-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilites.cpp
235 lines (186 loc) · 4.39 KB
/
utilites.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#include "utilites.h"
using namespace std;
double gini_impurity(double n,double n1)
{
if(n <= 0)
return -1.0;
double res = 1.0 - (n1/n)*(n1/n) - ((n-n1)/n)*((n-n1)/n);
return res;
}
double d_imp(int n,int n_l, int n_1, int n_1_l)
{
double n_r = n - n_l;
double n_2_l = n_l - n_1_l;
double n_1_r = n_1 - n_1_l;
double n_2_r = n_r - n_1_r;
if(n_l <= 0.001 || n_r <= 0.001)
return 0.0;
return (1.0/(double)n_l)*(double)( (n_1_l)*(n_1_l) + (n_2_l)*(n_2_l) )\
+ (1.0/(double)n_r)*(double)( (n_1_r)*(n_1_r) + (n_2_r)*(n_2_r) );
}
double coeff(int period)
{
return min_step*(1.0 - (double)((double)period/(double)max_period));
}
double sign(double x)
{
if(x > 0.000001)return 1.0;
if(x < -0.00001)return -1.0;
return 0.0;
}
double L(vector<double>& h,vector<int>& y)
{
int n = (int)h.size();
double ans = 0.0;
for(int i = 0;i < n;i++)
{
ans += (-1.0*y[i]*log(sigm(h[i])) - (1.0-y[i])*log(1.0 - sigm(h[i])));
}
return ans;
}
void read_data_from_file(char* data,char* answ,vector<vector<double> >* datas,vector<int>* answers)
{
int m = 0;
int n = 0;
int k = 0;
double temp = 0.0;
vector<double> tmp;
ifstream data_file;
ifstream answ_file;
answ_file.open(answ);
data_file.open(data);
data_file >> m >> n;
for(int i = 0;i < m;i++)
{
for(int j = 0;j < n;j++)
{
data_file >> temp;
tmp.push_back(temp);
}
datas->push_back(tmp);
tmp.clear();
}
for(int i = 0;i < m;i++)
{
answ_file >> temp;
if(is_equ(temp,0.0))
k = 0;
else k = 1;
answers->push_back(k);
}
data_file.close();
answ_file.close();
}
void sub_space(vector<vector<double> >* data_in,vector<vector<double> >* data_out,vector<int>* selected_features)
{
data_out->clear();
int k = data_in->size();
int l = selected_features->size();
vector<double> temp;
for(int i = 0;i < k;i++)
{
temp.clear();
for(int j = 0;j < l;j++)
{
temp.push_back((*data_in)[i][(*selected_features)[j]]);
}
data_out->push_back(temp);
}
}
void rsm(vector<vector<double> >* data_in,vector<int>* answ_in,\
vector<vector<double> >* data_out,vector<int>* answ_out,\
double data_prc,double feature_prc,vector<int>* selected_data,\
vector<int>* selected_features)
{
int m = (int)data_in->size();
int n = (int)(*data_in)[0].size();
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0,1);
for(int i = 0;i < m;i++)
{
if(dis(gen) <= data_prc)
selected_data->push_back(i);
}
for(int i = 0;i < n;i++)
{
if(dis(gen) <= feature_prc)
selected_features->push_back(i);
}
data_out->clear();
answ_out->clear();
int k = selected_data->size();
int l = selected_features->size();
vector<double> temp;
for(int i = 0;i < k;i++)
{
temp.clear();
for(int j = 0;j < l;j++)
{
temp.push_back((*data_in)[(*selected_data)[i]][(*selected_features)[j]]);
}
data_out->push_back(temp);
answ_out->push_back((*answ_in)[(*selected_data)[i]]);
}
}
void cross_validation(vector<vector<double> >* data_in,vector<int>* answ_in,\
vector<vector<double> >* data_out_train,vector<int>* answ_out_train,\
vector<vector<double> >* data_out_test,vector<int>* answ_out_test,double data_prc)
{
int m = (int)data_in->size();
int n = (int)(*data_in)[0].size();
data_out_train->clear();
answ_out_train->clear();
data_out_test->clear();
answ_out_test->clear();
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0,1);
for(int i = 0;i < m;i++)
{
if(dis(gen) <= data_prc)
{
data_out_train->push_back((*data_in)[i]);
answ_out_train->push_back((*answ_in)[i]);
}
else{
data_out_test->push_back((*data_in)[i]);
answ_out_test->push_back((*answ_in)[i]);
}
}
}
double sigm(double x)
{
return 1.0/(1.0 + exp(-x));
}
int is_equ(double a,double b)
{
if((a > b - eps) && (a < b + eps))return 1;
return 0;
}
double score(vector<int>* predicted,vector<int>* answ)
{
double scr = 0.0;
double scr_0 = 0.0;
double scr_1 = 0.0;
int n = predicted->size();
int k = 0;
int l = 0;
for(int i = 0;i < n;i++)
{
if((*predicted)[i] == (*answ)[i]){scr += 1.0;}
if((*predicted)[i] == (*answ)[i] && (*answ)[i] == 0)
scr_0 += 1.0;
if((*predicted)[i] == (*answ)[i] && (*answ)[i] == 1)
scr_1 += 1.0;
if((*answ)[i] == 0){k++;}
else {l++;}
}
scr /= n;
scr_0 /= k;
scr_1 /= l;
cout <<"score: "<< scr << "\n";
cout <<"score 0: "<< scr_0 << "\n";
cout <<"score 1: "<< scr_1 << "\n";
return scr;
}