-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_MFQ_Ising.py
172 lines (137 loc) · 5.44 KB
/
main_MFQ_Ising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import sys
sys.path.insert(1, os.path.join(sys.path[0], '..'))
import argparse
from examples.ising_model.multiagent.environment import IsingMultiAgentEnv
import examples.ising_model as ising_model
import numpy as np
import time
np.random.seed(13)
parser = argparse.ArgumentParser(description=None)
parser.add_argument('-n', '--num_agents', default=100, type=int)
parser.add_argument('-t', '--temperature', default=1, type=float)
parser.add_argument('-epi', '--episode', default=1, type=int)
parser.add_argument('-ts', '--time_steps', default=10000, type=int)
parser.add_argument('-lr', '--learning_rate', default=0.1, type=float)
parser.add_argument('-dr', '--decay_rate', default=0.99, type=float)
parser.add_argument('-dg', '--decay_gap', default=2000, type=int)
parser.add_argument('-ac', '--act_rate', default=1.0, type=float)
parser.add_argument('-ns', '--neighbor_size', default=4, type=int)
parser.add_argument('-s', '--scenario', default='Ising.py',
help='Path of the scenario Python script.')
parser.add_argument('-p', '--plot', default=0, type=int)
args = parser.parse_args()
# load scenario from script
ising_model = ising_model.load(args.scenario).Scenario()
# create multiagent environment
env = IsingMultiAgentEnv(world=ising_model.make_world(num_agents=args.num_agents,
agent_view=1),
reset_callback=ising_model.reset_world,
reward_callback=ising_model.reward,
observation_callback=ising_model.observation,
done_callback=ising_model.done)
n_agents = env.n
n_states = env.observation_space[0].n
n_actions = env.action_space[0].n
dim_Q_state = args.neighbor_size + 1
act_rate = args.act_rate
n_episode = args.episode
max_steps = args.time_steps
temperature = args.temperature
if_plot = args.plot
lr = args.learning_rate
decay_rate = args.decay_rate
decay_gap = args.decay_gap
if if_plot:
import matplotlib.pyplot as plt
def boltzman_explore(Q, temper, state, agent_index):
action_probs_numes = []
denom = 0
for i in range(n_actions):
try:
val = np.exp(Q[agent_index, state, i] / temper)
except OverflowError:
return i
action_probs_numes.append(val)
denom += val
action_probs = [x / denom for x in action_probs_numes]
return np.random.choice(n_actions, 1, p=action_probs)
folder = "./ising_figs/" + time.strftime("%Y%m%d-%H%M%S") \
+ "-" + str(n_agents) + "-" + str(temperature) \
+ "-" + str(lr) + "-" + str(act_rate) + "/"
if not os.path.exists(folder):
os.makedirs(folder)
epi_display = []
reward_target = np.array([[2, -2],
[1, -1],
[0, 0],
[-1, 1],
[-2, 2]])
for i_episode in range(n_episode):
obs = env.reset()
obs = np.stack(obs)
order_param = 0.0
max_order, max_order_step = 0.0, 0
o_up, o_down = 0, 0
Q = np.zeros((n_agents, dim_Q_state, n_actions))
if if_plot:
plt.figure(2)
plt.ion()
ising_plot = np.zeros((int(np.sqrt(n_agents)), int(np.sqrt(n_agents))), dtype=np.int32)
im = plt.imshow(ising_plot, cmap='gray', vmin=0, vmax=1, interpolation='none')
im.set_data(ising_plot)
timestep_display = []
done_ = 0
current_t = 0.3
for t in range(max_steps):
action = np.zeros(n_agents, dtype=np.int32)
if t % decay_gap == 0:
current_t *= decay_rate
if current_t < temperature:
current_t = temperature
for i in range(n_agents):
obs_flat = np.count_nonzero(obs[i] == 1)
action[i] = boltzman_explore(Q, current_t, obs_flat, i)
display = action.reshape((int(np.sqrt(n_agents)), -1))
action_expand = np.expand_dims(action, axis=1)
obs_, reward, done, order_param, ups, downs = env.step(action_expand)
obs_ = np.stack(obs_)
mse = 0
act_group = np.random.choice(n_agents, int(act_rate * n_agents), replace=False)
for i in act_group:
obs_flat = np.count_nonzero(obs[i] == 1)
Q[i, obs_flat, action[i]] = Q[i, obs_flat, action[i]] \
+ lr * (reward[i] - Q[i, obs_flat, action[i]])
mse += np.power((Q[i, obs_flat, action[i]] - reward_target[obs_flat, action[i]]), 2)
mse /= n_agents
obs = obs_
timestep_display.append(display)
if order_param > max_order:
max_order, max_order_step = order_param, t
o_up, o_down = ups, downs
if if_plot:
plt.figure(2)
ising_plot = display
im.set_data(ising_plot)
plt.savefig(folder + '%d-%d-%d-%.3f-%s.png'
% (t, ups, downs, order_param, time.strftime("%Y%m%d-%H%M%S")))
print("+++++++++++++++++++++++++++++")
if abs(max_order - order_param) < 0.001:
done_ += 1
else:
done_ = 0
if done_ == 500 or t > max_steps: # or order_param == 1.0:
# if the order param stop for 500 steps, then quit
break
print('E: %d/%d, reward = %f, mse = %f, Order = %f, Up = %d, Down = %d' %
(i_episode, t, sum(reward), mse, order_param, ups, downs))
if if_plot:
plt.figure(2)
ising_plot = display
im.set_data(ising_plot)
plt.savefig(folder + '%d-%d-%d-%.3f-%s.png'
% (t, ups, downs, order_param, time.strftime("%Y%m%d-%H%M%S")))
print('Episode: %d, MaxO = %f at %d (%d/%d)' %
(i_episode, max_order, max_order_step, o_up, o_down))
epi_display.append(timestep_display)
np.save(folder + 'display', np.asarray(epi_display))