diff --git a/tf_slim/layers/layers.py b/tf_slim/layers/layers.py index 86030fd..a04819e 100644 --- a/tf_slim/layers/layers.py +++ b/tf_slim/layers/layers.py @@ -115,7 +115,7 @@ def avg_pool2d(inputs, padding=padding, data_format=df, _scope=sc) - outputs = layer.apply(inputs) + outputs = layer(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @@ -164,7 +164,7 @@ def avg_pool3d(inputs, padding=padding, data_format=df, _scope=sc) - outputs = layer.apply(inputs) + outputs = layer(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @@ -675,7 +675,7 @@ def batch_norm(inputs, _scope=sc, _reuse=reuse, fused=fused) - outputs = layer.apply(inputs, training=is_training) + outputs = layer(inputs, training=is_training) # Add variables to collections. _add_variable_to_collections(layer.moving_mean, variables_collections, @@ -1080,7 +1080,7 @@ def convolution(inputs, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) - outputs = layer.apply(inputs) + outputs = layer(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') @@ -1440,7 +1440,7 @@ def convolution2d_transpose( dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) - outputs = layer.apply(inputs) + outputs = layer(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') @@ -1554,7 +1554,7 @@ def convolution3d_transpose( dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) - outputs = layer.apply(inputs) + outputs = layer(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') @@ -1635,7 +1635,7 @@ def dropout(inputs, seed=seed, name=sc.name, _scope=sc) - outputs = layer.apply(inputs, training=is_training) + outputs = layer(inputs, training=is_training) return utils.collect_named_outputs(outputs_collections, sc.name, outputs) @@ -1889,7 +1889,7 @@ def fully_connected(inputs, dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) - outputs = layer.apply(inputs) + outputs = layer(inputs) # Add variables to collections. _add_variable_to_collections(layer.kernel, variables_collections, 'weights') @@ -2221,7 +2221,7 @@ def gdn(inputs, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse) - return layer.apply(inputs) + return layer(inputs) @add_arg_scope @@ -2438,7 +2438,7 @@ def max_pool2d(inputs, padding=padding, data_format=df, _scope=sc) - outputs = layer.apply(inputs) + outputs = layer(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @@ -2488,7 +2488,7 @@ def max_pool3d(inputs, padding=padding, data_format=df, _scope=sc) - outputs = layer.apply(inputs) + outputs = layer(inputs) return utils.collect_named_outputs(outputs_collections, sc, outputs) @@ -2794,7 +2794,7 @@ def separable_convolution2d( dtype=inputs.dtype.base_dtype, _scope=sc, _reuse=reuse) - outputs = layer.apply(inputs) + outputs = layer(inputs) # Add variables to collections. _add_variable_to_collections(layer.depthwise_kernel,