You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi all. I would like to ask you if somebody have experience with Google Teachable machine model of tenworflow.js . The complete code to use is generated on Google Teachalbe machine, that is not a problem. But I tried to modify it to clasify image in form of jpg file instead of clasifying of webcam stream. I did not succeed. Do you have any experiences with it or any advice? I will appreciate it. Here is the sample. Here is how the standard javascript from Teachable Machine looks like and where I would like to modify the part which is clasifying the webcam stream to clasify the static jpg file which I would provide (with the webcam stream it works perfect). Thanks in advance for your help and comments:
`
Teachable Machine Image Model
Start
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script>
<script type="text/javascript">
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = "./my_model/";
let model, webcam, labelContainer, maxPredictions;
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.getElementById("webcam-container").appendChild(webcam.canvas);
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) { // and class labels
labelContainer.appendChild(document.createElement("div"));
}
}
async function loop() {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
const prediction = await model.predict(webcam.canvas);
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ": " + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
}
}
</script>`
The text was updated successfully, but these errors were encountered:
Hi all. I would like to ask you if somebody have experience with Google Teachable machine model of tenworflow.js . The complete code to use is generated on Google Teachalbe machine, that is not a problem. But I tried to modify it to clasify image in form of jpg file instead of clasifying of webcam stream. I did not succeed. Do you have any experiences with it or any advice? I will appreciate it. Here is the sample. Here is how the standard javascript from Teachable Machine looks like and where I would like to modify the part which is clasifying the webcam stream to clasify the static jpg file which I would provide (with the webcam stream it works perfect). Thanks in advance for your help and comments:
`
Start <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script> <script type="text/javascript"> // More API functions here: // https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
</script>`
The text was updated successfully, but these errors were encountered: