-
Notifications
You must be signed in to change notification settings - Fork 478
/
beam_search.py
463 lines (384 loc) · 16.4 KB
/
beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright 2023 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Fast decoding routines for inference from a trained model.
Modified https://github.com/google/flax/blob/main/examples/wmt/decode.py
to acommodate
(a) continued decoding from a previous beam cache.
(b) init with with a single beam and then expand into beam_size beams.
"""
from typing import Any
import flax
import jax
from jax import lax
import jax.numpy as jnp
import numpy as np
# Constants
# "Effective negative infinity" constant for masking in beam search.
NEG_INF = np.array(-1.0e7)
# Beam search parameters
BEAM_SEARCH_DEFAULT_ALPHA = 0.6
MAX_DECODE_LEN = 32
# Brevity penalty parameters
BREVITY_LEN_BIAS_NUMERATOR = 5.0
BREVITY_LEN_BIAS_DENOMINATOR = 6.0
def brevity_penalty(alpha: float, length: int):
"""Brevity penalty function for beam search penalizing short sequences.
Args:
alpha: float: brevity-penalty scaling parameter.
length: int: length of considered sequence.
Returns:
Brevity penalty score as jax scalar.
"""
return jnp.power(
((BREVITY_LEN_BIAS_NUMERATOR + length) / BREVITY_LEN_BIAS_DENOMINATOR),
alpha,
)
# Beam handling utility functions:
def add_beam_dim(x: jnp.ndarray, beam_size: int) -> jnp.ndarray:
"""Creates new beam dimension in non-scalar array and tiles into it."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
x = jnp.expand_dims(x, axis=1)
tile_dims = [1] * x.ndim
tile_dims[1] = beam_size
return jnp.tile(x, tile_dims)
def add_beam_dim_cache(
cache: tuple[dict[str, jnp.ndarray], ...], beam_size: int
) -> tuple[dict[str, jnp.ndarray], ...]:
"""Creates new beam dimension in non-scalar array and tiles into it."""
new_cache = []
for layer in cache:
new_layer = {}
for key, x in layer.items():
if key in ['keys', 'vals']:
x = add_beam_dim(x, beam_size)
new_layer[key] = x
new_cache.append(new_layer)
return tuple(new_cache)
def flatten_beam_dim(x):
"""Flattens the first two dimensions of a non-scalar array."""
if x.ndim < 2: # ignore scalars (e.g. cache index)
return x
return x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:])
def unflatten_beam_dim(x, batch_size, beam_size):
"""Unflattens the first, flat batch*beam dimension of a non-scalar array."""
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
assert batch_size * beam_size == x.shape[0]
return x.reshape((batch_size, beam_size) + x.shape[1:])
def flat_batch_beam_expand(x, beam_size):
"""Expands the each batch item by beam_size in batch_dimension."""
return flatten_beam_dim(add_beam_dim(x, beam_size))
def gather_beams(nested, beam_indices, batch_size, new_beam_size):
"""Gathers the beam slices indexed by beam_indices into new beam array.
Args:
nested: pytree of arrays or scalars (the latter ignored).
beam_indices: array of beam_indices
batch_size: int: size of batch.
new_beam_size: int: size of _new_ beam dimension.
Returns:
New pytree with new beam arrays.
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...]
"""
batch_indices = jnp.reshape(
jnp.arange(batch_size * new_beam_size) // new_beam_size,
(batch_size, new_beam_size),
)
def gather_fn(x):
if x.ndim == 0: # ignore scalars (e.g. cache index)
return x
else:
return x[batch_indices, beam_indices]
return jax.tree_util.tree_map(gather_fn, nested)
def gather_topk_beams(nested, score_or_log_prob, batch_size, new_beam_size):
"""Gathers the top-k beam slices given by score_or_log_prob array.
Args:
nested: pytree of arrays or scalars (the latter ignored).
score_or_log_prob: [batch_size, old_beam_size] array of values to sort by
for top-k selection of beam slices.
batch_size: int: size of batch.
new_beam_size: int: size of _new_ top-k selected beam dimension
Returns:
New pytree with new beam arrays containing top k new_beam_size slices.
[batch_size, old_beam_size, ...] --> [batch_size, new_beam_size, ...]
"""
_, topk_indices = lax.top_k(score_or_log_prob, k=new_beam_size)
topk_indices = jnp.flip(topk_indices, axis=1)
return gather_beams(nested, topk_indices, batch_size, new_beam_size)
def apply_on_cache(fn, cache, *args, **kwargs):
"""Apply fn(val) only when key is 'keys' or 'val'."""
new_cache = []
for layer in cache:
new_layer = {}
for key, val in layer.items():
if key in ['keys', 'values', 'current_index', 'relative_position_bias']:
val = fn(val, *args, **kwargs)
new_layer[key] = val
new_cache.append(new_layer)
return tuple(new_cache)
# Beam search state:
@flax.struct.dataclass
class BeamState:
"""Holds beam search state data."""
# The position of the decoding loop in the length dimension.
cur_index: jax.Array # scalar int32: current decoded length index
# The active sequence log probabilities and finished sequence scores.
live_logprobs: jax.Array # float32: [batch_size, beam_size]
finished_scores: jax.Array # float32: [batch_size, beam_size]
# The current active-beam-searching and finished sequences.
live_seqs: jax.Array # int32: [batch_size, beam_size, max_decode_len]
finished_seqs: jax.Array # int32: [batch_size, beam_size,
# max_decode_len]
# Records which of the 'finished_seqs' is occupied and not a filler slot.
finished_flags: jax.Array # bool: [batch_size, beam_size]
# The current state of the autoregressive decoding caches.
cache: Any # Any pytree of arrays, e.g. flax attention Cache object
def beam_init(seed_token, batch_size, beam_size, max_decode_len, cache):
"""Initializes the beam search state data structure."""
cur_index0 = jnp.array(0)
live_logprobs0 = jnp.tile(
jnp.array([0.0] + [NEG_INF] * (beam_size - 1)), [batch_size, 1]
)
finished_scores0 = jnp.ones((batch_size, beam_size)) * NEG_INF
live_seqs0 = jnp.concatenate(
[
jnp.reshape(seed_token, (batch_size, beam_size, 1)),
jnp.zeros((batch_size, beam_size, max_decode_len - 1), jnp.int32),
],
axis=-1,
) # (batch, beam, max_decode_len)
finished_seqs0 = jnp.zeros((batch_size, beam_size, max_decode_len), jnp.int32)
finished_flags0 = jnp.zeros((batch_size, beam_size), jnp.bool_)
beam_cache0 = apply_on_cache(lambda x: jnp.expand_dims(x, axis=0), cache)
return BeamState(
cur_index=cur_index0,
live_logprobs=live_logprobs0,
finished_scores=finished_scores0,
live_seqs=live_seqs0,
finished_seqs=finished_seqs0,
finished_flags=finished_flags0,
cache=beam_cache0,
)
# Beam search routine:
def beam_search_flat(
seed_token,
cache,
tokens_to_logits,
alpha=BEAM_SEARCH_DEFAULT_ALPHA,
eos=None,
max_decode_len=MAX_DECODE_LEN,
mask=None,
):
"""Beam search for LM.
inputs and cache is already flat! i.e. first dimention == batch*beam.
Args:
seed_token: array: [beam_size, 1] int32 sequence of tokens.
cache: flax attention cache.
tokens_to_logits: fast autoregressive decoder function taking single token
slices and cache and returning next-token logits and updated cache.
alpha: float: scaling factor for brevity penalty.
eos: array: [vocab] 1 for end-of-sentence tokens, 0 for not.
max_decode_len: int: maximum length of decoded translations.
mask: array: [vocab] binary mask for vocab. 1 to keep the prob, 0 to set the
prob := 0.
Returns:
Tuple of:
[beam_size, max_decode_len] top-scoring sequences
[beam_size] beam-search scores.
"""
# We liberally annotate shape information for clarity below.
batch_size, beam_size = 1, seed_token.shape[0]
mask = mask.reshape((1, 1, -1))
eos = eos.reshape((1, 1, -1))
mask_bias = (1 - mask) * NEG_INF
# initialize beam search state
beam_search_init_state = beam_init(
seed_token, batch_size, beam_size, max_decode_len, cache
)
def beam_search_loop_cond_fn(state):
"""Beam search loop termination condition."""
# Have we reached max decoding length?
not_at_end = state.cur_index < max_decode_len - 1
# Is no further progress in the beam search possible?
# Get the best possible scores from alive sequences.
min_brevity_penalty = brevity_penalty(alpha, max_decode_len)
best_live_scores = state.live_logprobs[:, -1:] / min_brevity_penalty
# Get the worst scores from finished sequences.
worst_finished_scores = jnp.min(
state.finished_scores, axis=1, keepdims=True
)
# Mask out scores from slots without any actual finished sequences.
worst_finished_scores = jnp.where(
state.finished_flags, worst_finished_scores, NEG_INF
)
# If no best possible live score is better than current worst finished
# scores, the search cannot improve the finished set further.
search_terminated = jnp.all(worst_finished_scores > best_live_scores)
# If we're not at the max decode length, and the search hasn't terminated,
# continue looping.
return not_at_end & (~search_terminated)
def beam_search_loop_body_fn(state):
"""Beam search loop state update function."""
# Collect the current position slice along length to feed the fast
# autoregressive decoder model. Flatten the beam dimension into batch
# dimension for feeding into the model.
# --> [batch * beam, 1]
flat_ids = flatten_beam_dim(
lax.dynamic_slice(
state.live_seqs, (0, 0, state.cur_index), (batch_size, beam_size, 1)
)
)
# Flatten beam dimension into batch to be compatible with model.
# {[batch, beam, ...], ...} --> {[batch * beam, ...], ...}
flat_cache = apply_on_cache(flatten_beam_dim, state.cache)
# Call fast-decoder model on current tokens to get next-position logits.
# --> [batch * beam, vocab]
flat_logits, new_flat_cache = tokens_to_logits(flat_ids, flat_cache)
# unflatten beam dimension
# [batch * beam, vocab] --> [batch, beam, vocab]
logits = unflatten_beam_dim(flat_logits, batch_size, beam_size)
# Unflatten beam dimension in attention cache arrays
# {[batch * beam, ...], ...} --> {[batch, beam, ...], ...}
new_cache = apply_on_cache(
unflatten_beam_dim, new_flat_cache, batch_size, beam_size
)
# Gather log probabilities from logits
candidate_log_probs = jax.nn.log_softmax(logits)
# Add new logprobs to existing prefix logprobs.
# --> [batch, beam, vocab]
log_probs = candidate_log_probs + jnp.expand_dims(
state.live_logprobs, axis=2
)
# We'll need the vocab size, gather it from the log probability dimension.
vocab_size = log_probs.shape[2]
# mask away some tokens.
log_probs += mask_bias # [batch,beam,vocab]+[1,1,vocab]
# Each item in batch has beam_size * vocab_size candidate sequences.
# For each item, get the top 2*k candidates with the highest log-
# probabilities. We gather the top 2*K beams here so that even if the best
# K sequences reach EOS simultaneously, we have another K sequences
# remaining to continue the live beam search.
beams_to_keep = 2 * beam_size
# Flatten beam and vocab dimensions.
flat_log_probs = log_probs.reshape((batch_size, beam_size * vocab_size))
# Gather the top 2*K scores from _all_ beams.
# --> [batch, 2*beams], [batch, 2*beams]
topk_log_probs, topk_indices = lax.top_k(flat_log_probs, k=beams_to_keep)
# Recover the beam index by floor division.
topk_beam_indices = topk_indices // vocab_size
# Gather 2*k top beams.
# --> [batch, 2*beams, length]
topk_seq = gather_beams(
state.live_seqs, topk_beam_indices, batch_size, beams_to_keep
)
# Append the most probable 2*K token IDs to the top 2*K sequences
# Recover token id by modulo division and expand Id array for broadcasting.
# --> [batch, 2*beams, 1]
topk_ids = jnp.expand_dims(topk_indices % vocab_size, axis=2)
# Update sequences for the 2*K top-k new sequences.
# --> [batch, 2*beams, length]
topk_seq = lax.dynamic_update_slice(
topk_seq, topk_ids, (0, 0, state.cur_index + 1)
)
# Update LIVE (in-progress) sequences:
# Did any of these sequences reach an end marker?
# --> [batch, 2*beams]
last_token = topk_seq[:, :, state.cur_index + 1]
last_token = jax.nn.one_hot(last_token, vocab_size, dtype=jnp.bfloat16)
# any([batch, 2b, vocab] * [1, 1, vocab], axis=-1) == [batch, 2b]
newly_finished = jnp.any(last_token * eos, axis=-1)
# To prevent these newly finished sequences from being added to the LIVE
# set of active beam search sequences, set their log probs to a very large
# negative value.
new_log_probs = topk_log_probs + newly_finished * NEG_INF
# Determine the top k beam indices (from top 2*k beams) from log probs.
# --> [batch, beams]
_, new_topk_indices = lax.top_k(new_log_probs, k=beam_size)
new_topk_indices = jnp.flip(new_topk_indices, axis=1)
# Gather the top k beams (from top 2*k beams).
# --> [batch, beams, length], [batch, beams]
top_alive_seq, top_alive_log_probs = gather_beams(
[topk_seq, new_log_probs], new_topk_indices, batch_size, beam_size
)
# Determine the top k beam indices from the original set of all beams.
# --> [batch, beams]
top_alive_indices = gather_beams(
topk_beam_indices, new_topk_indices, batch_size, beam_size
)
# With these, gather the top k beam-associated caches.
# --> {[batch, beams, ...], ...}
top_alive_cache = apply_on_cache(
gather_beams, new_cache, top_alive_indices, batch_size, beam_size
)
# Update FINISHED (reached end of sentence) sequences:
# Calculate new seq scores from log probabilities.
new_scores = topk_log_probs / brevity_penalty(alpha, state.cur_index + 1)
# Mask out the still unfinished sequences by adding large negative value.
# --> [batch, 2*beams]
new_scores += (~newly_finished) * NEG_INF
# Combine sequences, scores, and flags along the beam dimension and compare
# new finished sequence scores to existing finished scores and select the
# best from the new set of beams.
finished_seqs = jnp.concatenate( # --> [batch, 3*beams, length]
[state.finished_seqs, topk_seq], axis=1
)
finished_scores = jnp.concatenate( # --> [batch, 3*beams]
[state.finished_scores, new_scores], axis=1
)
finished_flags = jnp.concatenate( # --> [batch, 3*beams]
[state.finished_flags, newly_finished], axis=1
)
# --> [batch, beams, length], [batch, beams], [batch, beams]
top_finished_seq, top_finished_scores, top_finished_flags = (
gather_topk_beams(
[finished_seqs, finished_scores, finished_flags],
finished_scores,
batch_size,
beam_size,
)
)
return BeamState(
cur_index=state.cur_index + 1,
live_logprobs=top_alive_log_probs,
finished_scores=top_finished_scores,
live_seqs=top_alive_seq,
finished_seqs=top_finished_seq,
finished_flags=top_finished_flags,
cache=top_alive_cache,
)
# Run while loop and get final beam search state.
final_state = lax.while_loop(
beam_search_loop_cond_fn, beam_search_loop_body_fn, beam_search_init_state
)
# Account for the edge-case where there are no finished sequences for a
# particular batch item. If so, return live sequences for that batch item.
# --> [batch]
none_finished = jnp.any(final_state.finished_flags, axis=1)
# --> [batch, beams, length]
finished_seqs = jnp.where(
none_finished[:, None, None],
final_state.finished_seqs,
final_state.live_seqs,
)
# --> [batch, beams]
finished_scores = jnp.where(
none_finished[:, None],
final_state.finished_scores,
final_state.live_logprobs,
)
finished_seqs = jnp.reshape(finished_seqs, (beam_size, max_decode_len))
finished_scores = jnp.reshape(finished_scores, (beam_size,))
final_cache = apply_on_cache(flatten_beam_dim, final_state.cache)
return finished_seqs, finished_scores, final_cache