarities
counts1 = self.ratings_explicit['userID'].value_counts()
self.ratings_explicit = self.ratings_explicit[
self.ratings_explicit['userID'].isin(counts1[counts1 >= 50].index)]
# Explicit Books and ISBN
self.explicit_ISBN = self.ratings_explicit.ISBN.unique()
self.explicit_books = self.books.loc[self.books['ISBN'].isin(
self.explicit_ISBN)]
# Look up dict for Book and BookID
self.Book_lookup = dict(
zip(self.explicit_books["ISBN"], self.explicit_books["bookTitle"]))
self.ID_lookup = dict(
zip(self.explicit_books["bookTitle"], self.explicit_books["ISBN"]))
def diagram(self):
# # rating distribution using histogram
plt.rc("font", size=15)
self.ratings.bookRating.value_counts(sort=False).plot(kind='bar')
plt.title('Rating Distribution\n')
plt.xlabel('Rating')
plt.ylabel('Count')
plt.savefig('system1.png', bbox_inches='tight')
plt.show()
# student age distribution using histogram
self.users.Age.hist(bins=[18, 20, 22, 24, 26, 28, 30, 32, 40])
plt.title('Age Distribution\n')
plt.xlabel('Age')
plt.ylabel('Count')
plt.savefig('system2.png', bbox_inches='tight')
plt.show()
def Top_Books(self, n=10, RatingCount=100, MeanRating=3):
# here we are specifying the latency of meanRating with value of 3
# and latency of RatingCount with value of 100
# this makes a threshold value for predicting the best possible book sets for the user
# books with the highest rating
# this function will not recommend any books just shows the highest rated books rated by every user
BOOKS = self.books.merge(self.average_rating, how='right', on='ISBN')
# print(Books)
M_Rating = BOOKS.loc[BOOKS.ratingCount >= RatingCount].sort_values(
'MeanRating', ascending=False).head(n)
H_Rating = BOOKS.loc[BOOKS.MeanRating >= MeanRating].sort_values(
'ratingCount', ascending=False).head(n)
# print(M_Rating)
# print(H_Rating)
return M_Rating, H_Rating
class KNN(Books):
def __init__(self, n_neighbors=5):
# calling super class __init__ method
super().__init__()
# assigning k value = 5
self.n_neighbors = n_neighbors
# removing nan value
self.ratings_mat = self.ratings_explicit.pivot(
index="ISBN", columns="userID", values="bookRating").fillna(0)
'''
Implementing kNN
In numerical analysis and scientific computing, a sparse matrix or sparse array is a matrix in which
most of the elements are zero.
We convert our table to a 2D matrix, and fill the missing values with zeros
(since we will calculate distances between rating vectors). We then transform the values(ratings)
of the matrix dataframe into a scipy sparse matrix for more efficient calculations.
Finding the Nearest Neighbors We use unsupervised algorithms with sklearn.neighbors.
The algorithm we use to compute the nearest neighbors is “brute”, and we specify “metric=cosine”
algorithm will calculate the cosine similarity between rating vectors. Finally, we fit the model.
'''
self.uti_mat = csr_matrix(self.ratings_mat.values)
# KNN Model Fitting
# KNN Model Fitting
# using cosine similarity
'''Mathematically, it measures
the cosine of the angle between two vectors projected in a multi-dimensional space
Cosine similarity is a metric used to determine how
similar the documents are irrespective of their size.'''
self.model_knn = NearestNeighbors(metric='cosine', algorithm='brute')
self.model_knn.fit(self.uti_mat)
def Recommend_Books(self, book, n_neighbors=10):
# Book Title to BookID
# bID = list(self.Book_lookup.keys())[list(self.Book_lookup.values()).index(book)]
bID = self.ID_lookup[book]
query_index = self.ratings_mat.index.get_loc(bID)
KN = self.ratings_mat.iloc[query_index, :].values.reshape(1, -1)
distances, indices = self.model_knn.kneighbors(
KN, n_neighbors=n_neighbors + 1)
Rec_books = list()
Book_dis = list()
for i in range(1, len(distances.flatten())):
Rec_books.append(self.ratings_mat.index[indices.flatten()[i]])
Book_dis.append(distances.flatten()[i])
Book = self.Book_lookup[bID]
Recommmended_Books = self.books[self.books['ISBN'].isin(Rec_books)]
return Book, Recommmended_Books, Book_dis
def YN():
reply = str(input('\n\nContinue (y/n):\t')).lower().strip()
if reply[0] == 'y':
return True
if reply[0] == 'n':
return False
else:
return False
def MainCall():
cont = True
while cont:
print("\n1-Top Books\n2-Recommendation based on Book title\n3-Exit\n")
choice = int(input("Enter choice :- "))
# ---------------------------------------------------------------------------------------------------------------------------------------
if choice == 1:
print("\n\nKNN item based collaborative filtering\n")
Top_B = Books()
Books().diagram()
High_Mean_Rating, High_Rating_Count = Top_B.Top_Books()
pd.set_option('display.max_colwidth', -1)
print("\n\nBooks having highest ratings :\n")
print(
High_Mean_Rating[['bookTitle', 'MeanRating', 'ratingCount', 'bookAuthor']])
print("\n\nBooks having highest rating count :\n")
print(High_Rating_Count[['bookTitle',
'MeanRating', 'ratingCount', 'bookAuthor']])
print("\nFor getting recommendation based on Knn pass --KNN as argument ")
# --------------------------------------------------------------------------------------------------------------------------------
if choice == 2:
ICF = KNN()
# Books().diagram()
while cont:
book_name = input('\n\nEnter the Book Title:\t')
try:
_, KNN_Recommended_Books, _ = ICF.Recommend_Books(
book_name)
print(
'Recommendations for the book --> {0}:\n'.format(book_name))
KNN_Recommended_Books = KNN_Recommended_Books.merge(
ICF.average_rating, how='left', on='ISBN')
KNN_Recommended_Books = KNN_Recommended_Books.rename(
columns={'bookRating': 'MeanRating'})
print(KNN_Recommended_Books[[
'bookTitle', 'MeanRating', 'bookAuthor']])
except KeyError:
print("Book title not found.\t Try for another book title")
# for research book title
cont = YN()
# ---------------------------------------------------------------------------------------------------------------
if choice == 3:
print("Thank you for using BRS")
sys.exit()
# ----------------------------------------------------------------------------------------------------------------
# for choice search
cont = YN()
MainCall()