-
Notifications
You must be signed in to change notification settings - Fork 2
/
cpt_logit.py
477 lines (456 loc) · 26.7 KB
/
cpt_logit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#!/hpf/tools/centos7/python/3.7.6/bin/python3
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-cvalue', '--c_value', type=float, help='logit lambda', default=0)
args = parser.parse_args()
c_value= args.c_value
# random seed
random.seed(1234)
import numpy as np
import pandas as pd
import os
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import pickle
# DESCRIPTION: THIS SCRIPT SUBSETS BY THE MOST PREVALENT CPTS AND RUNS
# A LOGISTIC REGRESSION FOR THE AGGREGATE AND SUBMODELS AND DECOMPOSES THE AUC
# IT DOES THIS FOR BOTH THE CPT CODES AND THE CPT VALUES FROM NATIVE BAYES
# SAVES TO OUTPUT:
# --- logit_agg.csv
# --- logit_sub.csv
# --- logit_agg_phat.csv
# --- logit_sub_phat.csv
# --- logit_agg_model_auc_decomposed.csv
# --- logit_sub_model_auc_decomposed.csv
###############################
# ---- STEP 1: LOAD DATA ---- #
dir_base = dir_base = '/hpf/largeprojects/agoldenb/ben/Projects/nsqip/NSQIP_codes'
dir_output_test = os.path.join(dir_base, '..', 'logit_results/test_auc')
dir_output_validation = os.path.join(dir_base, '..', 'logit_results/validation_auc')
dir_output_sub_models = os.path.join(dir_base, '..', 'logit_results/sub_models') # here
dir_output_agg_models = os.path.join(dir_base, '..', 'logit_results/agg_models') # here
dir_data =os.path.join(dir_base, '..', 'output')
dir_figures = os.path.join(dir_base, '..', 'figures')
fn_X = 'X_imputed.csv'
fn_Y = 'y_agg.csv'
dat_X = pd.read_csv(os.path.join(dir_data, fn_X))
dat_Y = pd.read_csv(os.path.join(dir_data, fn_Y))
# CREATE DUMMY VARIABLES FOR NON NUMERIC
#dat_X = pd.get_dummies(dat_X)
# !! ENCODE CPT AS CATEGORICAL !! #
dat_X['cpt'] = 'c' + dat_X.cpt.astype(str)
# GROUPBY CPT AND GET NUMBER OF OBSERVATIONS
top_cpts = dat_X.groupby('cpt').size().sort_values(ascending=False)
top_cpts = pd.DataFrame({'cpt': top_cpts.index, 'count': top_cpts.values})
# KEEP ONLY CPT CODES WITH OVER 1000
top_cpts = top_cpts[top_cpts['count'] > 1000]
top_cpts = top_cpts.cpt.unique()
# SUBET BY DATA FRAMES BY CPT CODES
dat_X = dat_X[dat_X.cpt.isin(top_cpts)].reset_index(drop=True)
dat_Y = dat_Y[dat_Y.caseid.isin(dat_X.caseid)].reset_index(drop=True)
# GET COLUMNS
cn_X = list(dat_X.columns[2:])
cn_X.append('caseid') # here
cn_Y = list(dat_Y.columns[25:37])
# DELETE NON AGG LABELS
dat_Y.drop(dat_Y.columns[[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]],
axis=1, inplace=True)
###############################################
# ---- STEP 2: LEAVE-ONE-YEAR - ALL VARIABLES ---- #
holder_y_all = []
holder_y_all_valid=[]
for ii, vv in enumerate(cn_Y):
print('##### ------- Outcome %s (%i of %i) -------- #####' % (vv, ii + 1, len(cn_Y)))
tmp_ii = pd.concat([dat_Y.operyr, dat_Y[vv] == -1], axis=1)
tmp_ii = tmp_ii.groupby('operyr')[vv].apply(np.sum).reset_index().rename(columns={vv: 'n'})
tmp_years = tmp_ii[tmp_ii.n == 0].operyr.values
tmp_years = tmp_years.astype(int)
tmp_train_years = tmp_years[tmp_years > (tmp_years.min())]
holder_y = []
holder_y_valid = []
for yy in tmp_train_years:
# FOR 2013 WE DONT HAVE A VALIDATION SET TO TUNE HYPERPARAMETERS, SO USE NORMAL TRAIN, TEST SPLIT
if yy == 2013:
print('Train Year %i' % (yy))
idx_train = dat_X.operyr.isin(tmp_years) & (dat_X.operyr < yy)
idx_test = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy)
Xtrain, Xtest = dat_X.loc[idx_train, cn_X].reset_index(drop=True), \
dat_X.loc[idx_test, cn_X].reset_index(drop=True)
ytrain, ytest = dat_Y.loc[idx_train, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_test, [vv]].reset_index(drop=True)
# STORE CPT CODES AND DELETE FROM DATA
tmp_cpt = Xtest.cpt
tmp_id = Xtest.caseid
del Xtrain['cpt']
del Xtest['cpt']
del Xtrain['caseid'] # here
del Xtest['caseid'] # here
# define the numeric variables and standard scaler
scaler = StandardScaler()
num_vars = list(['age_days', 'height', 'weight', 'workrvu'])
# get cateogrical variable names and onehotencoder
ohe = OneHotEncoder(handle_unknown='ignore')
cat_vars = [i for i in Xtrain.columns if i not in num_vars]
# define the preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', scaler, num_vars),
('cat', ohe, cat_vars)])
clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', LogisticRegression(penalty='l2', C=c_value,solver='liblinear', max_iter=200))])
# TRAIN MODEL WITH EACH PARAMETER
logit_mod = clf.fit(Xtrain, ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(Xtest)[:, 1]
auc_score=np.nan
model_file_name = os.path.join(dir_output_agg_models, 'logit_agg_' + str(c_value) + '_' + str(vv) + '_' + str(yy) + '.sav')
pickle.dump(logit_mod, open(model_file_name, 'wb'))
else:
# FOR YEARS 2014-2018 WE HAVE A TRAIN, VALIDATION, AND TEST SET
print('Train Year %i' % (yy))
# get validation year
yy_valid = yy-1
idx_train = dat_X.operyr.isin(tmp_years) & (dat_X.operyr < yy_valid)
idx_valid = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy_valid)
idx_test = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy)
Xtrain, Xvalid, Xtest = dat_X.loc[idx_train, cn_X].reset_index(drop=True), \
dat_X.loc[idx_valid, cn_X].reset_index(drop=True), \
dat_X.loc[idx_test, cn_X].reset_index(drop=True)
ytrain, yvalid, ytest = dat_Y.loc[idx_train, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_valid, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_test, [vv]].reset_index(drop=True)
# STORE CPT CODES AND DELETE FROM DATA
tmp_cpt = Xtest.cpt
tmp_id = Xtest.caseid
del Xtrain['cpt']
del Xtest['cpt']
del Xvalid['cpt']
del Xtrain['caseid']
del Xtest['caseid']
del Xvalid['caseid']
# define the numeric variables and standard scaler
scaler = StandardScaler()
num_vars = list(['age_days', 'height', 'weight', 'workrvu'])
# get cateogrical variable names and onehotencoder
ohe = OneHotEncoder(handle_unknown='ignore')
cat_vars = [i for i in Xtrain.columns if i not in num_vars]
# define the preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', scaler, num_vars),
('cat', ohe, cat_vars)])
clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier',
LogisticRegression(penalty='l2', C=c_value, solver='liblinear', max_iter=200))])
logit_mod = clf.fit(Xtrain, ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(Xvalid)[:, 1]
auc_score = metrics.roc_auc_score(yvalid, logit_preds)
#COMBINE THE TRAIN AND VALIDATOIN SETS AND RETRAIN MODEL ON ALL DATA WITH THE BEST C VALUES
Xtrain = pd.concat([Xtrain, Xvalid])
ytrain = pd.concat([ytrain, yvalid])
logit_mod = clf.fit(Xtrain, ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(Xtest)[:, 1]
model_file_name = os.path.join(dir_output_agg_models, 'logit_agg_' + str(c_value) + '_' + str(vv) + '_' + str(yy) + '.sav')
pickle.dump(logit_mod, open(model_file_name, 'wb'))
if yy == 2018:
# combine all years in to one dataset
Xtrain = pd.concat([Xtrain, Xtest])
ytrain = pd.concat([ytrain, ytest])
logit_mod = clf.fit(Xtrain, ytrain.values.ravel())
model_file_name = os.path.join(dir_output_agg_models, 'logit_agg_final_' + str(c_value) + '_' + str(vv) + '.sav')
pickle.dump(logit_mod, open(model_file_name, 'wb'))
# STORE RESULTS FROM AGGREGATE MODEL
within_holder = []
valid_holder =[]
tmp_holder_valid = pd.DataFrame({'c': c_value, 'auc': auc_score}, index=[0])
valid_holder.append(pd.DataFrame({'c':tmp_holder_valid.c.values, 'auc_valid':tmp_holder_valid.auc.values}))
tmp_holder = pd.DataFrame(
{'caseid': list(tmp_id), 'y_preds': list(logit_preds), 'y_values': np.array(ytest).ravel(),
'cpt': list(tmp_cpt)})
within_holder.append(pd.DataFrame(
{'caseid': tmp_holder.caseid, 'y': tmp_holder.y_values, 'preds': tmp_holder.y_preds,
'cpt': tmp_holder.cpt}))
holder_y.append(pd.concat(within_holder).assign(test_year=yy))
holder_y_valid.append(pd.concat(valid_holder).assign(test_year=yy))
holder_y_all.append(pd.concat(holder_y).assign(outcome=vv))
holder_y_all_valid.append(pd.concat(holder_y_valid).assign(outcome=vv))
res_y_all = pd.concat(holder_y_all).reset_index(drop=True)
res_y_all_valid = pd.concat(holder_y_all_valid).reset_index(drop=True)
res_y_all.to_csv(os.path.join(dir_output_test, 'logit_agg_'+str(c_value)+'.csv'), index=False)
res_y_all_valid.to_csv(os.path.join(dir_output_validation, 'logit_agg_valid_'+str(c_value)+'.csv'), index=False)
####################################################
# ---- STEP 3: LEAVE-ONE-YEAR - ALL VARIABLES, FOR EACH CPT CODE, SUB MODELS---- #
holder_y_all = []
holder_y_all_valid = []
for ii, vv in enumerate(cn_Y):
print('##### ------- Outcome %s (%i of %i) -------- #####' % (vv, ii + 1, len(cn_Y)))
tmp_ii = pd.concat([dat_Y.operyr, dat_Y[vv] == -1], axis=1)
tmp_ii = tmp_ii.groupby('operyr')[vv].apply(np.sum).reset_index().rename(columns={vv: 'n'})
tmp_years = tmp_ii[tmp_ii.n == 0].operyr.values
tmp_years = tmp_years.astype(int)
tmp_train_years = tmp_years[tmp_years > (tmp_years.min())]
holder_y = []
holder_y_valid = []
for yy in tmp_train_years:
if yy ==2013:
print('Train Year %i' % (yy))
idx_train = dat_X.operyr.isin(tmp_years) & (dat_X.operyr < yy)
idx_test = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy)
Xtrain, Xtest = dat_X.loc[idx_train, cn_X].reset_index(drop=True), \
dat_X.loc[idx_test, cn_X].reset_index(drop=True)
ytrain, ytest = dat_Y.loc[idx_train, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_test, [vv]].reset_index(drop=True)
else:
print('Train Year %i' % (yy))
# get validation year
yy_valid = yy - 1
idx_train = dat_X.operyr.isin(tmp_years) & (dat_X.operyr < yy_valid)
idx_valid = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy_valid)
idx_test = dat_X.operyr.isin(tmp_years) & (dat_X.operyr == yy)
Xtrain, Xvalid, Xtest = dat_X.loc[idx_train, cn_X].reset_index(drop=True), \
dat_X.loc[idx_valid, cn_X].reset_index(drop=True), \
dat_X.loc[idx_test, cn_X].reset_index(drop=True)
ytrain, yvalid, ytest = dat_Y.loc[idx_train, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_valid, [vv]].reset_index(drop=True), \
dat_Y.loc[idx_test, [vv]].reset_index(drop=True)
within_holder = []
valid_holder = []
tmp_id = Xtest.caseid.to_frame().join(Xtest.cpt)
for cc in top_cpts:
#print('cpt %s' % (cc))
# SUBSET XTRAIN AND XTEST BY CPT CODE
sub_xtrain = Xtrain[Xtrain['cpt'] == cc]
sub_xtest = Xtest[Xtest['cpt'] == cc]
# SUBSET YTRAIN AND YTEST BY THE CORRESPONDING INDICES IN SUBSETTED XDATA
sub_ytrain = ytrain[ytrain.index.isin(sub_xtrain.index)]
sub_ytest = ytest[ytest.index.isin(sub_xtest.index)]
# remove cpt column
del sub_xtrain['cpt']
del sub_xtest['cpt']
tmp_id_sub = tmp_id[tmp_id['cpt'] == cc]
caseids = tmp_id_sub.caseid
if yy==2013:
# conditon by year here.
# FILL RESULTS WITH NA IF TRAIN OR TEST OUTCOMES ARE ALL ONE VALUE
if all(np.unique(sub_ytrain.values) == 0) or all(np.unique(sub_ytest.values) == 0):
within_holder.append(pd.DataFrame({'caseid':np.nan,
'y': np.nan,
'preds': np.nan,
'cpt': np.nan}, index=[0]))
else:
# define the numeric variables and standard scaler
scaler = StandardScaler()
num_vars = list(['age_days', 'height', 'weight', 'workrvu'])
# get cateogrical variable names and onehotencoder
ohe = OneHotEncoder(handle_unknown='ignore')
cat_vars = [i for i in sub_xtrain.columns if i not in num_vars]
# define the preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', scaler, num_vars),
('cat', ohe, cat_vars)])
clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier',
LogisticRegression(penalty='l2', C=c_value, solver='liblinear',
max_iter=200))])
logit_mod = clf.fit(sub_xtrain, sub_ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(sub_xtest)[:, 1]
cc_name = np.repeat(cc, logit_preds.shape[0])
model_file_name = os.path.join(dir_output_sub_models,
'logit_sub_' + str(c_value) + '_' + str(vv) + '_' + str(yy) + '_' + str(cc) + '.sav')
pickle.dump(logit_mod, open(model_file_name, 'wb'))
tmp_holder = pd.DataFrame(
{'caseid': list(caseids), 'y_preds': list(logit_preds), 'y_values': np.array(sub_ytest).ravel(),
'cpt': list(cc_name)})
within_holder.append(pd.DataFrame(
{'caseid': tmp_holder.caseid, 'y': tmp_holder.y_values, 'preds': tmp_holder.y_preds,
'cpt': tmp_holder.cpt})) # LOOP THROUGH EACH CPT CODE
tmp_holder_valid = pd.DataFrame({'c': c_value, 'auc': np.nan, 'cpt':cc}, index=[0])
valid_holder.append( pd.DataFrame({'c': tmp_holder_valid.c.values, 'auc_valid': tmp_holder_valid.auc.values, 'cpt':tmp_holder_valid.cpt}))
else:
sub_xvalid = Xvalid[Xvalid['cpt'] == cc]
sub_yvalid = yvalid[yvalid.index.isin(sub_xvalid.index)]
del sub_xvalid['cpt']
# FILL RESULTS WITH NA IF TRAIN OR TEST OUTCOMES ARE ALL ONE VALUE
if all(np.unique(sub_ytrain.values) == 0) or all(np.unique(sub_ytest.values) == 0) or all(np.unique(sub_yvalid.values) == 0):
within_holder.append(pd.DataFrame({'caseid':np.nan,'y': np.nan,
'preds': np.nan,
'cpt': np.nan}, index=[0]))
else:
# define the numeric variables and standard scaler
scaler = StandardScaler()
num_vars = list(['age_days', 'height', 'weight', 'workrvu'])
# get cateogrical variable names and onehotencoder
ohe = OneHotEncoder(handle_unknown='ignore')
cat_vars = [i for i in sub_xtrain.columns if i not in num_vars]
# define the preprocessor
preprocessor = ColumnTransformer(
transformers=[
('num', scaler, num_vars),
('cat', ohe, cat_vars)])
clf = Pipeline(steps=[('preprocessor', preprocessor),
('classifier',
LogisticRegression(penalty='l2', C=c_value, solver='liblinear',
max_iter=200))])
logit_mod= clf.fit(sub_xtrain, sub_ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(sub_xvalid)[:, 1]
auc_score = metrics.roc_auc_score(sub_yvalid, logit_preds)
# COMBINE THE TRAIN AND VALIDATOIN SETS AND RETRAIN MODEL ON ALL DATA WITH THE BEST C VALUES
sub_xtrain = pd.concat([sub_xtrain, sub_xvalid])
sub_ytrain = pd.concat([sub_ytrain, sub_yvalid])
logit_mod = clf.fit(sub_xtrain, sub_ytrain.values.ravel())
logit_preds = logit_mod.predict_proba(sub_xtest)[:, 1]
# create a vector of cc, that repeats so its the same length as the other columns in the data frame
cc_name = np.repeat(cc, logit_preds.shape[0])
model_file_name = os.path.join(dir_output_sub_models,
'logit_sub_' + str(c_value) + '_' + str(vv) + '_' + str(yy) + '_' + str(cc) + '.sav')
pickle.dump(logit_mod, open(model_file_name, 'wb'))
tmp_holder_valid = pd.DataFrame({'c': c_value, 'auc': auc_score, 'cpt':cc}, index=[0])
valid_holder.append(pd.DataFrame({'c': tmp_holder_valid.c.values, 'auc_valid': tmp_holder_valid.auc.values, 'cpt':tmp_holder_valid.cpt}))
tmp_holder = pd.DataFrame(
{'caseid': list(caseids), 'y_preds': list(logit_preds), 'y_values': np.array(sub_ytest).ravel(),
'cpt': list(cc_name)})
within_holder.append(pd.DataFrame(
{'caseid': tmp_holder.caseid, 'y': tmp_holder.y_values, 'preds': tmp_holder.y_preds,
'cpt': tmp_holder.cpt})) # LOOP THROUGH EACH CPT CODE
# get full model
if yy == 2018:
# combine all years in to one dataset
sub_xtrain = pd.concat([sub_xtrain, sub_xtest])
sub_ytrain = pd.concat([sub_ytrain, sub_ytest])
xgb_mod_full = clf.fit(sub_xtrain, sub_ytrain.values.ravel())
model_file_name = os.path.join(dir_output_sub_models,
'logit_sub_final_' + str(c_value) + '_' + str(vv) + '_' + str(cc) + '.sav')
pickle.dump(xgb_mod_full, open(model_file_name, 'wb'))
holder_y.append(pd.concat(within_holder).assign(test_year=yy))
holder_y_valid.append(pd.concat(valid_holder).assign(test_year=yy))
holder_y_all.append(pd.concat(holder_y).assign(outcome=vv))
holder_y_all_valid.append(pd.concat(holder_y_valid).assign(outcome=vv))
res_y_all = pd.concat(holder_y_all).reset_index(drop=True)
res_y_all_valid = pd.concat(holder_y_all_valid).reset_index(drop=True)
res_y_all.to_csv(os.path.join(dir_output_test, 'logit_sub_'+str(c_value)+'.csv'), index=False)
res_y_all_valid.to_csv(os.path.join(dir_output_validation, 'logit_sub_valid_'+str(c_value)+'.csv'), index=False)
# ###############################################
# # ---- STEP 4: LEAVE-ONE-YEAR - ALL VARIABLES (RISK SCORE INSTEAD OF CPT SCORE) ---- #
# #READ IN RISK SCORES
# file_name = 'nbayes_phat.csv'
# nb_phat = pd.read_csv(os.path.join(dir_output, file_name))
# # REMOVE Y COLUMN
# del nb_phat['y']
# # ADD VARIABLE NAME "PHAT"
# cn_X.append('phat')
# holder_y_all = []
# for ii, vv in enumerate(cn_Y):
# print('##### ------- Outcome %s (%i of %i) -------- #####' % (vv, ii + 1, len(cn_Y)))
# # SUBSET NB_PHAT BY OUTCOME
# tmp_phat = nb_phat[nb_phat['outcome']==vv].reset_index(drop=False)
# tmp_phat_years = tmp_phat.operyr.unique()
# # REMOVE OPERYR AND
# del tmp_phat['operyr']
# del tmp_phat['outcome']
# tmp_ii = pd.concat([dat_Y.operyr, dat_Y[vv] == -1], axis=1)
# tmp_ii = tmp_ii.groupby('operyr')[vv].apply(np.sum).reset_index().rename(columns={vv: 'n'})
# tmp_years = tmp_ii[tmp_ii.n == 0].operyr.values
# tmp_years = tmp_years.astype(int)
# tmp_train_years = tmp_years[tmp_years > (tmp_years.min())]
# # GET TRAINING YEARS - 2012 DOESNT HAVE PHAT VALUES
# tmp_train_years = np.intersect1d(tmp_train_years, tmp_phat_years)
# tmp_train_years = tmp_train_years[tmp_train_years > tmp_phat_years.min()]
# # JOIN DATA AND PHAT DATA
# sub_x = pd.merge(dat_X, tmp_phat, on = 'caseid')
# # SUBSET DAT_Y BY THE SAME INDEX
# sub_y= dat_Y[dat_Y.index.isin(sub_x.index)]
# holder_y = []
# for yy in tmp_train_years:
# print('Train Year %i' % (yy))
# idx_train = sub_x.operyr.isin(tmp_years) & (sub_x.operyr < yy)
# idx_test = sub_x.operyr.isin(tmp_years) & (sub_x.operyr == yy)
# Xtrain, Xtest = sub_x.loc[idx_train, cn_X].reset_index(drop=True), \
# sub_x.loc[idx_test, cn_X].reset_index(drop=True)
# ytrain, ytest = sub_y.loc[idx_train, [vv]].reset_index(drop=True), \
# sub_y.loc[idx_test, [vv]].reset_index(drop=True)
# # STORE CPT CODE
# tmp_cpt = Xtest.cpt
# del Xtrain['cpt']
# del Xtest['cpt']
# # TRAIN MODEL
# logisticreg = LogisticRegression(solver='liblinear', max_iter=200)
# logit_fit = logisticreg.fit(Xtrain, ytrain.values.ravel())
# # GET PREDICTIONS
# logit_preds = logit_fit.predict_proba(Xtest)[:, 1]
# tmp_holder = pd.DataFrame(
# {'y_preds': list(logit_preds), 'y_values': list(ytest.values), 'cpt': list(tmp_cpt)})
# within_holder = []
# for cc in top_cpts:
# #print('cpt %s' % (cc))
# sub_tmp_holder = tmp_holder[tmp_holder['cpt'] == cc].reset_index(drop=True)
# # FILL RESULTS LIST WITH NA IF ONLY TOW LEVELS OR NEGATIVE 1 IN OUTCOME
# if all(sub_tmp_holder.y_values.values == 0) or any(sub_tmp_holder.y_values.values < 0):
# within_holder.append(pd.DataFrame({'auc': 'NA',
# 'cpt': cc}, index=[0]))
# else:
# within_holder.append(pd.DataFrame({'auc': metrics.roc_auc_score(list(sub_tmp_holder.y_values.values),
# list(sub_tmp_holder.y_preds.values)),
# 'cpt': cc}, index=[0]))
# holder_y.append(pd.concat(within_holder).assign(test_year=yy))
# holder_y_all.append(pd.concat(holder_y).assign(outcome=vv))
# res_y_all = pd.concat(holder_y_all).reset_index(drop=True)
# res_y_all.to_csv(os.path.join(dir_output, 'logit_agg_phat.csv'), index=False)
# ###############################################
# # ---- STEP 5: LEAVE-ONE-YEAR - ALL VARIABLES (RISK SCORE INSTEAD OF CPT SCORE, SUB MODELS) ---- #
# holder_y_all = []
# for ii, vv in enumerate(cn_Y):
# print('##### ------- Outcome %s (%i of %i) -------- #####' % (vv, ii + 1, len(cn_Y)))
# tmp_phat = nb_phat[nb_phat['outcome']==vv].reset_index(drop=False)
# tmp_phat_years = tmp_phat.operyr.unique()
# del tmp_phat['operyr']
# del tmp_phat['outcome']
# tmp_ii = pd.concat([dat_Y.operyr, dat_Y[vv] == -1], axis=1)
# tmp_ii = tmp_ii.groupby('operyr')[vv].apply(np.sum).reset_index().rename(columns={vv: 'n'})
# tmp_years = tmp_ii[tmp_ii.n == 0].operyr.values
# tmp_years = tmp_years.astype(int)
# tmp_train_years = tmp_years[tmp_years > (tmp_years.min())]
# tmp_train_years = np.intersect1d(tmp_train_years, tmp_phat_years)
# tmp_train_years = tmp_train_years[tmp_train_years > tmp_phat_years.min()]
# # JOIN DATA TO GET PHAT VALUES
# sub_x = pd.merge(dat_X, tmp_phat, on = 'caseid')
# # SUBSET Y DATA BY SAME INDEX
# sub_y= dat_Y[dat_Y.index.isin(sub_x.index)]
# holder_y = []
# for yy in tmp_train_years:
# print('Train Year %i' % (yy))
# idx_train = sub_x.operyr.isin(tmp_years) & (sub_x.operyr < yy)
# idx_test = sub_x.operyr.isin(tmp_years) & (sub_x.operyr == yy)
# Xtrain, Xtest = sub_x.loc[idx_train, cn_X].reset_index(drop=True), \
# sub_x.loc[idx_test, cn_X].reset_index(drop=True)
# ytrain, ytest = sub_y.loc[idx_train, [vv]].reset_index(drop=True), \
# sub_y.loc[idx_test, [vv]].reset_index(drop=True)
# within_holder = []
# for cc in top_cpts:
# # SUBSET XTRAIN AND XTEST BY CPT CODE
# sub_xtrain = Xtrain[Xtrain['cpt'] == cc]
# sub_xtest = Xtest[Xtest['cpt'] == cc]
# # SUBSET YTRAIN AND YTEST BY THE CORRESPONDING INDICES IN SUBSETTED XDATA
# sub_ytrain = ytrain[ytrain.index.isin(sub_xtrain.index)]
# sub_ytest = ytest[ytest.index.isin(sub_xtest.index)]
# # REMOVE CPT COLUMN
# del sub_xtrain['cpt']
# del sub_xtest['cpt']
# # FILL RESULTS WITH NA IF TRAIN OR TEST OUTCOMES ARE ALL ONE VALUE OR CONTAINS NEGATIVE NUMBER
# if any(np.unique(sub_ytrain.values) < 0) or all(np.unique(sub_ytrain.values) == 0) or any(np.unique(sub_ytest.values) < 0) or all(np.unique(sub_ytest.values) == 0) or len(sub_ytrain.values) == 0 or len(sub_ytest.values) == 0:
# within_holder.append(pd.DataFrame({'auc': 'NA',
# 'cpt': cc}, index=[0]))
# else:
# # TRAIN MODEL
# logisticreg = LogisticRegression(solver='liblinear', max_iter=200)
# logit_fit = logisticreg.fit(sub_xtrain, sub_ytrain.values.ravel())
# # GET PREDICTIONS
# logit_preds = logit_fit.predict_proba(sub_xtest)[:, 1]
# within_holder.append(
# pd.DataFrame({'auc': metrics.roc_auc_score(sub_ytest.values, logit_preds), 'cpt': cc}, index=[0]))
# holder_y.append(pd.concat(within_holder).assign(test_year=yy))
# holder_y_all.append(pd.concat(holder_y).assign(outcome=vv))
# res_y_all = pd.concat(holder_y_all).reset_index(drop=True)
# res_y_all.to_csv(os.path.join(dir_output, 'logit_sub_phat.csv'), index=False)