forked from digitalmoleculardesign/bill_goddard_chem_120
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap05-removed.tex
54 lines (44 loc) · 1.85 KB
/
chap05-removed.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\section{References}
\begin{enumerate}
\item E. Clementi and C. Roetti, in Atomic Data and Nuclear Data
Tables, Vol. 14, pages 177-478 (1974).
\item C. Moore, in Ionization Potentials, NSRDS-NBS, Vol. 34
(1970).
\item H. Hotop and W. C. Lineberger, in J. Phys. Chem. Ref.
Data., Vol. 4, page 568 (1975).
\item E. Clementi and D. L. Raimondi, in J. Chem. Phys., Vol. 38,
page 2686 (1963).
\end{enumerate}
\section{Excercises}
\begin{enumerate}
\item From Section 5.2. Use the functions given in Table \ref{chap5-table2} to
determine the positions of the maxima of $\phi , r \phi$, and $(r
\phi)^2$.
\item Defining ${\bar r}$ as
\begin{equation}
{\bar r} = \sqrt{\langle \psi | r^2 | \psi \rangle}
\end{equation}
find ${\bar r}$ for the radial functions in Table \ref{chap5-table2}.
\end{enumerate}
\section{Reference}
\begin{enumerate}
\item E. U. Condon and G. H. Shortley, in Theory of Atomic
Spectra, Cambridge University Press, pages 76 and 77 (1963).
\end{enumerate}
\section{Exercises}
\begin{enumerate}
\item From Appendix A. Consider the case of $p^3$ and (a) derive
the allowed symmetries. (b) Write down the wavefunctions for each
state, use real or complex functions, whichever suits you. (c) Find
the energy expression for each state, use real or complex
wavefunctions, whichever suits you. What is the order of the states
and the ratio of the energy splittings?
\item Consider the case of $p^4$, show how to relate the energies
of the states to the expressions obtained for $p^2$.
\item Consider the case of $(d)^2$ and (a) derive the allowed
symmetries. (b) Write down the wavefunctions for each state, use real
or complex functions, whichever suits you. (c) Find the energy
expression for each state, use real or complex wavefunctions,
whichever suits you. What is the order of the states and the ratio of
the energy splittings?
\end{enumerate}