-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_resnet.py
223 lines (174 loc) · 7.21 KB
/
run_resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import json
import argparse
import torch
from torch.nn import CrossEntropyLoss
import torchvision
import torch.backends.cudnn as cudnn
from simclr.data.data_loader import get_dataloaders_mnist
from simclr.models.resnet import ResNet18, BasicBlock
from simclr.utils.evaluate import set_all_seeds, compute_confusion_matrix
from simclr.utils.train_v2 import train, eval
from simclr.utils.plotting import show_examples, plot_confusion_matrix
from simclr.utils.config import load_checkpoint
from dotenv import load_dotenv
load_dotenv()
ROOT_DIR = os.getenv('ROOT_DIR')
# Load configuration from JSON file
with open(f'{ROOT_DIR}/simclr/config/config_ckpt.json', 'r') as f:
config = json.load(f)
model_urls = config['model_urls']
CHECKPOINT_PATH = model_urls['resnet18_train_0100']
model_names = ['ResNet18']
##########################
# SETTINGS
##########################
parser = argparse.ArgumentParser(description='PyTorch ResNet')
parser.add_argument('-m', '--mode',
metavar='MODE',
default='train',
help='which mode use during running model',
choices=['train', 'eval'])
parser.add_argument('-data',
metavar='DIR',
default='./datasets',
help='path to dataset')
parser.add_argument('-dn', '--dataset-name',
default='mnist',
help='dataset name',
choices=['cifar10', 'mnist'])
parser.add_argument('-a', '--arch',
metavar='ARCH',
default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers',
default=4,
type=int,
metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('-te', '--train-epochs',
default=100,
type=int,
metavar='TE',
help='number of total epochs to run train')
parser.add_argument('-ee', '--eval-epochs',
default=10,
type=int,
metavar='N',
help='number of total epochs to run test')
parser.add_argument('-b', '--batch-size',
default=10,
type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('-eval-batch-size',
default=256,
type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate',
default=0.0003,
type=float,
metavar='LR',
help='initial learning rate', dest='lr')
parser.add_argument('--wd', '--weight-decay',
default=1e-4,
type=float,
metavar='W',
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--n_classes',
default=10,
type=int,
help='number of classes (default: 10)')
parser.add_argument('--seed',
default=1,
type=int,
help='seed for initializing training. ')
parser.add_argument('--disable-cuda',
action='store_true',
help='Disable CUDA')
parser.add_argument('--fp16-precision',
action='store_true',
help='Whether or not to use 16-bit precision GPU training.')
parser.add_argument('--log-every-n-steps',
default=10,
type=int,
help='Log every n steps')
def main():
args = parser.parse_args()
# check if gpu training is available
if not args.disable_cuda and torch.cuda.is_available():
args.device = torch.device('cuda')
cudnn.deterministic = True
cudnn.benchmark = True
else:
args.device = torch.device('cpu')
args.gpu_index = -1
set_all_seeds(args.seed)
torch.manual_seed(args.seed)
# Other
GRAYSCALE = True # for MNIST dataset
##########################
# MNIST DATASET
##########################
# Note transforms.ToTensor() scales input images
# to 0-1 range
# CONSTRAINT: We assume having 100 samples available
# get_dataloader takes it an account
resize_transform = torchvision.transforms.Compose(
[torchvision.transforms.Resize((32, 32)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.5,), (0.5,))])
train_loader, valid_loader, test_loader = get_dataloaders_mnist(batch_size=10, eval_batch_size=256,
num_workers=8, train_size=100,
train_transforms=resize_transform,
test_transforms=resize_transform)
model = ResNet18(num_layers=18,
block=BasicBlock,
num_classes=10,
grayscale=GRAYSCALE)
model.to(args.device)
criterion = CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lr)
if args.mode == 'train':
_, _, _ = train(model=model,
optimizer=optimizer,
train_loader=train_loader,
valid_loader=valid_loader,
test_loader=test_loader,
args=args,
name='Resnet18',
criterion=criterion)
model.cpu()
# show_examples(model=model, data_loader=test_loader, results_dir='./figures')
# plt.show()
class_dict = {0: '0',
1: '1',
2: '2',
3: '3',
4: '4',
5: '5',
6: '6',
7: '7',
8: '8',
9: '9'}
mat = compute_confusion_matrix(model=model, data_loader=test_loader, device=torch.device('cpu'))
# print(mat)
plot_confusion_matrix(mat, class_names=class_dict.values(), results_dir='./assets/plots')
# plt.show()
else: # eval mode
ckpt = load_checkpoint(model_path=CHECKPOINT_PATH, device=args.device)
state_dict = ckpt['state_dict']
model.load_state_dict(state_dict, strict=False)
model = model.to(device=args.device)
eval(model, test_loader, args)
if __name__ == '__main__':
main()