-
Notifications
You must be signed in to change notification settings - Fork 63
/
fds.lib
535 lines (501 loc) · 20.1 KB
/
fds.lib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//############################# fds.lib ######################################
// This library allows to build linear, explicit finite difference schemes
// physical models in 1 or 2 dimensions using an approach based on the cellular
// automata formalism. Its official prefix is `fd`.
//
// In order to use the library, one needs to discretize the linear partial
// differential equation of the desired system both at boundaries and in-between
// them, thus obtaining a set of explicit recursion relations. Each one
// of these will provide, for each spatial point the scalar coefficients to be
// multiplied by the states of the current and past neighbour points.
//
// Coefficients need to be stacked in parallel in order to form a coefficients
// matrix for each point in the mesh. It is necessary to provide one matrix for
// coefficients matrices are defined, they need to be placed in parallel and
// ordered following the desired mesh structure (i.e., coefficients for the top
// left boundaries will come first, while bottom right boundaries will come
// last), to form a *coefficients scheme*, which can be used with the library
// functions.
// ## Sources
// Here are listed some works on finite difference schemes and cellular
// automata thet were the basis for the implementation of this library
//
// * S. Bilbao, Numerical Sound Synthesis.Chichester, UK: John Wiley Sons,
// Ltd, 2009
// * P. Narbel, "Qualitative and quantitative cellular automata from
// differential equations," Lecture Notes in Computer Science, vol. 4173,
// pp. 112–121, 10 2006
// * X.-S. Yang and Y. Young, Cellular Automata, PDEs, and Pattern Formation.
// Chapman & Hall/CRC, 092005, ch. 18, pp. 271–282.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/fds.lib>
//#############################################################################
ba = library("basics.lib");
si = library("signals.lib");
ma = library("maths.lib");
declare name "Faust Finite Difference Schemes Library";
declare version "1.1.0";
declare author "Riccardo Russo";
declare author "Romain Michon";
/*
TODO:
- In case of big 2-D meshes the generated c++ code is too long, making the
compiler crash. Consider introducing data structures support.
- Implement a way to set nonzero initial conditions.
- It would be nice to set the length of a mesh directly in meters and not
in points.
- Cubic interpolators.
*/
//===============================Model Construction=============================
// Once the coefficients scheme is defined, the user can simply call one of
// these functions to obtain a fully working physical model. They expect to
// receive a force input signal for each mesh point and output the state of each
// point. Interpolation operators can be used to drive external forces to the
// desired points, and to get the signal only from a certain area of the mesh.
//==============================================================================
//--------------------------------`(fd.)model1D`-------------------------------
// This function can be used to obtain a physical model in 1 dimension.
// Takes a force input signal for each point and outputs the state of each
// point.
//
// #### Usage
//
// ```
// si.bus(points) : model1D(points,R,T,scheme) : si.bus(points)
// ```
//
// Where:
//
// * `points`: size of the mesh in points
// * `R`: neighbourhood radius, indicates how many side points are needed (i.e.
// if R=1 the mesh depends on one point on the left and one on the right)
// * `T`: time coefficient, indicates how much steps back in time are needed (i.
// e. if T=1 the maximum delay needed for a neighbour state is 1 sample)
// * `scheme`: coefficients scheme
//------------------------------------------------------------------------------
model1D(points,R,T,scheme) =
(route1D(points,R,T,scheme) : buildScheme1D(points,R,T)) ~ si.bus(points);
//--------------------------------`(fd.)model2D`-------------------------------
// This function can be used to obtain a physical model in 2 dimension.
// Takes a force input signal for each point and outputs the state of each
// point.
// IMPORTANT: 2D models with more than 30x20 points might crash the c++
// compiler. 2D models need to be compiled with the command line compiler,
// the online one presents some issues.
//
// #### Usage
//
// ```
// si.bus(pointsX*pointsY) : model2D(pointsX,pointsY,R,T,scheme) :
// si.bus(pointsX*pointsY)
// ```
//
// Where:
//
// * `pointsX`: horizontal size of the mesh in points
// * `pointsY`: vertical size of the mesh in points
// * `R`: neighbourhood radius, indicates how many side points are needed (i.e.
// if R=1 the mesh depends on one point on the left and one on the right)
// * `T`: time coefficient, indicates how much steps back in time are needed (i.
// e. if T=1 the maximum delay needed for a neighbour state is 1 sample)
// * `scheme`: coefficients scheme
//------------------------------------------------------------------------------
model2D(pointsX,pointsY,R,T,scheme) =
(route2D(pointsX,pointsY,R,T,scheme) :
buildScheme2D(pointsX,pointsY,R,T)) ~ si.bus(pointsX*pointsY);
//===============================Interpolation=================================
// Interpolation functions can be used to drive the input signals to the
// correct mesh points, or to get the output signal from the
// desired points. All the interpolation functions allow to change the
// input/output points at run time. In general, all these functions get in
// input a number of connections, and output the same number of connections,
// where each signal is multiplied by zero except the ones specified by the
// arguments.
//==============================================================================
//-----------------------------`(fd.)stairsInterp1D`---------------------------
// Stairs interpolator in 1 dimension. Takes a number of signals and outputs
// the same number of signals, where each one is multiplied by zero except the
// one specified by the argument. This can vary at run time (i.e. a slider),
// but must be an integer.
//
// #### Usage
//
// ```
// si.bus(points) : stairsInterp1D(points,point) : si.bus(points)
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `point`: number of the desired nonzero signal
//------------------------------------------------------------------------------
stairsInterp1D(points,point) = par(i,points,_*select2(i==point,0,1));
//-----------------------------`(fd.)stairsInterp2D`---------------------------
// Stairs interpolator in 2 dimensions. Similar to the 1-D version.
//
// #### Usage
//
// ```
// si.bus(pointsX*pointsY) : stairsInterp2D(pointsX,pointsY,pointX,pointY) :
// si.bus(pointsX*pointsY)
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `pointX`: horizontal index of the desired nonzero signal
// * `pointY`: vertical index of the desired nonzero signal
//------------------------------------------------------------------------------
stairsInterp2D(pointsX,pointsY,pointX,pointY) =
par(i,pointsX,
par(j,pointsY,_*select2((i==pointX) & (j==pointY),0,1)));
//-----------------------------`(fd.)linInterp1D`---------------------------
// Linear interpolator in 1 dimension. Takes a number of signals and outputs
// the same number of signals, where each one is multiplied by zero except two
// signals around a floating point index. This is essentially a Faust
// implementation of the $J(x_i)$ operator, not scaled by the spatial step.
// (see Stefan Bilbao's book, Numerical Sound Synthesis). The index can vary
// at run time.
//
// #### Usage
//
// ```
// si.bus(points) : linInterp1D(points,point) : si.bus(points)
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `point`: floating point index
//------------------------------------------------------------------------------
linInterp1D(points,point) = par(i,points,_*select2(
i==int(point), select2(i==int(point+1),0,fraction),(1-fraction)))
with
{
fraction = ma.frac(point);
};
//-----------------------------`(fd.)linInterp2D`---------------------------
// Linear interpolator in 2 dimensions. Similar to the 1 D version.
//
// #### Usage
//
// ```
// si.bus(pointsX*pointsY) : linInterp2D(pointsX,pointsY,pointX,pointY) :
// si.bus(pointsX*pointsY)
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `pointX`: horizontal float index
// * `pointY`: vertical float index
//------------------------------------------------------------------------------
linInterp2D(pointsX,pointsY,pointX,pointY) =
par(i,pointsX,
par(j,pointsY,_*
select2((i==intX) & (j==intY),
select2((i==(intX+1)) & (j==intY),
select2((i==intX) & (j==(intY+1)),
select2((i==(intX+1)) & (j==(intY+1)),
0,
fractionX*fractionY),
(1-fractionX)*fractionY),
fractionX*(1-fractionY)),
(1-fractionX)*(1-fractionY))))
with
{
fractionX = ma.frac(pointX);
fractionY = ma.frac(pointY);
intX = int(pointX);
intY = int(pointY);
};
//---------------------------`(fd.)stairsInterp1DOut`--------------------------
// Stairs interpolator in 1 dimension. Similar to `stairsInterp1D`, except it
// outputs only the desired signal.
//
// #### Usage
//
// ```
// si.bus(points) : stairsInterp1DOut(points,point) : _
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `point`: number of the desired nonzero signal
//------------------------------------------------------------------------------
stairsInterp1DOut(points,point) = ba.selectn(points,point);
//---------------------------`(fd.)stairsInterp2DOut`--------------------------
// Stairs interpolator in 2 dimensions which outputs only one signal.
//
// #### Usage
//
// ```
// si.bus(pointsX*pointsY) : stairsInterp2DOut(pointsX,pointsY,pointX,pointY) : _
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `pointX`: horizontal index of the desired nonzero signal
// * `pointY`: vertical index of the desired nonzero signal
//------------------------------------------------------------------------------
stairsInterp2DOut(pointsX,pointsY,pointX,pointY) =
ba.selectn(pointsX*pointsY,pointY+pointX*Y);
//---------------------------`(fd.)linInterp1DOut`--------------------------
// Linear interpolator in 1 dimension. Similar to `stairsInterp1D`, except it
// sums each output signal and provides only one output value.
//
// #### Usage
//
// ```
// si.bus(points) : linInterp1DOut(points,point) : _
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `point`: floating point index
//------------------------------------------------------------------------------
linInterp1DOut(points,point) = linInterp1D(points,point):>_;
//---------------------------`(fd.)stairsInterp2DOut`--------------------------
// Linear interpolator in 2 dimensions which outputs only one signal.
//
// #### Usage
//
// ```
// si.bus(pointsX*pointsY) : linInterp2DOut(pointsX,pointsY,pointX,pointY) : _
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `pointX`: horizontal float index
// * `pointY`: vertical float index
//------------------------------------------------------------------------------
linInterp2DOut(pointsX,pointsY,pointX,pointY) =
linInterp2D(pointsX,pointsY,pointX,pointY):>_;
//====================================Routing==================================
// The routing functions are used internally by the model building functions,
// but can also be taken separately. These functions route the forces, the
// coefficients scheme and the neighbours’ signals into the correct scheme
// points and take as input, in this order: the coefficients block, the
// feedback signals and the forces. In output they provide, in order, for each
// scheme point: the force signal, the coefficient matrices and the neighbours’
// signals. These functions are based on the Faust route primitive.
//==============================================================================
//---------------------------------`(fd.)route1D`------------------------------
// Routing function for 1 dimensional schemes.
//
// #### Usage
//
// ```
// si.bus((2*R+1)*(T+1)*points),si.bus(points*2) : route1D(points, R, T) :
// si.bus((1 + ((2*R+1)*(T+1)) + (2*R+1))*points)
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `R`: neighbourhood radius
// * `T`: time coefficient
//------------------------------------------------------------------------------
route1D(points, R, T) = route(points*2+points*nCoeffs, points*nInputs,
par(x, points, connections(x)))
with
{
connections(x) = par(k,nCoeffs,x*nCoeffs+k+1,C(x,k+1)),
P(x) + points, C(x,0),
par(i, nNeighbors, P(x),C(x-R+i,nInputs-1-i));
P(x) = x+1 + nCoeffs*points;
C(x,count) = (1 + count + (x*nInputs)) * (x>=0) * (x<points);
nNeighbors = 2*R+1;
nCoeffs = nNeighbors*(T+1);
nInputs = nNeighbors+1+nCoeffs;
};
//--------------------------------`(fd.)route2D`-------------------------------
// Routing function for 2 dimensional schemes.
//
// #### Usage
//
// ```
// si.bus((2*R+1)^2*(T+1)*pointsX*pointsY),si.bus(pointsX*pointsY*2) :
// route2D(pointsX, pointsY, R, T) :
// si.bus((1 + ((2*R+1)^2*(T+1)) + (2*R+1)^2)*pointsX*pointsY)
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `R`: neighbourhood radius
// * `T`: time coefficient
//------------------------------------------------------------------------------
route2D(pointsX, pointsY, R, T) =
route(nPoints*2+nPoints*nCoeffs, nPoints*nInputs,
par(x, pointsX, par(y, pointsY, connections(x,y))))
with
{
connections(x,y) =
P(x,y) + nPoints, C(x,y,0),
par(k,nCoeffs,(x*pointsY+y)*nCoeffs+k+1,C(x,y,k+1)),
par(j,nNeighborsXY,
par(i,nNeighborsXY,
P(x,y),C(x+i-R,y+j-R,nInputs-1-(i*nNeighborsXY+j))));
P(x,y) = x*pointsY+y+1 + nCoeffs*nPoints;
C(x,y,count) = (1 + count + (x*pointsY+y)*nInputs)
* (x>=0) * (x<pointsX) * (y>=0) * (y<pointsY);
nNeighborsXY = 2*R+1;
nNeighbors = nNeighborsXY^2;
nCoeffs = nNeighbors*(T+1);
nInputs = nNeighbors+1+nCoeffs;
nPoints = pointsX*pointsY;
};
//================================Scheme Operations=============================
// The scheme operation functions are used internally by the model building
// functions but can also be taken separately. The schemePoint function is
// where the update equation is actually calculated. The `buildScheme` functions
// are used to stack in parallel several schemePoint blocks, according to the
// choosed mesh size.
//==============================================================================
//------------------------------`(fd.)schemePoint`-----------------------------
// This function calculates the next state for each mesh point, in order to
// form a scheme, several of these blocks need to be stacked in parallel.
// This function takes in input, in order, the force, the coefficient matrices
// and the neighbours’ signals and outputs the next point state.
//
// #### Usage
//
// ```
// _,si.bus((2*R+1)^D*(T+1)),si.bus((2*R+1)^D) : schemePoint(R,T,D) : _
// ```
//
// Where:
//
// * `R`: neighbourhood radius
// * `T`: time coefficient
// * `D`: scheme spatial dimensions (i.e. 1 if 1-D, 2 if 2-D)
//------------------------------------------------------------------------------
schemePoint(R,T,D) = routing:operations:>_
with
{
nNeighbors = (2*R+1)^D;
routing =
route(nNeighbors*(T+1)+nNeighbors+1,2*nNeighbors*(T+1)+1,
(1,1),
par(t,T+1,
par(i,nNeighbors,i+t*nNeighbors+2,2*(i+t*nNeighbors)+3,
i+nNeighbors*(T+1)+2,2*(i+t*nNeighbors)+2)));
operations = _,par(t,T+1,
par(i,nNeighbors,(_@t),_:*));
};
//------------------------------`(fd.)buildScheme1D`---------------------------
// This function is used to stack in parallel several schemePoint functions in
// 1 dimension, according to the number of points.
//
// #### Usage
//
// ```
// si.bus((1 + ((2*R+1)*(T+1)) + (2*R+1))*points) : buildScheme1D(points,R,T) :
// si.bus(points)
// ```
//
// Where:
//
// * `points`: total number of points in the mesh
// * `R`: neighbourhood radius
// * `T`: time coefficient
//------------------------------------------------------------------------------
buildScheme1D(points,R,T) =
par (x, points,schemePoint(R,T,1));
//------------------------------`(fd.)buildScheme2D`---------------------------
// This function is used to stack in parallel several schemePoint functions in
// 2 dimensions, according to the number of points in the X and Y directions.
//
// #### Usage
//
// ```
// si.bus((1 + ((2*R+1)^2*(T+1)) + (2*R+1)^2)*pointsX*pointsY) :
// buildScheme2D(pointsX,pointsY,R,T) : si.bus(pointsX*pointsY)
// ```
//
// Where:
//
// * `pointsX`: total number of points in the X direction
// * `pointsY`: total number of points in the Y direction
// * `R`: neighbourhood radius
// * `T`: time coefficient
//------------------------------------------------------------------------------
buildScheme2D(pointsX,pointsY,R,T) =
par (x, pointsX,
par(y,pointsY, schemePoint(R,T,2)));
//================================Interaction Models============================
// Here are defined two physically based interaction algorithms: a hammer and
// a bow. These functions need to be coupled to the mesh pde, in the point
// where the interaction happens: to do so, the mesh output signals can be fed
// back and driven into the force block using the interpolation operators.
// The latters can be also used to drive the single force output signal to the
// correct scheme points.
//==============================================================================
//---------------------------------`(fd.)hammer`-------------------------------
// Implementation of a nonlinear collision model. The hammer is essentially a
// finite difference scheme of a linear damped oscillator, which is coupled
// with the mesh through the collision model (see Stefan Bilbao's book,
// Numerical Sound Synthesis).
//
// #### Usage
//
// ```
// _ :hammer(coeff,omega0Sqr,sigma0,kH,alpha,k,offset,fIn) : _
// ```
//
// Where:
//
// * `coeff`: output force scaling coefficient
// * `omega0Sqr`: squared angular frequency of the hammer oscillator
// * `sigma0`: damping coefficient of the hammer oscillator
// * `kH`: hammer stiffness coefficient
// * `alpha`: nonlinearity parameter
// * `k`: time sampling step (the same as for the mesh)
// * `offset`: distance between the string and the hammer at rest in meters
// * `fIn`: hammer excitation signal (i.e. a button)
//------------------------------------------------------------------------------
hammer(coeff,omega0Sqr,sigma0,kH,alpha,k,offset,fIn) =
(hammerForce<:hammerModel(fIn,k,offset,_),_)~_:!,_*coeff
with
{
hammerModel(in,k,offset) =
(_,_,_*forceCoeff,in :> _) ~ (_ <: A*_,B*_') :_-offset;
hammerForce(uh,u)=select2((uh-u)>0,0,((uh-u)^alpha)*(-kH));
A = (2-omega0Sqr^2*k^2)/(1+sigma0*k);
B = (-1)*(1-sigma0*k)/(1+sigma0*k);
forceCoeff = k^2/(1+sigma0*k);
};
//---------------------------------`(fd.)bow`-------------------------------
// Implementation of a nonlinear friction based interaction model that induces
// Helmholtz motion. (see Stefan Bilbao's book, Numerical Sound Synthesis).
//
// #### Usage
//
// ```
// _ :bow(coeff,alpha,k,vb) : _
// ```
//
// Where:
//
// * `coeff`: output force scaling coefficient
// * `alpha`: nonlinearity parameter
// * `k`: time sampling step (the same as for the mesh)
// * `vb`: bow velocity [m/s]
//------------------------------------------------------------------------------
bow(coeff,alpha,k,vb) = _:phi*(-coeff)
with
{
phi(u) = 1.41*alpha*dVel(u)*exp(-alpha*dVel(u)*dVel(u)+0.5);
dVel(x) = select2(vb==0,(x-x')/k - vb,0);
};