forked from cpark321/uncertainty-deep-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
temperature_scaling.py
120 lines (99 loc) · 4.61 KB
/
temperature_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
from torch import nn, optim
from torch.nn import functional as F
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model):
super(ModelWithTemperature, self).__init__()
self.model = model
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input):
logits = self.model(input)
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
return logits / temperature
# This function probably should live outside of this class, but whatever
def set_temperature(self, valid_loader):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
self.cuda()
nll_criterion = nn.CrossEntropyLoss().cuda()
ece_criterion = _ECELoss().cuda()
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for input, label in valid_loader:
input = input.cuda()
logits = self.model(input)
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list).cuda()
labels = torch.cat(labels_list).cuda()
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion(logits, labels).item()
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
# Next: optimize the temperature w.r.t. NLL
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)
def eval():
loss = nll_criterion(self.temperature_scale(logits), labels)
loss.backward()
return loss
optimizer.step(eval)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
print('Optimal temperature: %.3f' % self.temperature.item())
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self
class _ECELoss(nn.Module):
"""
Calculates the Expected Calibration Error of a model.
(This isn't necessary for temperature scaling, just a cool metric).
The input to this loss is the logits of a model, NOT the softmax scores.
This divides the confidence outputs into equally-sized interval bins.
In each bin, we compute the confidence gap:
bin_gap = | avg_confidence_in_bin - accuracy_in_bin |
We then return a weighted average of the gaps, based on the number
of samples in each bin
See: Naeini, Mahdi Pakdaman, Gregory F. Cooper, and Milos Hauskrecht.
"Obtaining Well Calibrated Probabilities Using Bayesian Binning." AAAI.
2015.
"""
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(_ECELoss, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece