-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfortune-teller-walkthrough.py
246 lines (216 loc) · 9.88 KB
/
fortune-teller-walkthrough.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright 2020 Google LLC.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from past.builtins import unicode
from google.protobuf import text_format
import argparse
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.io.gcp.internal.clients import bigquery
import json
import logging
from simulator.align_by_time import AlignByTime
from simulator.set_abstract_metrics import SetAbstractMetrics
from simulator.filter_vmsample import FilterVMSample
from simulator.reset_and_shift_simulated_time import ResetAndShiftSimulatedTime
from simulator.set_scheduler import SetScheduler
from simulator.fortune_teller import CallFortuneTellerRunner
from simulator.fortune_teller_factory import PredictorFactory
from simulator.config_pb2 import SimulationConfig
from simulator.avg_predictor import AvgPredictor
from simulator.max_predictor import MaxPredictor
from simulator.per_vm_percentile_predictor import PerVMPercentilePredictor
from simulator.per_machine_percentile_predictor import PerMachinePercentilePredictor
from simulator.n_sigma_predictor import NSigmaPredictor
from simulator.limit_predictor import LimitPredictor
def main(argv=None, save_main_session=True):
"""Main entry point; defines and runs the simulator pipeline."""
parser = argparse.ArgumentParser()
parser.add_argument(
"--config_file",
dest="config_file",
required=True,
help="Config file based on config.proto.",
)
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline = beam.Pipeline(options=pipeline_options)
f = open(known_args.config_file, "rb")
configs = SimulationConfig()
text_format.Parse(f.read(), configs)
f.close()
# Read Input Data
input_data_query = "SELECT * FROM {}.{} ".format(
configs.input.dataset, configs.input.table
)
input_data = pipeline | "Query Usage Table" >> beam.io.Read(
beam.io.BigQuerySource(query=input_data_query, use_standard_sql=True)
)
# Filter VMSamples
filtered_samples = FilterVMSample(input_data, configs)
if configs.filtered_samples.HasField("input"):
pipeline = beam.Pipeline(options=pipeline_options)
filtered_samples_query = "SELECT * FROM {}.{}".format(
configs.filtered_samples.input.dataset, configs.filtered_samples.input.table
)
filtered_samples = pipeline | "Query Filtered Samples Table" >> beam.io.Read(
beam.io.BigQuerySource(query=filtered_samples_query, use_standard_sql=True)
)
# Time Align Samples
time_aligned_samples = AlignByTime(filtered_samples)
if configs.time_aligned_samples.HasField("input"):
pipeline = beam.Pipeline(options=pipeline_options)
time_aligned_samples_query = "SELECT * FROM {}.{}".format(
configs.time_aligned_samples.input.dataset,
configs.time_aligned_samples.input.table,
)
time_aligned_samples = (
pipeline
| "Query Time Aligned Samples Table"
>> beam.io.Read(
beam.io.BigQuerySource(
query=time_aligned_samples_query, use_standard_sql=True
)
)
)
# Setting Abstract Metrics
samples_with_abstract_metrics = SetAbstractMetrics(time_aligned_samples, configs)
if configs.samples_with_abstract_metrics.HasField("input"):
pipeline = beam.Pipeline(options=pipeline_options)
samples_with_abstract_metrics_query = "SELECT * FROM {}.{}".format(
configs.samples_with_abstract_metrics.input.dataset,
configs.samples_with_abstract_metrics.input.table,
)
samples_with_abstract_metrics = (
pipeline
| "Query Samples With Abstract Metrics Table"
>> beam.io.Read(
beam.io.BigQuerySource(
query=samples_with_abstract_metrics_query, use_standard_sql=True
)
)
)
# Resetting and Shifting
if configs.reset_and_shift.reset_time_to_zero == True:
samples_with_reset_and_shift = ResetAndShiftSimulatedTime(
samples_with_abstract_metrics, configs
)
else:
samples_with_reset_and_shift = samples_with_abstract_metrics
if configs.samples_with_reset_and_shift.HasField("input"):
pipeline = beam.Pipeline(options=pipeline_options)
samples_with_reset_and_shift_query = "SELECT * FROM {}.{}".format(
configs.samples_with_reset_and_shift.input.dataset,
configs.samples_with_reset_and_shift.input.table,
)
samples_with_reset_and_shift = (
pipeline
| "Query Samples With Time Reset and Shift"
>> beam.io.Read(
beam.io.BigQuerySource(
query=samples_with_reset_and_shift_query, use_standard_sql=True
)
)
)
# Setting Scheduler
scheduled_samples = SetScheduler(samples_with_reset_and_shift, configs)
if configs.scheduled_samples.HasField("input"):
pipeline = beam.Pipeline(options=pipeline_options)
scheduled_samples_query = "SELECT * FROM {}.{}".format(
configs.scheduled_samples.input.dataset,
configs.scheduled_samples.input.table,
)
scheduled_samples = pipeline | "Query Scheduled Samples" >> beam.io.Read(
beam.io.BigQuerySource(query=scheduled_samples_query, use_standard_sql=True)
)
# Calling FortuneTeller Runner
CallFortuneTellerRunner(scheduled_samples, configs)
# Saving Filtered Samples
schema_vmsample_file = open("simulator/schema_vmsample.json")
schema_vmsample = json.load(schema_vmsample_file)
if configs.filtered_samples.HasField("output"):
filtered_samples | "Write Filtered Samples" >> beam.io.WriteToBigQuery(
"{}.{}".format(
configs.filtered_samples.output.dataset,
configs.filtered_samples.output.table,
),
schema=schema_vmsample,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
)
# Saving Time Aligned Samples
schema_simulated_vmsample_file = open("simulator/schema_simulated_vmsample.json")
schema_simulated_vmsample = json.load(schema_simulated_vmsample_file)
if configs.time_aligned_samples.HasField("output"):
time_aligned_samples | "Write Time Aligned Samples" >> beam.io.WriteToBigQuery(
"{}.{}".format(
configs.time_aligned_samples.output.dataset,
configs.time_aligned_samples.output.table,
),
schema=schema_simulated_vmsample,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
)
# Saving Samples with Abstract Metrics
if configs.samples_with_abstract_metrics.HasField("output"):
samples_with_abstract_metrics | "Write Samples With Abstract Metrics" >> beam.io.WriteToBigQuery(
"{}.{}".format(
configs.samples_with_abstract_metrics.output.dataset,
configs.samples_with_abstract_metrics.output.table,
),
schema=schema_simulated_vmsample,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
)
# Saving Samples with Time Reset and Shift
if configs.samples_with_reset_and_shift.HasField("output"):
samples_with_reset_and_shift | "Write Reset and Shifted Samples" >> beam.io.WriteToBigQuery(
"{}.{}".format(
configs.samples_with_reset_and_shift.output.dataset,
configs.samples_with_reset_and_shift.output.table,
),
schema=schema_simulated_vmsample,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
)
# Saving Scheduled Samples
if configs.scheduled_samples.HasField("output"):
scheduled_samples | "Write Scheduled Samples" >> beam.io.WriteToBigQuery(
"{}.{}".format(
configs.scheduled_samples.output.dataset,
configs.scheduled_samples.output.table,
),
schema=schema_simulated_vmsample,
write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
)
result = pipeline.run()
result.wait_until_finish()
if __name__ == "__main__":
PredictorFactory().RegisterPredictor(
"per_vm_percentile_predictor", lambda config: PerVMPercentilePredictor(config)
)
PredictorFactory().RegisterPredictor(
"per_machine_percentile_predictor",
lambda config: PerMachinePercentilePredictor(config),
)
PredictorFactory().RegisterPredictor(
"n_sigma_predictor", lambda config: NSigmaPredictor(config)
)
PredictorFactory().RegisterPredictor(
"max_predictor", lambda config: MaxPredictor(config)
)
PredictorFactory().RegisterPredictor(
"limit_predictor", lambda config: LimitPredictor(config)
)
logging.getLogger().setLevel(logging.INFO)
main()