Skip to content

Latest commit

 

History

History
43 lines (37 loc) · 6.01 KB

README.md

File metadata and controls

43 lines (37 loc) · 6.01 KB

LVIS dataset

Introduction

@inproceedings{gupta2019lvis,
  title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation},
  author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross},
  booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

Common Setting

  • Please follow install guide to install open-mmlab forked cocoapi first.
  • Run following scripts to install our forked lvis-api.
    # mmlvis is fully compatible with official lvis
    pip install mmlvis
    
    or
    pip install -r requirements/optional.txt
    
  • All experiments use oversample strategy here with oversample threshold 1e-3.
  • The size of LVIS v0.5 is half of COCO, so schedule 2x in LVIS is roughly the same iterations as 1x in COCO.

Results and models of LVIS v0.5

Backbone Style Lr schd Mem (GB) Inf time (fps) box AP mask AP Config Download
R-50-FPN pytorch 2x - - 26.1 25.9 config model | log
R-101-FPN pytorch 2x - - 27.1 27.0 config model | log
X-101-32x4d-FPN pytorch 2x - - 26.7 26.9 config model | log
X-101-64x4d-FPN pytorch 2x - - 26.4 26.0 config model | log

Results and models of LVIS v1

Backbone Style Lr schd Mem (GB) Inf time (fps) box AP mask AP Config Download
R-50-FPN pytorch 1x 9.1 - 22.5 21.7 config model | log
R-101-FPN pytorch 1x 10.8 - 24.6 23.6 config model | log
X-101-32x4d-FPN pytorch 1x 11.8 - 26.7 25.5 config model | log
X-101-64x4d-FPN pytorch 1x 14.6 - 27.2 25.8 config model | log