-
Notifications
You must be signed in to change notification settings - Fork 257
/
yosys_cleartext_runner.cc
207 lines (176 loc) · 8.04 KB
/
yosys_cleartext_runner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "transpiler/yosys_cleartext_runner.h"
#include <algorithm>
#include "xls/common/status/status_macros.h"
#include "xls/contrib/xlscc/metadata_output.pb.h"
#include "xls/public/value.h"
namespace fully_homomorphic_encryption {
namespace transpiler {
using NetRef = xls::netlist::rtl::AbstractNetRef<OpaqueValue>;
using EvalFn = xls::netlist::rtl::CellOutputEvalFn<OpaqueValue>;
// NOTE: The input order to methods YosysTfheRunner::TfheOp_* is the same as the
// order in which the pins are declared in the Liberty file. This is mostly as
// you expect, but note that in the case of imux2, the pin order is "A", "B",
// and "Y", with "Y" being the output, while bootsMUX, which handles the
// operation, expects the control ("Y") to come first, then the inputs "A" and
// "B".
#define IMPL1(cell, OP) \
absl::StatusOr<BoolValue> YosysRunner::TfheOp_##cell( \
const std::vector<BoolValue>& args) { \
XLS_CHECK(args.size() == 1); \
OpaqueValue result = OP(args[0]); \
return BoolValue(result); \
}
#define IMPL2(cell, OP) \
absl::StatusOr<BoolValue> YosysRunner::TfheOp_##cell( \
const std::vector<BoolValue>& args) { \
XLS_CHECK(args.size() == 2); \
OpaqueValue result = OP(args[0], args[1]); \
return BoolValue(result); \
}
IMPL1(inv, [](auto a) { return !a; });
IMPL1(buffer, [](auto a) { return a; });
IMPL2(and2, [](auto a, auto b) { return a & b; });
IMPL2(nand2, [](auto a, auto b) { return !(a & b); });
IMPL2(or2, [](auto a, auto b) { return a | b; });
IMPL2(andyn2, [](auto a, auto b) { return a & !b; });
IMPL2(andny2, [](auto a, auto b) { return !a & b; });
IMPL2(oryn2, [](auto a, auto b) { return a | !b; });
IMPL2(orny2, [](auto a, auto b) { return !a | b; });
IMPL2(nor2, [](auto a, auto b) { return !(a | b); });
IMPL2(xor2, [](auto a, auto b) { return a ^ b; });
IMPL2(xnor2, [](auto a, auto b) { return !(a ^ b); });
#undef IMPL1
#undef IMPL2
absl::StatusOr<BoolValue> YosysRunner::TfheOp_imux2(
const std::vector<BoolValue>& args) {
XLS_CHECK(args.size() == 3);
OpaqueValue result = (args[0] & args[2]) | (args[1] & !args[2]);
return BoolValue(result);
}
absl::Status YosysRunner::InitializeOnce(
const xls::netlist::rtl::CellToOutputEvalFns<BoolValue>& eval_fns) {
if (state_ == nullptr) {
state_ = std::make_unique<YosysRunnerState>(
*xls::netlist::cell_lib::CharStream::FromText(liberty_text_),
xls::netlist::rtl::Scanner(netlist_text_));
state_->netlist_ =
std::move(*xls::netlist::rtl::AbstractParser<BoolValue>::ParseNetlist(
&state_->cell_library_, &state_->scanner_, state_->zero_,
state_->one_));
XLS_RETURN_IF_ERROR(state_->netlist_->AddCellEvaluationFns(eval_fns));
XLS_CHECK(google::protobuf::TextFormat::ParseFromString(
metadata_text_, &state_->metadata_));
}
return absl::OkStatus();
}
absl::Status YosysRunner::Run(
absl::Span<OpaqueValue> result,
std::vector<absl::Span<const OpaqueValue>> in_args,
std::vector<absl::Span<OpaqueValue>> inout_args) {
#define OP(name) \
{ \
#name, { \
{ \
"Y", \
[this](const std::vector<BoolValue>& args) \
-> absl::StatusOr<BoolValue> { \
return this->TfheOp_##name(args); \
} \
} \
} \
}
if (state_ == nullptr) {
xls::netlist::rtl::CellToOutputEvalFns<BoolValue> tfhe_eval_map{
OP(inv), OP(buffer), OP(and2), OP(nand2), OP(or2),
OP(andyn2), OP(andny2), OP(oryn2), OP(orny2), OP(nor2),
OP(xor2), OP(xnor2), OP(imux2),
};
XLS_RETURN_IF_ERROR(InitializeOnce(tfhe_eval_map));
}
#undef OP
return state_->Run(result, in_args, inout_args);
}
absl::Status YosysRunner::YosysRunnerState::Run(
absl::Span<OpaqueValue> result,
std::vector<absl::Span<const OpaqueValue>> in_args,
std::vector<absl::Span<OpaqueValue>> inout_args) {
std::string function_name = metadata_.top_func_proto().name().name();
XLS_ASSIGN_OR_RETURN(auto module, netlist_->GetModule(function_name));
xls::Bits input_bits;
size_t in_i = 0, inout_i = 0;
for (const auto& param : metadata_.top_func_proto().params()) {
if (param.is_reference() && !param.is_const()) {
XLS_CHECK(inout_i < inout_args.size());
xls::Bits arg_bits(inout_args[inout_i++]);
input_bits = xls::bits_ops::Concat({input_bits, arg_bits});
} else {
XLS_CHECK(in_i < in_args.size());
xls::Bits arg_bits(in_args[in_i++]);
input_bits = xls::bits_ops::Concat({input_bits, arg_bits});
}
}
input_bits = xls::bits_ops::Reverse(input_bits);
xls::netlist::AbstractNetRef2Value<OpaqueValue> input_nets;
const std::vector<NetRef>& module_inputs = module->inputs();
XLS_CHECK(module_inputs.size() == input_bits.bit_count());
for (int i = 0; i < module->inputs().size(); i++) {
const NetRef in = module_inputs[i];
XLS_CHECK(!input_nets.contains(in));
input_nets[in] = input_bits.Get(module->GetInputPortOffset(in->name()));
}
BoolValue zero{OpaqueValue{false}};
BoolValue one{OpaqueValue{true}};
xls::netlist::AbstractInterpreter<OpaqueValue> interpreter(netlist_.get(),
zero, one);
XLS_ASSIGN_OR_RETURN(auto output_nets,
interpreter.InterpretModule(module, input_nets, {}));
// Time to map the outputs returned by the netlist interpreter to the outputs
// and in/out parameters of the source function. We start by converting the
// output nets to output_bit_vector--a vector of individual bit values.
xls::BitsRope rope(output_nets.size());
for (const NetRef ref : module->outputs()) {
rope.push_back(output_nets[ref]);
}
xls::Bits output_bits = rope.Build();
auto output_bit_vector = output_bits.ToBitVector();
// As we iterate over output_bit_vector, we'll use this iterator.
auto out = output_bit_vector.cbegin();
size_t copied = 0;
// The output_nets are bits with (return value, set of in_out args) splayed
// out in the reverse order (due to verilog endianness).
// First, in_out args from the output bits are copied over(in reverse order).
int params_inout_idx = inout_args.size() - 1;
for (const auto& param : metadata_.top_func_proto().params()) {
if (param.is_reference() && !param.is_const()) {
std::copy_n(out, inout_args[params_inout_idx].size(),
inout_args[params_inout_idx].begin());
out += inout_args[params_inout_idx].size();
copied += inout_args[params_inout_idx].size();
params_inout_idx--;
}
}
// The return value of the function now comes last, so we copy that.
// If there is no return value, then result.size() == 0 and we do not copy
// anything.
std::copy_n(out, result.size(), result.begin());
out += result.size();
copied += result.size();
XLS_CHECK(copied == output_bit_vector.size());
XLS_CHECK(out == output_bit_vector.cend());
return absl::OkStatus();
}
} // namespace transpiler
} // namespace fully_homomorphic_encryption