-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
285 lines (221 loc) · 10.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import argparse
import json
import torch
import torch.backends.cudnn as cudnn
from torch.nn import CrossEntropyLoss
from torchvision import models
from torch.utils.data import DataLoader
from simclr.data.simclr_dataset import SimclrDataset
from simclr.data.data_loader import get_dataloaders_mnist
from simclr.modules.simclr import SimCLR
from simclr.models.resnet import ResNet18, BasicBlock
from simclr.utils.config import load_checkpoint
from simclr.utils.train_v2 import train, eval
from simclr.utils.simclr_train_v2 import train_simclr
from simclr.utils.evaluate import set_all_seeds, compute_confusion_matrix
from simclr.utils.plotting import show_examples, plot_confusion_matrix
import matplotlib.pyplot as plt
from dotenv import load_dotenv
load_dotenv()
ROOT_DIR = os.getenv('ROOT_DIR')
# Load configuration from JSON file
with open(f'{ROOT_DIR}/simclr/config/config_ckpt.json', 'r') as f:
config = json.load(f)
model_urls = config['model_urls']
CHECKPOINT_PATH = model_urls['simclr_resnet18_pretrained_ckpt']
CHECKPOINT_FINETUNED_PATH = model_urls['simclr_resnet18_finetuned_ckpt']
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
##########################
# SETTINGS
##########################
parser = argparse.ArgumentParser(description='PyTorch SimCLR')
parser.add_argument('-d', '--data',
metavar='DIR',
default='./datasets',
help='path to dataset')
parser.add_argument('-m', '--mode',
default='train',
help='Whether to perform training or evaluation.',
choices=['train', 'eval'])
parser.add_argument('-tm', '--train-mode',
default='finetune',
help='The train mode controls different objectives and trainable components.',
choices=['pretrain', 'finetune'])
parser.add_argument('-dn', '--dataset-name',
default='mnist',
help='dataset name',
choices=['mnist'])
parser.add_argument('-a', '--arch',
metavar='ARCH',
default='simclr_resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers',
default=4,
type=int,
metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-te', '--train-epochs',
default=100,
type=int,
metavar='TE',
help='number of total epochs to run train')
parser.add_argument('-ee', '--eval-epochs',
default=100,
type=int,
metavar='N',
help='number of total epochs to run test')
parser.add_argument('-b', '--batch-size',
default=10,
type=int,
metavar='B',
help='train batch size.')
parser.add_argument('--eval-batch-size',
default=256,
help='The test batch size to use during evaluation '
'mode (must be less or equal min(train, valid, test) size.')
parser.add_argument('--lr', '--learning-rate',
default=0.0003,
type=float,
metavar='LR',
help='initial learning rate', dest='lr')
parser.add_argument('--wd', '--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--model-path',
default='./artefacts/simclr_finetuned.pth',
type=str,
help='model path for evaluation')
parser.add_argument('--seed',
default=1,
type=int,
help='seed for initializing training. ')
parser.add_argument('--disable-cuda',
action='store_true',
help='Disable CUDA')
parser.add_argument('--fp16-precision',
action='store_true',
help='Whether or not to use 16-bit precision GPU training.')
parser.add_argument('--out_dim',
default=128,
type=int,
help='feature dimension (default: 128)')
parser.add_argument('--log-every-n-steps',
default=10,
type=int,
help='Log every n steps')
parser.add_argument('--temperature',
default=0.07,
type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--n-views',
default=2,
type=int,
metavar='N',
help='Number of views for contrastive learning training.')
parser.add_argument('--gpu-index',
default=0,
type=int,
help='Gpu index.')
def main():
args = parser.parse_args()
assert args.n_views == 2, "Only two view training is supported. Please use --n-views 2."
# check if gpu training is available
if not args.disable_cuda and torch.cuda.is_available():
args.device = torch.device('cuda')
cudnn.deterministic = True
cudnn.benchmark = True
else:
args.device = torch.device('cpu')
args.gpu_index = -1
set_all_seeds(args.seed)
if args.mode == "eval":
_, _, test_dl = get_dataloaders_mnist(batch_size=10, eval_batch_size=256,
num_workers=8, train_size=100)
model = ResNet18(num_layers=18,
block=BasicBlock,
num_classes=10,
grayscale=True)
ckpt = load_checkpoint(model_path=CHECKPOINT_FINETUNED_PATH, device=args.device)
state_dict = ckpt['state_dict']
model.load_state_dict(state_dict, strict=False)
model = model.to(device=args.device)
eval(model, test_dl, args)
else: # train
if args.train_mode == 'pretrain':
model = SimCLR(projection_dim=args.out_dim)
simclr_ds = SimclrDataset(root=args.data)
train_ds = simclr_ds.get_dataset(dataset_name=args.dataset_name, n_views=args.n_views)
train_dl = DataLoader(train_ds,
batch_size=args.batch_size,
shuffle=True,
collate_fn=None,
num_workers=args.workers,
pin_memory=True,
drop_last=True)
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
T_max=len(train_dl),
eta_min=0,
last_epoch=-1)
criterion = CrossEntropyLoss()
# It’s a no-op if the 'gpu_index' argument is a negative integer or None.
with torch.cuda.device(args.gpu_index):
train_simclr(model=model, optimizer=optimizer, scheduler=scheduler,
train_loader=train_dl, args=args, criterion=criterion)
else: # fine-tuning train mode
train_dl, valid_dl, test_dl = get_dataloaders_mnist(batch_size=10, eval_batch_size=256,
num_workers=8, train_size=100)
ckpt = load_checkpoint(model_path=CHECKPOINT_PATH, device=args.device)
state_dict = ckpt['state_dict']
# remove prefix
for k in list(state_dict.keys()):
if k.startswith('backbone.'):
if k.startswith('backbone') and not k.startswith('backbone.fc'):
state_dict[k[len("backbone."):]] = state_dict[k]
del state_dict[k]
model = ResNet18(num_layers=18,
block=BasicBlock,
num_classes=10,
grayscale=True)
model.to(device=args.device)
log = model.load_state_dict(state_dict, strict=False)
assert log.missing_keys == ['fc.weight', 'fc.bias']
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=0.0008)
criterion = CrossEntropyLoss()
_, _, _ = train(model=model, optimizer=optimizer,
criterion=criterion, train_loader=train_dl,
valid_loader=test_dl, test_loader=test_dl,
args=args, name='simclr_resnet18_finetuned')
model.cpu()
# show_examples(model=model, data_loader=test_dl, results_dir='./figures')
# plt.show()
# class used for confusion matrix axis ticks
class_dict = {0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9'}
# Confusion matrix for testing arch
mat = compute_confusion_matrix(model=model,
data_loader=test_dl,
device=torch.device('cpu'))
plot_confusion_matrix(mat,
class_names=class_dict.values(),
results_dir='./assets/plots')
# plt.show()
if __name__ == "__main__":
main()