generated from simpleshinobu/visdial-principles
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
190 lines (173 loc) · 6.31 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import argparse
import itertools
import time
import datetime
import numpy as np
from tensorboardX import SummaryWriter
import torch
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import yaml
from bisect import bisect
import random
from visdialch.data.dataset import VisDialDataset
from visdialch.encoders import Encoder
from visdialch.decoders import Decoder
from visdialch.metrics import SparseGTMetrics, NDCG
from visdialch.model import EncoderDecoderModel
from visdialch.utils.checkpointing import CheckpointManager, load_checkpoint
parser = argparse.ArgumentParser()
parser.add_argument(
"--config-yml",
default="configs/evaluete.yml",
help="Path to a config file listing reader, model and solver parameters.",
)
parser.add_argument(
"--val-json",
default="data/visdial_1.0_val.json",
help="Path to json file containing VisDial v1.0 validation data.",
)
parser.add_argument(
"--val-dense-json",
default="data/visdial_1.0_val_dense_annotations.json",
help="Path to json file containing VisDial v1.0 validation dense ground "
"truth annotations.",
)
parser.add_argument_group(
"Arguments independent of experiment reproducibility"
)
parser.add_argument(
"--gpu-ids",
nargs="+",
type=int,
default=[2, 3],
help="List of ids of GPUs to use.",
)
parser.add_argument(
"--cpu-workers",
type=int,
default=8,
help="Number of CPU workers for dataloader.",
)
parser.add_argument(
"--overfit",
action="store_true",
help="Overfit model on 5 examples, meant for debugging.",
)
parser.add_argument(
"--in-memory",
action="store_true",
help="Load the whole dataset and pre-extracted image features in memory. "
"Use only in presence of large RAM, atleast few tens of GBs.",
)
parser.add_argument_group("Checkpointing related arguments")
parser.add_argument(
"--load-pthpath",
default="",
help="To continue training, path to .pth file of saved checkpoint.",
)
manualSeed = random.randint(1, 10000)
print("Random Seed: ", manualSeed)
torch.manual_seed(manualSeed)
torch.cuda.manual_seed_all(manualSeed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# =============================================================================
# INPUT ARGUMENTS AND CONFIG
# =============================================================================
args = parser.parse_args()
# keys: {"dataset", "model", "solver"}
config = yaml.load(open(args.config_yml))
if isinstance(args.gpu_ids, int):
args.gpu_ids = [args.gpu_ids]
device = (
torch.device("cuda", args.gpu_ids[0])
if args.gpu_ids[0] >= 0
else torch.device("cpu")
)
# Print config and args.
print(yaml.dump(config, default_flow_style=False))
for arg in vars(args):
print("{:<20}: {}".format(arg, getattr(args, arg)))
# =============================================================================
# SETUP DATASET, DATALOADER, MODEL, CRITERION, OPTIMIZER, SCHEDULER
# =============================================================================
val_dataset = VisDialDataset(
config["dataset"],
args.val_json,
args.val_dense_json,
overfit=args.overfit,
in_memory=args.in_memory,
return_options=True,
add_boundary_toks=False,
sample_flag=False
)
val_dataloader = DataLoader(
val_dataset,
batch_size=config["solver"]["batch_size"],
num_workers=args.cpu_workers,
shuffle=True,
)
# Pass vocabulary to construct Embedding layer.
encoder = Encoder(config["model"], val_dataset.vocabulary)
decoder = Decoder(config["model"], val_dataset.vocabulary)
print("Encoder: {}".format(config["model"]["encoder"]))
print("Decoder: {}".format(config["model"]["decoder"]))
# Share word embedding between encoder and decoder.
if args.load_pthpath == "":
print('load glove')
decoder.word_embed = encoder.word_embed
glove = np.load('data/glove.npy')
encoder.word_embed.weight.data = torch.tensor(glove)
# Wrap encoder and decoder in a model.
model = EncoderDecoderModel(encoder, decoder).to(device)
if -1 not in args.gpu_ids:
model = nn.DataParallel(model, args.gpu_ids)
# =============================================================================
# SETUP BEFORE TRAINING LOOP
# =============================================================================
start_time = datetime.datetime.strftime(datetime.datetime.utcnow(), '%d-%b-%Y-%H:%M:%S')
sparse_metrics = SparseGTMetrics()
ndcg = NDCG()
# loading checkpoint
start_epoch = 0
model_state_dict, _ = load_checkpoint(args.load_pthpath)
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(model_state_dict)
else:
model.load_state_dict(model_state_dict)
print("Loaded model from {}".format(args.load_pthpath))
def get_1round_batch_data(batch, rnd):
temp_train_batch = {}
for key in batch:
if key in ['img_feat']:
temp_train_batch[key] = batch[key].to(device)
elif key in ['ques', 'opt', 'ques_len', 'opt_len', 'ans_ind']:
temp_train_batch[key] = batch[key][:, rnd].to(device)
elif key in ['hist_len', 'hist']:
temp_train_batch[key] = batch[key][:, :rnd + 1].to(device)
else:
pass
return temp_train_batch
model.eval()
for i, batch in enumerate(val_dataloader):
batchsize = batch['img_ids'].shape[0]
rnd = 0
temp_train_batch = get_1round_batch_data(batch, rnd)
output = model(temp_train_batch).view(-1, 1, 100).detach()
for rnd in range(1, 10):
temp_train_batch = get_1round_batch_data(batch, rnd)
output = torch.cat((output, model(temp_train_batch).view(-1, 1, 100).detach()), dim=1)
sparse_metrics.observe(output, batch["ans_ind"])
if "relevance" in batch:
output = output[torch.arange(output.size(0)), batch["round_id"] - 1, :]
ndcg.observe(output.view(-1, 100), batch["relevance"].contiguous().view(-1, 100))
# if i > 5: #for debug(like the --overfit)
# break
all_metrics = {}
all_metrics.update(sparse_metrics.retrieve(reset=True))
all_metrics.update(ndcg.retrieve(reset=True))
for metric_name, metric_value in all_metrics.items():
print(f"{metric_name}: {metric_value}")
model.train()