forked from pkmital/tensorflow_tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08_denoising_autoencoder.py
131 lines (115 loc) · 4.32 KB
/
08_denoising_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Tutorial on how to create a denoising autoencoder w/ Tensorflow.
Parag K. Mital, Jan 2016
"""
import tensorflow as tf
import numpy as np
import math
from libs.utils import corrupt
# %%
def autoencoder(dimensions=[784, 512, 256, 64]):
"""Build a deep denoising autoencoder w/ tied weights.
Parameters
----------
dimensions : list, optional
The number of neurons for each layer of the autoencoder.
Returns
-------
x : Tensor
Input placeholder to the network
z : Tensor
Inner-most latent representation
y : Tensor
Output reconstruction of the input
cost : Tensor
Overall cost to use for training
"""
# input to the network
x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x')
# Probability that we will corrupt input.
# This is the essence of the denoising autoencoder, and is pretty
# basic. We'll feed forward a noisy input, allowing our network
# to generalize better, possibly, to occlusions of what we're
# really interested in. But to measure accuracy, we'll still
# enforce a training signal which measures the original image's
# reconstruction cost.
#
# We'll change this to 1 during training
# but when we're ready for testing/production ready environments,
# we'll put it back to 0.
corrupt_prob = tf.placeholder(tf.float32, [1])
current_input = corrupt(x) * corrupt_prob + x * (1 - corrupt_prob)
# Build the encoder
encoder = []
for layer_i, n_output in enumerate(dimensions[1:]):
n_input = int(current_input.get_shape()[1])
W = tf.Variable(
tf.random_uniform([n_input, n_output],
-1.0 / math.sqrt(n_input),
1.0 / math.sqrt(n_input)))
b = tf.Variable(tf.zeros([n_output]))
encoder.append(W)
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
# latent representation
z = current_input
encoder.reverse()
# Build the decoder using the same weights
for layer_i, n_output in enumerate(dimensions[:-1][::-1]):
W = tf.transpose(encoder[layer_i])
b = tf.Variable(tf.zeros([n_output]))
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
# now have the reconstruction through the network
y = current_input
# cost function measures pixel-wise difference
cost = tf.sqrt(tf.reduce_mean(tf.square(y - x)))
return {'x': x, 'z': z, 'y': y,
'corrupt_prob': corrupt_prob,
'cost': cost}
# %%
def test_mnist():
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt
# %%
# load MNIST as before
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
mean_img = np.mean(mnist.train.images, axis=0)
ae = autoencoder(dimensions=[784, 256, 64])
# %%
learning_rate = 0.001
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(ae['cost'])
# %%
# We create a session to use the graph
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# %%
# Fit all training data
batch_size = 50
n_epochs = 10
for epoch_i in range(n_epochs):
for batch_i in range(mnist.train.num_examples // batch_size):
batch_xs, _ = mnist.train.next_batch(batch_size)
train = np.array([img - mean_img for img in batch_xs])
sess.run(optimizer, feed_dict={
ae['x']: train, ae['corrupt_prob']: [1.0]})
print(epoch_i, sess.run(ae['cost'], feed_dict={
ae['x']: train, ae['corrupt_prob']: [1.0]}))
# %%
# Plot example reconstructions
n_examples = 15
test_xs, _ = mnist.test.next_batch(n_examples)
test_xs_norm = np.array([img - mean_img for img in test_xs])
recon = sess.run(ae['y'], feed_dict={
ae['x']: test_xs_norm, ae['corrupt_prob']: [0.0]})
fig, axs = plt.subplots(2, n_examples, figsize=(10, 2))
for example_i in range(n_examples):
axs[0][example_i].imshow(
np.reshape(test_xs[example_i, :], (28, 28)))
axs[1][example_i].imshow(
np.reshape([recon[example_i, :] + mean_img], (28, 28)))
fig.show()
plt.draw()
plt.waitforbuttonpress()
if __name__ == '__main__':
test_mnist()