-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharray.cpp
141 lines (131 loc) · 3.41 KB
/
array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#include <bits/stdc++.h>
using namespace std;
/**
* 数组下标一般是从零开始的
* 矩阵下标从一开始
*/
// 对称矩阵
/**
* a[i][j] = a[j][i];
* 用数组进行压缩:
*
* i >= j ====> i * (i - 1) / 2 + j - 1
* i < j ====> j * (j - 1) / 2 + i - 1
*/
void symmetric_array() {
int n = 5, m = 5;
array<array<int, 6>, 6> a;
for(int i = 0; i < 6; ++i) {
for(int j = 0; j < 6; ++j) a[i][j] = a[j][i];
}
array<int, 1000> b;
for(int i = 1; i <= 5; ++i) {
for(int j = 1; j <= 5; ++j) {
if(i >= j) {
int k = i * (i - 1) / 2 + j - 1;
b[k] = a[i][j];
} else {
int k = j * (j - 1) / 2 + i - 1;
b[k] = a[i][j];
}
}
}
auto check = [&]() -> bool {
for(int i = 1; i <= 5; ++i) {
for(int j = 1; j <= i; ++j) {
if(a[i][j] != b[i * (i - 1) / 2 + j - 1]) return false;
}
}
return true;
};
cout<<( check() ? "YES" : "NO")<<'\n';
}
// 三角矩阵
/**
* 上(下)三角区所有元素均为同一常量,下(上)不同
*
* 存储 B[n(n + 1) / 2 + 1]
*
* ** 下三角不同,上三角是常量
* i >= j ===> i * (i - 1) / 2 + j - 1;
* i < j ===> n * (n + 1) / 2
*
* ** 上三角不同,上三角常量
* i <= j ===> (i - 1) * (2 * n - i + 2) / 2 + j - i
* i > j ===> n * (n + 1) / 2
*/
void triangular_array() {
int n = 5, m = 5;
array<array<int, 6>, 6> a;
array<int, 1000> b;
for(int i = 1; i < 6; ++i) {
for(int j = 1; j < 6; ++j) {
if(i >= j) a[i][j] = i + j, b[ i * (i - 1) / 2 + j - 1] =a[i][j];
else a[i][j] = -1;
}
}
b[n * (n + 1) / 2] = -1;
for(int i = 1; i < 6; ++i) {
for(int j = 1; j < 6; ++j) {
if(i <= j) a[i][j] = i + j, b[ (i - 1) * ( 2 * n - i + 2) / 2 + j - i] = a[i][j];
else a[i][j] = -1;
}
}
b[n * (n + 1) / 2] = -1;
}
// 三对角矩阵
/**
* 三对角矩阵的特点是除了主对角线和两条相邻的对角线外,其余元素均为零
*
* k = 2 * i + j - 3
* i = (k + 1) / 3 + 1 向下取整
* j = k - 2 * i + 3
*/
void tridiagonal_array() {
int n = 5, m = 5;
array<array<int, 6>, 6> a;
array<int, 1000> b;
for(int i = 1; i < 6; ++i) {
for(int j = 1; j < 6; ++j) {
if(i >= j) a[i][j] = i + j, b[ i * (i - 1) / 2 + j - 1] = a[i][j];
else a[i][j] = -1;
}
}
srand(time(0));
for(int i = 0; i < 6; ++i) {
for(int j = 0; j < 6; ++j) {
if(abs(j - i) <= 1) a[i][j] = rand() % 1000, b[2 * i + j - 3] = a[i][j];
else a[i][j] = 0;
}
}
for(int i = 1; i <= 5; ++i) {
for(int j = 1; j <= 5; ++j) {
printf("%d ", a[i][j]);
}
cout<<'\n';
}
for(int _ = 0; _ < 10; ++_) {
int i = (_ + 1) / 3 + 1, j = _ - 2 * i + 3;
if(a[i][j] != b[_]) {
cout<<"NO\n";
break;
}
}
cout<<"YES\n";
}
// 稀疏矩阵
/**
* 三元组 i j a[i][j]
*
*十字链表法
*/
int main()
{
// 对称矩阵
symmetric_array();
// 三角矩阵
triangular_array();
// 三对角矩阵
tridiagonal_array();
return 0;
}