Promtail discovers locations of log files and extract labels from them through
the scrape_configs
section in the config YAML. The syntax is identical to what
Prometheus uses.
scrape_configs
contains one or more entries which are executed for each
discovered target (i.e., each container in each new pod running in the
instance):
scrape_configs:
- job_name: local
static_configs:
- ...
- job_name: kubernetes
kubernetes_sd_config:
- ...
If more than one scrape config section matches your logs, you will get duplicate entries as the logs are sent in different streams likely with slightly different labels.
There are different types of labels present in Promtail:
-
Labels starting with
__
(two underscores) are internal labels. They usually come from dynamic sources like service discovery. Once relabeling is done, they are removed from the label set. To persist internal labels so they're sent to Loki, rename them so they don't start with__
. See Relabeling for more information. -
Labels starting with
__meta_kubernetes_pod_label_*
are "meta labels" which are generated based on your Kubernetes pod's labels.For example, if your Kubernetes pod has a label
name
set tofoobar
, then thescrape_configs
section will receive an internal label__meta_kubernetes_pod_label_name
with a value set tofoobar
. -
Other labels starting with
__meta_kubernetes_*
exist based on other Kubernetes metadata, such as the namespace of the pod (__meta_kubernetes_namespace
) or the name of the container inside the pod (__meta_kubernetes_pod_container_name
). Refer to the Prometheus docs for the full list of Kubernetes meta labels. -
The
__path__
label is a special label which Promtail uses after discovery to figure out where the file to read is located. Wildcards are allowed. -
The label
filename
is added for every file found in__path__
to ensure the uniqueness of the streams. It is set to the absolute path of the file the line was read from.
Note that while Promtail can utilize the Kubernetes API to discover pods as
targets, it can only read log files from pods that are running on the same node
as the one Promtail is running on. Promtail looks for a __host__
label on
each target and validates that it is set to the same hostname as Promtail's
(using either $HOSTNAME
or the hostname reported by the kernel if the
environment variable is not set).
This means that any time Kubernetes service discovery is used, there must be a
relabel_config
that creates the intermediate label __host__
from
__meta_kubernetes_pod_node_name
:
relabel_configs:
- source_labels: ['__meta_kubernetes_pod_node_name']
target_label: '__host__'
See Relabeling for more information.
On systems with systemd
, Promtail also supports reading from the journal. Unlike
file scraping which is defined in the static_configs
stanza, journal scraping is
defined in a journal
stanza:
scrape_configs:
- job_name: journal
journal:
json: false
max_age: 12h
path: /var/log/journal
labels:
job: systemd-journal
relabel_configs:
- source_labels: ['__journal__systemd_unit']
target_label: 'unit'
All fields defined in the journal
section are optional, and are just provided
here for reference. The max_age
field ensures that no older entry than the
time specified will be sent to Loki; this circumvents "entry too old" errors.
The path
field tells Promtail where to read journal entries from. The labels
map defines a constant list of labels to add to every journal entry that Promtail
reads.
When the json
field is set to true
, messages from the journal will be
passed through the pipeline as JSON, keeping all of the original fields from the
journal entry. This is useful when you don't want to index some fields but you
still want to know what values they contained.
By default, Promtail reads from the journal by looking in the /var/log/journal
and /run/log/journal
paths. If running Promtail inside of a Docker container,
the path appropriate to your distribution should be bind mounted inside of
Promtail along with binding /etc/machine-id
. Bind mounting /etc/machine-id
to the path of the same name is required for the journal reader to know which
specific journal to read from. For example:
docker run \
-v /var/log/journal/:/var/log/journal/ \
-v /run/log/journal/:/run/log/journal/ \
-v /etc/machine-id:/etc/machine-id \
grafana/promtail:latest \
-config.file=/path/to/config/file.yaml
When Promtail reads from the journal, it brings in all fields prefixed with
__journal_
as internal labels. Like in the example above, the _SYSTEMD_UNIT
field from the journal was transformed into a label called unit
through
relabel_configs
. See Relabeling for more information, also look at the systemd man pages for a list of fields exposed by the journal.
Here's an example where the SYSTEMD_UNIT
, HOSTNAME
, and SYSLOG_IDENTIFIER
are relabeled for use in Loki.
Keep in mind that labels prefixed with __
will be dropped, so relabeling is required to keep these labels.
- job_name: systemd-journal
journal:
labels:
cluster: ops-tools1
job: default/systemd-journal
path: /var/log/journal
relabel_configs:
- source_labels:
- __journal__systemd_unit
target_label: systemd_unit
- source_labels:
- __journal__hostname
target_label: nodename
- source_labels:
- __journal_syslog_identifier
target_label: syslog_identifier
Promtail supports receiving IETF Syslog (RFC5424)
messages from a tcp stream. Receiving syslog messages is defined in a syslog
stanza:
scrape_configs:
- job_name: syslog
syslog:
listen_address: 0.0.0.0:1514
idle_timeout: 60s
label_structured_data: yes
labels:
job: "syslog"
relabel_configs:
- source_labels: ['__syslog_message_hostname']
target_label: 'host'
The only required field in the syslog section is the listen_address
field,
where a valid network address should be provided. The idle_timeout
can help
with cleaning up stale syslog connections. If label_structured_data
is set,
structured data in the
syslog header will be translated to internal labels in the form of
__syslog_message_sd_<ID>_<KEY>
.
The labels map defines a constant list of labels to add to every journal entry
that Promtail reads.
Note that it is recommended to deploy a dedicated syslog forwarder like syslog-ng or rsyslog in front of Promtail. The forwarder can take care of the various specifications and transports that exist (UDP, BSD syslog, ...). See recommended output configurations for syslog-ng and rsyslog.
When Promtail receives syslog messages, it brings in all header fields,
parsed from the received message, prefixed with __syslog_
as internal labels.
Like in the example above, the __syslog_message_hostname
field from the journal was transformed into a label called host
through
relabel_configs
. See Relabeling for more information.
destination d_loki {
syslog("localhost" transport("tcp") port(<promtail_port>));
};
action(type="omfwd" protocol="tcp" port="<promtail_port>" Template="RSYSLOG_SyslogProtocol23Format" TCP_Framing="octet-counted")
Each scrape_configs
entry can contain a relabel_configs
stanza.
relabel_configs
is a list of operations to transform the labels from discovery
into another form.
A single entry in relabel_configs
can also reject targets by doing an action: drop
if a label value matches a specified regex. When a target is dropped, the
owning scrape_config
will not process logs from that particular source.
Other scrape_configs
without the drop action reading from the same target
may still use and forward logs from it to Loki.
A common use case of relabel_configs
is to transform an internal label such
as __meta_kubernetes_*
into an intermediate internal label such as
__service__
. The intermediate internal label may then be dropped based on
value or transformed to a final external label, such as __job__
.
- Drop the target if a label (
__service__
in the example) is empty:
- action: drop
regex: ''
source_labels:
- __service__
- Drop the target if any of the
source_labels
contain a value:
- action: drop
regex: .+
separator: ''
source_labels:
- __meta_kubernetes_pod_label_name
- __meta_kubernetes_pod_label_app
- Persist an internal label by renaming it so it will be sent to Loki:
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: namespace
- Persist all Kubernetes pod labels by mapping them, like by mapping
__meta_kube__meta_kubernetes_pod_label_foo
tofoo
.
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
Additional reading:
Promtail uses the Prometheus HTTP client implementation for all calls to Loki.
Therefore it can be configured using the clients
stanza, where one or more
connections to Loki can be established:
clients:
- [ <client_option> ]
Refer to client_config
from the Promtail
Configuration reference for all available options.