Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training on custom dataset of EfficientDet-0 model crash : TypeError: 'NoneType' object is not callable #1209

Open
Pentar0o opened this issue Feb 13, 2024 · 0 comments

Comments

@Pentar0o
Copy link

Hi, there is the problem :

penta@dell-r740:~$ python3 automl/efficientdet/tf2/train.py --train_file_pattern=train_tf.tfrecord --val_file_pattern=val_tf.tfrecord --model_name=efficientdet-d0 --model_dir=/tmp/efficientdet-d0
-finetune --pretrained_ckpt=efficientdet-d0 --batch_size=24 --eval_samples=1024 --num_examples_per_epoch=33707 --num_epochs=50 --hparams=voc_config.yaml --strategy=gpus
2024-02-13 15:12:30.743921: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable TF_ENABLE_ONEDNN_OPTS=0.
2024-02-13 15:12:30.792061: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-02-13 15:12:30.792093: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-02-13 15:12:30.793253: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-02-13 15:12:30.800038: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-02-13 15:12:34.323310: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:236] Using CUDA malloc Async allocator for GPU: 0
2024-02-13 15:12:34.325068: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13764 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:5e:00.0, compute capability: 7.5
2024-02-13 15:12:34.325313: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:236] Using CUDA malloc Async allocator for GPU: 1
2024-02-13 15:12:34.327016: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:1 with 13764 MB memory: -> device: 1, name: Tesla T4, pci bus id: 0000:af:00.0, compute capability: 7.5
2024-02-13 15:12:34.327235: I tensorflow/core/common_runtime/gpu/gpu_process_state.cc:236] Using CUDA malloc Async allocator for GPU: 2
2024-02-13 15:12:34.329015: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1929] Created device /job:localhost/replica:0/task:0/device:GPU:2 with 13764 MB memory: -> device: 2, name: Tesla T4, pci bus id: 0000:d8:00.0, compute capability: 7.5
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2')
I0213 15:12:34.331413 140653502825600 mirrored_strategy.py:423] Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2')
I0213 15:12:34.387622 140653502825600 train.py:198] All devices: [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:1', device_type='GPU'), PhysicalDevice(name='/physical_device:GPU:2', device_type='GPU')]
I0213 15:12:34.390356 140653502825600 efficientnet_builder.py:215] global_params= GlobalParams(batch_norm_momentum=0.99, batch_norm_epsilon=0.001, dropout_rate=0.2, data_format='channels_last', num_classes=1000, width_coefficient=1.0, depth_coefficient=1.0, depth_divisor=8, min_depth=None, survival_prob=0.0, relu_fn=functools.partial(<function activation_fn at 0x7feb559ce320>, act_type='swish'), batch_norm=<class 'utils.SyncBatchNormalization'>, use_se=True, local_pooling=None, condconv_num_experts=None, clip_projection_output=False, blocks_args=['r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', 'r1_k3_s11_e6_i192_o320_se0.25'], fix_head_stem=None, grad_checkpoint=False)
Traceback (most recent call last):
File "/home/penta/automl/efficientdet/tf2/train.py", line 325, in
app.run(main)
File "/home/penta/.local/lib/python3.10/site-packages/absl/app.py", line 308, in run
_run_main(main, args)
File "/home/penta/.local/lib/python3.10/site-packages/absl/app.py", line 254, in _run_main
sys.exit(main(argv))
File "/home/penta/automl/efficientdet/tf2/train.py", line 255, in main
model = train_lib.EfficientDetNetTrain(config=config)
File "/home/penta/automl/efficientdet/tf2/train_lib.py", line 474, in init
super().init(*args, **kwargs)
File "/home/penta/automl/efficientdet/tf2/efficientdet_keras.py", line 819, in init
self.backbone = backbone_factory.get_model(
File "/home/penta/automl/efficientdet/backbone/backbone_factory.py", line 80, in get_model
return efficientnet_model.Model(blocks_args, global_params, model_name)
File "/home/penta/automl/efficientdet/backbone/efficientnet_model.py", line 633, in init
self._build()
File "/home/penta/automl/efficientdet/backbone/efficientnet_model.py", line 644, in _build
self._stem = Stem(self._global_params, self._blocks_args[0].input_filters)
File "/home/penta/automl/efficientdet/backbone/efficientnet_model.py", line 520, in init
self._bn = global_params.batch_norm(
TypeError: 'NoneType' object is not callable

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant