diff --git a/.github/workflows/tests.yaml b/.github/workflows/tests.yaml index a85a42b..785b449 100644 --- a/.github/workflows/tests.yaml +++ b/.github/workflows/tests.yaml @@ -1,10 +1,10 @@ -name: Test analysis notebooks +name: Test simulations on: [push, pull_request] jobs: run-analysis: - name: Test analysis notebooks + name: Test simulation notebooks runs-on: ubuntu-latest steps: @@ -24,12 +24,9 @@ jobs: $CONDA/bin/pip install pytest $CONDA/bin/pip install nbval - - name: Run analysis notebooks + - name: Run simulation notebooks run: | - export R_HOME=`$CONDA/bin/R RHOME` - $CONDA/bin/pytest -v --nbval-lax --current-env Pseudomonas_tests/Pseudomonas_sample_limma.ipynb - $CONDA/bin/pytest -v --nbval-lax --current-env Pseudomonas_tests/Pseudomonas_sample_combat.ipynb - $CONDA/bin/pytest -v --nbval-lax --current-env Pseudomonas_tests/Pseudomonas_experiment_limma.ipynb - $CONDA/bin/pytest -v --nbval-lax --current-env Human_tests/Human_sample_limma.ipynb - $CONDA/bin/pytest -v --nbval-lax --current-env Human_tests/Human_experiment_limma.ipynb - + $CONDA/bin/pytest -v --nbval-lax --current-env human_tests/Human_random_sampling_simulation.ipynb + $CONDA/bin/pytest -v --nbval-lax --current-env human_tests/Human_latent_transform_simulation.ipynb + $CONDA/bin/pytest -v --nbval-lax --current-env human_tests/Human_template_simulation.ipynb + \ No newline at end of file diff --git a/Human_tests/Human_experiment_limma.ipynb b/Human_tests/Human_experiment_limma.ipynb deleted file mode 100644 index 49eb1d3..0000000 --- a/Human_tests/Human_experiment_limma.ipynb +++ /dev/null @@ -1,1112 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Human experiment level analysis\n", - "\n", - "Main notebook to run experiment-level simulation experiment using human gene expression data from recount2.\n", - "\n", - "Make sure to run ```download_data.R``` download raw data" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "import sys\n", - "import ast\n", - "import pandas as pd\n", - "import numpy as np\n", - "import random\n", - "from plotnine import (ggplot,\n", - " labs, \n", - " geom_line, \n", - " geom_point,\n", - " geom_errorbar,\n", - " aes, \n", - " ggsave, \n", - " theme_bw,\n", - " theme,\n", - " facet_wrap,\n", - " scale_color_manual,\n", - " guides, \n", - " guide_legend,\n", - " element_blank,\n", - " element_text,\n", - " element_rect,\n", - " element_line,\n", - " coords)\n", - "\n", - "from sklearn.decomposition import PCA\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(action='ignore')\n", - "\n", - "sys.path.append(\"../\")\n", - "from ponyo import pipeline, utils\n", - "\n", - "from numpy.random import seed\n", - "randomState = 123\n", - "seed(randomState)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Read in config variables\n", - "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", - "config_file = os.path.abspath(os.path.join(base_dir,\n", - " \"configs\", \n", - " \"config_test_human_experiment_limma.tsv\"))\n", - "params = utils.read_config(config_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load parameters\n", - "local_dir = params[\"local_dir\"]\n", - "dataset_name = params['dataset_name']\n", - "analysis_name = params[\"simulation_type\"]\n", - "correction_method = params[\"correction_method\"]\n", - "lst_num_partitions = params[\"lst_num_partitions\"]\n", - "train_architecture = params['NN_architecture']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Input files\n", - "rpkm_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"recount2_gene_RPKM_data_test.tsv\")\n", - "\n", - "metadata_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"metadata\",\n", - " \"recount2_metadata.tsv\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup directories" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.setup_dir(config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Pre-process data" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Output file\n", - "experiment_id_file = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"data\",\n", - " \"metadata\", \n", - " \"experiment_ids.txt\")\n", - "\n", - "normalized_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"recount2_gene_normalized_data.txt.xz\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input: dataset contains 50 samples and 5000 genes\n", - "Output: normalized dataset contains 50 samples and 5000 genes\n" - ] - } - ], - "source": [ - "pipeline.normalize_expression_data(base_dir,\n", - " config_file,\n", - " rpkm_data_file,\n", - " normalized_data_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are 3219 experiments in the compendium\n", - "There are 6 experiments with gene expression data\n", - "6 experiment ids saved to file\n" - ] - } - ], - "source": [ - "pipeline.create_experiment_id_file(metadata_file,\n", - " normalized_data_file,\n", - " experiment_id_file,\n", - " config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train VAE" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# Directory containing log information from VAE training\n", - "vae_log_dir = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"logs\",\n", - " train_architecture)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dataset contains 50 samples and 5000 genes\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "tracking beta\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Train on 45 samples, validate on 5 samples\n", - "Epoch 1/5\n", - "45/45 [==============================] - 4s 88ms/step - loss: 2466.1158 - val_loss: 2732.4883\n", - "Epoch 2/5\n", - "45/45 [==============================] - 4s 79ms/step - loss: 1671.1998 - val_loss: 2180.0183\n", - "Epoch 3/5\n", - "45/45 [==============================] - 4s 79ms/step - loss: 1566.8178 - val_loss: 1799.2496\n", - "Epoch 4/5\n", - "45/45 [==============================] - 4s 79ms/step - loss: 1481.5816 - val_loss: 1730.1412\n", - "Epoch 5/5\n", - "45/45 [==============================] - 4s 79ms/step - loss: 1577.6224 - val_loss: 1477.2603\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAESCAYAAAArJ3joAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzt3Xd4VFX6wPHvm0Ygld4ChA6hYwQUELEgWEAEXBAU0RV7L4tlbauuoqsu6k/Fgg1FiihSZFERRAUEpIcmRQKhBUhCQiDl/P64N2ESkpCESe6U9/M892HmzJ0774zOvDnvPfccMcaglFJKVaQApwNQSinl+zTZKKWUqnCabJRSSlU4TTZKKaUqnCYbpZRSFU6TjVJKqQqnyUYppVSF02SjlFKqwmmyUUopVeGCnA7ACbVq1TKxsbFOh6GUUl5l5cqVh4wxtcvzXL9MNrGxsaxYscLpMJRSyquIyK7yPlfLaEoppSqcJhullFIVTpONUkqpCueX52yUUpUrKyuLxMREMjMznQ5FlUJoaCgxMTEEBwe77ZiabJRSFS4xMZGIiAhiY2MREafDUSUwxpCcnExiYiJNmzZ123G1jKaUqnCZmZnUrFlTE40XEBFq1qzp9l6oJhulVKXQROM9KuK/lX8mm5REyDrudBRKKeU3/DPZpB+CL0dB9gmnI1FKVYLk5GQ6d+5M586dqVevHg0bNsy/f/LkyVIdY8yYMWzevLnEfd566y0mT57sjpDp1asXq1evdsuxPIF/DhCIbgTbvofpN8GwjyDQfSMulFKep2bNmvk/3E8//TTh4eE89NBDBfYxxmCMISCg6L/BJ02adMbXufPOO88+WB/lnz2bajVhwHjYNBtm3ga5OU5HpJRywLZt24iLi2PkyJG0a9eOpKQkxo4dS3x8PO3atePZZ5/N3zevp5GdnU10dDTjxo2jU6dOnHfeeRw4cACAJ554gtdffz1//3HjxtGtWzdat27Nr7/+CkB6ejpDhgwhLi6OoUOHEh8ff8YezGeffUaHDh1o3749jz32GADZ2dlcf/31+e0TJkwA4LXXXiMuLo6OHTsyatQot39m5eWfPRuA7rda522+fwqCQmHgG1DMXzRKKfd55tsNbNyb6tZjxjWI5Kmr2pXruZs2beKTTz4hPj4egBdffJEaNWqQnZ1N3759GTp0KHFxcQWek5KSQp8+fXjxxRd54IEH+PDDDxk3btxpxzbGsHz5cmbNmsWzzz7Ld999xxtvvEG9evWYMWMGa9asoWvXriXGl5iYyBNPPMGKFSuIiorikksuYfbs2dSuXZtDhw6xbt06AI4ePQrA+PHj2bVrFyEhIfltnsC/f1173Qd9xsHqz2Dew2CM0xEppSpZ8+bN8xMNwBdffEHXrl3p2rUrCQkJbNy48bTnVK1alQEDBgBwzjnnsHPnziKPfc0115y2z5IlSxg+fDgAnTp1ol27kpPksmXLuOiii6hVqxbBwcFcd911LF68mBYtWrB582buuece5s+fT1RUFADt2rVj1KhRTJ482a0XZZ4t/+3Z5LlwHGRlwK8TrB5Ov+dAh2gqVWHK2wOpKGFhYfm3t27dyn//+1+WL19OdHQ0o0aNKvJ6k5CQkPzbgYGBZGdnF3nsKlWqnHGf8qpZsyZr165l3rx5vPXWW8yYMYOJEycyf/58Fi1axKxZs3jhhRdYu3YtgYGBbn3t8vDvng1YieXSZ6HbWPjtTVj4gtMRKaUckpqaSkREBJGRkSQlJTF//ny3v0bPnj2ZOnUqAOvWrSuy5+Sqe/fuLFy4kOTkZLKzs5kyZQp9+vTh4MGDGGMYNmwYzz77LKtWrSInJ4fExEQuuugixo8fz6FDh8jIyHD7eygP7dmAlXD6v2Sdw1k8HoJDofeDTkellKpkXbt2JS4ujjZt2tCkSRN69uzp9te4++67ueGGG4iLi8vf8kpgRYmJieFf//oXF154IcYYrrrqKq644gpWrVrFzTffjDEGEeGll14iOzub6667jrS0NHJzc3nooYeIiIhw+3soDzF+eJ4iPj7eFLl4Wm4OzLwV1k2D/i9Cj9srPzilfFBCQgJt27Z1OgyPkJ2dTXZ2NqGhoWzdupV+/fqxdetWgoI862//ov6bichKY0x8MU8pkWe9O6cFBMLV70B2Jnw3zjqHEz/G6aiUUj7k2LFjXHzxxWRnZ2OM4d133/W4RFMRfP8dllVgEAz5EL4cCbPvtxJO5xFOR6WU8hHR0dGsXLnS6TAqnQ4QKEpQCFz7KTS9AL65AzbMdDoipZTyappsihMcCiO+gEbdYcbfYfM8pyNSSimvpcmmJCFhcN1UqNcRpt4A235wOiKllPJKmmzOJDQSRs2AWq1hykjYucTpiJRSyutosimNajXg+pkQ3Rg+/xvs/t3piJRSZdC3b9/TLtB8/fXXuf32ki9vCA8PB2Dv3r0MHTq0yH0uvPBCiryUotBruV5cefnll7tl3rKnn36aV1555ayPUxk02ZRWeG244RsIqw2fDYG9vrPOhFK+bsSIEUyZMqVA25QpUxgxonQjTRs0aMD06dPL/fqFk83cuXOJjo4u9/G8kWPJRkQaichCEdkoIhtE5F6Xx+4WkU12+3iX9kdFZJuIbBaRy1za+9tt20Tk9KlX3SWyPoz+1iqtfToY9pc8zYRSyjMMHTqUOXPm5C+UtnPnTvbu3Uvv3r3zr3vp2rUrHTp04Jtvvjnt+Tt37qR9+/YAHD9+nOHDh9O2bVsGDx7M8eOnVv29/fbb85cneOqppwCYMGECe/fupW/fvvTt2xeA2NhYDh06BMCrr75K+/btad++ff7yBDt37qRt27bccssttGvXjn79+hV4naKsXr2aHj160LFjRwYPHsyRI0fyXz9vyYG8CUAXLVqUv3hcly5dSEtLK/dnW1pOXmeTDTxojFklIhHAShFZANQFBgGdjDEnRKQOgIjEAcOBdkAD4HsRaWUf6y3gUiAR+F1EZhljKiYTRDeC0bPgwwHwySAYMw9qtaiQl1LKJ80bB/vWufeY9TrAgBeLfbhGjRp069aNefPmMWjQIKZMmcK1116LiBAaGsrMmTOJjIzk0KFD9OjRg4EDByLFTMj79ttvU61aNRISEli7dm2BJQKef/55atSoQU5ODhdffDFr167lnnvu4dVXX2XhwoXUqlWrwLFWrlzJpEmTWLZsGcYYunfvTp8+fahevTpbt27liy++4L333uPaa69lxowZJa5Pc8MNN/DGG2/Qp08fnnzySZ555hlef/11XnzxRXbs2EGVKlXyS3evvPIKb731Fj179uTYsWOEhoaW5dMuF8d6NsaYJGPMKvt2GpAANARuB140xpywHztgP2UQMMUYc8IYswPYBnSzt23GmO3GmJPAFHvfilOjmZVwTC58MhCO7KzQl1NKnT3XUpprCc0Yw2OPPUbHjh255JJL2LNnD/v37y/2OIsXL87/0e/YsSMdO3bMf2zq1Kl07dqVLl26sGHDhjNOsrlkyRIGDx5MWFgY4eHhXHPNNfz8888ANG3alM6dOwMlL2MA1vo6R48epU+fPgCMHj2axYsX58c4cuRIPvvss/yZCnr27MkDDzzAhAkTOHr0aKXMYOARMwiISCzQBVgGvAz0FpHngUzgIWPM71iJaKnL0xLtNoDdhdq7V3DIULu1dQ7noyvg46tgzHcQ1fDMz1PK35XQA6lIgwYN4v7772fVqlVkZGRwzjnnADB58mQOHjzIypUrCQ4OJjY2tshlBc5kx44dvPLKK/z+++9Ur16dG2+8sVzHyZO3PAFYSxScqYxWnDlz5rB48WK+/fZbnn/+edatW8e4ceO44oormDt3Lj179mT+/Pm0adOm3LGWhuMDBEQkHJgB3GeMScVKgDWAHsDDwFQprj9bttcZKyIrRGTFwYMHz/ZwlnrtrVFqx49aPZy04v8aUko5Kzw8nL59+3LTTTcVGBiQkpJCnTp1CA4OZuHChezatavE41xwwQV8/vnnAKxfv561a9cC1vIEYWFhREVFsX//fubNO3UheERERJHnRXr37s3XX39NRkYG6enpzJw5k969e5f5vUVFRVG9evX8XtGnn35Knz59yM3NZffu3fTt25eXXnqJlJQUjh07xp9//kmHDh34xz/+wbnnnsumTZvK/Jpl5WjPRkSCsRLNZGPMV3ZzIvCVsaajXi4iuUAtYA/QyOXpMXYbJbTnM8ZMBCaCNeuz295Ew64wcpo1YODTq2H0bAir6bbDK6XcZ8SIEQwePLjAyLSRI0dy1VVX0aFDB+Lj48/4F/7tt9/OmDFjaNu2LW3bts3vIXXq1IkuXbrQpk0bGjVqVGB5grFjx9K/f38aNGjAwoUL89u7du3KjTfeSLdu3QD4+9//TpcuXUosmRXn448/5rbbbiMjI4NmzZoxadIkcnJyGDVqFCkpKRhjuOeee4iOjuaf//wnCxcuJCAggHbt2uWvOlqRHFtiwO6tfAwcNsbc59J+G9DAGPOkPQDgB6AxEAd8jnWOpoHd3hIQYAtwMVaS+R24zhizobjXLnaJgbOxfRF8fi3UamWNWKvqX8MalSqJLjHgfdy9xICTZbSewPXARSKy2t4uBz4EmonIeqyT/aONZQMwFdgIfAfcaYzJMcZkA3cB87EGGUwtKdFUmGZ94G+fwYEEmDwUTlT8UEKllPIWjpXRjDFLsHolRSlyfJ8x5nng+SLa5wJz3RddObW8FIZNgqmj4fPhVnktpJrTUSmllOMcHyDgc9peBddMhF2/WGviZJV/NIpSvsQfVwX2VhXx30qTTUXoMBQGvQl//gjTboScLKcjUspRoaGhJCcna8LxAsYYkpOT3X6hp0dcZ+OTuoyCrOMw9yFrPZwhH1irgCrlh2JiYkhMTMRtlx2oChUaGkpMTIxbj6m/fhWp2y2QnQn/ewKCq8Kg/4MA7Uwq/xMcHEzTpk2dDkM5SJNNRTv/bquHs/B5CAqFK1+Ds79GVSmlvIomm8pwwcNWwlnyqpVw+v9bE45Syq9osqkMInDxk1bCWfa2NRz64iedjkoppSqNJpvKImL1aLKPw8//gaCq0Odhp6NSSqlKocmmMonAFa9Z194sfA6CQ61zOkop5eM02VS2gAAY9NapUWpBodaoNaWU8mGabJwQGARD3ofsE9Z1OMFVretylFLKR+lFH04JDIZhH0Hzi+Cbu2DddKcjUkqpCqPJxknBofC3ydDkfPhqLCR863RESilVITTZOC2kGlz3JTToAtPGwNbvnY5IKaXcTpONJ6gSAaNmQJ221kzR2xc5HZFSSrmVXyabxCPHOX4yx+kwCqoaDdd/DdWbwhcj4K+lTkeklFJu45fJ5kjGSV6ev9npME4XVhNu+AYi6sHkYbBnldMRKaWUW/hlsqkZFsKkX3ewfMdhp0M5XURdGD3L6ul8Ohj2rXc6IqWUOmt+mWzqRYUSU70qj0xf43nlNICoGBj9LQRXg08GwcEtTkeklFJnxS+TTYAI44d0YmdyBuPnb3I6nKJVj7USjgTAJwPh8HanI1JKqXLzy2QDcF7zmow+rwkf/brTM8tpALVaWOdwsk/AxwPh6G6nI1JKqXLx22QD8I8BbWhUvRoPT19Dxslsp8MpWt04uH4mZKbCx1dBapLTESmlVJn5dbKpFhLE+KEd2ZWcwfjvPHB0Wp4Gna3rcNIPWudw0g85HZFSSpWJY8lGRBqJyEIR2SgiG0Tk3kKPPygiRkRq2fdFRCaIyDYRWSsiXV32HS0iW+1tdFni6NGsJjeeH8tHv+5k6fZk97y5itDoXGumgaO74JOr4fgRpyNSSqlSc7Jnkw08aIyJA3oAd4pIHFiJCOgH/OWy/wCgpb2NBd62960BPAV0B7oBT4lI9bIE8kj/1jSpWY1Hpq/13HIaQGwvGP45HNoMnw2xSmtKKeUFHEs2xpgkY8wq+3YakAA0tB9+DXgEMC5PGQR8YixLgWgRqQ9cBiwwxhw2xhwBFgD9yxJLtZAgXh7aid1HMnhpnoeOTsvT4mK49hNIWgOfXwsn052OSCmlzsgjztmISCzQBVgmIoOAPcaYNYV2awi4DsdKtNuKay+Tbk1rcOP5sXz82y5++9ODy2kArQfANe/B7mXW1DZZmU5HpJRSJXI82YhIODADuA+rtPYY8GQFvM5YEVkhIisOHjxY5D6PXNaG2JrVeGTGGtJPeHA5DaD9NTDo/2DHIph6A2SfdDoipZQqlqPJRkSCsRLNZGPMV0BzoCmwRkR2AjHAKhGpB+wBGrk8PcZuK669AGPMRGNMvDEmvnbt2kXGUzUkkJeHdSLxyHFe9PRyGkDnEXDla7B1Psy4CXI8PEEqpfyWk6PRBPgASDDGvApgjFlnjKljjIk1xsRilcS6GmP2AbOAG+xRaT2AFGNMEjAf6Cci1e2BAf3stnI5N7YGY85vyqdLd/HrNi8YYhx/E1z2b2vhta9vg1wPnH5HKeX3nOzZ9ASuBy4SkdX2dnkJ+88FtgPbgPeAOwCMMYeBfwG/29uzdlu5PXxZa5rWCuORGWs9v5wGcN4dcPGTsG4azL4PcnOdjkgppQoQY8yZ9/Ix8fHxZsWKFSXus2LnYYa9+xsjuzfmuas7VFJkZ+nH52Dxy9BtLAwYDyJOR6SU8iEistIYE1+e5zo+QMBTxcfW4OaeTfls6V/84g3lNIC+j8N5d8HyibDgSfDDPySUUp5Jk00JHrqsNc1qhfHI9LUc84Zymgj0ew7ib4ZfJ8Cil5yOSCmlAE02JQoNDuTlYR3Zm3KcF+YmOB1O6YjA5a9A55Hw079hyetOR6SUUppszuScJjX4e6+mfL7sL5Zs9ZJyWkAADHwD2g+B75+CZe86HZFSys9psimFB/u1plntMP4xYy1pmVlOh1M6AYEw+F1ocyXMewRWfux0REopP6bJphRCgwN5ZVgnklKO88JcL7jYM09gMAz9EFpcAt/eC2u+dDoipZSf0mRTSl0bV+eW3s34YvlfLN5S9HQ3HimoCvztM2vG6K9vgw1fOx2RUsoPabIpg/svbUXz2mGMm7GWVG8ppwEEV4URUyDmXJhxM2wp9wQLSilVLppsyiCvnLYvNZMX5njJ6LQ8VcJh5DSo2x6+vB7+XOh0REopP6LJpoy6NK7OLRc0Y8rvu1nkTeU0gNAouH4m1GxhLU2w61enI1JK+QlNNuVw/yWtaFEn3PvKaQDVasANX0N0I5g8DBJLnrZHKaXcQZNNOeSV0/anZvL8bC8rpwGE14EbvoGwWvDZNZC01umIlFI+TpNNOXVuFM2tfZrz5Yrd/LT5gNPhlF1kA7hhFoREwKdXwwEvTJpKKa+hyeYs3HdJS1rWCWfcjHWkHPeychpA9SYwehYEBMMngyD5T6cjUkr5KE02Z6FKkFVOO3jsBM/N3uh0OOVTs7lVUsvNho8HwpFdTkeklPJBmmzOUqdG0dx6QTOmrUxk4SYvLKcB1GkD138NJ9Pgk4GQutfpiJRSPkaTjRvce0lLWtUNZ9xXa72znAZQvyOMmgnpyVYP55iXJk6llEfSZOMGVYIC+c+wzhw6dpJ/eWs5DSDmHBg5FVL3wCdXQ8ZZra6tlFL5NNm4SYeYKG7v05zpKxP5cdN+p8Mpvybnw/DPIXkbfDoYMlOcjkgp5QM02bjR3Re3oHXdCGt0WoaXltMAmveFv30K+zdYF36eOOZ0REopL6fJxo3yRqclp5/kmdkbnA7n7LS6DIZ+YM0w8MVwyDrudERKKS+mycbNOsREcceFzflq1R6+3+jF5TSAuEEw+B3YuQS+HAXZJ5yOSCnlpRxLNiLSSEQWishGEdkgIvfa7S+LyCYRWSsiM0Uk2uU5j4rINhHZLCKXubT3t9u2icg4J96Pq7svakmbehE8NtPLy2kAHa+FgRNg2/cwbQzkePn7UUo5wsmeTTbwoDEmDugB3CkiccACoL0xpiOwBXgUwH5sONAO6A/8n4gEikgg8BYwAIgDRtj7OiYkKIBXhnXicPpJnvnWy8tpAF1vgAHjYfMc+Gos5OY4HZFSyss4lmyMMUnGmFX27TQgAWhojPmfMSbb3m0pEGPfHgRMMcacMMbsALYB3extmzFmuzHmJDDF3tdR7RtGcUffFnz1xx4WeHs5DaD7rXDJM7DhK5h1N+TmOh2RUsqLeMQ5GxGJBboAywo9dBMwz77dENjt8lii3VZcu+Pu6tuCtvUjeWzmOo5mnHQ6nLPX6z648FFYPRnmPgTGOB2RUspLuCXZiOUSERnmeo6llM8NB2YA9xljUl3aH8cqtU12U4xjRWSFiKw4eLByFj2zymkdOZJ+kqdn+UA5DaDPP6DnvbDiA/jfE5pwlFKlUuZkIyLPiMiPhZrnAvOBL4EEEWlaymMFYyWaycaYr1zabwSuBEYak/9rtgdo5PL0GLutuPYCjDETjTHxxpj42rVrlyY8t2jXIIo7+7bg69V7+d+GfZX2uhVGxCqndbsVfnsTFj7vdERKKS9Qnp7NMGB13h0RuQq4DBgPXAcEAk+c6SAiIsAHQIIx5lWX9v7AI8BAY0yGy1NmAcNFpIqdzFoCy4HfgZYi0lREQrAGEcwqx/uqMHf2bUFc/Ugem7meI+k+UE4Tgf4vWgMHFr8MP72oPRylVInKk2xigM0u968G/jTGPGqMmQL8H3BxKY7TE7geuEhEVtvb5cCbQASwwG57B8AYswGYCmwEvgPuNMbk2IMJ7sLqWSUAU+19PUbe6LSjGSd52hdGpwEEBMCVr0PH4fDTv62ZBnTyTqVUMYLK8RwpdP8S4FuX+38Bdc90EGPMkiKOBVZJrrjnPA+cVrcxxswt6XmeIK5BJHdf1JLXvt/CgPb16d++ntMhnb2AQOuiz5h4mP84vH0+XP02tLzU6ciUUh6mPD2bP4F+ACLSA+t8yf9cHm8I6OyNRbijb3PaNYjkia/XcdgXymlgldS63QJjf4Kw2jB5KMwbB1mZTkemlPIg5Uk2bwODRWQd1rDkXVglrDw9gfVuiM3nBAda5bSU41k85Suj0/LUjYNbFkL322DZ2/D+xXAgwemolFIeoszJxhjzLnAzsBWYCVxmjDkBICI1gNrAF+4M0pe0rW+V075ds5fv1ic5HY57BYfCgJfgummQtg8mXgjL39PBA0opxPjhD0F8fLxZsWKFY6+flZPL4P/7hX0pmfzv/j7UCAtxLJYKk7YfvrnDmlOt1QAY9CaE1XI6KqXUWRCRlcaY+PI81/GLOv2RazntyW98tOIYUdfq4fR/Ef78wRo88Gfhy7OUUv7C0Ys6/VmbepHce3FLZq9NYu46Hyun5QkIgB63wy0/QtXq1sqf8x/XpQqU8kOOXdSp4LY+zenQMIp/fr2e5GM+/ANcr4M1eODcv1uzDrx/MRzc4nRUSqlK5ORFnX4vyC6npWVm8+Q3PjY6rbCQanDFf2D4F5CyB969AFZ8qIMHlPIT5Uk2RV3U6Tr0uVQXdSpL63oR3HtJS+asS2LOWh8tp7lqcznc/is07g6z77dWAM047HRUSqkKphd1eoBbL2hGx5go/vnNeg75cjktT2R9GDUT+j0HW+Zbgwe2L3I6KqVUBdKLOj1AUGAA/xnWiWOZ2fzz6/X4xXD0gAA4/2645QcICYdPBsGCJyHbR2ZWUEoVoBd1eoiWdSO479KWzFu/j9n+UE7LU78T3LoIzhkNv/wXPrgUDm1zOiqllJvpRZ0eJDsnlyHv/MZfyen87/4+1I6o4nRIlSvhW2vJ6ewTMGA8dBllzb2mlPIIjl3UKSL1ROQ8e/OBaYydFRQYwCtDO5J+Isd/ymmu2l5lDR5oeA7MugumjYbjR5yOSinlBuVKNnZyWY61IuYSe9sjIsvsQQOqnFrWjeD+S1vx3YZ9fOtP5bQ8kQ3ghm/gkqdh0xx4uyfsXOJ0VEqps1SeGQS6AT8CbYD3gPvt7T2gLfCjiJzrziD9zS29m9K5UTRPfbOeg2l+MDqtsIBA6HU/3Pw/CAqFj66EH56FnCynI1NKlVN5ejbPAgeAtsaY24wxE+ztNqwEdNDeR5VT3sWe6SdzeOLrdf5XTsvT8By4dTF0GQk//wc+vAwOb3c6KqVUOZQn2ZwHvGOM2VP4AWPMXuBd4PyzDczftagTzoOXtmL+hv3MWrPX6XCcUyUcBr0Fwz6C5G3wTm9Y/bnOPKCUlylPsgkESroY4oS9jzpLf+/djC6No3lq1gYOpPn5ypftBsNtv1hDpb++HWbcDMePOh2VUqqUypNs1gA3iUhE4QdEJBy4CfjjbANTEBggvDy0Exknc3h8ph+OTissuhGM/hYu+ids+Nrq5ez6zemolFKlUJ5k8xzWuZl1IvKoiAy2t8ewZg5oDTzvziD9WYs64TzUrxULNu7nm9V+XE7LExAIFzxkDR4ICICPLoeFL0BOttORKaVKUJ4ZBOYBI4AQrKQy3d6eA4KA4caY79wZpL+7uVczuuaV01L9vJyWJyYebv0ZOv4NFr0EkwbAkZ1OR6WUKka5rrMxxkzFmoDzPKw1bK4DegBNgAMioqPR3CgwQHh5WCcys3J4bKYfj04rLDQSBr8DQz6Ag5usstraqU5HpZQqQrlnEDDG5BhjlhljvrS35caYHKA38PiZni8ijURkoYhsFJENInKv3V5DRBaIyFb73+p2u4jIBBHZJiJrRaSry7FG2/tvFZHR5X1Pnqx57XAevqw13yccYOYfpw0E9G8dhsJtS6BOHHx1C3w1FjJTnY5KKeXirKarOUvZwIPGmDisXtGdIhIHjAN+MMa0BH6w7wMMAFra21is2afzJv98CugOdAOeyktQvmZMz6bEN6nO07M2sF/LaQVVbwI3zoELH4V10+CdXrB7udNRKaVsjiUbY0ySMWaVfTsNSMBaC2cQ8LG928dYK4Fit39iLEuBaBGpj7Uk9QJjzGFjzBFgAdC/Et9KpQkMEMYP7ciJ7Fwe+0rLaacJDIILx8GY7wADH/aHReMhN8fpyJTye072bPKJSCzQBVgG1DXG5E0Kto9Tq342BHa7PC3Rbiuu3Sc1s8tpP2w6wFertJxWpMbdrbJa+2tg4fPw0RVw9C+no1LKrzmebOxrc2YA9xljChTajfWnu1t0J6Z0AAAftklEQVT+fBeRsSKyQkRWHDx40B2HdExeOe2Zb7WcVqzQKBjyPgyeCPvWw9u9YP0Mp6NSym8FlWYnEbmpDMc8p7Q7ikgwVqKZbIz5ym7eLyL1jTFJdpnsgN2+B2sEXJ4Yu20PcGGh9p8Kv5YxZiIwEaz1bEoboyfKG5024L+LefSrdXwwOh7RdV+K1ulv0KibNXBg+k2w9Xu4fDxUOe2aZKVUBSpVsgHex+phlPYX7Yw/5mL9On4AJBhjXnV5aBYwGnjR/vcbl/a7RGQK1mCAFDshzQdecBkU0A94tJRxeq2mtcJ45LI2PDt7I9NXJjIsvtGZn+SvajSFMfOs8zc/vwJ//WYNl44p9d9FSqmzVKqVOkWkT1kPbIxZdIZj9gJ+BtYBuXbzY1jnbaYCjYFdwLXGmMN2cnoT6+R/BjDGGLPCPtZN9nMBnjfGTCrptT11pc6yys01DJ+4lIR9qSy4vw/1okKdDsnz7frVGhqdlgR9H4Oe91mzEiilzuhsVurUZaG93M5D6fT/72J6NKvJpBvP1XJaaRw/CrPvgw0zoUkvuOZdiIpxOiqlPJ5jy0Ir58XWCuMf/dvw0+aDTFuZ6HQ43qFqNAydBIP+D/b+Ya0GuuFrp6NSyqdpsvEBo8+LpVvTGvzr240kpRx3OhzvIGItynbbz1CjGUwbDd/cBSfTnY5MKZ+kycYHBAQILw/tSHauYdwMvdizTGo2t2aQ7vUA/PEZvHuB1dtRSrmVJhsf0aRmGOMGtGHRloNMXbH7zE9QpwQGwyVPWWvlnMyA9y+FJa9Dbu6Zn6uUKhVNNj7k+h5N6NGsBs/NTmDvUS2nlVnT3nD7L9B6AHz/FHx6NaTqGkJKuYMmGx8SECCMH9KJHGMYp3OnlU+1GnDtJzDwDUj8Hd4+HxJmOx2VUl5Pk42PaVyzGuMGtGHxloN8+buW08pFBLreALcuhujG8OVI+PY+q8SmlCoXTTY+aFR3u5w2J4E9Wk4rv1ot4ebv4fx7YOUkmNgHktY6HZVSXkmTjQ+yRqd1ItcYxs1Yq+W0sxEUAv3+Bdd/bS3I9v7F8OubOnhAqTLSZOOjGtWoxqOXt+XnrYf4YrmW085a875w+6/Q4lL43+MweQik7XM6KqW8hiYbHzayW2POb16T5+dsJPGInm84a2E1YfhkuOJV2PWbNXhg83dOR6WUV9Bk48MCAoSXhnQE0Is93UUEzr0Zbl0EEQ3gi7/BnIcgS8+NKVUSTTY+Lq+ctmTbIT5frqtVuk3t1nDLD9DjTvj9PZjY11qkTSlVJE02fmBk98b0bFGTF+YksPuwltPcJqgK9H8BRs2AjGR47yJY+g5oD1Kp02iy8QMip8pp/5ixltxc/TF0qxaXWIMHml0I3/0DJg+DYwfO9Cyl/IomGz8RU70aj18Rx69/JjNZy2nuF14brvsSLn8Fdiy2Bg9sXeB0VEp5DE02fmREt0b0blmLf8/VclqFEIFut8DYnyCsNkweCvPGQVam05Ep5ThNNn5ERHhxSEcCRHhkupbTKkzdOLjlR+h2Kyx727oQ9ECC01Ep5ShNNn6mYXRVHr+iLb9tT2bysl1Oh+O7gqvC5ePhumnWxZ8TL4Tl7+ngAeW3NNn4oeHn2uW0eZv4K1nLaRWqVT9r8EBsL5j7EHwxAtIPOR2VUpVOk40fyhudFijCw9PXaDmtokXUtXo4l/0b/vzBGjzw549OR6VUpdJk46caRFfliSvbsmzHYT5dquW0ChcQAOfdYZ3LqVodPh0M8x+H7BNOR6ZUpXAs2YjIhyJyQETWu7R1FpGlIrJaRFaISDe7XURkgohsE5G1ItLV5TmjRWSrvY124r14q2vjG9GnVW1enLeJXcnpTofjH+p1gFsWQvzN8Nub1uCBg1ucjkqpCudkz+YjoH+htvHAM8aYzsCT9n2AAUBLexsLvA0gIjWAp4DuQDfgKRGpXuGR+whrdFoHggKEh3V0WuUJqQZXvgrDv4CUPfDuBbDiQx08oHyaY8nGGLMYOFy4GYi0b0cBeQvADwI+MZalQLSI1AcuAxYYYw4bY44ACzg9gakS1I+qyj+vjGP5jsN88ttOp8PxL20utwYPNO4Os++HL0dBRuGvhFK+IcjpAAq5D5gvIq9gJcLz7faGgOuiLIl2W3HtqgyGxccwd30SL323mQtb1yG2VpjTIfmPyPowaiYsfQu+f8YaPNDtFqjeFKo3gehYqFbDumBUKS/macnmduB+Y8wMEbkW+AC4xB0HFpGxWCU4Gjdu7I5D+gwR4d/XdKDfa4t5ZPpapoztQUCA/rhVmoAAOP9uiO0NX98BPzxb8PGQCDvxNLH+rR576nZ0E6ssp5SH87RkMxq41749DXjfvr0HaOSyX4zdtge4sFD7T0Ud2BgzEZgIEB8fr8XxQupHVeXJK+N4ePpaPvp1Jzf1aup0SP6nQWe441c4kQZHdsHRXXBk56nbh7dbQ6azC62dE1bHJRnFFrwd2RACPe1rrvyRp/1fuBfog5UwLgK22u2zgLtEZArWYIAUY0ySiMwHXnAZFNAPeLRyQ/YdQ8+JYd76fYyfv4m+berQVMtpzqgSAfXaW1thxkD6QSsBHdkJR3eeSkaJy2HDTDA5p/aXQIiKKdQjij11O6yWluhUpRCnVm8UkS+weiW1gP1Yo8o2A//FSoKZwB3GmJUiIsCbWCf/M4AxxpgV9nFuAh6zD/u8MWbSmV47Pj7erFixwr1vyEfsS8nk0tcW0aZeBF+OPU/Lad4mJwtS9xTsEeUnpl1WonIVHFawRFe4d1Ql3IE3oTyViKw0xsSX67n+uFSwJpuSTV+ZyEPT1vDPK+O4WctpvuVkesEkVLhUd/JYwf2r1Sr+fFFUIwgMduJdKIecTbLxtDKa8gBDujZk7rokXp6/ib6ta9Ostv516zNCwqxZqevGnf6YMdaKo0d2nSrP5fWI9v4BCbMgN/vU/hIAkTHFnC9qAuF1tUSn8mnPRhVpf2oml766iJZ1I5h663kEajlN5WRD2t6ie0RHdsKx/QX3D6oK0Y2LHkFXPRZCI09/DeXRtGej3K5uZChPD2zHA1PXMOmXHfy9dzOnQ1JOCwyykkd0Y6D36Y9nHYejfxXsEeUlpL+WwonUgvtXrV70CLrqsVaJLiikot+RqkSabFSxBnfJK6dtpm+bOjTXcpoqSXBVqN3a2gozBo4fKbpHtG8dbJ4LOSddniAQ2aBgj8j1dng96/ok5TW0jKZKdCA1k0tfW0zz2mFMu+18LaepipGbC2lJLj2iXQVvp+0tuH9glVMluqLOF1XVKRIrgpbRVIWpExnK0wPjuP/LNXy4ZAe3XKDlNFUBAgIgqqG10fP0x7MyIWW3y+CFnS7XF62AzKMF9w+NshJPjWbQeSS0vFQHKzhMk406o6s7N2TO2n288j+rnNaijpbTVCULDoVaLa2tKMePFt0j+mspbPwa6naA3g9A3CAICKzU0JVFy2iqVA6kZdLvtcU0rRXGdC2nKW+RfRLWTYMlr0HyVqjRHHrdBx2H6wCEcjibMpqeYVOlUicilGcGtuOPv47y/s/bnQ5HqdIJCoEuI+HOZXDtJ9aMCLPuhgmdYenb1kWuqlJoslGlNrBTA/rF1eU/C7aw7UCa0+EoVXoBgVYJbewiGDXDGlDw3Th4vQMsftkqw6kKpclGlZqI8Nzg9lQLCeShaWvJ0ZU9lbcRgRaXwJi5cNN8aBgPPz4Hr7WHBU/BsQNOR+izNNmoMskrp63efZT3tJymvFnjHjByKtz6szVa7Zf/Wj2dOQ9ZF6cqt9Jko8psYKcGXNauLq8u2MLW/VpOU16ufkcYNgnuWgEdhsHKj2BCF5h5Oxzc7HR0PkOTjSozEeG5qzsQFhLIQ9PWkJ2T63RISp29Wi1g0Jtw7xroNtZaG+it7vDlKNizyunovJ4mG1UutSOq8Oyg9qxJTGH8/M3sPpyBPw6jVz4oqiH0/zfcvx4ueAi2L4b3+sKng2HnEmvqHVVmep2NKjdjDPdMWc23a6ypRKKqBtO+YSTtG0TRvqG1NalRTRdgU94tMxVWfAC//R+kH4CYbtD7QWh1md/NSqCLp5WRJhv3yck1rN+Twvq9Kazfk8r6PSls3pfGSbu0FlEliLgGkXbysRJRs9rhelGo8j5Zx+GPz+CXCZDyF9RtD73uh3aD/WZWAk02ZaTJpmKdzM5l64E0NuxJZZ2diBKSUsnMshJQ1eBAKwE1iKRdwyg6NIyiRZ1wggO1qqu8QE4WrJsOS16FQ1us+dd63gudRkBQFaejq1CabMpIk03ly87JZfuhdNYlWslnw55UNuxNIf1kDgAhQQG0rReRX35r3yCKVvXCqRLkH38xKi+Umwub58DiVyBpNUTUh/PvhnNutFZE9UGabMpIk41nyM017EhOZ/2eFDbsTc1PRGmZ1tLDwYFCq7oR9jkgqxTXtn4kocGagJQHMQa2L4SfX4WdP0PVGtDjduh2i88tdaDJpow02XguYwy7Dx/PL7+t32NtRzKyAAgMEFrUDqddw0g62L2guPqRhFXRCcyVB9i93Eo6W+ZBSDjE3wTn3QkR9ZyOzC002ZSRJhvvYoxhb0qm1QPak8L6vda5oINpJwBrQFDTWmFW8mkQRbuGkbRrEEVU1WCHI1d+a996a6bpDV9BQDB0GQU977HmZPNimmzKSJONbziQmsn6vSmsS0y1zwOlsDclM//xJjWr5SefDg2jaNcgihphOq28qkTJf8KvE2D155CbY81Q0Ot+qNPG6cjKxSuTjYh8CFwJHDDGtHdpvxu4E8gB5hhjHrHbHwVuttvvMcbMt9v7A/8FAoH3jTEvnum1Ndn4ruRjJ1i/N9U+D2QNx/7rcEb+4w2jq9KuwakSXLuGkdSJCHUwYuUXUvfCb2/Big8hKwPaXGkt5tbwHKcjKxNvTTYXAMeAT/KSjYj0BR4HrjDGnBCROsaYAyISB3wBdAMaAN8DrexDbQEuBRKB34ERxpiNJb22Jhv/kpKRZSWevSms25PKhj0pbD90ah2TupFV7B5QFO0bRNIhJop6kaGIn12wpypBxmFY9g4se9dayrrZhdYForG9veICUa9MNgAiEgvMdkk2U4GJxpjvC+33KIAx5t/2/fnA0/bDTxtjLitqv+JoslFpmVkkJKWxLv88UArbDhwjb9WEmmEh9jVAp2ZEiKleVROQco8TabBiEvz2JhzbDzHnQq8HoFV/CPDc683OJtl42hCeVkBvEXkeyAQeMsb8DjQElrrsl2i3Aewu1N69MgJV3i0iNJhuTWvQrWmN/LaMk9kkJKXZ5TerF/Tuou1k2xnIdTqevF5QbM0wnY5HlV2VCGvAQLexsHoy/PI6TBkBdeKspNNuMAR62s/z2fG0dxME1AB6AOcCU0WkmTsOLCJjgbEAjRs3dschlY+pFhLEOU2qc06TU9dGZGblsGW/1QNab1+IOumXnfnT8YTnTcfTIIoOMTodjyqj4FA492boOtoaufbzq/DV32Hhc9DzPuh8nc/MSuBpySYR+MpYtb3lIpIL1AL2AI1c9oux2yihvQBjzERgIlhlNDfHrXxUaHAgHWOi6RgTnd+WlZPLlv3WdDx51wJ9vnwXmb+cmo6nbf0IawScPRy7ZV2djkeVIDAIOl4L7Yda1+j8/B+YfR/89CKcfxecMwaqhDsd5VnxtHM2twENjDFPikgr4AegMRAHfM6pAQI/AC0BwRogcDFWkvkduM4Ys6Gk19VzNsrd8qbjscpvxU/Hk5d8OjTU6XhUCYyBHYuspLNjsTUTQffbrLJbtRpnfr6b5OQadhxKZ9O+VDYlpfFw/zbeN0BARL4ALsTquewHngI+BT4EOgMnsc7Z/Gjv/zhwE5AN3GeMmWe3Xw68jjX0+UNjzPNnem1NNqoy5OYadianW8nHHo69fk8KqfZ0PEEB9nQ8edcBNYyibb1IqoZoAlIuEldY5bXNcyA4DOLHwHl3QWR9t77MkfSTJNhJZdO+VBKS0tiyP40T2VaPPTBA2P7vK7wv2ThJk41ySt50POvzByFYiehw+kkAAgRia4bRvE44LeuE08LemtcO1yl5/N3+jdasBOunQ0AQdB5pzTZdo2mZDpOVk8uOQ+kkJFkJJa/Xsi/11AXRNcNCaFs/krb1I2hTL5I29SNoUSec0OAgTTZloclGeRJjDEn2dDzr96SwZf8xth08xs5D6fkj4QAaRIXS3CUBtaht/Vsz3DdOIKtSOrzDmpXgj88gN9s6z9Prfqgbd9quh46dKNBTSUhKZduBY/kDXIIDhRZ1ImhbL4I2dmJpWz+S2hFF/z/ltdfZOEWTjfIGWTm57ErOYNuBY/x58BjbDpzajmfl5O9XvVpwgR5QizrhtKwbQYMovTDVp6UmwdK34PcPISudtCaXsqLxTfx2oikJSals2peWP38gQJ2IKrSxeytt7d5Ks1rhhASVfuCKL11no5SyBQcG5CcRV7m5hr0px/MTT14i+m79vvzZsQGqhQTmJx/XRNSkZjUdGeeljDEcTDtBwr40NiVlkHB4CIlVz6P38RncsHM+fXctIDS3HenRI6jbsjdt6kcSVz+S1vUiHO8Ba89GKR+SfOyElYRcekJ/HjhWYILSoAAhtlZYfhkub2tWO4xqIfr3p6fIzMph24Fj+b2UvHMryfb5PYD6UaG0rR9Jm3oRtKsdSLfkWdRaOxE5ts+ad63XA9D6crfNSqBltDLSZKP8zbET2Wy3E9BWlyS063AGOS7nhRpGVy2QgPLODVXX2bIrjDGGfamZbEpKI8E+t7IpKZXth9Lz/9uEBgfQum7eOZUI2tgJJrpaEf9dsk9Ys0z/8joc2Qm121hJp/2Qs56VQJNNGWmyUcpyMjuXncnpBc4HbTtwjO2HjpGZlZu/X63wkAIlubxNJywtm+Mnc9h6IK3gSLB9aRx1KX/GVK96KqnY/zapGVb2WSlysmHDTFjyKhzYCNFNrNFrnUdaMxeUgyabMtJko1TJcnMNe44eL5iE7J5RyvFTP4zhVYJoXjvs1Cg5OyE1rlGNID8+L2SM9fkVGAm2L5Wdh9LzJ3utFhJI63oR1hDjelZvpXW9CCJD3bzoX24ubJ0Pi1+BPSsgvK61emj8TdYcbWWgyaaMNNkoVT7GGA4dO2knoLQCSWh/6qmRTyGBAcTWqmb3gCLyE1Gz2mGEBvvWRasZJ7Otcyou16wk7Eslzb54F6yF/NrUOzW0uG39CBpVr1a5k7gaAzt/tmYl2P4ThEZD91utmQlKOSuBJpsy0mSjlPulZmbxp0svKO/2X4cz8v+aF4FG1asVOB+U1yvy9GW8c3MNiUeO2+dVTl1pv+twBnk/o+FVgmhj91byrltpXS+CcE+7IHfPSmtWgk2zXWYluBMiG5T4NE02ZaTJRqnKk5mVU8x5oXROZp86L1Q7osppI+Ra1AmnTkSVSj8vlJaZxeZ9afYQYyu5bN6Xlj/XnQg0rRlW4ELINvUivG/NowMJsOR1WDcNAgKh0wjrvE7N5kXursmmjDTZKOW8nFzD7sMZRQ7VTjtxqgQVERpE89oFp+9pUSecmOrVznoph5xcw1+HM/ITSoI9xHj34eP5+0SGBtmlLyuhtKkfSau64b41TPzITvj1DVj1KeRmQbtrrFkJ6rUvsJsmmzLSZKOU5zLGcCDtxGk9oW0HjxW4Ij4kKIBmtcJO6wk1rRVW5GzaKcez2ORyzcrGpDS27EvLn40hQKBZ7fD8MljeaLD6/jQTQ9p+e1aCD+DkMWvl0N4PQqNugCabMtNko5R3SsnIOnU+yKU3tPvIqfMmAQKNa1TL7/3sPpzBpn1p7Dl6qrdSvVqw3VOxzq3E1Y+0J5r0rcEL5Xb8CCx/D5a+DccPQ2xv6P0A0uJiTTZloclGKd+SmZWTP22PayJKPHKcRtWr0aZ+RH4ZrG39SEfOA3mlk+mw8mOrxJa2F3kmVZNNWWiyUUqpMsg+AWumIPE3ljvZ+O9VV0oppUonqAqcM/qsDqHJRimlVIXTZKOUUqrCabJRSilV4TTZKKWUqnCabJRSSlU4TTZKKaUqnCYbpZRSFU6TjVJKqQrnlzMIiEgasNnpOEqhFnDI6SBKQeN0L43TvbwhTm+IEaC1MaZsy3vafGiO7DLZXN4pFyqTiKzQON1H43QvjdN9vCFGsOIs73O1jKaUUqrCabJRSilV4fw12Ux0OoBS0jjdS+N0L43TfbwhRjiLOP1ygIBSSqnK5a89G6WUUpXIp5ONiPQXkc0isk1ExhXxeBUR+dJ+fJmIxFZ+lKWK80YROSgiq+3t7w7E+KGIHBCR9cU8LiIywX4Pa0Wka2XHaMdxpjgvFJEUl8/yycqO0Y6jkYgsFJGNIrJBRO4tYh9HP9NSxuj45ykioSKyXETW2HE+U8Q+jn/XSxmn4991l1gCReQPEZldxGNl/zyNMT65AYHAn0AzIARYA8QV2ucO4B379nDgSw+N80bgTYc/zwuArsD6Yh6/HJgHCNADWOahcV4IzHbys7TjqA90tW9HAFuK+O/u6Gdayhgd/zztzyfcvh0MLAN6FNrHE77rpYnT8e+6SywPAJ8X9d+3PJ+nL/dsugHbjDHbjTEngSnAoEL7DAI+tm9PBy6Wyl+YvDRxOs4Ysxg4XMIug4BPjGUpEC0i9SsnulNKEadHMMYkGWNW2bfTgASgYaHdHP1MSxmj4+zP55h9N9jeCp+Mdvy7Xso4PYKIxABXAO8Xs0uZP09fTjYNgd0u9xM5/YuSv48xJhtIAWpWSnRFxGArKk6AIXYpZbqINKqc0MqktO/DE5xnlzLmiUg7p4OxSxBdsP7SdeUxn2kJMYIHfJ52yWc1cABYYIwp9rN08LtemjjBM77rrwOPALnFPF7mz9OXk40v+RaINcZ0BBZw6i8KVXargCbGmE7AG8DXTgYjIuHADOA+Y0yqk7EU5wwxesTnaYzJMcZ0BmKAbiLS3ok4zqQUcTr+XReRK4EDxpiV7jyuLyebPYDrXwUxdluR+4hIEBAFJFdKdEXEYDstTmNMsjHmhH33feCcSoqtLErzeTvOGJOaV8owxswFgkWklhOxiEgw1o/4ZGPMV0Xs4vhneqYYPenztGM4CiwE+hd6yBO+6/mKi9NDvus9gYEishOrrH+RiHxWaJ8yf56+nGx+B1qKSFMRCcE6iTWr0D6zgNH27aHAj8Y+41WJzhhnoTr9QKzauaeZBdxgj6DqAaQYY5KcDqowEamXV1sWkW5Y34FK/9GxY/gASDDGvFrMbo5+pqWJ0RM+TxGpLSLR9u2qwKXApkK7Of5dL02cnvBdN8Y8aoyJMcbEYv0e/WiMGVVotzJ/nj47EacxJltE7gLmY434+tAYs0FEngVWGGNmYX2RPhWRbVgnlYd7aJz3iMhAINuO88bKjlNEvsAaeVRLRBKBp7BOcGKMeQeYizV6ahuQAYyp7BhLGedQ4HYRyQaOA8Md+AMDrL8erwfW2TV8gMeAxi6xOv2ZliZGT/g86wMfi0ggVrKbaoyZ7Wnf9VLG6fh3vThn+3nqDAJKKaUqnC+X0ZRSSnkITTZKKaUqnCYbpZRSFU6TjVJKqQqnyUYppVSF02SjlJcTa+Zl4+QMwUqdiSYbpUrg8kNe3Fb4ymqlVBF89qJOpdzsA+CnItq3V3IcSnklTTZKlc5SY4z2YpQqJy2jKeUGIvK0XVbrIiITReSQiKSLyGwRaVbE/g1F5CMR2S8iJ8RaDfP+otYEEZGO9nTzB0UkU6zVEd+059IrvO9dIvKnfczVItK30OOBIvKoiGwSkQwROWrvd6d7PxGlCtKejVKlE17MbMZpLrP0AkwCUoFnsdb8uBtYLCIdjTGHAUSkJvArUA94C6sUdyXwKtAcuCvvYCLSG2vevHSsWYB3AE2AIUA14KTLa98GhAMT7fb7gG9EpIkx5oi9z5P29pH9eqFAHNDbjkWpilHWpUJ1082fNqxJPU0J2432fk/b938Bglyef5Xd/pJL23i7bYhLmwBf2e0d7LYArKWYk4EGRcQmhWLcjb3ssN3e2W6/w6XtD2CO05+rbv63aRlNqdJ5FWtK+MLb/EL7vWmslQsBMMZ8C2zFSjp5BmItBT7DZT8DvGzfzdu3M9ASeMsYs7dwQPZzXH1qTi07jDFmNVYvq7nLPkeBdiLStsR3q5SbaRlNqdJJMMZ8X4r9NhfTdonL/VisVRgL22j/29T+t6X977rSBAjsKqLtCFDD5f4TwDfARhHZAnwPTDfGLCzlayhVLtqzUcp35BTTnj/owBjzC1ZPZyRWye9q4EcR+aDiw1P+TJONUu7Vupi2HS73dwBtitivrcvjYJXfADq4JzSLMSbFGPO5MeYmrMEGk4GbRKSVO19HKVeabJRyr7vsNdkBEJGrsMphs132+RZoISKDXfYT4CH7bt6y4KuxEs6dItKg8AsVNUz6TOyRcPns80vr7bvVy3o8pUpLz9koVTo9RCSziPaDxhjXQQJhWGWpaVhDn+8BkrBGoOV5Cfgb8IWI5A19vgIYgDUYYD2AMSZXRG4BvgPWiMh7WL2eGGAYcD7WCf+ySBCRJcDvwH6sXtddWOeVVpXxWEqVmiYbpUrnZnsrbBkFR6SNAe7AGgodijXFzT3GmEN5OxhjkkXkfOAF4AYgEivhPAi85npwY8wiEekJPAXcbh8zEZgHZJTjfbyGNdrtQaxrcvYCHwLPGWOyynE8pUpFTh89qZQqKxF5GishtDTGbHM4HKU8jp6zUUopVeE02SillKpwmmyUUkpVOD1no5RSqsJpz0YppVSF02SjlFKqwmmyUUopVeE02SillKpwmmyUUkpVOE02SimlKtz/A2IO0fdk7O1/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Train VAE\n", - "pipeline.train_vae(config_file,\n", - " normalized_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation experiment without noise correction" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 14.2s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 14.3s remaining: 21.5s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 14.7s remaining: 9.8s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 16.4s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 16.4s finished\n", - " score\n", - "number of partitions \n", - "1 0.999695\n", - "2 0.977723\n", - "6 0.941195\n", - " score\n", - "number of partitions \n", - "1 0.000074\n", - "2 0.004221\n", - "6 0.011557\n", - " ymin ymax\n", - "number of partitions \n", - "1 0.999549 0.999841\n", - "2 0.969449 0.985996\n", - "6 0.918544 0.963846\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "corrected=False\n", - "pipeline.run_simulation(config_file,\n", - " normalized_data_file,\n", - " corrected,\n", - " experiment_id_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation with correction applied" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 10.0s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 10.2s remaining: 15.3s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 10.3s remaining: 6.9s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 12.0s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 12.0s finished\n", - " score\n", - "number of partitions \n", - "1 0.999695\n", - "2 0.917417\n", - "6 0.594720\n", - " score\n", - "number of partitions \n", - "1 0.000074\n", - "2 0.002107\n", - "6 0.006806\n", - " ymin ymax\n", - "number of partitions \n", - "1 0.999549 0.999841\n", - "2 0.913288 0.921546\n", - "6 0.581380 0.608059\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "corrected=True\n", - "pipeline.run_simulation(config_file,\n", - " normalized_data_file,\n", - " corrected,\n", - " experiment_id_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make figures" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ind = [0,1,2]" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# File directories\n", - "similarity_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "similarity_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "permuted_score_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_permuted.npy\")\n", - "\n", - "compendia_dir = os.path.join(\n", - " local_dir,\n", - " \"partition_simulated\",\n", - " dataset_name + \"_\" + analysis_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "svcca_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".svg\")\n", - "\n", - "svcca_png_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".png\")\n", - "\n", - "pca_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_uncorrected_\"+correction_method+\".svg\")\n", - "\n", - "pca_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_corrected_\"+correction_method+\".svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Load pickled files\n", - "uncorrected_svcca = pd.read_pickle(similarity_uncorrected_file)\n", - "err_uncorrected_svcca = pd.read_pickle(ci_uncorrected_file)\n", - "corrected_svcca = pd.read_pickle(similarity_corrected_file)\n", - "err_corrected_svcca = pd.read_pickle(ci_corrected_file)\n", - "\n", - "permuted_score = np.load(permuted_score_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Concatenate error bars\n", - "uncorrected_svcca_err = pd.concat([uncorrected_svcca, err_uncorrected_svcca], axis=1)\n", - "corrected_svcca_err = pd.concat([corrected_svcca, err_corrected_svcca], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Add group label\n", - "uncorrected_svcca_err['Group'] = 'uncorrected'\n", - "corrected_svcca_err['Group'] = 'corrected'" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
scoreyminymaxGroup
number of partitions
10.9996950.9995490.999841uncorrected
20.9777230.9694490.985996uncorrected
60.9411950.9185440.963846uncorrected
10.9996950.9995490.999841corrected
20.9174170.9132880.921546corrected
60.5947200.5813800.608059corrected
\n", - "
" - ], - "text/plain": [ - " score ymin ymax Group\n", - "number of partitions \n", - "1 0.999695 0.999549 0.999841 uncorrected\n", - "2 0.977723 0.969449 0.985996 uncorrected\n", - "6 0.941195 0.918544 0.963846 uncorrected\n", - "1 0.999695 0.999549 0.999841 corrected\n", - "2 0.917417 0.913288 0.921546 corrected\n", - "6 0.594720 0.581380 0.608059 corrected" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Concatenate dataframes\n", - "all_svcca = pd.concat([uncorrected_svcca_err, corrected_svcca_err])\n", - "all_svcca" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SVCCA " - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAHVCAYAAABMlGVAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XdYFGfXBvB7dheWXkWaXcQWW0ys2DAaVDTYsWOJ0Whii8a8aWpM8r7RWBITY4zdqJ8aW+y9K2psMRpFRREFlN7LwvP9gbuy7AILLEW8f9fFhU49M8zOnnnmzDOSEEKAiIiIiIjKDVlZB0BERERERNqYpBMRERERlTNM0omIiIiIyhkm6URERERE5QyTdCIiIiKicoZJOhERERFROcMknYiIiIionGGSTkRERERUzjBJJyIiIiIqZ5ik53Ls2DH07dsX7u7uMDU1hb29PerWrYv+/ftjyZIliIuL05q+Y8eOkCQJDx48KNG4AgICIEkSjh8/XibrB4BZs2ZBkiSsXr26xNdFr6bVq1dDkiTMmjWrrEOpMB48eABJktCxY8eyDqXM/fDDD2jYsCGUSmWF2yfHjx+HJEkICAgolfmIqOQxSc9hzpw58Pb2xrZt22BrawtfX1907doV5ubm2LZtGz744APcunWrrMMsd0rzQoGIqCi2bduGSZMmISwsDL169cKIESPg4+NT1mEZrKiNJGxcIXp5Kco6gPLir7/+wqxZs2BiYoLNmzfDz89Pa3x4eDjWr18POzs7reFr165FcnIy3N3dSzS+b7/9FjNnzkS1atVKdD35mThxIvz9/eHq6lpmMVDF1rt3b7Rq1QqVKlUq61CogtmxYwcAYOvWrfD29i7jaIyvRYsWuHXrFmxtbUtlPiIqeUzSn9u2bRuEEBgwYIBOgg4ALi4u+Oijj3SGl1bS7OrqWubJcaVKlZg8UYmytbVlskAlIjQ0FABQq1atMo6kZFhYWKBevXqlNh8RlTyWuzz37NkzAICTk1Oh5sur1EOSJNSoUQMqlQpfffUVPDw8YG5ujvr162PVqlWa6Y4ePYpOnTrBxsYG9vb2GD58OKKionTWk1dNel5OnTqFiRMnonHjxrC3t4e5uTnq1auHmTNnIjY2Vmf6nHWJ4eHhGDNmDKpUqQKFQoFFixYB0L1tqq51PXHiBACgZs2akCRJ8wMAvr6+kCQJBw8e1BtncnIy7OzsYG1tjYSEhAK3KywsDN999x06dOigeW7AxcUFffr0wcWLF/OcLykpCf/73//wxhtvwMbGBpaWlqhXrx4mTJiAO3fuaKbLWRN9584d+Pv7w9nZGTKZTNMSBwBRUVGYPn066tSpAzMzMzg4OMDHxyfP7Xz48CHGjx8PT09PWFhYwMHBAQ0bNsR7772H27dva01748YNDB06FLVq1YKZmRmcnJzQtGlTTJ48GWFhYQXuo169ekGSJOzbt0/v+MzMTDg7O8PU1FRzrAkhsHHjRvj7+8PT0xOWlpawtrZGixYt8PPPPyMrK0tnOTmPhwsXLsDX1xeOjo6QJAmBgYGoVKkSLCws9B5vAHD27FlIkoQOHTpohuVVk57z+D958iS8vb1hbW0NGxsb9OjRAzdv3tS7jqSkJMycORM1atSAmZkZPDw88NVXXyEjIwM1atTQHKeGKEoMBX1u1eeJnHLug3v37mHAgAGoVKkSbGxs0K1bN816VCoVvvnmG3h6emq27aeffsp3G+Lj4zFp0iRUrVoVZmZmqF+/PhYuXKj37wtkfz6//fZbNGvWDFZWVrCyskKrVq2wZs2afLcnPT0dc+bMQb169aBUKrUaPvbu3YsuXbrA3d0dSqUSbm5u8PLywuzZs/ONPbdHjx7hvffeQ/Xq1aFUKlG5cmW95wH1cXrs2DEA2uepgs6nOev5C7Pvrl69ihkzZqB58+ZwcnKCUqlErVq18P777+PJkycFrmfq1KmoWbMmTExMMHnyZNSoUUOzf0aOHKl1nlVvg77a8qLOp6ZSqfDjjz+iefPmmr9/ixYtsHTpUmRmZupMn/P7cMeOHWjVqhUsLS3h4OCAQYMGaS6UckpPT8fPP/+MN998E46OjrCwsECNGjXg6+uLTZs25fv3IarwBAkhhJgzZ44AIKpWrSoiIiIMnq9Dhw4CgAgODtYaDkBUr15d9O7dW9ja2go/Pz/RtWtXoVQqBQCxcuVKsWXLFqFQKISXl5fo16+fcHd3FwCEl5eXyMrK0lreiBEjBABx7Ngxg9bfsmVLYWZmJlq0aCH69u0revToIVxdXQUA0bBhQ5GQkKA1/bFjxwQA0b17d1GlShXh4uIi+vXrJ3x9fcWyZcuEEEJ8+eWXAoBYtWqVEEKIZ8+eiREjRghnZ2cBQPTt21eMGDFC8yOEELt27RIARL9+/fTuv9WrVwsAYsyYMQbt76VLlwoAom7dusLHx0cMGDBANGvWTAAQJiYm4sCBAzrzPHnyRDRs2FAAEPb29qJnz56iX79+4vXXXxcymUwsXLhQM+2qVasEAOHv7y9sbGxEzZo1xcCBA0XXrl3F7t27hRBChIaGilq1agkAolq1amLgwIHC29tbyOVyAUAsWLBAa/0hISHCwcFBABB16tQRffv2FX5+fqJZs2ZCkiTN/hRCiEuXLgkzMzMBQDRu3FgMGDBA+Pr6igYNGuj9++uzadMmAUAMHTpU7/h9+/YJAKJnz56aYSkpKQKAcHR0FO3atRMDBw4Ub731lrCwsBAANH/PnNTHw8iRI4WJiYlo2LCh8Pf3F+3btxfXrl0TU6dOFQDEkiVL9MYREBAgAIj169fr7P8vv/xSa1r18T916lQhl8tFy5YtxYABA4Snp6cm7rCwMK15UlNTRatWrQQA4eDgIPr27St8fX2FhYWF8PPzE9WrVxeFOQUWJYa8Prdq6vNETup9MHz4cOHg4CDq168vBg4cKBo1aiQACCcnJxEWFibeeecdzbnl7bffFqampgKA+PXXX7WWFxwcLACIVq1aiebNmws7OzvRp08f4evrK8zNzfP8+0ZERIjGjRsLAMLFxUV0795ddOvWTdja2goAYuLEiXq3p2rVqqJbt27C0tJSdO/eXfTv31+MGzdOCCHEkiVLBAAhl8tF+/btxaBBg0SXLl1ElSpVCvW3uH79uqhUqZLmXODv7y/atGkjAAiFQiE2b96smXb79u15nqdu3bqV73qKuu8GDhwoFAqFeP3114Wfn5/w8/MTNWrUEACEq6urePz4sd71tGjRQjRt2lTY29sLPz8/0adPHzFr1iwxbdo00aRJEwFAtG3bVus8q94G9Tk8ZzxFnU8IIVQqlejevbsAIGxsbISfn5945513hLW1tQAgevfuLTIzM7XmUX8fTZ8+XcjlctGxY0fRr18/UbVqVc35Lzk5WWuefv36CQDC2tpadO/eXfj7+4t27doJW1tb0aFDh3z/PkQVHZP05+7du6c56VpbW4sRI0aI5cuXi8uXLwuVSpXnfPkl6QDEa6+9Jp4+faoZfvToUc2J2tHRUZP4CSFEXFycJpk8evSo1vIKm6Tv3btXxMbGag1LTU0VY8eOFQDE7NmztcapT9Tqk29KSorOtuZO0guKQYjsE33VqlWFiYmJ3ouftm3bCgAiMDBQZ5w+169fFzdu3NAZvn//fmFqaipq166tc4HTuXNnAUAMGDBA5+IkODhYXLt2TfN/dYKkTkL0/e19fX0FADF48GCRlpamGX7q1ClhYWEh5HK5uHLlimb4F198kWdS8/DhQ3H37l3N/4cPHy4AiPnz5+tMe+vWLfHkyRN9u0VLcnKysLa2FlZWViIpKUln/NChQwUAsWnTJs2wjIwMsX37dpGenq417dOnT8Ubb7whAIgTJ05ojVMfDwDE//73P5313L59W0iSJJo0aaIzLi4uTlhYWAh7e3utY62gJF0mk4nt27drhqtUKtG3b18BQHz++eda83z11VeaxCcmJkYzPDg4WJM0FCVJL0wMxUnSAYiZM2dqjuesrCzNhU2DBg10zi2HDx/Wuzx1Aqi+8Hv27Jlm3N27d4Wbm5sAoLVNQghNgjZp0iSRmpqqGR4eHq45Jvbt26ezPQCEh4eHCA0N1dneatWqCUmSxMWLF7WGZ2VlGXQBqp5WfcEyY8YMrc/71q1bhUwmE1ZWVjqflfzOU3kp6r47evSoCA8P1xqWmZkpZs+erbmwzWs9rVu31jpe1fI6/6rllWwXdb758+drGnVybsuTJ09E3bp1BQDx448/as2j3scWFhbi7NmzmuFJSUmai6gVK1Zoht+/f19zzEZGRmotKyUlRWsZRK8iJuk5HD58WOvLW/1jZ2cnxo8frzdBKihJP3z4sM486pZffS2dixcvzjdJMTRJz0tycrKmhScn9YlaqVTq/XIVomhJuhAv7lJ89913WsNv3bql+fIzhiFDhggA4vr165phgYGBAoCoXLmyiI+PL3AZ6gTJyclJb4J77949AUBYWVmJqKgonfHq1uOcdwbGjx8vAIgdO3YUuP5u3boJAOLq1asFTpsf9fGyceNGreFJSUnCyspKWFtb67Ro5eXQoUOaFuSc1MdDo0aNdC6M1Ly9vQUAceHCBa3h6jsiH374odbwgpL0IUOG6Kzj0qVLAoBOq5v6ztSpU6d05lm+fHmRk/TCxFCcJL1WrVo6F03Xrl0z6NyS87OYMwE8ePCgzjzqv0Xnzp01w65cuSIAiDfffFOntVQIIS5fviwAiF69eulsDwCxZcsWvdtrbm4u7O3t9Y4zlLqho1q1ajr7Rwgh+vTpIwCIuXPnag0vbpJu6L4riLu7u3B0dMxzPbkvYNRKO0mvVq2aAKD37qT6DqmHh4fWcPU+/vTTT3Xm2bp1q8561OdnPz8/vbERvepYk55D586dcffuXWzbtg3jxo3D66+/DoVCgdjYWCxduhRNmzbVqR/Oj4mJid5+eNUPLnXt2jXPcYbUHhfk8ePH+OWXXzB58mSMGjUKAQEBGD9+PExNTREUFKR3ntdff93oPdWMGTMGCoUCv/32m9bw5cuXAwDGjh1bqOWlpaVh586d+PTTTzF27FgEBAQgICAAf//9NwBobdvhw4cBAIMGDYK1tbXB63jrrbdgYWGhM/z06dMAAB8fHzg4OOiMHzZsGIDsZwLUmjdvDgD4z3/+g927dyM1NTXP9aqnnTBhAo4fPw6VSmVwzDkNGTIEALBhwwat4Tt37kRiYiL69OkDc3NznfmuXr2K7777DhMmTMDIkSMREBCApUuXAkCex4z6uQN9xo0bB+DF31qtqH97fZ8ZT09PANqfmYcPH+Lx48dwcXGBl5eXzjwDBw4s1HqLEkNxdezYESYmJlrD1OeHgs4t+uJwcHBAly5ddIYPGjQIQPYzAur6avWzFX5+fpDJdL8m1DXqFy5c0BknSRJ69uypd5uaN2+OmJgYjB49Gv/884/eaQqi/mwNGDBAZ/8A+j+DxVWYfacWFRWFVatWYdq0aRg9erTmPJWRkYGoqChER0frLM/V1RVvvPGG0eIuqpCQEISEhMDJyUnv8e7r6ws7OzvcvXsX4eHhOuMN/YzUq1cPlpaW2LNnD+bNm6e3Xp/oVcbeXXIxNTVF79690bt3bwBAbGwsNm3ahP/85z94+vQpJk6ciEOHDhm0LBcXF8jlcp3hVlZWAKA3GVaPS0tLK+omAAAWLFiAmTNnIiMjo1DzlURvNa6urujVqxe2bduGEydOoEOHDkhPT8fatWthbm6uSSgN8ffff6NXr1759sme8wHUR48eAQBq165dqJjz2g/qL5HcD/upqYc/fvxYMywgIAAHDx7E5s2b0bNnT5iZmeHNN9+Ej48PRo0aBRcXF82006dPx+nTp3H8+HF06tQJVlZWaN26NXr06IGAgACDez7x9vaGq6sr9u/fj+joaM0Fxe+//w4AOvs8PT0dAQEB2LhxY57LzOvB3vyOGT8/P7i4uGDjxo1YsGABrKyscPnyZVy+fBmtW7dGw4YNDdoetSpVqugMU1985fzMqBOBqlWr6l2OtbU17Ozs8nyo1RgxFFd+54eCzi364qhevbre9dja2mr2RUxMDBwdHTWfr08//RSffvppnjHqu+CsXLkylEql3ul/+ukn+Pn5YeXKlVi5ciWcnZ3RoUMH9OnTB/369dO7TbkV5TNYXIXZdwCwceNGjB07FomJiXkuMyEhQedCvyy72M1JvY/z2m5JklC9enXExsZqLoZzMvQzYmNjg+XLl2Ps2LGYMWMGZsyYAU9PT3Tq1AnDhg1D27ZtjbVJRC8ltqQXwM7ODuPGjdP0aHLs2DEkJycbNK++FqjCjC+q8+fPY9q0abCwsMDq1avx4MEDpKamQmSXN+XblaOZmVmJxJS7RXXHjh2IjIxE//79dfqez4t43kXmgwcPMG7cOFy9ehXx8fHIysqCEAKffPKJZrriKup+0NeiLJfL8X//93+4fPkyvvzyS7z55psIDAzEp59+Ck9PT5w9e1YzrY2NDY4ePYpTp05hxowZaNCgAY4ePYrJkyejbt26ebZm61unv78/MjIysGXLFgBAZGQkDhw4AFdXV51+ohcsWICNGzeiUaNG2LdvHyIiIpCeng4hhObuUV77Nb99ZWJiglGjRiExMVHTU4P6jsq7775r0LbkVFKfmbKIIa8eVQxZT0nvB3VsXl5eGDFiRJ4/+i6w8zseGjdujJs3b2L79u149913YWNjg82bN8Pf3x/t2rVDenp6sWMvTI89JeHhw4cICAhAeno6Fi1ahKCgICQnJ2vOv61btwag//NUUuffkpDffi7M8Tlo0CDcv38fy5cvR//+/REbG4tly5bBy8sL06ZNM0aoRC+tsv/Ge0mok5rMzMwitb6Vpu3btwMAvv76a4wYMULTRRkApKSk6L09WdLeeusteHh44I8//kBMTEyRyh3+/fdf/Pvvv3jjjTewdOlSNGnSBNbW1povi/v37+vMo25JvXfvnhG2AnBzcwOQ/UWsj7oFUl8raLNmzTBr1iycPHkSz549w5QpU5CQkIDJkydrTSdJEry8vPC///0PgYGBePLkCQYNGoSIiIh8WzVzUydQ6tbzzZs3Q6VSwd/fX6fFUn3MbNy4ET4+PqhcubKmlEDffi2MsWPHQiaTYfny5UhOTsaGDRtgY2NTrJKTgqgvRNV3UnJLSEgolc+xqakpAOhtUc0rtpISEhKid3h8fDxiY2Nhbm6uuWBWt4T6+flh9erV+f4UlpmZGfz8/PDrr7/izp07uHHjBho3boxz587plMTpU5zPYFEVZt/t3bsX6enp+PDDDzFp0iRN97tqxf08lYaC9nHOccbYz05OThgzZgw2b96M8PBw7Nu3DzY2NliwYEGRy6KIKgIm6c8V1Pp69+5dANlfuuX9hT4xMTEA9N9y3LJli1FamnNSJyL51U9LkoSxY8ciNTUVc+bMwZEjR1C/fv1C3c7Mb7tiYmL0liG99dZbALKTz/xuPRtKXd+8f/9+vUne+vXrAQDt2rXLdzk2Njb49ttvIUkSbty4ke+0lStX1vQbXtC0OTVv3hz16tXD6dOnERISkmepC5D/vt28ebPB69SnevXq8PHxwYULF/DZZ58hLi4OQ4YM0VvzbyzVq1eHu7s7wsPDte5UqKnvLpQ09cVCzr741QwtmzOWqKgoHDlyRGe4+g5H69atNRdv6vpr9cVbSWrYsCEmTJgAwLDjW/3Z2rJli96+ug39DBZGYfZdfp+lkydPIiIiokgxGHKeNdZ81apVQ7Vq1fDs2TO9271nzx7ExMTAw8NDp9SluCRJgo+PD3r06AEATNLplcYk/bnPP/8c06dP19vi+vjxY7z33nsAsl8Uoz7plVfqB3RWrFihVZN+8+ZNfPzxx0Zfn7rVpaCHakeOHAmlUolFixZBCFHocgcPDw/IZDIcPXpUq+wjNTUV48aN0/sgVosWLdCpUyc8ffoUY8eORVJSktb4Bw8eaB44NUStWrXQo0cPJCQkYNKkSVr799y5c1i6dCnkcrkm6QCAdevW6U0+9u3bByGEVt30L7/8guDgYJ1p9+7dCyDvGuu8DBkyBEIIfPvttzh79izq1auneTg1J/Ux88svv2gN37p1K9auXVuodeqjLndauHAhgKKVuhR1ndOmTUNcXJxm+MOHDzFnzpwSXz8AzYuali5dqvWSsqtXr+KLL74olRhy+uijj7TiCA4O1uyLnMdsy5Yt0aVLF5w5cwYTJkxAfHy8zrKuXbuG/fv3G7zu5ORk/PDDDzoXt1lZWZrlGHJ8d+zYEY0aNcKDBw/wxRdfaDU6bN++Hdu2bYOVlRVGjRplcGyGMHTfqT9L69ev1zrfPH78WHNMFoWh51ljzffBBx8AAKZOnap52R8AhIeHY/r06QCASZMmFWqZuV25cgXbtm3TKXOKjo5GYGAggMKf84gqEj44+lxiYiIWL16M+fPnw9PTEw0aNICZmRlCQ0MRGBiIjIwMeHh4aN6+WZ6NHDkS33//Pf7880/UrVsXb775JqKjo3HixAn4+fnhwoUL+d7GLKxevXphzZo1GDx4MLp27ap5uDH3retKlSqhb9++2LBhA5RKJYYPH16o9VSuXBmjR4/G8uXL0aRJE3h7e8Pc3BynTp1CZmYmAgIC9N5+X7duHTp37oyNGzfiwIED8PLyglKpxL1793D16lV8//33aNSokcFxLFu2DO3atcPatWtx4sQJtG7dGs+ePcPx48eRmZmJ77//Hk2bNtVM/8cff2D48OGoXbs2GjVqBHNzcwQHByMwMBAymQxz587VTPvLL79g/PjxaNCgAerXrw+FQoF///0X165dg5mZWaETu8GDB+Pzzz/XJN95PaQ7Y8YM7N+/HzNnzsSWLVvg6emJoKAgXLp0CR999BHmz59fqPXm1r17d1StWhWPHj3CG2+8gWbNmhVreYaYPn069uzZg/Pnz6N27dro1KkT0tLScPToUXTu3BlCCKP2xqJPp06d0KFDB5w4cQINGjRA27ZtERkZicDAQHz44YfF3q+F0apVK6Snp8PDwwPe3t7IyMjAkSNHkJycjKFDh6JPnz5a069fvx4+Pj74+eefsWHDBjRt2hRubm6Ii4vD9evX8ejRI0yaNAk+Pj4GrT89PR2TJk3CRx99hObNm2veTHrx4kU8evQINWrUMKj8TZIk/P777+jUqRO++eYbbN++HU2bNkVISAjOnDkDhUKBFStW5PvsTWEVZt/16tULDRs2xKVLl+Dh4YG2bdsiNTUVx44dQ9OmTdGmTRu9d3cK0rVrV5iZmWHhwoW4ceMG3NzcIEkSpk+fjrp16xp9vilTpuDo0aPYt28f6tSpA29vbwghcOTIESQkJMDPzw/vv/9+obcjp4cPH6Jv376wtbXFG2+8ARcXF8TGxuLkyZNISEhAz549NTX8RK8itqQ/99lnn2HdunUYOnQolEolTp06ha1bt+LmzZto0aIFvvvuO1y9etXo3ROWBEdHR1y8eBGDBw9Geno6du3ahcePH+Orr77Kt/eOourTpw8WLlyIKlWq4M8//8SKFSuwYsUKvdOqa/v79Omj6QmhMJYuXYrvv/8eNWvWxJEjR3Dq1Cm89dZbuHTpUp49Ebi7u+PixYuYM2cOqlSpgkOHDmHfvn1ITk7G+++/D19f30LFoF7etGnToFAosG3bNvz111/o3LkzDhw4gKlTp2pNP3XqVEyYMAHW1tY4deoUtm/fjqdPn2LgwIEIDAxE//79NdN+9dVXGDVqFCRJwpEjR/Dnn38iJSUFY8aMwdWrVwvd20GtWrW0vuQGDx6sd7r27dvj9OnT8Pb2xv3797F7926Ymprijz/+0GolLCq5XK5pVS6NVnQAUCqVOHToEGbMmAFLS0vs2rUL//zzD6ZNm4b/+7//Q0RERJGOwcKQJAk7d+7EuHHjIEkS9u7di+joaCxevBjz5s0r0XXnplQqcfToUQwePBjnz5/HgQMHULVqVcyfP1/vxW3lypVx9uxZ/PDDD2jQoAGuXLmCrVu34vr166hVqxbmzZuHjz76yOD1W1lZ4aeffkLPnj3x7Nkz7Nq1C0ePHoW9vT1mz56Nv/76y+C/R6NGjXD58mW8++67SExMxNatW3H79m34+fnhzJkzGDBggMFxGaIw+87U1BSnTp3C+PHjYWZmht27d+PWrVv44IMPcOjQIb3dRhrCzc0NO3fuRKtWrXD69GmsXLkSK1asKPBCs6jzyeVy7Nq1C4sXL0atWrVw4MABHDx4EHXr1sVPP/2ErVu3FvsB5latWmHu3Llo3rw5bt++jS1btuDSpUto3LgxVq5ciT/++KNYyyd62UnC2AXKRPl4++23cfDgQRw7dkxvP89UMSUnJ8Pd3R0qlQpPnjwpVJ/1JeH8+fNo3bo1fHx8sG/fvjKNhcqvBw8eoGbNmujQoQOOHz9e1uEQ0SuGLelUai5cuIBDhw6hYcOGTNBfMT/99BNiY2MxYsSIUk3Qr1y5otPV4f379zXPmAwdOrTUYiEiIioM1qRTiZs5cyZCQkKwZ88eCCHw9ddfl3VIVAqioqLw8ccfIyIiAnv37oWVlRVmzpxZqjEMGjQIcXFxaNSoERwdHRESEoK//voLaWlp6NWrV57lP0RERGWNSTqVuE2bNuHRo0eoXr06vv32W7zzzjtlHRKVgoSEBKxYsQKmpqZo1qwZ5s+fr7dbupL0wQcfYPPmzbh+/Tqio6NhZmaGpk2bYujQoZo6cSIiovKINelEREREROUMa9KJiIiIiMoZJulEREREROUMk3QiIiIionKGSToRERERUTnDJJ2IiIiIqJxhkk5EREREVM4wSc8lIyMDYWFhyMjIKOtQiIiIiOgVxSQ9l8jISPz666+IjIws61ColGRkZCAiIoIXZlQu8Hik8oTHI1HZYZJOrzyVSoVnz55BpVKVdShEPB6pXOHxSFR2mKQTEREREZUzTNKJiIiIiMoZJulEREREROUMk3QiIiIionKGSToRERERUTnDJJ2IiIiIqJxhkk5EREREVM4oyjqAkpKSkoLt27fj9u3bCAoKQmJiIiZNmoTOnTuXdWhERERERPmqsC3p8fHx2LRpE0JDQ1FiLblhAAAgAElEQVSzZs2yDoeIiIiIyGAVtiXdwcEBa9asgb29PYKCgjBt2rSyDomIiIiIyCAVtiXdxMQE9vb2ZR0GEREREVGhVdgknYiIiIjoZcUknYiIiIionKmwNekVXVZWFq5cuYLImFjYVKuHutXdYKkATGWAJEllHR4RERERFQOTdACRkZGIjIwEAERHRwMAUlNTkZKSYvR1RUdHIz4+vtjLCQ0NRUxMDAAgLvoMwmIbQZIpIJMETGXZP0oImMoAUzmgLETebmNjAwcHh2LH+LJIS0vT+k1Ulng8Unnysh2P5ubmZR0CkdEwSQfwxx9/YPny5QAAW1tbtG/fHqGhoUhKSjL6um7dugUhhNGXq3rwt+bfxT2VSpKE+vXrF3MpL5/Q0NCyDoFIg8cjlScvy/H42muvlXUIREbDJB1A37590aFDBwDZLd2HDh1ClSpV4OLiYvR12dvbG6UlPS4uDg9DQiABgNwEJtWLfmKSIKCUP2+Bh4CdrS0qOzrAQi4gfwUqZ9LS0hAaGooqVapAqVSWdTj0iuPxSOUJj0eissMkHUClSpVQqVIlAEBYWBgAwMzMrERum7m7u8Pd3d0oy6pdvwl+P/cEJ8NkcHpkDhc7Uzjbm8LZXgmlSeGeCc4EkPL8Jw7Aw4Ts4eZywEoBWCokrd9mFbD2XalU8lYplRs8Hqk84fFIVPoqdJK+e/duJCUlaerML1y4oKk99/X1haWlZVmGV2xOtuaY7FMbPZ+lYc6eMCw//wwAIAGws1LAxV4JVwdTdGpgi7puFkgTQEpm4daRkpn98yxNXaKT/VsuAZYKwEohwfJ5Im+lkGCpABSyipW8ExEREZW2Cp2k79ixA0+fPtX8/9y5czh37hwAoGPHji99kq5W20mJNQE1cOJOAmbtDsPtiDTEJKoQk6jCrUdJOHotBvYWckzv6oxBb9ojTUhIVAkkqoAkFZCoEkhSAapClMpnCiA+A4jPyDlT9r/NZDkS+Oe/rRTZrfIVrfWdiIiIqCRU6CT9t99+K+sQSlUHT2scmmSF3y9E47uDEYhJftFsHpOcif/seII156Iwy9cVHTytteYVQiAtC88T9+wEXp28Jxey9T01C0hNB6LStVvfZVAn77rlMyZsfSciIiLSqNBJ+qtIIZcworUj/JraYdGRp1hxJhKqrBfjb0ekYdCKB3irvjW+6OEKD6fsB4EkSYKZHDCTA5Vy9deYKQSSVfoT+IxCtL5nAUhQZf+oE3f1b6We1ndLBWAhB2RsfSciIqJXDJP0CsrWXI4vfV0xtKUD5uwJw6FbCVrjD99KwPHbCRjVxhGTOzvDzkKe57LkkgRrE8DaBMiueM8mhEB6rtZ39e/kzBdpuCHSsoC0dCA6V+u7hOzkPWfZjKVCglJkAKqMQqwhb6mpqcjIyEBycjKysrIKnsFAJiYmMDU1NdryiIiI6NXBJL2CU9erH7+TgNnP69XVVFnAr6ejsOVyLGZ0dcaQFg5QFKLPRUmSoJQDSjngmKv1PUsIJGfqb31PL0QeLIDn8wIROVrf0x/ehurRLcMXZICgoCCjLq9Bgwbss5eIiIiKhEn6K6KjpzW88qlX/2THE6zOo169KGSS9LzHFyBn6zsApGcJzQOrWq3vquySGEOYuNeBwrmG3nESsh9StVAAFnIJFgrA8vlvUz09U8bGxuLMmTNo27Yt7OzsCrGVBcRoYmK0ZREREdGrhUn6K0Rdr/5OEzssOhKBlWej9Nard3ler17bqWReXGEqk2BqCtib6ra+p+TR+p6WK3uXFCaQFHknwanPf6KzAKS/GK6QdB9czTRJBZDdN35F6fGHiIiIXm5M0l9BdhZyzOrphqGtHDFnTxgO56pXP3QrAcfvJD6vV68MW/O869WNSSZJmvrz3K3vGTla35NU0ErgC1NFrhJAbAYQ+/yJ16zUJKRePwsAOHHzAazr2MFEBphIyP4tk6DQ/Fs9XIKJDDrD2b0kERERGQuT9FeYh5MSa/OoV8/IFFh2KhJbLsdgepfC16sbm4lMgp0pYJer9V3oaX1X/041IHtXhd0D0lM0/06t3gBpipwPe+p7/FX/I7HqpF07edeX0Euaf+ech0k+ERERqTFJJ029+voL0ZiXq149Oim7Xn3N+SjM8nVD+zpWZRipLknKrjW30NP6rsoSSMrU3/qe+TzPlpQ5XnMtk2f/FJFKACqdPuUNT/JNciTyihwt+erhipwt+TmGmUqAjEk+ERFRhcIknQBk16sHtHaEXxM7LDwSgVW56tX/DU+D/2/B6Nogu169VqWSqVc3JoVMgq0MsDXRbX1Pzcp+22qCdW3cVSUjJiQIDg3fhKlSDlUWkJFVuD7gjSFDABmZALQSfcOSfAnIVaYDKHK02Gsn+rrD2Rc9ERFR+cIknbTYWcgxu6cbhrVyxJzdYTj8r3a9+sGbCTh2u/Tr1Y1JkiSYy7N7gKmkVMCmTjUcCQlCs8qWcHR8sT1CCKjEi4Q9Iyu728oMIbKHPR+endQLzTTq35mlmOQLZHdtmQ7kSPLzCkB3uEzKkeBrEnpJK+k3kbKHmeYq31FITPKJiIiMjUk66eXhpMTakTVw/HYCZu0Ow52n+uvVZ3R1xuA3y7ZevaRI0oskNdcYg+bPypnkayX6ORJ6zXDx/ALgxXDjvVbJkFiBNJG7F53C1eMrcrXkm0iS3mGsxyciIioYk3TKV8e61jjsYYV1gdGYf0i3Xn3m9uz+1Wf3dEM7j9KrV09PT0dGhvHeOKr+nZSUZJRlAi/eOKrbN7thCWmm0E3cM9TD9Ax/0dKfPaw0q3XU9fipWkMLX4+vndQXXI9vIgFyJvlERFQBMUmnAinkEka2cUTvpnZYcDgCq8/p1qsPXF669ep37tzBzZs3jbrMM2fOGHV5xX3jqFySIJcD2nvTsGRUCIFMkbMc50WLvXbpzvNhWbrTliZj1eMrZHhejmNYPb5Clr2fiYiIyhsm6WQwOws55vRyw7BWDvhqT3iZ1qt7enqiZs2aRllWamoqQkJCUK1aNZiZmRllmUDZvnFUkrL7d1cAgNafwfAkX12qo9LTYq+V1OsZpqqg9fi6D+eyHp+IiEoGk3QqtDqVzTT16l/uDkNQHvXqH3d1xuAWDpDLjJ/EmJqawtTUtOAJDSCTyWBiYgILCwuYm5sXPMMrwNj1+CqRnUjrq8dX5WjJV//OKsUkvzTr8V+09LMen0qOscsBMzIykJycjKws4z0poy4HJKK8MUmnIntRrx6F7w891alX/3j7E6w+F43ZPV3hVYr16lT2ZJIEUwmlUo+vytWS/7LX48uEAimWrshKlsNMlaVTo6/I0brPenzSpyTKAYOCgoy6vOKWAxK9CpikU7GYyCWMalMJvZvaYeHhpzr16rfCUzFgeTDebmCDz3u4vBT9q1PZK249fpYA0vOox9cZplPSUxJblDfdenwZoLRDYhqym/hfbJnOvLnr8XP3oKN3eI6LAtbjV0zGLAeMjY3FmTNn0LZtW9jZ2RllmUDZlgMSvSyYpJNR2FsoNPXqc/aE40iuevUDN+Nx9HYCRrd1xGTvyrB5CftXp5eDJEmQS4A5UGL1+C/6z9cd9lLV4yN33b12DzovuspkPf7LxJjlgOrer8zMzGBpaWmUZRKRYZikk1HVqWyGdSNr4Njz/tVz16v/cjISW/6Kwcdvu2DQm/YlUq9OVBwlUY+fkfuFV5rhZVyPj+xa/KLW48slGPSAraZGP2dLPkt1iIjyxSSdSkSnutbwyqNePSopEzO2Pcbqc1GY5ct6dapYiluPn5ScgrvBD1Cleg3ITM3yrLvX17NOadfjZ4rsn9QiJvm5a+xzluXo6zOf9fhE9Cphkk4lJme9+oLn9eqZOb7Mb4Zl16v7NLTB591dUJP16kSQSYBcZMJCDpibqpPQwtXj632jrZ5h5aUeP6UY/eMrcrXY65Tv5CrXUSf6rMcnovKOSTqVOHsLBb7q5YbhLR0we08Yjt5O1Bq//594HPmX9epExaWux5cDMCtGPb6+nnUMqdF/Jerxn0/LenwiKmlM0qnU1HE2w/pRNXH03+x69bvPWK9OVJ7krMfXfmOA4Um+7htttXvWSc9Zj5+rRj+zAtbj6337LUt1iMgATNKp1HnXs0a7OlZYez67Xj02RX+9+uyermhbm/XqRC8LqZj1+FlCGFR3X6Hq8Qt4wJb1+ESvLibpVCZM5BJGt62EPs3yrlfv/2t2vfoXPVxQw5H16kQVnUySoCxO//jIXXefdz2+bklPCWxQPjT1+NpboWfKwtXjK3K17rMen+jlxSSdylTOevVZu8Nw7I5uvfrRfxMw2iu7Xt3ajPXqRKRLkiTIAcjlRa/HzxS5EnwBqLJEjhKdXDX6OVv3X9J6fEWuFvvcw+KS00tiE4jIAEzSqVyo42yG30frr1dPzxRYeiISW/6KxcddneHPenUiMjJJkqB43tpcnHp8Ve6WfD0Jvb6335bHevzM2Aik3TgFAPjnn3/Qvn37UomPiLIxSadyJb969chEFaZve4xV56Iwp6cr2rBenYjKidKox1flKNfRGpaVnXgbm+rpQ82/w8PDkZWVBZlMZwOJqIQwSadyR12vru5ffc153Xr1fr8Go1tDG3zOenUiqgBKoh5flasHHXX5jm5Jj/5iGZm1IzKfhgAALC0tmaATlTIm6VRuOVgqMPcdNwxvlV2vfjxXvfq+5/2rj/FyxCTWqxPRK8po9fi5H7C1rYVHplkIvXUNzZs3L4nQiSgfvCymcs/T2QwbRtfE+pE14OGk3c6Uninw84lItJ13B78HRiMzq5S7aCAieslJkgSFTIK5XIKNiQRHpQQXMwlVLeWo61YJAGBiYlLGURK9epik00vDu541jkypgzm9XGGX662k6nr1t3+4i7P3EvNYAhEREdHLgUk6vVRM5BLGtK2E09M9MbKNI+S5jmB1vfqYdQ/xMIpdhxEREdHLiUk6vZQcLBX4+h03HJlcBx09dXt52XsjHh2+v4O5e8OQkJqpZwlERERE5ReTdHqpeTqb4fdRNbBuZHXUzq9e/QLr1YmIiOjlUaTeXcLDw7F//36cOHECV69exbNnzxAbGws7Ozs4OTmhadOm6NChA3x8fODi4mLsmIm0SJKEzvVs0L6ONdaci8L3hyMQl/Kiz8bIRBWm//EYq5/3r966FvtXJyIiovKtUEn6gQMHsHTpUuzduxeZmZkQQrtlMjk5GU+ePMG1a9ewdu1ayOVy9OjRA+PHj0fXrl2NGjhRbiZyCWO8KqFPMzvMPxSBdYHRWv2r//MkFX2XBaP7azb4vLsrqjuall2wRERERPkwKEm/dOkSPvroI5w6lf16YC8vL3Ts2BEtWrRAvXr14ODgABsbG8TFxSEmJga3bt3ChQsXcOzYMezatQu7du1C+/btMX/+fPa1SiXOwVKBb/zcMaKVI2btDsOJIO3eXvbeiMfhWwl4t10lfNjJiS8LICIionLHoPykRYsWcHZ2xjfffIMhQ4agSpUqeqdzcHCAg4MDateuDV9fXwDAo0ePsH79evzwww9o0aIFMjP5EB8VX3p6OjIyMvKdpoo18Nugyjh91wILjzxFSLT29L+feYL9VyPwbhs7NLBKR3JyMrKyjPdybRMTE5iasrWeiIiICs+gJH3hwoV47733YGZmVugVVK1aFZ988gmmTJmCZcuWFXp+In3u3LmDmzdvGjz9qCoA9F9bAhHA/Qjg/r27RolNrUGDBnjttdeMukwiIiJ6NRiUpE+aNKnYKzIzMzPKcogAwNPTEzVr1iz0fLEpmfj1VCS2XYlFZhbQslIsurpEQi4DUjOBwIzGmNjJGdUcit8Czjf0EVFZMOROo6FSU1M1v5OSkoyyTIB3GokMUaLluJmZmdi/fz969OhRkquhV5CpqWmRTvCWlsDs3jYY3DoVX+4Og2lyDNSPP5vJgf1/p+LPW6EY0doRUzpXhoMlK9aJ6OVS2DuNhjhz5oxRl8c7jUQFK5EM5OLFi1i/fj02bdqEqKgoqFSqklgNUZHVdTHDxtE1cPC6BUJunIWtLANHw+2RkikHAKw4E4Wtl2Mw2bsyAto4QqngKwWI6OVQ1DuN+qSmpiIkJATVqlUrUslrXninkahgRkvSHz58iPXr12P9+vW4c+eOpnvGhg0bGmsVRBrGup3r5WGFSIcWCDx3BveTbWFnkmOZKmDxwUfYdjEcEzs5wbuudaGWzdu5RFQWinqnUR+ZTAYTExNYWFjA3NzcKMskIsMUK0mPi4vD5s2bsW7dOpw9exZCCAghULNmTfj7+2PQoEG8nUUloiRu546p9SDPcSl3b2FPIZ8r5e1cIiIiKqpCJ+kqlQp79uzB+vXrsWfPHqSlpUEIAQcHB2RlZSEuLg737t0riViJNErydm5obDqWHHuGI/8m6p2+22s2eL99JbjY5n+7lrdziYiIqKgMTtLPnz+PdevWYfPmzYiOjoYQAkqlEr1798awYcPQvXt3eHt74+zZsyUZLxGAkr2dW9fSEj8OtUdgcBLm7AnDlUcpWtNvvJKC7X+HYmy7SpjYyQlWSrlR4iAiIiJSMyhJr1OnDu7fv6/5f7t27TB06FD0798ftra2JRYcUVlqWdMSf75fGzuvx+GbfeF4HPuiXj1VJfDDsWfYcDEGM7o6w/8NeyjkUhlGS0RERBWJQUn6vXv3IEkSXF1dsXbtWnh7e5d0XETlgkwmoXdTO/g0tMFvpyPx47FnSEx78VbSyEQVZmx7jBVnIvFlD1d0LOTDpURERET6GNSvXL169SCEwJMnT9ClSxe0bdsWS5cuRXR0dEnHR1QumJvI8EGnyjgz3RPDWjpAlqvR/HZEGgavfIAhK4JxOzy1bIIkIiKiCsOgJP3mzZu4dOkSPvzwQzg5OeHcuXOYOHEiXF1d8c4772Dr1q1IS0sr6ViJypyTtQn+18cdRybXQSdPK53xx+4kovOiIHy87TGeJRjnjX9ERET06pGEukNzA2VlZeHgwYNYu3Ytdu7ciZSUFEiSBBsbGwBAfHw8MjMzSyTY0hAWFoZff/0VY8eOhaura1mHQ6UgMzMTSUlJsLS0hFxeuIdAj99OwJy9Yfg3XPci1UopwwednDDGqxLMTfgyJDJMcY5HImPj8UhUdgqdOchkMvj4+GDDhg2IiIjAypUr0alTJyQkJCAuLg4A4ObmhilTpiAwMNDoARMZW3p6OkJCQpCenl7oeTvWtcbBD+tgXh93VLLSfsQjMS0L3+6PQPv5d7DtSiyysgp1PUyvqOIcj0TGxuORqOwUq3nPysoKAQEBOHz4MEJCQvDf//4Xr732GsLDw7F48WK0adMGHh4exoqVqFxSyCUMaemAszM88WEnJ5gptAvWH8dmYOKmR/D96R4Cg5PKKEoiIiJ6mRjtHrybmxtmzJiBa9eu4erVq5g6dSqcnZ0RHBxsrFUQlWtWSjlm+rjg5Eee6NvMTmf81dAU9P7lPt5d9xAPovgMBxEREeWtRAplGzdujPnz5yM0NBT79+8viVUQlVtV7E3xo39V7J1YGy1rWuiM33MjHh2+D8Ls3WGITX55n98gIiKikmNwkn7r1i2cPHkSISEhBU778OFDnDx5Enfu3EGXLl2KFSDRy6ppVQtse68WfhtWDTUctd+OmpEpsOxUJNrOu43fzkQiI5P16kRERPSCQUl6ZGQkWrduDX9/f5iYmBQ4vampKfz9/eHl5YXY2NhiB0n0spIkCd1fs8XxqXUwy9cVtubaH7mY5Ex8sSsMnRbcwf5/4lHIzpaIiIiogjIoSV+1ahXi4+PxzTffGNQtoaurK/773/8iOjoaq1atKnaQRC87U4UMY9tVwpnpdTGmrSMUuT559yPTMWrtQ/T/NRjXH6eUTZBERERUbhiUpO/Zswe2trYYOnSowQseMmQI7OzssGvXriIHR1TROFgqMKeXG45N9YRPQxud8WfvJ6Hbj3cxefMjhMXxZUhERESvKoOS9H/++QetWrWCQqEoeOLn5HI5WrZsiX/++afIwRFVVLWdlFg5vDr+eK8mGrmbaY0TAtj8VyzazruNeQcjkJTGh0uJiIheNQYl6XFxcXB0dCz0wh0dHTUvOCIiXa1rWWHfRA8sHlAFrjbaF8GpGQILjzyF17w72HgxGpl8GRIREdErw6Ak3c7ODtHR0YVeeHR0NGxsdG/pE9ELMpmE/s3tcWp6XUzvUhkWptofy4gEFaZtfYy3f7iLU3cTyyhKIiIiKk0GJekeHh4IDAxEZqbht91VKhXOnz+POnXqFDk4oleJhakMU95yxpnpnhj0pj0k7ReX4mZYKgYuD8bw1Q8Q9DS1bIIkIiKiUmFQku7j44PY2FgsWbLE4AUvWbIEcXFx6NatW5GDI3oVOduY4Pt+VXDwQw+087DSGX/4VgK8FwbhPzseIypRVQYREhERUUkzKEmfOHEirKysMGPGDKxfv77A6detW4cZM2bA2toaEyZMKHaQRK+ihm7m2DSmBtaNrA4PJ6XWuMwsYPW5aLT57jZ+PvEMqRlZZRQlERERlQSDknQHBwesWbMGmZmZGDFiBNq2bYslS5bg7NmzCAoKQlBQEM6ePYslS5agbdu2CAgIQFZWFtasWQMHB4eS3gaiCkuSJHSuZ4MjU+rgGz83OFjKtcYnpGVh7t5wdPj+DnZdi+XLkIiIiCoIg/tU9PPzw59//okRI0bg3LlzOH/+vN7phBBwcnLC6tWrWepCZCQmcgkBrR3Rp6kdfjz+DMtPRSI980VC/igmA+M2PMLy01GY5euK5tUtyjBaIiIiKi6DWtLVunXrhgcPHuCnn35C9+7d4ebmBqVSCaVSCTc3N3Tv3h0///wzgoODmaATlQAbczk+7eaCkx95oldjW53xf4Uko+fP9zB+QwgeRaeXQYRERERkDIa/neg5CwsLjB8/HuPHjy+JeIjIANUcTPHLkGoY45WE2bvD8FdIitb4ndfisP+feIzxqoQPOjrBxlyex5KIiIioPCpUSzoRlS9vVLfErvdr45fBVVHV3kRrXJpK4Kfjz9Bm3m2sPhcFVSbr1YmIiF4WBifp7777Lry9vXH27NkCpz137hy8vb3Z2k5UCiRJQq8mdjgxzROfdXeBtVL7Yx2dlIn/7HiCzouCcOTfeD5cSkRE9BIwKEk/cuQIVqxYAScnJ7Rp06bA6Vu3bo3KlSvj119/xcmTJ4sdJBEVzMxEhvc7OOHsjLoIaO0Aea5Pd9DTNAxb9RD+vz3AzbAU/QshIiKicsGgJH3dunWQJAlff/21wQv+5ptvIITAmjVrihwcERWeo5UC3/i54+jkOnirvrXO+FN3E9Fl8V1M2xqKiPiMMoiQiIiICmJQkn7u3Dk0atQIHh4eBi+4Vq1aaNKkCc6cOVPk4Iio6Oo4m2FtQA3837s10cDVTGucEMDGizFoO+8OFh6OQHI6X4ZERERUnhiUpIeGhsLT07PQC69Tpw5CQ0MLPR8RGU87Dysc+NAD3/dzR2Vr7Q6dktOzMO/QU7Sbdxtb/opBVhbr1YmIiMqDEu3dRZIkPqRGVA7IZRIGvemAM9M9MaVzZZiZSFrjw+JVmLQ5FN2W3MW5+4llFCURERGpGZSkOzs74+7du4VeeFBQEJydnQs9HxGVDEulHNO7OuP0R3UxoLkdJO1cHX8/TkXfZcEYtfYh7kemlU2QREREZFiS3rp1a1y/fh3//vuvwQu+desWrl27ZlBvMERUutzsTLBoQFXs+8ADbWpZ6ozf/088On5/B1/seoKYZFUZREhERPRqMyhJHzZsGLKysjB69GikpqYWOH1qaipGjx6tmZeIyqfG7ubYMrYmVg6vjlqVTLXGqbKA385Eoc13t/HrqUikq/hwKRERUWkxKEn38fFB9+7dce7cObRs2RKHDh3Kc9qDBw+iRYsWCAwMRPfu3fH2228bLVgiMj5JkuDT0AZHp9TBnF6usLeQa42PS8nCrN1h6LQgCHtvxPE5EyIiolKgKHiSbJs2bUK3bt1w5swZ+Pj4wNHREU2bNoWTkxMA4NmzZ7h69SqioqIghICXlxc2btxYYoETkXGZKmQY07YS+jWzx+KjT7HybBQyMl8k5MFR6RizLgQta1pglq8rmlSxKMNoiYiIKjaDk3QrKyscP34cCxYswKJFixAWFobDhw/rTOfq6oopU6ZgypQpkMvlepZEROWZnYUcX/q6YkRrB3y9Nxx7bsRrjQ8MTka3H++hbzM7zPRxhrudaR5LIiIioqIyOEkHALlcjunTp2PatGm4cuWKpuUcgKZlvVmzZpDJSrRnRyIqBTUclVg+rDoCg5Mwe3cYroamaI3/40os9vwdh/faV8KEjk6wUvKinIiIyFgMStJjYmJgb2+v+b9MJkPz5s3RvHnzEguMiMqHljUtsXtCbey4Fotv9kXgSVyGZlyqSmDx0WfYcCEGM7o6w/9Ne8hlUj5LIyIiIkMY1OTt6uqKvn37YseOHcjIyCh4BiKqUGQyCX2a2ePUdE984uMMS1PtU8ezRBWmb3uMLouDcPxOQhlFSUREVHEYlKSrVCps374dffv2hYuLC8aPH48zZ86UdGxEVM6Ym8jwQafKODvDE0NbOCB3o/m/4WkYvOIBhqwIxu3wgrtrJSIiIv0MStJDQ0Mxf/58NGnSBDExMVi2bBnat2+P2rVr48svv0RQUFBJx0lE5YiTtQm+6+uOw5ProKOnlc74Y3cS0XlRED7e9hjPEnj3jYiIqLAMStJdXFwwdepUXL58GTdv3sQnn3yC6tWrIzg4GHPnzkW9evXQunVr/Pzzz5oHSYmo4qvnYoYNo2vi91E1UNdZqTUuSwDrAqPRdt4d/HjsKVIy+DIkIiIiQxW6G5Z69erh66+/xv3793Hy5EmMGTMGdnZ2CAwMxAcffAA3Nze888472Lp1K9LS0koiZiIqZzrVtcahSXXwXbdJQ0QAACAASURBVB93VLLSfh49MS0L3+6PQPv5d7D9aixfhkRERGSAYvWV6OXlhWXLliE8PBzbt29H7969IZPJ8Oeff2LgwIFwcXHBu+++a6xYiagcU8glDG3pgDPTPfFhJycoFdoF649jMzBh4yP4/nQPFx4klVGURERELwejdGhuYmKiaT2PiIjAsmXL4OjoiLi4OKxcudIYqyCil4S1mRwzfVxw6iNP9GlmpzP+yqMU+C29j7HrH+JBFO+2ERER6WPUtw5duXIFs2fPxqxZszS16XzrKNGrqYq9KZb4V8WeibXRooaFzvjdf8ejw/dBmL07DHEpmWUQIRERUflVqDeO6vPw4UNs2LABv//+O27duqWpN23SpAmGDRuGwYMHFztIInp5Natqge3jamHvjXjM3RuOh9HpmnEZmQLLTkVi818xmPpWZQxv5QgTOV+GREREVKQkPTY2Fps3b8b69etx9uxZCCEghIC7uzuGDBmCoUOH4rXXXjN2rET0kpIkCT0a2eKt+tZYfTYKi44+RVzKi95eYpIz8fmuMKw6G4XPe7iia31rSBKTdSIienUZnKSnp6fjzz//xPr167Fv3z5kZGRACAFra2v06dMHw4YNQ6dOnfjFSkR5UipkeK+9E/o3t8fCI0+x5lwUVDl6ZrwfmY6Rax6ibW1LfNHDFY3czcsuWCIiojJkUJL+7rvv4o8//kBcXByEEJDL5fDx8cGwYcPg5+cHMzOzko6TiCoQB0sFvurlhoDWjpi7NxwHbsZrjT9zLwk+P95F/9ft8fHbznC1NSmjSImIiMqGQUn6ihUrAADNmzfHsGHDMGjQIDg5OZVoYERU8dV2UmLViOo4ey8Rs3aH4caTVM04IYDNf8Xgz+uxGN/BCe93cIKFqVGfdSciIiq3DPrG++STT3Dz5k1cvHgRH374IRN0IjKqNrWtsP8DDywaUAUuNtptBykZAgsOP0Xb725j08VoZGbxZUhERFTxGZSkf/3116hXr15Jx0JErzCZTMKA5vY4Pb0uPupSGeYm2s+3RCSoMHXrY/j8eBen7yaWUZRERESlw6ByF5VKhejoaCiVStja2uqMj4yMxKeffoo9e/YgMjIS7u7u6N+/Pz777DNYWVkVKbCMjAz8/vvvOH78OBITE1GjRg0MGTIEzZo1K3Deq1evYsuWLXjw4AGysrLg5uYGX19fdOrUqUixEFHpsTCVYepbzhjcwgHfHYjA//0VA5Gj8fyfJ6kYsDwYXepb47PuLqhTmc/EEBFRxWNQS/qaNWvg6uqKBQsW6IyLj49HmzZt8Ntvv+HJkydIT09HcHAw5s2bh65duyIzs2gvKVm0aBF27tyJDh06YMyYMZDJZJgzZw5u3ryZ73yBgYH48ssvkZGRgUGDBmHo0KEwNTXFwoULsXPnziLFQkSlz8XGBAv6V8HBDz3g5WGpM/7QrQR4LwzCf3Y8RlSSqgwiJCIiKjkGJeknTpwAAIwePVpn3H//+1/cvXsX5ubmWLx4Mf7++29s27YNNWrUQGBgIFatWlXooO7cuYNTp05h+PDhGDlyJHx8fDB37lw4OTlh9erV+c67Z88e2Nvb4+uvv4avry969OiBuXPnwsXFBUeOHCl0LERUthq6meP/xtTE2oDq8HBSao3LzAJWn4tG2+9uY+mJZ0jL2Z8jERHRS8ygJP3/2bvvuCrL94Hjn8M4DEFlbwVRcBDmyAG490pRM01zJqm5v2rW190yy5GWJVniyhVqmpgbc4/85ihFRdFQQBDZG87vD3+eOh1QPBwF5Hq/Xr7yPPf9PPd18IlzPfe5x7lz56hduzbVqlXTKlu1ahUKhYJZs2Yxbtw46tWrR69evQgLC0OhULB58+anDurYsWMYGBjQqVMn9TGlUkmHDh24cuUK8fHxRZ6bkZGBhYUFxsZ/L9lmaGhI5cqVUSqVTx2LEKL0KRQK2tepzIFJtfi4lzPWlQw1ylOyCvggLJZWC6+y80KyeudjIYQQorwqVpIeFxdHvXr1tI5fvnyZuLg4FAoFw4YN0yjz9vbmlVde4cKFC08d1I0bN3BxccHc3FzjuJeXFwA3b94s8tyXXnqJ27dvs27dOu7evUtMTAwbN27k+vXr9O7d+6ljEUKUHcaGCoY2t+HYVG9Gt7JFaag5ufR2Yi5vr79Nz69v8NutjFKKUgghhCi5Yk0cTU5OLnQn0d9++w2AevXqFbosY/Xq1Tl37txTB/XgwQOsrKy0jj86lpiYWOS5r7/+OnFxcWzZskXdi29iYsL06dNp1qzZU8cihCh7qpgZMrOrE0Oa2fDx7lh2XEjWKD97K4MeyyPpWb8K73d2xM1avkUTQghRvhSrJ93KyorIyEit48ePHwfglVdeKfS8/Px8nVZ3ycnJ0Riu8sij4SrZ2dlFnmtsbIyzszN+fn5MmTKFyZMnU7NmTRYvXsyVK1eeOhYhRNlVzVrJNwOrsWNMDRpVM9Mq/+l8Mi0XXuWj3bGkZOo2iV0IIYQoDcXqSW/UqBF79uzh1KlTNG3aFID09HRCQ0NRKBS0a9eu0POuXr2Ks7PzUwelVCrJzc3VOp6TkwM87BkvyooVK4iIiGDx4sUYGDx8BgkICGDs2LGsXLmSzz//XOuchIQEEhISgL976bOyssjMzHzq2EX58+ih73EPf6Jsq2dvwKZhzuz6I40F++5zJ/nv1V6y81R8FR7PhtOJTGpjTb+GlTEy1P5msKyQ+1GUJeXtfjQz035YF6K8KlaS/tZbb/HLL7/QpUsXxo0bh62tLWvWrCE+Ph5bW1t69eqldU5MTAx//PEHffr0eeqgrKysCh3S8uDBAwCsra0LPS83N5d9+/bRu3dvdYIOYGRkRKNGjdi1axe5ublavfShoaF8++23AFSpUoWWLVsSHR1Nenr6U8cuyq/o6OjSDkGUUB0zWNFNxfYr8MNFyPjHs35iRj4zd8Wz8mg8IxvBK84UOoyvrJD7UZQl5eV+9PHxKe0QhNCbYiXpvXv3ZtiwYaxatYoPP/wQAJVKhYGBAcuWLSv0yfX777+noKBAY4WW4qpRowYXL14kIyNDY/JoREQEAB4eHoWel5qaSn5+PgUF2suw5eXlUVBQUGhZnz59aNWqFfCwJ33fvn24urri6Oj41LGL8ic7O5vo6GhcXV0f+y2NKD/qeEFQu3yWhiey4Wwy+f9Y7OVWMsw4CAE1zHivoy21HcvWv7ncj6IskftRiNJTrCQd4LvvvqNbt25s3bqV+Ph43NzcGD58OH5+foXWv3nzJj179qRLly5PHZSfnx/btm1jz549BAYGAg97yQ8cOICXl5d6kmp8fDzZ2dm4uroCD3vBK1WqxMmTJ3njjTfUPeaZmZmcOXOmyF8ytra22NraAg+/AQAwNTWVr80qGBMTE/k3f4G4msGCvhaMbJHFB2Gx7L+SqlF+9EYmPVb8Rf/GVkzr5IC9pfY8mNIk96MoS+R+FOL5K3aSDg971Iu7jOHKlSt1CggeLt/o7+/PmjVrSEpKwsnJiYMHD3Lv3j3GjRunrrd48WIuXbrEjh07gIfroQcGBrJu3TqmTp1KmzZtKCgoYP/+/SQkJDB58mSdYxJClE+1HExZM8ydX6+lMW9XDH/GZKnLClTww5kHbD+fzNjWdgS1sMVcWaz59EIIIcQz9VRJ+vM0adIk1q9fT3h4OGlpabi7uzNz5swnjjfr168fDg4O7Ny5k40bN5Kbm4u7uzvTp08vstdfCPHia1nLgj3ja7Lp7AMW7I3jXurfk0szcgpYsDeOtacSea+zA71froqBQdkdry6EEOLFp1AVY2u+wiZb6kJf13mWYmJiCA4OJigoCCcnp9IORzwHmZmZREZG4unpKV/nVhDp2fl8dTiBb36NJytX+1egr4sZc7o70axGpecem9yPoiyR+1GI0lOs73U9PT1ZsWIFeXl5T65ciNzcXJYvX46np6dO5wshhD5VMjFkWkcHjk7x5rWGVbXKL9zJpPeKG4xYc4sbCeVj6TkhhBAvlmIl6TVr1mT06NG4uroyceJETp48WegqKf9UUFDAiRMnGDduHK6urowdO5ZatWrpJWghhNAH56rGfPG6G7+Mq0nzQnrNd/+RQuuFV5m98y4PMnTrpBBCCCF0Uawx6QcPHmTXrl28//77LF26VL3sYoMGDfD29sbKygpLS0tSU1NJTEwkIiKC33//nczMTFQqFS+//DIhISE6rfQihBDPmq+rGT8GebDnz1Q+DIvhRkKOuiyvAL49ep8tvyUxqZ09Q5pbozSSyaVCCCGerWJPHO3WrRvdunXj2LFjrFy5krCwMI4dO8axY8cKrW9vb0+/fv0YOXIkzZs311vAQgjxLCgUCjrXq0xbbwvWnExk0f57JGXmq8uTMvOZ/XMMISfuM6OrI53rVS7TmyEJIYQo3556dRd/f3/8/f2Bh5sLXbhwgXv37pGcnEyVKlWwt7enfv36eHl56T1YIYR41pRGBrwVYEufhlX54sA9Vp1IJPcfuyHdvJ/DiLW3aephzpzuTtR3NX/M1YQQQgjdlGgJRm9vb7y9vfUVixBClBlW5kbM6eHMkOY2fLQ7lrBLKRrlp25m0GVZJH0aVGV6ZwdcqipLKVIhhBAvIhlYKYQQj+Fha8LKN6uzbVQN6rtqL0EX+r8kWnx2lQV7YknLzi/kCkIIIcTTkyRdCCGKoalHJXa948mX/V1xqqK530NWnoolB+PxX3CV9acSyS944vYTQgghxGNJki6EEMVkYKCgdwMrjk71YnonByopNX+FxqflMXXrHTp+cZ3wq6mlFKUQQogXgSTpQgjxlMyMDRjf1p5j07wY1MQag38t8nI5Nos3voti0Pc3uRqXVTpBCiGEKNckSRdCCB3ZWxqzoI8L+ybUolUtC63ygxFptFtyjenb7pCQJpshCSGEKD5J0oUQooTqOJmy4S0P1g93x9vBRKMsvwDWnEzEb0EEyw7dIyv38bs1CyGEECBJuhBC6E0bb0v2TajFp4HO2FQy1ChLyy7gk1/iaLnwKtt+T0KlksmlQgghiiZJuhBC6JGRoYI3m9lwfJo349rYYWKkOWA9+kEu72z4ix5fRXImKr2UohRCCFHWlShJ37t3L4GBgbi4uGBiYsKIESPUZXv27GHy5MncvXu3xEEKIUR5Y2lqyHudHTkyxYvAl6tolZ/7K5OeX9/g7XW3uXU/pxQiFEIIUZbpnKRPmDCBLl268NNPP5Gamkpubq7G17dOTk4sWbKETZs26SVQIYQoj1ytlHw1oBo/v+PJK+7mWuU7LybTauFV5u2KITlTNkMSorzKyMhg6dKldOzYEScnJ0xMTLC0tKRu3boMHTqUHTt2kJ8v/4+L4tMpSV+zZg3Lli2jUaNGnDt3jpSUFK06vr6+uLm5sXPnzhIHKYQQ5V3DauZsH1WD4IHVqG6t1CjLyVfxza8J+C2IYM2pJPJkMyQhypVjx45Rs2ZNJkyYwJEjR6hVqxaBgYG0b98eIyMjVq9eTc+ePfH19S3tUEU5YqTLSV9//TVVq1Zl165d2NnZFVnP19eXixcv6hycEEK8SBQKBd19q9ChriWrjt9nyYF7pGT9vdrLg4x85u5OwLUyzOqWTrf6pigUisdcUQhR2s6dO0e7du3Izs5m6tSpzJgxg8qVK2vU+euvv1i0aBHffPNNKUUpyiOdetIvXbqEn5/fYxN0gCpVqhAXF6dTYEII8aIyMTJgVEs7jk3zZrifDUb/+k0cnQJBG2Lo9+1NLt7JLJ0ghRBPVFBQwKBBg8jOzuaDDz5gwYIFWgk6gJubG4sXL+bo0aOlEKUor3Qek16c3p27d+9iZmamaxNCCPFCs6lkxIc9nTk42YuOdS21yo9FptN52XUmbYkmNiW3FCIUQjxOWFgYly9fplq1arz33ntPrN+oUSON1wqFAnd3d3Jycpg3bx61a9fGxMSEXr16adRbu3YtAQEBVK5cGXNzc3x9ffnkk0/IytLe0bh169YoFAqioqK0yqKiolAoFLRu3Vrj+Jw5c1AoFISEhHDq1Ck6depE1apVqVy5Mh06dODkyZNP/mEIvdMpSa9Vqxbnzp0jN7foD43U1FR+//136tWrp3NwQghREdS0MyFkiDtbgjyo66g5Xl2lgk1nH+C/IIKF++LIyJHNkIQoK3bv3g3Aa6+9hqGh4RNqF66goIBevXqxYMECPD096dmzJ05OTuryt99+m8GDB/Pbb7/RokULunXrRkxMDO+//z5t27YlIyNDL+8F4Pjx47Rs2ZLo6Gi6dOmCt7c3+/fvp1WrVuzdu1dv7Yji0SlJf+2114iJiWH69OlF1nnvvfdITk6mf//+OgcnhBAVib+nBduD3JjiBw6Wmh/4mbkqFu6/R8BnEWw8k0i+TC4VotSdP38egAYNGuh8jb/++otr164RERHBrl272Lx5M19//TUAoaGhBAcH4+zszIULF9i1axdbtmzh+vXrBAQEcOLECWbNmqWX9wLw7bffMnXqVC5dusSGDRs4c+YMy5cvJycnh6FDh5KZKcPvniedkvSJEyfy0ksvsWTJEpo3b878+fMBiIyMZPHixbRs2ZLly5fToEEDRo4cqdeAhRDiRWZooKCjp4L946rzn/b2mBlrDi2MTclj8o936LzsOkevp5VSlEIIgPv37wNga2tbaPmIESMYOnSoxp/CxqV/8sknuLi4aB1funQpALNnz6ZWrVrq41WqVOGrr75CoVCwYsWKQoe96KJ69erqoS+PjB49mqZNmxITE0NoaKhe2hHFo9PqLmZmZuzfv5+hQ4eye/duTp8+DcCRI0c4cuQIAB06dGDdunUolcrHXUoIIUQhzJUG/KeDAwObWvPpnjg2//aAf2xFwR93s+j37U061LFkZjcnatqZlF6wQohCrV69Wmtt9NatWxMQEKB+rVAo6NGjh9a5ubm56rHgAwcO1Cr39fXF19eX8+fP8/vvv9OsWbMSx9unTx+MjLRTwwEDBnDq1CmOHDnCoEGDStyOKB6dknQAOzs7du3axfnz59m7dy9RUVEUFBTg6upKhw4daNKkiT7jFEKICsmxsjGLX3NlhL8N836O4Whkukb5vsupHIpI5c1mNkxub49NJZ1/rQshnpKNjQ0ACQkJhZbn5eWp/z5q1ChWrFihVcfe3h4TE+2H7Pv375OTk4OtrS2VKlUq9Pru7u6cP3+eO3fu6BK+lurVqxfZDiC7yD9nOv02v3DhAgYGBvj4+FC/fn3q16+v77iEEEL8g4+zGZtGerD/SirzdsUSGZ+tLssrgFXH7xN67gET2toz3N8Gk3+v6yiE0Lv69etz7Ngx/ve//xXa210cpqamOrf/tPsoFBTIxPPyRKff4i+//DLjx4/XdyxCCCEeQ6FQ0KFOZQ5OqsVHPZ2xMtecXJqSVcAHYbG0WniVnReSUalkcqkQz1KXLl0A2LJli9awlpKysbFBqVSSkJBAenp6oXUeLbP4z/Hsj4YZp6Vpz1n566+/HtvmrVu3Hnvc2dn5iXEL/dEpSbe2ttZYHkgIIcTzY2yoYJifDceneTO6lS1KQ83etNuJuby9/jY9v77Budv6W55NCKGpa9eu1KlTh9u3b/PJJ5/o9drGxsbqceYbN27UKr906RLnz5/HwsKCl19+WX38UX529epVrXP27dv32Da3bt1a6MPGo/b/OZZePHs6JenNmjXj4sWL+o5FCCHEU6hiZsjMrk4c/o8XPV6qolV+9lYG3b+KZMyG20Q/yCmFCIV4sRkYGLB27VpMTEyYOXMm06ZNIzk5Wave/fv3iYiIeOrrjxs3Dni42dCNGzfUx1NTUxk7diwqlYq3335bY8hMq1atAFi4cKHGGuoHDx5kyZIlj20vKiqKuXPnahwLDg7mxIkTODg40KdPn6d+D0J3OiXps2fPJiIigoULF+o7HiGEEE+puo2SFYOq8dPoGjR0097lefvvybT4/Cof744lNUu/X8kLUdE1atSI/fv34+joyGeffYaDgwOtWrViwIABBAYG8sorr+Dk5ER4eDi1a9emcePGxb523759CQoKIjo6Gh8fH7p3706/fv3w9PTk8OHDNGvWjHnz5mmcM2DAALy9vTl+/Dh16tShb9++NGvWjA4dOjB69OjHtjdy5Ejmz5+Pj48Pb7zxBk2aNOHtt9/G2NiYkJAQzM3NdfoZCd3oNHH08uXLDBo0iGnTprFu3Tq6detGtWrVipz8MHjw4BIFKYQQ4sleca/Eznc8+el8Mh//Ekv0g793hc7OU/FleDwbziQytaMDb7xijZHh0006E0IULiAggMjISFauXMmOHTu4dOkSJ06cwMTEBBcXF/r160ffvn3p3r17oUscPs6KFSsICAjgm2++4fDhw+Tl5eHp6cnEiROZNGkSZmaaD+ZmZmYcOHCAqVOn8ssvvxAWFka9evXYtGkTjRs35vPPPy+yLT8/P4YNG8bMmTP5+eefUalUtGvXjnnz5uHn56fTz0boTqHSYWaRgYEBCoVCY1JSYTOMVSoVCoVC75MpnqWYmBiCg4MJCgqScfcVRGZmJpGRkXh6emr9shPiedPX/ZiVW8DKY/dZevAeadnaKzp42Zswq5sTbbwtnnqFCFFxyO/HimHOnDnMnTuXVatWMXTo0NIOR/w/nXrSZ82aJb/UhRCiDDM1NmBsazv6N7Zi4b441p5KpOAfXTJX72UzaFUUrWpZMKubE3WcdF8GTgghhP7plKTPmTNHz2EIIYR4FmwtjPgk0IVhfjZ8EBbLgSupGuWHr6XR4YtrDHjFiqkdHbC3NC6lSIUQQvyT7HYhhBAVgJeDKWuHubNhhDt1HDV7zQtUsP70A/wXXOWLg/fIyJENT4QQorSVeP/oO3fucOzYMfWWtC4uLvj7+2ssrC+EEKJsaOVlyd6aFmw8+4AFe+KIT/t72/L0nAI+3RPHmpOJvN/ZgcCXq2JgIEMbhXjRzZkzR0ZJlEE6J+nx8fG88847bNu2TWubWYVCQZ8+ffjyyy+xs7MrcZBCCCH0x9BAwcAm1vSsX4Xl4fF8cySBrNy/B6zHJOcyblM0K4/dZ3Y3J5rVqFSK0QohRMWkU5KenJxMy5YtiYiIwMzMjI4dO+Lu7o5CoSAqKoo9e/awZcsWLly4wMmTJ6lSRXuTDSGEEKXLwsSQaZ0cGdjUmk/3xPHjuSSN8vPRmfRecYMu9Sozo6sjHrYmpRSpEEJUPDqNSZ8/fz4RERG89tprREVFsW3bNhYvXsyiRYvYunUrt27dol+/fkRERPDpp5/qO2YhhBB65FJVydLX3dg9zpNmHtq95rv/SKH1omvM3nmXBxl5hVxBCCHKhpCQEHWncXmnU5K+bds23NzcWLduXaHDWWxtbVm7di1ubm6EhoaWOEghhBDPXn1Xc0Lf9uC7wdXwsFFqlOXmq/j26H38F1zl2yMJ5OTJ5FIhhG4yMjKYM2cO4eHhpR1KmaZTkn7r1i38/f0xNi56qS5jY2P8/f25ffu2zsEJIYR4vhQKBV3qVeHQ5FrM6+FEVTNDjfKkzHxm/xxDm0XX2P1HMjrshyeEqOAyMjKYO3euJOlPoFOSbmZmRkJCwhPrJSQkyA5lQghRDimNDHgrwJZj07wYGWCDsaHmKi837+cwYs1t+qy4yYXozFKKUgihD1lZWVqLgDySnp7+nKMRj+iUpDdq1IjDhw9z9uzZIuv89ttvhIeH07hxY52DE0IIUbqszI2Y28OZQ5Nr0aVeZa3ykzfT6bzsOuM3/cXdpNxSiFCIiuPOnTuMGDECZ2dnTExM8PDwYPTo0eTk5ABw48YNXnvtNaytrTE3N6dZs2bs2rVL4xrh4eEoFAo2btzIjBkzcHFxwdzcnJSUFPV47sOHDzNmzBjs7e1xdXXVaH/48OE4ODhgYmJCvXr1+P7777XizMrKYs6cOXh5eWFqaoqTkxO9e/cmMjKSqKgo9VDpuXPnolAoUCgUGktAXrlyhb59+2JtbY2pqSmNGzdmx44dWu388ccftG3bFjMzM1xdXfnwww+LfNgoj3Ra3WXSpEkcOHCAdu3aMX78eN544w3c3d2Bh0NhNmzYwNKlS8nPz2fSpEn6jFcIIUQpqGFrwneDq3PyRjpzfo7hwh3N3vMfzyXx88VkRrWw5Z3WdlQyMSziSkIIXdy9e5cmTZqQlJREUFAQtWvX5s6dO/z4449kZGTw4MED/Pz8yMjIYPz48djY2LB69WpeffVVfvzxRwIDAzWu98EHH6BUKpkyZQrZ2dkolX/PQxkzZgx2dnbMmjVL3ZMeFxdHs2bNUCgUjB07Fjs7O3bv3s2IESNISUlh4sSJAOTn59O9e3cOHDhA//79mTBhAqmpqezbt49Lly7Rvn17vv76a0aPHk1gYCC9e/cGwNfXF3iYeD/ab2f69OlUqlSJzZs306tXL0JDQ9XvIzY2ljZt2pCXl6euFxwc/EKN4FCodBxQ+MknnzBz5swixyMqFAo++OAD3nvvvRIF+LzFxMQQHBxMUFAQTk5OpR2OeA4yMzOJjIzE09PzhfqfW5RP5eF+LChQse33JD7+JY6YZO3ec3tLI6Z2dKB/YysMZTOkcq083I+lpd3ia1yOzdL7de9++lKhx4cMGcK6des4deqU1igFlUrF5MmTWbJkCUeOHCEgIACAtLQ0fH19UalUREZGYmBgQHh4OG3atKFGjRpcunRJ4981JCSEYcOGERAQQHh4OIaGfz9sv/XWW4SFhXHx4kVsbGzUxwcMGMDu3buJiYnBzMyMVatWMXz4cBYtWqTVUatSqVAoFCQkJGBnZ8fs2bO1NlFq37499+7d48yZM5iYmKjPCwgIID4+nqtXrwIPO4yXLFnCqVOnaNKkCfBwD59atWqRnJzMzZs31R3I5ZVOw10A3nvvPU6ePMmgQYNwd3dHqVSiVCpxd3fnzTff5MSJE+UuQRdCCPFkBgYKEPCsywAAIABJREFU+jS04sgUL97t5IC5UvOj5F5qHlND79Dxi+scvppaSlEK8eIoKChg+/bt9OjRo9BhxAqFgrCwMJo0aaJO0AEsLCwICgoiKiqKP//8U+OcIUOGFPngNXLkSI0EXaVSERoaSo8ePVCpVCQkJKj/dOrUieTkZM6dOwdAaGgotra2jBs3rtA4HycxMZGDBw/Sr18/UlNT1W3cv3+fTp06ce3aNfUO92FhYTRr1kydoAPY2dkxcODAx7ZRnui84yhA48aNWb16tb5iEUIIUY6YKw2Y0NaeAa9Y8dneODaceUDBP75cvRybxYDvomhX25KZXR3xcjAtvWCFKMfi4+NJSUnBx8enyDq3bt2iadOmWsfr1KmjLv/n+R4eHkVe699l8fHxJCUlERwcTHBwcKHn3Lt3D4DIyEi8vb0xMnr6FPP69euoVCpmzpzJzJkzi2zHxcWlyPfr7e391O2WVSVK0oUQQgh7S2M+6+PKcD9b5u6K4ddraRrlB66kEn41lUFNrPlPBwdsLeSjR4jS9rjhS/8uezQZc9CgQQwZMqTQcx6NKS+JR+1MmTKFTp06FVqnZs2aJW6nvNDpN+W5c+dYt24dAwYM4JVXXim0zunTp9m4cSODBw/m5ZdfLlGQQgghyr46TqZsGOHOoYg05u6K4dq9bHVZfgGsPpnI1v8lMa6tPW/522BqrPOISyFK3YFJtZ5bW3Z2dlSuXJlLly4VWad69epERERoHb9y5Yq6vCTtW1pakp+fT/v27R9b19PTk1OnTpGbm1vkfjpFDXupUaMG8HCvnSe1U716da5du6Z1vLCfQXml02/IL7/8kuXLlz92QL6HhwfLly/nq6++0jU2IYQQ5YxCoaBtbUsOTKzF/EBnbCpprvKSml3Ax7tjabnwKtt/T5LNkIQoBgMDA3r16sXOnTsLXf5apVLRtWtXTp8+zYkTJ9TH09PTCQ4Oxt3dnbp16+rcvqGhIX369CE0NLTQB4X4+Hj13/v06UNCQgJffvlloXECmJubA5CUlKRRbm9vT+vWrVmxYgUxMTGPbadr166cPHmS06dPa5SvX7/+Kd9d2aVTT/qRI0do2LChep3LwtjZ2dGwYUMOHz6sc3BCCCHKJyNDBYOb2RD4clWWHYrn26MJZOf9nZBHP8hlzIa/+O5YArO7O9G4eqVSjFaIsu/jjz9m7969tGrViqCgIOrUqUNMTAxbtmzh6NGjTJ8+nQ0bNtClSxfGjx+PtbU1q1ev5ubNm4SGhmJgULJvrubPn8+hQ4do2rQpI0eOpG7duiQmJnLu3Dn2799PYmIiAIMHD2bNmjVMnjyZ06dP06JFC9LT09m/fz9jxoyhZ8+emJmZUbduXTZt2oSXlxfW1tb4+Pjg4+PDV199RUBAAC+99BIjR46kRo0axMXFceLECaKjozl//jwA06ZNY+3atXTu3JkJEyaol2CsXr06Fy5cKPHPuyzQKUm/c+dOkcNc/ulF+kGJF5dSqaRatWoaa8QKUVpetPvR0tSQ97s48mZTaz7ZE8v235M1yn+7ncmry2/Qw7cK/+3iSDXrF+N9vyhetPuxPHNxceHUqVPMnDmT9evXk5KSgouLC126dMHc3JyqVaty/Phx3n33XZYtW0ZWVha+vr7s3LmTbt26lbh9BwcHTp8+zbx589i6dSvLly/HxsaGevXq8emnn6rrGRoaEhYWxkcffcQPP/xAaGgoNjY26sT7kZUrVzJu3DgmTZpETk4Os2fPxsfHh7p163L27Fnmzp1LSEgI9+/fx97engYNGjBr1iz1+U5OThw6dIhx48Yxf/58bGxsGDVqFM7OzowYMaLE77cs0GmddCsrK5o3b05YWNhj63Xr1o2jR4+SnJz82HpliayTXvHIOsCiLHnR78dztzOY83MMZ29laJUpDRUM97dhQlt7qpjJZkhlwYt+PwpRlun03Ue9evU4evSo+quNwiQmJvLrr7+WaAyUEEKIF0vDaub8NLoGKwZWo5q15qSynHwV3/yagN+CCFYdv09uvoxXF0JUXDol6YMGDSItLY2+ffsSHR2tVX7nzh369etHRkbGC7WovBBCiJJTKBT08K3C4f94MbOrI5VNNT+KHmTk89+f7tJ28TX2XU6RyaVCiApJpzHpb731Fhs2bCA8PBwvLy86d+6Mp6cn8HAR+z179pCZmYm/vz+jRo3Sa8BCCCFeDCZGBoxuZUe/xlYs2n+PNSfvk1/wd3lkfDZDQm4R4FmJWd2d8HGW4RZCiIpDpyTdyMiI3bt3M378eFavXs327ds1yg0NDRk2bBhffPGFTjtOCSGEqDhsKhnxUU9nhja35sOwWPZdTtUoPxqZTqel1+nXyIp3OzngWLnwtZeFEOJFonMGbW5uzsqVK/nggw8IDw/nr7/+AsDNzY3WrVvLpEshhBBPpZa9KauHunP0+sPNkP64m6UuU6lg09kH7DifxJhWdoxuZYe5UjZDEkK8uErcze3k5MSAAQP0EYsQQghBQE0LfhlXkx/PJTH/l1jiUvPUZZm5Khbuv8f604m828mR1xpWxcCg8N0LhRCiPNN7N8Tly5f58ccfOXXqlL4vLYQQooIwNFDwemMrjk3zZnJ7e8yMNRPx2JQ8Jm2JpvOy6xyLTCulKIUQ4tnRKUnftGkTbdu21UrEp0yZgo+PD6+//jp+fn4EBgaSn5+vl0CFEEJUPOZKA6Z0cODoVG/6NbJC8a9O80t3s3gt+CZDV0dxPT67dIIUQohnQKckfd26dfz+++80aNBAfez48eMsWrQIS0tL+vfvj7u7Ozt27GD9+vV6C1YIIUTF5FTFmCX9XPllXE38PStple/9M5W2i64y46e7JKbnFXIFIYQoX3RK0i9duoSvr6/GNsFr165FoVCwefNm1q9fz5kzZ7CwsGDlypV6C1YIIUTF9pKLGZtHehAypDo1bDW3qs8rgO+P38f/swi++TWe7LyCIq4ihBDFFxISgkKhICoq6rm2q1OSfu/ePVxcXDSOHTp0CHt7ezp27AiAtbU1LVu25Pr16yWPUgghhPh/CoWCjnUrc2iyFx/2dMLK3FCjPDmzgHm7Ymm98Bo/X0iWzZCEqAAyMjKYM2cO4eHhpR2K3uiUpJuZmZGSkqJ+HRMTw9WrV2nVqpVGvapVq/LgwYOSRSiEEEIUwthQwXA/W45P82ZUS1uUhpoD1m8l5hC0/ja9vrnB//7KKKUohRDPQ0ZGBnPnzpUkvUaNGhw5coSkpCQA1q9f/7Bn4/970R+JjY3F3t6+5FEKIYQQRahiZsisbk4c/o8XPV6qolV+JiqDbl9G8s6G20Q/yCmFCIWoeLKysigoKHzIWXp6+nOOpnzSKUkfOnQoKSkpNGrUiD59+jBjxgwsLCzo2bOnuk5ubi5nz57Fy8tLb8EKIYQQRaluo2TFoGpsH12DBm5mWuXbfk+mxedX+eSXWFKzZOUxUb4MHToUd3d3reNz5sxB8Y9ljxQKBWPHjmX79u34+PhgYmJCvXr1+OWXX7TOvXPnDiNGjMDZ2RkTExM8PDwYPXo0OTl/P8zeuHGD1157DWtra8zNzWnWrBm7du3SuE54eDgKhYKNGzcyY8YMXFxcMDc3JyUlRT2e+/Dhw4wZMwZ7e3tcXV01Yhg+fDgODg7qWL///nutWLOyspgzZw5eXl6Ympri5ORE7969iYyMJCoqCjs7OwDmzp2LQqFAoVAwZ84c9flXrlyhb9++WFtbY2pqSuPGjdmxY4dWO3/88Qdt27bFzMwMV1dXPvzwwyIfNp41nTYzGjlyJIcOHSI0NJSbN29SqVIlVqxYgY2NjbrOzz//THJyMm3bttVbsEIIIcSTNHGvxM4xnvx0IZmPd8dyJylXXZadp2LZoXg2nHnA1A72DHjFGiND2QxJvFiOHj3K1q1bGTNmDJaWlixdupQ+ffpw+/Ztda529+5dmjRpQlJSEkFBQdSuXZs7d+7w448/kpGRgVKpJC4uDj8/PzIyMhg/fjw2NjasXr2aV199lR9//JHAwECNdj/44AOUSiVTpkwhOztbY4GRMWPGYGdnx6xZs9Q96XFxcTRr1kz9YGFnZ8fu3bsZMWIEKSkpTJw4EYD8/Hy6d+/OgQMH6N+/PxMmTCA1NZV9+/Zx6dIl2rdvz9dff83o0aMJDAykd+/eAPj6+gIPE29/f39cXFyYPn06lSpVYvPmzfTq1YvQ0FD1+4iNjaVNmzbk5eWp6wUHB2Nmpv3Q/1yoSuDmzZuq06dPq1JSUrTK/ve//6m2b9+uio2NLUkTz93du3dVc+bMUd29e7e0QxHPSUZGhurixYuqjIyM0g5FCLkf9SwjJ1+19GCcqtbMSyqnaRe0/rT6PEJ18Ir2Z5h4SO7HsmPIkCGq6tWrax2fPXu26p/pHKBSKpWq69evq4+dP39eBaiWLVumPjZ48GCVgYGB6syZM1rXLCgoUKlUKtXEiRNVgOrIkSPqstTUVJWHh4fK3d1dlZ+fr1KpVKpDhw6pAFWNGjW07pVVq1apAFVAQIAqLy9Po2zEiBEqJycnVUJCgsbx/v37q6pUqaK+1vfff68CVIsWLSoy1vj4eBWgmj17tladdu3aqV566SVVVlaWxnl+fn6qWrVqqY89er+nTp1SH7t3756qSpUqKkB18+ZNrWs/Szr1pD/i7u5e6FcvAC+//DIvv/xySS4vhBBClIiZsQHj2jzsMf98XxzrTiVS8I/FXq7ey2bg91G0qmXBrG5O1HEyLb1gRbly+F4+qc9gSf7uzoZPrvQE7du3x9PTU/3a19eXypUrc+PGDQAKCgrYvn07PXr0oHHjxlrnPxo+ExYWRpMmTQgICFCXWVhYEBQUxHvvvceff/6Jj4+PumzIkCFF9jqPHDkSQ8O/35tKpSI0NJR+/fqhUqlISEhQl3Xq1ImNGzdy7tw5/P39CQ0NxdbWlnHjxhUZa1ESExM5ePAg8+bNIzU1ldTUVI12Zs+ezZ07d3BxcSEsLIxmzZrRpEkTdR07OzsGDhzI8uXLH9vOs6DTmHQhhBCiPLG1MGJ+oAsHJtairbeFVvnha2l0+OIaU0OjuZeaW8gVhCg/qlWrpnXMyspKveJefHw8KSkpGgl2YW7duoW3t7fW8Tp16qjL/8nDw6PIa/27LD4+nqSkJIKDg7Gzs9P4M2zYMODhkt8AkZGReHt7Y2T09H3L169fR6VSMXPmTK12Zs+erdHOrVu3qFWrltY1CvsZPA8l6kkXQgghyhNvR1PWDfcg/Goq83bFcCU2W11WoIL1px+w/fdkxrWxY2QLW8yMpS9LlA1F9Rjn52tPgv5nj/U/qZ7xngGPG7v977JHkzEHDRrEkCFDCj3n0ZjyknjUzpQpU+jUqVOhdWrWrFnidp4FSdKFEEJUOK29LGlR04KNZx6wYG8c8Wl/j1tIzylg/p441pxM5L3ODgS+XBUDA5lcKkqXlZWVeunrf/p3b3Zx2NnZUblyZS5duvTYetWrVyciIkLr+JUrV9TlurKzs8PS0pL8/Hzat2//2Lqenp6cOnWK3NxcjI2NC61T1ENMjRo1ADA2Nn5iO9WrV+fatWtaxwv7GTwP0kUghBCiQjI0UDCwqTXHpnkxoa0dpkaaH/J3k3MZtymabl9FcuqmrOssNLWyN6S7s/7/FMXT05Pk5GQuXLigPhYTE8O2bdueOnYDAwN69erFzp07OXv2rFb5ox73rl27cvr0aU6cOKEuS09PJzg4GHd3d+rWrfvUbT9iaGhInz59CA0NLfRhIT4+Xv33Pn36kJCQwJdffllkrObm5gBaDzL29va0bt2aFStWEBMT89h2unbtysmTJzl9+rRG+fr165/y3emH9KQLIYSo0CxMDHm3kyODmloz/5c4Qv+n+SF/PjqTwG9u0NWnMv/t4oiHrUkpRSoqsv79+/Puu+8SGBjI+PHjycjI4Ouvv8bLy4tz58499fU+/vhj9u7dS6tWrQgKCqJOnTrExMSwZcsWjh49StWqVZk+fTobNmygS5cujB8/Hmtra1avXs3NmzcJDQ3FwKBkfb3z58/n0KFDNG3alJEjR1K3bl0SExM5d+4c+/fvJzExEYDBgwezZs0aJk+ezOnTp2nRogXp6ens37+fMWPG0LNnT8zMzKhbty6bNm3Cy8sLa2trfHx88PHx4auvviIgIICXXnqJkSNHUqNGDeLi4jhx4gTR0dGcP38egGnTprF27Vo6d+7MhAkT1EswVq9eXePh6HmRJF0IIYQAXKoqWdbfjbcCbJjzcwynbmZolIddSmHf5VSGNbdmYjsHqpqXfBUOIYrLxsaGbdu2MXnyZKZNm4aHhweffPIJ165d0ylJd3Fx4dSpU8ycOZP169eTkpKCi4sLXbp0UfdKOzg4cPz4cd59912WLVtGVlYWvr6+7Ny5k27dupX4PTk4OHD69GnmzZvH1q1bWb58OTY2NtSrV49PP/1UXc/Q0JCwsDA++ugjfvjhB0JDQ7GxsVEn3o+sXLmScePGMWnSJHJycpg9ezY+Pj7UrVuXs2fPMnfuXEJCQrh//z729vY0aNCAWbNmqc93cnLi0KFDjBs3jvnz52NjY8OoUaNwdnZmxIgRJX6/T0uh0mEWQXp6OpUqVXoW8ZS6mJgYgoODCQoKwsnJqbTDEc9BZmYmkZGReHp6lt6GBUL8P7kfywaVSsXuP1L4MCyWqPs5WuVW5oZMamfP4GbWKI1e3JGjcj8KUXp0+s3i7OzMqFGjCh3HJIQQQpR3CoWCrj5VCJ9ci7ndnahqptlr/iAjn1k7Y2i7+Bq7/0h+5qtmCCEqHp2SdIVCQXBwME2bNqVhw4Z88803pKSk6Ds2IYQQolQpjQwY2cKWY9O8GBlgw787zW8k5DBizW36Bt/kwp3M0glSCPFC0ilJj4mJYdWqVTRv3pzff/+dd955B2dnZ4YPH64xA1gIIYR4EViZGzG3hzOHJnvRuV5lrfITN9Lpsuw6Ezb9xd0k2QxJCFFyOiXpZmZmDBkyhKNHj3L58mUmTpyIubk5ISEhBAQE4OPjw9KlS9U7WwkhhBAvAk87E74fXJ3Qtz14ycVUo0ylgi3nkgj4PIIFe+NIz9beZEYIIYqrxLNdvL29WbhwIXfu3GHjxo20bduWy5cvM2nSJFxcXHjzzTc5cuSIPmIVQgghyoTmNSzYPbYmS193xamy5kJpWbkqlhy4h/9nV/nhdCL5BTJeXQjx9PQ2Jd3Y2Jh+/fqxZcsWJkyYgEqlIisri/Xr19O6dWvq16/Pzz//rK/mhBBCiFJlYKCgb0Mrjkz1ZlpHB8yVmh+p91LzmBJ6h05Lr/PrtbRSilIIUV7pLUk/cuQIgwcPxsXFhS+++AITExPeeOMNVq5cSfv27bl06RI9e/ZkxYoV+mpSCCGEKHXmSgMmtrPn2FQv3njFin/vTv5nTBb9V97kzVVRXI3LKp0ghRDlTomS9ISEBBYuXEidOnVo3bo169atw8XFhU8//ZTo6GjWrVvH8OHD2bNnDydOnMDS0pLPPvtMX7ELIYQQZYZDZWM+7+vKvgk1aVHTQqv8wJVU2i25xnvb73A/La8UIhRClCc67Ti6f/9+vv32W3766Sdyc3MxNDQkMDCQUaNG0b59+0LPadKkCd26dWPz5s0lClgIIYQoy+o6mbHxLXcORqQyb1cs1+5lq8vyC2D1iUS2nktifFt7RvjbYGr84m6GJITQnU5JeseOHQFwc3Nj5MiRvPXWWzg6Oj7xPDc3N1xdXXVpUgghhCg3FAoF7WpXplUtS9afTuSzfXEkpv+92ktqdgEf7Y5l9cn7/LeLI6/6VkHx73EyQogKTafH965du7Jjxw5u3rzJjBkzipWgA8yfP5+bN2/q0qQQQghR7hgZKhjS3IbjU715p7UdJkaaiXj0g1xG//AXry6P5Oyt9FKKUghRFumUpP/88890794dAwP5ik4IIYR4kspmhvy3iyO//seLnvWraJX/djuTV5ff4O31t7mdmFMKEQohyhqdsmxDQ0NGjBjxxHojR47EyEinETVCCCHEC8fNWsnXb1Rj5xhPGlUz1yrfeSGZlp9f5YOwGFIyZTMkISoynZJ0lUqFSlW8zRmKW08IIYSoKBpVN2fHmBp884YbblbGGmU5+Sq+PpyA32cRrDp+n9x8+RwVoiJ6puNVkpOTMTExeZZNCCGEEOWSQqHg1fpVOfwfL2Z0dcTSRPMjOTE9n//+dJd2i6+x/3KKdHoJUcEUeyzK7du3NV6npaVpHXskLy+PiIgI9u7di6enZ8kiFEIIIV5gpsYGjGllx+uNrFi4P461pxLJL/i7/Hp8NoNDbhFQsxKzuzlRz9ms9IIVQjw3xU7S3d3dNZaHCg0NJTQ09LHnqFQqRo4cqXt0QgghRAVhY2HEx71cGOZnwwdhsey/nKpRfvR6Oh2XXuf1RlZM6+SAY2XjIq4khHgRFDtJb9mypTpJP3z4MPb29tSuXbvQukqlEmdnZ1599VUCAwP1E6kQQghRAdSyN2XNUHeOXE9j7s8x/BmTpS5TqWDj2Qf8dD6Jd1rbMaqlHeZKWWlNiBdRsZP08PBw9d8NDAzo0qUL33///bOISQghhKjwWtS0YM/4mmz57QGf7okjLjVPXZaZq+LzffdYfyqRdzs70rdBVQwMZDMkIV4kOq2PePPmTSwsLPQdixBCCCH+wdBAQf9XrOnhW4Wvf01g+eF4snL/nkAak5LHxM3RrDyawOzuTvh7ymezEC8Knb4jq169OjY2NvqORQghhBCFqGRiyJQODhyb6k2/RlYo/tVpfuluFq8F32TY6ltExmeXTpBCCL0qVk/6mjVrAAgMDMTS0lL9urgGDx789JEJIYQQQoNTFWOW9HNluL8N836O4fiNdI3yPX+mcOBKCkOa2zCpnT3WlWRDQSHKq2L93zt06FAUCgXNmjXD0tJS/fpJVCoVCoVCknQhhBBCj3xdzNgS5MHey6l8sCuGGwk56rK8Avju2H1+PPeAiW3tGepng4mRTC4VorwpVpI+a9YsFAoFtra2Gq+fpdzcXNavX094eDhpaWm4u7szcOBAGjRoUKzzjxw5wo4dO4iKisLIyAg3NzcGDhxI/fr1n2ncQgghxPOgUCjoVLcybb0tWXPyPov23+NBRr66PDmzgLm7Ygk5kciMro509an8zD+7hRD6U6wkfc6cOY99/SwsWbKE48eP8+qrr+Lk5MTBgweZN28eH330EXXr1n3suT/88AObNm3Cz8+Pdu3akZeXx+3bt0lMTHzmcQshhBDPk7GhghH+tvRpYMUXB+/x/fH75Ob/Pbn0VmIOI9fdpom7ObO7O9HAzbwUoxVCFJdOg9WWLl2Kubk5b731lr7jAeDq1ascOXKEYcOGqddZb9u2LWPHjiUkJIQFCxYUee6VK1fYtGkTw4cPp2fPns8kPiGEEKKsqWpuyOzuTgx8xZIv9t3lwJU0jfKrd5IZuCKZzvUseaeVHY5VnrwZUlZWFrm5uWRkZFBQUPDE+sVlbGyMUqnU2/WEeBHplKT/5z//oWvXrs8sST927BgGBgZ06tRJfUypVNKhQwfWrl1LfHw8dnZ2hZ67c+dOrKys6NGjByqViqysLMzMZAtlIYQQFUNWfBQtlH/SwrfoOr8dfbprXrt2rWRB/UvdunXx8fHR6zWFeNHolKQ7Ojpiamqq71jUbty4gYuLC+bmml/JeXl5AQ/XaS8qST9//jy1a9dm586dbN68mdTUVKysrHjttdfo3r37M4tZCCGEKAu8vLzw8PAAHu5QuufPFL46HE9scp5WXetKhoxqacervlUwLGRuaVJSEseOHcPf35+qVavqLUZj4yf34gtR0emUpHfq1Indu3eTk5PzTL6uevDgAVZWVlrHHx0ramx5WloaKSkpXL58mYsXL9K/f3/s7OzYv38/wcHBGBkZ0blzZ73HK4QQQpQVSqVS47O5T5NKdG3gwMqjCSw7FE9a9t/DVpKSYNqO+3x3Ko3Z3Zxo7W2pca2srCwATE1NqVSp0vN5A0IIQMfNjD766CMMDQ0ZOHAgMTEx+o6JnJycQp+yH/3Syc4ufKOGzMxMAFJTUxk7diyBgYEEBAQwa9Ys3Nzc2Lx5s95jFUIIIco6M2MDxrWx59hUL95sao3BvxZ5iYjL5o3vo3jju5tcic0qnSCFEBp06kl/7733qF+/Plu3bmXXrl00bNiQatWqFToERqFQ8N133z3V9ZVKJbm5uVrHc3IergNrYmJS6HmPjhsZGeHn56c+bmBgQIsWLfjhhx8KHc+ekJBAQkIC8HcvfVZWljrpFy+2Rw99RT38CfE8yf0oniULI5jTxZoBDSsxf999fr2eoVEefjWNX69do1/DykxqY41R3sPP3ZycnHLxmShz0MSLRKckPSQkRP33rKwsjh8/zvHjxwutq0uSbmVlVeiQlgcPHgBgbW1d6HkWFhYolUoqVaqEoaGhRlmVKlWAh0Ni/p2kh4aG8u2336rrtWzZkujoaNLTNXdyEy+26Ojo0g5BCDW5H8WzZATMaA5nq8OKs3Ar+e+yAhVs/C2Fn86n8KZPLnUNITY2lvv375davMUlk1HFi0SnJP3QoUP6jkNDjRo1uHjxIhkZGRqTRyMiIgDUE2L+zcDAAA8PD65du0Zubq7GkJlHSX/lypW1zuvTpw+tWrVS19u3bx+urq44Ojrq7T2Jsis7O5vo6GhcXV2L/JZGiOdF7kfxPHl6Qh8/FVv+l8LiQ4ncT/97MyRU+ahSY6AqKJUm1KhR+GevEOLZ0ClJf5TQPit+fn5s27aNPXv2qNdJz83N5cCBA3h5eal7wuPj48nOzsbV1VV9bkBAABERERw8eFC9hGNOTg6HDx/Gzc0NGxsbrfZsbW3Vu6k+GmNvamoqX5tVMCYmJvJvLsoMuR/F8zS8hTn9mtjx5aF4go8kkJWnoqNTAt6VH36wotr9AAAgAElEQVSjfPnyn9StW0d2LBXiOdIpSX/WvL298ff3Z82aNSQlJal3HL137x7jxo1T11u8eDGXLl1ix44d6mOdO3dm3759rFixgrt372JnZ8ehQ4e4d+8eM2fOLI23I4QQQpR5FiaGTO/syKCm1szfEwcJsTzKyVUqFSqVSpJ0IZ6jMpmkA0yaNIn169cTHh5OWloa7u7uzJw584njzUxMTPjwww8JCQlh//79ZGVl4eHhwaxZs2jYsOFzil4IIYQon1ytlHzZ342zkRZE/XGKgqwUfHx8MDDQaUE4IYSOFCqVSqXLiRkZGSxatIiffvqJa9eukZqaWngDCgV5edobKJRVMTExBAcHExQUhJOTU2mHI56DzMxMIiMj8fT0lOEFotTJ/SjKkvv373PgwAHatWtX6HBRIcSzo1NPenJyMi1atOCPP/7A0NAQpVKJSqXCycmJ2NhYHuX91atX12uwQgghhBBCVAQ6fXc1f/58Ll26RFBQECkpKfTt2xeFQsGdO3dIT08nJCQER0dHmjZtyo0bN/QdsxBCCCGEEC80nZL07du34+zszNKlSzE1NdWYSGJqasrgwYPZv38/27ZtY+HChXoLVgghhBBCiIpApyT91q1bNGzYUL0O+aPJJP/cJbRu3bq0atVKY+MjIYQQQgghxJPpNCbd1NQUU1NT9etHGwTFxsbi5uamPm5tbc2xY8dKGKIQQgghiisnJ0ej06wksrKy1P/V5y7cxsbGKJVKvV1PiBeRTkm6m5sbf/31l/p17dq1ATh8+DCDBg0CIC8vjzNnzshscCGEEOI5unr1Kn/++ader6nvDre6des+cUllISo6nZL0Fi1asGrVKlJTU7G0tKRHjx6MHz+e8ePHk5aWhouLC9999x1RUVG88cYb+o5ZCCGEEEXw8vLCw8NDL9fKysri9u3bVKtWTeMb9JJ6NFxWCFE0nZL0/v3789tvv3H8+HE6deqEs7Mzn3zyCVOmTOGdd94BHu5O5ujoyKeffqrXgIUQQghRNKVSqbehJAYGBhgbG2Nubi7r9gvxnOmUpAcEBHDixAmNY5MnT8bf359t27bx4MEDvLy8GDZsGNbW1noJVAghhBBCiIpCpyS9KE2bNqVp06b6vKQQQgghhBAVjk5LMAohhBBCCCGenWL1pN++fbtEjVSrVq1E5wshhBBCCFGRFCtJd3d319hV9GkoFAry8vJ0OlcIIYQQQoiKqFhJesuWLXVO0oUQQgghhBBPp1hJenh4+DMOQwghhBBCCPGITBwVQgghhBCijJEkXQghhBBCiDKmWMNdfv31VwCaNGmCqamp+nVxtWzZ8ukjE0IIIYQQooIqVpLeunVrFAoFly9fxsvLS/26uPLz83UOUAghhBBCiIqmWEn64MGDUSgUVKlSReO1EEIIIYQQQv+KlaSHhIQ89rUQQgghhBBCf2TiqBBCCCGEEGWMJOlCCCGEEEKUMcUa7lKUw4cPc/jwYWJiYsjOzi60jkKh4LvvvitJM0IIIYQQQlQoOiXpiYmJBAYGcvToUVQq1WPrSpIuhBBCCCHE09EpSZ80aRJHjhyhXr16BAUFUaNGDSwsLPQdmxBCCCGEEBWSTkn6zp07cXV15cSJE5KcCyGEEEIIoWc6TRzNz8+nefPmkqALIYQQQgjxDOiUpDdq1IjY2Fh9xyKEEEIIIYRAxyR9xowZnDhxgl9++UXf8QghhBBCCFHh6TQmvW3btvzwww8MHjyYrl270qFDB1xcXDAwKDznb9myZYmCFEIIIYQQoiLReZ30tLQ0jI2NWbt2LWvXrn1s3fz8fF2bEUIIIYQQosLRKUkPCQlhxIgRqFQqGjRoIEswCiGEEEIIoUc6JekLFizAxMSEsLAwWrdureeQhBBCCCGEqNh0mjgaFRVFq1atJEEXQgghhBDiGdApSXdxccHc3FzfsQghhBBCCCHQMUkfPHgwhw4dIjExUd/xCCGEEEIIUeHplKS///77tGnThjZt2hAeHo5KpdJ3XEIIIYQQQlRYOk0crVWrFgC3bt2iXbt2GBsb4+joWOg66QqFgsjIyJJFKYQQQgghRAWiU5IeFRWl8TonJ4fbt2/rIx4hhBBCCCEqPJ2S9IKCAn3HIYQQQgghhPh/Oo1JF0IIIYQQQjw7kqQLIYQQQghRxhRruMuj8eYuLi4YGho+9fjzatWqPX1kQgghhBDi/9q797Ao6v0P4O9ZLstdbqICwgIqhqJopCIoaCKUYgRpGRVY6qE8djk+qUd/lUZp2elUptmxNPNoViqkdXooE+iCGl4yMbyl4klBRO7ITdj5/eHZiXWXZVFgR/f9ep6e/H6/85n57DI7+9nZ78ySmTKqSFepVFAoFCgoKMCAAQOgUqkgCIJRGxAEAc3NzTeVJBERERGROTGqSB87diwEQZB+ZVTTJiIiIiKizmdUkZ6Tk2OwTUREREREnYcXjhIRERERyUynFukNDQ24ePEi56ATEREREd0Eo4r0mpoa5OXl4eTJk3rHT506hZiYGDg5OcHLywuOjo546KGHUFxc3KnJEhERERGZA6OK9I0bNyIsLAxfffWVztjFixcxZswYfPfdd2huboYoimhsbMTWrVsxbtw41NfXd3rSRERERES3M6OK9O+//x4KhQKPPPKIzlhaWhouXboEFxcX7NixAzU1NTh06BBCQ0Nx6tQprFmzptOTJupM1tbW8PHxgbW1talTIeL+SLLC/ZHIdIwq0o8cOYLg4GB4eHho9avVamzZsgWCIGDZsmWIi4uDvb09QkJCkJ6eDktLS3zxxRddkjhRZ2lqasJ///tfNDU1mToVIu6PJCvcH4lMx6gi/dKlSwgMDNTpP3LkCCorK2FpaYmHHnpIa8zLywsjR47EsWPHOidTIiIiIiIzYVSRfuXKFVy9elWn/+DBgwCAIUOGwMnJSWfc29sb1dXVN5kiEREREZF5MapI79mzJ44fP67T/9NPP0EQBIwYMUJvXENDA3r06HFzGRIRERERmRmjinTNtJUvv/xS6istLUV6ejoAYOLEiXrjCgoK4Onp2QlpEhERERGZD6OK9L/+9a8QRRFTp07FY489hnnz5uGuu+5CTU0N+vbti0mTJunEnDlzBidPnsTQoUM7PWkiIiIiotuZpTELjRs3DkuWLMHSpUuxadMmCIIAURRha2uLjz76CJaWuqt5//33AQAxMTGdmzERERER0W3OqCIdAF588UVMnjwZ6enpKC0tRd++fZGUlAQ/Pz+9yyuVSjzzzDOIjY3ttGSJiIiIiMyB0UU6AAwfPhzDhw83atm0tLQbSoiIiIiIyNwZNSediIiIiIi6D4t0IiIiIiKZYZFORERERCQzLNKJiIiIiGSGRToRERERkcywSCciIiIikhkW6UREREREMsMinYiIiIhIZlikExERERHJDIt0IiIiIiKZYZFORERERCQzLNKJiIiIiGSGRToRERERkcywSCciIiIikhkW6UREREREMsMinYiIiIhIZlikExERERHJDIt0IiIiIiKZYZFORERERCQzLNKJiIiIiGSGRToRERERkcywSCciIiIikhkW6UREREREMsMinYiIiIhIZlikExERERHJDIt0IiIiIiKZYZFORERERCQzLNKJiIiIiGSGRToRERERkcywSCciIiIikhkW6UREREREMsMinYiIiIhIZlikExERERHJDIt0IiIiIiKZYZFORERERCQzLNKJiIiIiGSGRToRERERkcywSCciIiIikhkW6UREREREMmNp6gTacvXqVWzevBk5OTmora2FSqVCUlIShg0b1qH1vPDCC/j1119x7733IjU1tYuyNZ3Lly+3u4yLiwssLCw6FOPs7AxLyz93j7KyMoiiaDCmR48esLKyktrl5eVQq9UGY5ycnGBtbS21Kyoq0NLSYjDG0dERSqVSaldWVqK5udlgjIODA2xsbKR2VVUVrl69CgBobGxEXV0dysvLtdZrb28PW1tbqV1dXY2mpiaD27k+pqamBo2NjQZj7OzsYGdnJ7Vra2vR0NBgMMbW1hb29vZS+8qVK6ivrzcYY2NjAwcHB6ldV1eHuro6gzFKpRKOjo5Su76+HleuXDEYY21tDScnJ6nd0NCA2tpagzFWVlbo0aNHh2IsLS3h7OwstRsbG1FTU2MwxsLCAi4uLlK7qakJ1dXVBmMUCgVcXV2l9tWrV1FVVWUwRhAEuLm5Se3m5mZUVlYajAEAd3d36d9qtdqo16qbmxsEQZBiysvL241xdXWFQnHtHI0oiigrK2s3hscR3ZjWx5G2XH/sudWOI+1tl4i6jmyL9Lfffht79uzBlClT0KdPH2RlZeHll1/Gq6++iqCgIKPWsWfPHpw4caKLMzWtrKysdpeZPHmy1sH7hx9+aPfNKDY2VqvQys3NbfeAP2HCBK1iZt++fe0WWlFRUfDw8JDa+/fvb7eYiYiIgKenp9Q+dOhQuwXDqFGj4OPjI7V//fVXXLx4UWuZwsJCrXZoaCj8/f2l9tGjR3H+/HmD2wkJCcGAAQOk9rFjx3TWe73Bgwdr7dMnT57E77//bjAmMDAQQ4cOldqnT5/G8ePHDcYEBATgzjvvlNqFhYU4evSowRhfX1+MHDlSav/xxx84fPiwwRgvLy+Eh4dL7aKiIhw4cMBgTK9evRAZGSm1L126hH379hmMcXNzw9133y21y8rK8NNPPxmM6dGjB2JiYqR2ZWUlcnJyDMbY29tj0qRJUru2trbd151SqcR9990ntevr69uNsbCwQGJiotRuamoy6vU9depU6d8tLS1Gxdx///1SkQ4YdxyJi4vTKhy///77dgvhe+65R+tD3k8//dRu0RcdHa31QWrv3r3tfjAcN24cevbsKbXz8vLa/SA1ZswY9OnTR2ofPHiw3Q8rYWFh6Nu3r9Q+fPgwSkpKDMZcfxzJz8/HhQsXDMZcfxwpKCjAuXPnDMZcfxw5ceIETp8+bTBm4MCBGDJkiNT+/fff9b5nGvueS0SdS5bTXU6ePIkff/wRjz32GGbMmIHY2Fi88sor6NmzJzZs2GDUOpqamrB+/XokJCR0bbJERERERJ1MENv77tEEPvroI+zYsQOffPKJ1hngrVu34t///jfWrVunddZEn08//RS7du3Ce++9h6lTpxo93aW4uBhr167F7Nmztc6yyBWnu3TOdJcLFy7Ay8uL012uw+ku3T/dpb6+HqdPn4afn1+7f1OA010ATncBuna6S0VFBQICArRyIqKuJ8vpLmfOnIGXl5fWAQeA9PXf2bNnDRbppaWl2LZtG55++mmtA+rtqPUc1q6MaV1wGKt1YWOs1gWUsVoXasZqXRDW19ejoqICrq6uBt+EWheexnJ0dNQqco3h4OCgVUwbw97eXuvN1hjXv6kbw9bWtsNv1DY2NlpFSlfFKJXKDr/era2tO/x6sLKy6nCMpaVlh2MUCkW3xAiCwOMIbv44Yqxb7TiiOT4SUfeT5XSXiooKvQdZTV97Z4rWrVsHf39/jB07tkvyIyIiIiLqSrIs0puamrS+7tTQfJ1p6Gu/I0eOYO/evZg1a1aX5UdERERE1JVkOd3F2tpa7zw/zTy+tr7SbmlpwQcffICoqCj079/f6O1dvnxZml+pOUvf0NBg1HxQuvVpPvTxVmMkB9wfSU5utf2R8+bpdiLLIt3FxUXvlBbNvLi25ihmZWXhwoULeOqpp3Rui1VfX4+SkhI4OzvrFPnbt2/HBx98AODaHMOxY8fi/Pnz7V4gR7eX9m6vSNSduD+SnNwq++PgwYNNnQJRp5Flke7v74/8/HzU1dVpXdimuX+rn5+f3rjS0lI0NzdjwYIFOmPZ2dnIzs7GokWLMGrUKK2xxMRE6R7N5eXl2LVrF7y9vdG7d+/OekgkY42NjTh//jy8vb1v+wuNSf64P5KccH8kMh1ZFumjR49GRkYGvvnmG9x///0Art32bPfu3RgwYIB0Z5fS0lI0NjbC29sbADB27FitH43QWLZsGUJDQzFx4kStH4jQcHd3l+5UUFxcDODa3SX4tZl5USqV/JuTbHB/JDnh/kjU/WRZpAcGBiI8PBwbN25EZWWl9Iujly5dwty5c6Xl3nrrLRw9ehQ7d+4EAHh7e0sF+/U8PDx0zqATEREREcmRLIt0AHjuueewefNm5OTkoLa2FiqVCi+88ALnmxERERHRbU+2Rbq1tTVmzJiBGTNmtLnMsmXLjFqX5kw7EREREdGtQJb3SSciIiIiMmcs0omIiIiIZIZFOhERERGRzLBIJyIiIiKSGdleOGoqzc3NAIDLly+bOBPqLg0NDaioqMDFixdhY2Nj6nTIzHF/JDm5FfdHd3d3WFlZmToNopvGIv06lZWVAID09HQTZ0JEREQdNXv2bPTp08fUaRDdNEEURdHUSchJXV0dTp8+DWdnZ1ha8jOMOTh79ixeeOEFpKWlwc/Pz9TpkJnj/khycivujzyTTrcLVqHXsbOzQ3BwsKnToG5UVVWFqqoquLq68uwLmRz3R5IT7o9EpsMLR4mIiIiIZMZiyZIlS0ydBJGp2draIjQ0FHZ2dqZOhYj7I8kK90ci0+CcdCIiIiIimeF0FyIiIiIimWGRTkREREQkM7y7C5mlU6dOYffu3cjPz8elS5fg6OiIwMBAPPLII/Dy8jJ1ekT4/PPPsWnTJvj4+GDVqlWmTofM0OnTp7FlyxYUFBSgqakJvXv3RkxMDOLi4kydGpFZYJFOZmn79u04duwYwsPDoVKpUFFRgf/85z947rnn8MYbb8DX19fUKZIZu3z5MrZu3XrL/MIj3X5++eUXpKWlwd/fHw8++CBsbGxw8eJF/ho3UTfihaNklo4dO4Z+/fpp/eBFUVER5s6di9GjR2PevHkmzI7M3RtvvIGqqiqo1WpUV1fzTDp1q7q6OqSmpmLgwIFYuHAhFArOjCUyBb7yyCzdcccdOr9I5+npCR8fH5w/f95EWREBR48eRW5uLmbOnGnqVMhMff/996isrMSjjz4KhUKBhoYGqNVqU6dFZHY43YXof0RRRGVlJXx8fEydCpmplpYWrF27FhMnToRKpTJ1OmSmfv31V9jZ2aGsrAzLli3DhQsXYGNjg6ioKMycORPW1tamTpHILPBMOtH/5OTkoKysDBEREaZOhcxUZmYmSktLkZSUZOpUyIwVFRWhpaUFr776KoYNG4aFCxdiwoQJyMzMxDvvvGPq9IjMBs+kEwE4f/48/vWvf2HgwIEYP368qdMhM1RdXY1PPvkE06ZNQ48ePUydDpmxhoYGNDY2IjY2FrNnzwYAjB49Gs3NzcjMzERSUhI8PT1NnCXR7Y9n0snsVVRU4OWXX4adnR0WLFgACwsLU6dEZmjTpk1wcHDA5MmTTZ0KmTnNdJaxY8dq9Wvax48f7/aciMwRi3Qya1euXMGSJUuk/7u5uZk6JTJDRUVF+PbbbxEXF4fy8nKUlJSgpKQETU1NaGlpQUlJCWpqakydJpkJV1dXAICzs7NWv6ZdW1vb7TkRmSNOdyGz1dTUhLS0NBQVFSEtLY0XjJLJlJWVQa1WY+3atVi7dq3O+KxZsxAXF4dZs2aZIDsyNwEBATh8+DDKysrg7e0t9ZeVlQEAp2MRdRMW6WSWWlpasGLFCpw4cQKLFy/GwIEDTZ0SmTFfX18sWrRIp3/Tpk2or6/HrFmz0Lt3bxNkRuYoIiIC27dvx3fffYehQ4dK/bt27YKFhQUGDx5swuyIzAeLdDJL69evR15eHkaMGIGamhpkZ2drjY8bN85EmZE5cnJywqhRo3T6d+7cCQB6x4i6SkBAACZMmIDvvvsOLS0tGDx4MPLz85Gbm4sHHniA0wKJugmLdDJLZ8+eBQDk5eUhLy9PZ5xFOhGZs6eeego9e/bE7t27sW/fPvTs2RNPPPEE7rvvPlOnRmQ2BFEURVMnQUREREREf+LdXYiIiIiIZIZFOhERERGRzLBIJyIiIiKSGRbpREREREQywyKdiIiIiEhmWKQTEREREckMi3QiIiIiIplhkU5EREREJDMs0omIiIiIZIZFOpGRBEGAIAhwdnZGZWWl3mVee+01CIKAJUuWdG9yRsjJyYEgCEhJSTF1Kl1i5cqVGDRoEJRKJQRBQFRUVLsxmr+p5j+FQgFnZ2eMGTMGH374IeTyg8yCIEClUnVbHBERmR6LdKIOqqqqwj//+U9Tp0GtpKen45lnnkFxcTGmTJmC5ORkxMbGGh2fnJyM5ORkJCUlISgoCLm5uZg1axYefvjhLsz6mhv98HS7f+giIjJ3lqZOgOhWIggClEol3nnnHTz33HNwcXExdUoE4IsvvgAAbNu2DePHj+9w/IYNG7Tau3btwr333otPP/0USUlJmDx5cmekecOOHTsGKyurbosjIiLT45l0og5QKBSYPXs2qqur8Y9//MPU6dD/nD9/HgDg7+/fKeuLjo7Go48+CuDPDwCmNHDgQAQEBHRbHBERmR6LdKIOWrhwIWxtbfHuu++irKzMqJioqCgIgoDCwkKdscLCQr1zqJcsWQJBELBhwwYcPHgQ99xzD5ydneHq6opp06ZJhemVK1cwf/58qFQq2NjYYPDgwdi2bZvBfIqLi5GSkoJevXrB1tYWw4cPx8aNG9tcvry8HH//+98RFBQEW1tb9OjRA+PHj8dXX31l8PFUV1fjb3/7G/z8/GBlZYVnn322/ScLwB9//IG//OUv8PX1hVKphIeHBxISErB//369z1F2djYAwM/PT5pfnpOTY9S22jJs2DApF43i4mKsWLECkZGR8PLygrW1NXr37q03Nw2VSgVBECCKIt59910MHToUdnZ2CAkJQUpKCsaNGwcA+Pjjj7Xmx7e+ruH6ueU3Gtfa119/jejoaLi4uMDGxgaBgYFYuHCh3ustWu+L+fn5mDJlClxcXGBvb4/IyEjs2bPH4Da8vLygVCrh6emJiIgILF26VO/yRET0JxbpRB3Up08fpKamoqamBm+88UaXb+/nn39GeHg4SktLERMTAzc3N2zduhV33303qqqqMG7cOHz88ce46667EBYWhoKCAkybNg3ffPON3vWVl5dj1KhRyMzMRFRUFMaMGYP8/HwkJyfrveD15MmTCAkJwWuvvYb6+nrExMQgNDQUP//8M+Li4tr8RqG+vh6RkZHYsGEDQkJCpMKuPfn5+Rg+fDjWrl0LW1tbJCQkoH///sjIyMDo0aOxdetWadmQkBAkJyejV69eAIDExERpfnnv3r2NeHbbVlNTAwBQKpVS344dO7BgwQKUlJRgyJAhuP/+++Hp6YmMjAyEh4fj22+/bXN9qampmDdvHjw8PDBlyhT4+/sjIiICMTExAICAgAAp9+TkZISEhLS5rhuN01i+fDkmTZqEnJwc3HnnnYiPj0ddXR1ef/11jBw5EiUlJXrjDhw4gFGjRqGwsBAxMTHo378/fvjhB9x99904evSo1rKrV6/GpEmTkJ2djX79+iExMRGDBw/GuXPnZHlhNRGR7IhEZBQAooWFhSiKonjx4kXRzs5OtLe3Fy9duiQts3z5chGA+NJLL2nFRkZGigDEs2fP6qz37NmzIgAxMjJSq/+ll14SAYgAxDVr1kj9TU1N4oQJE0QAYlBQkDh+/HixtrZWGv/www9FAOLYsWO11pednS2tLzo6WismLy9PdHBwEBUKhXjw4EGpv7m5WQwODhYBiCtWrBBbWlqksVOnTol+fn6ihYWFmJ+fr/N4AIhhYWFiRUWFgWdVm1qtlrY3f/58Ua1WS2Pbtm0TFQqF6ODgIBYVFWnFGXp+DdHkqS+PsLAwEYC4ePFiqf/IkSPi0aNHdZbPzMwUra2txYCAAK2cRVEUfX19RQCiu7u73ljN3yU5Odlgnr6+vp0Sl5eXJz2P+/btk/obGhrEqVOnigDExMRErZjW++I777yjNfbss8+KAMRHH31Uq9/Hx0cUBEHcv3+/Vr9arRazs7PbzJmIiK7hmXSiG9CrVy88+eSTuHLlCl5//fUu3VZERARSU1OltpWVFebOnQsAOH78ONasWQN7e3tpPCUlBe7u7ti7dy+uXr2qsz6FQoF3331XK+auu+7CnDlzoFar8d5770n9X375JfLz85GYmIjnn38eCsWfh4x+/frhzTffREtLCz744AO9ua9cuRLOzs5GP9acnBzk5+fDx8cHr7zyCgRBkMYSExMRHx+P2tparF+/3uh1dkRLSwtOnTqFxx9/HHv37oVSqcSMGTOk8eDgYAwaNEgnLiYmBlOnTsXp06d1zihrLFiwQG9sd1u1ahXUajXmzp2LkSNHSv1KpRKrVq2Cra0tMjIytKb5aISHh+Ppp5/W6vu///s/AMAPP/yg1V9aWgpnZ2eEhoZq9Rt7e0wiInPHIp3oBi1YsAD29vZYs2ZNm9MDOsPEiRN1+jQXSKpUKgwYMEBrzMLCAr6+vrh69SouX76sExsSEoLAwECd/unTpwMAfvzxR6lPM30jISFBb25jxowBAOTl5emM9enTR6dAa49m29OmTdN7VxLNxZytc+wMmvnclpaWGDBgADZs2ABHR0ds2bJF58LLxsZG7NixA4sXL8bs2bORkpKClJQU5OfnAwBOnTqldxtTpkzp1JxvlOa5S0pK0hnz8PDAxIkToVarkZubqzOub190c3ODq6sriouLtfrvvPNOVFRU4IknnsBvv/3WSdkTEZkP3oKR6Ab17NkTc+bMwYoVK/Daa6/hrbfe6pLteHl56fQ5ODi0OdZ6vLGxUWfM19dXb4zmAsOioiKpT3Oha1JSkt6iTkPfhwEfH582l2+LZtttXeyo6b9w4UKH121IcnIygGvfMjg5OSE4OBgJCQk6c+g1F03quwBYQzOX/Xo38nx0hZt5jr29vfXGODo6ory8XKtv9erViI+Px/r167F+/Xr06tULkZGRSEhIwAMPPAALCxW1SF0AAAVzSURBVIsbfxBERGaARTrRTXj++efx3nvv4f3338f8+fNvaB1qtdrgeOspJh0Z6wya3GJjY6WLM/Vxd3fX6bOxsen0fFpPf+lM198nXR9RFDFt2jQUFhYiNTUVqamp8Pf3h4ODAwRBwKJFi7B8+fI2f6W0K56PrmDoOe7I/jZkyBAUFBQgMzMTX3/9NXJycvD555/j888/R1hYGHJycmBtbd0ZKRMR3ZZYpBPdBHd3d8ydOxfLly/H8uXL4enpqXc5TTFSW1urM6Zv7m9XOnfunMH+1o9Bc+Z05syZSExM7PLcNNtuK0fNGey2vkHoSsePH8fx48cRGhqKNWvW6IyfOXOm23O6EZ6enjh79izOnTuHoKAgnfHOfI5tbGwQHx+P+Ph4AMBvv/2Ghx9+GHv37sWHH36Ip5566qa3QUR0u+KcdKKbNG/ePDg6OmLt2rVtTsPo06cPgGu3M7zerl27ujS/6x0+fFjvvOlPP/0UwLULVTWio6MBABkZGd2Sm2aO+9atW9HS0qIzvmnTJq3lulNFRQUA/VM+KioqbvjvqPkA19zc3C1xmuduy5YtOmOlpaX45ptvIAgCwsPDO7ReYwwaNAhz5swBgDYvsCUiomtYpBPdJDc3Nzz99NNobGzEunXr9C4TGRkJAHjzzTdRV1cn9WdlZeHtt9/uljw1NHf2aJ3HwYMHsWrVKgiCgCeffFLqT0xMRFBQEDZv3oy0tDSdOe6iKCI3N1fvRYY3IioqCsHBwSgsLMSLL76oNXUkIyMD6enpcHBwwOOPP94p2+uIfv36QaFQICsrS+tDTkNDA1JTU3XmZBtL8+3BiRMnuiVuzpw5UCgUWLlyJQ4cOCD1NzU1Ye7cuaivr0dCQgL69u3bofW2VldXh5UrV+r8MJJarUZmZiYA3NT6iYjMAYt0ok4wb948ODk5ob6+Xu/49OnTERgYiD179uCOO+7AAw88gFGjRiE6OlqrKO4OkydPRkFBAQICAvDggw8iNjYWYWFhqKmpweLFi7XuyGJpaYkvvvgCfn5+ePHFF+Hj44Po6GgkJSUhJiYGvXv3RkRERJu/ttlRgiBg8+bNcHNzw7JlyzBo0CA8/PDDiIiIQEJCAhQKBdatWyd9M9GdPDw88MQTT6C6uhpDhw7F5MmTMXXqVKhUKmRlZSElJeWG1qtSqTBkyBAcOHAAI0aMwIwZMzBz5kzs3LmzS+JGjBiBtLQ0VFdXIywsDNHR0Zg+fTr69euHzz77DP3798fq1atv6LFoNDU14ZlnnoGHhwfCwsIwffp0JCYmQqVSISMjAyqVCrNnz76pbRAR3e5YpBN1AhcXF4M/eW9ra4vdu3dj+vTpqKmpwddff42WlhZ89tln0tf/3cXNzQ379u3DhAkTkJ2djZycHAQFBeGjjz5CWlqazvL9+/fHL7/8gldeeQXe3t7Yt28f0tPTcfLkSQwbNgyrV6/GI4880mn5BQcH49ChQ5g1axZqa2uxbds2nDhxAvHx8cjNzcW0adM6bVsdtWbNGrz55pvw8/PD7t278eOPP2LChAk4cOBAm3fNMcb27dsRHx+PM2fOYOPGjVi3bh0OHTrUZXGLFi3CV199hcjISOzfvx/p6elQKpWYP38+fv75Z4MXCRvDwcEBq1evRlxcHEpLS7Fz505kZWXBxcUFS5cuxcGDB+Hm5nZT2yAiut0JYlu3IiAiIiIiIpPgmXQiIiIiIplhkU5EREREJDMs0omIiIiIZIZFOhERERGRzLBIJyIiIiKSGRbpREREREQywyKdiIiIiEhmWKQTEREREckMi3QiIiIiIplhkU5EREREJDMs0omIiIiIZIZFOhERERGRzLBIJyIiIiKSmf8He2n+N6PB2BgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot\n", - "lst_num_partitions = list(all_svcca.index)\n", - "\n", - "threshold = pd.DataFrame(\n", - " pd.np.tile(\n", - " permuted_score,\n", - " (len(lst_num_partitions), 1)),\n", - " index=lst_num_partitions,\n", - " columns=['score'])\n", - "\n", - "panel_A = ggplot(all_svcca) \\\n", - " + geom_line(all_svcca,\n", - " aes(x=lst_num_partitions, y='score', color='Group'),\n", - " size=1.5) \\\n", - " + geom_point(aes(x=lst_num_partitions, y='score'), \n", - " color ='darkgrey',\n", - " size=0.5) \\\n", - " + geom_errorbar(all_svcca,\n", - " aes(x=lst_num_partitions, ymin='ymin', ymax='ymax'),\n", - " color='darkgrey') \\\n", - " + geom_line(threshold, \n", - " aes(x=lst_num_partitions, y='score'), \n", - " linetype='dashed',\n", - " size=1,\n", - " color=\"darkgrey\",\n", - " show_legend=False) \\\n", - " + labs(x = \"Number of Partitions\", \n", - " y = \"Similarity score (SVCCA)\", \n", - " title = \"Similarity across varying numbers of partitions\") \\\n", - " + theme(\n", - " plot_background=element_rect(fill=\"white\"),\n", - " panel_background=element_rect(fill=\"white\"),\n", - " panel_grid_major_x=element_line(color=\"lightgrey\"),\n", - " panel_grid_major_y=element_line(color=\"lightgrey\"),\n", - " axis_line=element_line(color=\"grey\"),\n", - " legend_key=element_rect(fill='white', colour='white'),\n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + scale_color_manual(['#1976d2', '#b3e5fc']) \\\n", - "\n", - "\n", - "print(panel_A)\n", - "ggsave(plot=panel_A, filename=svcca_file, device=\"svg\", dpi=300)\n", - "ggsave(plot=panel_A, filename=svcca_png_file, device=\"svg\", dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncorrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(58, 5000)\n", - "Plotting PCA of 1 parition vs 1 partition...\n", - "(58, 5000)\n", - "[0.59602355 0.20935908]\n", - "Plotting PCA of 1 parition vs 2 partition...\n", - "(58, 5000)\n", - "[0.50072675 0.17944364]\n", - "Plotting PCA of 1 parition vs 6 partition...\n", - "(58, 5000)\n", - "[0.49352494 0.17990677]\n" - ] - } - ], - "source": [ - "lst_num_partitions = [lst_num_partitions[i] for i in pca_ind]\n", - "\n", - "all_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "partition_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_1_0.txt.xz\")\n", - "\n", - "partition_1 = pd.read_table(\n", - " partition_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(partition_1.shape)\n", - "\n", - "\n", - "for i in lst_num_partitions:\n", - " print('Plotting PCA of 1 parition vs {} partition...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = partition_1.copy()\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_partitions'] = '1'\n", - " \n", - " # Get data with additional batch effects added\n", - " partition_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " partition_other = pd.read_table(\n", - " partition_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " print(partition_other.shape)\n", - " \n", - " # Simulated data with i batch effects\n", - " partition_data_df = partition_other\n", - " \n", - " # Add grouping column for plotting\n", - " partition_data_df['num_partitions'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, partition_data_df])\n", - "\n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space\n", - " combined_data_numeric_df = combined_data_df.drop(['num_partitions'], axis=1)\n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - "\n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Variance explained\n", - " print(pca.explained_variance_ratio_) \n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_partitions'] = combined_data_df['num_partitions']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_data_df = pd.concat([all_data_df, combined_data_PCAencoded_df]) " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_partitions_str = [str(i) for i in lst_num_partitions]\n", - "num_partitions_cat = pd.Categorical(all_data_df['num_partitions'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_data_df['comparison'], categories=lst_num_partitions_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_data_df = all_data_df.assign(num_partitions_cat = num_partitions_cat)\n", - "all_data_df = all_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "all_data_df.columns = ['PC1', 'PC2', 'num_partitions', 'comparison', 'No. of partitions', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAHoCAYAAAAhR/JXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XmcFMXdP/BPVXfPsSfLfYRLTolEUESRWxSJIhgQYjjk8gzqz8SLhDwK6kvU+ESNJlEfDN7giYqaeAMGUPAID8mDihGQQ+5jzzm6u35/zHazw84ue839eb9e+4Lt6Z6qnqmZ7W9X1beEUkqBiIiIiIioiclkV4CIiIiIiDITgw0iIiIiIooLBhtERERERBQXDDaIiIiIiCguGGwQEREREVFcMNggIiIiIqK4YLBBRERERERxwWCDiIiIiIjigsEGERERERHFBYONDCKEiPqRUqJZs2YYOnQoFi9ejNoWi//kk09w+eWXo2fPnsjPz4fP50OXLl0wefJkLF++HLZt13js+vXr3TLvuOOOeJxajfbv34/LLrsM7dq1g6ZpEELgySefTGgd4mnmzJkQQmDlypUJOS4R3nrrLcyfPx/nnnsumjVrBiEERowYkexqpZ1t27Y16LVr6HE1EUKgS5cuTfJcmaBLly4QQiTsOCKiVMdgIwPNmDEDM2bMwNSpU9GnTx+sWbMGV1xxBaZMmVJt33A4jMsvvxyDBg3CE088ASklzj33XIwfPx6tW7fGK6+8ggkTJuC8886rsbxnnnnG/f9zzz0Xl3OqyZw5c/DMM8+gdevW+MUvfoEZM2age/fuCa1DY2TjhcnUqVNx991344MPPsDRo0eTXZ2M8+STT0IIgQULFiS7KhknVQI8IqJ0oie7AtT0jr+z/9577+GCCy7AsmXLMHXqVIwdO9Z97LLLLsOyZcvQs2dPLFmyBGeffXbUsbt378Ydd9yBd999N2ZZ4XAYy5YtAwC0bdsW33zzDT799FOceeaZTXtSMYRCIbz99tvo0qULvvzyS0iZebHzokWLMG/ePHTq1CkhxyXCxIkTcfLJJ2PAgAEIh8MYPXp0squUVTp06IDNmzcjJycn2VXJSB988AHC4XDCjiMiSnUMNrLAeeedh+nTp2PJkiV47bXX3GDjpZdewrJly9CmTRusXr0abdq0qXZs+/bt8eijj2LNmjUxn/vvf/87Dhw4gMGDB+P888/HbbfdhmeeeSYhwcaePXtgWRY6d+6ckYEGALRr1w7t2rVL2HGJ8MQTT7j//+STT5JYk+xkGAZ69+6d7GpkrG7duiX0OCKiVJeZV2hUTf/+/QEAO3bscLfdf//9AIAFCxbEDDSqGjx4cMztzz77LABg2rRpmDZtGgDghRdeaPAdurfffhvnnXceioqK4PP50KtXL8ybNw9HjhyJ2q9Lly7o3LkzAGDVqlXunJG6jB1fsGCBO7fj008/xfnnn49mzZqhoKAA5513XswLYKUUli5diksvvRQ9e/ZEbm4u8vPzMXDgQPz5z3+OOaelajnr16/H2LFj0aJFCwgh8OCDD0IIge3btwOInm9T9RyOn3uxcuXKBh1X1Y4dO3DVVVehc+fO8Hq9aN26NSZMmIANGzZU27fq8I+KigrMmzfPPa579+649957a50LFE/XX389hBD4y1/+UuM+p59+OoQQ+N///V9327/+9S9MmzYNJ510Enw+H1q1aoV+/frhhhtuwA8//FCnsqu+vu+//z6GDRuG/Px8tG7dGldccYU7PGzfvn246qqr0KFDB/h8PgwcODDme1K1rcRS12FzI0aMwKxZswAACxcujGofznPXNKSn6vCrr7/+GhMnTkSLFi2Qm5uLwYMH4+23367Ta1PV5s2bMXPmTHTs2BFerxdt2rTBpZdein//+9/1ep4RI0ZACIFt27bh2Wefxemnn46cnBy0bt0aM2bMwK5du6odc+TIETz88MM4//zz3TbbokULjBkzBu+9994Jy3n++edx1llnIT8/H82aNcOCBQvQtWtXANHfOUIIzJw5032O49+rhh5X1bp16zB+/Hi0atUKXq8XXbp0wS9/+Uvs3r272r5V38fvv/8eU6ZMQatWreD3+zFgwACsWLEiZhlr167FxRdf7L5Wbdu2xcCBAzFv3jyUlpbGPIaIqC4YbGSJkpISAIDX6wUAHDhwwJ3YfemllzboOY8ePYo33ngDHo8HkydPRteuXXH22WfjwIED+Pvf/17v51u0aBEuvPBCrFy5EqeffjouvvhilJeX495778WZZ56JvXv3uvtecsklmDhxIgCgTZs27jyVSy65pM7lrV27FsOGDcPOnTvx05/+FL169cL777+P4cOHVxs2FgwGMWXKFLz//vto27YtLrroIpx11ln497//jblz52L27Nk1lrN69WoMGTIE27Ztw+jRozFs2DCcc845mDFjBnJzcwEcm2dzonNo27Ztg45zbNq0Caeddhoef/xx+P1+TJgwAT169MDy5ctx9tln46WXXop5XCgUwujRo/E///M/GDBgAEaOHIldu3Zh3rx5+K//+q8TlhsPU6dOBQA8//zzMR//6quv8MUXX6Bv3774yU9+AgD4/PPPccYZZ+C5555Dfn4+xo8fj7POOgvhcBgPPfQQvv7663rVYfny5RgzZgyUUhgzZgy8Xi8WL16M8ePH48CBAxg0aBDeeecdDB06FP369cOGDRswZswYbNq0qXEnX4MxY8a4NwZOPfXUqPZR17lM//nPf3DmmWfiyy+/xOjRozFgwACsW7cOY8eOxZIlS+pcl9deew39+/fHU089hZYtW2LcuHHo2rUrXnzxRQwcOBCrV6+u9/ndf//9uOyyy5CXl4fx48cjNzcXTz/9NM466yzs3Lkzat9PPvkE119/Pb755hv06tULP/vZz9CrVy+8++67OP/88/HXv/61xnIWLVqE6dOnw+PxYOzYsTjllFPQr1+/mN85M2bMwJAhQ2p8roYe53j22WcxdOhQvPHGG+jVqxcmTJgAr9eLv/zlLzjttNPw1VdfxTxu27ZtOOOMM7B+/XqMGjUK/fv3x+eff46LL7642vfbihUr3DLatWuHCRMmoH///jh06BDuvfdeHDhw4IT1JCKqkaKMAUDFektt21aDBg1SANT8+fOVUkq99957CoDq1q1bg8tbvHixAqDGjx/vbvvzn/+sAKhJkybV67nWr1+vpJQqLy9PffLJJ+72QCCgJk2apACoiRMnRh2zdetWBUANHz68XmXdfvvt7ms1f/58Zdt2tfq3a9dOlZeXu9vD4bBavny5CoVCUc+1b98+NWDAAAVArVq1qsZy7r333ph16dy5c8z3zDFjxgwFQH300UeNPs62bdW3b18FQN1yyy1R5/3yyy+7r//u3bvd7c5r7LzOR48edR/bsGGD0jRN5eTkqJKSkhrrUpt169Y16D10dO/eXQkh1Pbt26s99rvf/U4BUPfcc4+77bLLLlMA1P33319t/82bN0ede22c11dKqd588013e3FxsTrllFMUANWnTx81bdq0qDbj1Omyyy6Lej6nrSxZsiRmebHe75ra/5IlSxQAdfvtt8d8rhMd59QvHA67j61YscJ9r3fu3Bl1HADVuXPnamXk5uaqvLw89d5770U99re//U0ZhqE6duyogsFgzDoeb/jw4QqA0nVdvfXWW+72UCikpk6dWu17SCmlvvvuO7Vu3bpqz/XFF1+oZs2aqYKCgmrt1inH5/OplStXVju2Lt859XmvTnTc999/r/x+v9I0Tb3++uvudsuy1A033KAAqAEDBkQdU/V9vPHGG5VlWe5jDzzwgAKghg4dGnXMsGHDFAD18ssvV6vX+vXrVXFxcY31JiI6EfZsZDDLsrBlyxbMnj0b69atg9frdYdYHDx4EADQqlWrBj+/k4XKGT4FAJMnT4ZhGFixYkW9Mg098sgjsG0b1113XdR8D6/Xi0ceeQR+vx/Lly+PGgbWWJ07d3aHrziuueYanHnmmfjhhx/wyiuvuNt1XcfFF18MwzCinqNVq1ZYtGgRAOD111+PWU7fvn1x8803N1m9G2rlypXYtGkTOnXqhLvuuivqvCdOnIiLL74YpaWlMe/4Sinx2GOPoaCgwN02YMAA/PSnP0V5eTk+++yzhJzD8aZOnQqlVMzejeeffx5CiKgsbPv37wcAnHvuudX27927d73nuUyZMgUXXnih+3t+fj6uuOIKAMDOnTvxxz/+MarN3HTTTRBCYNWqVfUqJ5Hy8vLw4IMPQtePTekbO3YsLrnkEpSXl9epd+PBBx9EWVkZFi1aVO21HjNmDK655hrs2LEDb731Vr3qNnnyZFxwwQXu74Zh4KGHHkJOTg7eeOONqO+Hrl274qyzzqr2HP3798fcuXNRXFyMjz76KGY5c+bMwfDhw+tVt3hYvHgxKioqMHnyZIwbN87dLqXEPffcg/bt2+Ozzz6LOaeua9euuPvuu6Pms1177bUoKirCJ598glAo5G6v7XNxxhlnID8/vylPi4iyDIONDOSMB9Z1HT179sSTTz6J/Px8LF26tMkmIX7//fdYvXo1mjVrhosuusjd3qJFC1xwwQUIBAI1DsmJ5eOPPwZwbGhMVa1bt8bo0aNh23aNE9UbYuLEiVEXVI5f/OIXUXWq6p///Cfuu+8+zJ07F7NmzcLMmTPdOQNbtmyJWc7YsWNTIk2tcz5OQHi86dOnR+1XVefOndGrV69q23v27AkAdZ7r0NRqGkq1bt06fPfddxg2bBg6duzobj/99NMBAHPnzsXKlSthmmajyo+VSeukk04CEAnGioqKoh4rLCxE8+bNk/Z61cXo0aOr1Ruo/XNxPGeYzoQJE2I+PnToUACRNXrqI9aQzxYtWmD06NFQSuEf//hH1GOWZeHdd9/FggULcNVVV2HmzJmYOXOmG2TU9JmtemGfTLV9L3q9XkyaNClqv6pGjBgBj8cTtU3XdXTt2hXhcNi94QQc+1xMnz4dGzZsqHVdJSKi+mI2qgw0Y8YMAJG7XwUFBejbty8mTJgQdQHRokULAMfuaNXXc889B6UULrnkEnceiGPatGl4/fXX8eyzz+Lyyy+v0/M5Ex1rmuDtbI81EbShnAnmNZVVdfJlKBTCzJkzsXTp0hqfz5kXc7xUST/bmNf4Rz/6UcxjnDuewWCw8RVsgB49euCMM87Ahg0bsGnTJvTt2xfAsfVejr9Iu/nmm/GPf/wDK1euxMiRI5GXl4dBgwbhwgsvxMyZM1FYWFiv8jt06FBtW15eXo2POY9XvdBLNfX5XNRk27ZtAGp+DRz1nQtQn7rt3LkTY8eOxcaNG2t8Pn5mI+6++25s2rQJK1aswIoVK1BUVIQhQ4Zg3LhxmDZtGnw+XyPOgoiyHYONDFSXFbRPPfVUAMB3332HI0eOoFmzZvUqwxlCtXLlymqTHJ3u+dWrV2P79u01XiDUR7J7Bv7whz9g6dKl6Nu3L+677z6cdtppKCoqgmEY7gRUVUNWpnT5Q13ba5zKqYWnTZuGDRs24Pnnn8eiRYtgmiZefPFFeL3eapPmCwoK8OGHH2LNmjVYsWIFVq5ciQ8//BDvvfceFi1ahI8//hg9evSoc9m1vS5N+Zql251mp77OjY+axDNF9uWXX46NGzdi4sSJuOWWW9CrVy/k5+dDSonHH38cV111FT+zlTp27IjPPvsMH374Id58802sWrXKDTzuu+8+rFu3zr1BRURUXww2slSrVq0wcOBArF+/HsuWLcPVV19d52M///xzbN68GQDw7bff4ttvv425n1IKzz33HH7729+e8Dnbt2+PrVu3Yvv27ejTp0+1x+t6p7Q+nPSxNW1v3769u2358uUAgKVLl+LHP/5x1P7fffddk9Upnpzzqem84/EaJ8LPf/5z/PrXv8bSpUtx9913491338X+/fvxs5/9LOZwICEEhgwZ4gbJ+/btww033IClS5di/vz5ePHFFxN9Cu5wl1gpRi3Lwp49exJWl/p8Lmryox/9CP/5z3/w3//93016kbp9+3Y3s1htdSsrK8N7772HNm3a4IUXXoCmaVH7p9Nn9uuvv8b27durfe8ATfuZ1XUdo0ePdocGbt++HbNnz8aHH36Ie++9F/fdd1+jyyCi7JS6tysp7m666SYAkTzw+/btq3XftWvXuv931ta46aaboJSK+eOsJeDseyLOGO5Yw5T279+Pd955B0KIGtf7aIhXX30VlmVV2+6siF61x+bw4cMAYg9NaMzFqXORWd+5Aw05znmNX3rppZjn7bxXzn7pok2bNjj33HOxfft2rFmzpsYhVDVp3bo1FixYACCyBkcyOBPTv/nmm2qPffTRR/Vat6ahbcrx7rvvVlvXBoj9uajJeeedB+BYkN5UYn3WDh06hHfffTfq++Ho0aOwbRvt2rWrFmiEw+EG1yuRn1eg9u/FUCjkzouLx2e2c+fOuPXWWwEk73NBRJmBwUYWmzRpEi699FLs3bsXw4YNw7p166rts2fPHlx77bVuxinLstw/fM6E0ViGDh2KDh06YPPmzfj8889PWJe5c+dCSok//vGPUZmNQqEQrrvuOlRUVGDChAlRk30ba9u2bVi4cGHUtscffxzr1q1DmzZt3Nz4wLGJ0I8++mjU/i+//DKefvrpBtfBuRNb3/UdGnLciBEj0LdvX2zbtg233XZb1BCS5cuX49VXX0VeXl6ta4akKqd9Pv7443j99ddRWFiIsWPHVtvv0UcfxdatW6ttdxasa8r2VR/Dhg0DEAn4nLvVALB161Zcf/319XquhrYpR2lpKX79619HXRj/7W9/w4svvgi/3+9mtKvNjTfeCL/fj5tuugmvvvpqtceDwSBefvnlamtjnMgLL7yAd955x/3dNE386le/QllZGcaOHevOtWjdujUKCwvxr3/9KyqphGVZuPXWW2MGdXXRsmVLGIaB//znPzED9qY+bs6cOfD7/Vi2bFlU5i7btvHb3/4Wu3btwumnn97omzAPPPBAzN6zZH8uiCgzcBhVlnv66aeRk5ODv/71rzj77LPRu3dv9OnTB4ZhYNu2bfjss89gWZZ7p/Ldd9/F3r170bNnT5x22mk1Pq+UEj//+c/xhz/8Ac8884yb7aQmAwcOxJ133on58+dj0KBBGDFiBFq2bIk1a9Zgx44d6NGjB/70pz816blfccUVuOeee/Dqq6/iJz/5Cb799lts2LABhmHgySefRE5OjrvvLbfcgr///e+YN28eXnrpJfTs2RNbtmzBZ599hptuusldjb2+xo0bh1WrVmHUqFEYOXIkcnNz0bJlS9xzzz1NfpwQAs899xxGjhyJu+++G8uXL0e/fv3w/fffY82aNdB1HU888US907/W15133uleODnDhr744ouoNKXLly+vVz0uvvhi5OTkuHOJ5syZUy1xARAJNq655hr06dMHJ598MnRdx1dffYWNGzfC5/Phtttua8ypNVi3bt1w2WWX4emnn0a/fv0wbNgwlJeX45NPPsEFF1yA8vLyGoc3He+ss85C69at8fLLL2PEiBE46aSTIKXE7NmzcfbZZ5/w+KlTp+LVV1/FypUr3TTQq1evhlIKf/zjH2uceFxV9+7dsXTpUkyZMgUTJ05E9+7dcfLJJyM3Nxe7du3CF198gbKyMnz55Zd1ej7HlVdeiZ/+9KcYNmwY2rVrh08//RRbt25F+/bt8cgjj7j76bqOW265BfPnz8fw4cNxzjnnoHnz5vj000+xd+9ezJ07t0HfJx6PB2PGjMGKFStw6qmn4rTTToPH48HgwYNrDcIaelynTp3w2GOPYebMmbjoooswePBgdOzYEV988QW+/vprtGnTps69x7VZuHAhbrrpJpx66qno0aMHlFLYuHEjvvnmGzRv3tztBSciapAkrO1BcYIaFvWri7Vr16rZs2er7t27q5ycHOX1elXnzp3V5MmT1euvv+4uAPeLX/yi1gXDqtqwYYMCoFq3bh21QFht3nzzTTVq1ChVWFioPB6P6t69u7rlllvUoUOHqu3b2EX9lixZotauXatGjRql8vPzVV5enho1apRas2ZNzOPWrVunzjnnHFVUVKTy8/PV2WefrV555ZUa63GihdqUiiwW+Lvf/U5169ZNGYZRbYG0mhb1a+hxSim1fft2dcUVV6iOHTsqwzBUy5Yt1cUXX6w+/fTTavue6DWuyzkez6lbbT9bt26t8/M5nLYJQH344Ycx93njjTfU7Nmz1Y9//GPVrFkzlZOTo3r27Kkuv/xy9dVXX9X7HGK9vh999JECoGbMmBHz2JoWZAwGg2revHmqY8eOyuPxqG7duqm77rpLmaZZ74XiNmzYoM477zxVWFiohBBR71FdFgP8v//7PzV+/HhVVFSk/H6/GjRokFqxYkXM8zm+7VX17bffql/+8peqR48eyufzqfz8fNWrVy916aWXqhdffLHei/pt3bpVLVmyRPXr10/5fD7VokULNX36dLVjx46Yxz311FOqf//+KicnR7Vo0UKNHz9ebdy4scaFD6uWU5O9e/eq6dOnq7Zt2ypN06q91zW9vw09Timl1qxZoy666CLVokULZRiG6tSpk7rmmmuqLbCo1IkXdYx1jk8//bSaMmWK6tWrl8rPz1f5+fmqT58+6te//nXMMoiI6kMoVUM6DqIMtWDBAixcuBBLlizBzJkzk10dopTw5JNPYtasWbj99tvdOSypYsSIEVi1ahW2bt1aYxpYIiJKTZyzQUREREREccFgg4iIiIiI4oLBBhERERERxQXnbBARERERUVywZ4OIiIiIiOKCwQYREREREcUFgw0iIiIiIooLBhtERERERBQXDDaIiIiIiCguGGwQEREREVFc6MmuQLo6cuQIysvLk10NymI5OTlo1qxZzMfYPimZ2DYpldXWPomo6THYaIAjR47gkUcegWmaya4KZTFd13HttddW+6PJ9knJxrZJqaym9klE8cFgowHKy8thmib69++PvLy8ZFeHslBpaSm+/PJLlJeXV/uDyfZJycS2SamstvZJRPHBYKMR8vLy+GVFKYvtk1IV2yYRUfbgBHEiIiIiIooLBhtERERERBQXHEZFCfXmm2/iww8/xLZt2zBo0CDcfPPNya4SEQAgHA7j0UcfxcaNG1FSUoKWLVti8uTJGD58eLKrRuRau3Ytnn/+eezduxcFBQWYM2cOzj777GRXi4ioRgw2KKGaN2+OyZMn45///CdKSkqSXR0il2VZaN68Oe666y60adMGmzdvxh133IE2bdqgd+/eya4eETZu3IjFixfjpptuQu/evVFcXIxAIJDsahER1YrBBiWUcwfuu+++Y7BBKcXn82Hq1Knu73369MHJJ5+MzZs3M9iglPD888/j5z//Ofr06QMAnGRPRGmBczaIiGIIBAL49ttv0blz52RXhQiWZWHLli0oLS3F1VdfjZkzZ+Khhx5CWVlZsqtGRFQrBhtERMexbRsPPvggevTogf79+ye7OkQ4cuQITNPE6tWrcdddd+GRRx7BkSNHsHjx4mRXjYioVgw2iIiqUErhz3/+Mw4dOoSbb74ZQohkV4kIXq8XAHDhhReiZcuWyMvLw6RJk7Bhw4Yk14yIqHacs0FEVEkphUcffRRbt27FnXfeCb/fn+wqEQGILITYsmVLBr9ElHbYs0EJZVkWQqEQbNuGbdsIhUIwTTPZ1SICADz22GP4+uuvsXDhQuTk5CS7OkRRRo8ejbfeeguHDx9GeXk5XnnlFQwcODDZ1SIiqhV7NiihXnjhBSxbtsz9fc2aNTjnnHNwww03JLFWRMC+ffvw9ttvwzAMzJ49291+ySWXYPLkyUmsGVHEpEmTUFxcjLlz50LTNAwYMACXX355sqtFRFQrBhuUUFOmTMGUKVOSXQ2ialq3bo033ngj2dUgqpGmabjyyitx5ZVXJrsqRER1xmFUREREREQUFww2iIiIiIgoLhhsEBERERFRXHDORiOUlpYmuwqUperS9tg+KRnYNimVse0RJR6DjQZwUrV++eWXSa4JZbtYaYPZPikVsG1SKmPKdaLEYbDRALoeedlGjhyJoqKiGvfTNA35+fkoKSmBZVlxr1ciy8vkc0uH8g4fPoyPPvrIbYtV1aV9pvr5sbzUKS/RbbMhZTZWJpeXyefWkPJqa59EFB/8tDVCjx490L59+xofV0rBNE107NixXqu+2raNPXv2oG3btpCy7tNqGlJeIstieU1X3u7du/HRRx/Vuk9t7TPVz4/lNX156dI2G1KmI5Pfv4aWl8nn1pDy6tI+iahpcYI4ERERERHFBYMNIiIiIiKKCwYbREREREQUFww2iIiIiIgoLhhsEBERERFRXDDYICIiIiKiuGCwQUREREREccFgg4iIiIiI4oLBBhERERERxQWDDSIiIiIiigsGG0REREREFBd6sitARNRYtlJQCoDgHRRKHUophG0FSwFSALoU0IRIdrWIiBKKwQYRpTXLVqiwjgUbugC8jDgoiZwgo8JSMG3AqwGmEjBtBb8OMNwgomzCP8lElLaUUgjYCkIAhiagC8BUQNhWya4aZSmlFAJWJNAIWIClANOOBME2AJNtk4iyDIMNIkpLSimEbIWAqWDZCrZSEEJAisgFHlEyOMGFJgBNAh4ZCYAtFenRYNMkomzDYIOI0o4TaAQtBVMBFRYQsCIBh105Pp4oaQQghYBEpDcDODaviHM2iCjbMNggorRjAwjZgCEF/FrkDnLQBoKWgkRkO1EyCHFsToZXE7BVpGdDqcjcDY1Nk4iyDCeIE1H6qRyLIoSARxOQtoJUCroA/LqAwLE7ykSJpAkBj1QI2gBUJFlBngQ8moSs7NVQioOpiCh7MNggorTj3D22lIImBLTKtKJ+XUAKwYs5SiqPJqFLJ0Ma090SUXZjsEFEaUcKAa9UKDMVAkpBAPDrHA9PqUNWHU9FRJTFGGwQUdpRKrJQmhCVX2ICUBCoXGqDiIiIUgSDDSJKOzaAsAI8UkBU9maEqqzUTJRMx68cbkjhztcgIso2zEZFRGlHVZkg7pDgxFtKPmdRv4B9LGtawFJsm0SUtRhsEFHacXov7MoLOFW5hgGK8Tp5AAAgAElEQVTvHlOyOYv6GSIyh8iQIrKNsQYRZSkGG0SUdqQQ8FeuYeAMV/FwDQNKFSK6142IKJtxzgYRpSVdCuSIyiFVgpmoKDU4zdBJy+z0vnEuERFlKwYbRJS2mF6UUo0mIqvaByyFcGVaZq9kMExE2YvBBhERURNye90QiYU5l4iIshmDDaoz0zQBAFJKjkcmIqoFAwwioggGG1Qr27ZhmibKy8sRCoUgpYSUErm5uZCS+QWIiIiIqGYZFWxs2bIFH3zwATZt2oR9+/YhPz8fvXr1wrRp09ChQ4eofXfs2IHFixdj8+bN0HUdAwYMwJw5c1BYWJik2qce27ZRVlaG4uJiVFRUwOv1Ii8vD7Zto7S0FHl5ecmuIhERERGlsIwKNl555RVs3rwZgwcPRpcuXXD48GG89dZb+NWvfoXf//736Ny5MwDgwIED+M1vfoOcnBxMnz4dFRUVeO2117B9+3bcf//9MAwjyWeSGsrLyxEIBCCEgMfjgVIK5eXlyMvLQygUgm3bya4iEREREaWwjAo2xo8fjxtvvDEqWBg6dCiuu+46vPzyy7jxxhsBAC+99BICgQAeeOABtGrVCgDQs2dP3Hbbbfjggw8wZsyYpNQ/1YTDYWiaBsuyoJSCYRgwTdP9nYiIiIioNhk16P7kk0+u1ivRvn17dOrUCTt37nS3rV27FmeccYYbaABAv3790KFDB6xZsyZh9U11UkoopeD1eiGlRCgUgmmaCIVC8Pl80PWMilWJiOImsso9b9IQUfbJqGAjFqUUjhw5goKCAgDAwYMHcfToUXTv3r3avj169MB3332X6CqmLL/fD6UULMuCx+NxJ4YXFBQgNzc32dUjIkp5tm0jGAyivLzcTbTBoIOIsknG35peuXIlDh48iClTpgAADh06BABo3rx5tX2LiopQUlKCcDjMeRsAPB4PCgoKEAgEoJRCYWGhG3QopThng4ioBkophEIhVFRUwDRN+Hw+aJqGcDgMpRSz+RFR1sjoYGPnzp147LHH0Lt3b5xzzjkAgFAoBAAxgwmPxwMACAaD1R7/4Ycf8MMPPwAA9u/fj7KyMgCo9YLbuSC3bbte61I4z1nfi/mGlHeisnRdr5Z1yrbttDi3bCivJk77rake6XJ+LK/pykuXttmYMlPl/XMCDWfoqRACwWDQvVkTCoXg8XgScn7p/lrGqzwiSpyMDTYOHz6MO+64Azk5Obj11luhaRqAYwFFOByudowTiHi93mqPPfbYY1i4cKH7+6WXXgoA2LNnT5PX3bFv3764PXcyy2J58Tdr1iwA8WufqfZ6KgAWBJzBKToUGnPZkWrnl65lxRLvtgkk//1zgg0AbrDh9GY4i6I6f4uaorx4SvZrSUTpLyODjbKyMixYsABlZWVYtGgRWrRo4T7mDJ9yhlNVdfjwYeTn58fs9bjqqqswbtw4AJGejffffx8A0LZt2xrroZSCaZrQdb3ed3j27duH1q1b16urvSHlJbIsltd05Z3oQm3JkiWYNWtWje0z1c+vPuUppRCwAdMGBCKBhwZAVyYMI/3Pr6nKS5e22ZAyHany/tm2jYqKCmiaBtM0o4ZO6boOj8cDIURCzi/dX8umLi+eQS4RxZZxwUYoFMKdd96J3bt3484770SnTp2iHm/RogUKCwvx7bffVjt2y5Yt6Nq1a8znbdeuHdq1awcA2L17N9atWwcAtX4pHn8nq76cY+uqMeXVVFYgEEBFRYWblcrv97tzNtLl3LKhvOM5PXe1XaCn0/nVVp5pK9hKwaPBfe6QZUMhM86vqctL9bbZFGUm+/0TQripwnVdh1KonAvogc/ndVOKJ+L80v21jHd5RBR/GTVDzbIs3Hffffj6669x6623onfv3jH3GzRoEDZs2ID9+/e72zZu3Ihdu3Zh8ODBiapuygsEAigpKYFSCkIIlJWVoby8PNnVoixmKwVLRYKLKALVLjSY74eSxRkmZRgGTFshLHVoOfkQPj9kPe/4ExGlu4zq2fjrX/+K9evXY+DAgSgpKcFHH30U9fjIkSMBAJMmTcKaNWswf/58jBs3DhUVFVi+fDk6d+6Mc889NxlVT0nOMABnPQ0hBAKBAHJycvjHkhIuZNkIVs4dFQB8GqBLASEiv9tKQQrhBiJsopRMUkroHg+CQodPAJoQsBRQYSr4tWTXjogocTIq2Ni6dSsAYP369Vi/fn21x51go1WrVli0aBGeeOIJPPXUU9B1HQMGDMDs2bOZ8vY4VYMKBhiULKatEFQCmoAbUFRYCjmVF3EeqRCyAasy0PBKQLJrg5LMVpHvTV1Gvjt1AYRtBZttk4iySEYFG3fffXed9+3UqVNUdimqzuPxoKysDEIIN3Wjz+dz52wQJYrT2mRlwCuFgKUUlAIgAI8moUuFyl8hIGCaXAeGkk9VtlPerCGibJVRwQY1LWcF8UAgAADw+XzV1twgSpSq4a0T7Fa9fBORB3hRRynBtm2EgyEEwxaCQsDQdEhdgyYjPXRWsitIRJQgDDaoRlJK5OXlIScnx/2dKBn0youzkK0gEQk8dAFUjk5BOBx204s2dg0DooZy2p+zzoZtmcg1dAQthXA4BJ/0wm/ojVoDhogo3TDYoBNikEHJJoSAT4pImltE0ugZMjK8z7IshEIhN/2lZVkIBoOcf0UJYymFCtOGUoAmFHShYFmWu/ZDjhSwpIKEBSkMDkMloqzCq0giSjlKKYRthaClIiuDV2aa8mgSPk3Co0n3DnIwGIRpmgDgLpRm2zZsm3M2KP5sABWR5gcpAEsBQQucBE5EVIk9G0SUUpRSCFgKpgKUDYQgEbCAHBk9H8O2bQSDQTfYsG0bHo8HmqZx3gYljA0RWbXeTV4AhG1A03VYlukm1FBKuWnEiYiyCb/5iCilWCpysWZIQElAQsGs3K5XiSFM04RlWfB6vRBCuMGHYRjQdZ3D/yipDMOAksLtdfN6vQw2iCgr8ZuPiFKKQmRBPmeYlAAgVPUVwW3bhpQSmqbB6/W6k8QNw4DH44FlMd8PxZ9EpI2atoIUkeFTUgCaFJCah8kKiCjr8dYfEaUUJ8OUsxK4Om67u5+U7rwMKSUMw4DP54PH4+EwKkoYCcCvww00NAH4NOGuCUNElO3Ys0FEKUUTAl6pELQjF28KAh55bEy8Q9d1mKaJYDAYmUAuJfx+PxedpITThIChSTf1LRERHcNgg4hSjrMiuGUrlMCCR4t9AecMtQLAAIMSKlZ7Y6BBRFQdgw0iSkkyMnGjxrGezgRxn88HAO56G5qmJa6SlHUspRCyFCwFQEXWfSEioppxzgYRpSVngrjDmcPBHg6KF1spBMxIoCFFZI2NEDR3fhEREVXHYIOI0lLVIVQA3HkbHMpC8WKrSIChy8gEcF1EEhhYjDWIiGrEYVRElJYMw4BlWTBN052Y66y5wd4NIiKi1MBgg+osFAq5mX+clZqJkkVKCZ/P56a/FUIAUqLCtGErBWUBmsbsQNR0pIgMB3DW1DAVIBBJd0tERLEx2KA6CQaDKCkpifrd5/MhLy8vibWibCeldOdtWEqhwjzWoxFWQMBS8AsGHNQ0pBDw6XAniEsAHlhcU4OIqBYMNqhOysrKIKWErkeajGmaqKioQE5ODns4KO6UUghZNsKVsYQuAI8UUUGEaSsoAIYUUJVj683Kf9lCqaloQsCvR4bqKQUUJ7tCREQpjhPEqU6OX6yqahYgongL20DQivxfAAjZQMiOsc5B1f/zZjPFEXvLiIjqhleMVCcejwfhcLjybp5CKBSCrusMOighTAXIylXEpRDQRCQAqToRXBMCCpH0pEqpyDGCX3KUGmzbhmVZsCyLCQyIKKtwGBXVid/vh2VZCIfDACLBh9frTXKtKFOYtkK4chiULiJDoep751iXAl6lELIjKUo1Afi0+j8PUVMzTdNNriGEgJSSw0+JKGsw2KAopmnCNE0AgK7r7hwNXddRUFAQlfnH+T9RY5i2QoUVye4DAEEbUFDwVknxo4vI0CkhI3eETQV4RPWhLB5NwpAKtgIsM9LbQZRMtm1HAg0IQNNhKwXTNGEoBcMwkl09IqK4Y7BBrlAohOLiyHRHpRQ0TUNBQYEbcFTN/KOUYrBBTSJcmUbUCQwEFMI2YMhjQ00MGRkOFapscl4ZmSAeixACEoDNOINSgFKR4NeUGmwbUBCwlQBsBX+yK0dElAAMNghA5O5baWkphBDu3bZgMIjy8nIUFBQkuXaUyazKoU9SKEigclXm6EhBCAGPlG4AwqFRlC6EEDBtwIKCUdlbFwwrBCGqJd4gIspEDDYIQOTum2VZ8Hg87jZd190hVUTxYKtIL0bIAnQJKAAhADmagkBkwndVvDCjdCOlhGYYMMNhWCryXatrAkrq1do3EVEmYrBBACIXcZqmwbIsd9jU8cEHUVMzbQVNAH4dMG1AKUAJwKic2M2sPZRObNuOmgTu8Hp02JAQyoaUAkpIKNsGQ2ciygYMNghA5O5bXl4eiouLEQgE3PkZOTk5ya4aZTCFyKrMuhTwyEg2KtNWXJGZ0o5lWW7GKQAwDAOGYUSGpkoB25AwbQkIQCgFQ2NPHRFlBwYb5PJ4PGjWrFnMbFRE8aAJgRAUbBUJMCxbQROiQXd8bduOypZGlCi2bSMUCgGIfG86axFJKSPrEQkBnwZYlZ0dAoBtJa++RESJxCtJisIAgxKp6toYlopkpfJpot49G7ZtIxAIuHeVlVJsy9QkTFshVGUNGE+MNWCcxU6d9iaEqJYeXAgBXTj7A8zlR0TZgn+Js5hpmgiFQgiHwzBNk/MzKCk8moTuZJlCw3olQqFQ1MWe07Y9Hg97OajBTFshYCk4TShUuWq997ghUM7/q2aX4nwjIqIIeeJdKBOFw2EcPXoUpaWlCAQCKC4uZuYpShopIr0ZdQkMnLvIx2+rOiFXShlzP6L6CNuR9qMJAa2yZyKsEDNLmtR0hMImwuHIwqjOECoiomzHYCNLlZaWRu7Qeb3Qdd1dZ4MoVSml3LVfysvL3d4MoPqK9rZtu0NZiOJJIdLjEZY6bN0HU+rQdAM+ny8qACYiyla87ZKFbNuOSnELwE17a9s2/0BSSnKG/DkTcMPhMIBIYgOPx4NAIADTNN0AhEOoqLF0KWCakQQGAoCpIvM2qrYqEwIhG/BoApAClpKwBZMUEBE5GGw0UF5ennvRU5Oqk1Xrwxl7Xt9hIHUtz1lTwzRNdxKtZVlumsa6lJmq55Yt5Z1oeEbbtm1rbZ+pfn7Hl2fbtjs0BTg2ATccDrvt1uv1RmWjasgwqkxtL4ksq7FtsyFlVj2uKc9Rg4JHRhIYAIBWOUEcgNsmARmZ8V0ZgkgomDZgy5qHDiTy/FLltUyV8ji0jSjx+KlroP79+6OoqKhO8xwsq/45DouKiqJSedZHXcrzeDwoKytDRUWFOzHc5/PVe95GKp5bNpRXVFRU6+Nz5swBgBO+n6l6frHKc451Ag6n/Fjn6Fx4pNP5JaK8dGqb9Snz+PKb8hwlAG/l/52UtaZtIxgMwrZteH0+hEJBCOXcrIlkmjIByBN0biTy/FLhtUyF8k7UPomo6THYaKAvv/wSffv2RatWrWrcRykFy7KgaVq9utRt28bBgwfRokWLeg1pqk95uq7D4/EgFArh8OHDaN68eb2yUaXyuWVDefv376/18SeeeAITJkyosX2m+vnFKs/r9bprFzhZfzweT8w7lel4fvEuL13aZkPKdCTiHJ01NDRNg67rKD50CJ7cQoR1Ba+uwVaAT0ayrKXC+aXya5mM8k7UPomo6THYaKDS0lKYplmnL7f6TlQVQrjP3ZBxv3U9zjAMaJqGo0ePukNR4lVW1f0TcW6ZXt6J7grv2bOnTu0zVc8vVnnOHAxnOJUTaNT2fOl0fvEuL93aZn3KrLp/vM+x6poaSikoy4Jfjwzb04SARwJGjLU4Glre8fs39PxS8bVMRnnMukiUeAw2iCglOWPincQFTm8c14OhZDt+bpuEgqEBPp3JNYiIjsdvRiJKOc6K4MFgEKZpIhAINGgMOFFTk1LCMAxYluX+AJGeYiIiqo7BBhGlnKorgjvjt6uuq0GUTIYRWUfDyebn9/uhaVqyq0VElJI4jIrqzTRNd3iLlJJ/ZKnJHb/ei5SyQRlqiBpLKQUbkUxUsnJOgBDCDYSrBsRERFQdgw2ql1AohOLiYiilYJomwuEwCgoK+MeWmpSU0g1mgerBB1EimLZCwIoEGxKAT4ss9EdERHXHv95UZ7Zto6SkBFJKeL1eGIaBUCiE8vLyZFeNMoyTeSocDsO2bSil4PV6uSozJYylIoGGqFzITwogYClYHMpHRFQv7NmgOnMu+pyJkM6dZk7cpaYmpXQXmeSYeEoGu3JxPk9lgCuFgKUUbBVZSZyIiOqGwQbVm7OAEhAJQHgRSPHgjIfXNI1DqCjhROVPrO0NZds2QqGQe+OGc96IKBvwLzjVma7ryMnJgWVZblpSTdPg8/mSXTUioialCUAXQNiODJ0K2wqaaHivhpPO2ekJNk0TwWCQGdaIKOOxZyPLNHaibU5ODnRdd7NR+f1+6DqbERFlFiEEvBog7cjQKb0eK4PH4vRmOCuPa5oG27ZhWRa/Q4koo/EbLkuYpomSkhI3w09eXl6DV2L2eDwwDAOmaXIIABFlLCkEvE04QYO9GESUjTiMKgvYto3i4mJYluVO7j569CjC4XCSa0bU9CzLQigUcjNZEaUCKSWEELAsC0opdzgV5yMRUabjt1wWcBbhc9KJOl32oVAoyTUjalrhcBiBQADhcBihUAgVFRXMlkYpwUkZDkQCYiEEfD4fgw0iyngcRkUuJ1OKk23K4/HwDyGlDKWU21sRa+VmpRRCoZB7B9kRDoc53I8aTSkFpRSEaPi8DSe7mjNXg+2SiLIBg40soOs6DMNAMBiEruuwbTsy+bHyLhsQCTQqKipQUVEBKaW7ngZXB6dU4AQSzh1hy7JgmmbUnWFnPHzVC0EhBMfJU6OZpummrJVSwuPxNHhStxACUkoO8SOirMGryCwgpUR+fj68Xq/7x7KgoCDqj6VpmggEAvB6vfB4PPB4PAiFQhxqRSmh6p1gTdPcoNk0TXcf546zM2xKKcV1YKjRLMtCMBiEEAKGYUAIgWAwyOF5RER1xJ6NLKHrOgoKCmpMfev0djh3hZ3/864wJYIzYda523v8EClnn+N7LapyeuuCwaCbmtnr9bpJEYgawhk+5bRHKaU7ybtqG3SCW2f78cP5iIiyFYONLFPTkKiqK4I7w6hq25+oKTkTup0A1xki5ajaa6FpWo3t01lk0un1cJIiEDVGrMC2Kmc+kZPhz+kFaWh6cSKiTMJggwAAhmHA7/ejoqLCvTPn9/t5V5jizrZthMNh6LruXsSFw2GYpukO9ZNSwufzub0WQKTNxho379xRPv7OM1FDaJoGKSXC4bA718IZzucEvZZlRbVhJ/hw9iMiymYMNsiVm5sLj8fjDqniXTlKhLoOP9E0DX6/322f7HWjRHCG55mmCdu2oet6VFABoFqWKudfDkMlImKwQcdhTwYlmjMBFzg2nE/TtKhsaQ4hBO8UU8I5Gahq4gQeTtARKzMaEVG24q1BIkqaqvMznCDCyfLDoILShaZpMAwDpmkiHA7DsiwYhsE2TEQE9mwQURI5d4Odxc6cIVVV510QpTpn2Kmu627vBgMNIqIIBhtZwlmQCoA75pgo2Zxx7s6kW66NQemKAQYRUWy84swCgUAApaWlURNwj1/UjygZjl8bQynlDkkhIiKi9MerzQxnmiZKS0ujUjAGg0EEAgHk5eUluXZEx9bGqLp2BifWEhERZQYGG1nAtu2oTCrOCrhEqYJpbCmVOSuGA5HgmMEwEVHdMdjIcFJKaJoWtfKyZVkx04oSEVE00zQRDAajhqF6vV4GyEREdcRvywwnpUReXh5M00QoFEIwGIRhGPD5fMmuGhFRSlNKIRgMQkrprlhvWZa7ij0REZ0YezaygNfrRVFREUzThBAChmHwrhwR0Qk4qZmrfl9KKd3MfkREdGIZF2xUVFRg+fLl+Prrr7FlyxaUlpbi//2//4dRo0ZV23fHjh1YvHgxNm/eDF3XMWDAAMyZMweFhYVJqHl8Md0tEVH9VE3N7AQctm3zu5SIqB4y7huzuLgYy5YtQ6tWrdC1a1ds2rQp5n4HDhzAb37zG+Tk5GD69OmoqKjAa6+9hu3bt+P+++9n6k0ioixXNTVz1ZXtGWwQEdVdxn1jNm/eHE899RSKioqwZcsW3HjjjTH3e+mllxAIBPDAAw+gVatWAICePXvitttuwwcffIAxY8YkstpERJSCdF2PWs2e2aiIiOon4wbuG4aBoqKiE+63du1anHHGGW6gAQD9+vVDhw4dsGbNmnhWkYiI0ojTm+EEHkREVHcZF2zUxcGDB3H06FF079692mM9evTAd999l4RaERERERFllqwMNg4dOgQgMuTqeEVFRSgpKUE4HE50tYiIiIiIMkrGzdmoi1AoBAAxJ4E7K20761E4fvjhB/zwww8AgP3796OsrAwAak2BqJSCbduwbbteXe/Oc9Y3vWJDyktkWSyv6curidN2a6pHupwfy2u68tKlbTamzEx+/xpaXiafW2PKI6LEycpgwwkoYvVeOIHI8StsP/bYY1i4cKH7+6WXXgoA2LNnT7yqiX379sXtuZNZFsuLv1mzZgGIX/vM9Nczk8vL9LYJZPb7l+jyMvnciCgxsjLYcIZPOcOpqjp8+DDy8/Or9XpcddVVGDduHIBIz8b7778PAGjbtm2N5SilYJpmvScV2raNffv2oXXr1vVafK8h5SWyLJbXdOWd6EJtyZIlmDVrVo3tM9XPj+U1fXnp0jYbUqYjk9+/hpaXyefWkPLiGeQSUWxZGWy0aNEChYWF+Pbbb6s9tmXLFnTt2rXa9nbt2qFdu3YAgN27d2PdunUAUOuXorPyrJSyQd27zrF11ZjyElkWy2v68o7n9NrVVId0Oz+W13TlpXrbbIoyM/n9q295mXxuTVEeEcVfVk4QB4BBgwZhw4YN2L9/v7tt48aN2LVrFwYPHpzEmhERERERZYaM7Nl48803UVZW5g6TWr9+PQ4cOAAAGDt2LHJzczFp0iSsWbMG8+fPx7hx41BRUYHly5ejc+fOOPfcc5NZfSIiIiKijJCRwcZrr70WNcls3bp17rCnESNGIDc3F61atcKiRYvwxBNP4KmnnoKu6xgwYABmz54dM0sVERERERHVT0YGG4sXL67Tfp06dYrKMEVERERERE0nI4MNImp6SikopZJdDSLKQpZSsBUgAGgCnAxOlEYYbBBRrZRSCFoKpgJsGwhDMOggooQJWTZCNqAAQAG6BHwaAw6idJG12aiIEslZ4ba+q+OmgqClEFKAFJEfEwLh9DsNIkpDpmWhwlQQUDCkgC4BU0V+iCg9sGeDKM5CoRBKS0th2zY0TUNubq67in2qUyrSo6ELQAoBCAUB/qEnovhSSiEcDiMQCiNgAR5NwOPxQtMkhFKwlUJkUBURpTr2bBDFkWmaKC4uhlIKhmHAtm0UFxfDNM1kV42IKGVZloVQKARd06DrOmwFhEJBWJYNGwwziNIJgw2iODJNE7ZtwzAMCCHctMrpEmwIIWBIwFKRCZqWAhQi24iI4sW2bQghoEkBjwAgNYRshbACDAEYkuEGUbrgMCqiOJMyva/MPVJAIPJHXgDwwOYfeiJKGI8GSDsypNMnI0OqODmcKH0w2CCKI13XIYRAKBSCpmmwLAtSSuh6+nz0hBCR8dKI3G0sBidsEFF86boO0zRhmmYksFAKPkOHR5cMNIjSTHrfciVKcbquo7CwMDLm2Lah6zoKCgrSKtggIko0KSV8Ph8Mw4CUEoZhwOPxMNAgSkO84iGKM13X0axZs2RXg4gorUgp0yZzHxHVjD0bREREREQUFww2iIiIiIgoLhhsEBERERFRXDDYICIiIiKiuGCwQUREREREccFgg4iIiIiI4oKpb4mICLZSUIisEi+5lgERETURBhtERFkuZNkI2pH/CwA+DdAlAw4iImo8DqMiIspipq0QtAFNAIYUEAIIWAq2UsmuGhERZQAGG0REWcxWKmrolCYEFACbsQYRETUBDqMiIspiQgjYOBZZqMoeDQ6iokRQlXOFnDlDRJR5GGwQEWUxTUR+wnakh0MB0AXAKRsUb7ZSCFoKpgJsGwhDuMEuEWUOBhtERFlMCgG/Fgk2FCJjayNzNxhtUPwopRAwbVgQ0AVgC8CCRMgG/Fqya0dETYnBBlEjmKYJ27YhpYSu69UeKysrg2VZkFIiLy+v2j5EqUAKAa/G4IISw7ZtBIIhlJk2DCkhDQNCAAIKVmXHhjucj0EvUdrjlQ9RA5WVlaGiosINNvx+P/x+PwDAsiyUlJTAtm1omgbTNHH06FEUFhYy4KCUopSCZVnu75qm8QKP4sa2bQQCAdi2ghASpmVBKRuG4XHnbASDQbdNGoYBXdfZJonSGK96iBogFAqhoqIChmFEJtjaNioqKqBpkf7/cDgMy7Lg9XoBRC7gAoEATNNksEEpQymFUCiEcDgMISLj5Q3DgMfj4cUdxYVt25XtTIeygJCQCJthKGkDClDhIMLKdr9LQ6EQhBD83iRKY0x9S9QAtm3Dtm33gkxK6W5z8GKNUp1t224A7Pw4gTJRvBkS8MrIhYguAA8swLag6zqklJBSQggB0zSTXdVGEyIyD6pZs2Y4cuRIzH3uueceCCGwYMGCxFaukd577z0MGTIE+fn57nlmEiEEunTpkrDjMhGDDaIGcL5MnXHFx48vdrr9w+EwlFIIh8Mx53UQJZNSCkopt91m2kUCpZ7oAEJBKgt+XSDHkFlxQXL06FH84Q9/SHY1msz333+Pn/3sZ1i/fj2GDh2KGTNmYMaMGcmuVp2tXLkSQlEDOQIAACAASURBVAjMnDkzIcdlK175EDWAM9TE6eJXSsHn88EwDACRYCM/Px+lpaVuoJGfn89gg1KKcxfSCTicfxl0ULxIKeH1ehEKhdzkGV6v121zzhw3ZxiVUipjvjeFEPB6vXjooYfwq1/9CkVFRcmuUqO9//77KCsrw3/913/hjjvuSHZ14mLz5s3u3/ZEHJeJsuFGAlGTk1KioKAA+fn58Pl8yM/PR15eHqQ89pHyeDxo1qwZmjdvjmbNmsHj8SSxxkTVSSlhGAYsy4JpmrCsY0NYiOJF0zT4/X7k5OTA7/e7gYVzMW4Yhtvr5vV6MybYkFLiyiuvRHFxMe6///5kV6dJ7Ny5EwBw0kknJbkm8dO7d29069YtYcdlIv5FSRFOho6ysrLKTB32iQ9KUcfPXchUUkr4fD7k5eXB5/PFvEBzxh3z4o1SkRACHo8HPp8PXq8XPp+Pk8MpYWK1MyfgcIKRTAk0HPPmzYPf78fDDz+MgwcP1vm48vJy3HnnnTjllFPg9/tRWFiIYcOGYdmyZU1av7qW4wwjuv322wEAs2bNcntF6zLnpEuXLm5v6kMPPYQ+ffrA5/OhQ4cOuP7662POa/nhhx9w3333Yfjw4ejQoQM8Hg/atm2LCRMmYMOGDScs5+GHH8app56KnJwc9OvXDzNnzsTIkSMBAE899ZRb/+PP4fi5Fw09rqq3334b5513HoqKiuDz+dCrVy/Mmzcv5nkvWLAAQgg8+eST2LRpE8aNG4eioiLk5uZi+PDhWLt2ba1ldOjQAV6vF+3bt8eQIUOwcOHCmPvHU2Z9itOUbdsoLi5GOBwGEEmbGgwG3ZSq6cQJmJyub64tQZT6nDvLRKkiUwPedu3a4eqrr8YDDzyA3//+97jnnntOeExJSQlGjhyJzz//HK1atcLYsWNRVlaGDz/8EB9//DHWrVuHhx56qNF1q085bdu2xYwZM/DPf/4TGzduxODBg9G9e3cAQL9+/epc5nXXXYfHH38cI0aMQN++fbFq1So8/PDDWLVqFT7++GMUFBS4+77++uu49dZb0atXL/zkJz9BQUEBtmzZguXLl+PNN9/Em2++idGjR8cs5+qrr8aSJUswfPhwnHzyyQiFQhgyZAj27NmDd955B926dcOQIUPc/Ws7h4Ye51i0aBF++9vfQtd1DB8+HC1btsSaNWtw7733Yvny5Vi9ejXatGlT7bjPPvsMc+fORbdu3XD++efjq6++wurVqzFq1Chs2LABp5xyirvvn/70J1x77bXQNA2DBw/G8OHDceDAAWzevBkLFixwg8SEUVRvu3btUr///e/V3r17lW3bNf5YlqVCoZCyLKvW/crLy9XevXvV4cOH1dGjR9XBgwfVN998o8rLy2s9rqHlVf0xTVPt3btXmabZ6LICgYDat2+fOnjwoDp8+LDat2+fOnToUNRzN2V5iT6/VCpv79696vbbb1e7du2K2T7/8pe/1No+U/38WF7TlGdZljJN0/03HdpmKr+e6VheupxbMGyqHbv3qf/P3plHSVZU+f8bEW/JzNp778aBBhEctj7YCLaIIAroUREZcXCAkbbdOECrAw7jgoAb4DLjAoIo2sAwoOeIg+AIgyyKCEojzMAINIrdonT/6LWqszLzLRH398fLiMrq2nJf43NOQderzIx4LyNf3hv33u/dXYgpiGXZz6/n+mwkAEgIQUREW7ZsoUwmQ319ffTSSy+Zx1x++eUEgC655JJJzz3vvPMIAL3hDW+gsbExc/zpp5+mRYsWEQC64447ap5jNeNccsklBIC+//3vVzTWPvvsQwBocHCQ1q9fb47v3r2bjj/+eAJAH/nIRyY953//93/pqaeemvJad911F3meRy9/+ctJKTXtOAsWLJj2uffffz8BoPe+970zzhUA7bPPPnV53m9/+1vinFN/fz898sgj5nihUKDTTjuNANDf/d3fTXqOvsYA6Otf//qkv330ox8lAHTWWWdNOr733nsTY4weffTRSceVUnT//ffPOOdGYbecq+Twww/HyMhIWZJ8c8lI6kI5VZJ+1N/fb2QpK6VS2cqRkZGqU59Kx8rlcpBSQghhmtkVCgWkUqlJ0Y16jVcu3TjeXIWFa9asAYA510+7np8dr/bxpJQIw9AUfXue11Frs5IxgYn+DUNDQ13x/tV7vHY+N6mA3THAB4axO1LgEZARQKoCC6Ve67MZLF68GOeccw6++tWv4sorr5y1fmN8fBzXX389OOf41re+hYGBAfO3V77ylfj0pz+NtWvX4utf/zre9ra3VT2nZo2zJ+eddx5Wrlxpfu/v78c3v/lNHHLIIbj++utxxRVXIJVKAQAOPfTQaV/jpJNOwmmnnYabb74ZTz311LSPu+iii3DwwQfXbd7VctVVV0EphfPPPx9HHXWUOe77Pq666irceeed+PGPf4wXXngBf/M3fzPpuUcffTTWrl076dinP/1pfO1rX8Mvf/nLSce3bt2K4eFhHHHEEZOOM8Zw3HHH1fekysA6G1Xy+OOP49BDD8XChQtnfAwVO/PO1ZHX930UCgWT2x9FEbLZLObNm1dRClK545WilML27dsxf/78ilK2phvLcZxJTeuUUnAcB0KIScfqNV6zz6+dxtu6deusf7/++utx6qmnzrg+Kx1PKYUwDKGUwq5du7Bo0aKGr009bje+f40eTymFIAgghADn3DTvy+VyWLhwYVuvzWrG1I0JS9enbqhZDu3w/ulj2jmcbi7VjNcO5zYX+VAhBFDYvRNDwyNQBIQAMoKBz/Ea9V6fzeKiiy7Ctddei2uuuQYf//jHp02bAYDHHnsM+XweRxxxBF75yldO+ftZZ52FtWvX4qGHHqop9bpZ4+zJ6aefPuXYQQcdhBUrVuCJJ57A448/jlWrVpm/BUGAu+66C7/97W+xdetWhGEIAHjyyScBAM8999y0zsbJJ59cl/nWyoMPPggAOOOMM6b8bdGiRTjxxBNx++2346GHHppybaZLEZs/fz7mzZuHzZs3Tzq+cuVK/OpXv8KaNWvwT//0Ty13tKyzUSXZbBZxHJd1c5tLStLzPGQyGQRBYPo1CCFMd+pKqUS6UuudVyt3Wfo87TRpqdcoiuB5nuk5Ue/xyn18N443167wli1bylqf5YynDVcqqsNow670fS2Xdr2e3TaeNlhLHcI4jk2n8E5Ym+WOqZW0hBAmqhrHMVzXrbgWpZXvXxRFRkobSL4DSiVhax2vXdZmKVTsQZQLksiJUhKCAYIDYdJQvKLvsnqsz2axcOFCnHvuufjSl76EK664Av/2b/827eNefPFFAJix0Hh4eBhDQ0MYHR3Fzp07MX/+/Krm06xx9mSfffaZ9vjy5cvxxBNPmHkBMMXRGzdunPH1du/ePe3xvffeu6Z51ou5rrM+/te//nXK3172spdN+5yBgQHs2LFj0rGrr74ap5xyCr73ve/he9/7HhYvXoxjjz0Wp556Kt71rnc1vU6vItf05z//OdasWYO3vOUtWL16NW6//fZZH3/llVfi+OOPr2mCvQDnHH19fRgcHMTg4CCGhoZM2LCT8DwPQ0NDEEKAiJBOp6fIwXYj2hjvBiWx6dBpFDpKxTk3MqmWzqFbC26lIsQEKHAoglGe0Rs3nYCU0jjw+nMmpezqz5jeuEhS/RSiojOsiCAJ4Kz75TI//vGPo7+/H9dee+2UnelKaNZnu5X3ECLCu9/9bmzcuBEf/vCH8cQTT2BsbMykT37iE58wj5uOTrGpZrvGldhShx12GH7/+9/jxz/+MT7wgQ9gcHAQP/zhD3H66afjmGOOMRGhZlH2zC+88EKcdNJJWLduHe6++27ccMMNOPXUU/G6170OmzZtmvY5zzzzDH7xi1/UbbLdDOccnud1vKZ4aW+JTm5iJ6U0ylpzfShzuRxGR0eRy+WQzWa70uHYk241XLuFPZ3COI67UoJZEaEggUACBQXkFSBpIrLTaZRGgAF09X2EiEzabZ8j4AqBiBjyYQwFoM+pzLjqRBYsWIDzzz8fhUIBl19++bSPWbZsGQDMaGeNjo5i165dSKfTNdWjNGucPZlpPH1cz+uZZ57BM888gyOOOALXXHMNVqxYgYGBAfNZef755+s2p0Yy13XWUZu99tqr5rFSqRROOeUUXHfdddiwYQOeeuopHHbYYXj44Yfx3e9+t+bXr4SyPsl33HEH/vVf/xVCCHzgAx/A1VdfjQsuuAALFizAr3/9a7z61a+eUePYYuk04jjG6Ogostks8vk8RkdHMT4+Pu1joyhCoVCA7/vmJ47jpu8aNBKdnqDzybUB1O2GQCfDGDMbF5xzOI4zJSWnG4hUsgXuORyQEZSUCIlBiM5qTLinc6EjM510Dhp9j5jLUdI70IwxeALoF4AHiZQABh0gLTrv3KvhggsuwMDAAK677rppU2dWrlyJdDqNxx57DM8999yUv//7v/87gKR4uJb10qxx9uSHP/zhlGPPPPMMnnjiCfT39xsp2Z07dwKYPpVo586duOeee6oaXzfbrTS9rtrnHXPMMQCAW265Zcrftm7dirvvvhuMMRx99NEVvW45HHzwwTj33HMBAE899VTdX382ylox3/rWt8AYw+23345rr70W55xzDr785S9jw4YNePe7341t27bhjW98I+69995Gz9fSJKIowq5du7B9+3aMjY21TZ5rMygUCojj2DgPnuchl8tNew30F+t0edXdgs4dB5KID2NsxiaGlvaBc24a9fm+35XvlyRAcN112oMrBLgQ8DrMsdKRbV1vIqWsquak1eiU0kKhgHw+b9TQpqN0E4MxwOUEj2IMuBwpp7Ji9k5m/vz5WLt2LYIgwPXXXz/l7319fXjf+94HpRTOPffcSRtfGzZswOc//3kAmKJSdNVVV+GVr3ylSS+ai2rHqZVvfvObePzxx83vuVwO559/PogIq1evRjqdBgDsv//+4Jzjvvvum+QMFQoFfPjDH55Ss1AuOtLw7LPPNuV55557Ljjn+MY3voH169eb42EY4vzzz0c+n8epp546RYmqEnK5HL7xjW9MaRColMJdd90FADW9fjWUleOyfv16vPrVr8Zb3vKWSceHhoZw66234vDDD8cnP/lJvO1tb8Mtt9yCU045pSGTtTSHOI4xNjYGIoIQAkEQII5jDA8Pd6XBsidatjeOY6O6MVMOOOfcfGHq4lQqNjTsJkrzyDvRCLJ0JwwTDofnuYikgOsI8A60U13XNfcaxpi5t3QKRIQgCCClBOccQghT8O667pTHa2dYf78opeA6Dhyn9+4tF1xwAb75zW9ibGxs2r9ffvnleOSRR3DPPfdgv/32w7HHHmua7RUKBaxduxZvf/vbJz1n27ZtePbZZyuqBalmnFo588wzcdRRR+H444/H0NAQfvnLX2LLli04+OCD8bnPfc48btGiRVizZg2+853vYMWKFTj++OORTqfx4IMPQkqJs88+G+vWrat4/OXLl+Owww7D+vXrceSRR+Lggw+GEAInn3zyrApW1T7vyCOPxOc+9zl86lOfwqpVq3DccceZpn4vvPACXvGKV+Dqq6+u+DxKCcMQH/nIR3DhhRdi5cqVWL58OcIwxKOPPooXXngBy5cvxwc/+MGaxqiUsizH0dFR7LfffjP+/aKLLsINN9wAKSXe/e5346abbqrbBC3NR++seZ5ndrXjOO6q3frZEEIgl8th9+7dGB8fx+joKAqFwrSPdRwHfX19put7FEVwXdeEWLuJTjSALAlKKdPLp5vwBQNnSTpVqAiKAAeq5WtU18no1MNy0TLhlcrUtgM6yqsFQnTEd7YidyEE0uk0UqkU0ul0VQp33cDIyAg++tGPzvj3gYEB/OIXv8Bll12GBQsW4Cc/+QkefPBBHHHEEfiP//iPunQPb+Y4pXzjG9/A5Zdfjk2bNuH2228HYwznnnsuHnzwQQwNDU167DXXXIOvfvWr2HfffXHvvffiwQcfxJve9CasX79+RlWrcvjRj36EU045Bc8//zxuvPFGXH/99fjd737XsOd98pOfxJ133oljjz0Wjz76KG677Tb4vo9//ud/xm9+85sZZZDLpb+/H1dffTXe/va3Y+vWrfjJT36C++67DyMjI7jsssvw2GOP1U1NrFwYlXEnXLp0Kf72b/8W991336yPu/POO3HaaachiiJ8/etfx/r163HjjTd2naLGiy++iOuuuw4f/OAHTShtOkoL4CrVN9+yZQuWLFlSsb55peNNN1Y+n0c2m52kUx8EAQYHB82xTji3ascLwxCbN29GPp83yjbpdBqLFy+eUdGi1LDYtm0bli1b1tDzm20NlrM+u/n9s+NNRjvCUkps27YNS5curah+o9lrs9IxFSVOBgEAKWz9f/+vpe+flrDVrztdvUzpeACgXUCO2cUXqlkvzVqbSinT2DUMQ+N0ZDIZkwpTz/E09VyfluaxfPlybNq0qaNU4yzVU9YnesWKFXjkkUdmLJLVvO1tb8Ndd92Fvr4+rF27Fj/72c/qMklLc9FfgHEcG3lCHRbvFbRmv+d5SKVSiOMYuVxuxsdrg8LzvJ5INbN0BkopE5XTxlgYhl21AcQZg8MZXM4gWrwrrptf6qJ8x3GMrO20jydCQRJycfKTlwTVocaXTgHTvZZ0X5dKozu1QEQIpUI+Vgik6thrabF0G2VZRW9961tRKBRw4403zvnYY489Fvfffz/mz5+Pl156qeYJWpqP67omfBlFEYQQGBwc7Lo6hJlgjBnN+1QqZVKigiDoujQUS3dT2iQUmCjKteu4MejrrTcc5pKwDYo9QhwGuJxBEhDIzjWQ9TrTalS6bqMZ642IEEhCUJQ/DhU62nmzWLqJspyNd7zjHXjta19r2qzPxate9So8+OCDWLFiRdt0bbRMRYe9dZ+IIAjM30r7ZYyMjExb4NetuK4L13WNhG0URfB9v6ciO5buonRn2aYtNI7pnIuZJGyJAEWAYBPPE2yiT0gnoovb0+k0MpkMPM9rSq0QESGMJQqxAlNkIl2KgFh15rW0WLqJsraq9957b/zqV7+q6IUPPPDASXJmlvZDN6HTxYy7d+8GAFOX0cvpQAMDAyCiSQoxNkXK0mnodB6dxqN3m3slStlsOOdwXTfphF00sIUQ027WMJaoaZWawlQ83qnoVD0tkT2TElWllBac65/SvwVBkESFFIMSDEq58Dx3yvW1tA+6eZ2lN7DfOD2KzuXWjb88z0Mcx8jn85MKw3uVvr4+RFFkduocx0F/f39Dx9Tvid4Jtc6NpVYYY0ZVLo5joy5n11XjcF0XjAuACIxhVmUpjzMECohLIhkpwSoq5G4HYkWIFEEyB8z1weLIOB61dq7XvTtKnbfSgnspZSLJ7fkg8GKvkghcCBBaX8djsViss9Gz6H4QpXTaF1wjEUJgYGDASL3W+oU5FzqlTReXEhFSqRT6+/utYWipCe0s6yiHXU/1Q6cI6d4SoVQIFUBg4IzN6Tg4nIHziVQfhzGIDmsSEqukyJ0xgHEG7qehMNGDqNa+PLrmw3EcozzFGDObYjriITiDDyAARxhJCAWk3CQ1zWKxtBb7rdOj6HC/3jHSnWt7qTZjLkoVZephoIVhiGw2i2w2O0WdJo5jE2nSP1rVxdJ7EBFk8aeZ+fszNa+0TCUMQ/MZLRQKyAUhAgVwlhR8EwGFeO4CZcEYfMHhC95xjgaQ9DgBkvPgAFIOB/dS8Pykd0YtPYd0LQZxgaRunpnmoprSpquCAT4U0oKhzwV8YfsCtQPZbBaXXHIJ3vzmN2PevHlgjFXVgM/SuVhno0fhnKO/vx++70MphSiKytZDt1ROoVDA2NgYCoUC8vk8RkdHjRY/MLE7t6eKjTX8eg8pJXYFCjsKCmOBaoqijs5714IRYRjatTcLWs5WCGFkwYMwgpIEXqwpcDiDQuJ0dDsEQj5WiYSvBBQYhKg9GhxKhUAx5GNCXiYKU0rRJAdCy5RrqV0ihZTnwrGCHm3Dtm3b8NnPfhZPP/00VqxY0erpWFqATaPqYRzHwcDAAMbHxzFv3jxbNNoglFIYHx83X4pAsiuay+XMrp/enVNKmX83OnXL0n7kChJ/HAOyKrk5D6WAYY/APCAlGpfqGIYh4jg26007wrXsSnczeie9dHOAaHJfB+OsdfnGOgMhHydOlWBIojuU9BCpxdyXRIiIwXddxHEIkgp5Sj4H/d5EXaFOqSotHrfKge3F0qVLsXnzZixZsgTr16/Hq1/96lZPydJkrHXZ42iD1hq1jUPXx5ReYyHEJDlIz/OQTqcRRZExKEt7fFi6n1xB4n93ArspCTn7DBgtAIwAXxBSDUo+13nwe94H4ji2628OtENBREnqFEtqGFhRwtZl3Z8+IBgDZ4SCKjoaSM5dElBLUi4Vu8J7ngPOGaSMwcDhOWKKM6HrkmzKVHvi+z6WLFnS6mlYWoh1NiyWBqPTLKIogud5ICJEUTQlZa2vr884IFpFyNIbSEn4cx7IUrIRzgFEBICAcZn0Y2gk1kirDC0frLuxa8fM8TgilRjJPk/Uprr92jLGQCCkRLEYm4DxKHE8UjW9bvJ/IoLjCAjBkwaItuK7KSil8OKLLyKfzyOdTmPZsmV2U9JSNdbZsFgaDOccAwMDGBsbQxAExpGYrj7G87yuN04sUwkUMK6SnWAuEocjlEAIQKnEcG3UutC7wqU1RFJKK4E9Czp1R4tIpFKpRPKWMTg9Zo8xEKjoJKMY0REljkK161YwBo8TwpLCF8cU31PSk6QeJ2CZglIKjz32GLLZrDm2ZcsWvOpVr7IOh6Uqylo1RIQTTjgB+++/Px5++OE5H//www9j//33x1ve8paaJ2ixdAOO42B4eBhDQ0MYHBzE4OCgrZGxGAiAAOA5AKkkkiEBKACLMkDGa2wOuuu6JupGRKb/jmVmtJOmf3p1k0BwjoyTRCIUJWpcHk9SyGq9Jr7gSItEQlj/XwHIScJ4nPxEtkN43XnxxReRzWbN/YCIsHv3brz44outnpqlQynL2bj99ttx77334sQTT8SqVavmfPyqVavw5je/Gf/93/+Nn/70pzVP0mLpBnSjPtusz7InLgf63aROw2FJNEMA2LsPWJZpnBFLRIgVISaAOy7S6TQymYzZpZ/pOb2uVGWvwWTSgsMXDC4HHJ5ENrw6pTs5nMHliboXAcjHE1EOzoBAUlEW11Iv8vl8Rcctlrkoy+K55ZZbIITAZz7zmbJf+OKLLwbnHDfffHPVk7NYLJZewBMMS1LAkA8MusBCHzigH9h/gDXMMSUihIqQl0lTtnxMCOTMRrSUEvl8HrlcDvl8flKvg16BKJF41bvqgUzSeXodwRnSDkPa4cUoBOreuVtKiVy+gFy+ABnFAADOEgdEqtmfa6mMmSTwrTS+pVrKipP/9re/xcqVKytSE1i8eDGOOOIIPPLII1VPzmKxWHqFfk/AFzIpBmeA32D5TkVJ3wKHaelWQqSSnWlnDztRN/3UsqJKKRQKBaTT6Z6K0hUkISqqTBGSuprYVg4ASJwLUWxmGNfZ+JdSolAomM7sSR8YZUQ0ejSDrWEsW7YMmzdvnlSzMTAwgGXLlrVwVpZOpixnY8uWLXjNa15T8YsvX74c//M//1Px8yyWbiUMQ+TzeSil4LouMplM0401SYRIKoQS8JiyXXbbCLeJ/QH0jrx+7xljAJt+p17LN+s6Dq2upvvC9AJJV/cJ54wB4IygrLPRcOI4iWS4QkAyIGYMYSzBBIFz1NTPwzIVzjlWrlxp1agsdaMsZ8N13UlKJeWiO6xaLJbk8zA2NgYguZnncjkopdDf3980Y18RoRATFE3sbGvZyl5yOGpRyekW9Nnra6HrEFQxB760o73F0kp0ah9jSV1TrIBAJj1o+nugl0kr4JzjZS97Wd1e76qrrsKuXbtMkfkdd9yBv/zlLwCA888/H0NDQ3Uby9J+lOVsLF26FE8//XTFL/773//eht0sliJBEACY6MoshEAYhlBKNc0pjxVBISm6hEoKOWNKVI96YVsgjmOzcaIL9nvVoNaqQVpalIiAOEakYkQgI+8qhDCpU7r5n45o9NK1Y4zBLUqx6viPIsCxVRsNx3EcSCkhpUJEDJIkMi6HJ5L165LV8W93vvKVr2DTpk3m99tuuw233XYbAODMM8+0zkaXU9Y3xTHHHINnn30Wv/nNb8p+4UceeQTPPPMMXv/611c9OYulm9E7681UtdlTm35iDk2bQkUopUzTtNKO69UgpTQOH2PM/N6rqkKMMXh8QlLUYwQmIziOgOu64JwjCAIopcAYQyqVghACRAQhhOkz0Ut4nCU9T5D8pAQgrLPRcBzHgeu6CMIQ2UIBnAi+58HhHLy4YWJpbzZu3DhJSrf0Z/ny5a2enqXBlPVN8YEPfABEhNWrV2Pbtm1zPn7btm1YvXo1GGN4//vfX/MkLZZuwHXdJO9bykQJKAxNd/FmIYrqLYqSRlySqJh73rQplI1WP4rjGEEQoFAo1ORwaPUkIYRpxqaUqtmJ6WSSJnSJtCgnBV7S8Vo7EtoZ45wjlUohk8kYx6PXYIzBExwZJ/lx2/GD04Xo+ybnvCjLDMRx1LMbBRZLp1GWs3HUUUfhfe97H5555hmsWLEC3/nOd0zueSljY2O47rrrcNhhh2HDhg143/veh6OOOqruk7ZYOhHf95FKpTA+Po5du3YhDEP09fU1dXfYKe7M6qZxAJB2EoWXdoKITLd17RhoB81SHkRUdCrLN8hKHzuRJ99ea8PSe0gpoZSC73nwHQcQDsIoRhSrJJXNLlGLpa0pO83x2muvxfj4OH7wgx/gwx/+MM455xzst99+WLhwIQBg69ateP75501Y7PTTT8e1117bsIlbLJ2GznnX3ZqVUsjlcrM2UKsXiaxpItvJkEh3ujzp79BujgYw0TSt1BHTtQLVohWUpJRgCrxxGQAAIABJREFUjHV13YFUhIJKhAA4AF/MvbPkOA7iOEYURaZgXNe09HL0x9IeJEIGSZ0RA0NBJVHaFAeYXZ4WS1tTtrPhOA5uueUWnHrqqfjKV76CRx99FH/4wx/whz/8YdLjjjzySFx44YV417veVffJ1psoinDzzTfjgQceQDabxfLly3HGGWfg8MMPb/XULF1IFEWIomhSY6QgCBCGIXzfb+jYoUoKW7nuD0CAoPbdtWaMGYdAU2shva4zSDT6k7oDz/Pa9hpUi6KkUR/T3cgB5CUhxWePcHDO4fu+SVfTheEWS6spvR9wzuEyBc6BlMMgBEdM1tuwWNqZigUcTjvtNJx22mnYvn07nnjiCWzfvh0AMH/+fKxYsQILFiyo+yQbxde+9jX8+te/xsknn4ylS5fivvvuw2c/+1l84QtfwEEHHdTq6Vm6jD136vWxZowbFZWndBSDGCFu+MjVo5WQtDxwHMfGOagFx3FMSla3ORkaRYlD6RTPTyBxQNQcS42IEEWRccSUUk1xhC2WudCffa3eBwCplA/HEbZuw2LpAKpWi5s/fz7e+MY31nMuTWXDhg148MEHsXr1arzzne8EABx//PE477zzsG7dOnzpS19q8Qwt3YY2cqWUEEKYgsdW7B53gpkthEA6nYbjOPB9H47j1C3lqVsdjZkoxxzTTp3jOKZTeBzHprDeYmklrusaNTTbA8Zi6Swqcjb+67/+C//5n/+JF154Ab7v47DDDsPq1aux7777Nmp+DeOhhx4C5xwnnXSSOeZ5Hk444QTcdNNN2Lp1q6lHsVjqgeM4GBgYQDabNQZcf3+/UalqFLo/QKAmegLIDtGl185YPR2Nbkew5CdSBM6SSIc+NhvaiOs1R8zSOdh7gMXSmZRtb5xxxhm49dZbAUykftxxxx34yle+gltvvRUnn3xyY2bYIJ5//nnstddeyGQyk44fcMABAIA//elP1tmw1J1UKgXHmfjYlf67kXicAUjSqZLfbdfdboUxhpRInA1ZVOrxBZszvKENOZ0Xr9NVdLG4xWKxWCzVUJalc/311+OWW26B4zg466yzcPjhh2P37t2488478fDDD+Mf//EfsWnTpo7qALlz506MjIxMOa6P7dixo9lTsvQIzXIwSmGMwRcMnikSZraosovhxfe7FDWHw6ALxHUjPyCJ9up0KovFYrFYqqEsq+eGG24A5xw/+9nPJtVpfOITn8Dq1atx44034rbbbsPq1asbNtF6E4YhXNedclwXoOpOw5rNmzdj8+bNABKZ3/HxcQCYVRKSiEzTsEpSE/RrVio3Wc14zRzLjlf/8WZCr+2Z5tEp52fHq9945YylHY7SvHg9TrPWJtAZ17NTxuvmc6tlPIvF0jzKcjaefPJJvOY1r5m2IPyTn/wkbrjhBjz55JN1n1wj8TwPURRNOa6bhu2pwPLtb38bl112mfn99NNPBwBs2bKlYXN86aWXGvbarRzLjtd4tOPfqPXZ7dezm8YjTGRQ8QaPVQ6NXptAd71/rR5vrrEmYqXNGc9imY6zzz4bDzzwADZu3DjnYy+99FJcdtllVaWHrlu3DqtXr8af/vQnLF++vPKJ9ihlORtjY2N4+ctfPu3f9PHpOoq3MyMjI9OmSu3cuRMAMG/evEnHP/ShD5m6lK1bt+LnP/85AGDJkiUzjkFEk9RdykUphZdeegmLFi2qqCCumvGaOZYdr37jzWWoff/738fq1atnXJ/tfn52vPqMJ4lQkEU5XEUY3bkVyxYuhBDtuzarGVPTbe9fPcZr5FhRsX8PFUUIfJE4He18LRvp5Frah1wuhy996Us47rjjcNxxx7V6Oj1PWc6G1l2fjtKiwk5iv/32w5NPPolcLjepSPzZZ58FgCkKW0uXLsXSpUsBAC+++CIefvhhALOrY+i+CpzzqsK7c3U31t2QgaQOQAhR9XiVdlJu9LnZ8WpDR+1mmkOnnZ8dr/LxFBECCXAOuIxBSoUIDIoxuG28NusxZje8f/Uar1FjxYoQUrK+GBKFu4gAn6OjrqWlO8nlciYbZU9n49Of/jT+5V/+pQWz6l16VpDmta99LZRSuPvuu82xKIpw77334oADDmh7JaogCLBr1y6MjY0hm81ibGzMFnFaasIqDnUXOn1KFA0wxgAGNmdzP4ulHCQRGJL1xRmDw4CYko71Fks74zgOUqlUq6fRU5TtbNxwww0QQkz7wxib8e+tUN4phwMPPBBHH300brzxRnz/+9/HXXfdhU996lN46aWXcPbZZ7d6erOilEI2m4UQAqlUCp7nQUqJfD7f6qlZOhC9dvSPbeLWXZQ6kXbf12KxNJNLL70UjDFs2LABZ555JoaGhrBw4UJcfPHFICK88MILeMc73oHBwUEsWbIEX/3qV81z161bB8bYlDqMBx54AIwxPPDAA9OOuXHjRrNhfNlll5n+QZdeeumkOZXCGMN5552Hm2++GQceeCBSqRRWrlyJX/7yl2Wd589+9jMcc8wx6Ovrw8DAAN761rfi//7v/8q7SD1A2c4GEVX1087pVR/72Mdw8skn44EHHsB3vvMdSClx8cUX45BDDmn11GZFK2+UprYJIdr6WlvaE6WUkTolIkRRhPHx8Y6IkimlIKW0634GOJJ+KjElKS+RAhgIbs/Gsyej14+U0kb1qsApGmuSCIoIcbGni11e3YEkwsZxhd+PKmwcV5A1fkb+/u//HkopXHHFFTjqqKPw+c9/Hl/72tdwwgknYK+99sKVV16J/fffHxdeeGHZBv5MLFy4ENdccw0A4J3vfCduuukm3HTTTTj11FNnfd4vfvELfPSjH8WZZ56Jz372s9i+fTve/OY346mnnpr1eTfddBPe+ta3or+/H1deeSUuvvhi/P73v8frXve6sgrWe4Gywg7d+mXueR5Wr17dUZK9wEROq5TSRI5K/22xlIt2MhhjRu5ZOxr9/f1t27E3DENEUWTm7nnetFLWvQxjDB5PHAwFQABwocBtXjviOEYQBGb96Ho3S/kIzpACECoCUeLYupzZ6FkXIInw620KYyWCnX/JEVYt4CYts1KOPPJIfPvb3wYAfPCDH8Ty5ctxwQUX4PLLL8dFF10EAHjPe96DZcuW4Xvf+x5e//rXVz3/vr4+vOtd78I555yDww47DGeeeWZZz3vqqaewfv16rFy5EkCiOnrggQfiM5/5DG677bZpn5PNZrF27Vq8//3vx3XXXWeOv/e978WBBx6IL37xi5OO9yrWOu1AOOcYGBjA2NgYwjAEEcFxHKTT6VZPrSXEcYw4js11sEZnZeiIhu6roI+FYdiWea1SSkRRZFI4lVIIw9AajNPAGINXbO6nmLK7zpiI5ulNG73+7b2jchzO4PDJxqeNEnU+L+QIY9GErDEAjEbJ8eV91Tkb73//+82/hRA44ogj8Je//AVr1qwxx4eHh3HggQfi+eefr3bqNbFq1SrjaADA3nvvjXe84x244447IKWcVijpnnvuwa5du/Ce97wH27ZtM8eFEDjqqKNw//33N2Xu7Y51NhpEo1M8PM/D8PAw4jgGYwyu64Ix1hHpL/UkiiKMjo5Oaug0NDRkmjNaZkcruGjpSCklGGNwHKdtI5p6Xvr9Lm08Z50Ny1zoFF+9VnQ+d7uu90YSx7E5b8dx7OfHAgDIzWBGzHS8HPbee+9Jvw8NDSGVSmHBggVTjm/fvr36gWrgFa94xZRjBxxwAHK5HLZu3TqtXPdzzz0HADj++OOnfc3BwcH6TrJDsc5GA4jjGNls1kQd0ul0Q1JSHMeZlDrViztKupO73oHX1354eNh+cZYB5xypVAphGJpUPM/z2tpw106GToHR674bZS+7+dxaiV43pWtpJnn3bkWnIgITvSpSqVTbfu4tzSMzg2U40/FymO7zNdNnbq77XjuJmGhn/aabbprWGbHp7Qn2KtQZrRQVRRE8z0McxygUChBCoK+vr9XT6zr2DG0KIabtDG+ZGSEEBgcHjZqZjhK1a3RIp0vpqJ5On+smIymOY+TzeWME+75vv7TqhBACrusiDMNJ66eXnA2lFKIomtTTIo5jRFEE3/dbPDtLq/mbDDOpVJohNzneTEZGRgAAu3btmnR806ZNcz63mg0aHaUoZcOGDchkMjO2Q9CNrRctWoQ3velNFY/ZK3TPt3OboG/inueZG7njOAjDsO5jhWGIfD7fkNfuFFzXnZQ6pnP5u8nwbAZCCGQyGaRSKfi+39Y7nIwxM0/Xdc2/u2X3f3R0FH/84x+xceNGbNmyBbt37+45SWIiaqhSlF433bh+yqU0lQzApCihpbcRjOG1CzgOHmLYt4/h4CFWU3F4tWhDvlSdSkpZVsG1bta8p6MyGw8//DB+97vfmd9feOEF3H777TjxxBNn3Iw46aSTMDg4iC9+8YvTbnRu3bq17PG7GbtVVmd0DnxpiF4pVfddyR07dmDXrl0m3WXBggUYGBio6xidQCaTMdEjXeDc39/f6ml1JJV27m0luk6p29ixYweee+45s2GhFbc45/B9v+6775N6cLSJsa2UQj6fN0XbOrWvnmtT1yVpes3I1vdKHRnes47FYhGMVV0MXi8OPvhgvOY1r8EnPvEJ7NixA/PmzcOtt95aVm1qOp3GQQcdhB/84Ac44IADMG/ePBxyyCGztjY45JBDcNJJJ2Ht2rXwfR/f+ta3AMB0Ip+OwcFBXHPNNTjrrLPwqle9CqeffjoWLlyIP//5z/jpT3+Ko48+GldddVXlJ99lWGejzugc+FwuZ1J6hBBIp9NQSpkPSS1pH9lsFjt27IDneRBCII5jbNu2Da7r9lyqheM4plBep5z02jWoFzpvW0ppInLW+GgeuVwOmzZtMspgOpIxPj7eEKU5KeUk+ddGODOVQkRmTjq1SafL1Su9R/d/0g6G3iDqJfT1DILArDedXmaxtBM333wzPvShD+GKK67A8PAw1qxZgze84Q044YQT5nzud7/7XZx//vn42Mc+hjAMcckll8zqbBx77LFYtWoVLrvsMvz5z3/GQQcdhHXr1uGwww6bdZx/+Id/wLJly3DFFVfgy1/+MoIgwF577YVjjjmm41orNAprlTWATCYDzrkpEB8YGADnHLt27Zqk9tPf31+VYawdFv3F4HmeqRPpRUObc9629QWdgpa61XncUkpbMNpkRkdHzeaEVgYrrUuppyOglDLRQN0QtFAoIJ1Ot/T9VkohkgqMi2TXHcn86pFCRkQIFaEQEYKwAKYkPAY4jujJOgUhBFKpVE87XZbGc+mll5rO3aWsW7cO69atm3J8z67g++23H+65554pj9szGjnda61atQrr168ve04AcMYZZ+CMM86Y9m8AcPbZZ+Pss8+ecvy4447DcccdN+Pzep3es0ybAOccmUwG6XQacRyDc46xsTEopeD7vtm9KxQKVaf8lH7QtANjvygs1aKjGo7jmHWk+5dU68hpOVqgfVJ02hmllNlA0M5FEATwPA/z5s2ru7OhowcATARhLhWy0vTQRhAREKjEuVISAAccUnCc2s89VIRAEqKwABlFUAAUACdO8qx7ccPCbiRYLJZmYJ2NJqANOf1lpvPNq1VNymQyJprhOA7iOEY6nW7LBmyWzqDeEqtSShQKhUnGaS9G3SohnU6bQuUwDBGGITzPw957792QeqxK3mtJQBQrKDAwRkgJVvdiUUmEiBhSnocwLICUQiGKkXYY0q47qWC8mnTJmADOACUlQAqucKEAUDGdrFdSiIiSjvJUvB62o7zFYmk09tu/CehiPKWU2Z2UUlb95eZ5HpYsWWLSLvr6+jAyMmIcD4ulUnRkrB4FozpyV1qEG0VRTVGSXmBgYACFQgFjY2NGKnvx4sVTml7Vg9JmjvreVNpBvhRFhEABnAOCA4qAfExIO6irw6GDta4rwFgKjAUg7sD3kjVUKBTMY3WNVqX30FLFJSo5VlrD0c0QEQqSEBdPlQFIC0Bw63BYLJbGYZ2NJsA5R19fH7LZrNmZY4wZabZq8H0fixYtmnSsF74sLY1Bqx0FQWAcVi1AUCnaUSl9rq4DscyM67pYtGgRhoeHjSHdKOestJmj3gSZSfFJURLZ8HjikHIGRIqgCBB1tFG136KIIASH43ggweEIjigMTH0JMCExXpr2NxcuAwIFCNdFlI8RQ8JjyVicl/86nUykCBEl14IxBll0PjLMpjpaehtrPzUW62w0CV1oqxtJ2SZdllYipTSyqlp1qrRgdKZd7nLQUZLSSF47dSRvdN1BLWip12agHY5SpE6nw+zpNY34WhaMweOEUBX7bABI8cShCYuRF01pNKJsZ4MzMAaQ60NKBU4KvkiOeZ7Xtmuinsiig6jPVTCGqJhW1TstDS0WS7Ox1m4T0H0gdAFuKpWyjoalZcRxbCQv9Q5xKpWqWzNE7UzrNa+PtXrNxypRI0py1Qm+YB2Tr67z7EFJBKDes9ZKTZFKHAkGICUAhyeRDMGS66fTqDjqG9XQ+ILDYQRJgATgF6MpujFqabpfpepJjDEwInDB4KfTUHEMgJDyRN0Ur9odzoBYTbx3iggM9V9PFovFUoq1eBuMUgrZbNbs8moDbGhoqG12ei29g5a4BSZ20XWUo55qR6W9ZYCJnehKUESIFUGCQRGhlk+LJEJeEjhLjPWYAEhCSrR/+sh0efapOm9DSwICCbh8anoNZwwpDkgGkzrlNdBRE5yBE8DUxHvjui6UUsYh0Gl/lbx3qnhOjAEph0MJF5IAVoxu9AIuZ4iJEKnEySAAPrdF4haLpbFYZ6PB6JxorePuOA4KhQKiKOpJbXdL69GF36WGW6WOQDmUdiTXjdTKRarEOVAKCMFRkECGU9VGUawSS10XNJu6A7R/+kg4Q569V8dcJknaEZucXkPFSApngOck72UrnDO9WaPXlBCi4nkoSoxrx6yBxIlVRHVX1mpXOGNIi8S5JEo+T44tDrdYLA3GOhtNYE8ji3Nui5EsLWNP56K0tqIdICIUVLID7XBAIClGDiQh7VRvGHWqSaWmybMPFdW1boIh6TmhMfenPS5aKxwNnfZXWktUTQM6QtJnI4yTdDBXMCi0f2Sr3vBikX89PxGl9TO9dj0tFsvcWGejweji2ziOJ+UFtzp/3dKbMMbgeZ5J59MF4u0mSUtFA1sb1JxNNoYrxeEMkSLIYo66NuA7IZGRM0AqGNtQ59nrpon16PzscAaxR3qNx1t/fZRSyBUCMM4hBIdg1ckoExFCmawmVbyeBUnoc+sr39uLRFGEMAyNs6G/8ywWi0VjLd4G4zgOBgYGMD4+jjAMIYTA4OCgdTbalG7ueE1Epihc57y7rltVSkqjYUXnQs9KEVBLyzXBGFICCEokWxMlovY67+lwOEOsJhwBRQQKQ2TzWQBJfUx/f39NDmNSl0HIx4kKlMOSdKPSvhStIJBAQQKCcUAmqWSCVZ72JwlQxNDnTKTPSZXI+fIWn2MnI6VEGIYm2qTvMc1UVbNYLO2PvRs0Ad/34XmeMfLsrk/7EccxxsfHEUWR6YHSTV+WutFeHMeTirUrLbJtBqxYkJyXBKkAiSTtw6tR/sjhzKjwtNs5z4ZgDGknqTshADKWyBXGQUTwPA9xHGP37t0YHh6uOh0uUaMCiDEIJEpQgQLSrHVGuCQgLDqGAgpgHBEBpBRct4rPZjEVTa+jiFVfA2RJ0E6a/k7TnyvrvFksllK6x5pqc/TNOJfLma693WbQdipaMSyKIuMUZrPZrnp/pJRGelk7G0EQGAnRdkNwhjQDYknwoJAS9Ul36SQnoxReYiSPFyKTshJFEYDEWa5FUUxSIonq8IlrFKlEAauGMpmaSCSKAcf3EYYBiCQiAjxXVPy55EzLviaF8KXpeZbq0ZEvvR6tk2GxWKajOyypDkAphbGxMYRhCMdxjHEwNDTUNQZtp6KUMjngukuxTg+opct7O6INyWYUctZqeAjGwDiDgN2BLkXXgCmlzL0jiiLTL6Vq2q2LdHEqQnD4fgpKEQSAlFt5dJgX0+hCmfTwYAxIC2brNWqEc26+z7SzIYRoK8EJi8XSeqyV2yS0c1GatlIoFBAEgXU22pBu26Er7eqt1aga2UlbSmkUhDjncN1aKi4speieEzo3Xillrm+176l+iirKoSqdHlO3WVeOKE4gTiSjQJzBJQUVxwglKjZqk3S0id33tnKsOhTdwFOvQ50m3AsNEi0WS/lYK7eJ7GkItGP6Si+ijeEgCOC6rjFG2k2hqRaEEPA8z/R90fn+jdiBVEqhUCiYKJFO2bJOdX3QBeG5XA5A4nzU+l6KYv+FgkwUu4Ck2ZvgrUuNYaxYEF48LRlLyChEXLyF6khOpedtnYz6ohWoNN22UWOxWGrHfvs3Cd2IqnQ3EoDd8W0DOOfo6+sD59woqwwMDHRdKoBWntLGQCMa+enX1ZK6AMy6b9R4vYbeTdYOI2PM1N7UYkg7nCFTrGdgaG1XaSJCIBMVMsYABgLiCEJMpFBJKWuqU7FYLBZLc7DORpPQErjZbBZhGBrFo27aPe9k9PujISLEcdzCGTWGajt6WxKIkpx/QlJc3Kqcf61Cpd/DevVKaZfamEgRQgJSDOCcIYyTPhl9JdHgUlU1i8VisbQv1tloIp7nYXh42ErgWroavba16ppSyqRUdTKKkg7UsXY2APic4LRA0kg3Z9Q9Urqtc7Ok5Prqc3I4EDCOWEp43EmcPintZo3FYrF0ANbZaDLWybB0O5xzpFIpUx8ihDBFzZ1MpAgRJXUEQFLfMB4DaUFJt+0mp6ozxurSPbwdYSXytPqA53ngMjQRR8dxbBqqxWKxdADW2bBYLHVXptIOR+nrd7qzoTuPM8YQSoXY7L4DoQK4qq3LuWUClzMESPpiMJZc+5TD4HkpEynrtmiOxWKxdCvW2bBYehhJhKjYe0Awgmd7D8wIZ0CkAA4yjgaKdRuEJOrRSDnhXkIU+2KAJxEOjycOSDek41ksFkuvYZ0Ni6VHUQREUmsPEQKVND3rcxmcNk/1U0RNV01yedJ/IibtdCS77ZwxSCJYF6O+CAY4IlmHipI6DgayzrDFYrF0GNbZsFh6FIViahAHCnGygxwX/9Pvtq9RF0qFoJiRxQB4nOCJxjtHugt1UrycRDI4S6JDMQFOu3Xg7gKIEic4LhZwNPP97mRKnXG7Ii0WS6uxzkaV9Pf3w3GcWRsY6b9V2uRI9yggooqeW814zRzLjle/8eZqkLdkyZJZ1+fEeEAQE4gSxR8iQCkgiBXSzlSDrtXXM1aEgiQIBtPpOpAAZ2qSc9TI908wIC0YHEWIdQM8BnDevuulmWPVujZLx4oUIVITjpx+vwVT00a0Wr0+WzmeIoKipM4lUjBehseSbuydfG71HM82F7VYmo/91FXJ4YcfjpGRkbJ6MUgpK379kZERKKVmLarVf9tT3arS8coZayYadW52vLnHmI01a9YAwKzrkwMgpVCQiTEi9XQZEtUlTD//Vl7PSAFSAozDzC4iwCGAptnsbuT7xwFMEl5l7btemjlWPdamJopVkj5V4lfEBERInL6Zxu+2z/tc40kCCjK5NkHROUsVPw95AGmB5INTh7HKpV2v5Vzr02Kx1B/rbFTJ448/jkMPPRQLFy6c8TFaC15r4ZeLUgrbt2/H/Pnzp5XJVUohn8+jUCgAAHzfRyaTMZ2EKxlvrrFmolHnZscrb7ytW7fO+vfrr78ep5566ozrk4gAKdHnccRRYqy4DPBEEt0QDHCmiWyUe35KKURRBCIC59x0Lq/1epIixGyit0WyCwo4gk3qd9Hu718rxuuUtVk6piM4JMG8t4oIggC3WCuzJ+Weo5TSFPOXdiRv5/dvpvGo2P/FcQBBAGmbmwOeYAglQZGC53TeuTVivLnWp8ViqT/W2aiSbDaLOI7LurlVKtHIGDOvPd3zgiBALpczGvPa6ejv7694vLnGKuf59Tw3O155z5trV3jLli1lrU+Hc4x4QC5WAGNQSOoQfGf6eZRzfkopBEFgjLkoiky/jVqvp8sTxygqqkERkmMOn3m+7fj+tWK8TlubQGIsU0nNBpDUzYgZjNFyzjGKIoRhCGAidUc3B2zn92+m8aj44zBAMYARgVES+Usel/zeiefWiPHKiahZLJb6Yp2NDiQIAjiOYyQgOecIggCZTKbFM7N0Gjr1wE9knRJpUVabwpNOg9DOMOccURTVpXiaFYu0hZoogHVncDQsnY9+v0sLxGvp2K6UQhiGprmq3hWvJuWnXdBF4LqrvcOAgkpqNSKV1DfVWyxY983RkUvbqNZiscyGdTYslh5FRxw0juPA9/2aDfc9e03Uu/kaYwzeTAn7lrIpLahtZ2eNMWa6tteKLj7WxrE+b6VUxxrMjDH4AgjkhAPuc8AXxXRIxqDq6EsREYIgmBSdSqVStv+JxWKZEetsdCC+7yObzZobfRzHSKVS4Jy3fZdmU+gbRXBdt2O/4DsdKSWiKILnecV1QyhEMSRz4DocDp8+J74c9HuqOz3rNdnOBm2vISlR9aJi8XWKA6KGiEGnoB1f7RBr56MT1qaUEkEQIAxDhGE4aWPA5Qy82GkdmBydJKIZpB6qo1AoYHx83EQ0HMdBEARIp9MdcR0tFkvzsc5GB5JKpUBEplYjnU53RAqVUgrj4+PIZrPwPA+O42BgYMCk21iaS6mRFRFDoBiUVFCcIyJCWlSXTiWEgO/7pm6Dc27WrKX1KCIUijvdnCXpN3lJyNSYPtcJcM7hui6iKDLHhBBwHKetU6mklCgUCiZ1Saclep5nPsOimALZ6Hls27YN+XzepPL29fXB9/2OcdosFkvzsc5GB8I5R19fH9LptPkdqFzXvNnk83kEQWCM0SiKsHv3bgwPDzc9whHHMfL5POI4hhACmUym5/TXzc4uGEJFEEiapTmcFfsbEPwqrRcuBNxUGiCCKEZJbGFme6AocTB6xABeAAAgAElEQVTckkhGSJQ0K+wBW9F1XTAuQEqBc9YR6T/aEXIcx6i7xXGcnEsTDfxdu3Zh27ZtAGAi01JKzJs3r2lzsFgsnUdvWVddRqelIMVxPKmY0HVdBEHQ9HxppRTGxsYQhiGEEIiiCFEUYWhoqGccDiEEXNdNimNJQkog5TkQxc7MtZgvUhHyMkndYGDgCkjx9naEe50e8DEAJN3nQ5WomHEukBITaVXtzJ7psaUpYM0iiiJs3rwZcRzDcRxz/1RKYeHChR33fWSxWJpHb1hWlragNH+/9Fiz2b17N1588UWT4jM4OAjXdc2XaK+gd0UVAZCAKDG8CNWl1BARCorAGODpmiJFCBTBJsu1B5wlqkWxIpPnzzFzk7xuIVmHyXky6EZ4hEz7BzbgOA7iODZpVDoi20wDf2xsDOPj46ZHiRAi6YVSIh1ssVgs09E7lpWl5aTTaRQKBaNzT0RNT1+K4xibNm3Czp07TUpCGIYYGRlp+93NRiCEgMMYhEiiEZEiMAAeTyQ0K4WQGK+lz2WmcNXSDnDGkOK62VtifHuiekGATkFSsrb1eTpFaViFxNlqZ4QQ8DxvSh1UszZriAi7du0CYwyO44CIzD18/vz51tmwWCyzYp0NS9NwXRdDQ0OmQNz3/aZ/SW3evNnkHOuCxjiO4ft+T0U19kRwhkyxWBhIjK+qGmsh2TlXmND2J2p/Y67XEIwhXY032eGU+rydtLmgADDHhQsO1/OM+mCziOMYUkqk02kTYdFqdgsXLrSF4RaLZVZ617qytATXdZFKpTAwMNCSovC//vWv5ned0iWlNDUMvUw9drYZY0jxRN0oNDvJgM/rq/VvsVSKFj6Ii2l+kgCXtb8jHKuiTDEARQwRE5Oc+Wbhuq7puK7r7IaGhjpCCdFisbQW62xYeoYdO3Ygl8tN+7eRkZEmz6Z7EZwhXUyd0s4GA+qq9d+LdFJPiHYkieYAYdFw9zng8fYuECdK6p2Ybs4HggJDqAC3id6Glrgt7RzueR7mz5/fvElYLJaOxToblp5h+/bt0x5PpVLW2agze2r+t6sx1ykopYxyG5AUDFuno3I6LX2MkKQhln6WGJJmjM2Ec46RkREwxhBFEYgIAwMD6O/vb+5ELBZLR2KdDUvPoHOMtZqLNoCXLl3a8ylUlvaFiIyjIYQwxbmO49h12+UwFAUWUJo2xdAKP9N1XcyfP3+Sw2uxWCzlYO8Wlp7B9324rmuMNl2rsXjx4lZPzWKZEZ26oo07xhjAOGKpbFpVl8MYQ0oA+ZgQEUGpJLLht6jQpLRPksVisZSLdTYsPcPixYsRBIFRU+GcY/78+bbA0dL2TDRwYwgkMBYlnd+DkDDoKXjWAOxaBGPIOEkNlGIED6qtZIp1Xx6gd5pDWiyWyrDORoPRhq0QomvDzjolSWuwtyvDw8MAgNHRUSilkMlkbIGjpe1hjJmmkzExjEYEEOC5AlIBuwLCPF/BsQ5Hx1Ha5JRzPmOUijNWlJRmbWXQExECSYiK3obDkh49FovFUkr7WoZdQKFQwNjYGBhLFE8ymQz6+vpaPa26EgQBstksAJgmfe18jsPDw8bpsFg6AcYYPM8DYwyFUIFzwHUcSEVwAEQqaU7nWCOvo5BSIggC42AIIeD7fkelxeVjhZxM5IMdBsScgSTBVhJZLJZSrLPRIOI4xvj4eJJzm0qBiJDP5+G6btd0W43jGNlsFo7jmMLVXC4Hx3Hg+36rp2epAiKClBJSShOpqjZH29YTJOjrCSQGpRCVa5ZqhyPNJQph0iNCFlWJQgnEXagrrAvh9Vp0XbetI6eVoM9NR7y1aAXnvGO+H6RS2FYA8ipRy3IZMOgmHTy7412yWCz1wt4TGoSU0jRAAmC03LXR0anosD9jzOita+NJR3B0R25L5xFFEcIwNE5CHMcVdyuWxdQKRQBnBF+wtm+c1ijiOEYQBOb3KIpq6lbv8eQ+EimAU5LH74pErajbnDstsao3MvR17ESHQymFOI4BwNwvlVLGsWCMgXM+Ka2qVvR3kBYYqDfbCoQt+UQli/MkskEEjPiwxRsWi2USnXfX7hC0Mb7nl3+nGgNKKYyPj5sv/NJwf6mRo+tTLJ2HUgpRFE3q4RDHMeI4Lnu3VREhHycJ3LzY2C8fE9I9uiS046Y/E1JKs6Ndzb3A4Rz9rkQuBmIJuBzIiPp0f28ntHHueZ5xdKWUiOO445wNpRQKhYL5PoiiyLz/pfdLIqpZ6UlH0fTnVghhNoV0BLoehLHEX3JJVE2wxOGQSPqCzPfREmlei8XSvnTWXbuDcBwHqVTKdKxWSnV0CtX4+Djy+byJWOTzeZMuFYYhOOeQUsJxnI4zBiwJuu9IqRGsDaJykUntMlyevAZnST2BpN7b7KzH9ZyOtGDgRQUgxwFUsYFip25kdDs6QqN7omhHynEc4whoR6OWe6eUEoVCAUSEQqFgIs2u6yIIAuPk1IOdAZANk4iGYoBSicPhO2iZLK/FYmlfrFXYIDjnpruq3tn0fb8jNcp19+LSaIbjOJBSYmhoCIVCAVJK+L6PVCpVV2dDKTVthMhSf7Qaju4/otMvKmkcp9+l5LmJsa0IYLz33j+dGhPH8ZTIXy3r2eMMkhMClewmuwzwRXddX33PjOMYrutWtRbbhT3T2/SacBzXRB44T863lu+HKIoATNQF6ZRWHanUzm+tSCmxNZjobh4DYJRsNCwRgOtwxN1YRGSxWKrGOhsNhHOOTCYzKS2lU5ku5K+NqXqrT2m54DAMzU4dYwzpdNpGTRoIYwy+75teJAAqLsrlDGBEGA9CQClIIgjOQdzrmsiGNnz1zvFsn20dydS1WvUoAE4avTEIAoTDIOaYQyeiC+JLxQo8z+vIz792LkqdecU4CsQgiIELBynBak6F09ERvSa1c1EaOakHgQJiAtKimDqlgJCAFAcW2ZZFFotlGjrvzm1pOpxz+L6PXC5nvsB0JKPehGGIsbExRFFkUrUGBgaglEI2m+3oVLROQAhh1NPKMab3hDMGrmJASnDHgVP8Xcb1S+FoJVquVH8OHMeZdT3qz45OnZqtl0IlsGLfhW50NDRaya/0907EdV0opSYKthkHhA+AIErqmjJObbU3QgiEYWjWZC6XM9GNWlO0ppwTB4QLSAVEHGASWOADGVfULYJisVi6B+tsWMoik8mAMYYwDAEAAwMDdU8JU0ph9+7d4JybPGMtEZlOpxFFUcereXUCNb+vSqLPE0VHBSAuTLFqJ6MVkXSxrZQSuVwOQRDAdd0Zr1tpgbhldnTUaKJjeuc6GRoC4HgeuCJwJNGAQAFcFRuhMoZIafW26scpdWoAIJVKmQL7JFWrPvdrhwP9AiiopF7DISDNgcU2qmGxWGbAOht1RBf+1aPYr93Q6VI6ZUrrwtcTbWS4rosoikyalv7ytDtmncGEWEBi3HSLJGtp3QARGedXp8ZoJS/rWFSHTp2MYolYERQR+pmA59QnGtQKJBEKceJIgDE4LFFvSlyQ+qLTIEvTpnQ6VT3vnZ4QmOdL7AyTdCoAGHKBfrcz3yOLxdJ4uscabjF7SsMCyc6S7TdRGdqg00ZboVBAOp1GoVCA4zgdWSDaa7iua+Q3Nd2S+qaNNy1coIt6Hccx8qbW2agO7WhETEAyQhxHGCuEGMz4HVkAT0QoyEQ1zBXF/igEAASGxFDnlDgiwjghtVFp2mO1DPgCvqugVBKNcVgdIqIWi6Vrsc5GndA1BlqxSSmFfD5vOsRa5sZxHGQyGZNrrOsHfN83tRrWkGt/hBBIp9OTmpjpItlORqf3hWFo0lVKpZ7rqfjTaxARIqkQEocEg8cBcAZOCoEkuJw6rpcIIanHcIrTZoxBgEBgSDtJ521C8ndfdF7tjcc5erZbp8ViqQhrBdeJUnUaYGKXpxGdW7uZvr4+OI6DKIrQ19dn1JAakbZlaRx7qi51ixGuazPCMDTdrUs7P9vd3eqIFKEggUARwAFiiZwqK/YP6cTVw4o/hFJJaJjC/pQAnA5OEbNYLJZysc5GnSjNjZ1thzOOY+TzedMIr6+vr2tSTOqF7/s2/awJENEkSVZrKM8NY8xEM7Qylb6Gvu/byFsVKEp6hvieBxkEiOIYAQiCCJ7jGaO902CMwSv2Q1HFJowMgNeBKWEWi8VSC13lbOzYsQN33HEHNmzYgD/84Q/I5/P4whe+gEMPPXTaxz/99NNYt24d/vjHPyKTyeB1r3sdzjrrLKTT6YrH9jwPnuchCALjbOzZ4E7Lt4ZhaJRDRkdHMTQ0ZB0OS1PRBc6lxdue59WlJkYRTVLXcTlrmbEoKWlpzliS8VHPXWSdLlYqB22pHL0t47kCnKVQiCUKksBAEIJP6kGhI5z6Wruu29YOnic4OCNISuo0BE/6onRLpM9isVjKoau2Mv/617/iRz/6EbZv34599tln1sc+//zzuPjiixEEAdasWYMTTzwRd999N6688sqqxuacY3BwEIODg+jv78fQ0BD6+vom7Rbrolm9A+q67iQ5WYulWWj1JF1TpFODak37U0TIS0KoAIVE4jOQ9VXDKZdQJv0L8pKQiwmhqv88tGKaTYWpHn3lFBEchyPjCfT5DvpdgYzD4JTowUZRhCAITM1MoVBoeyfP4Qy+4PAEh7DrxGKx9CBdFdl4+ctfjptvvhkDAwN46KGH8Mwzz8z42Jtuugn9/f344he/iEwmEQhftGgRrrrqKjz++OM4/PDDKx6fcz6pCZVWrSn9Heh83XhL56OUgiRAghXzyDmIZM3GuKTkxysaiByEWE0UyTYLSYSQAI8lu8lEhFAmij/Nnotldjhj8IvpRpKSZCOfU6JwVHKv1NE4XScDTHaaLRaLxdKedFVkI5PJYGBgYM7H5XI5PPHEEzj22GONowEAb3jDG5BOp/GrX/2qIfPTcq66MZjekbMpVJZmExNHQAwFCeQlUJClZay1UfoqjLGWJNwXs6eMsarnYZNX2hNPcGQchpRgSIvk/3vuycy0WWNTkiwWi6W96Spno1w2btwIKSVe8YpXTDruui723XdfPP/88w0Zl3OOgYEB07ROKYX+/n7rbFiaiiSCZBwOF2AqBmSMwv9v795jpCrPP4B/33OZ2Z3dhR25IyJ4QSUIRcVaoYqCoWm6/mFrS4pgURtrY0LSeEkwFQRbUmKbNDHkZ2UL1pBiTcRQSatdClgV6w2RW3FxoYCAuyxLgd3ZmXN5f3+cPccddnZ3ZnbOmZmz309CdM+cmec9M8/Onuec92KYULSB9393e7zY7jiGrr7qA1kZOR/u+ah7IuqdqAbbDMqBKgR0xek2lenurzsdtmVZ3mQc7oxgRERUukLVjSpbbW1tAIB4PN7jsXg8jv379/sWW9M01NbWcqpMKhopAaEAFdGIN5mBCgVKAfoXqV1dYlL214WGM8DXGcMRFAVOFypDAortFBpfr97cO3csgGmaUFWVJ7IlRAjhTcJhmqY3MxgX+iQiKm0lW2zYtp31ugruQOtsuQOyM/2RikQiGQdsnzx5EidPngQAtLS0oL293Wtnb7qvNNxb+zI9392W62DdbOIVMxbjFT5eb9zcztQOKSVsy/mv3nUyLaVz1b+/dmdzfM5qwl/fSXBeN/j3U4MNXSjOgg1d7ZKy9243tm2js7PTm55aVVVEIpGsFuUsh3wph9zMJmYkEvE+Q0VRvDsc3V8zrL/v+cQL87ENJB4RBadki419+/bhqaeeymrfNWvWYNy4cVm/ttttyTCMHo+lUqmM3ZpeeOEFPPPMM97P8+fPBwCcOnUq67i5am5u9u21ixmL8fy3ePFiAL3npwEB0+tFKaEC0GFn3c0ojO+n27VRURScPXvWO3nJ9WJGPsL8u36x/nKzEMKYn8WKF+ZjI6JglGyxMW7cOCxZsiSrfTN1h8pmf7c7VXdtbW245JJLemx/+OGHcffddwNw7mw0NDQAAEaPHt1rHHdOeE3Tcr7C09zcjJEjR+bUzSqfeEHGYrzCxevvRG3dunVYvHhxr/kppUTSMKGoWteKxtnNkhbW9xOAd1ejra0Nw4cPhxACpmkiFov1G7scjq9ccjNTTCklLG/QP3qdQjbM+ZlvvDAfWz7x/CxyiSizki024vE45syZ48trX3755VBVFY2NjZg1a5a33TAMHD58GDNnzuzxnDFjxmDMmDEAgBMnTmDnzp0A+h5zIaX0VmbO58porqs6DyRekLEYr/DxLubeteutDU4XKgWaVh7HF0Q8TdO8rptu9xx3Brn+XqMcjq8YsTLpLzcvjgk467WYbu83CUQVZwar3oQxP/ONF+ZjK0Q8IvLfoBydXFVVhWnTpmHHjh3o6Ojwtm/btg2JRCJjsUFEwZNSQiKY6U01TYOmad4AcSklotEoT2CKzLAlDOmMudEVAVU4xYcdQE4QEdHAleydjXy98sorAICjR48CcAoId3apH/3oR95+CxcuxBNPPIGlS5di3rx5aG1txeuvv47p06fjxhtvDL7hRJTGtCU6TCAJFQkLqFSkryswK4qCaDSKSCSCaDTqraxOxWXDuSrmFn2KELC6ilAiIip9oSs2NmzYkPazO7YCSC82rrzySqxcuRLr169HfX09KisrMXfuXCxatCiwthJRZpaU6LQknLX4nBPLhCkR09JXlS40IQQURWGhUUIUOAWHlBJCCNhdUyrzfhMRUXkIXbGxefPmrPedPHkyVq9e7WNriCgfdtdgYLVrAXJVAFbX9qAXCKTi0hXnTobp9KeDABBR/C06iYiocEJXbBBR+LB7/uAlhECFiqxmoyIiotLDYoOISo4qnO4zpu10oTElEFH7XwGcwkkIgQIscE9EREXATslEVHIUIVChCWgKvG4zUVVwZigiIqIywzsbRFSSVCFQoQpEYSOqin776Nu27a36zaKEiIioNLDYIKKyZ1kWksmksy5H16xFmsavNyIiomLjX2MiAuBMLWpJZ9pZAUBT+r+bUAqklEilUt6K34CzSrVhGNB1HYZhwLbtokxpa0kJ03ZGt2tCQOVUWkRENMiw2CAiAEDKlkhZgBDOrD+GLVHp87oWhWLbNlRV9X5WFAWGYSCZTHpdq0zThGVZiEajgRQcpi2RsKS3HoQBiQo4RRwREdFgwQHiRARbSqRsQFWck2FdEbDhFBzlQAgB27a9n93uVJZlQVVVqKoKXddhWVbafn5K2RKKcN5PTREQAkjaTruIiIgGCxYbRAT39Lf7XQwBZxG9UieEQDQahZQSpmnCMAwAQCQS8R7vvm9QxYaU6atcC3C9ECIiGnzYjYqIoHT9s6SEKoRzZwD5rWshpYQNAF2rfQcxM5SqqqioqEibjco0TW+GKkVRvDsK3btb+UkRzvogAs6AdVt2rYheBt3SyF/u+CjYEorCRQqJKNxYbBCRt0pzwpIwuk7KdQHoOY4vsKVE0pIwu67gKwKoUIO5hep2lwKckzlFURCNRpFKpby7GbquB1ZsRFUBuO+FlFBF1zYa1KSUSNkSHRagQULYQESRiKrsaEBE4cRig4gAAKoiEBPdulQh96vwhi1hSKdQEULAtJ3io6JI51GapkFVVW863CBnolK6Cji301Y+7yeFjyWBlO388dUVAYmunxXJOxxEFEosNojIM9CZp6yLugqpXV2JijlUIcgC42JCCARzH4XKhfu74P6qKULAktIZz8Nag4hCiMWGj0zTREdHBxRFga7riEQiRT3xIfKbN6i866TJ/V+eQ1Gu3AH/7liboNdI8YtAV8HRVXW4x8ffESIKKxYbPjFNE+fOnYNhGFBVFYlEArFYDNXV1cVuGpFvIqpAwpQwbOmdVFWoAuwdQrmQUqYtxugWHhUVFWVfcKjC6WaYBABbQkAgojrjm4iIwojFhk+SySRM00QkEoGmaZBSorOzExUVFd4qx0RhowqBSg2wbHc2K2eNCa4tQblwi4vud4MNw/C2lTNnMgYBIQFVFVCE4CxlRBRqPOv1iZQybdYb0TWdaFBz/BMViyoEVM66RAPgLsp48RopYSGEgNa14GOYjouIKJPyvh9dwjRNS1ut2DTNwGfDIeqNO8+/aUtYvOtAJcb9rrQsC8DXxQe/P4mIyg/vbPgkEomgsrIS7e3tXr/jIUOGsAsVFZ07z3/CAtSuef6jikSE8/xTiVAUBZFIBKZpwjRNAMGukUJERIXDM1+fKIqCqqoq6LoORVGgqioLDSoJlgSSNqDi63n+kzaghnCef/eKOABvZXEqD6qqQtd1AOBdYSKiMsazXx8pigJN06BpGk9yqGTYUjr9J0M+z7+UEqlUCpZleWOootEoT1rLiKIo/O4kIipz/KtLNMgIIdB9moKvr/wXpz1+cWcvcu8q2raNVCrFmbFKnJQSpi1hSqcwJiKi8sY7G0SDjNY1z3+nBGBLSAhE1fBdebBtG6qqfr2auap6dzl4tbw02VKi03KKDcsCLCFRKcLXvY+IaDBhsUE0yLjz/MMGFMWZfjOs8/x3v4vRfexGb/uatoQFp1tZ2IqvcpCynFnSdEVA2ICUQKclEVPDmZ9ERIMBiw2iQUgIAV0BNDW8feJ1XYdlWd6007ZtIxKJZDxe94q6YQEpKEiYgBASGpd1DpSF9JW0VeFMaBCy4URERIMKiw0iCiV3rEb3qVN7mxHOsN0r6l3TAQvninpVSO/4lCoFTnHhVhZ21zZ+AkRE5YvFBhGFVrZTTtuy64p6V68rVThX2XlFPVgRVSBhShi2hGk7xV+FximLiYjKGYsNIhr0FAGYXWuPAM7VdSFYaARNFQIxzfksTAlENMGubEREZY5jIIlo0NO7BskbNmBBwJZAhcor6sWgCAFdccYUcRYqIqLyxzsbRDToKUKgUgU0SERgI6aBV9SJiIgKgHc2iKgkuSuAp1IpJBIJGIbh64J8QjhddlRwXQciIqJCYbFBRCXJMAxvxW8pJZLJJAzDKHaziIiIKAfsRpWn6upqaJrW55VW97Fcr8ZKKb3XzuW5+cQLMhbjFS5efzMsjR49us/8LPXjk1LCMAwoioJIJAJFca6LGIYBXdcLHq/788KYL0HGGmhu5hOz+/PK5fNz79zZtg1FUaBpmpfnhYw3GN7LXOJlMzsdERUWf+vyNH36dMTjcW8O/75YlpXz68fjcdi2Ddu2c35urvGCjMV4hYkXj8f7fPzBBx8EgH7zs1SPT0rp7Tt06NC0eNn8zuUar7sw5kuQsQqVm7nEvDh+OXx+hmHAMAwIISClhKIoiEaj/RYc+cYL83uZS7z+8pOICo/FRp527dqF66+/HiNGjOh1H/eESVXVnGa1sW0bra2tGDZsWL9/eAYaL8hYjFe4eC0tLX0+Xl9fj3vuuafX/Cz143NjpVIpnD17FrW1tRBCIBKJZHVlshyOL+h45ZKb+cR0Bfl+Silh2RJnWlsxfHhu8dyV7bvftXOLr77yO5/jK4f3Msh4/eUnERUei408XbhwAaZpZvXlJkRuU2gKIbzXzmfqzVyeF2QsxitcvP6uCp86dSqr/CzV4wOAaDQKwDlWKSWi0Sh0Xc/4fFtK2N0W5HP3KeXjCzpeueVmLjG77x/IMdoSSctZD6TdkhhqO1Ml58K9m+HGUxQFUso+4w/k+Er1vQw6Xi53RomoMFhsEFFJcu9k6LqOWCwGVVUz7mdJiU6rq9iQgKoAUU59QT6xu/JNCGeFc0AiZQO6LaFmOV2yoihQFAWWZXnjFGzbzmo8EhFRuWGxQQPS2dmJzs5OAEAkEkFlZWVOt8CJ+tPfFcuUJSGlszAfABi2RNKS0KTz/xISAs66GQqntKUBsiUgAWhCwJYSCpyfLSmhZrnmvFtIu92pAGTdRZCIqNzwm43y1tnZiUQi4f2BbG9vh5QS1dXVRW4ZDRZSSlgS6H5BWRWAZQO2DdiQUISADUCTEhUqWHDQgAgAkD1nP8q164+qqohEIl7XKV6kIaKwYrFBeUsmk1BV1Ss2FEVBZ2cnYrEY/3BSYIRwriy73LEbKQlUCEDpqkRSds/ChChXigA0BTAkICRgQ0AVTpGbKxYZRDQY8FuOBqT71bx8BvURDYQQAlFFwO7qMmV0VRq64lyB7p6TCnKf+5/oYkIIVKgCUcUpPFTYvGNGRNQH3tmgvOm6js7OTm9GlWQyiYqKCl6po0BpikBMfH1HQxEAJNAJpx+927deSp4QUmEIIRBVBXRhQ+/qqkdERJmx2KC8uYVFMpn0fuZ4DSoGVYi0biwSzoxUZtcdDwEgoubX1YWIiIjyx2KD8qYoCqqrq1FVVeX9TFQqNAWIOItuAHAKEiIiIgoWiw0aMBYZVKqUPBcIIyIiosLgWSIREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREREREfmCxQYREVEebNuGZVkwTRO2bRe7OUREJYnFBhERUY4sy0IikYBpmkgmk+js7GTBQUSUAYsNIiKiHEgpkUwmIYSAoijQNA1SSqRSqWI3jYio5LDYICIiyoGUElJKKMrXf0IVRYGUsoitIiIqTSw2iIiIciCEgBAirduUbdsQQhSxVUREpYnFBhERUQ6EEIhGo5BSwrZtmKYJIQQikUixm0ZEVHJYbAxitm2js7MTiUQC586dY39jIqIsqaqKyspKaJqGaDSKioqKtG5VRETk4DfjIOYWGaZpwjAMnDt3DslkstjNIiIqC4qiQFVVaJrGQoOIqBf8dhyk3Lsauq5D0zREIhEIIZBIJIrdNCIiIiIKCa3YDSik3bt3Y/v27Thw4ABOnz6NeDyOqVOnYsGCBbjkkkt67H/gwAGsX78eX3zxBWKxGGbNmoWFCxeisrKyCK0PnpQSqqp6PyuKwnniiYiIiKhgQlVsvPTSSzh//tsjjDcAABKVSURBVDxmzpyJsWPH4tSpU9iyZQs+/PBD/P73v0c8Hvf2bWpqwi9/+UuMGzcODz74IFpbW7Fp0yacOHECy5cvL95BBMSdGz6ZTMK2bdi2DcMwEIvFit00IiIiIgqJUBUbDzzwACZPnpzWd/aGG27A0qVLsWXLFtx3333e9pdffhnV1dX49a9/7Z1gjxw5Es8//zx27dqF6dOnB97+oFVXV0NKCcuyYBgGKisrWWwQERERUcGEaszGlClTegzSmzJlCmpqanDs2DFvW0dHBz799FPcfvvtaSfXd9xxByorK/HOO+8E1uZi0jQNNTU1qK6uRm1tLaqqqjjIkYiIiIgKJvRnlolEAolEAkOGDPG2HTlyBJZl4eqrr07bV9d1TJw4EU1NTUE3s2gURfG6VLHQICIiIqJCCv3Z5ebNm2GaJmbNmuVta2trA4C0MRyueDyOM2fOBNY+IiIiIqKwKtkxG+6qrNnQdR1CiB7b9+7di40bN2LWrFmYNm2at91dvE7X9R7PiUQiGRe3O3nyJE6ePAkAaGlpQXt7u9fO3riry9q2nbF9vXFfM9eZofKJF2Qsxit8vN64ud1bO8rl+BivcPHKJTcHEjPMn1++8cJ8bAOJR0TBKdliY9++fXjqqaey2nfNmjUYN25c2rbjx49j1apVGD9+PB599NG0xyKRCADAMIwer5VKpbzHu3vhhRfwzDPPeD/Pnz8fAHDq1Kms2piP5uZm3167mLEYz3+LFy8G4F9+hv39DHO8sOcmEO7PL+h4YT42IgpGyRYb48aNw5IlS7La9+LuUC0tLXj66acRi8WwbNmyHjMsufu73am6a2try7gmx8MPP4y7777be/2GhgYAwOjRo3ttl5QSpmlC07Scr/A0Nzdj5MiROY2jyCdekLEYr3Dx+jtRW7duHRYvXtxrfpb68TFe4eOVS27mE9MV5s8v33hhPrZ84vlZ5BJRZiVbbMTjccyZMyfn5507dw7Lli2DYRh49tlnMxYOl19+OVRVRWNjY9pYDsMwcPjwYcycObPHc8aMGYMxY8YAAE6cOIGdO3cCQJ9filJKbwB2Prd33edmayDxgozFeIWPdzH3rl1vbSi342O8wsUr9dwsRMwwf365xgvzsRUiHhH5L1QDxDs7O7FixQq0trZi2bJlGDt2bMb9qqqqMG3aNOzYsQMdHR3e9m3btiGRSGQsNoiIiIiIKDcle2cjH7/97W/x+eefY+7cuTh27Fja2hqVlZW45ZZbvJ8XLlyIJ554AkuXLsW8efPQ2tqK119/HdOnT8eNN95YjOYTEREREYVKqIqNw4cPAwAaGhq8MRWukSNHphUbV155JVauXIn169ejvr4elZWVmDt3LhYtWhRom4mIiIiIwipUxcbatWtz2n/y5MlYvXq1T60hIiIiIhrcQjVmg4iIiIiISgeLDSIiIiIi8kWoulEF7fTp030+rmka4vE4Wlpasl4Nvbtc5wMfSLwgYzHewOP1l3v97VPqx8d4/sUr9dzMJ+bFwvz55RovzMeWT7xs8pOICovFRh5isRh0Xcdrr73my+ufP38eH3/8MW688UbU1NT4EqMYsRivsHRd77FgJeBvfob5/Qx7vLDnJhDuzy/oeGE+tt7yk4j8IaSUstiNKEdnz55NW6OjkPbs2YPvfOc7+Pvf/47rr7/elxjFiMV4hRWLxVBbW5vxMb/yM8zvZ9jjhT03gXB/fkHHC/Ox9ZWfRFR4vLORp9raWt++rNzbyCNGjOh1YcJyjMV4wfErP8P+foY5XthzEwj35xd0vDAfGxEFiwPEiYiIiIjIF+ry5cuXF7sR1FN1dTVmz54dSF/ZIGMxXvkL+/sZ5nhhz00g3J9f0PHCfGxEFByO2SAiIiIiIl+wGxUREREREfmCxQYREREREfmCxQYREREREfmCU9+WkN27d2P79u04cOAATp8+jXg8jqlTp2LBggW45JJLeux/4MABrF+/Hl988QVisRhmzZqFhQsXorKyMqt4Z86cwV//+ld8/vnnOHToEBKJBH71q1/1Osf5QOIZhoENGzZg+/btuHDhAiZMmIAFCxZg+vTpWbW1N4lEAps2bcLBgwfR2NiICxcuYMmSJZgzZ06PfY8dO4a1a9fiwIED0DQNN910Ex588EEMHTo0q1iNjY3YunUr9uzZg+bmZtTU1OCaa67Bfffdh0svvbSgsUpRkPkZZG4CzM9yz09+d+aH+UlEQeBsVCVk9erVOH78OG699VbMnj0bw4YNw9atW9HQ0IDZs2en/WFqamrC0qVLUVVVhXvvvRdjx47FG2+8gcbGRsyePTureIcOHcLzzz8PTdMwatQonD59GnPmzMGoUaN67DvQeL/73e/Q0NCAefPm4fbbb8eRI0ewadMmTJ06FSNGjMj2LerhzJkzWLVqFSzLwmWXXYbm5mbccsstuOKKK9L2O336NB5//HEkk0nce++9uOqqq/DPf/4TH3zwAebOnQtVVfuN9eKLL2LXrl2YMWMG5syZg0svvRTvvvsutmzZgptvvtlbO6AQsUpRkPkZZG4CzM9yz09+d+aH+UlEgZBUMvbs2SMty+qxra6uTr788stp25cvXy7vv/9+2d7e7m178803ZV1dnfzkk0+yitfe3i7PnTsnpZTynXfekXV1dfKzzz7LuO9A4h08eFDW1dXJ1157zduWTCblT3/6U/n4449n1dbepFIpeebMGSmllJ9//rmsq6uTDQ0NPfZbs2aN/P73vy+bm5u9bbt27ZJ1dXXyb3/7W1ax9u/fL1OpVNq2L7/8Ut5zzz3yueeeK2isUhRkfgaVm1IyP/OJVWr43Zkf5icRBYFjNkrIlClToChKj201NTU4duyYt62jowOffvopbr/9dsRiMW/7HXfcgcrKSrzzzjtZxYvFYlnNZz7QeO+++y4URcG8efO8bZFIBHfddRf+85//oKWlJav2ZqLrOuLxeL/7vffee5gxY0balcBvfOMb3tW1bFx33XXQdT1t29ixYzF+/HgcP368oLFKUZD5GVRuAszPfGKVGn535of5SURBYLFR4hKJBBKJBIYMGeJtO3LkCCzLwtVXX522r67rmDhxIpqamgrahoHGa2pqwqWXXpr2xxYAJk2aBAA4fPhwQdt7sdbWVvzvf//DVVdd1eOxq6++ekDvl5QSZ8+e9T4fP2OVomLnZyFiMT8LE6vUFDs3CxGv2LkJMD+JaOBYbJS4zZs3wzRNzJo1y9vW1tYGABmvSMXjcZw5c6agbRhovLa2tl6fC6Dg7b2Y+/qZBorG43GcP38ehmHk9drbt29Ha2ur9/n4GasUFTs/CxGL+VmYWKWm2LlZiHjFzs3uMZifRJQvzkblE9u2YZpmVvvqug4hRI/te/fuxcaNGzFr1ixMmzbN255KpbznXRxPVVUkk0lvn1zi9SZTPFckEukzlvv83p4LAMlkMuu25KO/9rttyPR4X44fP44XXngB1157Le68805fYxVakPnZPVZ/+Rl0brqvwfwsnfzkd2f684uZm24bAOYnEeWPxYZP9u3bh6eeeiqrfdesWYNx48albTt+/DhWrVqF8ePH49FHH017zP3S7X6F5+J4P/jBD3KK15dM8VypVMp7vK/n9/ZcAIhGo1m3JR/9tT+fNrS1tWHFihWIxWJ48sknvRlS/IjlhyDzM1Os3vIz6Nx0X4P5WTr5ye/O9OcX+7NifhLRQLHY8Mm4ceOwZMmSrPa9+DZ5S0sLnn76acRiMSxbtqxHf113f/cWffd4r776KgzDwI9//OOs42Xbvu7xXG1tbRlveV/8/Ey3+93X6+/5A+W+fm9tqKmpyelKWXt7O5YvX4729nasWrUKw4YN8y2WX4LMz+6x+svPoHPTfQ3mZ+nkJ787059fzNzsHoP5SUT5YrHhk3g8nnFhpP6cO3cOy5Ytg2EYePbZZzP+Mbn88suhqioaGxu9vq7xeBy33XYb/vCHP2DmzJl5xe5NpniAc/Xp8OHDmDlzZp/Pv+KKK7Bnzx50dHSk/fE/ePAgAGDixIkFa2smw4YNw9ChQ3Ho0KEejzU2NuYUP5VKYeXKlThx4gRWrlyJ8ePH+xbLT0HmpxvLMIyC5+dAcxNgfuYbyy/87vxasXMTYH4S0cBxgHgJ6ezsxIoVK9Da2oply5Zh7NixGferqqrCtGnTsGPHDnR0dHjbt23bhkQikdUJVi4GGu/WW2+Fbdt48803vW2GYWDr1q2YNGnSgBemysa3vvUtfPjhh2lTRe7evRtffvll1u+XZVlYvXo1Dh48iCeffBLXXnutb7FKUSnmZyFiMT/LPz9LMTcLEa8UchNgfhLRwHAF8RLym9/8Bp999hlmz56NiooKHDlyxPv31VdfpfUVvuyyy7BlyxZ89NFHkFLi3//+NzZs2ICpU6f22Q3gYq+88gr27duHvXv34ujRo1AUBUeOHMG+ffswZcqUgsQbPnw4jh49ii1btiCRSOCrr75CfX09jh07hl/84hcYOXJk7m9WN2+88QZ27dqFffv24dChQ1AUBSdOnMC+ffswceJERCIRTJgwAQ0NDfjXv/4FIQR2796NtWvXYsyYMXjkkUeyWpW2vr4e27Ztw4wZMzBq1Ki0z+fIkSPeVbdCxCpFQednELkJMD/DkJ/87swf85OI/CaklLLYjSDHQw89hObm5oyPjRw5EmvXrk3btn//fqxfvx5NTU2orKzEzJkzsWjRoh79lPty99139/rY5s2bCxYvlUphw4YN2L59Oy5cuIAJEyZgwYIFuOGGG7Jua2/6et9efPFFjBo1CgBw9OhR1NfXY//+/dA0DTfddBMeeOCBrPthL126FHv37u318e7v10BjlaKg8zOo3ASYn+Wen/zuzB/zk4j8xmKDiIiIiIh8wTEbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRERERETkCxYbRFTShBBp/xRFQW1tLb797W9j7dq1kFL2+tz3338fDz30ECZNmoSamhpUVFRgwoQJ+OEPf4hNmzbBtu2s2mBZFv7yl7/gsccew2233YaqqioIIfCTn/ykQEdJREQUTkL29ZeaiKjIhBAAgPvvvx+Ac+L/xRdf4P3334eUEvPnz8ef//zntOcYhoFHHnkE9fX1AIBrrrkG1113HSKRCA4fPoyPP/4Ytm3jzjvvxNatW/ttw9mzZxGPx3tsv//++7F+/foBHiEREVF4acVuABFRNi4+qf/HP/6B7373u9i4cSMWLFiA733ve95jixYtwsaNGzFp0iSsW7cOt956a9pzT5w4gRUrVuCtt97KKrau61i4cCFuuukmzJgxAwcPHsTixYsHfExERERhx2KDiMrSXXfdhYULF2LdunV4/fXXvWLj1VdfxcaNGzFq1Ci8/fbbGDVqVI/njh07Fv/3f/+Hd999N6tYVVVV+NOf/uT9/N///rcwB0FERBRyHLNBRGVr+vTpAIBjx45525577jkAwPLlyzMWGt3NnDnTv8YRERERiw0iKl/nz58HAESjUQDA6dOn8cEHH0AIgfnz5xezaURERAQWG0RUpqSUeOONNwAAU6dOBQB8+umnAIArrrgCtbW1RWsbEREROVhsEFFZsSwLjY2NeOCBB7Bz505Eo1FvsHZraysAYMSIEcVsIhEREXXhAHEiKgvuFLjd1dTU4KWXXsKVV15ZhBYRERFRf1hsEFFZcNfZUBQFQ4YMwfXXX4977rknbf2LYcOGAQBaWlqK0kYiIiJKx2KDiMpCNovnTZs2DQDQ1NSEs2fPctwGERFRkXHMBhGFxogRI3DzzTdDSomNGzcWuzlERESDHosNIgqVxx57DICzzkZzc3Of+7733ntBNImIiGjQYrFBRKFy7733Yv78+fjqq69w2223YefOnT32OXXqFB599FHcd999RWghERHR4CGklLLYjSAi6o07C1UuX1WGYeBnP/sZ/vjHPwIArr32WkyePBm6ruPIkSP46KOPYFkW7rrrLrz11ltZvebPf/5zfPLJJwCcKXYPHTqE4cOHp82E9f7772fdRiIiosGAxQYRlbR8ig3Xzp07sXbtWrz99ts4ceIELMvC6NGj8c1vfhMLFixAXV1dxil1M5k9ezZ27NjR5z78OiUiIkrHYoOIiIiIiHzBMRtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROQLFhtEREREROSL/wfdrUAS7VdrEQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_B = ggplot(all_data_df[all_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of partitions'), \n", - " alpha=0.1) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of partition 1 vs multiple partitions\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#b3e5fc']) \\\n", - " + geom_point(data=all_data_df[all_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_B)\n", - "ggsave(plot=panel_B, filename=pca_uncorrected_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5000, 58)\n", - "Plotting PCA of 1 partition vs 1 partitions...\n", - "(5000, 58)\n", - "Plotting PCA of 1 partition vs 2 partitions...\n", - "(5000, 58)\n", - "Plotting PCA of 1 partition vs 6 partitions...\n", - "(5000, 58)\n" - ] - } - ], - "source": [ - "lst_num_partitions = [lst_num_partitions[i] for i in pca_ind]\n", - "\n", - "all_corrected_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "partition_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_corrected_1_0.txt.xz\")\n", - "\n", - "partition_1 = pd.read_table(\n", - " partition_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(partition_1.shape)\n", - "\n", - "# Transpose data to df: sample x gene\n", - "partition_1 = partition_1.T\n", - "\n", - "for i in lst_num_partitions:\n", - " print('Plotting PCA of 1 partition vs {} partitions...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = partition_1.copy()\n", - " \n", - " # Match format of column names in before and after df\n", - " original_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_partitions'] = '1'\n", - " \n", - " # Get data with additional batch effects added and corrected\n", - " partition_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_corrected_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " partition_other = pd.read_table(\n", - " partition_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " print(partition_other.shape)\n", - " # Transpose data to df: sample x gene\n", - " partition_other = partition_other.T\n", - " \n", - " # Simulated data with i batch effects that are corrected\n", - " partition_data_df = partition_other\n", - " \n", - " # Add grouping column for plotting\n", - " partition_data_df['num_partitions'] = 'multiple'\n", - " \n", - " # Match format of column names in before and after df\n", - " partition_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, partition_data_df])\n", - " \n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space \n", - " combined_data_numeric_df = combined_data_df.drop(['num_partitions'], axis=1) \n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - " \n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_partitions'] = combined_data_df['num_partitions']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_corrected_data_df = pd.concat([all_corrected_data_df, combined_data_PCAencoded_df])" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_partitions_str = [str(i) for i in lst_num_partitions]\n", - "num_partitions_cat = pd.Categorical(all_corrected_data_df['num_partitions'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_corrected_data_df['comparison'], categories=lst_num_partitions_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_corrected_data_df = all_corrected_data_df.assign(num_partitions_cat = num_partitions_cat)\n", - "all_corrected_data_df = all_corrected_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "all_corrected_data_df.columns = ['PC1', 'PC2', 'num_partitions', 'comparison', 'No. of partitions', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAHoCAYAAAAhR/JXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XecFPX9P/DXZ2a2317h4GihKU0SIiiiiBQbEkUgIMTQxR6jPxMbCfkqqA9R4zdq9JuoXwx2sKKiJnbQAAqWEJIvKkZAkF6OK1umfX5/nDPccnvH3bF7e7v7ej4ePI6dnfLe2ZnZec+nCSmlBBERERERUYopmQ6AiIiIiIhyE5MNIiIiIiJKCyYbRERERESUFkw2iIiIiIgoLZhsEBERERFRWjDZICIiIiKitGCyQUREREREacFkg4iIiIiI0oLJBhERERERpQWTjRwihEj4pygKiouLMWzYMCxcuBANDRb/0Ucf4ZJLLkHv3r0RDofh9/vRvXt3TJ48GUuXLoVt2/Uuu2bNGnebt956azo+Wr327NmDGTNmoGPHjlBVFUIIPPbYYy0aQzrNmjULQggsX768RZZrCa+//jrmzp2Ls846C8XFxRBCYOTIkZkOK+ts3ry5WfuuucvVRwiB7t27p2RduaB79+4QQrTYckRErR2TjRw0c+ZMzJw5E1OnTkW/fv2wcuVKXHrppZgyZUqdeQ3DwCWXXIIhQ4bg0UcfhaIoOOusszBu3DiUlZXhxRdfxIQJE3D22WfXu70nn3zS/f/TTz+dls9Un4svvhhPPvkkysrK8POf/xwzZ85Ez549WzSGo5GPNyZTp07FHXfcgXfffRcHDx7MdDg557HHHoMQAvPmzct0KDmntSR4RETZRMt0AJR6hz/Zf/vtt3HuuediyZIlmDp1KsaMGeO+N2PGDCxZsgS9e/fGokWLcOqppyYsu337dtx666146623km7LMAwsWbIEANChQwd89dVX+Pjjj3HyySen9kMloes63njjDXTv3h2ff/45FCX3cucFCxZgzpw56Nq1a4ss1xImTpyI4447DoMGDYJhGBg1alSmQ8ornTt3xoYNGxAMBjMdSk569913YRhGiy1HRNTaMdnIA2effTamT5+ORYsW4eWXX3aTjeeffx5LlixB+/bt8cEHH6B9+/Z1lu3UqRMeeughrFy5Mum6//a3v2Hv3r0YOnQozjnnHNx888148sknWyTZ2LlzJyzLQrdu3XIy0QCAjh07omPHji22XEt49NFH3f9/9NFHGYwkP3k8HvTt2zfTYeSsY489tkWXIyJq7XLzDo3qGDhwIABg69at7rR77rkHADBv3rykiUZtQ4cOTTr9qaeeAgBMmzYN06ZNAwA8++yzzX5C98Ybb+Dss89GSUkJ/H4/+vTpgzlz5qC8vDxhvu7du6Nbt24AgBUrVrhtRhpTd3zevHlu246PP/4Y55xzDoqLi1FYWIizzz476Q2wlBKLFy/GhRdeiN69eyMUCiEcDmPw4MH405/+lLRNS+3trFmzBmPGjEFpaSmEELjvvvsghMCWLVsAJLa3qf0ZDm97sXz58mYtV9vWrVtx+eWXo1u3bvD5fCgrK8OECROwdu3aOvPWrv4RjUYxZ84cd7mePXvirrvuarAtUDpdc801EELgz3/+c73znHjiiRBC4J///Kc77V//+hemTZuGY445Bn6/H+3atcOAAQNw7bXXYseOHY3adu39+84772D48OEIh8MoKyvDpZde6lYP2717Ny6//HJ07twZfr8fgwcPTvqd1D5WkmlstbmRI0fioosuAgDMnz8/4fhw1l1flZ7a1a++/PJLTJw4EaWlpQiFQhg6dCjeeOONRu2b2jZs2IBZs2ahS5cu8Pl8aN++PS688EL8+9//btJ6Ro4cCSEENm/ejKeeegonnngigsEgysrKMHPmTHz33Xd1likvL8cDDzyAc845xz1mS0tLMXr0aLz99ttH3M4zzzyDU045BeFwGMXFxZg3bx569OgBIPGaI4TArFmz3HUc/l01d7naVq9ejXHjxqFdu3bw+Xzo3r07fvGLX2D79u115q39PX777beYMmUK2rVrh0AggEGDBmHZsmVJt7Fq1SqMHz/e3VcdOnTA4MGDMWfOHFRVVSVdhoioMZhs5InKykoAgM/nAwDs3bvXbdh94YUXNmudBw8exKuvvgqv14vJkyejR48eOPXUU7F371787W9/a/L6FixYgPPOOw/Lly/HiSeeiPHjxyMSieCuu+7CySefjF27drnzXnDBBZg4cSIAoH379m47lQsuuKDR21u1ahWGDx+Obdu24Sc/+Qn69OmDd955ByNGjKhTbSwej2PKlCl455130KFDB5x//vk45ZRT8O9//xtXXXUVZs+eXe92PvjgA5x22mnYvHkzRo0aheHDh+OMM87AzJkzEQqFABxqZ3Okz9ChQ4dmLedYv349TjjhBDzyyCMIBAKYMGECevXqhaVLl+LUU0/F888/n3Q5XdcxatQo/O///i8GDRqE008/Hd999x3mzJmD//qv/zridtNh6tSpAIBnnnkm6ftffPEFPvvsM/Tv3x8//vGPAQCffvopTjrpJDz99NMIh8MYN24cTjnlFBiGgfvvvx9ffvllk2JYunQpRo8eDSklRo8eDZ/Ph4ULF2LcuHHYu3cvhgwZgjfffBPDhg3DgAEDsHbtWowePRrr168/ug9fj9GjR7sPBo4//viE46OxbZn+85//4OSTT8bnn3+OUaNGYdCgQVi9ejXGjBmDRYsWNTqWl19+GQMHDsTjjz+Otm3bYuzYsejRoweee+45DB48GB988EGTP98999yDGTNmoKCgAOPGjUMoFMITTzyBU045Bdu2bUuY96OPPsI111yDr776Cn369MFPf/pT9OnTB2+99RbOOecc/OUvf6l3OwsWLMD06dPh9XoxZswY/OhHP8KAAQOSXnNmzpyJ0047rd51NXc5x1NPPYVhw4bh1VdfRZ8+fTBhwgT4fD78+c9/xgknnIAvvvgi6XKbN2/GSSedhDVr1uDMM8/EwIED8emnn2L8+PF1rm/Lli1zt9GxY0dMmDABAwcOxP79+3HXXXdh7969R4yTiKheknIGAJnsK7VtWw4ZMkQCkHPnzpVSSvn2229LAPLYY49t9vYWLlwoAchx48a50/70pz9JAHLSpElNWteaNWukoiiyoKBAfvTRR+70WCwmJ02aJAHIiRMnJiyzadMmCUCOGDGiSdu65ZZb3H01d+5cadt2nfg7duwoI5GIO90wDLl06VKp63rCunbv3i0HDRokAcgVK1bUu5277roraSzdunVL+p05Zs6cKQHI999//6iXs21b9u/fXwKQN954Y8LnfuGFF9z9v337dne6s4+d/Xzw4EH3vbVr10pVVWUwGJSVlZX1xtKQ1atXN+s7dPTs2VMKIeSWLVvqvPe73/1OApB33nmnO23GjBkSgLznnnvqzL9hw4aEz94QZ/8qiiJfe+01d3pFRYX80Y9+JAHIfv36yWnTpiUcM05MM2bMSFifc6wsWrQo6faSfd/1Hf+LFi2SAOQtt9ySdF1HWs6JzzAM971ly5a53/W2bdsSlgMgu3XrVmcboVBIFhQUyLfffjvhvb/+9a/S4/HILl26yHg8njTGw40YMUICkJqmyddff92druu6nDp1ap3rkJRSfvPNN3L16tV11vXZZ5/J4uJiWVhYWOe4dbbj9/vl8uXL6yzbmGtOU76rIy337bffykAgIFVVla+88oo73bIsee2110oActCgQQnL1P4er7vuOmlZlvvevffeKwHIYcOGJSwzfPhwCUC+8MILdeJas2aNrKioqDduIqIjYclGDrMsCxs3bsTs2bOxevVq+Hw+t4rFvn37AADt2rVr9vqdXqic6lMAMHnyZHg8HixbtqxJPQ09+OCDsG0bV199dUJ7D5/PhwcffBCBQABLly5NqAZ2tLp16+ZWX3FceeWVOPnkk7Fjxw68+OKL7nRN0zB+/Hh4PJ6EdbRr1w4LFiwAALzyyitJt9O/f3/ccMMNKYu7uZYvX47169eja9euuP322xM+98SJEzF+/HhUVVUlfeKrKAoefvhhFBYWutMGDRqEn/zkJ4hEIvjkk09a5DMcburUqZBSJi3deOaZZyCESOiFbc+ePQCAs846q878ffv2bXI7lylTpuC8885zX4fDYVx66aUAgG3btuGPf/xjwjFz/fXXQwiBFStWNGk7LamgoAD33XcfNO1Qk74xY8bgggsuQCQSaVTpxn333Yfq6mosWLCgzr4ePXo0rrzySmzduhWvv/56k2KbPHkyzj33XPe1x+PB/fffj2AwiFdffTXh+tCjRw+ccsopddYxcOBAXHXVVaioqMD777+fdDsXX3wxRowY0aTY0mHhwoWIRqOYPHkyxo4d605XFAV33nknOnXqhE8++SRpm7oePXrgjjvuSGjP9stf/hIlJSX46KOPoOu6O72h8+Kkk05COBxO5cciojzDZCMHOfWBNU1D79698dhjjyEcDmPx4sUpa4T47bff4oMPPkBxcTHOP/98d3ppaSnOPfdcxGKxeqvkJPPhhx8COFQ1praysjKMGjUKtm3X21C9OSZOnJhwQ+X4+c9/nhBTbf/4xz9w991346qrrsJFF12EWbNmuW0GNm7cmHQ7Y8aMaRXd1Dqfx0kIDzd9+vSE+Wrr1q0b+vTpU2d67969AaDRbR1Srb6qVKtXr8Y333yD4cOHo0uXLu70E088EQBw1VVXYfny5TBN86i2n6wnrWOOOQZATTJWUlKS8F5RURHatGmTsf3VGKNGjaoTN9DweXE4p5rOhAkTkr4/bNgwADVj9DRFsiqfpaWlGDVqFKSU+Pvf/57wnmVZeOuttzBv3jxcfvnlmDVrFmbNmuUmGfWds7Vv7DOpoeuiz+fDpEmTEuarbeTIkfB6vQnTNE1Djx49YBiG+8AJOHReTJ8+HWvXrm1wXCUioqZib1Q5aObMmQBqnn4VFhaif//+mDBhQsINRGlpKYBDT7Sa6umnn4aUEhdccIHbDsQxbdo0vPLKK3jqqadwySWXNGp9TkPH+hp4O9OTNQRtLqeBeX3bqt34Utd1zJo1C4sXL653fU67mMO1lu5nj2Yf/+AHP0i6jPPEMx6PH32AzdCrVy+cdNJJWLt2LdavX4/+/fsDODTey+E3aTfccAP+/ve/Y/ny5Tj99NNRUFCAIUOG4LzzzsOsWbNQVFTUpO137ty5zrSCgoJ633Per32j19o05byoz+bNmwHUvw8cTW0L0JTYtm3bhjFjxmDdunX1ro/nbI077rgD69evx7Jly7Bs2TKUlJTgtNNOw9ixYzFt2jT4/f6j+BRElO+YbOSgxoygffzxxwMAvvnmG5SXl6O4uLhJ23CqUC1fvrxOI0eneP6DDz7Ali1b6r1BaIpMlwz84Q9/wOLFi9G/f3/cfffdOOGEE1BSUgKPx+M2QJX19MqULT/UDe3j1ty18LRp07B27Vo888wzWLBgAUzTxHPPPQefz1en0XxhYSHee+89rFy5EsuWLcPy5cvx3nvv4e2338aCBQvw4YcfolevXo3edkP7JZX7LNueNDvxOg8+6pPOLrIvueQSrFu3DhMnTsSNN96IPn36IBwOQ1EUPPLII7j88st5zn6vS5cu+OSTT/Dee+/htddew4oVK9zE4+6778bq1avdB1RERE3FZCNPtWvXDoMHD8aaNWuwZMkSXHHFFY1e9tNPP8WGDRsAAF9//TW+/vrrpPNJKfH000/jt7/97RHX2alTJ2zatAlbtmxBv3796rzf2CelTeF0H1vf9E6dOrnTli5dCgBYvHgxfvjDHybM/80336QspnRyPk99nzsd+7gl/OxnP8Ovf/1rLF68GHfccQfeeust7NmzBz/96U+TVgcSQuC0005zk+Tdu3fj2muvxeLFizF37lw899xzLf0R3OouyboYtSwLO3fubLFYmnJe1OcHP/gB/vOf/+C///u/U3qTumXLFrdnsYZiq66uxttvv4327dvj2WefhaqqCfNn0zn75ZdfYsuWLXWuO0Bqz1lN0zBq1Ci3auCWLVswe/ZsvPfee7jrrrtw9913H/U2iCg/td7HlZR2119/PYCafuB3797d4LyrVq1y/++MrXH99ddDSpn0nzOWgDPvkTh1uJNVU9qzZw/efPNNCCHqHe+jOV566SVYllVnujMieu0SmwMHDgBIXjXhaG5OnZvMprYdaM5yzj5+/vnnk35u57ty5ssW7du3x1lnnYUtW7Zg5cqV9Vahqk9ZWRnmzZsHoGYMjkxwGqZ/9dVXdd57//33mzRuTXOPKcdbb71VZ1wbIPl5UZ+zzz4bwKEkPVWSnWv79+/HW2+9lXB9OHjwIGzbRseOHeskGoZhNDuuljxfgYavi7quu+3i0nHOduvWDTfddBOAzJ0XRJQbmGzksUmTJuHCCy/Erl27MHz4cKxevbrOPDt37sQvf/lLt8cpy7LcHz6nwWgyw4YNQ+fOnbFhwwZ8+umnR4zlqquugqIo+OMf/5jQs5Gu67j66qsRjUYxYcKEhMa+R2vz5s2YP39+wrRHHnkEq1evRvv27d2+8YFDDaEfeuihhPlfeOEFPPHEE82OwXkS29TxHZqz3MiRI9G/f39s3rwZN998c0IVkqVLl+Kll15CQUFBg2OGtFbO8fnII4/glVdeQVFREcaMGVNnvoceegibNm2qM90ZsC6Vx1dTDB8+HEBNwuc8rQaATZs24ZprrmnSupp7TDmqqqrw61//OuHG+K9//Suee+45BAIBt0e7hlx33XUIBAK4/vrr8dJLL9V5Px6P44UXXqgzNsaRPPvss3jzzTfd16Zp4le/+hWqq6sxZswYt61FWVkZioqK8K9//SuhUwnLsnDTTTclTeoao23btvB4PPjPf/6TNGFP9XIXX3wxAoEAlixZktBzl23b+O1vf4vvvvsOJ5544lE/hLn33nuTlp5l+rwgotzAalR57oknnkAwGMRf/vIXnHrqqejbty/69esHj8eDzZs345NPPoFlWe6Tyrfeegu7du1C7969ccIJJ9S7XkVR8LOf/Qx/+MMf8OSTT7q9ndRn8ODBuO222zB37lwMGTIEI0eORNu2bbFy5Ups3boVvXr1wv/8z/+k9LNfeumluPPOO/HSSy/hxz/+Mb7++musXbsWHo8Hjz32GILBoDvvjTfeiL/97W+YM2cOnn/+efTu3RsbN27EJ598guuvv94djb2pxo4dixUrVuDMM8/E6aefjlAohLZt2+LOO+9M+XJCCDz99NM4/fTTcccdd2Dp0qUYMGAAvv32W6xcuRKapuHRRx9tcvevTXXbbbe5N05OtaHPPvssoZvSpUuXNimO8ePHIxgMum2JLr744jodFwA1ycaVV16Jfv364bjjjoOmafjiiy+wbt06+P1+3HzzzUfz0Zrt2GOPxYwZM/DEE09gwIABGD58OCKRCD766COce+65iEQi9VZvOtwpp5yCsrIyvPDCCxg5ciSOOeYYKIqC2bNn49RTTz3i8lOnTsVLL72E5cuXu91Af/DBB5BS4o9//GO9DY9r69mzJxYvXowpU6Zg4sSJ6NmzJ4477jiEQiF89913+Oyzz1BdXY3PP/+8UetzXHbZZfjJT36C4cOHo2PHjvj444+xadMmdOrUCQ8++KA7n6ZpuPHGGzF37lyMGDECZ5xxBtq0aYOPP/4Yu3btwlVXXdWs64nX68Xo0aOxbNkyHH/88TjhhBPg9XoxdOjQBpOw5i7XtWtXPPzww5g1axbOP/98DB06FF26dMFnn32GL7/8Eu3bt2906XFD5s+fj+uvvx7HH388evXqBSkl1q1bh6+++gpt2rRxS8GJiJolA2N7UJqgnkH9GmPVqlVy9uzZsmfPnjIYDEqfzye7desmJ0+eLF955RV3ALif//znDQ4YVtvatWslAFlWVpYwQFhDXnvtNXnmmWfKoqIi6fV6Zc+ePeWNN94o9+/fX2feox3Ub9GiRXLVqlXyzDPPlOFwWBYUFMgzzzxTrly5Mulyq1evlmeccYYsKSmR4XBYnnrqqfLFF1+sN44jDdQmZc1ggb/73e/kscceKz0eT50B0uob1K+5y0kp5ZYtW+Sll14qu3TpIj0ej2zbtq0cP368/Pjjj+vMe6R93JjPeDgntob+bdq0qdHrczjHJgD53nvvJZ3n1VdflbNnz5Y//OEPZXFxsQwGg7J3797ykksukV988UWTP0Oy/fv+++9LAHLmzJlJl61vQMZ4PC7nzJkju3TpIr1erzz22GPl7bffLk3TbPJAcWvXrpVnn322LCoqkkKIhO+oMYMB/t///Z8cN26cLCkpkYFAQA4ZMkQuW7Ys6ec5/Nir7euvv5a/+MUvZK9evaTf75fhcFj26dNHXnjhhfK5555r8qB+mzZtkosWLZIDBgyQfr9flpaWyunTp8utW7cmXe7xxx+XAwcOlMFgUJaWlspx48bJdevW1TvwYe3t1GfXrl1y+vTpskOHDlJV1TrfdX3fb3OXk1LKlStXyvPPP1+WlpZKj8cju3btKq+88so6AyxKeeRBHZN9xieeeEJOmTJF9unTR4bDYRkOh2W/fv3kr3/966TbICJqCiFlPd1xEOWoefPmYf78+Vi0aBFmzZqV6XCIWoXHHnsMF110EW655Ra3DUtrMXLkSKxYsQKbNm2qtxtYIiJqndhmg4iIiIiI0oLJBhERERERpQWTDSIiIiIiSgu22SAiIiIiorRgyQYREREREaUFkw0iIiIiIkoLJhtERERERJQWTDaIiIiIiCgtmGwQEREREVFaMNkgIiIiIqK00DIdQLYqLy9HJBLJdBiUx4LBIIqLi5O+x+OTMonHJrVmDR2fRJR6TDaaoby8HA8++CBM08x0KJTHNE3DL3/5yzo/mjw+KdN4bFJrVt/xSUTpwWSjGSKRCEzTxMCBA1FQUJDpcCgPVVVV4fPPP0ckEqnzg8njkzKJxya1Zg0dn0SUHkw2jkJBQQEvVtRq8fik1orHJhFR/mADcSIiIiIiSgsmG0RERERElBasRkUt6rXXXsN7772HzZs3Y8iQIbjhhhsyHRIRAMAwDDz00ENYt24dKisr0bZtW0yePBkjRozIdGhErlWrVuGZZ57Brl27UFhYiIsvvhinnnpqpsMiIqoXkw1qUW3atMHkyZPxj3/8A5WVlZkOh8hlWRbatGmD22+/He3bt8eGDRtw6623on379ujbt2+mwyPCunXrsHDhQlx//fXo27cvKioqEIvFMh0WEVGDmGxQi3KewH3zzTdMNqhV8fv9mDp1qvu6X79+OO6447BhwwYmG9QqPPPMM/jZz36Gfv36AQAb2RNRVmCbDSKiJGKxGL7++mt069Yt06EQwbIsbNy4EVVVVbjiiiswa9Ys3H///aiurs50aEREDWKyQUR0GNu2cd9996FXr14YOHBgpsMhQnl5OUzTxAcffIDbb78dDz74IMrLy7Fw4cJMh0ZE1CAmG0REtUgp8ac//Qn79+/HDTfcACFEpkMigs/nAwCcd955aNu2LQoKCjBp0iSsXbs2w5ERETWMbTaIiL4npcRDDz2ETZs24bbbbkMgEMh0SEQAagZCbNu2LZNfIso6LNmgFmVZFnRdh23bsG0buq7DNM1Mh0UEAHj44Yfx5ZdfYv78+QgGg5kOhyjBqFGj8Prrr+PAgQOIRCJ48cUXMXjw4EyHRUTUIJZsUIt69tlnsWTJEvf1ypUrccYZZ+Daa6/NYFREwO7du/HGG2/A4/Fg9uzZ7vQLLrgAkydPzmBkRDUmTZqEiooKXHXVVVBVFYMGDcIll1yS6bCIiBrEZINa1JQpUzBlypRMh0FUR1lZGV599dVMh0FUL1VVcdlll+Gyyy7LdChERI3GalRERERERJQWTDaIiIiIiCgtmGwQEREREVFasM3GUaiqqsp0CJSnGnPs8fikTOCxSa0Zjz2ilsdkoxlM04QQAp9//nmmQ6E8l6zbYB6f1Brw2KTWjF2uE7UcJhvNoGka2rZti/PPPx+VlZWwLCvTITWJqqoIh8OMvYWlMvYDBw7g/fffh6bVPYWz+fjk95sZPDYbh99xZrTU8UlE6cGzrZlUVUXHjh3RpUuXlI/oats2du7ciQ4dOkBRUt+sRkoJ0zQZ+2GyKfbt27fj/fffr/f9bD0+0/n9Aoy9PrlybALZs5+SydbYc+naSUSpxwbiRERERESUFkw2iIiIiIgoLZhsEBERERFRWjDZICIiIiKitGCyQUREREREacFkg4iIiIiI0oLJBhERERERpQWTDSIiIiIiSgsmG0RERERElBZMNoiIiIiIKC2YbBARERERUVpomQ6AiIgoV+imjYqoBd2S8HsUFAVUqIrIdFhERBnDZIOIiCgFDEtiR4UB3ZDQVIHKuIGYIdGhUIPChIOI8hSTDSIiohSI6DZiukRRUAUA+KVAZcxCzFQR9DLZIKL8xDYbREREKWDbEkqtX1UhBJhiEFG+Y7JBRESUAj6PAiklDEsCAKKGDVUBPCpTDiLKX0w2iIiIUiDoVVAW9riNxCGBDkVeJhtElNfYZoOIiChFioMaCnwqLCmhKYI9URFR3mOyQURElEKaKqCxtQYREQBWoyIiIiIiojRhskFERERERGnBZIOIiIiIiNKCyQYREREREaUFkw0iIiIiIkoL9kbVTIFAAAAgpUz5uqWU0DQNUsq0rb/231Svm7HXv/7af4+GpjV86paWlqZsW4dL535K5/frrJexJ1937b9HI5PHprPebNhP9a0/G2PPpWsnEaUez7pm6tu3LwDAsqy0rL+kpAS2bcO27bSsH2DsyWRL7CUlJQ2+P378+JRtq77tp3M/pStugLE3JBeOTSeG1r6f6pOtsefKtZOIUo/JRjN98cUXOOGEE6CqKoRIbX/qtm1j3759KC0thaKkvqablBKWZTH2w2RT7Hv27Gnw/Zdffhnjx4/Puv2Uzu8XYOz1yZVjE8ie/ZRMtsaeS9dOIko9JhvNFI1GAQBCiJRfuIUQME0zLes+fDuMPXGd2RK7aZoNvr9v376UbeuwaK2HAAAgAElEQVRwLbGf0rVuxn7kbWTzsemsNxv2U33rzcbYc+naSUSpxwbiRERERESUFkw2iIiIiIgoLZhsEBERERFRWjDZICIiaiVMS0I37bR1r0tE1NLYQJyIiCjDbFtib6WBbQctRD06Qj4VZWEPvBqfCRJRduNVjIiIKMMORi3sj1jwawIFPgVRQ2J3pcESDiLKekw2iIiIMqzasOHVBFSlpnvXkE9BVJcw0zdGHhFRi2CyQURElGGqELBrFWLYElAUIH2jVhARtQwmG0RERBlWFFAhJRDRJaK6jeqYjeKACk1lukFE2Y0NxImIiDIs6FXQqciDSAXg0wTaBjQU+tVMh0VEdNSYbBAREbUCAa+CdiEVHYq9UBRWPCCi3MCrGRERERERpQWTDSIiIiIiSgsmG0RERERElBZMNoiIiIiIKC2YbBARERERUVow2SAiIiIiorRgskFERERERGnBZIOIiIiIiNKCyQYREREREaUFkw0iIiIiIkoLJhtERERERJQWTDaIiIiIiCgtmGwQEREREVFaaJkOgFqfeDyOeDwOIQR8Ph+8Xm+mQyLKKNu2AQCKwuczRERETZFTycbGjRvx7rvvYv369di9ezfC4TD69OmDadOmoXPnzgnzbt26FQsXLsSGDRugaRoGDRqEiy++GEVFRRmKPvN0XUd5eTkikQhUVYXP50M8Hkc4HIbP58t0eEQtTkoJXddhmiZs24aiKPD5fFBVFUKITIdHRETU6uVUsvHiiy9iw4YNGDp0KLp3744DBw7g9ddfx69+9Sv8/ve/R7du3QAAe/fuxW9+8xsEg0FMnz4d0WgUL7/8MrZs2YJ77rkHHo8nw5+k5dVONICaJ7lSSgghEIlEmGxQXjIMA6Zpuv+3LAvxeBzBYBA+n48JBxER0RHkVLIxbtw4XHfddQnJwrBhw3D11VfjhRdewHXXXQcAeP755xGLxXDvvfeiXbt2AIDevXvj5ptvxrvvvovRo0dnJP5MikajEEJAURT3qW08HoeqqpBSZjo8ohYnpYRpmhBCQNd1KIoCRVEgpYRhGFAUhVUMiYiIjiCnKiAfd9xxdUolOnXqhK5du2Lbtm3utFWrVuGkk05yEw0AGDBgADp37oyVK1e2WLytiZQSqqpC0zRYlgXbtmHbNgzDyMuSHiKn1EJK6VahcqYriuK24yAiIqL65VSykYyUEuXl5SgsLAQA7Nu3DwcPHkTPnj3rzNurVy988803LR1iq+DxeGCaJvx+v1uqIYRAIBBAKBTKdHhEGeHxeGBZFqSU7l9NqykQZmNxIiKiI8upalTJLF++HPv27cOUKVMAAPv37wcAtGnTps68JSUlqKyszMun+YFAAFJKxGIx+Hw+BINBhEIheL1e3lRR3tI0DYFAoKbtUkxHeUzC+r4UsH2JB5omoShst0FERFSfnE42tm3bhocffhh9+/bFGWecAaCmITSApMmEU/86Ho/XeX/Hjh3YsWMHAGDPnj2orKx0qxqlupGoUz0jXdU0nGohh8fuNHqVUrr105saR6ZiT4Vsjv1wmqZl5X5K9z5qTuyqqsLnD2J3RIEJC3FbYm+lje8qI+hS4kWnYi8CHqVVxt5YuXJsAtm9n7I19ly6dhJR6uVssnHgwAHceuutCAaDuOmmm6CqKoBDCYVhGHWWcRKRZD0vPfzww5g/f777esaMGdi3b186Qnft3r07retPJ8aeWeeeey6PzwY0NfZqXWJXpQVVEdhTZSHgEagyJLZGFRzYJ9ChUIHWQiUc2bzfgZY5NoHs3k/ZGnu2xk1E6ZWTyUZ1dTXmzZuH6upqLFiwAKWlpe57TvUppzpVbQcOHEA4HE5a6nH55Zdj7NixAGpKNv75z3+itLQUmqal5SnR7t27UVZWlpYqTE4vO4fHbpom4vE4pJTwer3N6mknU7GnQjbFvnPnzgbff+ONNzB9+vSs20/p/H6B5sdeFbdg+QyYtgT8NoJeBVVxC+3CGqQNlLbxwq+JVhl7Y+TKsQlkz35KJltjz6VrJxGlXs4lG7qu47bbbsP27dtx2223oWvXrgnvl5aWoqioCF9//XWdZTdu3IgePXokXW/Hjh3RsWNHAMD27duxadMmt6pRuop1a1dlSqXa1aSc2HVdR0VFhTu2hq7rKCgogN/vb9Y2WjL2VMvm2B2maWblfmqpfdTU2H2ahJA2qiIxVMclIL3QVBVeTYFhAqqiQFFEq4y9MXLt2ASyez9la+y5cO0kotTLqZa/lmXh7rvvxpdffombbroJffv2TTrfkCFDsHbtWuzZs8edtm7dOnz33XcYOnRoS4XbqkSjUQA1Vci8Xi9UVUV1dTW79yQCANtEacBG2K/BsoGKqI6gJhE3JIoCKnwab4CIiIiSyamSjb/85S9Ys2YNBg8ejMrKSrz//vsJ759++ukAgEmTJmHlypWYO3cuxo4di2g0iqVLl6Jbt24466yzMhF6xtm27bZrAWqeUJmmmTC+AFE+sm0bpmmiIOBFQQDoVOzFwYgBCaC4wIOiQM0gmBz8Mjc53R47jZP5PRMRNU1OJRubNm0CAKxZswZr1qyp876TbLRr1w4LFizAo48+iscffxyapmHQoEGYPXt23nV569A0DdFo1C2mNgwDmqYx0SCqRQiBoFeFT61JyP3+nLqE0mGklNB1HYZhuImGM9YKq/MQETVOTv1S3nHHHY2et2vXrgm9S+W7QCAAy7Kg67r7Y1pQUMBkg/KeEAKqqsI0Tbf0z7btvH0wkU+cUi0nubBtG/F4HJZl8dpIRNRIOZVsUPNpmobCwkKYpum+5o8pUU2y4fP5IERNb1OGDUQNBRWmRMBjoiigcmC/HOVUmXJKMZy/rEpFRNR4TDbIpShKs7q7Jcp1bsKherDnoA7TAlRFoipuIG5KtC/kpTQXOcmF03bt8OSDiIiOjL+QRESNFNFt6CZQGKipTuWXAhVxC0WmCj97pMo5qqrC4/HAMAzYtg0pJTweT0JnGkRE1DAmG0REjWTZErUfah+qVpOhgCjtvF4vNE1zG4c7YxEREVHjsFI+EVEj+T0KpAQMqya7iBo2NAF4VN585jJFUaCqKks0iIiagckGEVEjhXwq2hVoiBs2KqMWIIEORV4mG0RERPVgNSoioiYoCWko8KuwpYSmCKjsiYqIiKheTDaIiJqopiSDSQYREdGRsBoVERERERGlBZMNIiIiIiJKCyYbRERERESUFmyzQXXYto1IJALLsqCqKvx+PzSNhwrlHyklbNsGUDOmhqLw+QwREVFT8A6SEti2jYqKCui6DlVVoes6dF1HYWEhEw7KK1JK6LoO0zTdgdx8Ph/PAyIioibgryYlME0ThmHA5/O5o+TGYjGYpsmbLMorlmXBMAxomgYhBGzbRjweh6IoLOGgrMDRzomoNeDdIyWQsmZk5No/UEIIWJaVqZCIMsK2bQgh3HNBURRYluWeI0StlW7a2FtlIW7aiJs2VEXApwr4FBttC1WoHISSiFoQkw1KoKoqhBBuSYZlWRBCwOPxZDo0ohZXO7HgU2LKBpYtsbvSQMyQsCSwo8KAkEDHIg2Vlg2hmigr9GY6TCLKI6wLkOdM03TrpQOApmkoLCyElBKxWAyWZSEYDMLr5Y8T5RdN06CqKgzDcKsXQtEgedmkVixuSkR0iQK/iphhI+RR4PMokAAKvAIHoxZMi6VzRNRyWLKRx2KxGKqrqwHUPLUNBoMIhULwer0oKSlxe+FhWw3KR4qiwOfzwbIsxA0b+2M2dNuGEHEU+QUKfYd6qFJVNdPhUiuVrGpqi20bgBDf/8f5/6GXREQtgneReco0TVRVVblPb23bRjQahcfjgdfrZSNYItQkHEII7K42YEiBAr8Cw7KxfX8UeggoDnogpYTH42FVQ6rDKTmWUkJVVffamk4+TSDoFaiKWfCqwL4qC15VgUcRqNJtFAVVaLy0E1EL4iUnTzmlFs4TWUVRIKVkQ3Ciw5g2EInbCPlqEg8FEppiI26r0DQNmqbBNE33nCICanozi8fjAGqus87rdHcwoCoCZWEPgl4Vfk1BuwINbULq99Woal6z7RERtSSWbOQx27brNHrljxBRIoGa6ieWBDQBSFtCQkBVas4VIQR7qKI6nAc3zgOd2klpuqvdeTUFnYoVSFmTWFi2hG1LSNuEhz1REVELY7KRpzRNg9/vh67rbpeeThUqIjpEUwVKAir2Rix4NQHdqLlxC/tqCoZrd5HLpIPqk4ljw3l4pCoCigBMyUSDiFoek408pSgKCgoK3B6n/H4/fD4f22kQJdGmQIOqClTrNnwBD9qHVXiEVVMn35KA4oFtSGiQYH8KBMDtyczpPty2bbaFI6K8xJ/FPOMU40spoWkaQqFQpkMiavWEECgOaigOHppm2zaq4xb2VhkAJGxpQBM2ftBGhc/D3qnynaqqbulx7QbirKpKRPmGyUYeqa6uRjQahZQSUkoUFhbC7/dnOiyiLCWwP2pD01T4NQHLNLG/UseucokubUO8qSSoqopAIMABIYkor7E8N0/ouo5oNApN0+Dz+QAAlZWV7mB+RNQ0tgQMU8KrAnpcR1zXocBCNG60SK9DlD2YaBBRPmOykScsy4KU0q0v7AzUx65uiZpHETWNx6NxE6ZlQlVUWFKB31PT6xDPLSIiIlajarZAIAAgPT2MOO0pnOpOqVyv89e2bfdmKNXbSEfstddf+2+q150tsR9pVPfS0tKUbetw6dxP6fx+nfWmKnYhgHYFGrbtNxCJmtBUwKsBxUEVUlppOX+zYb9n8th01psN+6m+9Wdj7Ll07SSi1ONZ10x9+/YFkL6SgZKSEti2nbKBwpxeUCKRiNszijPicaqrUqU69mSyZb8nk4rYS0pKGnx//PjxKdtWfdtP535KZ6lAKmP3KkCHsIJKRYGiAEGfB0KasGol86mUDfs908emE0Nr30/1ydbYc+XaSUSpx2Sjmb744guccMIJUFU15fVxbdvGvn37UFpamtJuEouKihCLxWCaJhRFQSgUSvngUumK3eGMcp5N+92Rytj37NnT4Psvv/wyxo8fn3X7KZ3fL5Ce2As1DX6PCl3XYVkWTCiQig8GNChCSdkgatmy3zN5bALZs5+SydbYc+naSUSpx2SjmaLRKAC4g3mlkhACpmmmfN0ejwcejwdSSpimmZYfnXTFnmw7+Rz7kUqj9u3bl7JtHa4l9lO61p2u2H0+HzRNQ1U0jvKIgCkBRA14NQUdCj3we47+Bixb9nsmj01nvdmwn+pbbzbGnkvXTiJKPTYQJyJKAUVRUB4FLACFAQ2FAQ2WLb8fh4OIiCg/MdkgIkoBKSV0S8KnHbqsejUFuilh2+wGl4iI8hOrUVG9TNN0i5w1TWMvHpRXnJ51Glt1QwgBjyKgmxLe708Vw5LwagKKwnEWiIgoP/HukZIyTRMVFRVu7yKKoqCwsBBerzfToRGlnW3bboNv4FB7pyMlHaUFKvZUS1REv19OFSgt8KQ9XiIiotaKyQYlVV1dDdu23eTCMAxUVVWhuLg4Lb2NELUWUko30XB6a9N1HQCOmGz7PQp+UKIibtZUm/JpAl6N5wsREeUvJhuUVO0bLaCmGpVhsKEr5b5k3WwqitLo8QM8KhMMIiIiB38RKSlVVRMGUHLG5iAiIiIiaizePVJSoVAIiqJA13Xoug4pJQoKCphwUM5TFAUejwemacKyLFiWBSklPB62vSAiImoqVqPKYbZtIxKJwDAMCCEQDAYb3cBb0zQUFhayNyrKS05iYds2orqNirgCO2oi6LHRpkA74qjgTlUsoCZ5YZJORET5inePOcq2bVRVVSEWi8Hj8cCyLBw8eBBFRUWNfkLLBIPylRACXq8XMcPG/rgOIQQ0BaiIWTBsG52KvPV2Z+v0ZGXbttt1rjPCOBERUb7h47Yc5dzw+Hw+qKrqdtvp9KpDREcW1W3YEgh6FXg1BQV+BRFdIm7VP0ifaZqwbRuapiWcd1JyYD8iIso/fNSW4w4fF6B2jzq6riMWi8G2bXg8HgSDQVb3IKpFIjFBEEJAAmgob7BtO+G8UxQFpmm6pRxERET5hMlGjlIUBaqqQtd1eDwet0qH02bDNE1UVVVBCAFVVRGJRGDbNhuBE9US8KpAtYWYYUNTBaK6jYBHwKNIxONxWJblNih3zhsnuXA4g2Iy0SAionzEu8ocpSgKwuGwm3BYloVgMAi/3w8AiMViAGoGKVNVFT6fL2HEZCICAh4FnYpq2jjpRk2iURbWYJmG2/GCZVmIxWLuuaNpmptwGIYBw7JhCw16A1WviLKVlBIHoyZ2Vlj4rlxHVZy/IUSUiCUbOUzTNBQVFblPVg8vsaj9pJVPXYmSC/lUBL0KbAmoyvfJhW5B0zQIIdzEwinlUBQFfr8flmUhotvYU2nChg0hdLQJqGhToPF8o5xRHrGw66AJwwZ0U2L7QQMdC4GwXz3ywkSUF1iykeMURXGftNbm9Xph27Y7hoCu627VKyJKJISAeljvUw0lDEIISKFib7UNTVNRGKhJWPZWW6iKN24kcqLWzrYlyqMWAj4Ffk0g4FXgUQXKI+aRFyaivMFkI095vV4Eg0FYlgVd16GqKgoLC9leg+gInPYXTqNvp9OFwxN1w5IwbcDvqTmnVEVAVYG4wWSDckdNxweHXqsC4BFORLWxGlUeC4VCCAaD9VazIqK6hBDw+/1uA3HdAgxbRcS2oQkbRapaU71KAAKALSWU7+/GbBt1SkiIspWiCAS9Kg5UG7ClhGVLRHWJtgW8tSCiQ3hFyHNMMoiazmmXETNs7K/WYQMQsBHXDUihok1IgU8TKA6q2B+xoCmAZQN+j0AB67I3ilNqJKXkdaoVa1ugwbZtHNgvETNstAl5UBLkrQURHcIrQo5zqnjwh5ootYQQqIjakEIg7FMhpYQGBfurTRT6NWiqQNsCDX6PgrhhQ1VqEg2PypKNI5Gypmth0zTdtjEchb110lSB9oUazGoVHdr44PUwmSaiRLxy5yjbthGNRt0ubn0+HwftI0oxU8qEalGqAuhWTdUpQEAIgbBfZc88TWQYBkzTdHv8sm0b8XicJRytlBACmiKgMZEmoiR41c5R0WgU1dXV7o9zNBpFJBLJdFhEOSXgUaAb9vfJBRDRJXyagCpqbphjsRhisVjCIH90ZIcPhOgkGLKhoduJiKhVYslGjorH4/B4PG4POUIIxONxBINB9vFPlCLFARWGKVERsyAhoakCZWEPLMt0u5MGas5HAKwG1EjO2CXO9cupDtrUa5dty+/HR+FYQkREmcJfvjzBJ4JEqacoAmWFGopDKixbQpEWvJpALFZzo+wkG5ZlwTAMJhuNpGkaLMtKKBHyeDxNqkJ1MGqiPCphy5rSprKwB16NhflERC2Nv3w5yufzobq62n1tGIbbZoOJB1HqCCHg0wSklDDNmifwTg9Ktefhedd4tUdhB74fVLEJA45GdInKShMBrwqvoiCi29hVYaBzsRcKux4mImpROZdsRKNRLF26FF9++SU2btyIqqoq/L//9/9w5pln1pl369atWLhwITZs2ABN0zBo0CBcfPHFKCoqykDkqRUIBADAbSAeDAYRDAYzGRJRXnBujJ0GzkBNNSCPx5PhyLKLEKLZJUExw4YvINySjLBfRUXMgm5J+JlsEBG1qJxLNioqKrBkyRK0a9cOPXr0wPr165POt3fvXvzmN79BMBjE9OnTEY1G8fLLL2PLli245557sv7GQFEUhEIhhEIht7ElEbUMr9cLoKb6lGVLxC0Fwga8loUCn8Kn6+kmEquOSikhWLBERJQROZdstGnTBo8//jhKSkqwceNGXHfddUnne/755xGLxXDvvfeiXbt2AIDevXvj5ptvxrvvvovRo0e3ZNhpxUSDqGUpigKfzwfTsrHzoIGIKaEqNizbRpFfRftCjQ2W0yjoVWAJIKLbUBUgbkiE/Sp8Gvc5EVFLy7m7UI/Hg5KSkiPOt2rVKpx00kluogEAAwYMQOfOnbFy5cp0hkhEeUAIgZgJRAyJQr+KAp+KsF9BRcxC1OBj9nTyawKdirzwaQICQJugirIwEzwiokzIuZKNxti3bx8OHjyInj171nmvV69e+PTTTzMQFRHlGlvW9FjljhchBIRg73AtIeBVEPLn5U8cEVGrknMlG42xf/9+ADVVrg5XUlKCyspKGIbR0mERUY7xqAJSAqZdk1wYloQAEkYdJyIiymV5+dhH13UASNoI3GnY6QyK59ixYwd27NgBANizZw8qKyth2zZs20550bwzgJXzN9WklIw9iWyO/XCapmXlfkr3Pmrp2P0a0CagYH+kZtA/RQBtCzR41abHkM37vbZ0HptAdu+nbI09l66dRJR6eZlsOAlFstILJxHx+XwJ0x9++GHMnz/ffT1jxgzs27cvjVECu3fvTuv604mxZ9a5557L47MBLR271zw0knX0oED0YPPXlc37HWiZYxPI7v2UrbFna9xElF55mWw41aec6lS1HThwAOFwuE6px+WXX46xY8cCqCnZ+Oc//4nS0lJoWuobHdq2jd27d6OsrCwtPUnVDD5mMvbDZFPsO3fubPD9N954A9OnT8+6/ZTO7xdg7PXJlWMTyJ79lEy2xp5L104iSr28TDZKS0tRVFSEr7/+us57GzduRI8ePepM79ixIzp27AgA2L59OzZt2gRFUaAoStqKdZ31p5ozujFjTy6bY3eYppmV+6ml9hFjT5RrxyaQ3fspW2PPhWsnEaVeXjYQB4AhQ4Zg7dq12LNnjztt3bp1+O677zB06NAMRkZERERElBtysmTjtddeQ3V1tVtNas2aNdi7dy8AYMyYMQiFQpg0aRJWrlyJuXPnYuzYsYhGo1i6dCm6deuGs846K5PhExERuaSUMAwjoZG0EAKqqqatShcRUarkZLLx8ssvJzRUW716NVavXg0AGDlyJEKhENq1a4cFCxbg0UcfxeOPPw5N0zBo0CDMnj07aS9VRPnCtCR0q6bnJJ8meCNDlGGGYbidl+i6Dsuy4Pf7YVkWbNuG1+vleUpErVZOJhsLFy5s1Hxdu3ZN6GGKKN9FDRu7KgzoZk1Xk8VBDWVhDxSOC0GUEbZtwzAMaJoG0zQhhICmaZBSQlVVt+G0qqqZDpWIKKmcTDaIqOksW2JXhQHblvAJEwZM7Nwfg7B9KCsO8skpURPUrvoE1IzrdLQJgTPyvHMuCiE4Gj0RtXp520CcqDFM04Su69B1PW0DVrUWpi1hmBIaLJiWCY+qwe/VUBUzk45JQ0TJSSmh67qbbFiWhVgsBsuymrwuIQQURYFlWVAUBVJKWJYFIYT7lw8CiKg1Y8kGUT10XUdlZaX7I+/1elFQUJCWrh1bA0UIABIxw4Dv+0anlg2EvApM03QHwyTKJGc0aQCttitUZ1wIVVXd+EzTdJMNJ0lQVfWI1xMhBHw+H+LxuHstcqYDgN/vz9lrEhHlBiYbREnYto2qqioANT/mzpPKaDSKUCiU4ejSw6MKlBZo+HZPDIZpAYqARxUI+3kjQ62DbdtuA2mgJtnw+Xyt7mb78OpOjng87sbqjB3RmGTBma92lSkppVvqQUTUmjHZIErCtm2Ypgm/3w/gUFUG0zQzHFl6lQQ1iNIAKiIxeFSBoE+BRwFLNahVMAwjYSRpp5qjc562Fk6Ji1O64ZTG1B6cDqgp7TAMAz6f74jrZHUpIspWTDaI6qEoCmzbdm8MbNvO+W6RhRAoLvAh5FPcqh6apkHTeKmgzLMsK6FqkqqqsCzLfcrfWggh4Pf73apPQE0DccMwEkoi2MCbiPIB7yCIktA0DYFAAJFIxL0hUBQFgUAg06GlnRCCJRnUKjkPABypSDLqq/J0tA6v+iSEcBuL1y7tYCJPRLmOVzmieoRCIWiaBsMw3EaavDEgyhyPx4NYLJZQndHn8zU6UZBSoiJmoTxaUxpiWxKAgFAECn0KSkJaSseUObzqk9PQ27mmaJqW86WlRES8cyJqgM/na1R9aiJKP1VV3ZGznddNGbuiKm5jV4UJryZQFbPw3QETHQo1tAl7sLe6JoEpDafv5t+J3yntaK29aRERpRKTDSIiyqjaA+ApigJN0+rtZampCUZt5ZGaRMPvUbC3CigOqYhZEooAgj4VB2NWyks3Dsfeo4go3zDZICKijJFSug2pnR6cnJ7geGNORJT9eCUnoqRsW8K22VMOpVftRtOqqsLj8bjTUi3sVxE3JAxLIuARKI9Y8CgCtgQicQtFfjWtpRpERPmIJRtElEBKif3VJg5Ga272CnwqSgs0qLwJozQ5vFepdHUJWxRQISVQHrXg1wSObeutKU2xJNoWaCgJtp6fxNqfn+06iCibsWSDiBIcjFrYW21BERLSMrC7PIIdByIcD4DSwumxyenStnbj6XRsqySkoXupFz3a+tGzfQDHtPOhe6kXpQWeVlOqYZomotEoIpEIYrFYQne/lJ2c47y4uBjl5eVJ57nzzjshhMC8efNaNrij9Pbbb+O0005DOBzOycEnhRDo3r17iy2Xi5hsEFGCypgFTdiwTR0CNnwe4ECVjmgszoSDUk5RFPh8Pti2DdM0YVkWPB5PWruZFkK4iUVruzmybRvxeBxATWN427aZcOSQgwcP4g9/+EOmw0iZb7/9Fj/96U+xZs0aDBs2DDNnzsTMmTMzHVajLV++HEIIzJo1q0WWy1etp8yYiFoFIQDbsqEKQFM1wJLQVAHDMOD3cbA/Sj2n9ymnOpVTqiGlhGVZbi9VtUcPz1VOUuH0uOWM9cNEP/s54zXdf//9+NWvfoWSkpJMh3TU3nnnHVRXV+O//uu/cOutt2Y6nLTYsGFDs8bDae5yuYglG0SUoCigIWZY0E2JuGmjWrdRFFChqQpveChtnGSidqIRj8fdQfBisRh0Xc+7YzAVo6RblgVd12GaJktIMkhRFFx22a18EPsAACAASURBVGWoqKjAPffck+lwUmLbtm0AgGOOOSbDkaRP3759ceyxx7bYcrmIyQYRJSjwKfhBGz8EJKRto21IQdgnoSiK+/RZNyWihg3Tyq8bP2o5lmW5vVRpmgZN0/LiZtlJtpzPapqme+41h67r2Lt3L3bt2oXt27dj//79aenpixpnzpw5CAQCeOCBB7Bv375GLxeJRHDbbbfhRz/6EQKBAIqKijB8+HAsWbIkpfE1djtONaJbbrkFAHDRRRe5VRIb0+ake/fubkcQ999/P/r16we/34/OnTvjmmuuSdquZceOHbj77rsxYsQIdO7cGV6vFx06dMCECROwdu3aI27ngQcewPHHH49gMIgBAwZg1qxZOP300wEAjz/+uBv/4Z/h8LYXzV2utjfeeANnn302SkpK4Pf70adPH8yZMyfp5543bx6EEHjsscewfv16jB07FiUlJQiFQhgxYgRWrVrV4DY6d+4Mn8+HTp064bTTTsP8+fOTzp9OrEZFRAmEECgOeRHy1lSdAg7VqweAvVUmtldYiHni8GoqOhR6EPQ1b5A1ovo4JRjOU33nb66XbCiK4o6Sbts2PB4PPB5Ps0o3bNvG/v37UVVV5bYFiUQisG0b7du3T0P0dCQdO3bEFVdcgXvvvRe///3vceeddx5xmcrKSpx++un49NNP0a5dO4wZMwbV1dV477338OGHH2L16tW4//77jzq2pmynQ4cOmDlzJv7xj39g3bp1GDp0KHr27AkAGDBgQKO3efXVV+ORRx7ByJEj0b9/f6xYsQIPPPAAVqxYgQ8//BCFhYXuvK+88gpuuukm9OnTBz/+8Y9RWFiIjRs3YunSpXjttdfw2muvYdSoUUm3c8UVV2DRokUYMWIEjjvuOOi6jtNOOw07d+7Em2++iWOP/f/snXucXVWV5797n9d91q1KpUIeGCIo0MKQlqeINoptozM9NO2IjSJKRG0YHt39QcfRfvDQFmmd6WkF8UUL9jBIz2dUhrZbh0EQBkEIvsA2ogLhkYSkkqq6z/Pce/64dU6qkqrkVtWt183+fj75JDn3nnPW3fecc9fae63fOorXve512fsP9Blmu1/K9ddfz8c+9jFs2+bMM89k5cqVPPTQQ9xwww1885vf5IEHHpjy/ty8eTOXXXYZRx11FGeffTZbtmzhgQce4E1vehOPPfYYxx9/fPbem266icsvvxzLsjjjjDM488wzGR4e5he/+AXXXHNNFiQuGNowY1588UV988036zAMtVKq68dPkkS/+OKLOkmSrh9ba62VUsb2cZIk0VEU6SRJJtkeRZGu1+u6VqvpIAi6cq5u2v7iiy/qq6++Wr/44otTvtat61MppZMkyY4z2oz0L7Y19GM/f1b/Zvuo/vlze/TPnxvRfhDN6TwTzzdf16bW83t9GtvbdOvajKJI12o13Wq1tO/7utls6nq9ftDPv+84BVGim2Giw3jun225fcdhGOpf//rX+sknn9Q//vGP9ebNm/UPfvAD/aMf/ahrzzWtl9dz/0DX53wCaMuytNZa79ixQxcKBV0sFvXOnTuz91x//fUa0FdfffWkfS+//HIN6De+8Y26Wq1m23/xi1/oVatWaUDffffdc7ZxNue5+uqrNaC/+tWvzuhcRxxxhAZ0X1+f3rx5c7a9Vqvps846SwP6T/7kTybt87Of/Uw/+eST+x3rO9/5jnZdVx911FH7XSPpeVauXDnlvvfdd58G9Hvf+95pbQX0EUcc0ZX9Hn30US2l1KVSST/yyCPZdt/39XnnnacB/R/+w3+YtE86xoD+u7/7u0mv/emf/qkG9IUXXjhp+/r167UQQj/22GOTtiul9H333TetzfOFSaMyHLL4vs/IyAgjIyOMjY1ls/hRFDE2NpbJTlarVXzfX2RrF4e0WDedVQ0ijUShVIzWmqLnECtN06jlGLqMZVm4rkuSJERRhFIK13VnlE402ox5bk/I83tCntsTUPMPrfQhKSVJkuD7fqb0pbWm0Wiwffv2nl8lWqocdthhXHrppTQaDW644YYDvrfRaHDLLbcgpeTzn/885XI5e+3YY4/lL/7iLwDmvLKxUOfZl8svv5yTTjop+3+pVOJzn/scQghuueWWSb+9/+bf/BuOO+64/Y5x9tlnc9555/Gb3/yGJ598csrzfOQjH5ly34XmxhtvRCnFFVdcwWmnnZZt9zyPG2+8kXw+zze/+U2ef/75/fY944wzuPLKKydtS7+XBx54YNL2Xbt20d/fz8knnzxpuxCCN7zhDV36NJ1jgg3DIUkYhtTrdaSUmUOTphq0Wi201nieh+u6WJZFo9EwzjRgSYjHu4pb0kLp9t/AshwfpTSJ6ZK+JBFC4LouuVyOfD5PPp+fkbJLK1TsrEV4jqQvb+FYgpeqEUG8t5+HUgqlVM863WnAlhbZK6UQQmBZFtVqNZPYNSw8H/nIRygWi9x888289NJL077v8ccfp9VqceKJJ3Lsscfu9/qFF14IwEMPPTSnZ/BCnWdfzj///P22vepVr2Ljxo3U63V+/OMfT3otCALuuusu/vzP/5wPfvCDXHTRRVx00UU88cQTAPzqV7+a8jznnHNO12yeCw8++CAAF1xwwX6vrVq1it/7vd9DKcVDDz203+tTpYgNDg6yYsUKtm/fPmn7SSedxMjICBdffDE///nPu2T97DHBhuGQJAxDgExK03Xd7Mc4ldlMkVJm2w91yjkL1xI0Ak0jVNTDhIGChbPMniRKaXbXIp7dHbB1d8CuWoQyQceSxLKsSSpVnRImGoHAsdqrcq4tUVoTJbotchCGtFotWq0WQRD07P09NDSE4zhZUCWEwHEctNaH7IrtUmBoaIjLLruMZrN5wLqNbdu2AUxbaNzf30+lUqHVajEyMjJrexbqPPtyxBFHTLk9tSO1C+CJJ57g2GOP5dxzz+WTn/wkX/7yl7ntttu47bbb+NnPfga0606mYv369V2zeS4cbJzT7S+++OJ+rx1++OFT7lMulzOfJuWmm27i5S9/OX//93/P8ccfz+rVq/mjP/oj7rzzzkURiJjR0/v//t//y8UXX8xb3/pWNm3axF133XXA999www2cddZZczLQYJgPUnWKFK115sykqjfp63Ecz8rZ6UVcW7K232NFQVK0FYeVbPrGlarSvgDLgdFmwnAjxhrvkr5jT4PtI62eneE+FJEC1D73uEYgRVv4IL2vLcvKpGF7kWKxyOrVqzNVr1wul/1JV3cMi8OHP/xhSqUSX/jCF/abmZ4JC9V7ZjF73Gitecc73sGzzz7LJZdcwk9+8hOq1WoWRH/0ox/N3jcVuVxuIc2dNQca45n4ICeccAL/+q//yje/+U0+8IEP0NfXxz/+4z9y/vnn8/rXv37Bn3cdW/6hD32Is88+m1tvvZXvfve73HbbbbztbW/jda97HVu3bp1yny1btvD973+/a8YaDN3C8zyEEIRhSJIkBEGA4zhIKSkUCriuSxiG2cxfuVw2wcY4OddisOyyquJR8kTmwKQPyVakqPkJzXBppqdoran6Ca6lSeIQKTSeIxhtBCatpIcouJKiJ6m2EhpBQs1PKHsWOVtkcrKpXGUacCzF67UbrFmzhpUrV+K6Lq7r4nkefX195pm2yKxcuZIrrrgC3/e5/vrrp3zP2rVrAab1s8bGxhgdHSWfz8+pSeBCnWdfpjtfuj21a8uWLWzZsoWTTz6Zm2++mY0bN1Iul7PfnaeffrprNs0nBxvnZ599FoB169bN+Vy5XI5zzz2XL33pSzz11FM8+eSTnHDCCTz88MN85StfmfPxZ0JHT5q7776b//pf/yuWZfGBD3yAm266iauuuoqVK1fygx/8gFNOOWVajWPDzIjj+JDQkl9sbNumUqlkOeCFQoFSqZTp2ff19VGpVLKlY9MFdDKpPGehUCCXy2VOy0gj5oU9IdtGQ54bbrF9NCRJlta1LIRASIiiGGjXnEhhYVvWkr33tNZEUZT96VWnuJtYUrC6z2WoZFP2LFaVHVb32UgpplzZ7OXO5LZts27dOgYHB7M/6aRKL3/u5cBVV11FuVzmS1/60pSpMyeddBL5fJ7HH398ynqE//7f/zvQLh6eS/C4UOfZl3/8x3/cb9uWLVv4yU9+QqlUyqRk09StqVKJRkZGuOeee2Z1ftd1gbbvtRD7vf71rwfgjjvu2O+1Xbt28d3vfhchBGecccaMjtsJxx13HJdddhnAtIX080VHV8znP/95hBDcddddfOELX+DSSy/l05/+NE899RTveMc7GB4e5k1vehP33nvvfNvb0zQaDUZHRxkZGaHZbGbqSEuNOI5pNBpUq9VlXTjtOA6VSoWBgQFKpdKkNKC0cNx1XWzbtKPphCBW7G7EuJbGFRGOiHhptMFI3V9yznElZxHEOuuS3ooTKnm5JB0vPaGTdtorIQiCJTemSxHbEgwUbVb1OfQX2oEGkNUspI0DkyTBtu0l+f13C8/zskZgnufhOE62wmtYPAYHB7nyyisJgoBbbrllv9eLxSLve9/7UEpx2WWX0Wg0steeeuopPvGJTwDsp1J04403cuyxx2bpRQdjtueZK5/73OcmFYE3m02uuOIKtNZs2rSJfD4PwCte8QqklHzve9+bFAz5vs8ll1zCnj17ZnX+dKXhl7/85YLsd9lllyGl5LOf/SybN2/OtodhyBVXXEGr1eJtb3sbL3vZy2Z03Ik0m00++9nP7tcgUCnFd77zHYA5HX82dORFbd68mVNOOYW3vvWtk7ZXKhW+/vWv8+pXv5qPfexj/P7v/z533HEH55577rwYu5RIb4Bu/eAHQUCj0chSeSzLolarYdt215e6U5tnY3uSJNRqNcIwxLKsrMNtuiqgtca27XZ+9Dw4Q3OxvZNjLxfbDxYADQ4Odu1c+zLdOMWJJooTgiREa3DttgJQMwgph1Y2E3SwY8+X3RNt78tJkorD7qqPVjBUtCg6GjmurDWb88+X7XEcE0VRpixkWVb2/24Fwr1ybabHPdh9nI5lOiuZTioczKaFuj7n6xmUrmRM/DPVedIADNoTLwf7Tnvp2bkYXHXVVXzuc5+jWq1O+fr111/PI488wj333MORRx7JmWeemTXb832fK6+8kn//7//9pH2Gh4f55S9/OaNakNmcZ668+93v5rTTTuOss86iUqnwwAMPsGPHDo477jg+/vGPZ+9btWoVF198MV/+8pfZuHEjZ511Fvl8ngcffJAkSbjooou49dZbZ3z+DRs2cMIJJ7B582ZOPfVUjjvuOCzL4pxzzjmggtVs9zv11FP5+Mc/zp//+Z9z+umn84Y3vCFr6vf888/zyle+kptuumnGn2MiYRjyJ3/yJ3zoQx/ipJNOYsOGDYRhyGOPPcbzzz/Phg0b+OAHPzinc8yUju66sbExjjzyyGlf/8hHPsK6det43/vexzve8Q5uueWWTCatV0ml4bpV1d9qtSZJMA4MDBAEAb7vd+SkzYbZ2O77Pr7vZ92koR1F27ad2TkwMDDv6k3zpaawXGw/WM5sGvAv5DjFccJwNaDW8rEtCyE0niXp9xzCMJxR0DyfahkDAwNorankbQq2N+5wKkBmfQn2JU40e5oxrUhjCRgs2uTdqT9Pt21PU7uEEFQqlayod6bL953QC9dmakMn9/FEx3Mm9iwF22fLwQKCtIYtTS3TWuO67kFTSXvl2bkYDAwM8Kd/+qdcd911U75eLpf5/ve/z3/5L/+FO++8k//9v/83ruty8skn8x//43/kne98Z1fsWKjzTOSzn/0sL3/5y/nKV77CM888w4oVK7jsssv4+Mc/TqVSmfTem2++mWOPPZZbbrmFe++9l0qlwu/+7u/y13/913z1q1+dtQ3/63/9Lz784Q/z4IMP8vjjj6OU4vDDDz+oXO5s9/vYxz7Gxo0b+du//Vsee+wxWq0W69ev5z/9p//Ef/7P/3nO12ipVOKmm27i3nvv5ac//Sk/+9nPcF2X9evX8/73v5/LL7+cFStWzOkcM0XoDqYK1qxZw2/91m/xve9974Dv+6d/+ifOO+88oiji7/7u79i8eTNf+9rXFkVmaz7Ztm0b99xzD+9617sy6dS5Uq/XabVa5HI5lFKMjIxQKBQYGBjoer1Amj4wG9tbrRb1en2SsoPv+/T19eF5Hkopdu/ezeDg4LwUH87F9oOxnGzftWsXn//85/ngBz+YLeembNu2jYceeohzzz23q+PkR4o9zQQ/iGnWx3jF4UPk3L2pZ6PNmB/+psbOsSZKaVxLMVC0OXF9gUoxPylAnY75/H5h6u84db7Smd7999Fsr0bU/QRXaoIoQQPrB3MUc3vvzfmyPW3KBu2Jn/QHOJfLdU0BbLlfmxOZz/t4Ma7PbtGp7f54g8702konwfL5/LT79cqz07BwbNiwga1bt5p00EOEjlY2Nm7cyAMPPECj0aBYLE77vt///d/nO9/5Dueccw5XXnklQ0NDXTN0qdFqtQCmdVBmSj6fJwzDTI4sDEMGBgbmNY94NranaV2pc5YkCUKIzE4h2kov3RqX6ZiP4y8n2w82q7179+6unQsgSjQ7qjGxUkit2FNr8cLuJkcMFXGdtlMyXI9BwqoS+GFCnAA6JggirL7SjOyYr+9gqu/4YOcJlaYZagq2JoojPFtQ8xWj9RZ519rP4e+27emqYRAE7WdErMBy0bEgJ8j6SHSD5Xht7stC3McLZbsfKUaaCXGiyDuS/oKNPcfvuxPbU6Wu9N/phOF0+/XSs9NgMHSfjqYg/t2/+3f4vs/Xvva1g773zDPP5L777mNwcJCdO3fO2cBDBdu26evry3KyHcfJ6iCWEq7rTgqMkiShXC4vyTzYlIMt6wdBkBXmp7N6hsn4kSKMFS4JWkXkbU2tFTLW2Jv+50caB03OghUll76chR8KbDm/DshCoJUiTmIsaWFbNo5to2HBRBzS+04Jm92Bze4m7BiLeGEkxI/M9dqLBLFi22hIM0xQwJ5mws5aPO/NJ/eVAU6SZFLwYTAYDDOlI0/2D/7gD3jta1+btVk/GCeeeCIPPvggGzduXDJdG5cDjuNkkqsT5USXGsVikYGBAfr6+ujv71+yzXLiOGZkZIQ9e/awZ8+eKZvYBEFArVbLZu6iKKLZbC60qUsercdTGVSSNTh0bJskUdnYFVyJIzWNEMLEIpEOQxUXW85P0ehC4VoCzxHUA0WiGXfuNQV3YZsYSikZ8wEE5bxFOW+htGa4vjRV6wxzozl+vRU9C8+WlHOSepjQjBRjrYTdtYian3Q9+HAcB9u2SZIkW60wqlUGg2EudDQdvX79ev7f//t/MzrwMcccM0nOzLC0SVcphBC4rnvQQGcpr2RAO9BIu4s6jpP9f9+eGb7vI4TIpDCllPi+T6FQWPKfcSHxHIEloRkk5BybVqQpWoKcszelbkXRptqw8aRDojVKw9qyXPbd1y0pWFNxiaOIZhCTc21WlW1ytl7Qz6W1JlLg2XudPteWRMnemhND76D2CdDbaaua7WMRSmssKUiaCQN5i6Fy99Jt0+AiXeE1qxqG+SBtXmc4NDDelIFGo0Gr1cpmn23bXvKpUQcjVetJfzSllIRhSBzHpkHfLPBsydqKywu7A1pBjCPhsHJb2jZ1uPsLFusGXHaNtVc6yp6g7LUdl+UcbAB4jsWRh5VoNFsINEK0pT4X8loSQuBICGKNO37aMFZ49vJPUzPsT961oJEQxgrbErRChUYTxzBQaj+bldaMthJKOYuC293anW6JDxgMBsPy9SYNXSGOY5rN5qROsr7vEwTBsg42YG9PkHSGTilFqVSa9B7HcQiCIHOG05WQ5e4czwfFnM2Rq0o0Wz57tMCRGsfZ2/RQCMFQJU9/wc5qGdJ+Br3gDEspKRULmQytEAKloeEnJErjWODK+U0XGyhItIRqa7w/hC1ZWTLBcy9ScCWrKw7D9ZgwVuQcQclzqPp71R2lEAgxf30/DAaDoRssb2/SMGdSR3yiMyilXPZF0lJK4jim1WplnydJEsIwnKSolsvl0FpnfU4sy6JYLJpgYxocx6EoBLWqQz6f3y8gTdPwJgYgvRBopEyc8U2UZvtYSCNUaKVIEsWKvGT1ivlz/j1bMNjvktaEe7bsqhqVYWkQJxqhNSVPUnRdlKadxhi26zVipbGlIEo0AuasUGUwzCf1ep1Pf/rT/PCHP+TRRx9lZGSEr371q1x00UWLbZphgTDBxiFOmo+bapinPQd6wdlOJXqjKMq64DabzUkNc6SUFIvFttLPeOrVcl/RmW+klNmfA72n16n5SVsS19JEOiYWih2jCcWcpK+Yn7fzOpbAc3p/fA9FtNaMtBIaewJAkncFQ2UHz25/3wVXMli02NNM2gGIgFVlO3vdYFiKDA8Pc91117F+/Xo2btzI/fffv9gmGRYY41UdgsRxTBzHmQNeKpWo1+skSYJSilwuRz4/f87SQpCuZriumymphGFIFEVTBhSHgnMM0IoUo82EaFy3f6ALuv2HKnGi0TohituSuJa0aASKIIxIcq7JeTfMmJqfMNLQrO+XOLakHih21SLWVlzkuIT0YMmhlLNIFNiynUpnMCxl1qxZw/bt21m9ejWbN2/mlFNOWWyTDAuMCTYOIZRSWTG4UgrP8yiXy+RyuUzqMG3Qt9ydbyklrutmwQWQqU4dqgSxYvtoiNKAiqk1NY2W5GWDeSxreX/fi4HnSJJEI4XCtmyCSGFLgTQ59IZZ0ow0tiWwrXZgUc5Z1FoJkdJ4cu+kgFnJMCwnPM9j9erVi22GYRExwcYhRKvVotVq4bpuljJUq9WoVCrYtt1z6UPFYjELNNIUsflQRkrPcbDUosWmGShipfFEQkJCztKMNiL684JKKd9TtRULQdGV9Bcsdo6FBEmMAFaWLFyzUmSYJZaAiW0zUvlbc0UZFhqlFNu2baPVapHP51m7du2S/n0zLG16y7s0HJAoirJVi1R1KYqiTBq21ygUCu3O1uO9NKSUlMvlrn1WpRTNZjOTDU4lg5fq6onSGqUSYmJsyx5fxYqJ4pgkSbJgM63bgUMnvWw2SClYXfEo2JoginGkQNIeR5NCZZgNpZyFH2m27g6xpMCxBYf3u0YEwLCgKKV4/PHHqdfr2bYdO3Zw4oknmt8Ew6zo6KrRWvPmN7+ZV7ziFTz88MMHff/DDz/MK17xCt761rfO2UBD95hKZaqXZ7PT4GJgYIBKpUJ/f/+sAoE4jvF9H9/3s1UMaEsEp7LBuVwOpdQkqd2lRt610FoQxO2Ge41A4dly0ky8Ugrf97NVsDAMTUrQAZBSUinlGewrUMy364NMt2XDbIkTDbQVpmKlSRKNLWf/nI4TPX5Mg6Fztm3bRr1ezyaetNbUajW2bdu22KYZlikdBRt33XUX9957L7/3e7/H6aefftD3n3766bzlLW/h//yf/8O3v/3tORtp6A6pzGsQBERRRBAEWb1GL5M2X5vNjEwYhoyNjVGtVqlWq4yNjRGGIdAOQizLyhyBND1tqQYbBVeypuKgNTSCBNeBoZKFbbUVydJrI5UAtiwrK6o3TE9a55RK/ppAY/7QWmdCFr3ISDOm5EnWD7ocOZRjqM9htKVmHPAnSrOzGvHs7oCtewJ21SKUMkGHoTNardaMthsMB6Mj7+uOO+7Asiz+6q/+quMD/+Vf/iVSSm6//fZZG2foLq7rUqlU8DwvU6EqFAqLbdaSptFoAO1ALQ3W0m2ptG7KxPSjpUp/0eWoVQVeNmBxWDFtzOdkNS1poJH2x+iFniuG3iBJElqtVrai2Gurbu37DybUgSPHJwFm+jH3NGJGWjF5V2JLzfaRJi/urhGGobmfDQdlOjXK5a5SaVg8OprSfvTRRznppJNmpCZw2GGHcfLJJ/PII4/M2jhD93FdF8dxMvlXMws7PekqxcT8+1S1K1Xz8n2fMAyzXiVTNbpbauRyHq7roLXOAorp6CVnzrB8SVfdoH0Paq0JwzCT7+4FhBAUPcm2WKN0u6lfK1RUchZSdv6cVkpTDxQF10KgSaIQz9I0Quhz2z2HcrmcefYbpmXt2rVs3759Us1GuVxm7dq1i2iVYTnT0VN6x44dvOY1r5nxwTds2MBPf/rTGe9nMCwFUnWpOI5xXRfYmzqVvlapVPB9f9n1J5kqwJBS4jhO5sSlgUavOHOG5YtSKhNhALIgudeacK4o2pQ8QTNUCKCcsxgszezzpTFEmnIGIKWF1BrLEtlkiRExMEyHlJKTTjrJqFEZukZHT7HUAZkpURSZB5phWVMqlahWq9n1L4SgVCplrzuOs2TVp2aD4zjZKk0zVIwFAloJeUczWLKNKo5hURBZOpHOZuS11nN2ftIgBtoO1mLP9ltSMFSUrFzRFhlwxvttzAQhBAMFi5dqMVIpolihEKwqSYTpAWPoECklhx9+eNeOd+ONNzI6OpoVmd9999288MILAFxxxRVUKpWuncuw9Ogo2FizZg2/+MUvZnzwf/3XfzXLboZljeM4VCqVTIWqF/uRTETr9meOsdjjt+U3bUtQDxJipVhbcRfbRMMhSLrqFkVRtuqWFuZ3SqI0I42YRqSwBPR5AktHk47luu6iBxxpkDGXQKqStxACxpoarRL6CxYlT0ySP+8UpTTNSGUdywvu4gdlhuXHZz7zGbZu3Zr9/xvf+Abf+MY3AHj3u99tgo0ep6Mn9etf/3q++tWv8sMf/pDTTjutowM/8sgjbNmyhYsvvnhOBhoMi02vBxgArUgxXIuIEo1rCywh0EDebTsljmVRbSUEicYzi5WGRcB1XaSUJEmS1Wp06jRrrdlVi6n6CTlHEESKrVWfdf0uxVy7fikNZJbySmWcaMJEIwTk7OlXPYQQVPI2lbxNHDtZYfhM6zWU0uyoxtSCBCnakxGDBYvB8tIdI8PS5Nlnn11sEwyLSEdP6g984ANordm0paQeeQAAIABJREFUaRPDw8MHff/w8DCbNm1CCMH73//+ORtpMBjmjzBWbB8N206MSqg2Al7c3SCKk8U2zWAA9iq92bZNLpfLAo9OCRNNLUgo5ySuLck5bWe7Oa7qnKqvLWWlplakeGE05PmR9p+XqnFHcra2bZPP5ykUCnieN6Nxa4SKmh/Tl5OUcxZFT7KnmeBHS3ecDAbD0qOjp85pp53G+973PrZs2cLGjRv58pe/TLVa3e991WqVL33pS5xwwgk89dRTvO997+t4JcRgWMoEQcDo6CgjIyM0Go0l7ZTMlCDWRInG1jFKReQdUFpRawY0g5go0dT9hIIrJjUANBgWglTyttls0mw2Z9/3ZYJf3g4uIFFJVsMwsR6kY9uUJogV0Tw3zlNKs7MWoXU7RarsSap+zGirswmBNJia6eeLE42Ue/ezxlWxTMsOg8EwEzrODfnCF75Ao9Hgzjvv5JJLLuHSSy/lyCOPZGhoCIBdu3bx9NNPZzNQ559/Pl/4whfmzXCDYaEIgoBarZYp4DSbTZRSlMvlxTatayilSUiwrbYccsGDgq3QShEnkoJrsbJkYUlhmoMZFoy0o31aUzFR8nYm4iOOFORdQSNQ5FxJ4McEQUTZCmk0okzoYSbpkq1IsbMWEUbttKaBgsWK4vzIicdKE0aacr79mYUQOLac9xUGxxYoBUprpBBE4ylclhElMhgMM6DjJ6tt29xxxx287W1v4zOf+QyPPfYYv/71r/n1r3896X2nnnoqH/rQh3j729/edWMNhsUgdXbSXG4pJb7vL4ueGp3g2QLQbB8LcW0HKQTlnGCwZJP3HGzbmZHOv8HQLdJVhzSwSFOdkiSZUbAhpeCwPpddtZi6HxKFIetW5CnnZCb+4DjOpBSjROnMuXb3UYWKE81L1fZKQzlvESvNcCPBcySleShqkkIgJUSJzhTh4kRTcufX6y+6koGCxWgrySR1h0o2nm2iDYPB0Dkz9pTOO+88zjvvPHbv3s1PfvITdu/eDcDg4CAbN25k5cqVXTfSYFhMZpNesdyQQtCMoNrysS2L/pyNLa3xniK9/dkNS5t9JW/TQueZ4liCtf0OLV+RxDqbPLBtmziOJ93jfqR4qRYRRAqBoL9gMVi0M4c7Upow1vSNrzTYUmBL8EM1L8GGbQkGizY7azGBBK3a29LzzxdCCIbKNqWchdIaWwpyjgk0DAbDzJj1tOzg4CBvetObummLwbAkcV2XarWaNciK45h8Pt8zDY5qrQQhBK8Y8mg2myQqZnctZqBoUzR9cgyLSKo6FcdxphiVbhdCdLS6kSjNaDOmFWs8S5Cz2ilBKfv2nUjrI+JE05e3UVqzp5ngWIJKmsY0/idNL2rvB/P5SOgvtPvc+JFCjncbdxdghUEIQcE1Ew4Gg2H2zCjY+Od//me+9a1v8fzzz+N5HieccAKbNm3i5S9/+XzZZzAsOqnyzdjYWJY7XiwWeybYiBWAQilFsVBsb/TbqSUzTVcxGLpJer8FQUCz2URKSaFQQAiRpTIe6D5USvNSNaYeJDi2oBUqLDQr8sD4aoZSapKMbqQ0frR31UKKtjBCK9JU8umRNXGi+M3OiKInKLgWnj37FKo4VtRChUoUYTx9HUbRsyga7WmDwbDM6DjYuOCCC/j6178O7J0Juvvuu/nMZz7D17/+dc4555z5sXAeiaKI22+/nfvvv596vc6GDRu44IILePWrX73YphmWEGlO9+DgYNZdOwgC4jjuiZqNnCsYrimkNV6PEinyjo0thek2bFhU0nst7X9hWRZKKRzHIUmSrOfGdASJpj4ueSuEAAeqrQQlHCyr7dTbto3jOFkalRQCKdpF2fZ4CmH73+1jhrFmVyNBWoK+vKTuK1wbjuizZ7XS0AoVP3quzlMvBYSRwk18zlkRMVjyZnwsg8FgWIp05Cndcsst3HHHHdi2zYUXXsirX/1qarUa//RP/8TDDz/Me97zHrZu3brsOkD+t//23/jBD37AOeecw5o1a/je977Hddddx1//9V/zqle9arHNMywR4jiepH6TFoj3ivxt2bMYKNrsGo3w7RjHkgyVLCzZ+7UqhqVNmrrYrh1q34NJknR872kNCCZdx0KAEJJczp1yH8cSDBQshuvt1ZBEaSwB5Vz7/m+GCUEMlYJNJQ+rypqar2CW98rPX2zwyG/qNEONHyteGgkR3h7e89rDemb11GAwHNp09CS77bbbkFLyL//yL9xyyy1cfvnlfPSjH+Whhx7ive99L7VaLWs7v1x46qmnePDBB3nPe97Dpk2beMtb3sInPvEJhoaGuPXWWxfbPMMSwrZtlFKT9PjTnPFeQErB6orHhpU5VpcEh5XAtXQ2k2wwLDap7HSStPtipEHIwZxx1xI4sp0+pZRitBkz2kwIYk1yAAnnFUWbtf0OJVeyIm+xbsDNCqO1nhxXCCFgvLv2bHhqp8/ORsSuesQzu31eHE341k+qPPFCY3YHNBgMhiVGR8HGE088wWte85opC8I/9rGPobXmiSee6Lpx88lDDz2ElJKzzz472+a6Lm9+85vZsmULu3btWkTrDEsJ13VxHIcwDAmCgDAMyeVymZpNLyClpK+Up79coFTI99znMyxP0mBX63bwmwb8UkpyudxBg2HbEqyuOAiheWEk4sWRCEtqxvyY7aMhcTL1CokQgnLOYlWfw2DZmST16o0HHWkjv1aocOTsG15qYNtYxEu1iFaoURp21iO+8dMRQtOp22DoiIsuuogNGzZ09N5rrrlm1pOFt956K0IInn322Vntf6jSUbBRrVY56qijpnwt3T5VR/GlzNNPP826desoFAqTth999NEAPPPMM4thlmEJIqWkUqlQLpcplUr09fXtd930Amkxrm3bWJbVMys3S5lEaVMXcwAsyyKXywHjqkiFApVKhWKx2PGqW96RDJUcSp7FKw/zWFNxKVia4WqD4dHGjFMiC65kqGQTxopaK0FKWF1xsDsMNsJY0YoU8XiwctRQjnpDMVwLiRJNpKA/J/nNjoDf7Gp1bJfBYNhLs9nkmmuu4f77719sUwx0GGxorad9sKfL2Mstf31kZISBgYH9tqfb9uzZs9AmGZYw6UxqPp/H8zyTSz3PpHKlu2oRo834gCkvy5EgVrwwEvDs7oBnd4fUg2SxTVqyWJZFoVAgn893tJoxFUIIHEvg2pIkjgmjEFtaaARxHBOG4YyCvv6CzRErPI4YdHlZv0u+w94TI42YrbtDnh8JeW5PQD1I+O11eY4acoiTtpSu58DKsoNjw/MjUc9d+wbDQtBsNrn22munDDb+4i/+glbLBPILyfKX0pklYRhOmSbiuu2iwSAIJm3fvn0727dvB2DXrl3UajWUaucBd3sGOA3c5iuA01ob26dgOdu+L2mdyXIbJ601cZww3EqoBwqpFVGiKXmSdQMeljW3IG++be9kzBOl2T4aEkQKWyiCOOGZpuaIwQKl/PSpa0vB9m4wl2uzk4BgqnESKEATRAkqjlFak2iBbQmkFERRNEn+9kDnT21PVatAozoICJqhYmc1JO9JbCkIYsX20YCXDbi8/eQBto2GhIkibwuKrmBVxUNoTStMKHShU/hiPDvTc6Z1brOdpFnI69PQ+6Qr+IaFo+PRvu2227jtttumfE0IMe3rQohMOnQp4bpu1iBqImEYAuB5k2UHv/jFL3Lttddm/3/Pe96TdU+fL3bu3Dmvx59PjO2Ly7/9t/922V6fzVCzo5aQs5LMUXkpgOaYTaXgdMXZWMzv2I8026sJnpWgkgSEoBFq4voehvoOvmq23K/Phbg2Yf9xUr5iW1MRxjEqUVTykoaWNGg7s67rzqsjO9ZK2NNsB84ptUAhWhaHe5o3HWnxwxdiCpZF3otZXxTIaIwdO5rLpqnexDFvTxzEJEmSjWuaomk4dLjmmmu49tpr+eUvf8l1113H3Xffjeu6XHLJJVx33XW88MILXH755dx3330UCgU+/OEPc9VVVwHt+ohNmzbxzDPPTKrHuP/++3njG9/Ifffdxxve8Ib9zvnss89m/d+uvfbazHe7+uqrueaaazKbJk5eCCG47LLLOP3007nuuuvYunUrxx13HH/7t3/L7/zO7xz0c/7Lv/wLn/zkJ/nRj36ElJLf+Z3f4W/+5m847rjj5jB6vUPHwcZs84qXaj7ywMDAlKlSIyMjAKxYsWLS9j/+4z/Oeons2rWLn/3sZwwODmLb9rzMEu3cuZNVq1ZN63hEUZQpsqRN5zol/RFYLNvngrG9zY4dOw74+j//8z9z4YUXLrtx0lozUg8IHIUnovZsqJDk/Zj+gmRlJT+nGan5tr2T77cVKQLHx9Zh+70Ian7CQB5WlNysRmEp2t4Ji3ltwvTjtJp2+loQxkRhQM5pz7SnTf32nWCainScYi1phopEQd6VlLyDq9MV/ATGoqwLudaanK9YM+CSdyVvH4h5+dYGO3bvYd3QIANFm6JncfiAizPL4vOpbF+oZ0IURYRhmNV/pSsTB2vEON+2H+z6NLQJYsX/eHSE5/aErF/h8q5TByYJJcyUP/qjP+K3fuu3+NSnPsW3v/1tPvGJT7BixQq++MUvctZZZ3HDDTdw++2386EPfYhTTjmlIwd/OoaGhrj55pu59NJL+cM//EPe9ra3AXDCCScccL/vf//73HnnnVx55ZV4nsfnP/953vKWt/Doo49y/PHHT7vfP/zDP/De976Xs88+mxtuuIFms8nNN9/M6173On784x93XLjey3T0q73c6jE64cgjj+SJJ56g2WxOKvb95S9/CbBfV/Q1a9awZs0aALZt28YzzzyTLQvP12zYdMvOvu9Tr9ezJeUgCCiXyx07YROXtBfa9rlibO+MtDfIchsnrTWeY2EJTayg4NjESbtmzHNEdt65Ml+2dzLmeUdQ8mz21EIKQpBosG2LYk50ZNdi2t4NFuLahKnHKe9K8q5NHNtEUdS+3jxvUlO/A6G1JkxgZz1GIbCkYMxPWFmCwdKB1dtKnqCcU9R8jW1BnGgqBYeC13bGK0WXk18u+AV1BgZcPMdiVdnJ1K/mykI/O9Naz4n9ieLxru2zCTYW6vo0tAONP7z5aX6+3aetlyb4nz8a4ZuXHDnrgOPUU0/li1/8IgAf/OAH2bBhA1dddRXXX389H/nIRwB45zvfydq1a/n7v//7OQUbxWKRt7/97Vx66aWccMIJvPvd7+5ovyeffJLNmzdz0kknAXD++edzzDHH8Fd/9VfTtneo1+tceeWVvP/97+dLX/pStv29730vxxxzDJ/85CcnbT9UOWSrXF/72teilOK73/1uti2KIu69916OPvpohoaGFtG66VFK0Wg0MpUWz/OI4xjf9xfbNIOhK+Qcyao+myiBsVaMHytWFmQ2E73cafc1cenPO8RJjGvB6rKFIzEpJguEbdvk83kKhcKM06dqfkKi203+Cq6kmJOMNJNMCnfac1qC1X0uq8o2Zc/isD6HVeXJM/Ulz2JdRXLECm9GhedLkXTVSGud1VwAJlhYBvyPR0f4+Xa/rY6WtGWef77N547HRmZ9zPe///3Zvy3L4uSTT0ZrzcUXX5xt7+/v55hjjuHpp5+ek/2z5fTTT88CDYD169fzB3/wB3z3u9/NMkn25Z577mF0dJR3vvOdDA8PZ38sy+K0007jvvvuWyjzlzSHbIXMMcccwxlnnMHXvvY1RkdHsw7iO3fu5Iorrlhs86ZFKUWSJJOK2y3LWpJ1MQbDbBkoungW+EGIEOBaTJolXe44tmTVQJ5aM2ivUKJwXbdrRYtp+qpx7LpPnIAt946rLQVap2N+4PG2LcFA8cDfsRxXzpJyeX93lmWhlKJer2erHMVisScmDHqd5/aEtFc0JqLZujuc9THXr18/6f+VSoVcLsfKlSv3274QNV1T8cpXvnK/bUcffTTNZpNdu3axevXq/V7/1a9+BcBZZ5015TH7+vq6a+Qy5ZANNgD+7M/+jNtvv53777+fer3Ohg0b+Mu//MsD5uYtNlJKLMsiSZLM8YrjuOf6PmSKL/OU0mRY+hTzHjnXzhznXur90QwVW3eHNIP2jG/Zs9iQn/vn01oTBEE2C+c4TscpQobOyLuC3S1NTmukEDSCBM8RkwIQA1lheFoL04vp2L3K+hUu7cB5YsAhOGLQnfUxp5oomm7y6GCTJdOtMiwG6XX9D//wD1MGI0b1qs0hPQqu67Jp0yY2bdq02KZ0jJSSUqlEtVolSdpqPY7jTFtUuhyJooharZb9WOXzeYrF4mKbZVgEemUlYyJaa57fE7CzGqKThCiOGa5qtIo5Zl3fnILrIAiyQlqtdaaul0p6G+ZOX85CCxhrKTQaz5GsKjvLfiWi26TX4cQajjiO5131yzB33nXqAP/z8ZFJNRvHrc3xzlP27002n6R9z0ZHRydt37p160H3nc01lq5STOSpp56iUChMm1qfNrZetWoVv/u7vzvjcx4qHNLBxkKglKLZbBKGIUIIisXinH/4Pc9jYGAgK7ZzHKdnZv/jOM660buum41fp2oxBsNSJ1GanbUYoRIsImwbqr7ixT0Njhh0yefzs/qh1FqTJEmm2JMeYynNAvYCUgpWliz6C6A0OFa7UNwwGSHEJDXKpapMadgfz5Z889IjueOxEbbuDjli0OWdp8xNjWo2pI78Aw88wG//9m8D7edZJwXXabbHvoHKgXj44Yf50Y9+xIknngjA888/z1133cVb3vKWaSe+zj77bPr6+vjkJz/JG9/4xv36t+3atWvJ1gAvJCbYmEfSfFXf93EcB6UU1WqVvr6+OQccvdqUJk2fSgOLNGUsiiITbBh6BiE0fhTiWRrHdpASpFD4vk8ul5vTzK/WOtt/4r8N3UMIgWvPbFyV0kRKI2gHKL3+vdi2nTXHFUKQJMmCrGpo3VaykwITBM4Bz5ZcdPrgotpw3HHH8ZrXvIaPfvSj7NmzhxUrVvD1r3+9oxrVfD7Pq171Ku68806OPvpoVqxYwfHHH3/ANPnjjz+es88+e5L0LTCpx9q+9PX1cfPNN3PhhRdy4okncv755zM0NMRzzz3Ht7/9bc444wxuvPHGmX/4HqP3vNUlhFKKMAzxPA8hBJZlEYYhQRDMOdhotVrZLGYvpVClM7L7OkwGQ69gW5LDyg6/qmpUAn6SoIGhspOp93RKGKvMsfLs9ipnmjqVqgCZFKrFJ0o0L1VDWmH7u+3LWaws2z3tDKeTYanEsOu6+836dhs/UgzXI/xIIwUMlmwqeePmLGduv/12/viP/5hPfepT9Pf3c/HFF/PGN76RN7/5zQfd9ytf+QpXXHEFf/Znf0YYhlx99dUHDDbOPPNMTj/9dK699lqee+45XvWqV3HrrbcetD/Hu971LtauXcunPvUpPv3pTxMEAevWreP1r3/9skrTn0/MXbgIzNV53rVrF2NjY5nCR39//35NCJcrlmXhui6+72PbdlYk3ksBlcFw+AqPZjPHaN0HqenLS1YW2sW0naZE1oOEl6oRidJoDSsKFoOl9iM9jmPCWFOLJDpIyDua/oLdleZwhpmhtWZXLcaPNKWcRAOjfowtYbA8v873YpKm+M53gJGSKM1LtYg40RQ8SZxoXqrF2FJQ9Hqv9mu5kHbs3pdbb72VW2+9db/t999//6T/H3nkkdxzzz37vW9fP2qqY51++uls3ry5Y5sALrjgAi644IIpXwO46KKLuOiii/bb/oY3vGHKbuaGNibYmEdS5agwDLP6g7Q5Ub1eB9p1CTOZeazX61SrVTzPw7bbjan27NlDLpfrCUWqtAA+bQCV6uH3YsqY4dAl70iOXtvHaM1CJW01I9e2Ok6hCmPFS9UIS2hskRAmMS/s1lgiz0DJA2nzUjMi0RrHgtFmQhAr1lTcnp5NX4ooDa0oIe+2G9IJ2r1kGpFicZNUZkeqvnOwoDhNf03fO9+qaGGiCSJN33iHdtcWhEmCHyoTbBgMi4zx4OYRKSXlcpl6vU4URQghsG17UgO+VqtFpVLpOOCI4xilVOZ8p2kT6UO9F0gDDoOhl8l7Nq5dygq4Z9JHJFbtmVyLmEQrXNvGjRPqLZ9yzsKPJVGy1/HybBhrJQSxpuCaYGMhEbR7ZygN6berFDgzrPlYbFJ1szRf3rbtaWswkiTJfufSeo00lWqicEGSJJm8+VxFTsaTbvdJweVgrU8MBsMCYIKNeca2bfr7+7PC52q1ipRyUj5ro9HoONjYt/BzoqNiMBiWF7NtVChF25EKkxhvfMZYI3Bt2Xbs2N9x6w29uqWF1ppW1HZwbUtMqdYjpWCgYLGzFhNZYryWBg4rLK8UqrTeUMr2Ck1aGzSVcEf6u5T+zmmtiaIoW92I4zgrHk9X+3O53JwCDs8WlHM2NT/BtUU7GBdQypnfRoNhsTHBxgKRPkTTvhgTt8+k2VGxWCSfz9NoNDKlplKpZGoaDIZDCM8W9Ocl2/ZArBQKyHuCvNOejHBtgRTtglnXFviRxrGFqdnoImpcwrjqJwjRnkBfVbbpm6IguZK3sC1B3VfIcQe44C6f8E9rje/7We8jIAsappooU0pNWvGYKMWcrpBMXM2I45gwDOf0OyaEYFXZxpXQjBSea9FfsBZcrtWwPDFCNPOLCTYWkHRFI1WoSpsczUTS1bZtDjvssKypn23b9PX1mZoGg+EQQgjBqj4XWyiaQTheBCuxRDu10rIkayoOO2sxzaAdcAyVHRNsdJF6oBhrxfSNd34PY8WuekzetfYbZyEEJc+itExrB9L6i4lN+sIwxLKs/fppAFm6cBpkpOlS6XvT1YyUbtVyWFIwWHaWZS2MwdDLGA91gSmVSoyNjWVLyLZtz7iw23EcBgfN49RgOJQRQtBf9AhjTbUVUw8SBvs8CuNOXNGzOMKR7VoB2T2HztAmjBX2hH4Zri3xo4RY6Z4M6izLIgiCSfLk06UApqqCEwvEPc+jGSqqfoLfSih6mkrBQWs9qQ7RYDD0HubuXkDiOKbVamVLzJ7nUSwWe6b7t8EwHek1bxze7rKnmVANBZ7nEIYRL+z2QWtWlNvpKFIKU6sxT9iWIJmQARurdm+HXhX7SlOo0vrDAzWWFUJkfTXS+sJ6oNg2GrafAdpiRzVEaU3JFT3bpNZgMLQxd/cCoZSi2Wxm3cS11gRBgOd5pumWoWdJG1umBaOp7r4JOuZOojRVP8GzNSqOsCU4lma4GlDOWQvW3+BQpZyzqAcJY80YKQVaw1DJ7tkaAcuyJqVCwcFXyyZOMGwfC9ndiJFCIKWg4Dg0YsnKPjdLxzIYDL2JCTYWCKUUvu9n3cShnfPq+74JNgw9SyqVmc5apgo25prvHknUdnYtaRErhRA6y683Dtz8YUnBmopLM1QoDY4lllXR90yxbRvLsiYpIXZ6fUWx4qVq+zrNu21Z5pGmxioLE2gYDIcAvftkXAaYB6yhl9FaZyIG6QynZVmZTr9hblhSUPbas+tJAmGsCRNNJSeNssoCYUlBOWdRyS8vdamZIoTIVjXS+zn9fydEqh2MxYmiFSm00viRQmJ+Bw2GQwGzsrFASClxXZcgCHBdN1PkmIkSlcGwHJncZEsb56JLaN1u2tcsONSaAa7jMFSUFBzMbLGhq6QF32EYZlLtruvOqEeMFJq6n/BSNUIIKLkWK0sm1c9gOBQwwcYCkXbFbjabhGG7SK5UKplgo8vEcYzv+0RRhGVZFAoFU3i4SAghsg736Ux72kXYMDcSpRke7/EAFuW8QyUHjrW3s7NhflBKTep8PZFUIlYphWW162Z6RQCkLam8N41qJp9La00Yt/uLDJZs/BgSpbB6Y2gMBsNBMF7YApL2xIjjmGazSRAExHFMLpczDnEXUEpRr9cJwzDrZxJFEZVKxYzvIpEWKSdJ0pZoDSUqSMhZmhUluyclQheCPY2YUT8mb7frM0ZbCQKHw1fmZ5TeYpgZURTh+34WaDiOkwV2aV0etCeX4jhGKUUul+uZ72O2gZPSMFiyUVoTxJqCJ5BYyB4ZF4PBcGCMB7bATOUQh2FoGvN1gbQL7cQi/HSVw4zt4pBKYIaxYk8jItEa14JakBApxZqKi9WrWqHzSD1QuFITRxFSCEqeTdWPCIKQfH72XZgN05MkSbYqnSoKpiuolmVlimvpsybtsJ2ucnSC1ppWpKkHCa4NOWfpTv2nNVnpvw9UJ2TJtgJVf25vE8Car+iRRR+DwXAQjAe2wOzrEKedVicq9hjmxsRZxFQX3rC4+JEmSto1BgCuDdVW0p7ldE2wMVMsCa1WjGvvVaFybRulElMXM0+kznQ6uy+lJEmSSSmCE5npd6CU5qVqzI5qQuRGWFbCUMmmv7D0fhdS6fY4jjNlqjiOpw048o6gkrMY8xOkaH/Wcs6msISDKYPB0D2W3lOsx0kdgX0d4nSGyDB7pJRYlpWtZKSN5Ey/gcVHA1O5XkY1aXYMFGyqdZ9YaWwpiJRmVcmkT80nE/tLwP7XbvrsSes50r+n+k6mCggb4921C66gL2+RaMFwPSbvyiXXuyMNLiYqzaXN/qZaxRFCsKpsU/QkYaxwLEnJk0izqmkwHBKYYGOBSVVi0gd1qlVuHOK5Y9s25XI5S1NLi/JNsezi49kCIcCPFI4lCGKNawvcJeZELRfKOYvDB3MMV32k0AwULPK2wrJMb435QkqJbdsEQZCNcdp7AtrPds/zsiaWqQLhxDqHIFbsricEscKxYLDkkB+f3Q/jdlpRWsfgWIJWxKQu5UuFfSfNJqrNTUUcx+1JIMBzLRzHBMYGw6GECTYWmLRIvFarZYWGhULBOMRdwnVd+vv7UUpNqRZjWBxyjmRNxWFXPcaPFK4lGCo7pkB8DvQXPYquJIoitNZYVrtY2Thx84MQIlMPTJ8t+zZO3Lfx3cTX4kSzoxoRxpqcIwlixY6xiHX9Dq4tcSxJkux12GOlEcBSnPxPV3mJGt6KAAAgAElEQVTSz3mgjuJxHGcBmhDCNPY0GA5BTLCxCLiuy8DAQFZLYGo1uosJMpYmRa/d+EzptgNlnOK54zjOpIJkw/yS1tlNDDLSou5EaWxLkJ9m1j6IFUG0t27JsSyqrQQ/0rg2lDxJOW8xvFuTbyUIKRksWkuySDyV9U0bdKbpU1OlUEVRlDX0nLjNcRxzzRoMhwjGy10kjENsOBQRQmAWM9o0Q8VIs11UW3At+vPWrHLYjcO2eCil2VmLGfMTBO26pJUlm4HizH9apRSsLtu0yhYr+xw8Z+l2JU9V5mzbzlY4pps027c+xVyvBsOhhwk2DAaDYYFphooXR0MEGp0kjDZCgtBmdX/v9GQ4FGiEijE/oS/XXs2IlWa40S7q3ndFwrMlri1oBAmeI4lijSXBc/Z+31IKiq6gkreW/GTUxNWKAyn+pRLv6T5xHM94VSNKNDU/wbYFnr3/2BoMhqWNCTYMBoNhgRlrJQg0to5JSPAkDI9FlD1BMe+ZgGOZECd6UkqgLQXodhO7fbEtweo+h+F6RBAmoBMGcgIdhyTC6bgXx3IjFT+JogiYeYf7IFZsHw1pBDGOpZFSsKbiUPR6c7wMhl7EBBsGg6FnCWJFvZWQaMi7ksISEX3Tur2ikZDg2O0GccG4nKhSvet49hq2JVB6b6pQPB5lTJcNl3Mk6/pdWi0fpdorGUmSkCQJ+Xx+AS1fONKUqzTomGkgPdJICBNNJSexbIsgbqeuHeEY6VyDYblggo1Zkv4wzEefgDT/9WBdWedy/Il/d/vYxvbpjz/x77lwMFGBwcHBrp1rX+ZznLo5Rn6k2DYath1ApRjWmhV5a0nYXnAFu2sJrtBIqWiEioIjkahpbVsu476Y12Z63IUap4Ij6PMk1WaCGM/sWVGw8Gwx7bmTJEGpJJNBhwnSsOPF50v9O57q2J3aPdPzB3GCY+3d17GgGSgSpZnNAqARZDEYFh5z182SY489FmDemvGlalVT5cLGcTw+A6pmvCQ9kcWwvVsc6rYPDAwc8PVzzz23a+ea7vzzOU7dsHukHhFGCa5szxwLrdk+ojlyVXHRbS/YmsGCZOdYSBAr8o5FxVNozaSu1PuyHMZ9sa/N1IaFGqcVecjbkkRrHCnIuyJTaZpu331fT/stSSmXxXc80b40aJovu22hGAsUjidRSUIrVEgp0Com1jOPNg52fRoMhu5jgo1ZsmXLFk488cRJs1PdQinF7t27GRwc3K9IMI5jms0mcRxP0iwvFAodH19rTZIkC257NzC2t9m1a9cBX//Wt77Fueeeu+zGqZtjpIXClm3HJ+0/EamQ4eFh1h++tusznDO1ffWATSVvE8UxEo2UEs/zprVruYz7Yl6bsLDjFMSKWpgQK0HOlhRzB1cUsywrc/illFlg6XntWp1ObW9FKqsZyXeQUtSt7zgNllK7lVK4rsvIyMi8jPlQn0WiQ6p+hGVZ2JbFmn4XZ5ZF4ge7Pg0GQ/cxwcYsabVaAPs1buoGqWLHVMf2fR+lVJbGlSQJrVaLfD4/44f8Qtve7fMcyrYfaOYUYPfu3V07174sxDh149hFz2KkEZKz2k5dI2yvIGg/zs4xH3RquxCCQj6XzQSnM9sHev9yGPfFvDbT4y7EOIWJZvtYTKw0thRUfUWUwFB5cqM/rTWNUNEMFFJAKWeRy+UIgiD77tMgUynVke1jrZid1RhEuxi97Fkc1mdjdVDDMJdx0VpnfTPSoDhNAZuvMXdtwdp+l3pLYNsWnmPNqRnowa5Pg8HQfUywscxIZ6ZSpJRZStVSl0o0GBaSvpzFiqLN8FiEH8V4jmSwIBkLp266thjs2+zMMHvSFB6l1LzVg0yk7ifESlPOtb8/T2vG/ITKeM1GymgzYWc9xrEEiWq/Z22/Sz6fn7LT+MEIY8WuWkzOlThWuzak6scUfEF/Yf5/0tMGfilSynlNiQOwpKDoSWx7flbDDAbD/GKCjWWGbds0m81sKTyOYyxr6WiypzNzQRBM6m5sMCw0UgpWVzyKjiaOY2zZVglaSveLoTskSYLv+0D7GRRF0bxPwCg9WXVKCoFmsuxtnPz/9u49Rq7yvh//+3nOba578dprbAw2EK5fsGsuaYvdYAKUCJUoSkWLamxaSJWmQkK/KhcJlNiBJCgorVQpQkW1G6cI1W3VgmhIS2oKpBBobtwxxGAbbHzbXe96Z+d2znnO8/tjfI531uv1rnfOzJyZ90ta2XvmzMxnzjx7zvk8V42jJR+Z44kBABSrCuMlhXTvma2grY5PrRu+nhACphTwVPwJVvh+kxMOVnQR0enwTjBhMplMdDMf1ojl8/m2ONn7vo9jx46hVCqhUCjAMAzk8/kzHsA+W5MHJXJldppMSomebDqqeZ1ppWNKJq11dD40DCNq2fB9P9bvOmVJHC2pqBvVyISPihdgzPYRpA1kHaOWfASAOemUZEgBbx4tL4aoJTme0lHLhh/oeXUtmi0hBBzHQaVSidbNkFLGfo4nomTjVTdhpJTo6emJ+p1KKdvm5qlUKkEpBcuy4DgOfN9HsViEaZqxJQBBEGBiYiKq1bQsC/l8vm2OCbXe5P7lcc4yRq0RTrc6tTta3N91zpFYmDUwWlIougHGij4W5U2UvACFqsKSXhs5RyJtCxTdADnHQKA1ql6AntSZL/himxKL8iaOFHxUPEBrIO+YUXeuuBmGgXQ6XVfBQ0Q0E96RJVC71iSFXbpCpmlGtV9xGRsbw9jYWF3f94mJCfT19cX6vnTmausMBNGAaN6s0HyELbzTjSWI+30HchZ60iY+HKkg59jRqtYVL8BI0UfOsbEob+HwuIdCuda61p8x0ZeeX2LQmzZhm3JOs1E10tS/WybxRDQTJhvUMFLKaCpeoHZTGecF3/M8fPjhh9EYFsuy0NPTg97eXvYjblNhF0CtdXRzeCYzqRGFwhWqq9UqPM+LBl03q3XTlIAhJcxJ3ZgMKeArDa0Bx5RY1mfDVbVF6GyjMTM2pS0JnHkDCRFR0zDZoIbJZrPwPA+e56FcLsMwDPT29sZ2I/nhhx9idHQUwIlERykVTQtM7UVrDdd1EQQByuVyNFWm1hq5XK6lsZW9ABW3VjubcSQck8lPkoRdNcPxW5ZlNS2BFUIga0uMlhR60rX3LLsBeiatuSGlQOo0LQ++0lBB41cOJyJqNSYb1DCWZaG3txfFYhE9PT2wLAuWFU/VW6VSwUcffRT9Ht5klEolds1pU+Gg3WKxiGKxCN/3oZRCsVjE8uXLYysrpzNRVTh4rFYjroIAhgDO7neQdXh6TJLw7z7sotdMC7Im/KA2HS4A5BwDC3OzKz9aaxyd8DFWUcfHoAVYqDQcnsKIqEPwakoNZZombNtGKpWK9Yb/8OHD027XWs9pNXVqnrBf/fj4eNTdxff9aFHKs88+u+kxaa0xPOHDEBpS+1BQKLsaB4/6OG8wxzUwaFZMQ2BJrwlX1crLXLpKHSsrDJcUso4ENHDE0xia8HF2X/usB0NENB9MNiiRjh49Ou32VCqFnp6eJkdDsxEO4q9UKsdbNQJ4AeD5CgcOD2NwcLDps4gFGlCBhlA+AgSwTAsaGr7yMV6swLQdGFIiZYqmDsCl5BFC1C3mN1sTbgDHrK2VEQQCGUug7CqoADCZ6xJRB2CyQYnj+35df//JzjnnHHahamOO40BKCc/zMVYFim6tr7pVqWJwaAznLlnY1HgMWbtBHCsr5ByjtmaDCiCFxP5RF6YlIAWQTRk4q8eCabBsUWNJ1C8EGJ7S2KhBRJ2CV05KHCklMpkMUqkUHMeJBoOmUikMDg62OjyaQbgOykTVx2hJQ2mJgmfiSNnEr/eMoeKppse0KG/BMSXGyj4m3ACWIeB6CqYEUoYPEy6GxiYwfKzUtoN3q36Ag8c87DtaxVDBa9pq0jR/vWkDKtAouQEqXoCip9GXNmCwJY2IOgRbNpqoExZBaocpZaWUWLx4MXzfh+u60arQS5cubcv1R+gEIQQGBgaw5+NheFpj76iJ4bIBVwvsGq/ignPKuHRJqqkxOabE8kUZFEqV44OLNfZXNByr1tJhGiZSlkSx4sPzvLYrY64f4MCYBz8IIBGgUA5QKAucO5BhS0wCZB0DS3trYzdUILAoK7Agy0szEXUOntGaIJzqs1KpQGsN27aRyWQStcp1tVpFsViE1hqWZbU8/gULFkBKiYmJCWit0dfXx4X8EiKbzWLhwAL88nAR+yeAoge4AKpFjX//1VH8fzcuRM8sZ/JpFNsy0Z/PIAgCuH6ATNqDpzykLBNCCCgNpGwDvu+3XbJR8TRcP0BKKqhAIWUAx4oKxxyBBT0ZDjJOgKxjIOsYCIIAhypGR3xnQRDA931orSGlhGmaHfG5iGjuknO3m2Cu66JYLMKyLAghUKlUAAC5XK7lrQSz4bouCoUCpJQwDAPVahVKqVjX0DgdKSUGBgYwMDDQkvenMyelxIpli+G/uxdDpQBaAJ4CTEvi1Y/L+NWHZVz//5o/o1g4dappAoM9Ah8NuXCVDwiJjC2QT7XnlMoaQKADqEDBkLUbVdsSUEEApVSiKjW6ndYax8oK1aNVSCnRmzLQm05e8hEEQXSdCGNXSsFxnMR9FiKav/a7cnagarUKwzBgGAaklHAcB9VqNepW1Y7CQdhhVyXgxMJZtm1DKQWlmt+/njpDPpfFBUsWwoeEpw14wkTRMzBWDvDS3iJ8f/Z/G1o3fiG0voyF5QNpLMoaGMxJLMoIGAItWwtkJrYpIFEbt6EBlNwAlhSwjZMnUKD2NlZWGCmd+M4Oj/sYKyXvPBscT3Qty4JpmjAMA0qptr7mEVF8mGzQSSqVCsbGxqKfarXa6pCoA125Ig/bsXGsqmFIibQt0Z+R+GjYw8Fx77TP11qjWq2iVCqhVCqhUqlAKdWwG+zeXAoLe9PoTZuwLROpVKot191IWxJL+mxoXVtUzpTAYN6AZYi2bImh6Wmtcayk4JgCjllbxT5t12ZKS1rSOHVhxfD/SfscRNQYbF9vAsdx4HleNF2r53lIp9Nt2b3B930UCoW62qhKpQIpJXzfPz5tqRc9TnSmPrE4g5Vn23iuqJC2JVKGRF/OhiFqq3qfjuu6UVl0XRflchmGYcBxHDiO05DyaZpmW/6dTtWTtnDBYBYV14UhACFqY6v4N9o6ZS+ArzSkqCWEs1mnRQOYvFftJj15N+iGYUQLd4aLeQLJnhyFiM5c+19FO0AqVZtdp1QqIQgCZDKZtl3lOkyIwpuUsPtXKpU6vhBbrd9tJpM54wtHEARR8mUYBmzb5kWoS33migX4+NgwHFMgYxuwDYGUpZFzZr5J1lpDKRUlxOH/w7VXKpUK0ul0V5Urx7FhWWZ0g9dNn73djJV8DBV8QNTWzcg5Bhb3mDNOZyuEQE9K4oCn4SsNoTVKVYWFueQNrDYMA5ZlwfNOtFCGa+wQUfdhstEkqVQqSjraWVgLFd6whNts20ZPT8+8pr51XRelUgkTExMIgiAaLGhZVksHm1PrXLo4g+sv7sHekSpMKSChcfGgjcH87MdGhLWmYXk1DCOaBafb8G+o9Vw/wPCEj5QtYR0fN1Oo+MhUBPoyM19y+zMm+jMCrh/AMAQWZk30n+Y57cq2bZgmk18iYrJBU1iWBcuyokHt4SC/cLrP+SQax44di1o1hBBQSiGbzaJaraJarSKdTjfyo1ACpB0DN1/Wg/cOVzHuKvQ5Js4fMOFYM5czIUTUfSocjBrWpoaPE7WC0rUVwS3jRGWNIQX8WSy0KKXAgoyBwQHn+OxoyS7HTDCICGCyESvf96OBcuFMVO1OSol8Ph8NtnUcB6lUat6xu64btWIYhgHTNOF5HpRSkFJyZqsulk9buHpFLUnQWsP3/Vk9L5xK2vM8VFwfIxMKWgC2qbAgayHNhINawBCAFICndNSyoQIN05h9eZRSJD7RICIKMdmISbVaRaFQiLodOY6DbDabiITDNE3kcrlYXnvynOtArQtMEASJGIRL7SVMXoU0USoJBNKHgMaBYwofj3s4q09iUc5M5DoFp1NyA0xUan9DWUcie5oxLtQ8timxMGdiqOCjEo3ZMJFP8Tsiou7EO7wYhDM6hYOftdYol8uwLCsR4zbiYNt2tJihbduYmJiAYdRWzE2n0223KjMlR8UP4CmgL+dguOBDmhJeUBtke7jgQwigN905p7piVeHQuAKgEQQBRgrAkj4Lfdn6vyGtdTT+KlywkJqjL1PrCjh1NqrJY+GIiLpF51yB20hYWx/eQIeD46Z2Dwm7WdVWLe7sr8K2beRyORSLRZimib6+PmQymWhqUd4I0ZnSGhAQUAFQdANkbFlb2M6s9ZUvVAP0dtBwoJGiD0MCIvCghUZVaxw86iJri2jMSrgGyeTuiY7jdPx5pp2kLQkcn+dABRpDBQ8T1QBSAn1po6MSYCKimXTU2e7o0aP4j//4D/zmN7/B+++/j3K5jG9/+9u44oorpt1/586d2LZtGz744ANkMhmsXbsWGzZsmPdA5TC5mFyLNXWRo1KphGKxGP2ezWbbdjrcRkmlUvMeaE40lWMKGBIouwFUoFHxAhgScMxazXIn1SPXWisA6FqLhWmYADQqnkKlWoVpmtE4lsnTAQdBgGq1yhaOFtBaY7jgY6ziI2MbCLTG4XEfhhSnneKZiKgTdNRV5+OPP8a//du/YWRkBMuXL59x3927d+PrX/86qtUq7r77bvz+7/8+nnnmGXz3u9+ddxxhd6lqtQrXdVGpVGCaJhzHAXBiCthwm2maKJVKcF133u/d7nizQ41mmxJn9dpwLAHbFKj4Cv0ZAyrQ8JRGb7pzbuiEEMg6EqVqrZVUa42yHyCXMiBwYoXmsHIjrOAI/+a6cTrgVvMDoFBVyDm1Vd0dszYl7niZk2IQUXfoqJaNCy64AI8//jjy+TxeeuklvPvuu6fc97HHHkMul8N3vvOdqEVhcHAQ3//+9/Hqq69i9erV84ol7CIULpI3uQvD1G5W4Wqr4XoBRDQ3GVvinH4bZ+UtjJd9FNxaX/klvVbH1R73Z0xUXBNjE1UYJpC1DfSmarMXTU4uwkUzgZPXIqHm46Enom7VUVXMmUwG+Xz+tPuVSiW89tpruO666+q6Ll1//fVIp9N48cUX5x2LlBKpVAq5XA7ZbHbavtJhLWP4L28EiM6cEAK2JbGwx8Z5Cx2cu8DpyBmATENg2YIUli9MYWleYmEWMGVtXFR4DjFNM6rE8H0fvlIIhAGf9RlNZ8raCuITlQCe0qj6tX87sWwSEU2no1o2Zmvv3r1QSuHCCy+s225ZFs477zzs3r071ve3bRu2bdctnGfbdjS4k4hoJoZhoDeXjgaAT+2eGFZ2KKVQdhWGS8HxRMNFf8bAQM5k5UaTCCGwKG/CkMBEtZbtLe4xkXNq4/qOlRXGj09jnLMFu7oRUcfpymRjdHQUANDf33/SY/39/XjnnXdifX8pJXp6elAul6GUQiqVQjqd5lgGIpq1cBX1mR6X0sBoRUFBIJ+ujWMZKSmYhkBfpitP/y1hSIFFeQsLc/Wt2KNFH0cKPlK2gNbAUMGHrgZY0spgiYgarG2vNkEQzHkl4dkKB2JP15Jg2/a0A7UPHjyIgwcPAgCGhoaiBfumzjI1F1NnvQr7VU/9t9HC+ffnE/upMPZTizP2qUzTTORxivsYdVvsVT9AyVXoSdXWtBEATKFRrCr0pE5UbnRK2QSS8R1rraG1xmjRg2MC1vHVwpWhMVJp79in00nnTiJqvLZNNt5++23cf//9s9r3kUcewbJly2b92uHAbM/zTnrMdd1pF5h79NFH8c1vfjP6fePGjRgZGZn1e56JI0eOxPr6cWLsrXXLLbewfM6gW2L3lcbRYwql42uOAEDR1cg7gCi3ZsxAM8om0P7fsdYaQ8cCGAKwjNp346lay8fhw4cTeVPd7seciFqjbZONZcuW4d57753VvtN1h5rN/mF3qslGR0exYMGCk7Z/8YtfxGc/+1kAtZaNN954AwMDA9G89o0UBAGOHDmCwcHBWLpWaa3h+z5jnyJJsR86dGjGx3/84x9jw4YNiTtOcX6/QHfGnu71MDKhYJkCKtDICmBpn42UVd+y0QllE0jWd2znPQxPKGRTEtDARNVHUBrF4sWL2z72yTrp3ElEjde2yUZ/fz9uuOGGWF57+fLlMAwDu3btwtq1a6Ptnudhz549WLNmzUnPWbJkCZYsqfWkPXDgAPbs2RMNyoyrBiquNSm01ox9BkmOPeT7fiKPU7OOUTfFvjBvw7YUyq6GIYF8yqhLNIDOK5tAMr7jgZwNCB+F4wPEF2YtuFomIvbpdMK5k4garytHJGezWaxatQovvPACSqVStP25555DuVyeNtkgIkoiIQR60ybO6rWwKG+dlGhQ68jjA8dXDDhYMeBgYd6C5M00EXWYtm3ZOFP//M//DAD46KOPANQSiHB2qT/+4z+O9tuwYQO++tWv4r777sPNN9+MkZERPPnkk1i9ejWuuuqq5gdORERdSR4fTxMEnPaWiDpPxyUbjz/+eN3vO3bsiP4/Odm44IIL8OCDD2Lbtm3YunUr0uk0brzxRmzcuLFpsRIRERERdbKOSzaeeuqpWe972WWX4eGHH44xGiIiIiKi7sXOu0REREREFAsmG0REREREFAsmG0REREREFAsmG0REREREFAsmG0REREREFIuOm42KiIhoPoIggNYaQohYVsQmIuomTDaIiIiO8zwPrutGv1uWBdu2WxgREVGyMdkgIiJCrUXDdV1IKSGlhNYanufBMAwYhtGw9/GVxljJR8UPYEmJvqwBx2QLChF1Jp7diIiIUEs2AERdp4QQddsb8x4ah8ZdHC0p+AEwXlU4NO7BU7ph70FE1E7YskFElHAq0Bgr+ih5ASxDoi9jIGWxLmmuwuQiHK8xdXsjVHyNoqvRk5IQQiBlAcdKCmU3QM5p3PsQEbULJhtN4vt+VDtmmiYHHRJRQwSBxuFxHxNVBQmFibLGeAk4ZyCFtM1T/FxIKWEYBpRSAGpJR6O7UGmtIVCfwEgBsF2DiDoVr0RN4HkeCoUCfN8HUBtwmM/nYZo8/EQ0P1WlMVFVSEkFX/lwDGC8EmB0PICzIMeKjTkQQsBxHCilosohy7Ia2rJhmxKmBMpugJQl4CoNCMA22apBRJ2JV6EmmJiYQBAESKVSSKVS8H0fpVKp1WERUQfQGtBBAF/5kELCNEzYpong+OBmmhshBEzThG3bsG27oYkGAFiGwFm9NqQEJioBggBY0mshzW5vRNShWLUesyAIoJSCZVnRNtM0o1YOIqL5sA0B2xSYKCnk0wZcX0NDI2UZ0Jqdc+IQrsMBIJq5ai4ytsQ5fTaUBgwBSMlWDSLqXKxKaQIpZdQHGACUUuzaQEQNYR6vKXdMiULFh9IagzkDKRM8z8RAKYVyuYxKpYJKpYJyuVx3fp8tKQWYYxBRN2DLRsyklMjlcjh27BiUUtBaQ0qJTCbT6tCIqEOkbQPnL86hWK5CIIAhAcMw61pUqTE8z4OUMhpzp5RCtVqd0zk9CDRGij4KlVqS0pMysCDLyzERdSae3ZrAtm309fXVDRDn4HAiaiTTNJHPyrruPY0eb9BNgiCIfsIZqbTWJ02LG7ZcT90+k5Gij9GSD8uUGJ3wsXe4isU9Fs5byJXKiajz8I63SSzLYi0jEcWK3aYaIwgCVCoVBEEAIQQ8z4Nt2zBNE0KIKAEBTnSLnW2iobXGRDWAZUocLfrwVICMY2C4qOCYLiwu7kdEHYbJBhER0SS+70NrHVUQBUEA13UhpYRt2/B9H57nQQgRTZc7V1UvQNXTyKcMVH0N0xDwAyDwmWwQUWdhskFERDRJ2KIRmjzJh5QSqVTqjGejEkKgL23gwxGFqh/A8mprbSzKGQgCJhpE1HmYbBAREU0ipYTv+1H3qKldpWbbbepU4zj6Mgb8wELFU6h6AQZyBkwpoKBhGRxnQ0SdhckGERHRJJZlIQgC+L4fJQupVGrW4zKUUnBdN5p90LbtutYPIQQW5S3kUwaGJzy4x7tRLc7bOHaUyQYRdRYmG0RERJOE4zDCMRtCCEgpZ7VIolIKlUolGs8RTo07XbKSsiSW9TsIAg0hai0hx2L5RERErcNkg4iIaAohRDTj1FyEYzvC54YJx+QZrKYKVxDniu9E1Ik4TyIREVFMuNYJEXU7JhtEREQNMnn9Da11NNCca6AQUbfi2Y+IiKhBDMOI1t1QSkW/s4WDiLoVx2ycoXQ6DSCePrZaa5imCa11bK8/+d9GvzZjP/XrT/53Pkxz5j/dgYGBhr3XVHEepzi/3/B1Gfv0rz353/loZdkMX7fVx8kwDKRSKQAnulHNJpZ2iP1MX7tTzp1E1Hj8qztDl1xyCYATgwEbrb+/H0EQIAiCWF4fYOzTSUrs/f39Mz7+uc99rmHvdar3j/M4xRU3wNhn0gllM4yh3Y/TqSQ19k45dxJR4zHZOEPvvvsurrzyShiG0fDm8SAIMDIygoGBgVj6+Wqto+Z9xn5CkmIfGhqa8fEnn3wSn/vc5xJ3nOL8foHTxz65Znaun63Vsc9Hp5RNIDnHaTpJjb2Tzp1E1HhMNs5QuVwGgGgu9UYSQkSLScXZz5exn/yaSYnd9/0ZHx8ZGWnYe03VjOMU12vPFHsQBKhWq1HNrGmasG17znG0IvZGvkeSy2b4ukk4Tqd63STG3knnTiJqPCYbNCu+70cn6amr4RIlndY6SjTCvuee50EIAdu2Wx0etYGwdj3Olg0iok7EZINOy3VdjI+PAzgxEDCfz3OgHXUMrXXdomvhitFx9j+n5AhXAQ+CAL7vQ2s97YrgRER0MlZP04yCIEChUICUErZtw3Ec+L4fdSMj6lRczZmAWjlwXTeqaDEMA77vw/O8VodGRJQITDZoRuHsImGNL4DoYkvUKaSUsFB1MjoAABZtSURBVCwLvu9DKRWVb8Ng6123O1WrV5wzUhERdRJeSWlG4cq3Sqmo25RSKppDnqhTWJYFIQSUUihWA4y7ArrkI2VpLMwZsE3WzXSjcFCy1rqu2xS7UBERzQ6vnjQjKSVyuRyUUqhUKnBdF4ZhRIsaEnUKIQQsy4I2bIxWJSAlLFOi5CocKXhQAbtVdaOwXITjNcIxG5ZltTo0IqJEYMsGnZbjOOjv74+6lpimycHh1LFKVQUNIG3V6mIsw8B4WcFVGmnJ2uxuZFkWpJTR9K6pVKquaykREZ0a7xhpVphgEFE3Mwwj6lYaJh6TK2A4HS4R0fTYjYqIaJKMY0AAKLsBPKVRKCtkbAHH4I0k1fi+H02FGy4GyUkziIimx2SDiGiStCWxtM+GIQFfaeRTBhb32JDsQkXHua4LIQQMw4haPDzP43TJRETTYL8YIqIpMrbEuQuck2YgIgoTCpYLIqLZYcsGEdEp8IaSpgpbNJRS0FpDaw2lFMdsEBGdAls2iIiI5sC2bQgh6gaIh1PhhotCTl5xnEkIEXUzJhtERERzIISAbdtRghEu/BeuRxRuq1QqsG0btm23MlwiopZiskFERDRHYYIxmed5ABBNEx4OHDdNE1Ky1zIRdSee/YiIiBqEXaaIiOox2SAiImoAKWU0aByojd+QUjIBIaKuxm5UREREDWBZFrTW0cBxIQQcx2GyQURdjckGERFRA5xq4DgRUTdjskFERNQgTDCIiOpxzAYREREREcWCyQYREREREcWCyQYR0TxprREEQTQLEREREdVwzEaXCYIA1WoVvu/DcRyubEs0T77vw3VdKKWgtYYQIhogTERE1O2YbHQR3/dRKBTgui601qhWq8jlckilUq0OjSiRwuRdSgnLsuC6bvS7YRitDo+IiKjlOirZeP311/H8889j586dGB4eRn9/P1auXIn169djwYIFJ+2/c+dObNu2DR988AEymQzWrl2LDRs2IJ1OtyD6+FUqFXieh3Q6Hc0DPzExAdM0YZodVRSImiIIAgAnFnObuqgbERFRt+uoO8wf/vCHKBQKWLNmDZYuXYpDhw7h6aefxi9+8Qv87d/+Lfr7+6N9d+/eja9//etYtmwZ7r77boyMjOCJJ57AgQMHsHnz5tZ9iBgppepqW03TRKVSaWFERMk3NbngtKdEREQndFSycdddd+Gyyy6DlCfGvV955ZW477778PTTT+OOO+6Itj/22GPI5XL4zne+g0wmAwAYHBzE97//fbz66qtYvXp10+OPm2EYqFarUX9y3/frjhURzY1hGDAMA77vQwgRJfRMOIiIiGo66k7z8ssvP+nm+fLLL0c+n8e+ffuibaVSCa+99hquu+66KNEAgOuvvx7pdBovvvhi02JuplQqBcuyUC6XUa1WEQQBcrkcu1ARnSEhRDTRghACEy5wuCjx0aiPkYKHIGB3KiIi6m4df5dZLpdRLpfR09MTbdu7dy+UUrjwwgvr9rUsC+eddx52797d7DCbwjRN9Pb2cjYqogaSUsK2bUx4AsdchWxKQkqB4WJtXNRAnjNTdTqtNZRS0Rge0zTZakxEdFzHnw2feuop+L6PtWvXRttGR0cBoG4MR6i/vx9Hjx5tWnzNJqVEKpWKWjmIqDHGKwqOKWCbEpYhkHEMjFcDtm50Ac/zogk4wv+HiQcRUbdr25aNIAiiGZNOx7KsaftIv/XWW9i+fTvWrl2LVatWRdtd142eN5Vt29Hjkx08eBAHDx4EAAwNDaFQKCAIAgRB0PD+2eFFKq6LVbgAGWOvl+TYpzJNM5HHKe5jFGfsQaCP/9Rin/w7MP/PkuTjPlmcZRNo/nEKpz+ePFYnXHtlri3HSf2OO+ncSUSN17bJxttvv437779/Vvs+8sgjWLZsWd22/fv346GHHsK5556Le+65p+6x8ALged5Jr3WqC8Sjjz6Kb37zm9HvGzduxMjIyKziO1NHjhyJ9fXjxNhb65ZbbmH5nEEcsVfLCiNFDccSEADKnkZ/RuCI39j1NpJ83IHmlE2geccpCAJ4nlfXbSoIgmjtlTOR1O84qXETUbzaNtlYtmwZ7r333lntO7U71NDQEL7xjW8gk8lg06ZNdYPAJ+8fdqeabHR0dNo1Ob74xS/is5/9bPT6b7zxBgYGBmCaZiy1REeOHMHg4GAs/X611vB9n7FPkaTYDx06NOPjP/7xj7Fhw4bEHac4v18g3tgHgwALClVMuAJCCPSkDPRlDEjZmM+RlOPeyrIJNP84aa1RqVSgtYZhGNH4Ddu255xsJOU7nqqTzp1E1Hhtm2z09/fjhhtumPPzxsfHsWnTJnieh29961vTJg7Lly+HYRjYtWtX3VgOz/OwZ88erFmz5qTnLFmyBEuWLAEAHDhwAHv27IGUElLK2Jp1w9dvtHDxMcY+vSTHHgqnNU7acWrWMYojdiEEFuRsLDrenYbHfXrNKJtAc49TKpWKZvgDaq3n4QxlZyKp33EnnDuJqPE6aoB4pVLBAw88gJGREWzatAlLly6ddr9sNotVq1bhhRdeQKlUirY/99xzKJfL0yYbRESzEWeiQe3JMIxo4o1UKjWvRIOIqNO0bcvGmfjrv/5r/OY3v8GNN96Iffv21a2tkU6n8Tu/8zvR7xs2bMBXv/pV3Hfffbj55psxMjKCJ598EqtXr8ZVV13VivCJiCihONUtEdH0OirZ2LNnDwBgx44d2LFjR91jg4ODdcnGBRdcgAcffBDbtm3D1q1bkU6nceONN2Ljxo1NjZmIiJLP9314ngetNUzTPOUsiURE3aajko0tW7bMaf/LLrsMDz/8cEzREBFRN/B9H9VqFQCglEKlUoFlWchkMjCMxs5GRkSUNGz3JSIimodwTahwfSghBKrVKkqlEhf3I6Kux2SDiIhonsLpWQ3DiH4AzHpxWiKiTsVkg4iIaB4Mw0AQBFBKQQgRJR1SSrZsEFHXY7JBREQ0D6ZpwnEcCCHgui5M04RpmtFgcSKibsazIBER0TwIIeA4DgzDQLVahdYaWmvYts0B4kTU9ZhsEBERNYBpmjAMA1prAFx7g4gIYLJBRETUMFxBnoioHqtdiIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFkw2iIiIiIgoFmarA0i6oaEh+L4fy2sfOnQoltc1TRP9/f2M/RSSEPvw8PCs9kvacWrG9wsw9qk6rWwC7X+cZpLU2Dvp3ElEjcNk4wxkMhmMjIzg29/+diyvXygU8Ktf/QpXXXUV8vl8LO8RF8bePJZlIZPJnLSd5fPUGHtztKpsAsk6TlMlNfakxX2q8klE8RBaa93qIJJobGwMpVIpltd+88038ZnPfAb/9V//hSuuuCKW94gLY2+eTCaDvr6+aR9j+ZweY2+OVpVNIFnHaaqkxp60uGcqn0TUeGzZOEN9fX2xnazCpuhFixZh6dKlsbxHXBh7e2D5nB5jb704yyaQ7OOU1NiTGjcRNQcHiBMRERERUSyMzZs3b251EHSyXC6HdevWJaL/61SMvfMl+Tgx9s6X5OOU1NiTGjcRxY9jNoiIiIiIKBbsRkVERERERLFgskFERERERLFgskFERERERLHg1Ldt5vXXX8fzzz+PnTt3Ynh4GP39/Vi5ciXWr1+PBQsWnLT/zp07sW3bNnzwwQfIZDJYu3YtNmzYgHQ63dS4Pc/D448/jueffx4TExNYsWIF1q9fj9WrVzc1jpns2rULzz77LN58800cOXIE+XweF198Me644w6cffbZdfvu27cPW7Zswc6dO2GaJq6++mrcfffd6O3tbVH0rZfUsgm0f/lk2Zy/pJbPdi+bAMsnEc0PZ6NqMw8//DD279+Pa6+9FuvWrcPAwACeffZZ7NixA+vWrau7EO7evRv33XcfstksbrvtNixduhQ/+tGPsGvXLqxbt66pcf/N3/wNduzYgZtvvhnXXXcd9u7diyeeeAIrV67EokWLmhrLqfz93/89Xn31VVxzzTW44YYbcPbZZ+Oll17C008/jU9+8pPR3P/Dw8P4yle+gmq1ittuuw2f+MQn8D//8z/4+c9/jhtvvBGGYbT4k7RGUssm0P7lk2Vz/pJaPtu9bAIsn0Q0T5rayptvvqmVUidtu/XWW/Vjjz1Wt33z5s36zjvv1MViMdr2zDPP6FtvvVX/+te/bkq8Wmv93nvv6VtvvVX/+7//e7StWq3qP//zP9df+cpXmhbH6bzzzjvadd26bR9//LH+/Oc/r7/3ve9F2x555BH9h3/4h/rIkSPRtldffVXfeuut+j//8z+bFm+7SWLZ1DoZ5ZNlc/6SWD6TUDa1ZvkkovnhmI02c/nll0NKedK2fD6Pffv2RdtKpRJee+01XHfddchkMtH266+/Hul0Gi+++GLTYn7ppZcgpcTNN98cbbNtGzfddBPeffddDA0NNS2WmVx66aWwLKtu29KlS3Huuedi//790baf/exnuOaaa+pqFX/rt34rqs3rVkksm0AyyifL5vwlsXwmoWwCLJ9END9MNhKgXC6jXC6jp6cn2rZ3714opXDhhRfW7WtZFs477zzs3r27afHt3r0bZ599dt2FGwAuuugiAMCePXuaFstcaa0xNjYWHduRkREcO3YMn/jEJ07a98ILL2zqcU2Cdi+bQHLLJ8vm/LV7+Uxq2QRYPolo9phsJMBTTz0F3/exdu3aaNvo6CgAoL+//6T9+/v7cfTo0abFNzo6eso4ADQ1lrl6/vnnMTIyEh3bMNbpBpT29/ejUCjA87ymxtjO2r1shvEksXyybM5fu5fPpJZNgOWTiGaPs1HFKAgC+L4/q30ty4IQ4qTtb731FrZv3461a9di1apV0XbXdaPnTWXbdvR4M7iue8o4AKBarTYtlrnYv38/Hn30UVxyySX49Kc/DeD0xxWofZ7pHk+SbimbYTxJK5/dXDaB7imfSSybAMsnEc0Nk40Yvf3227j//vtnte8jjzyCZcuW1W3bv38/HnroIZx77rm455576h4LT97T1RS5rhs93gy2bZ8yDgBwHKdpsczW6OgoHnjgAWQyGXzta1+LZkk53XEF2vPzzFW3lM0wniR9n91eNoHuKZ9JK5sAyycRzR2TjRgtW7YM995776z2ndqUPjQ0hG984xvIZDLYtGnTSX16w/3DLgGTjY6OTtuUHZdTdT0IY2tmLLNRLBaxefNmFItFPPTQQxgYGIgeC2M91efJ5/MdUTPXLWUzjCcp5ZNls6ZbymeSyibA8klEZ4bJRoz6+/txww03zPl54+Pj2LRpEzzPw7e+9a1pLzjLly+HYRjYtWtXXX9kz/OwZ88erFmzZl6xz8X555+PN998E6VSqe7C/t577wEAzjvvvKbFcjqu6+LBBx/EgQMH8OCDD+Lcc8+te3xgYAC9vb14//33T3rurl272uqzzEe3lE0gOeWTZfOEbimfSSmbAMsnEZ05DhBvM5VKBQ888ABGRkawadMmLF26dNr9stksVq1ahRdeeAGlUina/txzz6FcLjf1gnnttdciCAI888wz0TbP8/Dss8/ioosuapuFqZRSePjhh/Hee+/ha1/7Gi655JJp9/vd3/1d/OIXv6ibdvL111/Hxx9/3PQb5XaSxLIJJKN8smzOXxLLZxLKJsDySUTzwxXE28x3v/tdvPHGG1i3bh1SqRT27t0b/Rw+fLiub/I555yDp59+Gr/85S+htcb//d//4fHHH8fKlSvxJ3/yJ02LeeHChfjoo4/w9NNPo1wu4/Dhw9i6dSv27duHv/qrv8Lg4GDTYpnJ1q1b8dxzz+Gaa67B4sWL647t3r17o5q3FStWYMeOHfjf//1fCCHw+uuvY8uWLViyZAm+9KUvde0quEksm0AyyifL5vwlsXwmoWwCLJ9END9Ca61bHQSd8IUvfAFHjhyZ9rHBwUFs2bKlbts777yDbdu2Yffu3Uin01izZg02btx4Uj/luLmui8cffxzPP/88JiYmsGLFCqxfvx5XXnllU+OYyX333Ye33nrrlI8/9dRT0f8/+ugjbN26Fe+88w5M08TVV1+Nu+66a9ppKrtFUssm0P7lk2Vz/pJaPtu9bAIsn0Q0P0w2iIiIiIgoFhyzQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQUREREREsWCyQURtTQhR9yOlRF9fH37v934PW7Zsgdb6lM995ZVX8IUvfAEXXXQR8vk8UqkUVqxYgT/6oz/CE088gSAIZhWDUgr/8i//gi9/+cv41Kc+hWw2CyEE/vRP/7RBn5KIiKgzCT3TlZqIqMWEEACAO++8E0Dtxv+DDz7AK6+8Aq01br/9dvzTP/1T3XM8z8OXvvQlbN26FQBw8cUX49JLL4Vt29izZw9+9atfIQgCfPrTn8azzz572hjGxsbQ399/0vY777wT27Ztm+cnJCIi6lxmqwMgIpqNqTf1//3f/41bbrkF27dvx/r16/EHf/AH0WMbN27E9u3bcdFFF+EHP/gBrr322rrnHjhwAA888AB+8pOfzOq9LcvChg0bcPXVV+Oaa67Be++9hz/7sz+b92ciIiLqdEw2iCiRbrrpJmzYsAE/+MEP8OSTT0bJxr/+679i+/btWLx4MX76059i8eLFJz136dKl+Lu/+zu89NJLs3qvbDaLf/zHf4x+//DDDxvzIYiIiDocx2wQUWKtXr0aALBv375o2/e+9z0AwObNm6dNNCZbs2ZNfMERERERkw0iSq5CoQAAcBwHADA8PIyf//znEELg9ttvb2VoREREBCYbRJRQWmv86Ec/AgCsXLkSAPDaa68BAM4//3z09fW1LDYiIiKqYbJBRImilMKuXbtw11134eWXX4bjONFg7ZGREQDAokWLWhkiERERHccB4kSUCOEUuJPl83n88Ic/xAUXXNCCiIiIiOh0mGwQUSKE62xIKdHT04MrrrgCn//85+vWvxgYGAAADA0NtSRGIiIiqsdkg4gSYTaL561atQoAsHv3boyNjXHcBhERUYtxzAYRdYxFixbhk5/8JLTW2L59e6vDISIi6npMNoioo3z5y18GUFtn48iRIzPu+7Of/awZIREREXUtJhtE1FFuu+023H777Th8+DA+9alP4eWXXz5pn0OHDuGee+7BHXfc0YIIiYiIuofQWutWB0FEdCrhLFRzOVV5noe/+Iu/wD/8wz8AAC655BJcdtllsCwLe/fuxS9/+UsopXDTTTfhJz/5yaxe8y//8i/x61//GkBtit33338fCxcurJsJ65VXXpl1jERERN2AyQYRtbUzSTZCL7/8MrZs2YKf/vSnOHDgAJRSOOuss/Dbv/3bWL9+PW699dZpp9Sdzrp16/DCCy/MuA9Pp0RERPWYbBARERERUSw4ZoOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLBZIOIiIiIiGLx/wNvJDpLkBuIHgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_C = ggplot(all_corrected_data_df[all_corrected_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', \n", - " y='PC2')) \\\n", - " + geom_point(aes(color='No. of partitions'), \n", - " alpha=0.1) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of partition 1 vs multiple partitions\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#1976d2']) \\\n", - " + geom_point(data=all_corrected_data_df[all_corrected_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_C)\n", - "ggsave(plot=panel_C, filename=pca_corrected_file)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:simulate_expression_compendia] *", - "language": "python", - "name": "conda-env-simulate_expression_compendia-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Human_tests/Human_sample_limma.ipynb b/Human_tests/Human_sample_limma.ipynb deleted file mode 100644 index 2332b3d..0000000 --- a/Human_tests/Human_sample_limma.ipynb +++ /dev/null @@ -1,1076 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Human sample level analysis\n", - "\n", - "Main notebook to run sample-level simulation experiment using human gene expression data from recount2.\n", - "\n", - "Make sure to run ```download_data.R``` download raw data" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "%load_ext rpy2.ipython\n", - "\n", - "from rpy2.robjects.packages import importr\n", - "from rpy2.robjects import pandas2ri\n", - "\n", - "import os\n", - "import sys\n", - "import ast\n", - "import pandas as pd\n", - "import numpy as np\n", - "import random\n", - "import subprocess\n", - "from plotnine import (ggplot,\n", - " labs, \n", - " geom_line, \n", - " geom_point,\n", - " geom_errorbar,\n", - " aes, \n", - " ggsave, \n", - " theme_bw,\n", - " theme,\n", - " facet_wrap,\n", - " scale_color_manual,\n", - " guides, \n", - " guide_legend,\n", - " element_blank,\n", - " element_text,\n", - " element_rect,\n", - " element_line,\n", - " coords)\n", - "\n", - "from sklearn.decomposition import PCA\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(action='ignore')\n", - "\n", - "sys.path.append(\"../\")\n", - "from ponyo import pipeline, utils\n", - "\n", - "from numpy.random import seed\n", - "randomState = 123\n", - "seed(randomState)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Read in config variables\n", - "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", - "config_file = os.path.abspath(os.path.join(base_dir,\n", - " \"configs\", \n", - " \"config_test_human_sample_limma.tsv\"))\n", - "params = utils.read_config(config_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load parameters\n", - "local_dir = params[\"local_dir\"]\n", - "dataset_name = params['dataset_name']\n", - "analysis_name = params[\"simulation_type\"]\n", - "correction_method = params[\"correction_method\"]\n", - "lst_num_experiments = params[\"lst_num_experiments\"]\n", - "train_architecture = params['NN_architecture']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Input files\n", - "rpkm_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"recount2_gene_RPKM_data_test.tsv\")\n", - "assert os.path.exists(rpkm_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup directories" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.setup_dir(config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Pre-process data" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Output file\n", - "normalized_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"recount2_gene_normalized_data_test.tsv.xz\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input: dataset contains 50 samples and 5000 genes\n", - "Output: normalized dataset contains 50 samples and 5000 genes\n" - ] - } - ], - "source": [ - "# Only run pre-processind step if normalized data file is NOT created\n", - "#if os.path.exists(normalized_data_file) == False:\n", - "pipeline.normalize_expression_data(base_dir,\n", - " config_file,\n", - " rpkm_data_file,\n", - " normalized_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train VAE" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Directory containing log information from VAE training\n", - "vae_log_dir = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"logs\",\n", - " train_architecture)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dataset contains 50 samples and 5000 genes\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "tracking beta\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Train on 45 samples, validate on 5 samples\n", - "Epoch 1/10\n", - "45/45 [==============================] - 4s 89ms/step - loss: 2466.1158 - val_loss: 2732.4883\n", - "Epoch 2/10\n", - "45/45 [==============================] - 4s 80ms/step - loss: 1671.1998 - val_loss: 2180.0183\n", - "Epoch 3/10\n", - "45/45 [==============================] - 4s 80ms/step - loss: 1566.8178 - val_loss: 1799.2496\n", - "Epoch 4/10\n", - "45/45 [==============================] - 4s 80ms/step - loss: 1481.5816 - val_loss: 1730.1412\n", - "Epoch 5/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1577.6224 - val_loss: 1477.2603\n", - "Epoch 6/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1444.6422 - val_loss: 1510.6864\n", - "Epoch 7/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1475.2912 - val_loss: 1676.2584\n", - "Epoch 8/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1398.2218 - val_loss: 1403.8243\n", - "Epoch 9/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1352.8320 - val_loss: 1309.4790\n", - "Epoch 10/10\n", - "45/45 [==============================] - 4s 81ms/step - loss: 1411.7664 - val_loss: 1252.2395\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAESCAYAAADe2fNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VuX5+PHPlQ1kkQGZ7BlGQoiAInuIKKAW/YlbW6nW1lXboh22+rVVa63aqlWrVq2VUlEBBSkqQ6pswwyQsCSDLCCDELLu3x/nJASEJCRPcp4k1/v1Oi+e3M957nMltrlybzHGoJRSSrmKh9MBKKWUals0sSillHIpTSxKKaVcShOLUkopl9LEopRSyqU0sSillHIpTSxKKaVcyrHEIiKxIrJSRHaJyE4Ruc8uTxCRdSKSLCKbRGSEXS4i8oKIpInINhFJrFXXrSKSal+3OvU9KaWUAnFqgaSIRAKRxpgtIhIAbAauAp4D/myMWSYi04GfG2PG269/AkwHRgLPG2NGikgIsAlIAoxdz3BjzDEHvi2llGr3vJx6sDEmC8iyXxeJSAoQjZUcAu3bgoBM+/Us4G1jZcJ1IhJsJ6fxwApjzFEAEVkBTAPeO9+zw8LCTI8ePVz+PSmlVFu2efPmPGNMeH33OZZYahORHsAwYD1wP7BcRJ7B6qq7xL4tGjhc62Ppdtn5ys9+xlxgLkC3bt3YtGmTS78HpZRq60TkUEPuc3zwXkT8gYXA/caYQuBu4AFjTCzwAPC6K55jjHnVGJNkjEkKD6834SqllGokRxOLiHhjJZV3jTEf2MW3AtWv/wOMsF9nALG1Ph5jl52vXCmllAOcnBUmWK2RFGPMs7XeygTG2a8nAqn268XALfbssFFAgT1OsxyYKiKdRaQzMNUuU0op5QAnx1hGAzcD20Uk2S57BLgTeF5EvIBS7HERYCnWjLA0oAS4HcAYc1REHgc22vc9Vj2Qr5RyD+Xl5aSnp1NaWup0KKoB/Pz8iImJwdvbu1Gfd2y6sZOSkpKMDt4r1XIOHDhAQEAAoaGhWJ0Vyl0ZY8jPz6eoqIiePXue8Z6IbDbGJNVXh+OD90qptq+0tFSTSishIoSGhjapdamJRSnVIjSptB5N/W/VPhNLQTpUnHI6CqWUapPaZ2I5kQtb3nY6CqVUC8nPzychIYGEhAQiIiKIjo6u+bqsrKxBddx+++3s2bOnzntefPFF3n33XVeEzKWXXkpycnL9N7oht1h53+J8/OHLP8Gwm8Hbz+lolFLNLDQ0tOaX9G9/+1v8/f156KGHzrjHGIMxBg+Pc/+9/eabb9b7nHvuuafpwbYB7bPFEhAJRVmw5S2nI1FKOSgtLY24uDhuvPFGBg0aRFZWFnPnziUpKYlBgwbx2GOP1dxb3YKoqKggODiYefPmER8fz8UXX0xOTg4Av/rVr3juuedq7p83bx4jRoygf//+fPXVVwCcOHGC733ve8TFxTF79mySkpLqbZn885//ZMiQIQwePJhHHnkEgIqKCm6++eaa8hdeeAGAP//5z8TFxTF06FBuuukml//MGqJ9tlh8/aH7pVarJfEW8O7gdERKtRu/W7KTXZmFLq0zLiqQR2cMatRnd+/ezdtvv01SkjWL9sknnyQkJISKigomTJjA7NmziYuLO+MzBQUFjBs3jieffJIHH3yQN954g3nz5n2nbmMMGzZsYPHixTz22GN8+umn/OUvfyEiIoKFCxeydetWEhMTv/O52tLT0/nVr37Fpk2bCAoKYvLkyXz88ceEh4eTl5fH9u3bATh+/DgATz/9NIcOHcLHx6emrKW1zxYLwISHoTgbNtXfvFVKtV29e/euSSoA7733HomJiSQmJpKSksKuXbu+85kOHTpw+eWXAzB8+HAOHjx4zrqvueaa79yzdu1arr/+egDi4+MZNKjuhLh+/XomTpxIWFgY3t7e3HDDDaxZs4Y+ffqwZ88e7r33XpYvX05QUBAAgwYN4qabbuLdd99t9ALHpmqfLRaAHpdCjzGw9s8w/Dbw6eh0REq1C41tWTSXTp061bxOTU3l+eefZ8OGDQQHB3PTTTedcz2Hj49PzWtPT08qKirOWbevr2+99zRWaGgo27ZtY9myZbz44ossXLiQV199leXLl7N69WoWL17M73//e7Zt24anp6dLn12f9ttiAZjwCJzIgU1vOB2JUsoNFBYWEhAQQGBgIFlZWSxf7vptB0ePHs2CBQsA2L59+zlbRLWNHDmSlStXkp+fT0VFBfPnz2fcuHHk5uZijOHaa6/lscceY8uWLVRWVpKens7EiRN5+umnycvLo6SkxOXfQ33ab4sFoPsl0HMc/O85SLodfDrV/xmlVJuVmJhIXFwcAwYMoHv37owePdrlz/jJT37CLbfcQlxcXM1V3Y11LjExMTz++OOMHz8eYwwzZszgiiuuYMuWLXz/+9/HGIOI8NRTT1FRUcENN9xAUVERVVVVPPTQQwQEBLj8e6iP7hX27Tp44zKY8jiMvtfZwJRqo1JSUhg4cKDTYbiFiooKKioq8PPzIzU1lalTp5KamoqXl3v9nX+u/2YN3SvMvb4TJ3QbBb0mwP+eh4u+r60WpVSzKi4uZtKkSVRUVGCM4ZVXXnG7pNJUbeu7aawJj8DrU2DDa3Dp/U5Ho5Rqw4KDg9m8ebPTYTSr9j14Xy12BPSeBF+9AKeKnY5GKaVaNU0s1SY8AiX5sOFVpyNRSqlWTRNLtZgk6DPFbrUUOR2NUkq1Wk6eeR8rIitFZJeI7BSR+2q99xMR2W2XP12r/GERSRORPSJyWa3yaXZZmoh8d1+FhprwMJw8ButfaXQVSinV3jnZYqkAfmqMiQNGAfeISJyITABmAfHGmEHAMwAiEgdcDwwCpgEviYiniHgCLwKXA3HAHPveCxc9HPpNg6/+AqUFTfz2lFLuYsKECd9Z7Pjcc89x99131/k5f39/ADIzM5k9e/Y57xk/fjz1HXX+3HPPnbFQcfr06S7Zx+u3v/0tzzzzTJPrcTXHEosxJssYs8V+XQSkANHA3cCTxphT9ns59kdmAfONMaeMMQeANGCEfaUZY/YbY8qA+fa9jTN+HpQe11aLUm3InDlzmD9//hll8+fPZ86cOQ36fFRUFO+//36jn392Ylm6dCnBwcGNrs/ducUYi4j0AIYB64F+wBgRWS8iq0XkIvu2aOBwrY+l22XnK2+cqGHQfzp8/Vc46czOoEop15o9ezaffPJJzaFeBw8eJDMzkzFjxtSsK0lMTGTIkCEsWrToO58/ePAggwcPBuDkyZNcf/31DBw4kKuvvpqTJ0/W3Hf33XfXbLn/6KOPAvDCCy+QmZnJhAkTmDBhAgA9evQgLy8PgGeffZbBgwczePDgmi33Dx48yMCBA7nzzjsZNGgQU6dOPeM555KcnMyoUaMYOnQoV199NceOHat5fvU2+tWbX65evbrmoLNhw4ZRVOTacWXH17GIiD+wELjfGFMoIl5ACFb32EXAAhHp5YLnzAXmAnTr1q3um8fPg1fGwvq/Wa+VUq6zbB4c2e7aOiOGwOVPnvftkJAQRowYwbJly5g1axbz58/nuuuuQ0Tw8/Pjww8/JDAwkLy8PEaNGsXMmTPPe+77yy+/TMeOHUlJSWHbtm1nbHv/xBNPEBISQmVlJZMmTWLbtm3ce++9PPvss6xcuZKwsLAz6tq8eTNvvvkm69evxxjDyJEjGTduHJ07dyY1NZX33nuP1157jeuuu46FCxfWeb7KLbfcwl/+8hfGjRvHb37zG373u9/x3HPP8eSTT3LgwAF8fX1rut+eeeYZXnzxRUaPHk1xcTF+fq498NDRFouIeGMllXeNMR/YxenAB8ayAagCwoAMILbWx2PssvOVn8EY86oxJskYkxQeHl53YJHxMOBK+PolbbUo1UbU7g6r3Q1mjOGRRx5h6NChTJ48mYyMDLKzs89bz5o1a2p+wQ8dOpShQ4fWvLdgwQISExMZNmwYO3furHeDybVr13L11VfTqVMn/P39ueaaa/jyyy8B6NmzJwkJCUDdW/ODdT7M8ePHGTduHAC33nora9asqYnxxhtv5J///GfNCv/Ro0fz4IMP8sILL3D8+HGXr/x3rMUi1p8DrwMpxphna731ETABWCki/QAfIA9YDPxLRJ4FooC+wAZAgL4i0hMroVwP3NDkAMfPg90fw7qXrDUuSinXqKNl0ZxmzZrFAw88wJYtWygpKWH48OEAvPvuu+Tm5rJ582a8vb3p0aPHObfKr8+BAwd45pln2LhxI507d+a2225rVD3VqrfcB2vb/fq6ws7nk08+Yc2aNSxZsoQnnniC7du3M2/ePK644gqWLl3K6NGjWb58OQMGDGh0rGdzssUyGrgZmCgiyfY1HXgD6CUiO7AG4m+1Wy87gQXALuBT4B5jTKUxpgL4MbAcawLAAvvepokYAgNnwLqXrSnISqlWzd/fnwkTJnDHHXecMWhfUFBAly5d8Pb2ZuXKlRw6dKjOesaOHcu//vUvAHbs2MG2bdsAa8v9Tp06ERQURHZ2NsuWLav5TEBAwDnHMcaMGcNHH31ESUkJJ06c4MMPP2TMmDEX/L0FBQXRuXPnmtbOO++8w7hx46iqquLw4cNMmDCBp556ioKCAoqLi9m3bx9DhgzhF7/4BRdddBG7d+++4GfWxbEWizFmLVZr41zO2ZFojHkCeOIc5UuBpa6LzjZuHqQsga9fhIm/cnn1SqmWNWfOHK6++uozZojdeOONzJgxgyFDhpCUlFTvX+533303t99+OwMHDmTgwIE1LZ/4+HiGDRvGgAEDiI2NPWPL/blz5zJt2jSioqJYuXJlTXliYiK33XYbI0aMAOAHP/gBw4YNq7Pb63zeeust7rrrLkpKSujVqxdvvvkmlZWV3HTTTRQUFGCM4d577yU4OJhf//rXrFy5Eg8PDwYNGlRzGqar6Lb59VlwC6R9Afdvg44hzRuYUm2Ubpvf+jRl23y3mG7s1sbNg7Jia/qxUkqpemliqU/XOBh0lbVg8kS+09EopZTb08TSEOPmQdkJ+PovTkeiVKvVHrvdW6um/rfSxNIQXQbA4O/B+lfhRJ7T0SjV6vj5+ZGfn6/JpRUwxpCfn9+kRZOOr7xvNcb9AnZ+YB1hPPVxp6NRqlWJiYkhPT2d3Nxcp0NRDeDn50dMTEyjP6+JpaHC+8Hg2bDx73DJveBfz+p9pVQNb29vevbs6XQYqoVoV9iFGPcLqCiF/z3ndCRKKeW2NLFciLA+MOQ62Pg6FJ1/LyGllGrPNLFcqHE/h8oya6xFKaXUd2hiuVChvWHo/4NNr0PREaejUUopt9MuE0uTZzyO+xlUlsNaHWtRSqmztcvEsiurkEP5JxpfQUgviJ8Dm96AwizXBaaUUm1Au0wsVcawODmzaZWMfQhMJaz9s2uCUkqpNqJdJpZOPl4s2prZtFXAIT2tVsvmf0BhE5OUUkq1Ie0ysQR39CYtp5iUrO8evHNBxv7MarV8+Wz99yqlVDvRLhNLYAdvvDyERVszmlZR5+6QcCNseQsK0l0TnFJKtXLtMrF4eQhj+4WzJDmTqqomThEb+5A1zezLP7kmOKWUauUcSywiEisiK0Vkl4jsFJH7znr/pyJiRCTM/lpE5AURSRORbSKSWOveW0Uk1b5ubcjzZ8ZHkVlQyuZvm3iefXA3SLwZtrwDx79tWl1KKdUGONliqQB+aoyJA0YB94hIHFhJB5gK1P5NfTnQ177mAi/b94YAjwIjgRHAoyLSub6HT4nrip+3B4uSm9gdBjDmpyCirRallMLBxGKMyTLGbLFfFwEpQLT99p+BnwO1+6lmAW8byzogWEQigcuAFcaYo8aYY8AKYFp9z+/k68WUuAg+2ZZFeWVV076ZoBhIvAW++SccO9S0upRSqpVzizEWEekBDAPWi8gsIMMYs/Ws26KBw7W+TrfLzlder5nxURwrKWdtqgsO77r0QRAP+PKZptellFKtmOOJRUT8gYXA/VjdY48Av2mG58wVkU0isqn6sKFx/cIJ6uDN4q0uWIcSFA3Db4Pkf8Gxg02vTymlWilHE4uIeGMllXeNMR8AvYGewFYROQjEAFtEJALIAGJrfTzGLjtf+RmMMa8aY5KMMUnh4dYhXT5eHkwfEsHynUc4WVbZ9G/o0gdBPGHNH5tel1JKtVJOzgoT4HUgxRjzLIAxZrsxposxpocxpgdWt1aiMeYIsBi4xZ4dNgooMMZkAcuBqSLS2R60n2qXNcjM+GhKyir5LMUF56sERkLS7ZD8Hhzd3/T6lFKqFXKyxTIauBmYKCLJ9jW9jvuXAvuBNOA14EcAxpijwOPARvt6zC5rkBE9Q+ga6Oua7jCASx8AT29Yo2MtSqn2ybEz740xawGp554etV4b4J7z3PcG8EZj4vD0EGYMjeKtrw9SUFJOUEfvxlRzWkAEJN0B61+xpiGH9m5afUop1co4PnjvDmYlRFNeaVi2w0Vb4I++Hzx9dKxFKdUuaWIBBkcH0jOsk+u6wwK6wkXfh23/hrxU19SplFKthCYWQESYGR/F1/vzyS4sdU2lo+8DT19Y/bRr6lNKqVZCE4ttZkIUxsASV7Va/LvAiDthx/uQu9c1dSqlVCugicXWO9yfwdGBrusOA6vV4tUBVj/lujqVUsrNaWKpZVZ8NNvSCziQd8I1FXYKs1stCyFnt2vqVEopN6eJpZYr4yMRgcXJLmy1XHIv+HTSVotSqt3QxFJLZFAHRvYMYdHWDKxlMy7QKRRGzIWdH0JOimvqVEopN6aJ5Swz46PZn3uCnZmFrqv0kp+Ajz+setJ1dSqllJvSxHKWywdH4O0prh3E7xgCI38Iuz6C7J2uq1cppdyQJpazdO7kw7h+4SxOzqSqykXdYQAX3wO+gdpqUUq1eZpYzmFGfBRHCkvZcLDBe1nWr2MIjLwLUhbDke2uq1cppdyMJpZzmBLXlQ7enq7tDgO4+EfgG6StFqVUm6aJ5Rw6+ngxdVBXlm7PoqyiynUVd+gMo+6G3R9D1tknLyulVNugieU8ZiVEcbyknC9Tc11b8ai7tdWilGrTNLGcx6V9wgnu6O367rAOwdZA/p6lkPmNa+tWSik3oInlPHy8PJg+JJL/7sympKzCtZWPugv8grXVopRqkzSx1GFWfBQnyytZsSvbtRX7BcElP4a9n0LGZtfWrZRSDnMssYhIrIisFJFdIrJTRO6zy/8oIrtFZJuIfCgiwbU+87CIpInIHhG5rFb5NLssTUTmuSrGi3qEEBnk59q9w6qN+KE1mK+tFqVUG+Nki6UC+KkxJg4YBdwjInHACmCwMWYosBd4GMB+73pgEDANeElEPEXEE3gRuByIA+bY9zaZh4cwIz6K1XtzOXaizBVVnuYXaG31kvpfSN/k2rqVUspBjiUWY0yWMWaL/boISAGijTH/NcZUD2qsA2Ls17OA+caYU8aYA0AaMMK+0owx+40xZcB8+16XmBkfRUWVYdmOI66q8rQRc6FDCKz6g+vrVkoph7jFGIuI9ACGAevPeusOYJn9Oho4XOu9dLvsfOVnP2OuiGwSkU25uQ2fQjwoKpDe4Z1YlJzR4M80mG8AjL4X0j6DwxtcX79SSjnA8cQiIv7AQuB+Y0xhrfJfYnWXveuK5xhjXjXGJBljksLDwy8kPmbGR7Ph4FGyCk66IpQzXXQndAzVVotSqs1wNLGIiDdWUnnXGPNBrfLbgCuBG83pg1EygNhaH4+xy85X7jIzE6IwBj7emuXKai2+/tYRxvu+gINrXV+/Ukq1MCdnhQnwOpBijHm2Vvk04OfATGNMSa2PLAauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7sy1p5hnYiPCWLR1mboDgO46AcQ3A0+uhtOHm+eZyilVAtxssUyGrgZmCgiyfY1HfgrEACssMv+BmCM2QksAHYBnwL3GGMq7YH+HwPLsSYALLDvdakZ8VHsyChkX26xq6u2ji7+3utQkAFL7gNXnV6plFIOEJcdwduKJCUlmU2bLmyKb3ZhKaP+8Dn3TuzLA1P6NU9gX/4JPn8MZjwPw29rnmcopVQjichmY0xSffc5PnjfWnQN9OPiXqEs3ppJsyXj0Q9Ar/GwbB7k7G6eZyilVDPTxHIBZiVEcSDvBNszCprnAR4ecPUrVtfY+7dDeTPMQlNKqWamieUCTBsUibenNM8WL9UCIqzkkrMLlv+y+Z6jlFLNRBPLBQjq6M34/l1Ysi2TyqpmHJvqO9na7mXT67BrUfM9RymlmoEmlgs0KyGK7MJTrD+Q37wPmvgbiEqExT+B498277OUUsqFNLFcoEkDutLJx7N5u8MAvHxg9utQVQUL74RKF58Jo5RSzUQTywXq4OPJ1EERLNtxhFMVlc37sJBecOWf4fA6WK3b6yulWgeXJBaxTBaRa2ufn9JWzUyIouBkOWv25jX/w4ZeCwk3wZpnYP/q5n+eUko10QUnFhH5nYh8cVbxUqyV7/8GUuwtV9qsS/uE0bmjd/PseHwu05+G0D7wwVw40QLJTCmlmqAxLZZrgeTqL0RkBnAZ8DRwA+AJ/Mol0bkpb08PrhgayWcp2Zw41QJjHz6dYPYbcPKotZ9YO9wtQSnVejQmscQAe2p9fRWwzxjzsDFmPvASMMkVwbmzWQnRlJZXsWJXdss8MHIoTH3COnFy3Ust80yllGqExiQWOevryVjdYNW+Bbo2OqJWYni3zkQHd2i57jCAEXdC/ytgxaOQ+U3LPVcppS5AYxLLPmAqgIiMwjoL5b+13o8GmmnPE/fh4SFcGR/Jl6l5HD1R1jIPFYFZfwX/LvD+HXCqqGWeq5RSF6AxieVl4GoR2Y51bPAhzmyxjAZ2uCA2tzcrPpqKKsPS7c1wANj5dAyBa16DYwfhk4da7rlKKdVAF5xYjDGvAN8HUoEPgcuMMacARCQECAfec2WQ7mpgZAB9u/g3/2LJs/UYDeN+AdvmQ3K7+FErpVqRRq1jMca8aYy5xhhzhzFmb63yo8aY4caY110XovsSEWbGR7Hh4FEyjrfwTsRjfwbdR8MnP4W8tJZ9tlJK1UEXSDbRzIQoAD7e2sKtFg9Pq0vMy8faYr/iVMs+XymlzsOxBZIiEisiK0Vkl4jsFJH77PIQEVkhIqn2v53tchGRF0QkTUS2iUhirbpute9PFZFbL/R7aoruoZ1IiA1mUUt3hwEERcOsl+DINvjsty3/fKWUOgcnF0hWAD81xsQBo4B7RCQOmAd8bozpC3xufw1wOdDXvuZiTSKoHtd5FBgJjAAerU5GLWVWQhS7sgpJy3FgltaA6TDih9balj2ftvzzlVLqLI4tkDTGZBljttivi4AUrKnKs4C37NvesuvHLn/bWNYBwSISiZXUVtjjO8eAFcC0RnxfjXbF0Eg8hJYfxK825THoOsRalV/oUAxKKWVziwWSItIDGAasB7oaY6rn7x6pVVc0cLjWx9LtsvOVt5guAX5c0juMRVszMU5st+LtB9e+aY2zfDAXqpp512WllKqD4wskRcQfWAjcb4wprP2esX5Lu+Q3tYjMFZFNIrIpNzfXFVWeYWZCFIfyS9ia7tDa0LC+MP2PcPBL+PJPzsSglFI4vEBSRLyxksq7xpgP7OJsu4sL+98cuzwDK4lVi7HLzld+BmPMq8aYJGNMUnh4eEPCuyCXDYrAx9OjZbd4OVvCDTDkWlj1Bzj0tXNxKKXaNccWSIqIAK8DKcaYZ2u9tRiontl1K7CoVvkt9uywUUCB3WW2HJgqIp3tQfupnJnoWkRQB28mDAjn421ZVFY5tPuwCFzxLAR3h4U/gJKjzsShlGrXnFwgORq4GZgoIsn2NR14EpgiIqlY4zfVRycuBfYDacBrwI+qnwk8Dmy0r8fsshY3KyGa3KJTrNuf78TjLX6B1hb7xdmw+Ce6xb5SqsV5NeXDIhIBVK9ZOWCMOdLQzxpj1vLdiQDVvjOrzB5vuec8db0BvNHQZzeXiQO64O/rxaLkDEb3CXMukOhEmPwo/PdXsPHv1q7ISinVQhrVYhGRi0VkA9ZYxlr7yhCR9XY3Vbvk5+3J1EFdWbbjCKcqHJ6ZNeoe6DMFlv8SjrSLPUGVUm6iMSvvRwBfAAOwuqQesK/XgIHAFyJykSuDbE1mJURTVFrBqj2un3l2QTw84KqXoUOwtcV+2Qln41FKtRuNabE8hjVTa6Ax5i5jzAv2dRdWssm172mXRvcOJbSTj3OLJWvzD4drXoW8vbDsF05Ho5RqJxqTWC4G/maMOdeU3kzgFeCSpgbWWnl5enDF0Eg+S8mmqLTc6XCg13i49AH45h3YsdDpaJRS7UBjEosnUNeRiafse9qtWQlRnKqoYsWubKdDsUx4BGJGwJL7rQPClFKqGTUmsWwF7hCRgLPfsFfR3wG06wPZE7t1JqZzB2d2PD4XT2/43t8BscZbKt2gJaWUarMak1j+D2ssZbuIPCwiV9vXI1gr7vsDT7gyyNam+gCwtWl55Be7yTkpnbvDzBcgYzN88bjT0Sil2rDGrLxfBswBfLASyPv29X9Y62KuN8a0+/3bZyZEUVllWLo9q/6bW8qgq2D47fC/5yHtc6ejUUq1UY1deb8Aa3+ui7HOYLkB60yV7kCOiLTbWWHVBkQE0r9rgPt0h1Wb9gcIHwgf3gXFOfXfr5RSF6jRRxMbYyqNMeuNMf+2rw3GmEpgDPBL14XYes1MiGLToWMcPlridCineXewttg/VQgf/hCqqpyOSCnVxrjkzHt1bjPjowBYss3NWi1dBsK0J2HfF/DVC05Ho5RqYzSxNKPYkI4kdgt2j8WSZxt+G8RdZQ3kp29yOhqlVBuiiaWZzUqIZveRIvYcKXI6lDOJwIznISDKmoJc6tABZUqpNkcTSzObPiQSD4HFWx08AOx8OgTD7NehIN1aPKlb7CulXKBB2+aLyB0XUOfwRsbSJoUH+DK6TxiLt2by0NT+WOebuZHYETDxl/D5Y9B7AiTe4nRESqlWrqHnsfwd6+z5hv5W1D99a5mVEM1D/9nKN4ePk9its9PhfNfoB2D/alj6c4gdCeH9nY5IKdWKNTSxTGjWKNq4ywZ15ZHG9MvFAAAgAElEQVQPPVicnOmeicXDw9oF+eXR1njLDz6zpiUrpVQjNCixGGNWN3cgbVmAnzeTBnTh422Z/OqKgXh5uuHQVkAEXP03eHe2dfLkFX9yOiKlVCvl2G84EXlDRHJEZEetsgQRWSciySKyyT5UDLG8ICJpIrJNRBJrfeZWEUm1r1ud+F4aYlZCFHnFZXy9P9/pUM6v7xS4+MfWccYpS5yORinVSjn5p/M/gGlnlT0N/M4YkwD8xv4a4HKgr33NBV4GEJEQ4FFgJDACeFRE3LCvCcb370KAr5f7bfFytkmPQtQwWPRjOH7Y6WiUUq2QY4nFGLMGOHp2MRBovw4Cqn8LzwLeNpZ1QLCIRAKXASuMMUeNMceAFXw3WbkFP29PLhscwfIdRygtr3Q6nPPz8oHvvQ5VlfDBnVBZ4XRESqlWxt06++8H/igih4FngIft8mig9p/P6XbZ+crd0qyEKIpOVbBqj5tv/hjaG678M3z7Nbw5DVY9CQe+hPJSpyNTSrUCDZ0V1lLuBh4wxiwUkeuA14HJrqhYROZidaPRrVs3V1R5wS7uFUqYvy+LkjOZNjjSkRgabOi1cCIHts63EgsGPH0h5iLoMRp6XGq91tljSqmzuFtiuRW4z379H6z1MwAZWNv0V4uxyzKA8WeVrzpXxcaYV4FXAZKSkhxZZ+Pl6cGVQyP514ZvKSwtJ9DP24kwGu7ie6zr5HGr9XJwrXWt+SOsfgo8fSA6qVaiGQE+HZ2OWinlMHdLLJnAOKzkMBFItcsXAz8WkflYA/UFxpgsEVkO/L7WgP1UTnefuaWZCVH846uDLN9xhGuTYuv/gDvoEAz9L7cusPYV+3bd6UTz5bNWsvHwhujhpxNN7Ejw6eRs7EqpFudYYhGR97BaG2Eiko41u+tO4HkR8QJKsbuugKXAdCANKAFuBzDGHBWRx4GN9n2PGWPOnhDgVobFBhMb0oHFWzNbT2I5m18Q9LvMugBKC+Hw+tOJZu1z8OWfwMMLohJrJZpR4OvvbOxKqWYnph1uPJiUlGQ2bXJuq/hnlu/hpVVprH9kMuEBvo7F0WxOFdmJ5n9WosncAlUVIJ7WVOYeo6HHGKtF4xdYf31KKbcgIpuNMUn13eduXWHtwsyEKP66Mo1PtmVy2+ieTofjer4B0GeydQGUnTgz0Xz9EvzveRAPiEw4nWi6jbJaQ0qpVk1bLA6Z9twaOvp48sGPRjsahyPKSiB9w+lEk7EJKsusRBMx1Oo263EpdLvYGt9RSrkFbbG4uVkJ0Tz16W6+zS+hW2g7m0nl0xF6jbcugPKTkL7xdKLZ8Bp8/VdAIGLImYmmY4hjYSulGkZbLA5JP1bCpU+t5GeX9eeeCX0cjcXtlJdarZjqyQDpG6GiFBDoOhgS5sCoH1mnYCqlWoy2WNxcTOeOJHXvzOLkTE0sZ/P2O91KAag4BRmbrRZN2mew/BHI2wtXPAsens7GqpT6Dnfb0qVdmZUQxZ7sInYfKXQ6FPfm5QvdL4FxP4M7PoUxP4XN/4AFt+g2M0q5IU0sDpo+JBJPD3H/HY/diQhM+g1Mewp2fwz/vMbaGUAp5TY0sTgo1N+XS/uEsTg5k/Y41tUko+6ydmE+vAH+cQUUHXE6IqWUTROLw2YlRJFx/CRbvj3mdCitz5DZcOMCOHoAXp8C+fucjkgphSYWx00dFIGvl4d2hzVW74lw28fWIszXp0LGFqcjUqrd08TiMH9fLybHdeWTbVlUVFY5HU7rFJ0Id/zXWh/z1gzY94XTEalzKT8Jye/BiTynI1HNTBOLG5gZH0X+iTL+75MUDuSdcDqc1imsj5VcOveAd6+D7e87HZGqZgzsXgovjoSP7oI3L9cxsTZOE4sbmNC/C9OHRPD21weZ8MwqZr/8FfM3fEtRabnTobUugZFw2ycQOwIWfh/W/c3piFT+Pnj3Wpg/xzoU7vI/QmEmvDkdCjKcjk41E11570ayC0v58JsM/rPpMPtyT+Dn7cG0QRHMHh7Lxb1D8fTQleYNUl5qJZbdH1trXib+Wlfpt7SyE7DmGWtrHi8/GP8wjLgTPL3h2/Xw7mxre55bl0CwMye6qgvX0JX3mljckDGGrekFvL/5MIuTMyksrSAqyI9rEmP43vAYeobp4Vn1qqqETx60FlIOuxmufA48daOJZmcM7PoIlv8SCjMgfg5M/h0EdD3zvvTN8M+rwTcIbltidWEqt6eJpQ7unlhqKy2v5LOUbN7fnM6avblUGRjevTOzh8dwxdBI9z/e2EnGwMrfw5qnof90mP2G1R2jmkfOblj2Mziwxto8dPoz1lEI55OZDO9cBd4drZZLaO+Wi1U1iiaWOrSmxFJbdVfZ+5vTScspxtfLg2mDI5g9PIZLeodpV9n5bHgNlv7M+iU35z3o0Ln+z6iGKy2E1U/B+r+Bjz9M+jUMv71h+7gd2Q5vz7KOtb7tYwjr2/zxqkbTxFKH1ppYqhlj2JZewPub01mUnEFhaQWRQX5ckxjN9xJj6BWux/9+x84P4YO5ENoHbloIgVFOR9T6GQPb/g0rfgPFOTD8Vpj4G+gUemH15KTAWzOt17cugS4DXB+rcgm3Tywi8gZwJZBjjBlcq/wnwD1AJfCJMebndvnDwPft8nuNMcvt8mnA84An8HdjzJP1Pbu1J5baSssr+Twlh/c3H2a1dpXVbf9qmH+jdXjYTR9AeD+nI2q9srZZrcDD6yB6OEz/o/VvY+XutdYgVVXALYsgYnD9n1EtrjUklrFAMfB2dWIRkQnAL4ErjDGnRKSLMSZHROKA94ARQBTwGVD9W2EvMAVIBzYCc4wxu+p6dltKLLXl1OoqS9WusnPLTLZmJFVVwo3vQ0wTfhm2RyVHrXGrTa9bXYqTfwcJN4KHC1Yu5O+zkkt5Cdz8EUQlNL1O5VJun1gARKQH8HGtxLIAeNUY89lZ9z0MYIz5g/31cuC39tu/NcZcdq77zqetJpZqtbvKFm/NpOBkORGBdlfZ8Bh6t/eusvx91q7IxTlw3TvQd7LTEbm/qir45h34/Hdw8hhcdCdMeNj141VHD1jJ5VQh3Pxh01pByuUamljcbYFkP2CMiKwXkdUicpFdHg0crnVful12vvLvEJG5IrJJRDbl5uY2Q+juQ0SIjw3m8asGs/6RSbx4QyJxUYH8bfU+Jv1pNde89D/+tf5bCk620wWYob2tVfqhveG9/wfbFjgdkXtL3wx/nwRL7oWw/vDDNTD96eaZBBHSE25fCn7B8PZV1u7VqtVxt8TiBYQAo4CfAQtEXLOyzRjzqjEmyRiTFB4e7ooqWwU/b0+uGBrJG7ddxLqHJ/HI9AEUlVbwyIfbGfHEZ9z73jes2ZtLZVU7m8QR0BVuWwrdLoYP7oSvX3Q6IvdzIg8W/Rj+PtFak3LNa9Yv/Yghzfvc4G7WczqFwTtXw6Gvm/d5yuXcbcVYOvCBsfrnNohIFRAGZACxte6Lscuoo1ydpUugH3PH9ubOMb3YnlE9qyyTxVsziQj042p7VlmfLu2kq8wv0Bpn+XCuddxxcbY1ZnCBf8vkFp0ir/gUAyICcNHfQc6qrIDNb8IXj1sr6C/5CYz9ufXzailBMVbif2uG1W15wwLoOablnq+axN3GWO4CoowxvxGRfsDnQDcgDvgXpwfvPwf6AoI1eD8JK6FsBG4wxuys67ltfYzlQpyqqJ5Vls5qu+UyrFsws4fHcOXQKII6tINZZVWV1gynTa9D/A0w8wVr65E6FJSU8+nOLJZszeKrfXk1s/HumdCbCf27tN4Ec+hr62eRvR16jrNme4X3dy6e4hxrKvKxgzDnX9YxCcoxbj94LyLvAeOxWiTZwKPAO8AbQAJQBjxkjPnCvv+XwB1ABXC/MWaZXT4deA5ruvEbxpgn6nu2JpZzyyks5aNka1bZ3uxifLw8GN8vnClxXZk4oAuh/r5Oh9h8jIHVT8Oq30Pfy+Daf1jb8Ndy4lQFn6Vks2RrJqv35lJeaege2pEZQ6MI6eTD62sPkHH8JAMjA/nR+N41R0+3CkVHrPUo2/4NgTFw2RMQN8s99lg7kWctosxLhevfhb5TnI6o3XL7xOIkTSx1M8awI6OQhVvSWb7zCFkFpXiI9Rf55IFdmRzXte3OLNv0BnzyU4hOghv+Tal3EKv25LJkWyafp2RTWl5FRKAfM+IjmREfxZDooJrWSXllFYuSM3lpVRr7c0/QM6wTd4/rzVXDovHxcrfhTFtlubViftVTUHkKLrkXxjwIPm62H13JUSu55O6G696G/pc7HVG7pImlDppYGs4Yw87MQlbsymbFrmx2ZRUC0Cu8E1PsJJPYrXPr+cu8ASp2LMLjg++T4xXFTad+QdqpYEI7+TB9iJVMkrp3xqOO77eyyvDfnUd4cVUaOzIKiQzyY+7YXlx/UTc6+DRgm5OWsn8VLP055O2BvlNh2pPuvV/XyWPwzjVwZBvMfhPiZjodUbujiaUOmlgaL+P4ST5PsZLMuv35lFcaQjr5MHFAFyYP7MrYfmF09HG3OSH1q6wybDhwlCXbMlm2PYv+pVt5zedPVHr5k3rZOwxLHImX54W1OowxrEnN48Uv0thw8CihnXy449Ke3Hxxd2d3RChIt3Yf3vWRtavwtKeg/zTn4rkQpQXwz9mQsRm+9xoM/p7TEbUrmljqoInFNQpLy1mzN5cVu7JZuTuHwtIKfLw8uLRPmNVlNrALXQL9nA7zvIwxJB8+zpKtWXyyPZPswlN08PZkclxXZgyNZHxwNj7vXQuVZdaspNgRjX7WhgNHeWlVGqv25BLg68Utl3Tn9tE9CWvJcauKU/DVX+DLP4Gpss6queRe8Hbf/0bndKrIOiX08Dq4+hUYep3TEbUbmljqoInF9corq9h48GhNl1n6sZMAxMcGM2VgF6bERdCvq7/js6WMMew+UsSSrZks2ZbJ4aMn8fH0YFz/cGbGRzFpYJczW1xHD1jTXQuz4Lq3oN9lTXr+jowCXl61j6U7svD18uD6i7oxd2wvooKbeTv/vf+FT38BR/fDwBkw9Qno3L15n9mcyk7Av/4fHFwLV70ECTc4HVG7oImlDppYmpcxhr3ZxazYdYQVKTlsPXwcgNiQDkwe2JUpcV25qEcI3hfYtdQU+3OLWbI1iyXbMknLKcbTQxjdJ4wZQyOZOiii7mnVxbnW/mJHtsOsFyFhTpPj2ZdbzMur9vHRNxmIwDXDYrhrfG/XH+J29AB8+jDsXQahfeHyp6DPJNc+wyllJTD/BmusaMZzMPw2pyNq8zSx1EETS8vKKSzls5QcPkvJZm1aHmUVVQT6eTFhQBemxHVlXL9wApphzCHj+Ek+tlsmOzKsSQcjeoYwIz6KywdHXFg31Kkia2fkA6thymMw+j6XxJh+rITX1uxn/sbDlFdWMX1IJD8a34e4qEYuRqyssFbJF6TD/pXwvxfAwwvG/wJG3g1ePi6J222Ul8K/b4K0FdbBYiPudDqiNk0TSx00sTinpKyCNXvz+Cwlmy9253D0RBnensKoXqFMievKpIFdiW5Ct1Bu0SmWbs9iydZMNh06BkB8TBAz4qO4YmgkkUFN6HKqOAUf3gU7P4CLfwxTHnfNrr523K+vPcA/1x2i+FQFEwd04Z4JfRje/az9uMpOwPHDVuIo+NZ+bX99/DAUZVrjJ9UGz4apj7ft82cqTsGCW61W2bQnYdTdTkfUZmliqYMmFvdQWWXY8u0xPrPHZfbnnQAgLjKQKXFWl9mgqMB6x2XOtQq+f9cAZiZEceXQSLqHurB7qaoKPp0HG16Bof/P6hqrZ5V+gxlDYf4Rlq3dwMatWwkqy2Z4cDEjOp8gtDIHOX4YTh498zMeXlbSCIq1rmD736AYa+pwezlLvqIMFt4BKUushD/6XqcjapM0sdRBE4t72pdbzGe7svksJZtNh45hDEQG+THJHvwf1SsEXy9rHUj1KvjFyZmsST29Cn5mfBRXDo2if0RA8wVqjDWz6ovHoc9ka8FeQxYUVlZYLYqaVsbh06+rWyEVJ8/4SAl+pFeFUugbSZfY3sT06I9HcDcrcQTHQkBkw44Abg8qy61TQnd+ABN/DWMfcjqiNkcTSx00sbi//OJTfLE7hxW7svkyNY+T5ZX4+3oxrp+1M/Xnu61V8JFBflw59Lur4FvElrdhyX0QNQxu+I81bbe6S6qmmyr9dOI4u5sKoGPY6VZGdcKo1fI45R3IB99k8vKqfXx7tIS+Xfz50YTezBgadcHratqFygr46G7YvgDGzYPx89xjW5o2QhNLHTSxtC6l5ZV8tS+PFbusCQBVVabBq+Cb3e6l8P7tVsKoLDvzPfGEwOhaiSO2VuKwk4h3w8Z8Kiqr+GR7Fi+t3Mee7CJiQzrww7G9mT08Bj9v92uxGGMoLK3gSEEpWQUnOVJQSmZBac0u0GP7htPD1TPgqlVVwuKfQPK71lqdib/W5OIimljqoIml9ar+36vT62HOcHgjbP+PdcZLUPN2U1VVGb7YncNfV6aRfPg4XQJ8uXNML24Y2Y1Ovi2z44ExhoKT5WTZSSOroNROIKV2ArESSUlZ5RmfE4EAXy8KSysA6BbSkbH9whjTN5xLeoe6dmZgVRV8fD9secva9n/K45pcXEATSx00sajWzhjD1/vyeXFVGv9Lyyeogze3j+7BbZf0ILhj46cUG2M4eqLsdLIoLOVIwUmyjtuJo9BKJqXlZ3bpeQh0CfAjMtiPyCA/IgI7WP8GWV9HBnegS4AvXh7CofwS1qTmsmZvLl/ty6ekrBIvDyGxW2fG9gtjbL9wBkcFNb0lWlUFy34GG/9uTbWe9gdNLk2kiaUOmlhUW7Ll22O8tHIfn6Vk08nHkxtHdecHl/b8znY6VVWG/BNlZ7QqrARyslbSKKWs4syk4ekhRARaSSIiyI/IQCtR1E4c4f6+jRrzKauoYvOhYzWJZmemtd4opJMPl/YJY0xfK9F0bezWQMZYC0TXvwxJ37fWurhoinh7pImlDppYVFu0+0ghL6/ax5KtmXh5ejB9cARVhpruquzCUsorz/z/u7en0DXQblUEnZksIoI6EBXkR6i/b4vtXp1XfIq1qXms2ZvLmtQ88opPAVjjMv3CGds3nKQenS9sXMkY66yZr16AxFvgyuc1uTSSJpY6aGJRbdmh/BP8bfV+lm7PIrijNxGBpxNFZNDpJBIR5EdoJx9nJz/UoarKkHKkkC/tRLPp4DHKKqvw8/ZgZM9QxvYLZ1y/MHqHN2APOmPgi/+DL5+xTgmd9Vedpt0ImljqoIlFqdanpKyCdfvzWbPXSjTVC2qjgvwY2y+cMX3DubRPGEEd65gEsOop65TQIdfCVX8Dz9Z3xIOTGppY9KeqlGoVOvp4MXFAVyYO6ArA4aMlNa2ZT7ZnMX/jYTzE2lF7bN9wxvYLJz4m6Myxn/G/sFoqXzwOVRVwzWuu2zlB1XDyzPs3gCuBHGPM4LPe+ynwDBBujMkTq537PDAdKAFuM8Zsse+9FfiV/dH/M8a8Vd+ztcWiVNtSUVlF8uHjrNmby+rUPLalH8cYCPTzYnQfawLA2H7hp/eh+98LsOLXMOBK6zTKtrY5ZzM4VVGJn7eX27dY/gH8FXi7dqGIxAJTgW9rFV8O9LWvkcDLwEgRCQEeBZIAA2wWkcXGmGPNHr1Sym14eXqQ1COEpB4hPDi1P8dLylibZk8C2JvHsh1HAOgd3slOMtczeooXPisehgW3WGfteLXgoWturqrKcCD/BFsPH2fr4eMkpxeQYs/YawhHx1hEpAfwce0Wi4i8DzwOLAKS7BbLK8AqY8x79j17gPHVlzHmh3b5Gfedj7ZYlGo/jDGk5hTXzDRbvz+fUxVV+Hh6MC98LXcc/ytlHbtSNXAWfgnXQsxF7W69S05RKVsPF5B8+BhbDxewNf04RfZC1o4+ngyJDiIhNphHrohz+xbLd4jILCDDGLP1rFke0cDhWl+n22XnKz9X3XOBuQDdunVzYdRKKXcmIvTrGkC/rgH8YEwvSssr2XDgKGv25jI/tSNryjoyp/ILxm96Eza/Sq5nF/aETOJ4rysJ6TOSPhEBhPv7utduD01w4lQF29Kt5FHdIsksKAWsNUsDIgKYER9FQkww8bHB9OniXzPd/JEGPsNtEouIdMSKe2pz1G+MeRV4FawWS3M8Qynl/vy8PWvGXACyC0eyK+tO5mcewTftU3rnrmBk7gK8c9/j26/DWVg1ipVel1LZZQh9uwbQp4s/fbr407drAFFBfm6dcMorq9hzpKhWEikgNaeIKvs3YLeQjgzvEcIdMVaLZFBUEB18mj4N220SC9Ab6AlUt1ZigC0iMgLIAGJr3Rtjl2VgdYfVLl/VArEqpdqIroF+1sr+/l1gwlDg55iSYxQmf0TA9oX88MhS7jZLyMyPZmnuKP5TehF7TCwgdPLxpHd1oukSQF/7dWxIxxZbVFrNGMPhoydJrtUS2ZFZULP9TueO3sTHBjNtcAQJscEMjQki9EJOUb0AbjfGUuu9g5weY7kC+DHWrLCRwAvGmBH24P1mINH+2BZguDHm6Nn11aZjLEqpBjuRD7uXwI4P4OCXYKo4GdSH1PAprPEew7qiMNJyijlSWFrzER8vD3qHVycc/5qE0z20Ez5erln1f/REGVvTj5P87fGaFsmxknIAfL08GBwdRHxMMPGxQQyL7UxsSIcmt67cfoGkiLyH1doIA7KBR40xr9d6/yCnE4tgzSCbhjXd+HZjzCb7vjs43fX3hDHmzfqerYlFKdUoxbmQsgh2fAiH/gcY6DIIBl9NUd+ZpJZ3IS27mLTcYlKzi0jNKSb92OnD27w8hB5hnWoSTXVLp1d4pzq3qTlZVsnOzAKSDx9na3oBWw8f59ujJYA1z6BvF3/iY4JJ6BZMfEww/SMC8G6G83rcPrE4SROLUqrJCrMgZbHVkjm8ziqLGAqDr4FBV9ccC11SVsH+3BOk5hSRml1MWo51Hcw/UTPWIWKNd1gJxxrHqaoyNd1au48UUWnfHBnkR0KsNbAeHxPMkJgg/FvoyARNLHXQxKKUcqmCdNj5Eez8EDLs3y1RiaeTTFDMdz5yqqKSg3kl30k4+/OKazYLDfD1shJIbHW3VnDjd3p2AU0sddDEopRqNscOWQlm54eQlWyVxYywkkzcVRAYWefHKyqrOGR3c/UM7eRWm4RqYqmDJhalVIvI32cnmY8gezsg0O1iO8nMAv8uTkd4QTSx1EETi1KqxeXutZPMB5C7G8QDelxqdZUNnAWdQp2OsF6aWOqgiUUp5ajsXaeTTH4aiCf0GmclmQFXQscQpyM8J00sddDEopRyC8bAke2nk8yxg+DhBb0nQr/LIHq4NZ3ZTXZf1vNYlFLK3YlA5FDrmvQbyPzm9JhM6n+tezx9oOtgiE60ZppFDYPw/m59Aqa2WJRSyt0YA8cPQcYWyNwCmcnWVVZkve/dESLjrUQTbSebkF7NviuzdoXVQROLUqrVqaqyxmMyt9gJ5xs4sg0q7K1k/IIgMuHMlk1QjEuTjXaFKaVUW+LhAeH9rCv+equsstyaYVbTsvkGvvqLdewyQKdwK8FUJ5roxBaZ4qyJRSmlWitPb4gYYl3Db7XKykshe+fpRJOxBVJXYB2yCwTGQFTC6S60qGHQobNLw9LEopRSbYm3H8QMt65qp4qtbrPqLrTMLbD749Pvh/Q6s2UTGQ++/o0OQROLUkq1db7+0P0S66p28pg9KcBONt+uhx0LrffEA8L6n+4+ixpmzUxrIE0sSinVHnXoDL0nWFe14pzT3WeZ30DaCtj6L+s9j4anC00sSimlLP5drIWZ/S6zvjYGCjNOTw7gdw2qRhOLUkqpcxOxpiwHxUDcTBqaWFx/xJhSSql2zbHEIiJviEiOiOyoVfZHEdktIttE5EMRCa713sMikiYie0Tkslrl0+yyNBGZ19Lfh1JKqTM52WL5B9YZ9rWtAAYbY4YCe4GHAUQkDrgeGGR/5iUR8RQRT+BF4HIgDphj36uUUsohjiUWY8wa4OhZZf81xthLRlkHVJ/nOQuYb4w5ZYw5AKQBI+wrzRiz3xhTBsy371VKKeUQdx5juQNYZr+OBg7Xei/dLjtfuVJKKYe4ZWIRkV8CFcC7LqxzrohsEpFNubm5rqpWKaXUWdwusYjIbcCVwI3m9NbLGUBsrdti7LLzlX+HMeZVY0ySMSYpPDzc5XErpZSyuFViEZFpwM+BmcaYklpvLQauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7d03EoppU5zbIGkiLwHjAfCRCQdeBRrFpgvsEKsMwTWGWPuMsbsFJEFwC6sLrJ7jDGVdj0/BpYDnsAbxpid9T178+bNxSKypxm+raYKA/KcDuIsGlPDaEwN545xaUwN078hN7XLg75EZFNDDqtpae4Yl8bUMBpTw7ljXBpTwzQ0JrfqClNKKdX6aWJRSinlUu01sbzqdADn4Y5xaUwNozE1nDvGpTE1TINiapdjLEoppZpPe22xKKWUaibtLrG4427I59rp2UkiEisiK0Vkl4jsFJH7nI4JQET8RGSDiGy142rY4RAtwN4U9RsR+bj+u5ufiBwUke0ikiwim5yOB0BEgkXkfXsH8xQRudjhePrbP5/qq1BE7ncypmoi8oD9v/EdIvKeiPi5QUz32fHsrO/n1K66wuzdkPcCU7D2FdsIzDHG7HI4rrFAMfC2MabhB0s3XzyRQKQxZouIBACbgavc4OckQCdjTLGIeANrgfuMMeucjAtARB7k/7d3/zFXlnUcx98fo6bALLOfyBIyKiwdmDMH4SqszURWuVatH0v7ZYLOZv/YWrHW2qiG/aFrK0idgS1B5ywjdJqVLdZEmi76oVKKEqCBGqSQfvrjug7dPJwHD3DwPnE+r+3eee77XM99vs+z5znfc1/XdX8vOBU42vacAYjnb8CptgfmPghJ1wlktg0AAAZNSURBVAC/tr243tA81va2tuOC3e8NjwBvt/33lmM5jvK3faLtf9d7+G6xfXWLMb2VUuT3NGAnsBK4wPb93doP2xXLQFZD7lbpuU22N9peU79+CljHABT3dPGvuvviurX+yUjSROBsYHHbsQwqSS8FzgCWANjeOShJpZoNPNB2UmkYAxwlaQwwFni05XimAqtt76gV6O8EPjha42FLLKmGvJ8kTQKmA6vbjaSoXU5rgc3ArbYHIa7vUkoRPdd2IA0GVkm6W9Ln2g4GmAxsAa6qXYaLJY1rO6iGjwDXtR0EgO1HgO8ADwEbgSdsr2o3Ku4DZkk6VtJY4H3sWadxD8OWWGI/SBoPrAAusf1k2/EA2H7W9jRKwdHT6iV6ayTNATbbvrvNOLp4h+1TKIvgzavdrW0aA5wCfM/2dGA7MChjnC8B5gLXtx0LgKRjKD0pk4EJwDhJH28zJtvrgIXAKko32Frg2dHaD1ti6bka8rCrYxgrgKW2b2g7npFqN8od7L0K6QttJjC3jmn8GHi3pB+1G9LuT73Y3gzcSOkGbtMGYEPjCnM5JdEMgrOANbY3tR1IdSaw3vYW27uAG4AZLceE7SW232b7DGArZby6q2FLLKmG3IM6SL4EWGd7UdvxdEh6paSX1a+PokzC+FObMdm+zPZE25Mof0+3227106WkcXXSBbW76b2UrozW2P4H8LCkThHD2ZSisoPgowxIN1j1EHC6pLH1f3E2ZZyzVZJeVR9fRxlfWTZa29aqG7fB9n8OpBryodat0rPtJS2GNBP4BHBvHc8A+LLtW1qMCeC1wDV1Bs8RwE9sD8T03gHzauDGWiF8DLDM9sp2QwLgImBp/VD3IHBey/F0Eu97gM+3HUuH7dWSlgNrKNXc72Ew7sJfIelYYBelwvyoky+GarpxREQcesPWFRYREYdYEktERPRVEktERPRVEktERPRVEktERPRVEkvE/zlJ75RkSZ9pO5YISGKJ2KfGm/ZoW+t32UcMmqG6QTLiICwBftnl+IMvcBwRAy+JJaI3v7Odq5OIHqQrLKIPJC2oXWPTJX1f0mOStkv6qaTXd2l/nKSrJW2S9ExdrfOLtTbUyLYn15UXt0h6WmX10ytqaZSRbedLeqCec62kd414/kWSLqurOO6QtK22m9ff30gMs1yxRPRmvKRXdDn+lO1nGvtXAU8CX6es9XMR8CtJJ9v+J0Ctt/Rb4DXAlZTutDnAIuAEYH7nZJJmUWrbbacsJLYeOB44l7IA1M7Ga18AjKfUldoJXALcJOl421trm6/W7er6ekcCJwKzaiwRB892tmzZRtkoxUG9j+1Ttd2Cun8XMKbx/efU4wsbx75Vj53bOCZKeXQDJ9VjR1BKkz8OTOgSm0bE+DAwvvH8tHr8wsaxe4Cftf17zXZ4b+kKi+jNIkoV3JHbL0a0u8Jl6VYAbN8M/JWSYDrmUpbIXtFoZ+DbdbfTdhowBbjS9l5L09bvabrW/1u6GdtrKVdPJzTabAPeImnqPn/aiIOQrrCI3qyzfVsP7f48yrEzG/uTgFu7tOusTzK5Pk6pj/f2EiDQbb32rcDLG/tfAW4C/ijpL8BtwHLbd/T4GhHPK1csEYeP0ZaK3T0hwPZdlCuYj1G67d4P3C6pzfV/4jCTxBLRX28a5dj6xv564M1d2k1tPA+lCw3gpP6EVth+wvYy2+dTJgIsBc6X9MZ+vk4MrySWiP6aL2l3F7OkcyhdWs2VLm8G3iDpA412Ar5UdzvLZa+lJJd5kiaMfKFuU5OfT52RtlsdD+osW3zM/p4vopuMsUT05nRJT3c5vsV2cwB/HKVr6XrKdOOLgY2UmWAdC4EPA9dJ6kw3Phs4izJQfx+A7eckfRZYCfxB0g8oVzMTgQ8BMyiD8ftjnaTfAL8HNlGupuZTxoHW7Oe5IrpKYonozafrNtJq9pwZdh5wIWX68ZGUMjAX236s08D245JmAN8EPgkcTUkulwKXN09u+05JM4GvAV+o59wA/BzYcQA/x+WUWWeXUu55eRT4IfAN27sO4HwRe8ma9xF9IGkB5c1/iu37Ww4nolUZY4mIiL5KYomIiL5KYomIiL7KGEtERPRVrlgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKv/gtMPLUqC1psCwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Train VAE\n", - "pipeline.train_vae(config_file,\n", - " normalized_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation experiment without noise correction" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 12.7s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 12.8s remaining: 19.2s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 13.0s remaining: 8.6s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 13.2s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 13.2s finished\n", - " score\n", - "number of experiments \n", - "1 0.999876\n", - "5 0.719257\n", - "50 0.622500\n", - " score\n", - "number of experiments \n", - "1 0.000012\n", - "5 0.006044\n", - "50 0.009901\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999853 0.999898\n", - "5 0.707411 0.731102\n", - "50 0.603094 0.641906\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "corrected = False\n", - "pipeline.run_simulation(config_file,\n", - " normalized_data_file,\n", - " corrected)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation with correction applied" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 7.5s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 7.8s remaining: 11.6s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 7.9s remaining: 5.3s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 8.1s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 8.1s finished\n", - " score\n", - "number of experiments \n", - "1 0.999876\n", - "5 0.916577\n", - "50 0.396612\n", - " score\n", - "number of experiments \n", - "1 0.000012\n", - "5 0.010577\n", - "50 0.007911\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999853 0.999898\n", - "5 0.895845 0.937309\n", - "50 0.381106 0.412117\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "corrected = True\n", - "pipeline.run_simulation(config_file,\n", - " normalized_data_file,\n", - " corrected)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make figures" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ind = [0,1,2]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# File directories\n", - "similarity_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "similarity_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "permuted_score_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_permuted.npy\")\n", - "\n", - "compendia_dir = os.path.join(\n", - " local_dir,\n", - " \"experiment_simulated\",\n", - " dataset_name + \"_\" + analysis_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "svcca_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".svg\")\n", - "\n", - "svcca_png_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".png\")\n", - "\n", - "pca_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_uncorrected_\"+correction_method+\".svg\")\n", - "\n", - "pca_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_corrected_\"+correction_method+\".svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Load pickled files\n", - "uncorrected_svcca = pd.read_pickle(similarity_uncorrected_file)\n", - "err_uncorrected_svcca = pd.read_pickle(ci_uncorrected_file)\n", - "corrected_svcca = pd.read_pickle(similarity_corrected_file)\n", - "err_corrected_svcca = pd.read_pickle(ci_corrected_file)\n", - "\n", - "permuted_score = np.load(permuted_score_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Concatenate error bars\n", - "uncorrected_svcca_err = pd.concat([uncorrected_svcca, err_uncorrected_svcca], axis=1)\n", - "corrected_svcca_err = pd.concat([corrected_svcca, err_corrected_svcca], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Add group label\n", - "uncorrected_svcca_err['Group'] = 'uncorrected'\n", - "corrected_svcca_err['Group'] = 'corrected'" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
scoreyminymaxGroup
number of experiments
10.9998760.9998530.999898uncorrected
50.7192570.7074110.731102uncorrected
500.6225000.6030940.641906uncorrected
10.9998760.9998530.999898corrected
50.9165770.8958450.937309corrected
500.3966120.3811060.412117corrected
\n", - "
" - ], - "text/plain": [ - " score ymin ymax Group\n", - "number of experiments \n", - "1 0.999876 0.999853 0.999898 uncorrected\n", - "5 0.719257 0.707411 0.731102 uncorrected\n", - "50 0.622500 0.603094 0.641906 uncorrected\n", - "1 0.999876 0.999853 0.999898 corrected\n", - "5 0.916577 0.895845 0.937309 corrected\n", - "50 0.396612 0.381106 0.412117 corrected" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Concatenate dataframes\n", - "all_svcca = pd.concat([uncorrected_svcca_err, corrected_svcca_err])\n", - "all_svcca" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SVCCA " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAHVCAYAAABMlGVAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xl8TFf/B/DPnUkm+56QROwRalf7UkssDYJYKrGUUJSilPLor7su+rQqtFpVRZGWx77UVsRWS1BblRKEiERkl32SzPn9kc7ImEkyiWQm4vN+vbzaOXf73jN3br733HPPlYQQAkREREREVGnITB0AERERERFpY5JORERERFTJMEknIiIiIqpkmKQTEREREVUyTNKJiIiIiCoZJulERERERJUMk3QiIiIiokqGSToRERERUSXDJJ2IiIiIqJJhkv6Ew4cPY+jQoahRowYUCgWcnJzQsGFDvPLKK1i6dClSU1O15u/evTskScKdO3cqNK7g4GBIkoQjR46YZPsA8NFHH0GSJPz8888Vvi16Pv3888+QJAkfffSRqUOpMu7cuQNJktC9e3dTh2Jy33zzDZo0aQILC4sqVydHjhyBJEkIDg42ynJEVPGYpBcyf/58+Pr6YuvWrXBwcIC/vz/69OkDKysrbN26FdOnT8e1a9dMHWalY8wLBSKisti6dStmzJiB2NhYDBw4EGPHjoWfn5+pwzJYWRtJ2LhC9OwyM3UAlcWff/6Jjz76CObm5ti4cSMCAgK0pj948AChoaFwdHTUKl+7di0yMzNRo0aNCo1vwYIFmDdvHmrVqlWh2ynOtGnTEBQUBA8PD5PFQFXb4MGD0aFDB7i6upo6FKpitm/fDgDYvHkzfH19TRxN+WvXrh2uXbsGBwcHoyxHRBWPSfq/tm7dCiEEhg8frpOgA4C7uzvefvttnXJjJc0eHh4mT45dXV2ZPFGFcnBwYLJAFSI6OhoAUK9ePRNHUjGsra3RqFEjoy1HRBWP3V3+FR8fDwBwc3Mr1XJFdfWQJAl16tRBXl4ePvnkE3h7e8PKygovvPACVq9erZkvLCwMPXr0gL29PZycnDBmzBgkJibqbKeoPulFOX78OKZNm4bmzZvDyckJVlZWaNSoEebNm4eUlBSd+Qv3S3zw4AEmTJgALy8vmJmZYfHixQB0b5uq+7oePXoUAFC3bl1IkqT5BwD+/v6QJAm///673jgzMzPh6OgIOzs7pKWllbhfsbGx+PLLL9GtWzfNcwPu7u4YMmQIzp49W+RyGRkZ+O9//4s2bdrA3t4eNjY2aNSoEaZOnYobN25o5ivcJ/rGjRsICgpC9erVIZPJNC1xAJCYmIg5c+agQYMGsLS0hLOzM/z8/Ircz7t372LKlCnw8fGBtbU1nJ2d0aRJE7z++uu4fv261rxXrlzB6NGjUa9ePVhaWsLNzQ0tW7bEzJkzERsbW2IdDRw4EJIkYe/evXqn5+fno3r16lAoFJpjTQiB9evXIygoCD4+PrCxsYGdnR3atWuH77//HiqVSmc9hY+HM2fOwN/fHy4uLpAkCeHh4XB1dYW1tbXe4w0ATp48CUmS0K1bN01ZUX3SCx//x44dg6+vL+zs7GBvb4/+/fvj6tWrereRkZGBefPmoU6dOrC0tIS3tzc++eQT5Obmok6dOprj1BBliaGk3636PFFY4Tq4desWhg8fDldXV9jb26Nv376a7eTl5eHzzz+Hj4+PZt++++67Yvfh0aNHmDFjBmrWrAlLS0u88MILCAkJ0fv9AgW/zwULFqBVq1awtbWFra0tOnTogDVr1hS7P0qlEvPnz0ejRo1gYWGh1fCxZ88e9O7dGzVq1ICFhQU8PT3RpUsXfPzxx8XG/qR79+7h9ddfR+3atWFhYYFq1arpPQ+oj9PDhw8D0D5PlXQ+LdyfvzR1d/HiRcydOxetW7eGm5sbLCwsUK9ePbzxxhuIiYkpcTuzZs1C3bp1YW5ujpkzZ6JOnTqa+hk3bpzWeVa9D/r6lpd1ObW8vDx8++23aN26teb7b9euHZYtW4b8/Hyd+Qv/Pdy+fTs6dOgAGxsbODs7Y8SIEZoLpcKUSiW+//57tG3bFi4uLrC2tkadOnXg7++PDRs2FPv9EFV5goQQQsyfP18AEDVr1hRxcXEGL9etWzcBQERGRmqVAxC1a9cWgwcPFg4ODiIgIED06dNHWFhYCABi1apVYtOmTcLMzEx06dJFDBs2TNSoUUMAEF26dBEqlUprfWPHjhUAxOHDhw3afvv27YWlpaVo166dGDp0qOjfv7/w8PAQAESTJk1EWlqa1vyHDx8WAES/fv2El5eXcHd3F8OGDRP+/v5i+fLlQgghPvzwQwFArF69WgghRHx8vBg7dqyoXr26ACCGDh0qxo4dq/knhBA7d+4UAMSwYcP01t/PP/8sAIgJEyYYVN/Lli0TAETDhg2Fn5+fGD58uGjVqpUAIMzNzcX+/ft1lomJiRFNmjQRAISTk5MYMGCAGDZsmHjxxReFTCYTISEhmnlXr14tAIigoCBhb28v6tatKwIDA0WfPn3Eb7/9JoQQIjo6WtSrV08AELVq1RKBgYHC19dXyOVyAUAsWrRIa/tRUVHC2dlZABANGjQQQ4cOFQEBAaJVq1ZCkiRNfQohxLlz54SlpaUAIJo3by6GDx8u/P39RePGjfV+//ps2LBBABCjR4/WO33v3r0CgBgwYICmLCsrSwAQLi4u4qWXXhKBgYGiV69ewtraWgDQfJ+FqY+HcePGCXNzc9GkSRMRFBQkunbtKi5duiRmzZolAIilS5fqjSM4OFgAEKGhoTr1/+GHH2rNqz7+Z82aJeRyuWjfvr0YPny48PHx0cQdGxurtUx2drbo0KGDACCcnZ3F0KFDhb+/v7C2thYBAQGidu3aojSnwLLEUNTvVk19nihMXQdjxowRzs7O4oUXXhCBgYGiWbNmAoBwc3MTsbGxYtCgQZpzy8svvywUCoUAIH788Uet9UVGRgoAokOHDqJ169bC0dFRDBkyRPj7+wsrK6siv9+4uDjRvHlzAUC4u7uLfv36ib59+woHBwcBQEybNk3v/tSsWVP07dtX2NjYiH79+olXXnlFTJ48WQghxNKlSwUAIZfLRdeuXcWIESNE7969hZeXV6m+i8uXLwtXV1fNuSAoKEh06tRJABBmZmZi48aNmnm3bdtW5Hnq2rVrxW6nrHUXGBgozMzMxIsvvigCAgJEQECAqFOnjgAgPDw8xP379/Vup127dqJly5bCyclJBAQEiCFDhoiPPvpIzJ49W7Ro0UIAEJ07d9Y6z6r3QX0OLxxPWZcTQoi8vDzRr18/AUDY29uLgIAAMWjQIGFnZycAiMGDB4v8/HytZdR/j+bMmSPkcrno3r27GDZsmKhZs6bm/JeZmam1zLBhwwQAYWdnJ/r16yeCgoLESy+9JBwcHES3bt2K/X6Iqjom6f+6deuW5qRrZ2cnxo4dK1asWCHOnz8v8vLyilyuuCQdgGjatKl4+PChpjwsLExzonZxcdEkfkIIkZqaqkkmw8LCtNZX2iR9z549IiUlRassOztbTJo0SQAQH3/8sdY09YlaffLNysrS2dcnk/SSYhCi4ERfs2ZNYW5urvfip3PnzgKACA8P15mmz+XLl8WVK1d0yvft2ycUCoWoX7++zgVOz549BQAxfPhwnYuTyMhIcenSJc1ndYKkTkL0fff+/v4CgBg5cqTIycnRlB8/flxYW1sLuVwuLly4oCn/4IMPikxq7t69K27evKn5PGbMGAFALFy4UGfea9euiZiYGH3VoiUzM1PY2dkJW1tbkZGRoTN99OjRAoDYsGGDpiw3N1ds27ZNKJVKrXkfPnwo2rRpIwCIo0ePak1THw8AxH//+1+d7Vy/fl1IkiRatGihMy01NVVYW1sLJycnrWOtpCRdJpOJbdu2acrz8vLE0KFDBQDx/vvvay3zySefaBKf5ORkTXlkZKQmaShLkl6aGJ4mSQcg5s2bpzmeVSqV5sKmcePGOueWgwcP6l2fOgFUX/jFx8drpt28eVN4enoKAFr7JITQJGgzZswQ2dnZmvIHDx5ojom9e/fq7A8A4e3tLaKjo3X2t1atWkKSJHH27FmtcpVKZdAFqHpe9QXL3LlztX7vmzdvFjKZTNja2ur8Voo7TxWlrHUXFhYmHjx4oFWWn58vPv74Y82FbVHb6dixo9bxqlbU+VetqGS7rMstXLhQ06hTeF9iYmJEw4YNBQDx7bffai2jrmNra2tx8uRJTXlGRobmImrlypWa8tu3b2uO2YSEBK11ZWVlaa2D6HnEJL2QgwcPav3xVv9zdHQUU6ZM0ZsglZSkHzx4UGcZdcuvvpbOJUuWFJukGJqkFyUzM1PTwlOY+kRtYWGh94+rEGVL0oV4fJfiyy+/1Cq/du2a5o9feRg1apQAIC5fvqwpCw8PFwBEtWrVxKNHj0pchzpBcnNz05vg3rp1SwAQtra2IjExUWe6uvW48J2BKVOmCABi+/btJW6/b9++AoC4ePFiifMWR328rF+/Xqs8IyND2NraCjs7O50WraIcOHBA04JcmPp4aNasmc6FkZqvr68AIM6cOaNVrr4j8uabb2qVl5Skjxo1Smcb586dEwB0Wt3Ud6aOHz+us8yKFSvKnKSXJoanSdLr1aunc9F06dIlg84thX+LhRPA33//XWcZ9XfRs2dPTdmFCxcEANG2bVud1lIhhDh//rwAIAYOHKizPwDEpk2b9O6vlZWVcHJy0jvNUOqGjlq1aunUjxBCDBkyRAAQn376qVb50ybphtZdSWrUqCFcXFyK3M6TFzBqxk7Sa9WqJQDovTupvkPq7e2tVa6u43fffVdnmc2bN+tsR31+DggI0Bsb0fOOfdIL6dmzJ27evImtW7di8uTJePHFF2FmZoaUlBQsW7YMLVu21Ok/XBxzc3O94/CqH1zq06dPkdMM6Xtckvv37+OHH37AzJkzMX78eAQHB2PKlClQKBSIiIjQu8yLL75Y7iPVTJgwAWZmZvjpp5+0ylesWAEAmDRpUqnWl5OTgx07duDdd9/FpEmTEBwcjODgYPz1118AoLVvBw8eBACMGDECdnZ2Bm+jV69esLa21in/448/AAB+fn5wdnbWmf7qq68CKHgmQK1169YAgP/7v//Db7/9huzs7CK3q5536tSpOHLkCPLy8gyOubBRo0YBAH799Vet8h07diA9PR1DhgyBlZWVznIXL17El19+ialTp2LcuHEIDg7GsmXLAKDIY0b93IE+kydPBvD4u1Yr63ev7zfj4+MDQPs3c/fuXdy/fx/u7u7o0qWLzjKBgYGl2m5ZYnha3bt3h7m5uVaZ+vxQ0rlFXxzOzs7o3bu3TvmIESMAFDwjoO5frX62IiAgADKZ7p8JdR/1M2fO6EyTJAkDBgzQu0+tW7dGcnIyXnvtNfz999965ymJ+rc1fPhwnfoB9P8Gn1Zp6k4tMTERq1evxuzZs/Haa69pzlO5ublITExEUlKSzvo8PDzQpk2bcou7rKKiohAVFQU3Nze9x7u/vz8cHR1x8+ZNPHjwQGe6ob+RRo0awcbGBrt378ZXX32lt78+0fOMo7s8QaFQYPDgwRg8eDAAICUlBRs2bMD//d//4eHDh5g2bRoOHDhg0Lrc3d0hl8t1ym1tbQFAbzKsnpaTk1PWXQAALFq0CPPmzUNubm6plquI0Wo8PDwwcOBAbN26FUePHkW3bt2gVCqxdu1aWFlZaRJKQ/z1118YOHBgsWOyF34A9d69ewCA+vXrlyrmoupB/UfkyYf91NTl9+/f15QFBwfj999/x8aNGzFgwABYWlqibdu28PPzw/jx4+Hu7q6Zd86cOfjjjz9w5MgR9OjRA7a2tujYsSP69++P4OBgg0c+8fX1hYeHB/bt24ekpCTNBcUvv/wCADp1rlQqERwcjPXr1xe5zqIe7C3umAkICIC7uzvWr1+PRYsWwdbWFufPn8f58+fRsWNHNGnSxKD9UfPy8tIpU198Ff7NqBOBmjVr6l2PnZ0dHB0di3yotTxieFrFnR9KOrfoi6N27dp6t+Pg4KCpi+TkZLi4uGh+X++++y7efffdImPUd8FZrVo1WFhY6J3/u+++Q0BAAFatWoVVq1ahevXq6NatG4YMGYJhw4bp3acnleU3+LRKU3cAsH79ekyaNAnp6elFrjMtLU3nQt+UQ+wWpq7jovZbkiTUrl0bKSkpmovhwgz9jdjb22PFihWYNGkS5s6di7lz58LHxwc9evTAq6++is6dO5fXLhE9k9iSXgJHR0dMnjxZM6LJ4cOHkZmZadCy+lqgSjO9rE6fPo3Zs2fD2toaP//8M+7cuYPs7GyIgu5NxQ7laGlpWSExPdmiun37diQkJOCVV17RGXu+KOLfITLv3LmDyZMn4+LFi3j06BFUKhWEEHjnnXc08z2tstaDvhZluVyO//3vfzh//jw+/PBDtG3bFuHh4Xj33Xfh4+ODkydPaua1t7dHWFgYjh8/jrlz56Jx48YICwvDzJkz0bBhwyJbs/VtMygoCLm5udi0aRMAICEhAfv374eHh4fOONGLFi3C+vXr0axZM+zduxdxcXFQKpUQQmjuHhVVr8XVlbm5OcaPH4/09HTNSA3qOyoTJ040aF8Kq6jfjCliKGpEFUO2U9H1oI6tS5cuGDt2bJH/9F1gF3c8NG/eHFevXsW2bdswceJE2NvbY+PGjQgKCsJLL70EpVL51LGXZsSeinD37l0EBwdDqVRi8eLFiIiIQGZmpub827FjRwD6f08Vdf6tCMXVc2mOzxEjRuD27dtYsWIFXnnlFaSkpGD58uXo0qULZs+eXR6hEj2zTP8X7xmhTmry8/PL1PpmTNu2bQMAfPbZZxg7dqxmiDIAyMrK0nt7sqL16tUL3t7e2LJlC5KTk8vU3eGff/7BP//8gzZt2mDZsmVo0aIF7OzsNH8sbt++rbOMuiX11q1b5bAXgKenJ4CCP8T6qFsg9bWCtmrVCh999BGOHTuG+Ph4vPXWW0hLS8PMmTO15pMkCV26dMF///tfhIeHIyYmBiNGjEBcXFyxrZpPUidQ6tbzjRs3Ii8vD0FBQTotlupjZv369fDz80O1atU0XQn01WtpTJo0CTKZDCtWrEBmZiZ+/fVX2NvbP1WXk5KoL0TVd1KelJaWZpTfsUKhAAC9LapFxVZRoqKi9JY/evQIKSkpsLKy0lwwq1tCAwIC8PPPPxf7r7QsLS0REBCAH3/8ETdu3MCVK1fQvHlznDp1SqdLnD5P8xssq9LU3Z49e6BUKvHmm29ixowZmuF31Z7292QMJdVx4WnlUc9ubm6YMGECNm7ciAcPHmDv3r2wt7fHokWLytwtiqgqYJL+r5JaX2/evAmg4I9uZX+hT3JyMgD9txw3bdpULi3NhakTkeL6T0uShEmTJiE7Oxvz58/HoUOH8MILL5TqdmZx+5WcnKy3G1KvXr0AFCSfxd16NpS6f/O+ffv0JnmhoaEAgJdeeqnY9djb22PBggWQJAlXrlwpdt5q1appxg0vad7CWrdujUaNGuGPP/5AVFRUkV1dgOLrduPGjQZvU5/atWvDz88PZ86cwXvvvYfU1FSMGjVKb5//8lK7dm3UqFEDDx480LpToaa+u1DR1BcLhcfiVzO021x5SUxMxKFDh3TK1Xc4OnbsqLl4U/e/Vl+8VaQmTZpg6tSpAAw7vtW/rU2bNukdq9vQ32BplKbuivstHTt2DHFxcWWKwZDzbHktV6tWLdSqVQvx8fF693v37t1ITk6Gt7e3TleXpyVJEvz8/NC/f38AYJJOzzUm6f96//33MWfOHL0trvfv38frr78OoOBFMeqTXmWlfkBn5cqVWn3Sr169iv/85z/lvj11q0tJD9WOGzcOFhYWWLx4MYQQpe7u4O3tDZlMhrCwMK1uH9nZ2Zg8ebLeB7HatWuHHj164OHDh5g0aRIyMjK0pt+5c0fzwKkh6tWrh/79+yMtLQ0zZszQqt9Tp05h2bJlkMvlmqQDANatW6c3+di7dy+EEFr9pn/44QdERkbqzLtnzx4ARfexLsqoUaMghMCCBQtw8uRJNGrUSPNwamHqY+aHH37QKt+8eTPWrl1bqm3qo+7uFBISAqBsXV3Kus3Zs2cjNTVVU3737l3Mnz+/wrcPQPOipmXLlmm9pOzixYv44IMPjBJDYW+//bZWHJGRkZq6KHzMtm/fHr1798aJEycwdepUPHr0SGddly5dwr59+wzedmZmJr755hudi1uVSqVZjyHHd/fu3dGsWTPcuXMHH3zwgVajw7Zt27B161bY2tpi/PjxBsdmCEPrTv1bCg0N1Trf3L9/X3NMloWh59nyWm769OkAgFmzZmle9gcADx48wJw5cwAAM2bMKNU6n3ThwgVs3bpVp5tTUlISwsPDAZT+nEdUlfDB0X+lp6djyZIlWLhwIXx8fNC4cWNYWloiOjoa4eHhyM3Nhbe3t+btm5XZuHHj8PXXX2PXrl1o2LAh2rZti6SkJBw9ehQBAQE4c+ZMsbcxS2vgwIFYs2YNRo4ciT59+mgebnzy1rWrqyuGDh2KX3/9FRYWFhgzZkyptlOtWjW89tprWLFiBVq0aAFfX19YWVnh+PHjyM/PR3BwsN7b7+vWrUPPnj2xfv167N+/H126dIGFhQVu3bqFixcv4uuvv0azZs0MjmP58uV46aWXsHbtWhw9ehQdO3ZEfHw8jhw5gvz8fHz99ddo2bKlZv4tW7ZgzJgxqF+/Ppo1awYrKytERkYiPDwcMpkMn376qWbeH374AVOmTEHjxo3xwgsvwMzMDP/88w8uXboES0vLUid2I0eOxPvvv69Jvot6SHfu3LnYt28f5s2bh02bNsHHxwcRERE4d+4c3n77bSxcuLBU231Sv379ULNmTdy7dw9t2rRBq1atnmp9hpgzZw52796N06dPo379+ujRowdycnIQFhaGnj17QghRrqOx6NOjRw9069YNR48eRePGjdG5c2ckJCQgPDwcb7755lPXa2l06NABSqUS3t7e8PX1RW5uLg4dOoTMzEyMHj0aQ4YM0Zo/NDQUfn5++P777/Hrr7+iZcuW8PT0RGpqKi5fvox79+5hxowZ8PPzM2j7SqUSM2bMwNtvv43WrVtr3kx69uxZ3Lt3D3Xq1DGo+5skSfjll1/Qo0cPfP7559i2bRtatmyJqKgonDhxAmZmZli5cmWxz96UVmnqbuDAgWjSpAnOnTsHb29vdO7cGdnZ2Th8+DBatmyJTp066b27U5I+ffrA0tISISEhuHLlCjw9PSFJEubMmYOGDRuW+3JvvfUWwsLCsHfvXjRo0AC+vr4QQuDQoUNIS0tDQEAA3njjjVLvR2F3797F0KFD4eDggDZt2sDd3R0pKSk4duwY0tLSMGDAAE0ffqLnEVvS//Xee+9h3bp1GD16NCwsLHD8+HFs3rwZV69eRbt27fDll1/i4sWL5T48YUVwcXHB2bNnMXLkSCiVSuzcuRP379/HJ598UuzoHWU1ZMgQhISEwMvLC7t27cLKlSuxcuVKvfOq+/YPGTJEMxJCaSxbtgxff/016tati0OHDuH48ePo1asXzp07V+RIBDVq1MDZs2cxf/58eHl54cCBA9i7dy8yMzPxxhtvwN/fv1QxqNc3e/ZsmJmZYevWrfjzzz/Rs2dP7N+/H7NmzdKaf9asWZg6dSrs7Oxw/PhxbNu2DQ8fPkRgYCDCw8PxyiuvaOb95JNPMH78eEiShEOHDmHXrl3IysrChAkTcPHixVKPdlCvXj2tP3IjR47UO1/Xrl3xxx9/wNfXF7dv38Zvv/0GhUKBLVu2aLUSlpVcLte0KhujFR0ALCwscODAAcydOxc2NjbYuXMn/v77b8yePRv/+9//EBcXV6ZjsDQkScKOHTswefJkSJKEPXv2ICkpCUuWLMFXX31Vodt+koWFBcLCwjBy5EicPn0a+/fvR82aNbFw4UK9F7fVqlXDyZMn8c0336Bx48a4cOECNm/ejMuXL6NevXr46quv8Pbbbxu8fVtbW3z33XcYMGAA4uPjsXPnToSFhcHJyQkff/wx/vzzT4O/j2bNmuH8+fOYOHEi0tPTsXnzZly/fh0BAQE4ceIEhg8fbnBchihN3SkUChw/fhxTpkyBpaUlfvvtN1y7dg3Tp0/HgQMH9A4baQhPT0/s2LEDHTp0wB9//IFVq1Zh5cqVJV5olnU5uVyOnTt3YsmSJahXrx7279+P33//HQ0bNsR3332HzZs3P/UDzB06dMCnn36K1q1b4/r169i0aRPOnTuH5s2bY9WqVdiyZctTrZ/oWSeJ8u6gTFSMl19+Gb///jsOHz6sd5xnqpoyMzNRo0YN5OXlISYmplRj1leE06dPo2PHjvDz88PevXtNGgtVXnfu3EHdunXRrVs3HDlyxNThENFzhi3pZDRnzpzBgQMH0KRJEyboz5nvvvsOKSkpGDt2rFET9AsXLugMdXj79m3NMyajR482WixERESlwT7pVOHmzZuHqKgo7N69G0IIfPbZZ6YOiYwgMTER//nPfxAXF4c9e/bA1tYW8+bNM2oMI0aMQGpqKpo1awYXFxdERUXhzz//RE5ODgYOHFhk9x8iIiJTY5JOFW7Dhg24d+8eateujQULFmDQoEGmDomMIC0tDStXroRCoUCrVq2wcOFCvcPSVaTp06dj48aNuHz5MpKSkmBpaYmWLVti9OjRmn7iRERElRH7pBMRERERVTLsk05EREREVMkwSSciIiIiqmSYpBMRERERVTJM0omIiIiIKhkm6URERERElQyTdCIiIiKiSoZJ+hNyc3MRGxuL3NxcU4dCRERERM8pJulPSEhIwI8//oiEhIQyLZ+bm4u4uDgm+UbAujYe1rXxsK6Nh3VtPKxrotJjkl7O8vLyEB8fj7y8PFOHUuWxro2HdW08rGvjYV0bD+uaqPSYpBMRERERVTJM0omIiIiIKhkm6URERERElQyTdCIiIiKiSoZJOhERERFRJcMknYiIiIiokmGSTkRERERUyZiZOoCKkpWVhW3btuH69euIiIhAeno6ZsyYgZ49e5o6NCL4X3B0AAAgAElEQVQiIiKiYlXZlvRHjx5hw4YNiI6ORt26dU0dDhERERGRwapsS7qzszPWrFkDJycnREREYPbs2aYOiYiIiIjIIFW2Jd3c3BxOTk6mDoOIiIiIqNSqbJJORERERPSsYpJORERERFTJVNk+6ZVVVlYWTp48CZVKhXbt2sHBwcHUIRERERFRJcMkHUBCQgISEhIAAElJSQCA7OxsZGVllXpdOTk5Wv990v79+6FUKgEAv+3bj47tO8KjumtZwn7ulVTXVH5Y18bDujYe1rXxGKuuraysKnT9RMbEJB3Ali1bsGLFCgCAg4MDunbtiujoaGRkZJR5ndHR0XrL1Qk6AJhLwKnw02jeuBEkSSrztp53RdU1lT/WtfGwro2HdW08FV3XTZs2rdD1ExkTk3QAQ4cORbdu3QAUtKQfOHAAXl5ecHd3L/W6cnJyEB0dDS8vL1hYWOhMj0xIR9bDqIIPdi7YedcViXEumNiZI9GUVkl1TeWHdW08rGvjYV0bD+uaqPSYpANwdXWFq2tBl5PY2FgAgKWl5VPdNrOwsNC7fLsO7RH+sBUAFWRmCjhmxePLg/FoXtMO3RvalXl7z7Oi6prKH+vaeFjXxsO6Nh7WNZHhqnSS/ttvvyEjI0PTz/zMmTOavuf+/v6wsbExekxOCkBm9rjaG9SwhkoAU9ZHYc80b9R1ZQsDERER0fOuSifp27dvx8OHDzWfT506hVOnTgEAunfvbpIkXSGTYGcGpOUVfK7nbgW5DEjNUmH82rv4bWp92FjIjR4XEREREVUeVTpJ/+mnn0wdgl7OCglpeQIAoDCXoVY1K0Q+yML1uBzM2BiNFaNr8UFSIiIioucYX2ZkAs5P9GjxqWGt+f89Vx5hSVi8kSMiIiIiosqESboJOCu0W8n7tdQe2eWrA3H4/eojY4ZERERERJUIk3QTsJJLsC7U7dzeToGAlo/fPCoEMH3DPUQ8zDZBdERERERkakzSTaRwa3quAD4aVANNPS01ZWk5KoxfG4VHWfmmCI+IiIiITIhJuok4K7Q/ZwoJq8bUhrPN4yb2W/E5mPa/e1CphJGjIyIiIiJTYpJuIs4W2v3Sk5SAl5MCP46qBXmhb+XgtTQsPBBn5OiIiIiIyJSYpJuIjRxQFKr9xBwBIQQ61bfFR/4eWvMuDovH7r9SjRwhEREREZkKk3QTkSRJq8tLjgrI/Lf7+fhOLhjeWnvElxkbo/HPAz5ISkRERPQ8YJJuQi6KJ7u8FPQ9lyQJXwz2RKuaVpppmUoVxq25i+TMPKPGSERERETGxyTdhPT1S1ezNJfhp1drw8328Uth7yYp8cav95CXzwdJiYiIiKoyJukmZG8GmBXK05NytJNvDwdzrHi1Fszlj2c6GpGOBfsfGCtEIiIiIjIBJukmJEkSnAr1S8/IB7KfaCVvV8cGnw3y1CpbdjQB2y6mGCNEIiIiIjIBJukm5qzTL113ntHtnTGmg7NW2ezN0fjrflZFhkZEREREJsIk3cSKenj0SfMHeKBtHWvN5+xcgfFr7yIxnQ+SEhEREVU1TNJNzEGh/SUUlaQrzGRYMboWPOwfP0h6PyUXr/8ShVw+SEpERERUpTBJNzG5JMGxUL/0R7lArkp/0l3Nzhwrx9SGRaGnTU/ezsD83bEVHSYRERERGRGT9ErgyX7pyXr6pau1rGmN/w6poVW28kQi/ncuuSJCIyIiIiITYJJeCeg+PFp895XhrZ0wobOLVtm8bfdx4V5mucdGRERERMbHJL0SKDwMI1Bykg4A7/f3QOf6NprPOXkCE9bexcO03PIOj4iIiIiMjEl6JWAuk+Bg/vhzihLIF8Un6uZyCT+MrAUvp8cLxj7Kw4R1UVDmqSoqVCIiIiIyAibplUThLi8qFCTqJXGxNcOqMbVhaf542XN3M/H+Tj5ISkRERPQsY5JeSZS2X7paU08rLBrmpVW2LjwJ604nlltsRERERGRcTNIrCecy9EtXC2jpiDe6uWqVvbczFmfuZJRHaERERERkZEzSKwkLuQSbx+8pQrISECX0Sy/sHT93dGtgq/mcmy8wcV0UYlL4ICkRERHRs4ZJeiVSuMtLnih4sZGh5DIJy0bWQh2Xx03y8el5mLDuLrJz+SApERER0bOESXol4vJEl5fEUnR5AQBHazlWj6kNa8Xjr/VidBbmbbtfqlZ5IiIiIjItJumVSFkfHi2sobslvgnUfpB0458pWHWSD5ISERERPSuYpFciVnLAstA3klTKfulq/Zo6YGbPalplH/0WixO30nXmVSqVyMjI0PqnVBow/iMRERERVRizkmchY5EkCc4WEmKyChJzpQrIyAdsy/Atvd2rGq7EZOHgtTQAQL4KmBQahX3TvVGz0FAyN27cwNWrV7WWbdy4MZo2bVr2HSEiIiKip8KW9ErmyaEYE3PK1pdcJpOwNLAm6rtZaMqSM/Mxft1dZCofP0jq4+MDX19fAICvry/69+8PHx+fMm2TiIiIiMoHk/RKRrdfetnXZW8lx+qxtWFn8fhr/jsmG29vidZ0o1EoFLCysgIAWFlZwcbGBgqFQu/6iIiIiMg4mKRXMnZmgHmhPL0sD48W5u1mge9G1IRUaJ3bL6Zi2bGEp1ovEREREVUcJumVTEG/9Mefs/KBrPynS9R7vWCPuX2qa5V9vvcBjlxPe6r1EhEREVHFYJJeCel0eSljv/TC3uzhhv5N7TWfVQKYsj4KkQk5T71uIiIiIipfTNIrofLsl64mSRIWD/dCI/fHzfSpWSqMX3sXWUq+kZSIiIioMinTEIwPHjzAvn37cPToUVy8eBHx8fFISUmBo6Mj3Nzc0LJlS3Tr1g1+fn5wd3cv75irPAdzQC4B6l4uT9svXc3GQo5VY2qj37e3kJKVDwC4HpeDj36LRVeLEhYmIiIiIqMpVZK+f/9+LFu2DHv27EF+fr7Oi3YyMzMRExODS5cuYe3atZDL5ejfvz+mTJmCPn36lGvgVZlMkuBkDiT824KelgcoVQIKmVT8ggao42KB70fWxOhVd6D69+sLu56Ors2fetVEREREVE4M6u5y7tw5dO/eHf369cOuXbvQsWNHvPfee9i1axciIiKQmJiI3NxcJCQkICIiAjt37sS7776L9u3bY+fOnejbty969OiBP//8s6L3p8pwtij/Li9q3X3s8G7fx3c4HBUFKz9yNb78NkJEREREZWZQS3q7du1QvXp1fP755xg1ahS8vLz0zufs7AxnZ2fUr18f/v7+AIB79+4hNDQU33zzDdq1a4f8/Pzyi74KK+iX/vhORVKOgLvl07ekq03u6oorMVk4/HcCpjSIKtjGzTNYm2OOVzt7QpLKb1tEREREVDoGtaSHhIQgMjIS//nPf4pM0ItSs2ZNvPPOO4iMjMSiRYvKFOTzyMkcKJwml1e/dDVJkvDVUC90qZkP83+PAnMZ8Muxuxi96g4ePMot1+0RERERkeEMStJnzJgBS0vLp9qQpaUlZsyY8VTreJ7IZRIczB9/Ts0F8lTlm6hbK2SYN6ghcvILDoOsPBkiM6xw+EY6fBdFYMellHLdHhEREREZpkKHYMzPz8fu3bsrchNVWuGhGAWAlApo3K7nbo8u3boBAJbeqIX0vIIeUClZ+Zjy6z28sT4KyZl55b9hIiIiIipShSTpZ8+exYwZM+Dp6YlBgwZVxCaeCy5PPDyaWA4vNdLH3dEaADD7ZS/YKLQPie0XU9EzJIJvJyUiIiIyojKNk67P3bt3ERoaitDQUNy4cUMzPGOTJk3KaxPPHSeF9ufy7pf+pEEtHNC5oStmbLyHM3cyNeUPHuVh5Ko7GNvBGe/394C1gu/AIiIiIqpIT5Wkp6amYuPGjVi3bh1OnjwJIQSEEKhbty6CgoIwYsQING3atLxife4oZBLszArGSQeA5FxAJQRkFTjySm0XBba8Xg/Ljyfgy/1xUOY/vjBYczoJxyLSsSTQC21q21RYDERERETPu1In6Xl5edi9ezdCQ0Oxe/du5OTkQAgBZ2dnqFQqpKam4tatWxUR63PJWSEhLa8gUVaJggdIn2xhL29ymYQ3urmhh48dpv/vHq7GZmumRSYqEbDsNqZ1d8OsXtWgMGOrOhEREVF5MzjDOn36NKZOnQoPDw8MGTIEW7ZsgRACgwcPxrZt2xAbG8uuLRXA2UL7c0V3eSnsBQ9L7JlWH9N7uKHwy05VAvjmcDz6f3cL/zzILnoFRERERFQmBrWkN2jQALdv39Z8fumllzB69Gi88sorcHBwqLDgSP9LjerbGm/7CjMZ3vFzR69GdpixMRp3Eh+/+vTvmGz4fXMT/3m5Oia95Aq5jC9AIiIiIioPBrWkq7uveHh44MCBAzhy5AgmTJjABF0PhUKBWrVqQaEonz4pVnIJ1vLHn5OU0DyUa0xt69jgwAxvjO3grFWuzBf4ZM8DvPJjJKKSlEUsXTHKu66paKxr42FdGw/r2nhY10SlZ1CS3qhRIwghEBMTg969e6Nz585YtmwZkpKSKjq+Z45SqURUVBSUyvJLWAuPl54rHj9Iamw2FnIsGFwDv4yvg+p22jdhTkdmoGdIBH49k2S0i4iKqGvSj3VtPKxr42FdGw/rmqj0DErSr169inPnzuHNN9+Em5sbTp06hWnTpsHDwwODBg3C5s2bkZOTU9GxPrecK3AoRqVSiaysLABAVlYWMjIySjyJ9mhoh7BZDTCwufadlAylCm9vuY/gNXcRn1YBb14iIiIiek4Y/ODoiy++iMWLFyMmJgZ79uxBYGAgzMzMsGvXLgQGBsLd3R1XrlypyFifW85PvNSoPHuV3LhxA2FhYQCAsLAw7N69Gzdu3ChxOSdrM/wwqha+H1ETjlZyrWkHrqWhR0gE9lxJLb9AiYiIiJ4jpR6CUSaTwc/PD35+fkhPT8fmzZsRGhqKI0eOQKVSQZIkeHp6IjAwEEFBQWjfvn1FxP1csZEDChmgVBV8TswpGI9eKofx0n18fFC3bl2tMnNzc4OXD2jpiPZ1bTB7czSO3EjXlCdl5GPCuigMe9ERnw70hP0TiTwRERERFe2pBrm2tbVFcHAwDh48iKioKHzxxRdo2rQpHjx4gCVLlqBTp07w9vYur1ifW5IkaXV5yVEBmfnls26FQgEbGxutf6V9sMfDwRy/jK+DBQGesDLXvnDYfD4FviEROH4zvYiliYiIiOhJ5fYmGk9PT8ydOxeXLl3CxYsXMWvWLFSvXh2RkZHltYnnmoviyS4vxh/hpTiSJGFsRxccmNkArWtZaU2LSc1F4IpIfLAzBlm5KhNFSERERPTsqJDXRTZv3hwLFy5EdHQ09u3bVxGbeO5UZL/08lTP1QLbJtfHvJer48mXkf50IhEvL7mJi/cyTRMcERER0TPC4CT92rVrOHbsGKKiokqc9+7duzh27Bhu3LiB3r17P1WAVMDeDDArlKcn5VSulvTCzOQS3vStht3TvNGwuvYrU2/G52DA97fw9YE45OZX3n0gIiIiMiWDkvSEhAR07NgRQUFBBj1UqFAoEBQUhC5duiAlJeWpg6SC7iROhbqKZ+QD2ZU8yW1Wwwp7p3tjcldXFH7GNV8FfH3wIQZ+fwsRD7NNFyARERFRJWVQkr569Wo8evQIn3/+OTw8PEqc38PDA1988QWSkpKwevXqpw6SCjjr9Es3USClYGkuwwf9PbBlUj3UdNK+wLsUnYWXl9zET38kQKWq3BccRERERMZkUJK+e/duODg4YPTo0QaveNSoUXB0dMTOnTvLHBxpq+wPjxanQz0bHJzZACPaOmmVZ+cJfLArFkE/RSI6+Rm46iAiIiIyAoOS9L///hsdOnSAmZnhw6rL5XK0b98ef//9d5mDI20OCu0v7FlK0gHAzlKOr4d54eexteFqq30s/XErAz1DIrD5fDKEeLb2i4iIiKi8GZSkp6amwsXFpdQrd3FxQWoq3zpZXuSSBMdC/dIf5QK5z2A3kT6N7XH4rQbo19ReqzwtR4U3/xeNiaFRSEzPM1F0RERERKZnUJLu6OiIpKSkUq88KSkJ9vb2Jc9IBnuyX/qz2kPExdYMK0bXwjeBXrCz0D4M91x5BN+QCPx+9ZGJoiMiIiIyLYOSdG9vb4SHhyM/3/DXXObl5eH06dNo0KBBmYMjXboPjz57LelqkiRh2ItOOPRWA3Spb6M1LT49D8Fr7mL25mikZZfT61WJiIiInhEGJel+fn5ISUnB0qVLDV7x0qVLkZqair59+5Y5ONJVeBhG4NlO0tW8nBTYMKEu5g/0gKWZ9kXI+rPJ6LU4AqdvZ5goOiIiIiLjMyhJnzZtGmxtbTF37lyEhoaWOP+6deswd+5c2NnZYerUqU8dJD1mLpPgUGgkwxQlkF8FHrSUySRM6OyK/W96o4WXlda0e8m5GPrjbczfHYvsXJWJIiQiIiIyHoOSdGdnZ6xZswb5+fkYO3YsOnfujKVLl+LkyZOIiIhAREQETp48iaVLl6Jz584IDg6GSqXCmjVr4OzsXNH78Nwp3OVFhYJEvapoUN0SO9+oj9m9qkFe6OgUAvjhWAL6fnsTf93PMl2AREREREZg8JiKAQEB2LVrF8aOHYtTp07h9OnTeucTQsDNzQ0///wzu7pUEGeFhMiMx63nSUoBFwupmCWeLeZyCbN7V0evF+wwfUM0bsbnaKZdj8uB/3e3MLtXNYxrZ2vCKImIiIgqjkEt6Wp9+/bFnTt38N1336Ffv37w9PSEhYUFLCws4OnpiX79+uH7779HZGQkE/QK5FwF+6Xr08LLGvtneGNCZ+3hP3PzBb7YH4eg1dG4/6hq7jsRERE93wx/O9G/rK2tMWXKFEyZMqUi4iEDWMgl2JgBGf8OJZ6sLLiDIUlVpzVdzcpchvkDPdGnsT1mboxGTGquZtqF6BxMjgXezUvFay9ZVsn9JyIioudTqVrSqfIo3C89TxS82Kgq6+Jti0NvNcArLzpqlefkAx/sjseoVXcQm1rFK4GIiIieGwYn6RMnToSvry9OnjxZ4rynTp2Cr68vW9srkMsTXV4Sq2iXl8IcrORYElgTP71aC842cq1pR26ko2dIBLZfTDFRdERERETlx6Ak/dChQ1i5ciXc3NzQqVOnEufv2LEjqlWrhh9//BHHjh176iBJV1V6qVFp9WvqgLC3GqCnj7VWeUpWPt5Yfw+Tf4lCcmaeiaIjIiIienoGJenr1q2DJEn47LPPDF7x559/DiEE1qxZU+bgqGhWcsCy0LeX9G+/9OdFNTtzLB/hgVkdAZsnLlh2Xk6F76IIHL6eZqLoiIiIiJ6OQUn6qVOn0KxZM3h7exu84nr16qFFixY4ceJEmYOjokmSBOdCwy4qVUBGvgkDMgFJkuDnLWH3lFroUNdGa1pcWh5GrbqDedvuIyPnOasYIiIieuYZlKRHR0fDx8en1Ctv0KABoqOjS70cGebJoRgTc56flvTCajqZY9OkuvigvzsUcu1W9bWnk9B7yU2cvZNhouiIiIiISq9CR3eRJOm56oJhbLr90k0USCUgl0mY3NUN+970RhNPS61pdxKVGPzDbSzY9wDKPJWJIiQiIiIynEFJevXq1XHz5s1SrzwiIgLVq1cv9XJkGDszwLxQnv48PTxalEbultg9tT5m+LpBVqhuVAL49nA8+i29hWux2aYLkIiIiMgABiXpHTt2xOXLl/HPP/8YvOJr167h0qVLBo0GQ2VT0C/98eesfCArn4m6wkyG/7zsju1T6qHuE2NVXo3NRt9vb+L7o/HIV7GuiIiIqHIyKEl/9dVXoVKp8NprryE7u+RWyOzsbLz22muaZani6HR5eU77pevTprYNDsxsgLEdnbXKlfkCn+55gKHLb+Nu4nPcR4iIiIgqLYOSdD8/P/Tr1w+nTp1C+/btceDAgSLn/f3339GuXTuEh4ejX79+ePnll8stWNLFfunFs1bIsCCgBn4dXwfu9mZa087cyUSvxRH45UwSn50gIiKiSsWs5FkKbNiwAX379sWJEyfg5+cHFxcXtGzZEm5ubgCA+Ph4XLx4EYmJiRBCoEuXLli/fn2FBU4FHMwBuQSoe7mwX7p+3Rva4dBbDfDujhhsv5iqKc9QqjBny33sv/oIC4fWQDU7cxNGSURERFTA4CTd1tYWR44cwaJFi7B48WLExsbi4MGDOvN5eHjgrbfewltvvQW5XK5nTVSeZJIEJ3Mg4d8W9LQ8QKkSUMik4hd8DjlZm+H7EbXwcuMUvLMtBilZj8dPP3gtDT0WReDLITXQv5mDCaMkIiIiKkWSDgByuRxz5szB7NmzceHCBU3LOQBNy3qrVq0gk1XoyI70BGcLCQmFWtCTlIC7ZTELPOcGtXBE+7o2mL0pGodvpGvKkzPzMTE0CkNbOeLTQZ5wsOJFJhEREZmGQUl6cnIynJycNJ9lMhlat26N1q1bV1hgZLiCfumFkvQcAXdLtqQXx93eHKHj62BdeBI+/i0WWbmP62/LhRScvJ2BkFe80LWBrQmjJCIioueVQU3eHh4eGDp0KLZv347c3NyKjolKyckcKJySs1+6YSRJwpgOLjg4swFa17LWmhabmougnyLx3o4YZCr5AiQiIiIyLoOS9Ly8PGzbtg1Dhw6Fu7s7pkyZghMnTlR0bGQguUyCQ6HnHVNzgTyOAW6wuq4W2D6lHt7xqw5zufYdiFUnE/HyNzdx8V6miaIjIiKi55FBSXp0dDQWLlyIFi1aIDk5GcuXL0fXrl1Rv359fPjhh4iIiKjoOKkEhYdiFABSeMOjVOQyCdN7VMPuafXRyN1Ca9qt+BwM+P4Wvvo9Drl8WRQREREZgUFJuru7O2bNmoXz58/j6tWreOedd1C7dm1ERkbi008/RaNGjdCxY0d8//33mgdJybhcLLRbgBP5UqMyaepphb3TvfFGN1dIhao0XwWEHHqIAd/dQkRcyS/0IiIiInoapR6GpVGjRvjss89w+/ZtHDt2DBMmTICjoyPCw8Mxffp0eHp6YtCgQdi8eTNycnIqImbSw0mh/Zn90svOwkyG9/p5YOvr9VDLWXvc9Mv3s9Dnm5tYcTwBKnYpIiIiogryVGMldunSBcuXL8eDBw+wbds2DB48GDKZDLt27UJgYCDc3d0xceLE8oqViqGQSbArNFZPci6g4ls0n0r7ujY4OLMBRrVz0irPyRP48LdYBP4UiehkvuKViIiIyl+5DGhubm6uaT2Pi4vD8uXL4eLigtTUVKxatao8NkEGKNwvXSUKHiClp2NrIcdXQ72wJrg23Gy1Ryw9cSsDPUMisPHPZAheEBEREVE5Kte3Dl24cAEff/wxPvroI03fdL511HictZ93ZJeXctT7BXuEzWqA/k3ttcrTclSYuTEar62LQkJ6nomiIyIioqrmqZP0u3fvYsGCBWjatCnatGmDkJAQxMbGonnz5li4cCGioqLKI04yQOGWdKDgpUZUflxszPDj6Fr4NtAL9pbaP519fz+Cb0gE9l99ZKLoiIiIqCox6I2jT0pJScHGjRsRGhqKkydPQggBIQRq1KiBUaNGYfTo0WjatGl5x0olsJJLsJYDmfkFn5OUgBACksS3j5YXSZIw9EUndKhng7c2ReOPmxmaaQnpeRi35i6C2jjh4wEesLPkXSQiIiIqG4OTdKVSiV27diE0NBR79+5Fbm4uhBCws7PDkCFD8Oqrr6JHjx7llhDm5ubil19+wZEjR5Ceno46depg1KhRaNWqVYnLXrx4EZs2bcKdO3egUqng6ekJf39/9OjRo1xiq8ycFRIyswpa0HMFkJYH2JuXsBCVWg1HBTa8VherTyXisz0PkJ33+K7FhnPJ+ONWOpYM90LHerYmjJKIiIieVQZ1d5k4cSLc3d0xfPhw7NixA/n5+fDz88Ovv/6KuLg4rF69Gr6+vuXaYrt48WLs2LED3bp1w4QJEyCTyTB//nxcvXq12OXCw8Px4YcfIjc3FyNGjMDo0aOhUCgQEhKCHTt2lFt8lZUzh2I0GplMwmudXbF/hjdaellpTYtOzsWwHyPx8W+xyM5VmShCIiIielYZlKSvXLkSKSkpePHFF7F48WLExMRg9+7dCAoKgqWlZbkHdePGDRw/fhxjxozBuHHj4Ofnh08//RRubm74+eefi1129+7dcHJywmeffQZ/f3/0798fn376Kdzd3XHo0KFyj7WycX7ipUZJHCGwwjWoZomdb9TH272rwazQL0oIYPnxBPh9cxOX72eZLkAiIiJ65hiUpL/zzju4evUqzp49izfffBNubm4VGtSJEycgk8nw8ssva8oUCgV69+6Nf/75B/Hx8UUum5mZCVtbW5ibP+7jIZfLYW9vD4VCUeRyVYWNHFAU+lYTcwSHBzQCM7mEWb2qY9fU+vB20x5m58bDHPgvvYnFhx4iL5/fBREREZXMoCT9s88+Q6NGjSo6Fo3bt2+jRo0asLa21ir38fEBAERGRha5bLNmzRAVFYXQ0FDExMQgNjYWGzZswM2bNzFkyJAKjbsykCRJq8tLjurxg6RU8Vp4WWP/DG9M7OKiVZ6nAr78PQ4By27hVjzfxEtERETFMyhJz8vLw8OHD5Gamqp3ekJCAl5//XV4eXnB0tIS9evXx7x585Cenl6moJKTk+Hk5KRTri5LSkoqctnAwEB06dIFmzZtwuTJk/H6669jy5YtmDdvHjp16lSmeJ41Lk8Oxch+6UZlZS7DxwM8sWlSXdRw1H5q9/y9LPReEoHVJxN5h4OIiIiKZFCSvmbNGnh4eGDRokU60x49eoROnTrhp59+QkxMDJRKJSIjI/HVV1+hT58+yM8vfTOuUqnU6q6ipu6ukpNTdEukubk5PD090alTJ7z99tuYNWsWvL29ERISgn/++afUsTyL2C+9cuhc3xaHZjbA8NaOWuXZuQLv7ojBiJV3EJPC18ISERGRLoOGYDx69CgA4LXXXitmkxYAACAASURBVNOZ9sUXX+DmzZuwtrbGggUL4Ovri4iICMyePRvh4eFYvXo1JkyYUKqgFAoFcnN1kxelsiDbtLCw0Jmmtnz5cly/fh0hISGQyQquQbp06YJp06bhp59+wsKFC3WWSUhIQEJCAoDHrfTZ2dnIyir9w37qC4jiLiQqmrkA5DBHPgqS9cRsFbKyql4Xi8pQ1yUxB7BggCu6e1vivV0PkZT5eKSXYxHp8A25gY/7uWFAM9tKPZ79s1DXVQXr2nhY18ZjrLq2srIqeSaiZ4RBSfr58+fRqFEj1KpVS2fa6tWrIUkSPvjgA0yfPh0A0KRJE7zwwgto0qQJNm7cWOok3cnJSW+XluTkZACAs7Oz3uVyc3Nx4MABDBkyRJOgA4CZmRlat26N3bt3Izc3V6eVfsuWLVixYgUAwMHBAV27dkV0dDQyMjJQVtHR0WVetjwobGsiS1EwRnemSsL123dgJqpm53RT17UhvBXAsn4Ci08DpwqF+yhbhbe2xmH7n3GY3h6wt6i8iTrwbNR1VcG6Nh7WtfFUdF3zRYpUlRiUpMfFxel9EdC1a9cQFxcHmUyGcePGaU1r2LAh2rZti8uXL5c6qHr16uGvv/5CZmam1sOj169fBwDUrVtX73JpaWnIz8+HSqU7LnVeXh5UKpXeaUOHDkW3bt0AFLSkHzhwAF5eXnB3dy917Dk5OYiOjoaXl1exLf4VTZ4lw63sx58dveqiuqJq9YGuLHVdGuuaCGy5mIZP9sYjvdCzAkfvAlcT5VgwsBp6+NiYMEL9nsW6flaxro2HdW08rGui0jMoSU9NTdV7K/7PP/8EUNByrm9Yxtq1a+P8+fOlDqpTp07Ytm0b9u/fj8GDBwMoaCU/dOgQfHx8NNuKj49HTk4OvLy8ABS0gtvY2OD06dMYOXKkpsU8KysLZ8+eLfLk4OrqCldXVwBAbGwsAMDS0vKpbptZWFiY9LZbdZnArezHFyTpUKCOlUGPIDxzTF3XpfVqJ2t0b+SEmZuicer247s18en5mPBrLEa3c8aH/u6wsZCbMEr9nrW6fpaxro2HdW08rGsiwxmUpDs5OeHWrVs65SdPngQAtG3bVu9y+fn5sLUt/WvRGzZsiM6dO2Pt2rVISUmBh4cHwsLC8PDhQ02XGgAICQnBlStXsHPnTgAF46EPHjwYoaGhmDNnDnr06AGVSoWDBw8iISEBs2bNKnUszyoHRcFTweo0nSO8VC41nRXYNLEuVvyRgC/2xyEn7/H3E3omCcdvpmNJoBfa1al8repERERU8QxqWm3dujUuXLiA8PBwTVlGRga2bNkCSZLQs2dPvcvduHEDnp6eZQrsrbfewsCBA3HkyBGsWLEC+fn5eP/990vsbzZ8+HDMnj0bZmZm2LBhA3755RdYWVlh3rx56N69e5lieRbJJQmOhcZLf5QL5KqYqFcmMpmE17u6Yd90bzT11H5z790kJYb8cBuf732AnDzdLlpERERUtRnUkj5hwgTs27cPffv2xfTp0+Hq6oq1a9ciPj4erq6uCAgI0FkmNvb/2bvz8Biv9oHj32cmmeyRRRLZCJGEUEurKFFrhaJ2pVVLlZbaX130V4oudKW0WuHtG5QWDS1Fq7HVrqq1N4ilEkEi+77M/P6ITDKSkEx27s915TI553nmuecRcc+Zc58TxZkzZxg4cKBRgWk0GkaPHl1orntBH3zwQZHtHTt21M8xf5g5aBSDEfS4THA2v8cJokr41THn51e9WbTzFot3R5P3Xkqrgy/2RLMrLInFz3rg7yofEQshhBAPixKNpA8YMIDRo0cTHx/Pe++9x9SpU/nzzz9RqVQsWbKkyPll33zzDVqtlsDAwHIPWpSMg2xqVGNoTFS8HliHn8Z706C2xqDvbFQ6Ty8J58s90eTIpyFCCCHEQ6FEI+kA//3vf+nVqxcbN24kOjoaT09PXnzxxWJ38bx8+TJ9+/alZ8+e5RasKB17w1xPkvQa4LF6luyY4sN726IIPpS/DGlmjo73t99gx7lEPh/igZejrI4ghBBCPMhKnKRD7oj6gAEDSnTsihUrjApIlB9TlUItU0i4sy9UfCbk6HSoq/GmOQIsNSo+6OdOd39b/rMhgqjEbH3fH1dS6bboInN6u/J8a/tqvQGSEEIIIYz3YK7JJ/QKTnnRkpuoi5qhk68NO6f50r9FLYP21Ewtr2+MZETwVW4mFt6ZVwghhBA1X4mS9Kys8kkEyut5RMnJvPSazc5SzZfD6vL1c57YWxqum77znyS6LLzAlpMJVRSdEEIIISpKiZJ0b29vli1bRnZ29v0PLkJWVhZLly7F29vbqPOF8RxkXvoD4Znmduya5kMXP8N9B+JSc3h5zb9M/P4a8ak5VRSdEEIIIcpbiZL0hg0bMn78eDw8PJg6dSqHDx9Gq7332s1arZZDhw4xadIkPDw8mDhxIj4+PuUStCg5M7WCVYHKg7hM0OkkUa+JXGxNWT3ai48GuGOpMfynu/GveLouPM/e80lVEpsQQgghyleJCkd37drF1q1beeutt1i8eLF+2cWWLVvi5+eHvb09NjY2JCUlERsbS1hYGH///TdpaWnodDpatGhBcHCwrPRSRRw0Cil3drTM1uVubFRLc5+TRLWkKArD2zgQ0NCKKesj+ONKqr4vKjGbYf+9wuh2jvxfzzqFEnkhhBBC1BwlXt2lV69e9OrViwMHDrBixQq2bdvGgQMHOHDgQJHHOzs7M2TIEMaOHcsTTzxRbgGL0nPUwLX8XI7bmTpqaWRVkJrMy9GMjS834KvfY/h4x02ycvI/HfnfwdvsPZ/E4mc9ebSuZRVGKYQQQghjlWoJRoD27dvTvn17AMLCwjh58iS3bt0iISGBWrVq4ezsTPPmzfH19S33YIVxcotH85O42EwdDaouHFFO1CqFiZ2c6OxrzeR1EZy7ka7vuxSTyTNLw5nc2Ylp3VwwVcubMiGEEKImKXWSXpCfnx9+fn7lFYuoIBZqMFdB+p0ygtg789Jlje0HQxM3C7ZN8uaT326xdG80eSUHWh0s2hXNzrAkljzria+LedUGKoQQQogSk0mrDwFFUXAwy0/IM7WQIguBPFDMTFT8X886bHy5AfXuWtLnVGQ6gYsvErQvBq1WioaFEEKImkCS9IfE3Usx3s6QZO1B1Ka+Fb9Nbcjw1g4G7RnZOub8HMXg5ZeJiJMdrYQQQojqTpL0h0ThTY2qKBBR4azN1Hw00J3Vo+vhbGM4o+3QpRS6LLzAumNxshSnEEIIUY1Jkv6QsDEB0wJ5umxq9ODr2siWndN86P2IrUF7coaWaRsieHHVv8QkG7dBmRBCCCEqliTpD4nceen536flQFqOJOoPOkcrE5Y9X5cvhnpSy8Lwn/uvZxPp/Nl5fjmTWEXRCSGEEKI4kqQ/RApNeZF56Q8FRVEY0NKOnVN96dDQ2qDvdkoOL666ytT1ESSmSTWxEEIIUV1Ikv4QkXnpDzc3O1O+G+PF+33dMDc1/FlY/2ccXRdd4EB4chVFJ4QQQoiCJEl/iNQyBbXMS3+oqVQKo9s5smOKDy09LQz6IuOzGBx0mTlbrpOWpa2iCIUQQggBZUzSd+zYQf/+/XF3d8fMzIwxY8bo+3799VemT5/O9evXyxykKB8qRcHeNP/7pGzIlHWzH0oNncz4abw3r3d3weSu3wJB+2/Tc/FFTkakVU1wQgghhDA+SZ8yZQo9e/bkp59+IikpiaysLIMl3VxdXVm0aBHr1q0rl0BF+Si4qRHIlJeHmYlaYWpXZ35+tSE+zmYGfedvZdD7y4ssDL1JthQYCyHEfaWmprJ48WK6d++Oq6srZmZm2NjY4O/vz6hRo9i8eTM5OVL7I0rOqCR91apVLFmyhMcee4zjx4+TmFh4dYhmzZrh6enJli1byhykKD9SPCru1szDgl8mN+TlDrVRCvx4ZGvh499u0fercC7FyLs5IYQozoEDB2jYsCFTpkxh3759+Pj40L9/f7p164aJiQkrV66kb9++NGvWrKpDFTWIyf0PKeyrr77Czs6OrVu34uTkVOxxzZo149SpU0YHJ8qfvSkoQF5qLvPSBYCFqYp3ervyVGMbpqyPIDI+S9/317U0+nx9jTEtdUytLz8vQghR0PHjx+natSsZGRm89tprvP3229jaGu5Pce3aNT777DO+/vrrKopS1ERGjaSfPn2adu3a3TNBB6hVqxY3b940KjBRMdQqhVoF5qUnZEG2zEsXd7TztmbXNB+GPGZv0J6erePLP2DUt9eJjJdRdSGEANBqtQwfPpyMjAzeffddPvroo0IJOoCnpycLFy5k//79VRClqKmMnpOuKMp9j7l+/ToWFhb3PU5UroJTXnRAgUFTIbAxV7NoiAf/HVEXRyu1Qd+BS2l0XXiBjX/FGdSgCCHEw2jbtm2cO3eOunXrMnPmzPse/9hjjxl8rygKXl5eZGZmMm/ePBo1aoSZmRn9+vUzOG716tUEBARga2uLpaUlzZo1Y/78+aSnpxe6RqdOnVAUhStXrhTqu3LlCoqi0KlTJ4P2OXPmoCgKwcHBHDlyhMDAQOzs7LC1teWpp57i8OHD978ZotwZlaT7+Phw/PhxsrKKz+6SkpL4+++/adKkidHBiYrheFfx6G2Zly6K0LNJLXZP9yXQ33BUKDFdy8TvI3h5zb/cTsmuouiEEKLqbd++HYDBgwejVqvvc3TRtFot/fr146OPPsLb25u+ffvi6uqq73/55ZcZMWIEf/75Jx06dKBXr15ERUXx1ltv0aVLF1JTU8vltQAcPHiQJ598koiICHr27Imfnx+hoaF07NiRHTt2lNt1RMkYlaQPHjyYqKgo3nzzzWKPmTlzJgkJCQwdOtTo4ETFsNcYfi/z0kVxalub8M2IunzY1xlLU8O+n08l0nXhBULPFS4cF0KIh8GJEycAaNmypdHPce3aNS5cuEBYWBhbt25l/fr1fPXVVwCEhIQQFBSEm5sbJ0+eZOvWrWzYsIGLFy8SEBDAoUOHmD17drm8FoDly5fz2muvcfr0ab777jv++OMPli5dSmZmJqNGjSItTZbmrUxGJelTp07lkUceYdGiRTzxxBMsWLAAgPDwcBYuXMiTTz7J0qVLadmyJWPHji3XgEXZaVQKNgVKhuOyQCtTF0QxFEVhUEtblvWGNl6G09duJWUzIvgqr4VEkJIhS4sJIR4ut2/fBqB27dpF9o8ZM4ZRo0YZfBU1L33+/Pm4u7sXal+8eDEA77zzDj4+Pvr2WrVq8eWXX6IoCsuWLSty2osx6tWrp5/6kmf8+PG0adOGqKgoQkJCyuU6omSMWt3FwsKC0NBQRo0axfbt2zl69CgA+/btY9++fQA89dRTfPvtt2g0mns9lagiDhqFpOzcxFyryy0gvXuEXYiCXKwVvh3hxtrjqXzwyw0ysvPf2K05Gsf+iyksGuJBm/pWVRilEEJUHytXriy0NnqnTp0ICAjQf68oCn369Cl0blZWln4u+PPPP1+ov1mzZjRr1owTJ07w999/07Zt2zLHO3DgQExMCqeGw4YN48iRI+zbt4/hw4eX+TqiZIxK0gGcnJzYunUrJ06cYMeOHVy5cgWtVouHhwdPPfUUrVu3Ls84RTlzMIOrBaaxxWbqsNfcvxhYPNxUKoWxHWrT0deaSeuucSoyf/TmamwmA5ZdYvyTtXmtuwtmd29lKoQQDxhHR0cAYmJiiuzPzs6v23nllVdYtmxZoWOcnZ0xMzMr1H779m0yMzOpXbs2VlZFD354eXlx4sQJIiMjjQm/kHr16hV7HUB2ka9kRiXpJ0+eRKVS0bRpU5o3b07z5s3LOy5RwXJXeNGhy85Cl53FLR3UUXKTKlNTU/kERNyTr4s5P7/akIU7b7Fk9y1ytLntOh0s3RvD7rBkFj/rQRM3Wd1JCPHgat68OQcOHOCvv/4qcrS7JMzNzY2+fklW2itIq9UafS1R+Ywa6mrRogWTJ08u71hEJbJQK1iqISvyAunHtnPtwHa2bt3K1q1bOX/+fFWHJ2oAU7XC691d+Gm8Nw1qG76pO3cjnae/CL+TwEu9gxDiwdSzZ08ANmzYUGhaS1k5Ojqi0WiIiYkhJSWlyGPyllksOJ89b5AtOTm50PHXrl275zWvXr16z3Y3N7f7xi3Kj1FJuoODg8HyQKJmctAomLr7YPZIJwDaPNmFXr164evrW7WBiRrl0bqW7Jjiw4vtHA3as3J0zP/lJv2/vsSV2xlVFJ0QQlScp59+msaNG/Pvv/8yf/78cn1uU1NT/Tzz77//vlD/6dOnOXHiBNbW1rRo0ULfnpefFTXg9ttvv93zmhs3bizyzUbe9QvOpRcVz6gkvW3btpw6daq8YxGVzEEDiokpilnulIR0E3OsrKxkqosoNUuNivf6uvHdGC9cbQ1n0R27mkq3RRdZffi2bIAkhHigqFQqVq9ejZmZGbNmzeL1118nISGh0HG3b98mLCys1M8/adIkIHezoUuXLunbk5KSmDhxIjqdjpdfftlgykzHjh0B+PTTTw3WUN+1axeLFi265/WuXLnC3LlzDdqCgoI4dOgQLi4uDBw4sNSvQRjPqCT9nXfeISwsjE8//bS84xGVyOGuTY1kt3dRVh19bdg5zZeBLe0M2lMztbyx6Tov/O8KNxNli1shxIPjscceIzQ0lDp16vDxxx/j4uJCx44dGTZsGP379+fxxx/H1dWVPXv20KhRI1q1alXi5x40aBDjxo0jIiKCpk2b0rt3b4YMGYK3tzd79+6lbdu2zJs3z+CcYcOG4efnx8GDB2ncuDGDBg2ibdu2PPXUU4wfP/6e1xs7diwLFiygadOmPPfcc7Ru3ZqXX34ZU1NTgoODsbS0NOoeCeMYVTh67tw5hg8fzuuvv863335Lr169qFu3brHFDyNGjChTkKJiWKlBo4K0nNykKS49C61Oh6qUhShCFGRnqWbJUE8C/W15Y1Mkcan5H53uCkumy8ILzO/nxjPN7e7xLEIIUXMEBAQQHh7OihUr2Lx5M6dPn+bQoUOYmZnh7u7OkCFDGDRoEL179y5yicN7WbZsGQEBAXz99dfs3buX7OxsvL29mTp1KtOmTcPCwrBA38LCgp07d/Laa6/xyy+/sG3bNpo0acK6deto1aoVn3zySbHXateuHaNHj2bWrFn8/PPP6HQ6unbtyrx582jXrp1R90YYz6gkfdSoUSiKgk6n48SJE5w4caLICmOdToeiKJKkV1OKolCLDOJP565tn3jid7aqu2NhrsFSDZZqBUsTsFTfKTQ1AXNV6avJxcOpd7NaPO5lyYyQSHb+k6Rvj0vN4ZW11/jlbCLv93XD3tLolWCFEKLasLS0ZPLkyaVaWKOkUwBfeOEFXnjhhRI/r7u7O2vXrjXqmk888QShoaElvpaoOEb97zh79mxJ1B4QJsm3IetOUV9WBjmJ0aSbupOeA7EU/Iec+1gBLNTcSd5zV4ixKPBYI0m8KMDF1pRVo+qx9mgc7/wcRWpm/vJfP/6dwOFLKXw22INOvjZVGKUQQghR/RiVpM+ZM6ecwxBVpb6THeHkrpkOCiqre09B0AGpOblfFJHEq5W8kXewNFEMRuEt1WCqkgT+YaMoCs+3cSCgoTVT1l/j6JX8QqYbidk8998rjHzCgVlPu2KpkQ2QhBBCCCjDjqPiweBQy4a2AR04vP93PB8LQFXLitRsSMsBY7Y8yNFBUnbuFxl5SXx+Mm+q5I28546+FxyFt1SDWpL4B1Y9Rw0hLzfg699j+HjHTTJz8n8uVh6KZd+FZD4f4slj9aQwSQghhChzkh4ZGcmBAwf0W9K6u7vTvn17g4X1RfXmWCt3qkGzOrZYWamB3Dlr6VpIy4bUHB2pOXc9NnLPhiwdZGVB7gIfhZN4M9Xdo/CGj6WotWZTqxRe7eREZz9rJq+L4GxUur7vUkwmfb8KZ1JnJ6Z1dUZjIqPqQghRGebMmSOzJKoho5P06OhoXn31VTZt2lRom1lFURg4cCBffPEFTk5OZQ5SVD5FUbC4kxg7UDgx1up0pN+Z9pKardNPgUm78zjDyJ2HM7S5X/FZhafSAJir80fhTXUqkjW1iMtSQKOTotYaxN/Vgq0Tvfks9BZf7okmb1NSrQ4+3xXNzn+SWPKsJ351jN8uWwghhKjJjErSExISePLJJwkLC8PCwoLu3bvj5eWFoihcuXKFX3/9lQ0bNnDy5EkOHz5MrVq1yjtuUcVUyp155iaAWeHEOEenuzPyfmf0PRvS7ozCp2bnjqgbIz2HAkWtJmDtRkwykKzNL2otOPouRa3VlpmJipk96tC1kQ1T1kVwNTZ/of7T19PpseQibwS6MDagtkyDEkII8dAxKklfsGABYWFhDB48uMjR8piYGCZOnMj69ev58MMP+eCDD8olWFH+MjMzSUtLA9D/aWpqWuZdR9WKgrUpWJsCRYzEZ2l1pN1J2POn0OjufJ87t720DIpaM4suai2UxEtRa5Vr7WVF6NSGzNt6g9VHYvXtGdk65m29wY6zSXw+xANPB9kJVwghxL0FBwczevRoLl++jJeXV1WHUyZGJembNm3C09OTb7/9FlNT00L9tWvXZvXq1Rw6dIiQkBBJ0qux8+fPc/bsWSB3y2AAf39/mjZtWqHXNVUpmKrAtogkXqfTkaW9exTe8LGxRa3J2blfUtRavViZqflwgDuB/rb854cIbiZl6/sOX06h66ILzO3jytBW9vJpiBBC1HCpqal89NFHdOrUiU6dOlV1ONWWUUn61atX6d+/f5EJeh5TU1Pat2/Ppk2bjA5OVDxfX1/q169v0Havv9fKoCgKGjVo1GBXxCi8TqcjQwtxqRlcjbqFbW0XshRT/Yh8eo7h4pAldb+iVo3q7lH4/A2fpKi1fHRpZMPOaT7M/PE6W04m6NuTM7T854dIfj2byMcD3HGyqdqfUSGEEMZLTU1l7ty5AJKk34NRSbqFhQUxMTH3PS4mJqbQdrWietFoNGWe2lLZFEXBXA12JjpuZyZS38IJC4v8lUAMilpzCsyNL2NRa6Y296skRa0GGz7JTq2l4mBlwtfPedKjiS1v/RhJQlr+X9iOs0kcu3qBjwe407Op1LoIIUR5SE9PR6PRoFIVXlUrJSUFKyurKohKGLXG2WOPPcbevXs5duxYscf8+eef7Nmzh1atWhkdnBDGyC1qVahtplDXUoWfrYqW9iraO6l5qo6anq4qOjmraO2gomkthQZWCq7mUMsUTMuw6l96DsRmQkSajgvJOk7E6zh0W8vOm1q2RWnZdTOHwzE5nIzXcjFJS2SalrhMHRk5uhJvDf2wUBSF/i3s2DXNl44+1gZ9sSk5jFn9L1PXXyPR2LVAhRCiBoqMjGTMmDG4ublhZmZG/fr1GT9+PJmZuYX3ly5dYvDgwTg4OGBpaUnbtm3ZunWrwXPs2bMHRVH4/vvvefvtt3F3d8fS0pLExESCg4NRFIW9e/cyYcIEnJ2d8fDwMLj+iy++iIuLC2ZmZjRp0oRvvvmmUJzp6enMmTMHX19fzM3NcXV1ZcCAAYSHh3PlyhV9LePcuXNRFAVFUQyWgPznn38YNGgQDg4OmJub06pVKzZv3lzoOmfOnKFLly5YWFjg4eHBe++9V2jFwZrMqJH0adOmsXPnTrp27crkyZN57rnn9JPzr169ynfffcfixYvJyclh2rRp5RlvtafRaKhbt26NG52uiYy912pFwdoErE2gJEWtBefDV1ZRa8GpNNWhqLWqfq5da5mydowXKw/HMm9rFOkFPsVY/2c8+y+msGiIBwENre/xLDWL/A6pPHKvK4/c67K7fv06rVu3Jj4+nnHjxtGoUSMiIyP54YcfSE1NJS4ujnbt2pGamsrkyZNxdHRk5cqVPPPMM/zwww/079/f4PneffddNBoNM2bMICMjw+DvZsKECTg5OTF79mxSUlIAuHnzJm3btkVRFCZOnIiTkxPbt29nzJgxJCYmMnXqVABycnLo3bs3O3fuZOjQoUyZMoWkpCR+++03Tp8+Tbdu3fjqq68YP348/fv3Z8CAAQA0a9YMyE288/bbefPNN7GysmL9+vX069ePkJAQ/eu4ceMGnTt3Jjs7W39cUFDQAzWDQ9EZOYQ3f/58Zs2aVewIoKIovPvuu8ycObNMAVa2qKgogoKCGDduHK6urqU+Py0tjfDwcLy9vR+oH5TqqCrutWFRa+4UGn0Sf2fDp4p4D2+al8SbFC5qtVCDSQUn8dXh5zo8OoMp665x/Fpaob6X2jsys2cdLMryUUg1UR3u9cNC7nXleRDvddeFFzh3I/3+B5bS9Q8fKbJ95MiRfPvttxw5cqTQLAWdTsf06dNZtGgR+/btIyAgAIDk5GSaNWuGTqcjPDwclUrFnj176Ny5Mw0aNOD06dMGfx95K6MEBASwZ88e1Gq1vu+ll15i27ZtnDp1CkdHR337sGHD2L59O1FRUVhYWPC///2PF198kc8++6zQQK1Op0NRFGJiYnBycuKdd94ptIlSt27duHXrFn/88QdmZmb68wICAoiOjub8+fNA7oDxokWLOHLkCK1btwZy9/Dx8fEhISHhgVjdxej/0WbOnMnhw4cZPnw4Xl5e+rnNXl5evPDCCxw6dKjGJehC3E9uUauCnUbBzUKhoY2KR+xUtHFU09k5dypNNxcV7RxVtLBT8LNR8LRUcNTkJtPGptJZOkjMhhvpcClFx5kEHX/EatkbreWXG1p23Mhhf3QOx+O0/JOo5WqKluh0HSnZOrQPyFQabyczfhzvzRuBLty9GemKA7cJ/PwiJyJSqyY4IYSoQFqtlh9//JE+ffoUOY1YURS2bdtG69at9Qk6gLW1NePGjePKlSv6ldzyjBw5stg3TGPHjjVI0HU6HSEhIfTp0wedTkdMTIz+KzAwkISEBI4fPw5ASEgItWvXZtKkSUXGBNRXIgAAIABJREFUeS+xsbHs2rWLIUOGkJSUpL/G7du3CQwM5MKFC/od7rdt20bbtm31CTqAk5MTzz///D2vUZMYveMoQKtWrVi5cmV5xSJEjZdX1Gpekp1acwpv+CRFrfdmolaY0sWZLn42TPr+GudvZej7LkZn0PvLcKZ2cWZyF2dM1TXjNQkhxP1ER0eTmJh4z+WRr169Sps2bQq1N27cWN9f8Py7V3Yr6O6+6Oho4uPjCQoKIigoqMhzbt26BUB4eDh+fn6YmJQ+xbx48SI6nY5Zs2Yxa9asYq/j7u5e7Ov18/Mr9XWrqzIl6UKI0jHYqbWIJD5HV8R8+AIbPmUZmcQb7tSaJ/dxkTu1FnisqYYzSB5xt+CXyQ358NebBO2PIe/DghwtfBp6i53/JPH5sx74OJtXbaBCCFFN3Wva0d19ecWYw4cPZ+TIkUWekzenvCzyrjNjxgwCAwOLPKZhw4Zlvk5NYVSSfvz4cb799luGDRvG448/XuQxR48e5fvvv2fEiBG0aNGiTEEK8bC4X1FrtlZX9Hz4O5s8ZVdQUau5YoLW2pPsVDU2OVqD9eE1VVTUam6q4p3ernT3t2HK+ggi4rL0fX9HpBH4+UX+7+k6jH7CEZVsRCWEKGc7p/lU2rWcnJywtbXl9OnTxR5Tr149wsLCCrX/888/+v6yXN/GxoacnBy6det2z2O9vb05cuQIWVlZxe67Utyntw0aNABy92u533Xq1avHhQsXCrUXdQ9qKqPGyL744guWLl16zwn59evXZ+nSpXz55ZfGxiaEuIuJSsHWVKGOuUIDaxVNaql43EFNR2c1gXVUdK+jIqC2ikftVTS2VahnqeBkBlYmxheg5OggRasiTWNNRIaac4k6/ozTsi9ay44bWn6JyuH3Wzkci83hbIKWyylabqbrSMrSka2t+PnwTzSwZudUH4a2sjdoT8/WMWtzFEP/e5nI+MwKj0MIISqKSqWiX79+bNmypcjlr3U6HU8//TRHjx7l0KFD+vaUlBSCgoLw8vLC39/f6Our1WoGDhxISEhIkW8UoqOj9Y8HDhxITEwMX3zxRZFxAlhaWgIQHx9v0O/s7EynTp1YtmwZUVFR97zO008/zeHDhzl69KhB/5o1a0r56qovo0bS9+3bx6OPPqpf57IoTk5OPProo+zdu9fo4IQQJacoChoFNBqwy20x6M/bqdVwFD7/cZqRO7Vm3ylqTcyGe+7Uql+Vpvx3arUxV/PZYA8Cm9jyWkgkMcnZ+r79F1PouvAC7/V1Y2BLuxoz/14IIQr64IMP2LFjBx07dmTcuHE0btyYqKgoNmzYwP79+3nzzTf57rvv6NmzJ5MnT8bBwYGVK1dy+fJlQkJCityoqDQWLFjA7t27adOmDWPHjsXf35/Y2FiOHz9OaGgosbGxAIwYMYJVq1Yxffp0jh49SocOHUhJSSE0NJQJEybQt29fLCws8Pf3Z926dfj6+uLg4EDTpk1p2rQpX375JQEBATzyyCOMHTuWBg0acPPmTQ4dOkRERAQnTpwA4PXXX2f16tX06NGDKVOm6JdgrFevHidPnizz/a4OjErSIyMji53mUtCDdKOEqOkMilo1pSxqzdKRoTMuub1vUauqwNKSBYta78RamqQ60N+WVnUteX1jJNvPJOrbE9O1TF4Xwa9nElkwwB1HKynHEULULO7u7hw5coRZs2axZs0aEhMTcXd3p2fPnlhaWmJnZ8fBgwd54403WLJkCenp6TRr1owtW7bQq1evMl/fxcWFo0ePMm/ePDZu3MjSpUtxdHSkSZMmfPjhh/rj1Go127Zt4/3332ft2rWEhITg6OioT7zzrFixgkmTJjFt2jQyMzN55513aNq0Kf7+/hw7doy5c+cSHBzM7du3cXZ2pmXLlsyePVt/vqurK7t372bSpEksWLAAR0dHXnnlFdzc3BgzZkyZX291YNQ66fb29jzxxBNs27btnsf16tWL/fv3k5CQYHSAlU3WSa855F5XnrS0NC6EX8LdqwE5Juak3SlkLVjgmlkBC8QXLGq1uFPIanlXUWtRSbxOp+OH4/G8/dN1ku5aMsfJ2oRPBrnzVGPb8g+4HMjPdeWRe1155F4LUXpGDSc1adKE/fv3Exsbi4ODQ5HHxMbG8vvvv99zuSAhRM2hQpebLJsrVJeiVpWCPnG30O/QmpvA921pxxMNrJi2IYID4Sn6M6OTsxkZfJXnHrdnTh9XrM3UCCGEENWNUUn68OHDmTBhAoMGDWLVqlV4eHgY9EdGRjJy5EhSU1MfqEXlhRDFM1Ep2KrA1hSKmg+fpcsbeSd3JP6uZSaNGYjX6iA5O/erqPnwJoqaSf3q8WxCJocuJHEjPpOYxCxiErL44a949l1MZvGznrSpb2XcixZCCCEqiFFJ+ksvvcR3333Hnj178PX1pUePHnh7ewO5i9j/+uuvpKWl0b59e1555ZVyDVgIUfNUdVGruZWGzi0cC/UnpmZzNC6L86kptHQzx0ajGBS4lkdRqxBCCGEMo5J0ExMTtm/fzuTJk1m5ciU//vijQb9arWb06NF8/vnnRu04JYR4uJSmqDV/FD6/wDXdyPnwtpYm2ObuLMWVNCBNR0UVtQohhBClYXQGbWlpyYoVK3j33XfZs2cP165dA8DT05NOnToZVXQphBBFKc1OreVZ1JquhfTM++/UendRq4UazIopahVCCCFKoszD3K6urgwbNqw8YhFCCKOUdKfWtDtTaFJzIClLx9X4LFRqFRZGFI+WpajVwqTqdmoVQghRM5T7XJRz585x5swZPD09adOmTXk/vRBClFpxRa1ta6vZeyGZ/wu5TraiUNvWlNq2GhxtTXGx0+DnZoGpqbqCilrRJ+x5ybuliYIqR0FbxBsNIYQQDxejkvR169axbNky5s+fb5CIz5gxg4ULF+q/f+aZZ/jhhx9Qq2WJMyFE9dTRx5qtr3oza/N1fjgeX6i/k681CwZ6YGNpoh+Fr9idWk3BoRFR8TqsknMK7dQqRa1CCPFwMCpJ//bbb/n7779p2bKlvu3gwYN89tln2Nra0qtXLw4fPszmzZtZs2YNI0aMKLeAhRCivNWyULP4WU8C/W15fWMkcak5+r4955PpsegC8/u70be5XaFziytqzXtsbFFrlk4hPuv+O7Va6EfhpahVCCEeJEYl6adPn6ZZs2ZoNBp92+rVq1EUhfXr19O9e3diY2OpX78+K1askCRdCFEj9HqkFo97WTIjJJLQc0n69vi0HMavvcYvZxL5oJ8b9pb5vzpLWtSadqeQtbyLWpGiViGEqFDBwcGMHj2ay5cv4+XlVWnXNSpJv3XrFu3atTNo2717N87OznTv3h0ABwcHnnzySf7888+yRymEEJXE2caUlSPr8d0fcbyzJYqUAln0TycSOHwphc8Ge9DZz6ZEz1faotbEjGxuJ6WisrAiXauq0J1aLe5Mobm7qNVUkSReCFGzpKam8tFHH9GpUyc6depU1eGUC6OSdAsLCxITE/XfR0VFcf78eYYMGWJwnJ2dHXFxcWWLUAghKpmiKDzX2oH23tZM3XCNI5dT9X03k7J5/psrjGzrwKxerlhqVGW61t1FrWnqHMKjIvB28cbc3Fy/U2vanXXhK2en1qKLWvNG501kZRohRDWTmprK3LlzAR7uJL1Bgwbs27eP+Ph47OzsWLNmDYqi6EfR89y4cQNnZ+dyCVQIISpbPUcNP4xrQNC+GD789SaZOfmJ7MrDsfx+IZnPn/WgVT2rCrl+SXdqLbi0ZGoOpGXnj86Xb1FrLo2qcCFr3mMLde6nB0KIh1t6ejoajQaVqvBARkpKClZWFfN780Fi1BDQqFGjSExM5LHHHmPgwIG8/fbbWFtb07dvX/0xWVlZHDt2DF9f33ILVgghKptapTC+oxPbJzXE39XcoO/y7Uz6fXWJBb/cIDPbyMnlZZC7U6uCvUbB3VKFj42K5nYq2tZW08VFTU9XFV2cVTzhqKK5nYKPtYK7hYKDJrfw1FiZWojPguvpOsKTdZxK0HEkVsueW1q2R2kJvZHDwZgc/orTEpao5VqqlpgMHanZOnQ6Y942CCFGjRpV5HzoOXPmGExPUxSFiRMn8uOPP9K0aVPMzMxo0qQJv/zyS6FzIyMjGTNmDG5ubpiZmVG/fn3Gjx9PZmam/phLly4xePBgHBwcsLS0pG3btmzdutXgefbs2YOiKHz//fe8/fbbuLu7Y2lpSWJiIsHBwSiKwt69e5kwYQLOzs54eHgYxPDiiy/i4uKij/Wbb74pFGt6ejpz5szB19cXc3NzXF1dGTBgAOHh4Vy5cgUnJycA5s6di6IoKIrCnDlz9Of/888/DBo0CAcHB8zNzWnVqhWbN28udJ0zZ87QpUsXLCws8PDw4L333kOrrfzf72DkSPrYsWPZvXs3ISEhXL58GSsrK5YtW4ajo6P+mJ9//pmEhAS6dOlSbsEKIURVaexqzraJ3nwWeosv9kSjvZNranWweHc0O8OSWPKsJ43qmN/7iSpRwaJWxxIWtRZ8LEWtQtRM+/fvZ+PGjUyYMAEbGxsWL17MwIED+ffff/W52vXr12ndujXx8fGMGzeORo0aERkZyQ8//EBqaioajYabN2/Srl07UlNTmTx5Mo6OjqxcuVK/xHb//v0Nrvvuu++i0WiYMWMGGRkZBguMTJgwAScnJ2bPnk1KSgoAN2/epG3btvo3Fk5OTmzfvp0xY8aQmJjI1KlTAcjJyaF3797s3LmToUOHMmXKFJKSkvjtt984ffo03bp146uvvmL8+PH079+fAQMGANCsWTMgN/Fu37497u7uvPnmm1hZWbF+/Xr69etHSEiI/nXcuHGDzp07k52drT8uKCgICwuLiv0LK4ZRSbqpqSkbNmzgypUrREdH06hRI2xsDIuo6tevz6ZNm2jbtm25BCqEEFVNY6LizR516NrIhinrI7hyO3+06cz1dHosvsgbgS6M61AbdQ2Yt23MTq2pObo7iTwVU9RK3tKShkWtFneWmZSiViHu79y5c5w9exZvb28AOnfuTPPmzfnuu++YOHEiADNnzuTGjRscOXKEVq1a6c+dN2+e/hOvBQsWcPPmTfbt20dAQACQO1DbrFkzpk+fTt++fQ2ms6Snp3Ps2LEik1oHBwd27txpsHfO//3f/5GTk8OpU6f0bx5eeeUVhg0bxpw5c3j55ZexsLBg1apV7Ny5k88++4xp06bpz3/zzTfR6XQoisKgQYMYP348zZo1Y/jw4QbXnjJlCnXr1uWPP/7AzMwMyH3TEBAQwBtvvKFP0j/88EOio6M5cuQIrVu3BmDkyJH4+PgY89dQZmXacdTLy6vYpWhatGhBixYtyvL0QghRLT3uZcVvUxry3rYbrDwcq2/PzNHx7rYb7DiXyOdDPKnroLnHs1R/xe3UmidTm5+w5xW1puXkz43XGpHEa5GiVlEz7L2VQ1J2+T9vb7eybwDZrVs3fYIOuSPKtra2XLp0CQCtVsuPP/5Inz59DBL0PHlvhLdt20br1q31CTqAtbU148aNY+bMmZw9e5amTZvq+0aOHFnsqPPYsWMNEnSdTkdISAhDhgxBp9MRExOj7wsMDOT777/n+PHjtG/fnpCQEGrXrs2kSZOKjbU4sbGx7Nq1i3nz5pGUlERSUv7yuoGBgbzzzjtERkbi7u7Otm3baNu2rT5BB3BycuL5559n6dKl97xORShTki6EEA8rKzM18/u7093flukbIrhZ4H/rI5dT6brwAnP7uDLscfsHduRXo1LQaKAWUJ2KWg1H4aWoVTx86tatW6jN3t5ev+JedHQ0iYmJBgl2Ua5evWqws3yexo0b6/sLPkf9+vWLfa67+6Kjo4mPjycoKIigoKAiz7l16xYA4eHh+Pn5YWJS+rT14sWL6HQ6Zs2axaxZs4q9jru7e7Gv18/Pr9TXLQ+SpAshRBl09rNh13QfZm66zuaTCfr2lEwtM0Ii+eVsIp8MdMfZxrQKo6x8uUWtubuf2msKJ8a6Aju15o/C5z82dqfWTG3uV0IJdmrV6NQkaWoRl6WgM9VhITu1imqsuJ/NnJycQm0FR6wLqujC7XvN3b67L68Yc/jw4YwcObLIc/LmlJdF3nVmzJhBYGBgkcc0bNiwzNepCJKkCyFEGdlbmvD183Xp0SSet368Tnxa/n+aoeeS6PzZBT4e6M7TTWtVYZTVi6LcGd2u0qJWNVi7cTsZSNbqi1ot7kyhkaJWUZ3Y29sTHx9fqP3q1aulfi4nJydsbW05ffr0PY+rV68eYWFhhdr/+ecffb+xnJycsLGxIScnh27dut3zWG9vb44cOUJWVhampkUPeBT3b7NBgwZAbj3l/a5Tr149Lly4UKi9qHtQGSRJF0KIctKvhR1t6lvxnx8i2HM+Wd8el5rDS6v/ZdCjdrz7jBu1LMo+5/RBV5Ki1rS8kXj9FJq8zZ7KXtR6u4RFrRb6efFS1Pqw6ehcuf+Ovb29SUhI4OTJk/oR5qioKDZt2lTq51KpVPTr149vv/2WY8eOFZqXnleM+fTTT7No0SIOHTrEE088AeSucR4UFISXlxf+/v5Gvx61Ws3AgQNZu3Ytp0+fLjT1Jjo6Wr+s4sCBA9m6dStffPGFQeFowVgtLS0BCr2RcXZ2plOnTixbtoxJkybh6upa7HXyXu/Ro0f189Kjo6NZs2aN0a+zLCRJF0KIcuRay5Q1L3qx6nAs87ZGkVZg2sUPx+M5GJ7CwiEedGhoXYVR1nwmKgUbFdhIUWu1l5mZSWpqKllZWaSmpqLVajE1NTVYnk/c39ChQ/UrkUyePJnU1FS++uorfH19OX78eKmf74MPPmDHjh107NiRcePG0bhxY6KiotiwYQP79+/Hzs6ON998k++++46ePXsyefJkHBwcWLlyJZcvXyYkJKTIjYpKY8GCBezevZs2bdowduxY/P39iY2N5fjx44SGhhIbm1uYP2LECFatWsX06dM5evQoHTp0ICUlhdDQUCZMmEDfvn2xsLDA39+fdevW4evri4ODA02bNqVp06Z8+eWXBAQE8MgjjzB27FgaNGjAzZs3OXToEBEREZw4cQKA119/ndWrV9OjRw+mTJmiX4KxXr16nDx5skyv1RiSpAshRDlTFIWRTzjSwceaKeuu8ee/afq+6wlZPLv8MmPaO/JWzzpYmJbtPzlRtPsVtWZqIS41gytRt6hV24VMlWmVFLVa6EfkH9yi1vPnz3P27FkA/VQCf3//+xYtCkOOjo5s2rSJ6dOn8/rrr1O/fn3mz5/PhQsXjErS3d3dOXLkCLNmzWLNmjUkJibi7u5Oz5499aPSLi4uHDx4kDfeeIMlS5aQnp5Os2bN2LJlC7169Srza3JxceHo0aPMmzePjRs3snTpUhwdHWnSpAkffvih/ji1Ws22bdt4//33Wbt2LSEhITg6OuoT7zwrVqxg0qRJTJs2jczMTN555x2aNm2Kv78/x44dY+7cuQQHB3P79m2cnZ1p2bIls2fP1p/v6urK7t27mTRpEgsWLMDR0ZFXXnkFNzc3xowZU+bXW1qKzogqggd5O9eoqCiCgoIYN25coY9ESiItLY3w8HC8vb2rbPH7h4Xc68oj99p42Tk6vvo9mk9+u0VWjuGv24ZOZix+1oMWnpb6NrnXlae4e11RRa33U7CoNW8KTd5jc3Xu5lQ1UWZmJtHR0Rw4cID27dtjZ2cnI+lClIBRI+lubm4MGzaMl156qcj1NYUQQuQyUStM6uxMZz8bJn1/jbCbGfq+i9EZ9FkazpQuzkzp4oypumYmYQ+a+xW1au8UtaYWLGotMDe+IndqLVjUWvBxdS5q1Wg0mJvn7sRrbm7+wA7yCVHejErSFUUhKCiI5cuX07x5c8aNG8dzzz2Hra1teccnhBAPhKZuFmyf1JCPdtxk2b4Y8j7DzNHCZ6G3CD2XxJJnPfCQX6PVnkpRsDIBq5IUtep3aJWiViFE6RiVpEdFRbF+/XqWL1/OwYMHefXVV5kxYwZDhgxh7Nix+gpgIYQQ+cxNVczu5Ur3xrZMWX+Na3FZ+r6TkWkELr7IjG6OBNSu2LWMRcW6X1FrlvZOAWt25Ra1WtxJ2KWoVYiawagk3cLCgpEjRzJy5EjCwsIICgpi9erVBAcHs3LlSho3bsy4ceN44YUXsLe3L++YhRCiRmvbwIqd03x4Z0sU3/0Rp29Pz9bx3i8xtKgDS2pn4S1z0h9IpiqFWiqoVUQSn1fUajgKX3CZSeOLWpOyubONvRS1ClETlHl1Fz8/Pz799FMWLFjApk2bWL58Obt27WLatGm8+eabDBw4kHHjxtGhQ4fyiFcIIR4I1mZqPh3kQaC/LTNCIonJHQIF4O8b0POra7zf141Bj9rJNIWHiKIomKnBTA32RYzC63Q60rV3j8Lnz41PL7z5ZIncb6dWM9Xdo/APRlGrENVZuS3BaGpqypAhQ+jevTvz5s1j0aJFpKens2bNGtauXUvTpk15//336d27d3ldUggharzu/rbsrmvJG5si2XY6Ud+enKFlyvoIfjmTyEcD3HG0lhVzxZ2i1jtFoyUpar17wydji1oztJCRCXFGFrUKIUqv3H7r79u3j+XLlxMSEkJ6ejpmZmYMHDiQLl26sG7dOkJDQ+nbty9Lly7l5ZdfLq/LCiFEjedobcLy4XUJ+Suet368TnJGfia1/Uwif1xN5eOB7gT6S1WpuLf7FbXmaPPnvhsUteZAWjZkVUBRq6LTob0WCcCtW7dwdHQs/UWEeAiVKUmPiYlh5cqVrFixgvPnz6PT6WjYsCHjxo1j9OjR+n+IL774IkePHqV79+58/PHHkqQLIcRdFEVh0KP2tHRVM+n7q/x9I78vJjmb0SuvMrSVPXP7uGJjXrnbkYsHh7oURa36YtYC8+FzjEjis+NukPHvPwCcOnUKT09PrK1lx10h7seoJD00NJTly5fz008/kZWVhVqtpn///rzyyit069atyHNat25Nr169WL9+fZkCFkKIB5mbnSkLusGBmNp8HHqb9ALr9X1/LI4D4cl8PsSTtg1krWlR/owqai0wN76oHF6XlWHwfWZmZoXFL8SDxKgkvXv37gB4enoyduxYXnrpJerUqXPf8zw9PfHw8DDmkkII8dBQKQqj2trRrYk9k9dFcCIiTd93LS6LgUGXGBdQmzcCXTA3lQm/onKUpqg1fxQekt08uHnjMjlJsbi5ucmqb0KUkFG/3Z9++mk2b97M5cuXefvtt0uUoAMsWLCAy5cvG3NJIYR46Pg4m7N5gjf/6eaMusBva50Olu2LoeeSi5yKTCv+CYSoRLlFrQqOZgoelip8bVS0sFcR4GJGp9YtAWjcuLGsViRECRmVpP/888/07t0blUpGcIQQoiKZqhX+85QLP7/qTUMnM4O+sJsZ9PriIp/vukW2MZOFhRBCVFtGZdlqtZoxY8bc97ixY8diYmJcbWpWVhbBwcGMGjWKQYMGMWPGDP76668Sn79v3z5ee+01Bg8ezLBhw3j99dc5ceKEUbEIIURVa+5hya9TGvJSe8OVMbK18OGvN+n/dTiXYjKKOVsIIURNY1SSrtPp0OlKNmpT0uPutmjRIn766Sc6duzISy+9hEqlYt68eZw9e/a+565du5ZPPvmE2rVrM2bMGJ5//nm8vLyIjY01KhYhhKgOLExVzHvGjfVj6+OWW9mn9+e/aTy16ALBh24b/XtXCCFE9VGhu2MkJCRgZmZ2/wPvcv78efbt28fo0aPp378/AF26dGHixIkEBwfz0UcfFXvuP//8w7p163jxxRfp27ev0bELIUR1FdDQml3TfJi1+Tobjsfr29OydLz143V+PZPIZ4M9cL0rkRdCCFFzlDhJ//fffw2+T05OLtSWJzs7m7CwMHbs2IG3t3epgzpw4AAqlYrAwEB9m0aj4amnnmL16tVER0fj5ORU5LlbtmzB3t6ePn365Faap6djYWFR6hiEEKI6s7VQ8/mzngQ2seX1jZHEpuTvB7/3QjJdFp7ng37u9G9hV4VRCiGEMFaJk3QvLy+DiuyQkBBCQkLueY5Op2Ps2LGlDurSpUu4u7tjaWlp0O7r6wvA5cuXi03ST5w4QaNGjdiyZQvr168nKSkJe3t7Bg8eTO/evUsdixBCVGdPN61Fq3qWvBYSyW/nkvTtCWlaXv3uGr+eSeSDfm44WFXoB6dCCCHKWYl/az/55JP6JH3v3r04OzvTqFGjIo/VaDS4ubnxzDPP6KerlEZcXFyR66jmtRU3tzw5OZnExETOnTvHqVOnGDp0KE5OToSGhhIUFISJiQk9evQodTxCCFGdOduYEjyyHt8fi2P25ihSMrX6vs0nEzhyOYVPB3nQpZFNFUYphBCiNEqcpO/Zs0f/WKVS0bNnT7755puKiInMzExMTQvPpdRoNABkZBS9gkFaWu56wUlJSbz22mt06NABgHbt2jFp0iTWr18vSboQ4oGkKArDHnegvbc1U9dHcPhyir7vZlI2w/93hRFtHZj1dB2szNRVGKl42GRmZpKeng5Aeno6KSkpmJqa6v9PF0IUzajPPy9fvoy1tXV5x6Kn0WjIysoq1J63lXBxxah57SYmJrRr107frlKp6NChA2vXri1yPntMTAwxMTFA/ih9enq6Pukvjbw3EMW9kRDlR+515ZF7XXnKeq+dLGDVC3X43+F4Pt15m8z8qeqsOhzLnrAkPunvzGN1pVZHfq4rR1hYGOfPnwdya84gd/qqn59fuV9LatDEg8SoJL1evXrlHYcBe3v7Iqe0xMXFAeDg4FDkedbW1mg0GqysrFCrDUeKatWqBeROibk7SQ8JCWH58uX645588kkiIiJISUnBWBEREUafK0pH7nXlkXtdecp6rzu7gFdP+OgAhMflt/8bl8XQ/0Uy2B9GNM/dLOlhJz/XFUtRFHx8fAq1hYeHl/tll0aBAAAgAElEQVS1mjZtWu7PKURVKVGSvmrVKgD69++PjY2N/vuSGjFiRKmOb9CgAadOnSI1NdWgeDQsLAyA+vXrF3meSqWifv36XLhwgaysLIMpM3lJv62tbaHzBg4cSMeOHfXH/fbbb3h4eFCnTp1SxQ25IzIRERF4eHgYtfykKDm515VH7nXlKc977Q082ULHkr2xfL0/Du2d5dO1Olh3Bk7GaPh0gAt+Lg/n36n8XFceuddClF6JkvRRo0ahKApt27bFxsZG//396HQ6FEUpdZLerl07Nm3axK+//qovPM3KymLnzp34+vrqR8Kjo6PJyMjAw8NDf25AQABhYWHs2rVLv4RjZmYme/fuxdPTE0dHx0LXq127NrVr1wYgKioKAHNz8zJ9bGZmZiYfu1USudeVR+515Smve20BvN3bkp6PODB53TUu387U9527mUm/oAhe6+7CK0/WRq16OEfV5ee68si9FqLkSpSkz549G0VR9Ils3vcVxc/Pj/bt27Nq1Sri4+NxdXVl165d3Lp1i0mTJumPW7hwIadPn2bz5s36th49evDbb7+xbNkyrl+/jpOTE7t37+bWrVvMmjWrwmIWQojq7LF6lvw21Yd3t0Wx8lD+dMLMHB3vb7/Bb+cS+XyIJ/UcpZhPCCGqgxIl6XPmzLnn9xVh2rRprFmzhj179pCcnIyXlxezZs2673wzMzMz3nvvPYKDgwkNDSU9PZ369esze/ZsHn300QqPWwghqitLjYr5/dwJbGzL9B8iuJGYre87eiWVbosuMKePK889bl+hAzFCCCHuz6jC0cWLF2NpaclLL71U3vHoaTQaRo8ezejRo4s95oMPPiiy3c7OjqlTp1ZUaEIIUaN18rNh1zRf3vopkh//TtC3p2RqeS0kkl/PJPLJIHecbQovhSuEEKJyqIw56T//+Q9btmwp71iEEEJUEjtLNUuH1eWr5zyxszBcDSv0nyQ6f3aBn08mFHO2EEKIimZUkl6nTh3Mzc3LOxYhhBCVrG9zO3ZN96GLn+HeF3GpOYxb8y8Tv79GQlpOMWcLIYSoKEYl6YGBgezfv1+/uZAQQoiaq46tKatHe/FhfzcsTA3nom/8K54uCy/w+4XkKolNCCEeVkYl6e+//z5qtZrnn39ev2ShEEKImktRFF5o60joVB8eq2tp0BeVkMXQFZd5+6frpGZqqyhCIYR4uBhVODpz5kyaN2/Oxo0b2bp1K48++ih169YtcgqMoij897//LXOgQgghKl792mb8OL4BS/dG88lvt8jK0en7vjl4mz3nk1gy1JOWnpb3eBYhhBBlZVSSHhwcrH+cnp7OwYMHOXjwYJHHSpIuhBA1i1qlMKmzM539bJi87hr/3MjQ912KyeSZpeFM7uzM1K7OmKplqUYhhKgIRiXpu3fvLu84hBBCVDNN3SzYPqkhH++4yVe/x6C7M6ieo4WFO28R+k8iS571xNdFFhIQQojyZlSS3rFjx/KOQwghRDVkZqLi7addeaqxLVPWX+Pf2Cx936nIdAIXX2Rmjzq81N4RlUpG1YUQorwYVTgqhBDi4dKmvhWhU314vrW9QXtGto45P0cxZPllIuJkxS8hhCgvkqQLIYQoEWszNR8P9GDlqHo4WRt+EHvwUgpdFl5g3bE4dDpdMc8ghBCipIxO0lNTU3nvvfd4/PHHsbOzQ61WF/llYmLUjBohhBDV1FONbdk13YdeTW0N2pMztEzbEMGY1f8Sk5xdRdEJIcSDwagMOiEhgQ4dOnDmzBnUajUajQadToerqys3btzQj6LUq1evXIMVQghRPThamRA0vC4b/4rn/366TmJ6/vrpv5xJ5NjVVD4a4E6PJrb3eBYhhBDFMWokfcGCBZw+fZpx48aRmJjIoEGDUBSFyMhIUlJSCA4Opk6dOrRp04ZLly6Vd8xCCCGqAUVRGPioPTun+RDQ0MqgLyY5mxdXXWXahgiS0nOqKEIhhKi5jErSf/zxR9zc3Fi8eDHm5uYoSn5Fv7m5OSNGjCA0NJRNmzbx6aeflluwQgghqh93Ow3fj6nPe31dMTc1XOFl3bE4ui66wMHw5CqKTgghaiajkvSrV6/y6KOPYmpqmvskqtynycrKX5rL39+fjh07Gmx8JIQQ4sGkUim82K42O6b40MLDwqAvIi6LwcsvM/fnKNKztMU8gxBCiIKMStLNzc0xN8/fvMLWNnfO4Y0bNwyOc3Bw4PLly2UITwghRE3S0MmMzRO8mfGUMyYF/ofR6WDZvhh6LL7Iyci0qgtQCCFqCKOSdE9PT65du6b/vlGjRgDs3btX35adnc0ff/yBo6NjGUMUQghRk5ioFaZ3c2HLq974OJsZ9J2/lUHvLy6yaOctsnNkqUYhhCiOUUl6hw4dOHnyJElJSQD06dMHExMTJk+ezNdff82WLVsYNGgQV65ckd1JhRDiIdXcw5JfJjdkbIDhYE22Fj7acZN+X4UTHp1RRdEJIUT1ZlSSPnToUJo1a8bBgwcBcHNzY/78+cTHx/Pqq6/Sr18/Nm/ejIuLCx9++GG5BiyEEKLmsDBVMbePGxvG1cfdztSg7/i1NJ76/AL/O3gbrVZG1YUQoiCj1kkPCAjg0KFDBm3Tp0+nffv2bNq0ibi4OHx9fRk9ejQODg7lEqgQQoiaq723NTun+jB7SxTr/4zTt6dn6fi/n67z69lEPhvkgdtdibwQQjysynU70DZt2tCmTZvyfEohhBAPCFsLNYuGeBDob8NrGyOJTclfP/33C8l0XXSe9/u6079FLYOlfYUQ4mFk1HQXIYQQ/9/enYdFVbZ/AP/OADPsOyj7Jmi4kZKKqCiKWC6ppKWWYC7ZYmq+r5a+maU/K1s00+zVNLJs00TTTDMWF9Rc2jBUkEVFEZAdBhiYmd8fvoyOwzLgMDPg93NdXnme5zzn3NzSzD1nnvMcaq1He9ggcaE/RgZaqbSXVsnx0rfXMHfHNRRV1ukpOiIiw6DRlfSrV6/e10k8PT3vazwREXUsTlYm+Hy6F747W4zl+3JRUXNn/fR9KaX4LbsSHzzhhuHdrPUYJRGR/mhUpHt7e7f6q0eBQIC6Ol4RISIiVQKBAE89Yo9QP0ss2JmDk5mVyr788jo88/kVPN3PHm+M6QwLsZEeIyUi0j2NivQhQ4ZwfiAREbUJD3sRds72wZbjt/DOoTzU1N1Z6eWr00U4drkCHz3pjn7eFnqMkohItzQq0pOSkto4DCIiepAJhQI8N8QJQwOsMO+7azh/o1rZd6VIigmfZuKFMCf8K8IZYmPeTkVEHR9f6YiIyGB07WyK/S/6YUG4E4R3fYGrUAAbkwowekMGUnOr9BcgEZGOsEgnIiKDIjIWYnFkZ+x93g++jiKVvtTcajz6cQY2JBVAxgcgEVEHptF0l6NHjwIA+vXrB1NTU+W2poYMGdLyyIiI6IHW18scv8z3x6oDuYg9WaRsr5UpsPrnmzh8oQwfTXaHt4NYj1ESEbUNjYr0oUOHQiAQ4MKFCwgICFBua0omkzW/ExER0T3MRUKsHu+GkYHWWLQzB7lld1YLO5MtwYh1l7FijAum9bPjAgdE1KFoVKRPnz4dAoEANjY2KttERES6MDTACvELA7Bs73XE/VmqbJdI5Vi8+zoOpZbh/Sg3dLI20WOURETao1GRHhsb2+Q2ERFRW7M1N8LGKZ6IDCzBa3tuoFhy51va+IvlCF+bjncmuGFsLxs9RklEpB28cZSIiNqVcb1tkbDQH8O7Wam0F0tkeG7HVbz4zVWUSDjNkojaNxbpRETU7nSyNsH2GC+smegGc5HqW1ncn6UYvjYNR9LK9RQdEdH902i6S2OOHDmCI0eOIDc3FzU1NQ3uIxAIsHXr1vs5DRERkRqBQICn+9tjUBcLzP8+B2eyJcq+3LI6TNmajZgQe/znMRe1Qp6IyNC1qkgvKirChAkTcPz4cSgUTa9TyyKdiIjakreDGLuf88Wmo7fw3i95qJXdeV+KPVmEo+kVWP+kB/p4musxSiKilmlVkb5w4UIcO3YM3bt3x5w5c+Dr6wtLS0ttx0ZERKQRI6EALw11QnhXS8z7NgcXblYr+zJvSTHukwy8PMwJC4Y7Q2TMq+pEZPhaVaTv27cP7u7uOHnyJItzIiIyGIEuZjgwzw/vH87HJ0cKUP9lr1wBrEsoQPylcqyf7IGunU31GygRUTNadTlBJpMhJCSEBToRERkcsbEQyx7tjN3P+cLLXqTSl3K9GqM+voz/Hi2AXN70dE0iIn1qVZHet29f3Lx5U9uxEBERaU1/Hwv8uqALnu5nr9JeU6fAmz/dxNNfXMfNChbqRGSYWlWk/+c//8HJkydx8OBBbcdDRESkNRZiI6yJcsOXM7zgbKU6w/O3K9WYux/Y9UdZs4sgEBHpWqvmpIeHh+Prr7/G9OnT8dhjjyEiIgJubm4QChuu+YcMGXJfQRIREd2P4d2skbDQHK/F3cC+lFJlu6QWWLI3Hwnp1Xgvyg2Olve1MjERkda0+tWooqICJiYm+PLLL/Hll182ua9Mxie/3evWrVvN7mNnZwcjI6MWjbG1tYWx8Z1/1sLCwmavENnY2MDExES5XVRUBLlc3uQYa2triER35noWFxc3++9sZWUFsVis3C4pKUFdXV2TYywtLWFqeucGr9LSUtTW1gIAampqIJFIUFRUpHJcCwsLmJmZKbfLysoglUqbPM+9Y8rLyxtd+7+eubk5zM3vLOlWUVGB6urqJkYAZmZmsLCwUG5XVlaiqqqqyTGmpqYq939IJBJIJJImRgBisRhWVneexlhVVYXKysomx4hEIlhbWyu3q6urUVFRAaDxXJuYmMDGxqbBMY0xNjaGra2tcrumpgbl5U0/dMbIyAh2dnbKbalUirKysibHCIVC2NvfmeZQW1uL0tLSJkbcXjLWwcFBuV1XV4eSkpImxwCAo6Oj8u8ymQzFxcXNjnFwcIBAIAAAyOVyFBUVAWg81wBgb2+vvBiiUChQWFjY7Hn4OnJnjL2FMT6d5oGRvwnx3yO5qKy5E1/aFQme2ZSPF4Y6IcTHUu21h68jmo2593Wk/rWnuTwQkbpWFemxsbGYOXMmFAoFHn74YS7B2AoJCQnN7jNmzBiVF++jR482+2Y0atQolRfI5OTkZl/wR4wYoVLMnDp1qtlCa+jQoXB2dlZunzlzptliZtCgQXB1dVVu//77780WDAMGDICnp6dy+6+//lK7HyI7O1tlOzg4GL6+vsrt8+fPIycnp8nzBAUFISAgQLl94cIFtePeq0ePHggMDFRup6Wl4fLly02O6dq1K3r37q3czsjIwMWLF5sc4+fnh759+yq3s7Ozcf78+SbHeHl5oX///srta9eu4c8//2xyjJubG0JDQ5XbN27cwNmzZ1X2uTcnnTp1QlhYmHI7Pz8fp06davI8Dg4OGD58uHK7sLAQx48fb3KMjY0NIiMjldslJSVISkpqcoyFhQVGjx6t3K6oqGj2/zuxWIzHH39cuV1VVdXsGCMjI0RFRSm3pVKpRv9/T5o0Sfl3mUymNqah378JEyaofGOpyXnGjh2rUjgeOXKk2UL40UcfVSnOjh8/3myRFRERofJB6uTJk81+MBw2bBicnJyU26dPn272g9TgwYPh4uKi3D537lyzH1ZCQkLg4eEB4PYHMceaDMzyyWtw36qsLCRkAT1690VgVz9le0pKCq5fv97kee59HUlNTcWVK1eaHHPv68ilS5eQkZHR5Jhu3bqhV69eyu3Lly/j0qVLTY7p0qUL+vTpo9zOysrCP//80+QYb29v9OvXT7l97do1/PXXX02OcXd3x8CBA5XbN27cwLlz5wBA5eckoua1qkhfs2YNxGIxDhw4gKFDh2o5JCIiIv1673AeZhl3QqgfL0ARkX4IFK24W8bc3BxhYWH4+eef2yImvcrNzcXmzZsxZ84clas1mqqqqkJGRgb8/PxUrl7di9NdtDPd5fr163Bzc+N0l3u0xXSXhnLN6S63aXu6S0O5BjjdBbi/6S716l9H6nMtsHDGxuMlSM+78/98QY0IFXXGmDPIAUtGdUZtVcUD/zpyv9NdiouLm31vJKI7WlWk+/v7o1evXvjhhx/aIia90lWRTvePudYd5lp3mGvduTvXJiJTbEgqwIe/5qHuns8W/s5ifPykB3q589+jtfh7TdRyrVqCcfr06UhMTFRe+SEiImrPjI0EWDDcGftf6oIAZ9VvMNLzazBm4+XbBbyMSzUSkW60qkhfunQphg0bhmHDhiEpKYnryxIRUYfQy80MB1/ugucGO+J/s5EAAHVy4P3D+Xh8UwYuF3ClEiJqe62a7lK/ckb9XesmJibo3Llzg+ukCwSCZu9UNyT3O91FJpOhsrISFhYWKvNASfuYa91hrnWHudad5nJ9IqMC87/PwfWSWpV2UxMBlj3aGTNCHCAUCtTGkTr+XhO1XKuupGdnZyM7OxsKhQIKhQJSqRRXr15Vtt/9JysrS9sxG7T6XDR3gxHdP+Zad5hr3WGudae5XA/0s0TCQn88GWyn0l5dq8DrP+ZiytZsXC/hv5Mm+HtN1HKtKtLlcnmL/hAREbVHVqZGWDvJHdume8HBQvUK8LHLFRi+Nh0//F7MaZ9EpHWtKtKJiIgeJKO6WyPxlQBEBlqrtJdVyzHvuxw8t+MqCiubXgqSiKglWKQTERFpwNHSGNume2LdZHdYilXfPvenlCH8w3QcvtD0+v1ERJrS6ImjV69eBXD7seFGRkbKbU3d/Vh3IiKi9kogEGByXzsM9LXAgu9zcCLzzkPCCirqEB17BVMfscOKsS6wFPMGSSJqPY2KdG9vbwiFQqSmpiIgIADe3t7KJ+U1RyAQNPs0OCIiovbE3U6E72f7YGtyIVYfvImaujtz0r8+U4zjGRX4aLIH+vtYNHEUIqLGaVSkDxkyBAKBQPno4vptIiKiB5VQKMDswY4IC7DEvO+uIeV6tbLvalEtJv43E3OHOGLxyE4QG3N2KRG1jEZFelJSUpPbRERED6qATqbY/2IXrI3Px8eJ+ZD9b1EzhQLYdOQWEi+V4+MnPdDd1Uy/gRJRu8KP9kRERPfJxEiAxSM7Ye/zfvB1FKn0XbxZg8c2ZPyvgOdSjUSkGa0W6dXV1bh58ybnoBMR0QOpj6c5fpnvj2cHOqi018oUePtgHiZ8momsWzV6io6I2hONivTy8nKcPn0aaWlpDfanp6cjMjIS1tbWcHNzg5WVFZ566ink5uZqNVgiIiJDZy4SYtXjrvhmpjdcrFVnlZ69IsGIdenYfqqQD0AioiZpVKRv374dISEh2L9/v1rfzZs3MXjwYPz666+oq6uDQqFATU0Ndu7ciWHDhqGqqkrrQRMRERm6sAArxC8MQNTDtirtVbUKvBp3A09vy8bNslo9RUdEhk6jIv3IkSMQCoV4+umn1fpWrlyJ/Px82NnZYe/evSgvL8fvv/+O4OBgpKenY9OmTVoPmoiIqD2wNTfCx095YPM0T9iZq66bnphWgfAP07H3rxI9RUdEhkyjIv3vv/9Gz5494ezsrNIul8vxzTffQCAQYPXq1Rg7diwsLCwQFBSE3bt3w9jYGHv27GmTwImIiNqLMb1skLDQH8O7Wam0l1TJ8PzX1/DCN1dRLOH9XER0h0ZFen5+Prp27arW/vfff6OkpATGxsZ46qmnVPrc3NzQv39/XLhwQTuREhERtWOdrE2wPcYL7010g7lI9e13z5+lGL42HUlp5XqKjogMjUZFemVlJWpr1efNnTt3DgDQq1cvWFtbq/W7u7ujrKzsPkMkIiLqGAQCAab1t0f8An/08zZX6btZVoepW7Px2p7rkEjleoqQiAyFRkW6k5MTLl68qNZ+/PhxCAQC9OvXr8Fx1dXVsLGxub8IiYiIOhgvBxF+eM4X/3msM0RGqk/w/uJkESLWpePcFYmeoiMiQ6BRkV4/bWXfvn3KtoKCAuzevRsAMHLkyAbHpaamwtXVVQthEhERdSxGQgFeCHPCgXl+CHQxVenLKpTi8U0ZePfQTUjreFWd6EGkUZH+0ksvQaFQYNKkSZg+fToWLVqERx55BOXl5fDw8MDo0aPVxmRmZiItLQ29e/fWetBEREQdRaCLGX56yQ/zhjlBeNdFdbkC+CihAKM3ZuDizWr9BUhEeqFRkT5s2DCsWLECtbW1+Oqrr7Bu3TpcvXoVZmZm+Pzzz2FsbKw25tNPPwUAREZGajdiIiKiDkZsLMRrozpj91xfeDuIVPr+uVGNUesv49OjBZDJ+QAkogeFenXdiOXLl2PMmDHYvXs3CgoK4OHhgWnTpsHHx6fB/cViMebPn49Ro0ZpLVgiIqKOrJ+3BQ7P74K3frqJL38rUrZLZQq89dNN/JJajo8mu8PDXtTEUYioI9C4SAeAPn36oE+fPhrtu3LlylYFRERE9CCzEBvh3YluiAy0xqJdOcgrv7N++qmsSoSvTcdb41zwVLAdBAJBE0ciovZMo+kuREREpFvh3awQv9AfY3uprpJWKZVj0a7riPniCgrK1ZdHJqKOgUU6ERGRgbK3MMZ/p3li4xQP2JipvmUfvlCOYWvT8fP5Uj1FR0RtiUU6ERGRgZsQZIuEhQEI87dUaS+qlGHml1cx/7trKKuS6Sk6ImoLLNKJiIjaARcbE3w90xurx7vC1ER1LvrO30sQvjYdxy5X6Ck6ItI2FulERETthEAgQEyIA35d4I8+HmYqfTdKa/Hkliws//EGqmr5ACSi9o5FOhERUTvj6yjGnuf9sCSyE4zveSf/LLkQkR9dxl85Ev0ER0RawSKdiIioHTI2EmB+uDN+eqkLunYSq/RdLqjBmI0Z+OBwHmplfAASUXvEIp2IiKgd6+lmhp/ndcFzgx1x97LpMjnwwa/5GPdJBtLzq/UXIBG1Cot0IiKids7URIg3xrhg1xwfuNuZqPT9lVOFyI8u47PkW5DLeVWdqL1gkU5ERNRBhPhaIn6BP6Y8YqfSXl2nwPIfc/HUZ1nIKZbqKToiagkW6URERB2IlakRPnjCHZ9He8HR0lil73hGJYavTceu34uhUPCqOpEhY5FORETUAUUGWiNxoT8e7W6t0l5eI8fL3+Vg9ldXUVhRp6foiKg5LNKJiIg6KAdLY3z2jCc+muwOK7HqW/6B82UIX5uOX1LL9BQdETWFRToREVEHJhAIMKmvHeIX+iPUz0Klr6CiDjFfXMGiXTmoqJHpKUIiagiLdCIiogeAu50I383ywVtjXWBqLFDp++ZMMYavTcepzEo9RUdE92KRTkRE9IAQCgWYNcgRh17ugl5uZip914prEbU5E2/9lIvqWrmeIiSieizSiYiIHjD+nUyx70U/vDLCGUZ3VQIKBfDp0Vt4bMNlnL9Rpb8AiYhFOhER0YPIxEiAf0V0wr4X/ODnJFbpu3izBqM3ZGB9Qj7qZFyqkUgfWKQTERE9wII8zHHo5S6YGeqg0l4rU+CdQ3mY8GkmMm/V6Ck6ogcXi3QiIqIHnLlIiJXjXPHdbB+42Jio9J27KkHEunR8cbKQD0Ai0iEW6URERAQAGNzFEgkL/fFEH1uV9qpaBV7bcwPTtmUjt7RWT9ERPVhYpBMREZGSjZkR1j/pgS1Pe8LO3EilLymtAsPXpmPPnyV6io7owcEinYiIiNSM7mmDxFf8MeIhK5X2kioZXvjmGubuuIpiSZ2eoiPq+Ay2SK+trUVsbCxiYmLwxBNP4F//+hf++OOPFh/n9ddfx7hx4/Dpp5+2QZREREQdl7OVCb6I9sL7UW6wEKmWDD/+XYrwD9OReKm8yWNIpVJIJBLU1tZCIpGgsrISUqm0LcMm6hAMtkhft24d9u7di7CwMMyaNQtCoRBvvfUWUlNTNT7GiRMncOnSpTaMkoiIqGMTCASY2s8evy7wR38fc5W+vPI6TNuWjVfjrkMibfgBSGlpaYiPj0d6ejri4+Px008/IS0tTRehE7VrBlmkp6Wl4dixY5g+fTpmzJiBUaNGYdWqVXByckJsbKxGx5BKpdi2bRsmTpzYtsESERE9ALwcRNg1xxevP9YZIiOBSt/2U0UYsS4dZ69Uqo0LCAhAaGgoACA0NBSjR49GQECATmImas8MskhPTk6GUChEZGSksk0kEiEiIgIXL15EQUFBs8fYvXs3FAoFJkyY0JahEhERPTCMhAI8H+aEn+d1QaCLqUpfdqEU4zdl4p2DNyGtu3NVXSQSwdT09r6mpqawsLCASCTSadxE7ZFBFumZmZlwc3ODubnq12r1n7yzsrKaHF9QUIBdu3YhOjoaYrG4yX2JiIioZR5yMcWBl/zw8jAnCO+6qC5XAOsTC/DYhgxcyK3WX4BEHYBBFunFxcWws7NTa69vKyoqanL81q1b4evriyFDhrRJfERERA86kbEQr47qjD3P+8LHQfXKeGpuNR79+DI+OVIAmZwPQCJqDYMs0qVSKUxMTNTa678eq6lp/PHEf//9N06ePInZs2e3WXxERER0W7CXBQ4v8Ef0AHuVdqlMgVUHbuKJzZnILeVSjUQtZazvABoiEolQW6v+RLP6JZsam8Iik8mwZcsWDB06FP7+/hqf79atW7h16xaAO1fpq6urUVVV1dLQlR8gmvogQdrBXOsOc607zLXuMNfaIwCwfJQ9wvzEeHVvPvIrZMq+37IkiP6qFEu63c51a95bNWVmZtZmxybSNYMs0u3s7Bqc0lJcXAwAsLe3V+sDgISEBFy/fh0vvPAC8vLyVPqqqqqQl5cHW1tbtSL/hx9+wJYtWwAANjY2GDJkCHJyclBZqX6XuqZycnJaPZZahrnWHeZad5hr3WGutcddCHzymAIbTgNJ2bfbxEIZnvG8CgA49tsfCOziCYFA0PhB7kOPHj3a5LhE+mCQRbqvry9SUlIgkUhUbh6tX/Pcx8enwXEFBQWoq6vDkiVL1PoSExORmJiIpXBFGuUAABqZSURBVEuXYsCAASp9UVFRCAsLA3D7Svrhw4fh7u6Ozp07tzj2mpoa5OTkwN3dnTettjHmWneYa91hrnWHuW47WwOBfSnleOOnAnSzKIGz6e1vwgW1lXBwcGjwvjMiUmWQRfrAgQMRFxeHQ4cOKZdQrK2tRXx8PAICAuDk5ATgdlFeU1MDd3d3AMCQIUPg6+urdrzVq1cjODgYI0eObHBtVkdHRzg6OgIAcnNzAdxeJup+vjYTi8X82k1HmGvdYa51h7nWHea6bUzuZ4bBXe3wTtw/MBLkKtttbGyYbyINGGSR3rVrV4SGhmL79u0oKSmBi4sLEhISkJ+fj3nz5in3W7t2Lc6fP48ff/wRAODu7q4s2O/l7OysdgWdiIiI2o6LjQnWRffGqXNCXMu8iIcffhgWFhb6DouoXTDIIh0AFi5ciB07diApKQkVFRXw9vbG66+/zvlmRERE7YhAIECAjxuuZV5s9J4yIlJnsEW6SCTCjBkzMGPGjEb3Wb16tUbHqr/STkRERETUHhjkOulERERERA8yFulERERERAaGRToRERERkYFhkU5ERERtRiqVorq6GsDtp3lXVlYqnyBORI0z2BtHiYiIqP1LS0tDamoqACA5ORkAEBgYyNXaiJrBIp2IiIjaTEBAAFxcXHD16lV4enrC1NQUJiYm+g6LyOCxSCciIqI2IxKJYG5uDhMTE5ibm/Npo0Qa4px0IiIiIiIDwyKdiIiIiMjAsEgnIiIiIjIwLNKJiIiIiAwMi3QiIiIiIgPDIp2IiIiIyMCwSCciIiIiMjAs0omIiIiIDAyLdCIiIiIiA8MinYiIiIjIwLBIJyIiIiIyMCzSiYiIiIgMDIt0IiIiIiIDY6zvAAxNXV0dAODWrVutGl9dXY3i4mLcvHkTpqam2gyN7sFc6w5zrTvMte4w17qjy1w7OjrCxMSkTc9BpAss0u9RUlICANi9e7eeIyEiIqKWmjNnDlxcXPQdBtF9EygUCoW+gzAkEokEGRkZsLW1hbFxyz/DZGVl4fXXX8fKlSvh4+PTBhFSPeZad5hr3WGudYe51h1d5ppX0qmj4JX0e5ibm6Nnz56tHl9aWorS0lLY29vzk3wbY651h7nWHeZad5hr3WGuiVqON44SERERERkYoxUrVqzQdxAdjZmZGYKDg2Fubq7vUDo85lp3mGvdYa51h7nWHeaaqGU4J52IiIiIyMBwugsRERERkYFhkU5EREREZGC4uouW1NbWYseOHUhKSkJFRQW8vb0xbdo0PPzww/oOrd2qqqpCXFwcLl26hPT0dFRUVGD+/PkYPny42r7Xrl3DZ599hgsXLsDY2BjBwcGYOXMmbGxs9BB5+5Oeno74+HikpKQgPz8fVlZW6Nq1K55++mm4ubmp7Mtc35+rV6/i66+/RkZGBoqLiyEWi+Hh4YGJEyeiX79+Kvsy19r3/fff46uvvoKnpyc2bNig0nfhwgXExsYiIyMD5ubmGDRoEJ555hmYmZnpKdr2IyUlBcuWLWuwb82aNejWrZtym3km0gyLdC1Zt24dTpw4gXHjxsHFxQUJCQl466238H//938IDAzUd3jtUllZGb799ls4OTnBx8cHKSkpDe5369YtvPbaazA3N8czzzyDqqoq7NmzB1euXMH777/P9XI18MMPP+DChQsIDQ2Ft7c3iouL8dNPP2HhwoV477334OXlBYC51ob8/HxUVVUhPDwc9vb2qKmpwYkTJ7Bq1Sq88MILGDVqFADmui3cunULO3fubPCJl5mZmXj99dfh7u6OmTNnorCwEHFxcbhx4wa4voLmxo4diy5duqi0ubq6Kv/OPBNpjkW6FqSlpeHYsWOYMWMGJkyYAAAIDw/HSy+9hNjYWKxZs0bPEbZP9vb2+OKLL2BnZ4f09HQsWrSowf127tyJ6upqrF27Fk5OTgCAgIAALF++HPHx8cqihxr3+OOPY9GiRSqF3+DBgzFv3jzs2rVLmXvm+v4FBwcjODhYpW306NF45ZVXsHfvXmUOmWvt+/zzz9G1a1fI5XKUlZWp9H355ZewtLTE6tWrlauPODs7Y8OGDfjjjz/4raiGAgMDERoa2mg/80ykOc5J14Lk5GQIhUJERkYq20QiESIiInDx4kUUFBToMbr2y8TEBHZ2ds3ud+LECTzyyCPKQgYAgoKC4ObmhuTk5LYMscN46KGH1K7Murq6wtPTEzk5Oco25rptGBkZwdHREZWVlco25lq7zp8/j+TkZMyaNUutTyKR4M8//0RYWJjK8oDDhg2DmZkZjh8/rstQ2z2JRAKZTNZgO/NMpDleSdeCzMxMuLm5qa39GhAQAOD245DvfqMl7SksLERpaana16sA4O/vj3Pnzukhqo5BoVCgpKQEnp6eAJhrbauuroZUKkVlZSVOnz6Nc+fOYfDgwQCYa22TyWTYvHkzRo4cCW9vb7X+7OxsyGQy+Pv7q7SbmJjAx8cHmZmZOoq0/Vu/fj2qqqogFArRvXt3xMTEKPPKPBO1DIt0LSguLm7wim99W1FRka5DemDU59be3l6tz87ODuXl5aitreX83VZISkpCYWEhpk6dCoC51rZt27bh4MGDAAChUIgBAwbgueeeA8Bca9vBgwdRUFCAlStXNthfXFwMAI2+jqemprZpfB2BsbExBg4ciL59+8La2hrXrl1DXFwcXnvtNbz77rvw8/NjnolaiEW6Fkil0gbfLEUiEQCgpqZG1yE9MKRSKQA0m38WMy2Tk5OD//73v+jWrRvCw8MBMNfaNm7cOAwcOBBFRUU4fvw45HI5amtrATDX2lRWVoavv/4akydPbnRVnObyXd9PjXvooYfw0EMPKbf79++PgQMH4uWXX8b27dvx5ptvMs9ELcQ56VogEomUb653q3/BEYvFug7pgVFfsDD/2lNcXIy33noL5ubmWLJkCYyMjAAw19rm7u6OoKAghIeHY/ny5aiursaqVaugUCiYay366quvYGlpiTFjxjS6T3P5ru+nlnF1dUX//v2RkpICmUzGPBO1EIt0LbCzs1N+jXe3+raGvrIm7ajPbUNTioqLi2FlZcWrjS1QWVmJFStWKP/r4OCg7GOu29bAgQORnp6O69evM9dacuPGDfzyyy8YO3YsioqKkJeXh7y8PEilUshkMuTl5aG8vFw5/aKx13G+hreeo6Mj6urqUFNTwzwTtRCnu2iBr68vUlJSIJFIVG4evXTpEgDAx8dHX6F1eA4ODrCxscHly5fV+tLT05n7FpBKpVi5ciVu3LiBlStXKm8Yrcdct636K+QSiQTu7u7MtRYUFhZCLpdj8+bN2Lx5s1r/7NmzMXbsWEydOhVGRkZIT0/HoEGDlP21tbXIyspqcklBalpeXh5EIhFMTU3h5eXFPBO1AK+ka8HAgQMhl8tx6NAhZVttbS3i4+MREBDAlV3aWEhICM6cOaOy1OVff/2F69ev80VfQzKZDGvWrMGlS5ewZMkSlacD3o25vn8lJSVqbXV1dUhMTIRIJIKHhwcA5lobvLy8sHTpUrU/np6ecHJywtKlSxEREQELCwv07t0bR44cgUQiUY5PTExEVVUV862B0tJStbasrCycPn0aQUFBEAqFzDNRCwkUCoVC30F0BO+++y5OnTql8sTR9PR0rFy5Ej169NB3eO3W/v37UVlZiaKiIvz8888ICQmBr68vAGDMmDGwsLBAQUEBFixYAAsLC4wbNw5VVVWIi4uDg4MDPvzwQ04L0MCWLVuwb98+9OvXr8E3ymHDhgEAc60Fq1evhkQiQffu3eHg4IDi4mIcOXIEOTk5ePbZZzF+/HgAzHVbWrp0KcrKyrBhwwZlW0ZGBhYvXgwPDw9ERkaisLAQe/bsQffu3fHmm2/qMdr2YdmyZRCLxejWrRtsbGxw7do1HDp0CMbGxlizZo3ywyfzTKQ5FulaIpVKsWPHDiQlJaGiogLe3t6YNm0a+vTpo+/Q2rVZs2YhPz+/wb4tW7agU6dOAICrV69i69atSE1NhbGxMYKDg/Hss89q9DAkul20nD9/vtH+H3/8Ufl35vr+HD16FIcPH8aVK1dQXl4OMzMz+Pn5YcyYMejfv7/Kvsx122ioSAeA1NRUxMbGIjMzE2ZmZggNDcX06dPVnoFB6vbt24cjR44gNzcXEokENjY26NWrF5566im4urqq7Ms8E2mGRToRERERkYHhnHQiIiIiIgPDIp2IiIiIyMCwSCciIiIiMjAs0omIiIiIDAyLdCIiIiIiA8MinYiIiIjIwLBIJyIiIiIyMCzSiYiIiIgMDIt0IiIiIiIDwyKdSEMCgQACgQC2trYoKSlpcJ933nkHAoEAK1as0G1wGkhKSoJAIEBMTIy+Q2kT69evR/fu3SEWiyEQCDB06NBmx9T/m9b/EQqFsLW1xeDBg/HZZ5/BUB7ILBAI4O3trbNxRESkfyzSiVqotLQUH374ob7DoLvs3r0b8+fPR25uLsaNG4fo6GiMGjVK4/HR0dGIjo7GtGnTEBgYiOTkZMyePRtTp05tw6hva+2Hp47+oYuI6EFnrO8AiNoTgUAAsViMjz76CAsXLoSdnZ2+QyIAe/bsAQDs2rUL4eHhLR4fGxursn348GE89thj+PbbbzFt2jSMGTNGG2G22oULF2BiYqKzcUREpH+8kk7UAkKhEHPmzEFZWRnef/99fYdD/5OTkwMA8PX11crxIiIi8MwzzwC48wFAn7p16wY/Pz+djSMiIv1jkU7UQq+++irMzMzw8ccfo7CwUKMxQ4cOhUAgQHZ2tlpfdnZ2g3OoV6xYAYFAgNjYWJw7dw6PPvoobG1tYW9vj8mTJysL08rKSixevBje3t4wNTVFjx49sGvXribjyc3NRUxMDDp16gQzMzP06dMH27dvb3T/oqIivPbaawgMDISZmRlsbGwQHh6O/fv3N/nzlJWV4ZVXXoGPjw9MTEywYMGC5pMF4Nq1a3juuefg5eUFsVgMZ2dnTJw4EWfOnGkwR4mJiQAAHx8f5fzypKQkjc7VmIcfflgZS73c3FysWbMGYWFhcHNzg0gkQufOnRuMrZ63tzcEAgEUCgU+/vhj9O7dG+bm5ggKCkJMTAyGDRsGAPjiiy9U5sfffV/DvXPLWzvubgcOHEBERATs7OxgamqKrl274tVXX23wfou7fxdTUlIwbtw42NnZwcLCAmFhYThx4kST53Bzc4NYLIarqysGDRqEN998s8H9iYjoDhbpRC3k4uKCuXPnory8HO+9916bn++3335DaGgoCgoKEBkZCQcHB+zcuRPDhw9HaWkphg0bhi+++AKPPPIIQkJCkJqaismTJ+PQoUMNHq+oqAgDBgzAwYMHMXToUAwePBgpKSmIjo5u8IbXtLQ0BAUF4Z133kFVVRUiIyMRHByM3377DWPHjm30G4WqqiqEhYUhNjYWQUFBysKuOSkpKejTpw82b94MMzMzTJw4Ef7+/oiLi8PAgQOxc+dO5b5BQUGIjo5Gp06dAABRUVHK+eWdO3fWILuNKy8vBwCIxWJl2969e7FkyRLk5eWhV69emDBhAlxdXREXF4fQ0FD88ssvjR5v7ty5WLRoEZydnTFu3Dj4+vpi0KBBiIyMBAD4+fkpY4+OjkZQUFCjx2rtuHpvv/02Ro8ejaSkJPTt2xfjx4+HRCLBu+++i/79+yMvL6/BcWfPnsWAAQOQnZ2NyMhI+Pv74+jRoxg+fDjOnz+vsu/GjRsxevRoJCYmokuXLoiKikKPHj1w5coVg7yxmojI4CiISCMAFEZGRgqFQqG4efOmwtzcXGFhYaHIz89X7vP2228rACjeeOMNlbFhYWEKAIqsrCy142ZlZSkAKMLCwlTa33jjDQUABQDFpk2blO1SqVQxYsQIBQBFYGCgIjw8XFFRUaHs/+yzzxQAFEOGDFE5XmJiovJ4ERERKmNOnz6tsLS0VAiFQsW5c+eU7XV1dYqePXsqACjWrFmjkMlkyr709HSFj4+PwsjISJGSkqL28wBQhISEKIqLi5vIqiq5XK483+LFixVyuVzZt2vXLoVQKFRYWloqbty4oTKuqfw2pT7OhuIICQlRAFAsW7ZM2f73338rzp8/r7b/wYMHFSKRSOHn56cSs0KhUHh5eSkAKBwdHRscW//vEh0d3WScXl5eWhl3+vRpZR5PnTqlbK+urlZMmjRJAUARFRWlMubu38WPPvpIpW/BggUKAIpnnnlGpd3T01MhEAgUZ86cUWmXy+WKxMTERmMmIqLbeCWdqBU6deqE559/HpWVlXj33Xfb9FyDBg3C3LlzldsmJiaYN28eAODixYvYtGkTLCwslP0xMTFwdHTEyZMnUVtbq3Y8oVCIjz/+WGXMI488ghdffBFyuRyffPKJsn3fvn1ISUlBVFQU/v3vf0MovPOS0aVLF3zwwQeQyWTYsmVLg7GvX78etra2Gv+sSUlJSElJgaenJ1atWgWBQKDsi4qKwvjx41FRUYFt27ZpfMyWkMlkSE9Px7PPPouTJ09CLBZjxowZyv6ePXuie/fuauMiIyMxadIkZGRkqF1RrrdkyZIGx+rahg0bIJfLMW/ePPTv31/ZLhaLsWHDBpiZmSEuLk5lmk+90NBQvPzyyypt//nPfwAAR48eVWkvKCiAra0tgoODVdo1XR6TiOhBxyKdqJWWLFkCCwsLbNq0qdHpAdowcuRItbb6GyS9vb0REBCg0mdkZAQvLy/U1tbi1q1bamODgoLQtWtXtfYpU6YAAI4dO6Zsq5++MXHixAZjGzx4MADg9OnTan0uLi5qBVpz6s89efLkBlclqb+Z8+4YtaF+PrexsTECAgIQGxsLKysrfPPNN2o3XtbU1GDv3r1YtmwZ5syZg5iYGMTExCAlJQUAkJ6e3uA5xo0bp9WYW6s+d9OmTVPrc3Z2xsiRIyGXy5GcnKzW39DvooODA+zt7ZGbm6vS3rdvXxQXF2PmzJn4559/tBQ9EdGDg0swErWSk5MTXnzxRaxZswbvvPMO1q5d2ybncXNzU2uztLRstO/u/pqaGrU+Ly+vBsfU32B448YNZVv9ja7Tpk1rsKir19CHAU9Pz0b3b0z9uRu72bG+/fr16y0+dlOio6MB3P6WwdraGj179sTEiRPV5tDX3zTZ0A3A9ernst+rNfloC/eTY3d39wbHWFlZoaioSKVt48aNGD9+PLZt24Zt27ahU6dOCAsLw8SJE/HEE0/AyMio9T8EEdEDgEU60X3497//jU8++QSffvopFi9e3KpjyOXyJvvvnmLSkj5tqI9t1KhRypszG+Lo6KjWZmpqqvV47p7+ok33rpPeEIVCgcmTJyM7Oxtz587F3Llz4evrC0tLSwgEAixduhRvv/12o08pbYt8tIWmctyS37devXohNTUVBw8exIEDB5CUlITvv/8e33//PUJCQpCUlASRSKSNkImIOiQW6UT3wdHREfPmzcPbb7+Nt99+G66urg3uV1+MVFRUqPU1NPe3LV25cqXJ9rt/hvorp7NmzUJUVFSbx1Z/7sZirL+C3dg3CG3p4sWLuHjxIoKDg7Fp0ya1/szMTJ3H1Bqurq7IysrClStXEBgYqNavzRybmppi/PjxGD9+PADgn3/+wdSpU3Hy5El89tlneOGFF+77HEREHRXnpBPdp0WLFsHKygqbN29udBqGi4sLgNvLGd7r8OHDbRrfvf78888G501/++23AG7fqFovIiICABAXF6eT2OrnuO/cuRMymUyt/6uvvlLZT5eKi4sBNDzlo7i4uNX/jvUf4Orq6nQyrj5333zzjVpfQUEBDh06BIFAgNDQ0BYdVxPdu3fHiy++CACN3mBLRES3sUgnuk8ODg54+eWXUVNTg61btza4T1hYGADggw8+gEQiUbYnJCRg3bp1OomzXv3KHnfHce7cOWzYsAECgQDPP/+8sj0qKgqBgYHYsWMHVq5cqTbHXaFQIDk5ucGbDFtj6NCh6NmzJ7Kzs7F8+XKVqSNxcXHYvXs3LC0t8eyzz2rlfC3RpUsXCIVCJCQkqHzIqa6uxty5c9XmZGuq/tuDS5cu6WTciy++CKFQiPXr1+Ps2bPKdqlUinnz5qGqqgoTJ06Eh4dHi457N4lEgvXr16s9GEkul+PgwYMAcF/HJyJ6ELBIJ9KCRYsWwdraGlVVVQ32T5kyBV27dsWJEyfw0EMP4YknnsCAAQMQERGhUhTrwpgxY5Camgo/Pz88+eSTGDVqFEJCQlBeXo5ly5aprMhibGyMPXv2wMfHB8uXL4enpyciIiIwbdo0REZGonPnzhg0aFCjT9tsKYFAgB07dsDBwQGrV69G9+7dMXXqVAwaNAgTJ06EUCjE1q1bld9M6JKzszNmzpyJsrIy9O7dG2PGjMGkSZPg7e2NhIQExMTEtOq43t7e6NWrF86ePYt+/fphxowZmDVrFn788cc2GdevXz+sXLkSZWVlCAkJQUREBKZMmYIuXbrgu+++g7+/PzZu3Niqn6WeVCrF/Pnz4ezsjJCQEEyZMgVRUVHw9vZGXFwcvL29MWfOnPs6BxFRR8cinUgL7OzsmnzkvZmZGeLj4zFlyhSUl5fjwIEDkMlk+O6775Rf/+uKg4MDTp06hREjRiAxMRFJSUkIDAzE559/jpUrV6rt7+/vjz/++AOrVq2Cu7s7Tp06hd27dyMtLQ0PP/wwNm7ciKefflpr8fXs2RO///47Zs+ejYqKCuzatQuXLl3C+PHjkZycjMmTJ2vtXC21adMmfPDBB/Dx8UF8fDyOHTuGESNG4OzZs42umqOJH374AePHj0dmZia2b9+OrVu34vfff2+zcUuXLsX+/fsRFhaGM2fOYPfu3RCLxVi8eDF+++23Jm8S1oSlpSU2btyIsWPHoqCgAD/++CMSEhJgZ2eHN998E+fOnYODg8N9nYOIqKMTKBpbioCIiIiIiPSCV9KJiIiIiAwMi3QiIiIiIgPDIp2IiIiIyMCwSCciIiIiMjAs0omIiIiIDAyLdCIiIiIiA8MinYiIiIjIwLBIJyIiIiIyMCzSiYiIiIgMDIt0IiIiIiIDwyKdiIiIiMjAsEgnIiIiIjIwLNKJiIiIiAzM/wMb/9eWiQJFrgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot\n", - "lst_num_partitions = list(all_svcca.index)\n", - "\n", - "threshold = pd.DataFrame(\n", - " pd.np.tile(\n", - " permuted_score,\n", - " (len(lst_num_partitions), 1)),\n", - " index=lst_num_partitions,\n", - " columns=['score'])\n", - "\n", - "panel_A = ggplot(all_svcca) \\\n", - " + geom_line(all_svcca,\n", - " aes(x=lst_num_partitions, y='score', color='Group'),\n", - " size=1.5) \\\n", - " + geom_point(aes(x=lst_num_partitions, y='score'), \n", - " color ='darkgrey',\n", - " size=0.5) \\\n", - " + geom_errorbar(all_svcca,\n", - " aes(x=lst_num_partitions, ymin='ymin', ymax='ymax'),\n", - " color='darkgrey') \\\n", - " + geom_line(threshold, \n", - " aes(x=lst_num_partitions, y='score'), \n", - " linetype='dashed',\n", - " size=1,\n", - " color=\"darkgrey\",\n", - " show_legend=False) \\\n", - " + labs(x = \"Number of Partitions\", \n", - " y = \"Similarity score (SVCCA)\", \n", - " title = \"Similarity across varying numbers of partitions\") \\\n", - " + theme(\n", - " plot_background=element_rect(fill=\"white\"),\n", - " panel_background=element_rect(fill=\"white\"),\n", - " panel_grid_major_x=element_line(color=\"lightgrey\"),\n", - " panel_grid_major_y=element_line(color=\"lightgrey\"),\n", - " axis_line=element_line(color=\"grey\"),\n", - " legend_key=element_rect(fill='white', colour='white'),\n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + scale_color_manual(['#1976d2', '#b3e5fc']) \\\n", - "\n", - "\n", - "print(panel_A)\n", - "ggsave(plot=panel_A, filename=svcca_file, device=\"svg\", dpi=300)\n", - "ggsave(plot=panel_A, filename=svcca_png_file, device=\"svg\", dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncorrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "[0.6856755 0.19788391]\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "[0.23464727 0.15610842]\n", - "Plotting PCA of 1 experiment vs 50 experiments...\n", - "[0.22350863 0.06974863]\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " # Simulated data with i batch effects\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - "\n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space\n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1)\n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - "\n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Variance explained\n", - " print(pca.explained_variance_ratio_) \n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_data_df = pd.concat([all_data_df, combined_data_PCAencoded_df]) " - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_data_df = all_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_data_df = all_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "all_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAHoCAYAAADXKyDmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XecFOX9B/DPMzu7e2WvAQccRUCKiIiA0hEQPTFSRTrIAWdJFNSfWIJYwBJRkmAjxogiKooSg4lIRBGxIAkWIBYiGAELIPU4rm6Z7++PZYZb9vrtsXtzn/frxUtvZnbmu7PPzH73macoEREQEREREZHtaNEOgIiIiIiIageTfSIiIiIim2KyT0RERERkU0z2iYiIiIhsisk+EREREZFNMdknIiIiIrIpJvtERERERDbFZJ+IiIiIyKaY7BMRERER2RST/QoopUL+aZqG1NRUXHjhhViyZAnKm4D4X//6F66++mp06NABSUlJiIuLQ+vWrTFu3DisWrUKhmGU+drNmzdbx7zvvvtq462V6eDBg5g6dSoyMjLgcDiglMLzzz9/WmOIdc8//zyUUpg3b160Q4m6/Px8vPjii5g1axZ69eoFt9vNc1NN1S1XkSyPGzZsgFIK06ZNq/G+6KTWrVtDKRXtMIioHmKyX0lZWVnIysrC5MmT0alTJ2zcuBHXXHMNJk2aFLatz+fD1VdfjT59+uDZZ5+Fpmm45JJLMHLkSDRu3Bivv/46Ro8ejczMzDKP9+KLL1r/v3z58lp5T2XJzs7Giy++iMaNG2PixInIyspCu3btTmsMdHrVJFncuXMnpk6diieffBKbN2+G1+uNfID13LRp06CUwoYNG6IdChEA/nghqkv0aAdQV5xas/3uu+/i8ssvx4oVKzB58mQMGzbMWjd16lSsWLECHTp0wNKlS9G3b9+Q1+7duxf33Xcf3nnnnVKP5fP5sGLFCgBA06ZNsWPHDvz73/9Gr169IvumSuH1erFmzRq0bt0aW7Zsgabx92BprrjiCvTu3RuNGjWKdihRl5SUhOzsbPTo0QM9evTAW2+9hXvuuSfaYdUrLI+x77333oPP54t2GERUDzGTq6bMzExcddVVAIA33njDWr5y5UqsWLECTZo0wYcffhiW6ANAs2bN8Oc//zmk9r6kt99+G4cOHUK/fv1w/fXXA0CZ20ba/v37EQgE0KpVKyb65UhJSUHHjh2ZXAFo27YtlixZguuuuw7du3eH0+mMdkj1Dstj7Gvbti06duwY7TCIqB5iNlcD3bp1AwD8+OOP1rLf//73AIB58+ahSZMm5b6+X79+pS5/6aWXAABTpkzBlClTAACvvvpqtWuF1qxZg8zMTKSlpSEuLg5nnXUWfvvb3yInJydku9atW6NVq1YAgA8++MDqM9C6detKH+vtt9/G0KFDkZ6eDrfbjTPPPBO33HILDh8+HLLd1q1b4Xa70aBBA/z0009h+7nmmmuglMJ1111nLSvZlnjfvn2YNm0amjRpgvj4eHTv3h0vvPBCmXEdOXIEc+bMQadOnRAfH4+UlBQMHjwYq1evDtt29+7dUEph0KBByM3NxS233II2bdrA6XTi5ptvBlB2s5eSzS3WrVuHAQMGICkpCY0bN8Y111yDY8eOAQAOHDiA6667Ds2bN0dcXBx69uxZbhONf//73xg7diwyMjLgcrnQokULXH311fjhhx/Ctp03b57Vz+LLL7/EiBEjkJaWhsTERAwcOBCffPJJyPaDBg3C9OnTAQDz588P6aNyuvtqdOnSBUop/Pe//y11/eHDh+FyudCkSRP4/X5ruVnGmzdvDrfbjWbNmqF///6YP39+pY9dslnC4sWL0blzZ8THx6NNmzZ45JFHrP45X3zxBYYPH44GDRrA4/Fg5MiR2LNnT9j+Bg0aBKUUdu/eHbauZBmriFIKy5YtAwBcdNFFIZ+Pue/KlMd//vOf6N+/PzweD9LS0jB69Ogyz3N5KnuNV0ZVrsvx48dDKYXbb789bN2OHTvg8Xjg8Xiwc+dOa3nJz+Cll17C+eefj4SEBDRu3BhZWVn4+eefI/I+S57ntWvX4qKLLkJqaiqUUtZ9trRmLyXLQX5+Pm655Ra0bNnSuqe9+eab1rYrV65Er169kJiYiCZNmuDGG29EYWFhqbEXFBTgoYceQrdu3azz0rt3b6scncq8zwcCATz88MPo0KED3G43WrZsiTvuuAPFxcXWtuZ92CzzJctjye+KvLw8PPTQQzjvvPOQkpICj8eDtm3bYuzYsVi7dm2Z552IaoFQuQBIWafpwQcfFAAyfPhwERE5ePCgABCllBw9erRax8vJyZG4uDhxuVxy+PBhERHp27evAJB//OMfVd7f7373OwEguq7LxRdfLOPHj5cWLVoIAOnQoYPs37/f2nb27Nly5ZVXCgBp0qSJZGVlSVZWlsyePbtSx7rjjjsEgLhcLunXr5+MGTNG2rdvLwCkbdu2IccSEVm4cKEAkMGDB4thGNbyVatWWfHl5eVZy99//33rfJ9xxhnSpEkTGTdunGRmZoqu6wJA7r333rC4vv32W2nZsqUAkNatW8vIkSNl8ODBkpCQIABk4cKFIdvv2rVLAEjPnj2la9eukpaWJqNGjZLRo0fLvHnzRERk6dKlpR4vKytLAMiNN94oDodD+vfvL2PGjLHO+cCBA+XgwYNy5plnSqtWrWT8+PHSq1cvASBut1v+85//hMW/ePFi0TRNNE2TXr16ydixY6VLly4CQNLT0+Wbb74J2f7ee+8VAHLDDTdIQkKCnHvuuTJ+/Hg577zzBIDExcXJl19+aW3/0EMPSb9+/QSAnHfeedbnnpWVJR999FH5H3opHnrooTI/i4osWLBAAMhdd91V6vqnnnpKAMisWbOsZU8++aQAEIfDIQMGDJCJEydKZmamdc4rq1WrVgJAbr75ZomPj5fLL79chg0bJklJSQJA7rnnHvn4448lISFBunfvLuPGjZN27dpZ5bugoCBkfwMHDhQAsmvXrrBjmWVs4MCBIctLK1dZWVnStm1bASBDhgwJ+XwOHjxY5uvM1wKQ66+/XpRS0qNHD5kwYYJ06tRJAEhKSops3bo15DXmdZaVlRUWd1Wv8fJU9bo8cuSItGjRQjRNk/Xr11vLvV6vXHDBBQJAnnnmmZDXmJ/BDTfcIEopGTBggEyYMEFat24tAKRFixby448/1vh9muf5mmuuCTnPPXr0kJycHBE5Wb5KMstBnz59pFevXtK4cWMZM2aMDBo0SDRNE4fDIe+++6788Y9/tO7hV1xxhTRs2FAAyKRJk8Ji/+WXX6z7Q9OmTeXyyy+XX/3qV5KSkiIAZObMmWGvASCtWrWScePGicfjkWHDhsmwYcOs10yePNnadvv27ZKVlSWJiYlWOTn1u8Lv91v3tUaNGsmIESNk3Lhx0rdvX0lISCi1bBFR7WGyX4Gykn3DMKRPnz4CQObOnSsiIu+++671ZVBdS5YsEQAycuRIa9mf/vQnASBjx46t0r42b94smqaJx+ORf/3rX9byoqIiGTt2rACQK6+8MuQ1ZSUhFXnttdcEgHTu3Fl27txpLTcMQ+655x4BIOPHjw95jWEYMnjw4JAv9r1790qjRo3E6XTKp59+GrK9mYQAkMzMzJAfAps3bxaPxyOapsnnn39uLff7/XLuuecKAHnkkUckEAhY63bu3Clt2rQRh8MRkvya58D8Ei7th1tFyZWmabJ69WpreW5urnTu3FkASKdOnWTKlCni9Xqt9XfddZcAkKlTp4bsb9OmTeJwOKR58+by2Wefhawzy0qvXr1ClpvJPgB57LHHQtbdfPPNAkCuuuqqSr2f6qhJsv/DDz+IUqrMa6h///4CIKQ8n3HGGaKUCisvhmHI+++/X+ljm8lYs2bN5LvvvrOWb9++XdxutyQkJEjr1q3lqaeestYVFxdbZfi5554L2V+kkn2Rk+WqrPdT0esAyF/+8hdruWEYVkLbtWvXkNeUlexX5xovS3WuSxGR9evXi6Zp0qJFCzly5IiIiNx5550CQEaNGhV2HPMz0HVd3nrrLWu51+uVyZMnh91rq/s+S57nFStWlPqey0v2zUqPkvc08zNt166dpKWlhZTvn3/+WRo3biwA5H//+1/IPi+//HIBIDfddJMUFRVZy/fv32/9KPrnP/8Z8hozhrPPPlv27dtnLf/+++8lNTVVAIRcE2W9H9P69esFgPTo0UMKCwtD1h07dizsXkZEtYvJfgVOTfb9fr/s2LFDpk2bZtXGmjfBFStWCADp3bt3tY9nfjmtXLnSWnbo0CFxOp0SFxdn1RJVxtSpUwWAzJkzJ2zdL7/8IvHx8aJpmvzwww/W8uom+2at8alfziLBL8muXbuKw+GwaiJNP/74o6SlpYnL5ZIvvvhCLr30UgEgDzzwQNh+zCRE0zT573//G7beTF6ys7OtZeZTglN/1Jj+9re/WTXxppJfwKcmkKaKkqspU6aEveaxxx4TAJKcnGwlKqacnBxRSkmrVq1Clo8cOVIAyJtvvllqHCNGjBAA8sUXX1jLzGS/X79+YdsfOnTIqsWrzPupjpok+yInr4FNmzaFLN+9e7copaRdu3Yhy+Pj4yUtLa264VrM5GXJkiVh66644goBIP379w9b9/e//73U5DiWkv2+ffuGvcbr9VpPP0o+wSkr2a/uNV6a6lyXpttuu00AyLhx4+TDDz8UTdMkIyOj1OOan0FpNeCHDh2ShIQEUUqF3AOr8z7N8zx06NAy33N5yb6mafLtt9+GrAsEAtKoUSMBSn/S9X//938CQJYuXWot27Jli5Vkl/wBZfriiy8EgIwYMSJkuXm/e/fdd8NeM3PmzLDjlPV+TK+++qoAwadkRBR9bLNfSWabRF3X0aFDBzz//PNISkrCK6+8grZt20bkGD/88AM+/PBDpKamYvjw4dbyhg0b4vLLL0dRURFWrlxZ6f199NFHAIDJkyeHrWvcuDEuvfRSGIaBjRs31ijuAwcOYNu2bWjfvj06d+4ctl4phX79+iEQCODzzz8PWdeiRQs8/fTT8Hq9GDRoEN555x30798fv/3tb8s8XteuXXHWWWeFLZ84cSKAk+8bgDXi0ejRo0vd14UXXgggOK/BqTIyMnDBBReUGUd5Lr300rBlZ555JgDgggsuQFpaWsi6lJQUNGjQAPv27bOWGYaB9957DwkJCRgyZEiV4y8thoYNG4YdJ9aY5fXll18OWf7yyy9DRMLK8/nnn4+jR48iOzsbX3/9dY2PX95nV966WD6nEyZMCFvmdDoxZswYAKHXTGlqco2XpibX5QMPPICuXbvitddew7BhwyAiWLp0abmdk0t7/w0bNsSll14KEcHHH38ckfc5YsSIMmMoT+vWrdGhQ4eQZZqmWX2oKlvuzPM6atSoUgdYMNvwl3ZenU4nLrroorDlZlxVKd9du3aFpmlYunQpnnnmmWr15yCiyGGyX0nmOPvTp0/HTTfdhCVLlmDPnj244oorrG0aNmwIIDgpVXUsX74cIoIxY8bA7XaHrDM76pqddytj7969AFBmB1tzeXmd1CrD7CS4c+fOsEnIzH+LFy8GABw6dCjs9WPHjsUVV1yB3NxcJCQk4MUXX4TD4SjzeOYXYFnvx3zfJWObPHlyqXGlp6eXGdcZZ5xR4XsvS/PmzcOWeTyeMteZ60uOUX/o0CHk5eWhoKAALper1Phvu+22MuNv0aJFqcdJSkqK6bHwzfL/6quvIhAIWMvN+SZOTfYXL16MNm3a4LnnnkPnzp3RtGlTjB8/Puz1lVXVz85cV7ITY6ypyjVTmppe42XtrzrXpcvlsjqa5ubm4te//nWZP4ZNlX3/NX2f1b1nlHdPKGt9aeXOjH/u3Lllxp+Xl1dq7E2bNi31vpuUlBR2nIp06NABjzzyCAoKCnDttdeicePGOO+883DLLbfgP//5T6X3Q0SRwXH2K6kyo5Kcd955AIDvv/8eOTk5SE1NrdIxzOE1N2zYgP79+4esM5OzDz/8EHv27Cnzy6sqIjUhijkTcNOmTav1pbtv3z6rZrGgoADffPNNlUYAqkxsl112WbmjI5VWKxgXF1ft45Y3bGllhzQ1Y/d4PLjyyivL3facc86p9nFiTVpaGi6//HKsWrUK69atw5AhQ7Bt2zZ8/fXX6NGjB9q3bx+yfZcuXfDNN9/g7bffxpo1a7Bhwwa89tpreO2119CnTx9s2LABLper0sePxGdXkfJmz45FNb3Gy9pfda5LIDg6mWnr1q0IBALlVhBUVk3fZ3XvGRWVq6reM/r371/lJ86Rvl/Mnj0b48aNwxtvvIF3330XH330ERYtWoRHH30UixYtwk033RTR4xFR2ZjsR1B6ejp69uyJzZs3Y8WKFfj1r39d6dd+/vnn2L59OwDgu+++w3fffVfqdiKC5cuX484776xwn82aNcOuXbuwZ88edOrUKWy9WQtUVq1SZZk1yI0aNaryUI0igunTp+PQoUOYOHEiXnvtNcyYMQNffvmlVbt3qtKGOSy5vFmzZmGxXX311RUmzLGmUaNGiIuLsx6H16fZKidPnoxVq1Zh+fLlGDJkiFWrbz7hOlVcXBxGjRqFUaNGAQC+/vprTJo0CZs2bcKSJUus+SpOJ/MHRl5eXti6ksP1ng5VuWZKU5NrvLz9Vee6/Pjjj/Hwww+jadOm6Ny5M9atW4cHH3yw3Inc9uzZgy5dupS6HDj5/iP9Pk83M/5Ro0Zh9uzZUY4GaNmyJWbNmoVZs2bB7/djxYoVmD59Om6//XZMnTo1rDkjEdWOuln1F8NuvfVWAMGxzg8cOFDutiXHOzeb59x6662QYMfpsH/mOOyVbcpjtnt95ZVXwtYdPHgQa9eutdqg1kSLFi3QsWNHfPPNN9ixY0eVXvvEE09g7dq16NevH1588UXMnTsXv/zyC7Kzs8t8zdatW0PG0jaZsw6XfCqSmZkJAFi1alWV4ooFuq5bY/2/9957tXosMzEtOXZ9NA0bNgwpKSl44403kJ+fj1deeQUOhwPjx4+v1OvPOecc3HDDDQCAr776qjZDLVNGRgYAlHpNvPvuu1XaV00/n9deey1smd/vx+uvvw4AYU8ST1WTa7w01b0uc3NzcdVVVyEQCGDp0qV46aWXkJ6ejvvvvx///ve/y3xdae//yJEjeOedd0LugZF+n6fb6bzfVbVM6rqOKVOmoEePHvB6vaXew4modjDZj7CxY8diwoQJ+OWXXzBgwABs2rQpbJv9+/dj5syZVi1lIBCwEnKzk2lpLrzwQjRv3hzbt2+vVCe4G264AZqm4fHHH8dnn31mLfd6vZg1axYKCwsxevRotGzZsqpvM8zdd98NwzBw5ZVXYuvWrWHrDx8+jGeeeSZk2TfffIM77rgDSUlJVjv9u+++Gz179sSbb76JP//5z6UeyzAMzJo1CwUFBdayzz//HE8++SSUUvjNb35jLb/yyivRqVMnLF++HPfff39Yu1MRwcaNG2vcSbm2zJ07F5qmYfr06aVOupWXl4fnnnuuzMl1Ksus2fz2229rtJ9IcbvdGDNmDI4fP45bb70VP/30Ey655JKwJh8FBQV4/PHHwyaIMwwDb7/9NgBEpHxXx8CBAwEAf/jDH0LK6vr16/Hoo49WaV81/Xw+/vhjPPfccyHL7r33Xvzwww/o0qWLVTFQnupc42Wp7nU5c+ZM7N69GzNnzrSaAC1ZsgR+vx9TpkxBfn5+qcd79dVXQyZy8vv9+L//+z/k5+dj2LBhIW3tI/k+T7devXohMzMTGzduxA033IDc3NywbbZt22ZdGzVRXpl8//33sW7durDmart27cL27duhlCqzTxER1YJoDAFUl6CMcfbL4/V6ZcaMGdZrO3bsKKNHj7YmUHI4HNZY8SIia9asESA4iVRFbrnlFmsM5cowJ/7SdV0uueQSmTBhgjWRTfv27cMmh6nu0JsiJ8e71jRNunfvLmPHjpUxY8ZIt27dxOFwSEpKirVtcXGxdO3aVQDIsmXLQvazY8cOSUxMlISEhJAhNs0hAYcNGyYtW7aUpk2byrhx42TIkCHidDrLHKJux44d0qZNGwEgjRs3lksuuUQmTZokl156qTVW9aJFi6p0DqozRGJ5kxWJlD2U3VNPPWWVmc6dO4eUJbfbLQBC5gIwh948dai88o5TWFhonYuBAwfK9OnTJTs7WzZu3FjmOShp1KhR0qtXL+nVq5dVvpo3b24tK20M9IqYY3Wb/1588cWwbY4ePSoAxOl0Su/evWXChAkyevTokMmaDh06VKnjlTeUYHnntKzyUlBQIGeddZYAkDPOOEOuvPJK6dWrl2iaJrfeemuVht787LPPRCklcXFxMnLkSMnOzpbs7GzrvVVUHn/zm9+IUkp69uwpEydOlHPOOccaBrbksK0i5ZfTqlzjFanqdWmOf9+pU6ewCcyuueaasGF3RcIn1Ro4cKBMmDDBOm6zZs1kz549NX6fFQ2NKlL+0Jtl3WvKG761rM/8l19+kW7dugkASU1NlUGDBsmkSZNk6NCh1nVx6vcHShmOt6Lj/OEPfxAgOAHjhAkTJDs7W+644w4REVm0aJEAwUn/LrvsMpk8ebJceuml1v2q5KR4RFT7mOxXoDrJvumTTz6RGTNmSLt27SQhIUHcbrc1S+Hf//53a9bYiRMnVnpc8k8//dT6cvT5fJWKY/Xq1XLxxRdLSkqKuFwuadeundx+++1hY72L1CzZFxH54IMPZOzYsdKsWTNxOp3SsGFD6dKli8ycOVM++OADaztzrOyyJgp7+umnBYCcf/751uRTJZOQn3/+WaZMmSLp6enidrvlvPPOKzO5FQmOY//AAw9I9+7dxePxSFxcnLRu3VqGDBkiixcvDhkzO9aSfZHg+NlZWVnSqlUrcblckpqaKuecc47MmDFDVq9eHTIDcXWSfZFg2crMzJSUlBRRSpW7j7L2Wda/shKJ8gQCAWsc+ISEBDl+/HjYNj6fTxYvXiyjR4+Wtm3bSkJCgqSmpkqXLl1k/vz51izUVXkPpalOsi8i8tNPP8nEiRMlLS1N4uPj5YILLpCVK1dWeZx9EZHly5dL9+7dJT4+3jqvZhJYmfL45ptvSp8+fSQhIUFSUlJk5MiR8vXXX4cdp6JyWtlrvDIqe13+9NNP1nwcW7ZsCdtPXl6eNcPt3/72N2t5yWR56dKl0rVrV4mLi5OGDRvKVVddVersudV5n7GU7IsEf7w//vjj0rdvX+u+37JlSxk4cKAsXLgw7H1XJ9n3+Xxy1113Sdu2ba3KFnMfO3fulLvuukv69esnGRkZ4nK5pHnz5nLxxRfL66+/HnK/IqLap0REyqr1J4olGzZswEUXXYSsrKw62XmO6HSbNm0ali1bhvfffx+DBg2Kdjin3aBBg/DBBx9g165dERvhi4iormGbfSIiIiIim2KyT0RERERkU0z2iYiIiIhsim32iYiIiIhsijX7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbEqPdgCxJCcnBwUFBdEOg+qxhIQEpKamlrqO5ZOijeWTYlV5ZZOovmOyf0JOTg6efPJJ+P3+aIdC9Ziu65g5c2bYlxbLJ8UClk+KVWWVTSJism8pKCiA3+9Ht27d4PF4oh0O1UN5eXnYsmULCgoKwr6wWD4p2lg+KVaVVzaJiMl+GI/Hw5sFxSyWT4plLJ9ERLGHHXSJiIiIiGyKyT4RERERkU2xGQ/V2OrVq7F+/Xrs3r0bffr0wW233RbtkIgAAI8++ig+/PBD6PrJW93ixYuRnp4exaiovqqoPB48eBBPPPEEtm/fjpSUFEydOhUDBgyIVrhEZBNM9qnGGjRogHHjxmHr1q04fvx4tMMhCjFy5EhkZWVFOwwiAOWXx9///vdo3bo15s6dix07duCBBx5Aq1at0KpVq9McJRHZCZvxUI317dsXvXv3RnJycrRDISKqk/bu3YsdO3bgqquugtvtxrnnnouePXti/fr10Q6NiOo41uwTka2tXbsWa9euRaNGjTB8+HBkZmZGOySqx8oqj3v27EF6enrI0KVt2rTBf/7zn2iFSkQ2wWSfiGxr+PDhmDFjBhITE/H111/j4YcfRmJiIvr27Rvt0KgeKq88FhUVhc1RkJiYiMLCwihFS0R2wWY8RGRbbdu2RXJyMhwOB7p06YKhQ4di48aN0Q6L6qnyymNcXBzy8/NDti8oKEB8fHw0QiUiG2GyT0T1hlIKIhLtMIgAhJbHVq1a4eDBg8jLy7PWf//99+ycS0Q1xmSfaiwQCMDr9cIwDBiGAa/XC7/fH+2wiPDxxx+joKAAhmHgm2++wVtvvYXevXtHOyyqp8orj82aNUO7du3w0ksvobi4GF999RU2b96MwYMHRzlqIqrr2GafauzVV1/FihUrrL83btyIwYMH4+abb45iVETBOSAWL14MwzDQqFEjTJkyheOWU9RUVB5vu+02PP7445g8eTJSU1Nx/fXXs2afiGqMyT7V2KRJkzBp0qRoh0EUZsGCBdEOgchSUXlMT0/H/ffff5qiIaL6gs14iIiIiIhsisk+EREREZFNMdknIiIiIrIpttk/Rclhz4hOp8qUPZZPihaWT4pVLHdE5WOyf4I5VOSWLVuiHAnVd6UNW8rySbGC5ZNiFYd8Jiodk/0TdD14Ki666CKkpaXV+vEcDgeSkpJw/PhxBAKBWj8e44j9OI4ePYr333/fKoslnc7yGSufRSzFwjhYPhlH7MZRXtkkIib7Ydq3b49mzZqVu41hGNi/fz+aNm0KTatetwcRgd/vR8uWLaGUqtY+GIe94ti7dy/ef//9crepqHzGyjmIpVgYR2TisFP5ZBz2iqMyZZOoPmMHXSIiIiIim2KyT0RERERkU0z2iYiIiIhsisk+EREREZFNMdknIiIiIrIpJvtERERERDbFZJ+IiIiIyKaY7BMRERER2RSTfSIiIiIim2KyT0RERERkU0z2iYiIiIhsSo92AER0+ogICgMCrwEoBcRrCi6HinZYREREVEuY7BPVIwV+wXE/oClABChSglQAbiacUrC6AAAgAElEQVT8REREtsRkvwSPxwNd1yEi5W4nItZ2FW1b3j5K/re6+2Ac9olD18u/HJs2bVph+Szv2IYI8vwCpwY4VDC59xqCfL/ApWkh+yj53+qq658H4whV2+WzsvhZMI5TVVQ2ieo7XiEldOvWDWlpafD7/RVum5aWBsMwYBhGjY4ZCARq9HrGYZ840tLSyl2fnZ0NABWWz7KOHRAgEAA0A5ATFfmGAfgU4NfC46zpOSgvlqqK9XIRkOA/DYBDBZtIRSOOyorF8llVsV4mGMfpi6OisklU3zHZL2HLli0499xzkZ6eXu52hmHg8OHDaNiwITSten2cRQSBQAAOhwOqrMygAozDXnEcPHiw3PXPPvssRo8eXW75LO/YDhHEGQKvAG4NEAT/JeqArofW7JvnICCAXwAFwKkBWhXOSV3/PCobR6HfwPEAYABQAiTogMehwrar6+ejtstnZdWFMsE4YqtsEtV3TPZLyMvLg9/vr/BGpZSytqvuTa3kvqq7D8ZhrzgqqhHdv39/heWzvGMrpZDsEuT6gh10gWCin+gsPc5iA8j1B9v2A0CcBiS7Kp/w1/XPozJx+A1BXkDBoQC3pmCIoMAAXKIQp4Wf/7p8Pmq7fFZVrJYJxhF7ZZOovmOyT1SP6JpCmivY5AQwm5yEf6kaAhz3CxxKQXcoiAiKDMDpFyQ62ZnXFJDguTJHNNKUgjIEAUOCJ5eIiCjKmOwT1TNKKegV5KGnJrFKKWhK4KtZn91SGSLwn9ivrqrWVCjazFBFxPrRZKBuvQciIrI3JvtEFEY70ck0IGKN3GMg8pXVARHkek82K3JqQLIz+AQi2kQERQFBUeDEKCECeBwS8iTEqYAEB1AQABQEAsClAS5H9OImIiIqick+EYVxKMCjA3l+wH8iiXVqQEJFjwSq6Lgv2GHYdaIvntcA8vyCVFfFxxGRYKdYVL4mvSqvKQwIcn0nf+AU+gGHLkgs0W9QKYUkJ6BrYo3GE6cr6wcSERFRtDHZJ6JSJeganA4gcCI7dpUYn7+6DAmO6+8zAE0JCv3BpkJmbbmuBdeVbBZTGr8R7GjsO5FgJ+qCBL380Tt8hiAvEBxdyAHA4wTiynhUISIoCASbFZlPGQJasAY/QQ+NTSkV8R9BREREkcJkn4jK5NJUMJuOAJFggl4UCNaW+wyFgoBAKYHjRNJtSNlj1JsMERzzCfxG8GmDIThRAy9lzgRsAMjxBfftUsE+Cce8As194j2WGm+wOZNJ4eTIRERERHUFk30iOi18AhQFgmP8mzXjXkNQfKK9uymljKFATX4B/AasxF5TQCAgKDbKTvYDUNAESDixXj/xGl9AQpJ9kWD/AQOABoE3ALgdABB8ipDkKH30olhQlzs6ExFR7WGyT0SnzylDfbo0BacmcJ54euB2qDJr2kvsIjghWImmPnJieYWvK/maUxJiOfHEoMgIbmuc+K/PCPZZiNcAT4w21wkYwdh9RvBcuE/MicC+A0RExGSfiE4LhwrWOHsNgfNEU5rgDL5amTXypdEVEOcIPiXQlZwY6rLs9vcAoEPgUkCxALoEO9PqCtaPDCA4iVjJJw+GAooDghSXglMBhj92a8uPn+gHYXV0lmDn58p0dCYiIntjsk9Ep4VDKaQ4EZzB90TH2mQnqpToAydmAnYG2+h7DcCJ4CzAznKeCCgEa7oLDcBnBBP6RF2FDPEZMMTaPxBM7DUFKARnyJUYzZtFgom+XqJ5lI7KdXQmIiL7Y7JPRKeNU1No4DrZEbe6NeWaUkiq4ky+DqWQ7Cy7t7FDCzYQMhNkQ4LNd2JgyP8KKRU8p+bvJkPMuRLqQPBERFSrmOwT0WmllIr45FyR4NZONg+CEigBEvXgxFmxTCkFjx4cXag4cLKjc3KsB05ERKcFk30iIgST5hQnEO84MVswgm36lVKQGB9zM86hoLlhJfuV6ehMRET1A5N9IqITlFInhtqse1waE3wiIgoXoelyiIiIiIgo1jDZJyIiIiKyKSb7REREREQ2xTb7REREUSIIdqwWQ6BUcFSoWJ28jYjqJib7REREUVIMB3J8gFLBkZRcGpDqYsJPRJHDZjxERERR4DMERXDApQWHT3VrgNcACv2xPdQrEdUtTPaJiIiiwEzpzRFTlVJQCM7zQEQUKUz2iYiIokADoACYEx+LCAwAOudLIKIIYpt9IiKiKNA1hTj44TeAgAgEwRmc41gNR0QRxGSfiIgoStwwkOYCRCloAJxasDkPEVGkMNknIiKKIqemoLHpDhHVEj4sJCIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFN1YujNwsJCrFq1Ct9++y127tyJvLw83HTTTbj44ovDtv3xxx+xZMkSbN++Hbqu44ILLkB2djZSUlKiEDkRERERUfTUiZr93NxcrFixAj/99BPatGlT5naHDh3CnDlzsG/fPlx11VUYNWoUPvvsM9xzzz3w+XynMWIiIiIiouirEzX7DRo0wLJly5CWloadO3di9uzZpW63cuVKFBUVYdGiRUhPTwcAdOjQAffccw/ee+89XHbZZaczbCIiIiKiqKoTNftOpxNpaWkVbvfJJ5+gR48eVqIPAF27dkXz5s2xcePG2gyRiIiIiCjm1IlkvzIOHz6MY8eOoV27dmHr2rdvj++//z4KURERERERRY9tkv0jR44ACDb5OVVaWhqOHz/OdvtEREREVK/UiTb7leH1egEEm/ycyuVyAQCKi4tD1u/btw/79u0DABw8eBD5+fkAAMMwyj2Wub6i7cojIjAMA4ZhQClVrX0wDvvGURqz7Ja331g5B7EUC+OIfBylqUvlk3HYNw4iCmebZN9M6EurvTd/CLjd7pDlTz/9NObPn2/9PWHCBADA/v37K3XMAwcOVCvWSGMcoewax/Tp0wFUrnzGyjkAYicWxhGK5ZNxnIpxENmTbZJ9s/mO2ZynpKNHjyIpKSms1v+6667DiBEjAARr9tetWwcAaNq0abnHMgwDBw4cQOPGjaFp1WsJJSLw+/3Qdb1GtSCMwz5xVJQkLV26FNOnTy+3fMbKOYilWBhHZOKwU/lkHPaKo7IVdET1lW2S/YYNGyIlJQXfffdd2LqdO3eWOj5/RkYGMjIyAAB79+7Fpk2bAKDSNxlN02p0YzRfX5OEinHYM47SmE+tKrPPWDkHsRQL44hcHKWpi+WTcdgvDiIKZ6urqU+fPvj0009x8OBBa9m2bdvw888/o1+/flGMjIiIiIjo9KszNfurV69Gfn6+1Uxn8+bNOHToEABg2LBhSExMxNixY7Fx40bMnTsXI0aMQGFhIVatWoVWrVrhkksuiWb4RERERESnXZ1J9t94442QTjubNm2ymt0MGjQIiYmJSE9Px0MPPYRnn30Wy5Ytg67ruOCCCzBjxoxSR+khIiIiIrKzOpPsL1mypFLbnXHGGSEj7BARERER1Ve2arNPREREREQnMdknIiIiIrKpOtOMh2KXYRjwer3Iy8uDpmmIi4uDrrNoEREREUUbMzKqsYKCAhQVFaG4uBgAUFxcjJSUFCb8RERERFHGZjxUI36/H0VFRXA4HHC5XHC73TAMA0VFRdEOjYiIiKjeY7JPNSIiAEJnzdQ0DYZhRCskIiIiIjqByT7ViMPhgKZp8Pv9AILJfyAQYBMeIiIiohjAZJ9qRNM0eDweKKVQXFwMn8+H+Ph4xMXFRTs0IiIionqP1a9UYy6XCwkJCUhOToau69A0LaRZDxERERFFB5N9ighN0+ByuZjkExEREcUQZmZERERERDbFmn0iIqIoMQwDBQUFAIIDHsTFxUEpFeWoiMhOmOwTERFFQSAQQGFhodUE0jAM+P1+a9ADIqJIYLJPREQUBV6vF4ZhwO12QykFEUFxcTHi4uLgdDqjHR4R2QTb7BMREUWBYRghNfhmwm9OVkhEFAlM9omIiKJA13WIiDXjuN/vh6ZpcDgcUY6MiOyEyT4REVEUuFwuuFwu+P1+FBcXAwCSkpKY7BNRRLHNPhERURQopeByuZCSkgKlFGv1iahWMNknIiKKEqWUNfM4EVFt4N2FiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbIrJPhERERGRTTHZJyIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbEqPdgCxxOPxQNd1iEi524mItV1F25a3j5L/re4+GId94tD18i/Hpk2bVlg+Y+UcxFIsjCMycdipfDIOe8VRUdkkqu94hZTQrVs3pKWlwe/3V7htWloaDMOAYRg1OmYgEKjR6xmHfeJIS0srd312djYAVFg+Y+UcxFIsjKPmcditfDIO+8RRUdkkqu+Y7JewZcsWnHvuuUhPTy93O8MwcPjwYTRs2BCaVr2WUCKCQCAAh8MBpVS19sE47BXHwYMHy13/7LPPYvTo0eWWz1g5B7EUC+OITBx2Kp+Mw15xVFQ2ieo7Jvsl5OXlwe/3V3ijUkpZ29UkGTL3Vd19MA57xVFRjej+/fsrLJ+xcg5iKRbGEZk47FQ+GYe94qjM03ii+owddImIiIiIbIrJPhERERGRTTHZJyIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbIrJPhERERGRTTHZJyIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbIrJPhERERGRTTHZJyIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIptisk9EREREZFNM9omIiIiIbIrJPhERERGRTTHZJyIiIiKyKSb7REREREQ2xWSfiIiIiMimmOwTEREREdkUk30iIiIiIpvSox1AJH355ZeYO3duqeseeeQRdOzY8TRHREREREQUPbZK9k3Dhw9Hu3btQpY1a9YsStEQEREREUWHLZP9Tp06oV+/ftEOg4iIaokhAodS0Q6DiCjm2TLZB4CCggK43W44HI5oh0JERBHiMwQ5PgB+gUMzkORUcGlM+omIymLLZP/xxx9HYWEhNE3DOeecg2nTpqF9+/bRDouIiGogIIJjPoHfANxOICBAjlfQwAXoTPiJiEplq2Rf13X07dsX559/PpKTk/Hjjz9i1apVmDNnDh5++GG0bds22iESEVE1+QwgYAAuDXAoBYdSKDIEPrHZlxkRUQTZ6v549tln4+yzz7b+7tWrF/r27Ysbb7wRL7zwAubPnx+y/b59+7Bv3z4AwMGDB5Gfnw8AMAyj3OOY6yvarjwiAsMwYBgGVDXbnTIO+8ZRGqfTWeF+Y+UcxFIsjCPycZTmdJRPMQSGAAIDhqFBKYEYgGEIjCqcDzt9FoyDiCpiq2S/NM2aNUOvXr2wadMmBAKBkDb8Tz/9dMgPgAkTJgAA9u/fX6l9HzhwILLBVhPjCGXXOKZPnw6gcuUzVs4BEDuxMI5QdbF8GgDy4YQBBQcMGFAAFPzwwQGp8v7s+llU1/4DBxA4Mf2OBgPR6vEWK+eDyC5sn+wDQKNGjeD3+1FcXIyEhARr+XXXXYcRI0YACNbsr1u3DgDQtGnTcvdnGAYOHDiAxo0bQ9OqNy+ZiMDv90PX9RrVgjAO+8RRUZK0dOlSTJ8+vdzyGSvnIJZiYRyRiSNWyqc3IMgt9sPQdDgV4HECziq216/rn0VtxLH/wAG4UxvDj+A+NAApLlS683Msl02i+q5eJPu//PILXC4X4uLiQpZnZGQgIyMDALB3715s2rQJACp9k9E0rUY3aPP1NUmoGIc94yiNz+ez9lubx47kOYilWBhH5OIozekqn24lSIMGh0PVOH47fBaRiqMIDjigEOdQUErBZwjyAkDDE3+frjiAyJdNovrOVlfTsWPHwpbt2rULmzdvRteuXXnzICKyiUj8EK2JgAjy/UCO18Bxn4GAUfVmRLHEgAZdnTyvugqOdsTW80R1n61q9h955BG43W507NgRKSkp+PHHH7F27Vq43W5kZWVFOzwiIrIBQwS5XkFBAHAroDgAeA1Bqgt1dqIvDQYCAjhP/B0QwAGgbr4bIirJVsl+79698cEHH+Dvf/87CgoKkJKSgj59+mDChAlo1qxZtMMjIiIb8BlAsQQTfaem4IRCUUDgNYD4OjqPoxsGNAUUBQRQwSQ/xamg1dEfL0R0kq2S/eHDh2P48OHRDoOIiGxMACgBSubBCoDU4ZY8DgjSXAh20BVA16re8ZmIYpOtkn0iIqLaFmzbDvgDwS/RwIksX6/j3cIcSjHBJ7KhOn5rIiKiukJE4IWGAr+gKCCQOloVrmsKKc5gW5civyAgQJKz8sNUEhGdTqzZJyKiWiciyPUDBdBx3A+ogCBBB5L06I+sUx1uh0KaE9AcCpqm6mzHXCKyP9bsExFRrSs2gMIA4ISBOAfg1oACf7Cza12lqWAtPxN9IoplTPaJiKjWGcFBXqyhHM3a/Dqc6xMR1QlsxkMWv98Pv98PANB1HbrO4kFEkeEIDvICs5W+IQKFYO041X2GCIoNwB8QjuRDFGOYzREAwOv14vjx4zCMYD2bw+FAUlISXC5XlCMjIjtwaUCiA8iBhqJAMMn36OzUageGCI55BQV+wGEINAWkOIE4Bz9boljAZD8GeL1e+Hw+aJoGp9MZlRr1vLw8KKUQFxdnxVRQUMBkn4giQikFjw544EOqE3A4FBN9myj0y8lJxhwKfgM47hM4tbo7ozCRnbDNfpQVFxcjNzcXBQUFyMvLQ05ODrxe72mNwTAMGIYR8iPD4XAgEAic1jiIyN6UUtAhcNs00a+rQ4nWlE+CzbTMvF7XFAIS7KdhV/PmzYNSCgMGDAhbd/PNN6N169anP6hT3H777cjIyICmabj55pujHU5EPP/881BK4dChQ9EOJUROTg7mzZuHb775JtqhlIo1+zVkJsqapkHTqvbbyTAM5OfnQ9M0K9H2+XynvUbdPL7P57OOGwgE4HQ6T1sMkWAYBnw+HwoLC+FwOOByuar8mRARmXyGIN8vMCTYDClBV9BKqan2+/0oKCiA3++HpmlITEyM+P3TEEGhX+A1AE0DEhyxMwGWroBCOVl7GJBgU54YCa9WffTRR9iwYQMGDRoU7VBCrFu3DgsXLsSiRYvQq1cvNGvWLNohRcTQoUOxadMmpKamRjuUEDk5OZg/fz46d+6MTp06RTucMEz2a8Bs6hIIBOBwOJCYmAi3212lfRiGEZLYa5oWlRr1xMREHD9+HMXFxRAR6LqOxMTE0x5HdZk/nAoLC5Gfnw8AiIuLg8fjYcJPZGM+n8+6bzmdTrjd7hqN2+83BD45mehrUNAUkOcH/CJIcYbOC2AYBvLy8uD3+60norm5uUhJSYlYk0wRQa5PUBQI1qAbfsAbEKS5gn9HmohU6RzG6wpFgWB8ekCgoJDktH8TnsTERJxzzjm4//77Yy7Z/+9//wsAuPHGG23xHRgIBGAYBtLT05Genh7tcOqcul8CosQwDBw/fhwiYiXrubm58Pl8ld5HyRp1k9/vj0qNutPpREpKCpKTk63/1qXRePx+v1Wj73a74Xa7UVRUVKXPg4jqFq/Xi2PHjqGoqMgaZKCwsLDa+/MZgqNewTGf4HCR4JgvWDvt1BTcGlAcAPynNE3x+/3WU1GHwwGn02k9ZYwUvwBFgeDcBE5Nwe1QMAQoDkS2nUxxQHC42MChYkGO10Cgks2SHEoh1aWQogPJToU0t0KCXj/Si7vvvhvr16/HJ598Uu52e/bswZgxY5CSkoLExEQMGTIEX375ZbWOeeTIEcyYMQONGjVCfHw8+vbtiw8//NBaP2jQIMyaNQtAsEmuUgobNmwoc3/bt2/HyJEjrdiGDh2K//3vf9b6N954A0oprF69OiSG5s2bY+LEidYypRQWLFiA22+/Henp6UhKSsK0adNw/PjxkOPl5OTg+uuvR0ZGBtxuN84//3y88847IdsMGjQIw4YNw7Jly3DWWWfB7XZj27ZtYc14du/eDaUUXnzxRfz6179GamoqGjdujD/+8Y8AgBUrVuCss85CcnIyRo8ejZycnGrH8te//hVnnXUWPB4PBg8ebJ2j3bt3o02bNgCAsWPHQikFpRR2794NAFiwYAHatWuHuLg4pKen45JLLsGuXbvK/DxqQ/24GmuBYRhWTZJSykqMq1orb9Y8FxUVoaioCLquIyEhoTZCrpCu61aiXJcSfSD4eSilrBoMs1aqvrahJaoLAoGAde8zh/2tisLCQiil4HK5rMENioqKrFHFqirPF2yyE6cpuByAJkCBX0JquitzR4n0jMACACp8v5Gco8APhRxfsJ29poAiA8j1SqXvoQ6lEOcA4m3aH6Msw4YNQ7du3TB//vwytzl+/DgGDRqELVu24M9//jNeeuklHD58GAMGDMCPP/5YpeMFAgH86le/wptvvomHH34YK1euhMfjQWZmJj7//HMAwJ/+9Cerjf6mTZuwadMmdO/evdT9ff/99+jbty+OHDmC559/Hi+//DIOHjyIiy++GMXFxQCAUaNGYerUqbj66qutJPv666+3jlXSE088ge3bt2PZsmVYsGABXn/9dVxzzTXWeq/Xi8zMTKxevRoPPvgg/vGPf6BTp04YOnRo2I+fzz77DAsXLsR9992HNWvWoGXLlmWel7lz5yI+Ph4rV67E2LFjMXv2bMyZMwePPfYYHnnkESxevBjr16/H7bffXq1Ytm7dioULF2LBggV4/vnn8d1332HKlCkAgIyMDPztb38DAPzud7+zznlGRgZeeOEF3H333cjOzsbbb7+NJUuWoGvXrsjNzS3zvdSGupXRxZhTv1Cqk1jquo7k5GRrX7qu2+KR2+mmaRqUUtZ5NL+ceS6JYpPf70dubq5VQaJpGpKTk6v0ZNP8kW8y7wHV/ZEfwMlmMU5NQalgkx5DBH4DcGjB9uklORwO6LoOr9cLXdcRCASglIroE1qHCh7XawicKpjkCyI3lr1hGCjyC5TPB6fTAYeuQ8OJcfMFcNaf3L1a7rrrLlx55ZXYvHkzevbsGbZ+6dKl2LNnD77++mucffbZAICBAwfijDPOwKOPPoo//OEPlT7WW2+9hc2bN+Ptt9/GkCFDAABDhgxBu3bt8Lvf/Q6vv/46OnXqhFatWgEAevfuXe7+5s+fjwYNGuDdd9+1RuPr27cvzjzzTDz77LNWUv/444/j3HPPxbXXXouxY8fi1Vdfxdtvv420tLSQ/bndbrzxxhtwOBwAgPj4eFx99dWYN28eOnbsiOXLl2Pr1q3Ytm2b1bZ9yJAh2LlzJ+6//3689tpr1r6OHDmCTz/9tNwk39SnTx8sWrQIADB48GC8/vrreOKJJ7Bnzx40bNgQALBt2zY8++yz+Mtf/gIAVYolJycHW7ZssZoQ5eXlYfr06fjpp5/QokULdOvWDQDQvn37kHO+efNmdOnSBXPmzLGWjRw5ssL3E2nMhKpJ0zS4XC4UFxcjEAjA6/VaN/2q0nUdLpcroh1KzS/SnJwc5OXlVbumK1IMw4DX64XX661WDV5FXC4X4uLiYBgGiouL4fP5EB8fX+eeUBDVF/n5+TAMw3qaaC6rSqLudDoRCAQgEqyB9vv9Naow0RVgtoxxacFmMwrB0WZ0DUhxhnfQNeckMRN9TdOsvyPFoRSSncG+A8VGMMYkPRhfTZl9DoqKilBYGBwVzqzRpcq54oor0LlzZ9x3332lrv/oo4/QuXNnK9EHgAYNGiAzMxMff/xxlY710UcfITk52Ur0geB1MHr06CrvCwDeeecdjBgxArquWxNrpqWloVu3bvj000+t7VJSUvD888/jjTfewPTp0/Gb3/wmJAbT8OHDrUQfAMaMGQMRwebNm63jnXvuuejQoYN1PL/fj8zMzJDjAUCXLl0qlegDQGZmpvX/DocDZ555Jrp27Wol+gDQoUMHKyeqaixdu3YN6Stg/jj46aefyo2re/fu2LJlC2655RZ8/PHHUWtazEyomjRNg8fjsR4/O51OJCYmxkRy6ff7cezYMYgINE2zRolITk6OSk23YRhWfwYRqbUJuzweD+Lj45GUlGSNxkNEsUdErIENTGbn1qp0Dk1ISICIoKioyGpOmZiYWO1mNB5dISCCohMZf4Ie7Giqq2CiXdZ+dV1Hamqq9aQh0s14gODkYw1cwWY2Sp3s/FrTporFxcUoLi6G26GgO10QCSC/oBABzYl4XdVKB2C7UUph7ty5mDhxIr744ouw9UePHkWTJk3Cljdp0gRfffVVlY519OhRNG7cuNR9HTlypEr7AoBDhw7h0UcfxaOPPhq27tTv0P79++OMM87Anj17MHPmzFL3d2psycnJiIuLw759+6zjbdmypdQnXyXvBwBKPWdlOXV0HpfLBY/HE7YMAIqKiuDxeKoUS2n7N/dVHrPPwl/+8hcsWrQIKSkpyMrKwoIFCxAfH1+5NxcB0c9M6zCzCU6sKS4utmrMgGCh9fl88Pv9UUmACwoK4PV6rVEyfD4f8vLykJqaGvEfH2a/AzbfIYpdZmJuPhEFYCX/VUmUzUoX80uzOkMgl6RrCqkuwG8AgYABXQOcJ5oIVjae2qSd+NERSebTCKcSJGkGCsUBryFwKQPJLr3UoUYp3Lhx4zBv3jzcf//9VhMaU4MGDfDtt9+GveaXX35BgwYNqnScBg0a4MCBAxHZl7m/oUOHWs11SkpKSgr5+5577sHhw4fRvn173HDDDVi/fn3YtXFqbLm5uSgqKkJGRoZ1vC5duuDZZ5+tMLba+NFcUlViqS5N03DTTTfhpptuws8//4wVK1bgt7/9LRo1aoS777671o57qiol++vWrQE42kEAACAASURBVMMrr7yCvXv3omnTphg1alS5bY8efvhhrF27FuvXr69xoFR5p9aMlWzLHg0+nw+6rlsxmV/y5vwEkVZb+yWiyElISEAgELCajJjDF1f1C77kAAmRoAHwFeaHDOfp8XjCavpOp5rM51IRh8Nh9XNwaQJHwIeACiDVpWw/dGYkaZqGuXPnIisrK2wYzv79++Ovf/0rvv32W5x11lkAgjX069atw7XXXlul4/Tv3x8LFy7EO++8g0svvRRA8Gn+qlWr0L9//yrHfckll+Crr75Ct27dyi3jn3zyCRYuXIinnnoK3bt3R58+ffDYY4+FTdb15ptv4o9//KO1r7/+9a9QSqFHjx7W8dasWYNmzZpFfez/SMZSmZr+5s2bY/bs2Xj55Zexffv2Gh2vqip9h7z11lutzg/mY8MXXngBffr0wfLly8N+yQLBcV4/+OCDCIVKleVyuVBUVGTV2JjjP2uaFtJ23ux3UNu/nh0OR8iswKeOnBMpxcXFyMvLg9PphMvliplmVUQUznwyavbh0XU9qgm1qbCw0JrYsOSTyOTk5Fq/V55KRFBYWIjCwkJrlnOPx1Otzr8+I9g8yUCww228I9jcyOwzkZOTg+Li4hNPS3jvrI5JkyZh/vz5eP/990NyounTp2PRokUYOnQoHnjgAcTFxeHBBx+ErushyXJ2djaWLVtWbr+2oUOHomfPnpgyZQoWLFiAJk2a4IknnsC+fftw5513Vjnm+fPno0ePHhgyZAiuvfZaNGnSBPv378cHH3yACy+8EBMnTkR+fj6mTp1qbQMER7+ZM2cOLrvsMnTs2NHaX3FxMUaNGoXrr78eu3btwh133IExY8ZY/RWmTp2Kp59+GoMGDcKtt95qtaPfsmULvF4vHnrooSq/h+qKZCxNmzZFamoqXnnlFbRp0wZutxtdunTBrFmzkJaWht69eyMtLQ0bN27Etm3bSn2SUpsqdTWbv9R0XceMGTNw3nnn4fvvv8cLL7yATz75BD169MBbb71l/XKj6HK5XEhISLDa6jscDng8Hui6jvz8fGvWXiD4xZaQkFCrN/b4+Hhr4hvzyzIhISGiyb7X60VeXp7VJ8B8cpCSksJafqIY5XA4YiLBL8l8EmneN5xOJ3w+HwzDOO2x+nw+5OfnQ9d1qwPl8ePHkZKSUqVYfIYgxytWe/9CCU4QlqSfbAqVm5tr/ZCoa7OnxwqHw4E5c+bg6quvDlmelJSEDRs24JZbbsG1116LQCCAfv364cMPPwzpgBoIBCocvtvhcGDNmjW49dZbcdtttyE/Px/du3fHO++8g/PPP7/KMbdr1w6bN2/GXXfdheuvvx55eXnIyMjAgAED0KVLFwDA7NmzcfTo0ZDmLnfddRfeeustXHXVVdi0aZOVQ8yaNQsHDx7ElClT4PV6ccUVV+DJJ5+0Xud2u7F+/XrMmzcPDz74IPbt24dGjRqhW7dupz0BjmQsmqZh6dKluPPOO61hS3ft2oW+ffvimWeewTPPPIOCggKceeaZWLRoEbKzs2vpXZVBKuGyyy4TTdNkzZo1IctzcnJk/PjxopSSpKQkWbduXcj6adOmiaZplTlE1P0/e28eI11W1/+/zrlb7dU9zwzMDP7IgMIkiEwAFQbF5assBgORiKKMyghuCRCNJkYjssQFFRNjjDs6OJmA/6CGKO6iqLigaFBUJIgCM8M8S3fXerdzzu+PW+d0dT+9VHdXdVVXn1fyzDxPddetU7dO3fs5n/P+vD+f+cxnzJve9Cbzmc985tjfVUqZz3zmM0YpderX01qbPM+N1vrUxzhuHEopUxSF+7lSyly9etXcuHHD7OzsmJ2dHXP16lVz9erVhY7DGGOKojCDwcD0+32TZdlNPz/r+ej3++azn/2s+fjHP262t7fNzs6Oeeyxxw58rekx9ft9s7OzY4bDoVFKncvnchhHzcFZ5+eqzM1VGosfx3zGsU7z86hx7OzsmGvXrrlr5NbWlrl27Zopy3LP85VSC/8s+v2+uXr1qhvLQde1Wc5HL1fmkZEyW5k2W5k211NlHh0pUyg90zhmYVXnpuf8AMzP/MzPLHsYngOYKeX5oQ99iC/6oi/ia77ma/Y83u12efe7381P/uRPMhwO+dqv/Vp+93d/dxFrEs8psB16bYbK6jKnM93ntS1tXTJardZKuORYx6LxeOy26a0VoMfjubzUajWMMc7UwJoLBEFAWZZsb2+zvb3Nzs7Owm30pJR73Hbs30963baNstxxhcCw2yBMa01ZlmRZthBrZI/Hs1xmCvZ3dnZ48pOffOjPf/AHf5B3vvOdKKX4hm/4Bh588MG5DdAzP2zwb29QxhinA73oWH1tWZau6M9ufR+E7bKZJAlRFJEkiXMx8ng8l5c4jl1zL2sT3Gw2UUrR7/cpy9LVPw0Gg4UGx3EcO1liURRu4XHSa3Ykq4BfTxYLuTaEsmrWpZSi1+sxHo/p9/vs7OzsqbHyeDwXn5muGFeuXOHRRx898nfuu+8+NjY2eMUrXsH9999/7q2APcdjm730ej13MbfNqC461lN3a2sLpZQr0D1Kr7/fscgufrzG3+O53Ngmh8oYhqVhmBtUUaIKRatW7UxKKV32f1Ead1vEbA0XoiiiVqudOLNfDwSlMYxLMFSBfmfSIKw/qe2ySY+yLBkOh0RRdOjrWHcg4MR2qZ71xZyx54NnccwU7N9zzz381V/9FcPhkGazeejvfe3Xfi1/+Id/yEtf+lLe8IY37Ok25lkNbPMX29J92bac8yRJElqtFpubm8dmvsIwdLIm67ghpSQIAn/B8ng8GGPo54bUVDdKjWBgAhJTudmcF9aB5ywIIWiH0Agq6U4gcP751sRh+vWOKkguy5LBYOB2iGu12pkamXk8nsUzUwrzJS95CWma8lu/9VvH/u6Xf/mX8xd/8RdcuXLlwMYPnuUjpSSKojO1lV9lZnlP1rHI2pACrvOux+PxlAZSDYmomm0lYeUcNMoqqaC1L74oMkghBKEURFLsaZRlffYttrnZQddRY4yTLtndjzRNj+0i6vF4lstMkd7LXvYynve85/GBD3xgpoM+61nP4gMf+AD33HMPT3ziE880QM98KMvSbTl7du3mNjc36Xa7bG5urkThsMfjWU2klNTrDcIowhjjMu4XJdg/DGuDXBQFaZpijDk0U28Lea3ERwhxUx8Vj8ezesx0lXriE5/IX//1X5/owHfffTcf/vCHTzUoz3zJ85x+v48xBmMM9Xr9zNvCy8Bm4W0jmHncZC/6jdrj8SyGQFSFrbmGSFYe9VJKNjst4kmabB2SJ7YuYDAY0G63ieP40OvitPTT7oKui8mDx7POrJ+Gw7OHsizp9XoIIdy263g8di3qLwrD4ZBer0eapgyHQ3Z2dtbiRuvxeJaHTYAchBSCbiSIJeTKoLShExqSSefZdSIIAlf8e1TgXu1u1N1Osc3or4PJg6diMBjwpje9iRe/+MXccsstCCF44IEHlj0szxnxwf6aY10T7AXcZmYW7Q89T8qyZDweEwSBcw8ykzbyHo/Hc1K0MYwJuJbDtcwwLPSBQX8oBYnKCMc7BKNt8mH/0icZ6vU67XbbLQ663a6XQK4R165d461vfSv/8R//wT333LPs4XjmhN97uwTYxiw2G7WMtu9nRWu954YipTy2rbjH4/EcxLCEjJDuJEHfLwEMzX02O3meMxoNJwWrAUVR0O/36Xa7Fya7r7V2zQNtZv4sVqFCCGq1ms/mryl33HEHjzzyCLfffrtrqOq5+PjM/gVHa+0Kbw+y0AzDkDiOXVMW22xqUb7Qi+CgZmBlWZ5YJ2oL0NI0vfTZOY/nsmKMIVUQoggmTjuhgPEBDsRWpmK95OM4do37LgLGGIbDIaPRCK01eZ7T6/XmtrPrbYrXjyRJuP3225c9DM+c8Zn9C0xZlqRpys7OjguI97tDWNeZIAhQSiGlPFaXuWrY99Dv90nT1N10G43GzMfIsoxer+d2OIIgoNPpXKjz4PF4zhe7K2q5aMGtUoo0TV2HcagWMFmWnSnhU2jDoDAoIBSGVigILsZGx1qitebhhx9mPB5Tr9e5884719JW23N6fKQzhQ2Uj7ugW9u1o4q7jsM+7yw3j9Fo5MYipSTLMoQQdDqdPb8nhLgpMN7/+mcZx3mcjyiK6Ha7LqMWhqHrenvcOLTW9Pt9giBwwX2apoxGI9rt9onGMet7Oc35OG7hcfvttx87P1dlbq7SWPw45jOOdZqfiQQtI8ZZgTYaZSSbtRBj9kas1mLSeuqXZUmSJHua763ynLC7vfslR/tf7yTjKLVhKzeuOVeqq8e60d7xnPa9LGJurjNaa/7pn/6JwWDgHnv00Ud51rOe5QN+j+PyfkMO4JnPfCabm5szSTw2Nzf3tAw/LafdDrZbshsbG+7fQgiyLHM3pvMYh+W8zod9X4e91kHjmN52n/5s8zw/9LNexvnY3Nw88uevec1rgOPt/pY9N1dxLH4cZx/HOs3PhoSNJKQ3CZBiNGkuiDs3N9ZrNBqMx2NXN1Sr1fa89irPCbuTORqNiKLI+eRbR51ZxmF3B6x0UsR1ciWpBcCku3CmIBPVImoV5+Y68/DDDzMYDPYsjvr9Pg8//DCf8zmfs8SReVYJH+xP8eEPf5gv+IIv4Lbbbjvy97TWXL9+nStXrpx65WyMcZ0KT1PoZYP7Xq/nxmG/7CdxRjjrOOxYln0+jhqHlNId12aAbIZuf0Zomefj6tWrR/78He94By9/+cuPnJ+r8lms0lj8OOYzjnWan2VZMrzxGLd0NybZ+0rqVxQFSZLs+d0wDKnX6wsZx3mcj26367re2p3fer2+53cPG4dSitFo5I6f5zlagay1CcPd55elIZAAeiXn5jpzmCudd6vzTDNTsG+M4YUvfCH/8z//w4MPPsi999575O9/8IMf5Fu+5Vt4ylOewvve9765DPQ8mL4gHoUQwv3eWR0ZTnuMIAhoNpvcuHGDoijcMdrt9qmOd5b3sgrn46hxWH3+zs5OdbPSmiiKbrrhLXocx3FcRvTRRx89dn6uymexSmPx45jPONZpftoi/ygKsYfY71p2HuM4j/MRRREbGxsuQXRQEH3YOJRSKKXcAigIAkZZjtGKQocEAgpdFTlHARi1mnNznTloIXrU457LyUxL59/7vd/jz/7sz3jhC194bKAPcO+99/LiF7+YP/7jP+b3f//3zzxIz8HUajXq9TpJklCr1eh0OjdlpTwVcRyzublJq9Wi2+3S7XYvtc7T47nMSCmdBh+q4H+dO8FaU4KT7h7s180LUTkXdUKDFFCaqstwNxYEF8SKdN248847abVaboEkhKDdbnPnnXcue2ieFWKmb/673vUugiDgR3/0R2c+8Bvf+EaklDz00EOnHpzneKwDT6vV8o1NjiEMQ2q1GkmS+MIlj+cSI6UkSRKMMa7OKUkSnyzZh5XklGXpdkOklNSjgFtiwa2JYDMWRNIH+stCSsmzn/1snvKUp/A5n/M5POUpT/HFuZ6bmCmN8Q//8A88+9nPPpH36uMf/3i+8Au/kL/7u7879eA8Ho/H41kEYRjS7XYxxpAbQWokWSGIlKYdCgIfwBJFEe12m+FwSJ7nBEFAu93e7ci+5PF5KqSUcy3G/YVf+AW2t7d5+OGHAXjve9/Lpz/9aQBe//rX0+125/ZanvNhpmD/0Ucf5bnPfe6JD37XXXfxr//6ryd+nufkWPcCuz3t8Xg8nqMJgoASwTCrZClSQKbBFIZuDNJLU0iSxDn5+PvL5eDtb387//u//+v+/Z73vIf3vOc9ANx3330+2L+AzBTsR1HkOgmehKIobrIx88yfqqX7yDXNarVafjva4/F4ZiBTlS49kgACiSHToEwV/HvwQf4l45Of/OSyh+CZMzMF+3fccQf/8R//ceKDf/SjH/VFIgtGa02v1yMMQ+I4dg2kpJRn6pDo8Xg8l4GiKBmOMzKjCIKQWq2OF6h4PJ51Yqal+vOf/3z+67/+i7//+7+f+cB/93d/x3/+53/yZV/2ZacenOd49neUtZ0d59EQyePxeNaZsizJRwO0UigEWV6wPRwRYQh8vO/xeNaEmYL97/iO78AYw/3338+1a9eO/f1r165x//33I4Tgta997ZkH6TkcIcRNnQbP0q7c4/F4Lgt5nhMYxUYcEMgAGUUEqqAZaK/X93g8a8NMwf5znvMcvv3bv53//M//5J577uHXfu3X6PV6N/1er9fjV3/1V3nGM57Bxz72Mb7927+d5zznOXMftGcXKSVxHJNlGWVZkmUZYRiurV+0x+PxzJtYGrqBZjPQNKVC4hMmHo9nfZg5IvzlX/5lhsMhv/3bv813f/d38z3f8z08+clPdq3Rr169yic+8QmMMRhjeOUrX8kv//IvL2zgngpbkGuD/SRJaDQaPtj3eDyeY4iiiDRNnZlEWZbnniwxQL8wFGgE0AigFpy9o67H4/FYZr6ihWHIu971Ll7+8pfz9re/nX/8x3/k4x//OB//+Mf3/N4Xf/EX8wM/8AN8/dd//dwH6zkYW5zr8Xg8ntmJoohOp8NwOERrTRRFNJvNc3OeMcaQEiBKiAPQQK8AIaDmjew8Hs+cOHH64hWveAWveMUruH79Ov/yL//C9evXAbhy5Qr33HMPt95669wH6fF4PB7PIojjmCiKMMacu72kBnICNgJcE69CG8aloeYrhD0ez5w49V7llStX+Kqv+qp5jsXj8Xg8nnNHCC+b8Xg868uJgv0/+IM/4Hd/93f51Kc+RZIkPOMZz+D+++/nSU960qLG5/F4PB7PWiKBEEWuIREGbapmXk1fcuXxeObIzJeUV73qVbz73e8Gdq0d3/ve9/L2t7+dd7/73bz0pS9dzAg9K43WmqIoKMvStVP3eDwez/EIIaijqAVQmKqVVzuEupfweDyeOTJTZPaOd7yDd73rXQRBwKtf/Wp+/ud/nh//8R/nuc99Lmma8q3f+q3s7OwseqyeFcN2693Z2WE8HrOzs0NRFMselsfj8aw8xhjyPEcVBQ1KrsRwayJoRtJLijxrzatf/WruuuuumX73zW9+86m/Dw888ABCCD75yU+e6vnrxEzB/jvf+U6klLzvfe/jHe94B6973ev4oR/6If7mb/6Gb/u2b6Pf7/Oe97xn0WP1rBij0Ygsy4iiiDAMXfC/v8mXZ73xTdw8nuPRxqAm1tTGGAaDAb1ejzRNq4TJaLTsIXo8S2E0GvHmN7+Z97///cseytoyU7D/kY98hOc+97kHFuT+8A//MMYYPvKRj8x9cJ7VpigKwjB00p0wDFFK+WB/hcmyjF6vR6/XI8uyMwXqWmsGgwFbW1tsbW2RpukcR+rxrAfGGIaF5npmuJ4ZdgpDmhekaeqcgKIoYjweU5blsofr8Zw7o9GIt7zlLQcG+z/yIz/CeDw+/0GtGTMF+71ej8/93M898Gf28YM66nrWmyAI9gT2WmuEEF63v6JkWUa/36coCoqicFnF02Azk+PxGCEExhj6/T5Zls151B7PxWasDP0SpIBQQKqhV2hg1wHIXjN9osTj2UsYhtRqtWUP48IzU1RmjCEIDu7w4S9Sl5d6vQ5AmqaUZYlSikajcaJgvyxL0jRlPB6T5/mihnooWmv3Z90ZjUZIKV0mMQgCxuPxqbL7WmvyPCeOY4IgcDs8Ptj3ePaSKQgEBEIghSARUGjhJD2wK4XzWn3PMrH6+I997GPcd999dLtdbrvtNt74xjdijOFTn/oUL3vZy+h0Otx+++387M/+rHvuYfr497///QghDpXofPKTn+S2224D4C1veYuzwX3zm9+8Z0zTCCF43etex0MPPcTdd99NrVbj2c9+Nn/1V3810/t83/vex/Of/3yazSbtdpuXvOQl/Pu///tsJ+mC4lOwnlMTRREbGxs0Gg3XibLRaMz8/LIs2dnZodfrMRgMGAwG5yoFSdOUra0tbty4wc7OzlpvoVud8PRF0y7KvObe41kcQsD0N8wAYVRlK7MsoygK8jynXq8TRdHMxy3LktFoxGAwWEqixLM6KGP45FDz0R3NJ4cadcZr+jd+4zeiteZtb3sbz3nOc/ixH/sxfu7nfo4XvOAFPOEJT+Cnfuqn+LzP+zx+4Ad+YOYA+zBuu+02fumXfgmAr/u6r+PBBx/kwQcf5OUvf/mRz/vLv/xLvvd7v5f77ruPt771rVy/fp0Xv/jF/Nu//duRz3vwwQd5yUteQqvV4qd+6qd44xvfyEc/+lG+9Eu/dK0LeWe23nznO9/JO9/5zgN/JoQ49OdCiLUOoi47YRjSbDbp9/vEcXyi545GI4wxbosuTVOGwyFJkixcCpTnOYPBgCAIkFI6WUu3213o6y4LIQRxHDMej925LYri1OdaSkkcx2RZRhiGGGPQWpMkyYmPZYxBKeU6mB62i+jxrDKlrnzyhYBI7i6q64EgU4ZCGwRQGmiEglbSJI8j0jSl0+mQJMnMmX17vdJaYxDkpUIhaDfqC98d0FozGo0oigIpJfV6/cTXfs/8UMbwt9c0vSkjvE+PDPfeKglOORe++Iu/mF/5lV8B4Du/8zu56667+P7v/35+8id/kh/8wR8E4Ju+6Zu48847+Y3f+A2+7Mu+7NTjbzabfP3Xfz3f8z3fwzOe8Qzuu+++mZ73b//2b3zoQx/i2c9+NgCvfOUrufvuu/nRH/3RQw1jBoMBb3jDG3jta1/Lr/7qr7rHv+3bvo27776bn/iJn9jz+Doxc7B/2uyfzxrOjpVG5HmOlJJarUYYrm93FaXUnsBOSumCxvMI9gH3+jZwLctybWsOGo2Gm2M2028dlJIkOdENWwhBs9lECOHsVlut1olv+sYYhsMhaZo6ueBpjuPx2CDUfodPmik/C8NCM1BV1l4YaIWGZlRdR5JA0I1hXBo00AygGVaSHlugG8fxiYJ0K78L4oShkox1yXhYoMKEbiyRCwr4p7+vQRBQliW9Xo9OpzNZ9C/kZT1H8KmRoVfs3T3aKarH72qebh689rWvdX8PgoAv/MIv5NOf/jSvec1r3OMbGxvcfffdfOITnzjt0M/Evffe6wJ9gCc+8Ym87GUv473vfe9NsYXlT/7kT9je3uabvumbuHbtmns8CAKe85zn8Bd/8RfnMvZlMFMkeRn0zMtGa81wOHSZV+vBbC+i60gYhu6mAVXwP+3uc55Yics6a2allLTbbRcUjcdjlFKUZUmWZXQ6nRMF2UEQ0G63z6Q3tvUaURQhpaQsSwaDAd1u98gMf57nZFnmdiz84uByo7Wm1x+QZxlhWAWhRVHQ7XYXfv3MtWFQQigrXb4yVUFuFBjiSYa/Fghqc2yUVZkhSIZKUhpBIkFrxaiEUBra0WKuY1prsizbszjJspytYYasB2QlhKWmGUItlHt2ODyLYXSIcOKwx2fhiU984p5/d7tdarUat956602PX79+/fQvdAae8pSn3PTYU5/6VEajEVevXuX222+/6ef//d//DcD/+3//78Bjdjqd+Q5yhVjPKPICYi+i01u5WZaRpimtVmvJo1sM9XrdFehCFSy2Wq1zCfaTJCFNU7cVXRSFKzZd58WtXdDkee6KdK2zzmOPPcbGxsaJnQ/OskBSSu1xcArDkCzL0FofGuynaUq/33evm6Yp7Xb7VBIiz8UnU4atVNFPFbWoRhgY4rC6fuZ5vvBgXxtgUoAL1f8LYVALzHKHYUiWjykDiIQhK0viOCIJIF/g5ctMFRVbciSZEdQ1DEtQwEhBSxs2YtyCx7MYGodM78Men4WDrr2HXY+PS/YopU4/kDlj7+0PPvjggYuBdU2sgg/2Vwat9U0FlKuWZbYZYZtRrdVqZ7LECsOQbrdLWZbu/Z9XhtYWFI9GI7TW1Ot16vU6Usq1DvZh94Ztd5C2t7fp9/tAVUfRbDa5cuXKuVz47Bgs9twfNveNMYzHY+cABLuFiocF+3meuw7PSZJQry9e1+w5H3Jt2C4MxkCAoUQwUIJOUNkAn8d3WQDG7O4OGmPAVI9PUxSFk99EUXSma2ej0aBUmn5aoDEEgaReb6ARLPIKGgQBcRy7HivGGFINSRyS68p1qB6CMqAxDAq4JfHftUXy/zWEk/JYulH1+HmyubkJwPb29p7H//d///fY557memyz9NN87GMfo9FoOHef/Vir+Mc97nF89Vd/9Ylf8yKznuLkC4iU0skYAKenXqWV5rTMSAgxF/ccW+iZJMm5v9c4jmm1Wm43xS461h1rv1kUhcuSl2XpdlmuXbvG1tbW3OttlFLkeU5RFO7Y9nO3WdiiKKjX60dmkexCxWIDrIPGm+e5K2S0TcCGw+GeY3kuLoWqAv1aJInCAFEWlMaQq/NLHsQSakHln58pQ6ahJqvHLVbbnuc5SimGwyHD4fDU809KSbfT5rZOi6TRIqo3UaJ6wcaCJDywu/saRZErqq8KdCM0ewOKQFS7Hv47tlgCIXjerZLP7wqe1BR8flecqTj3tNhAetqdRyk1U8GrdfHbv1A4ig9+8IP88z//s/v3pz71KX7v936PF77whYfeP170ohfR6XT4iZ/4CVdrNs3Vq1dnfv2LxupEkpecMAxpt9v0+31XPNpoNFZGi3yQVtMYQ5ZlF7bhhbX+tM3AbIb/or6fWbE37H6/7xZsNlNuJT79fp9ut3siK9WjKIqCfr/vtnSTJKHVahEEAZ1Ox0l3jitWlFK6xYH9bpRlSa1WO/A5aZo6h58wDAmCwC1Q7cV+Udl+u1tlF8eexSAAISSNRpPRaESuFCYwtM+p0FsIQSeCJKgceUIhSAL2FMmmabrHrcrOw7NIz4QQdGohsTKMc0UYQC0UC5fNBEFAs9ncdeQpcnIRAAGFAa2qxY/W1Xnwc3/xBEKcuhh3Xnz+538+z33uc/mhH/ohbty4wS233MK73/3umdwY6/U6T3va0/jtTAY+4gAAIABJREFU3/5tnvrUp3LLLbfw9Kc/nac//emHPufpT386L3rRi3jDG95AkiT84i/+IlB59R9Gp9Phl37pl/iWb/kWnvWsZ/HKV76S2267jf/7v//j93//9/mSL/kSfuEXfuHkb/4C4IP9FSKOY7rdrnOjWaWs/qJRSjEajRBCEASBk9Qskv03YGMMaZoShuHan/sgCOh2uxhj2NnZQQixa6FpIA8SrqaaTqBpRnsDCJvRs5/VcWituXbtGmVZOveRLMtc0BAEwYkWFc1m0xWwQxWsN5vNA3/3IGlclmUopYiiyO1QAXNb2EA1t6xEzNrTekvR+RMHAqEMuTZIIYkaTerARgzhOZ5vKQT1gCqdfQgHSTTPmvUWQhALjdIZohAYE2JO6OxzUqwjj62HCFWJSgfEtRaFEFUDMVkVLLdCH+hfJh566CG+67u+i7e97W1sbGzwmte8hq/8yq/kBS94wbHP/fVf/3Ve//rX833f933kec6b3vSmI4P9L//yL+fee+/lLW95C//3f//H0572NB544AGe8YxnHPk63/zN38ydd97J2972Nn7mZ36GLMt4whOewPOf/3zuv//+E7/ni8J6RzQXkFUIMq2UZTrYllKSJAnj8Zg4jjHGUJbloUHWSSjLkn6/T5qmRFHkfNcXXayrlLpJDnKZEELQaDRcn4TKsxtMvY0Ja0gBhYHt3LAZV97htheCDaIbjYbrpHwQxhj6/T7D4dDZm1p//9P237C7AXaXIAiCQz87u7CwWfaiKNz8tq9vs6zzyu4XRcFgMHByKTu/2+32mY/t2UskBRsxDAuDAmpS0A4FwZKKQpVSbqdw+lo+3YvC2tXanaazsCtNG2HCCGUE9VqNzXadcEHXzrIsXfdsu+A3WUaNnCu1BBEKBIJQsjALUM9iePOb3+w6107zwAMP8MADD9z0+P6uuE9+8pP5kz/5k5t+b/+i9qBj3XvvvXzoQx+aeUwAr3rVq3jVq1514M8AXv3qV/PqV7/6pse/4iu+gq/4iq849HnryPIjyzlTFAUPPfQQ73//+xkMBtx111286lWv4pnPfOayh7byaK2dFSJUOw3NZtMFxDawtxnVZrN5ZKA3K9Ymz+q3p+VBi9yGD8PQec7bG/C0M8xlIAxDNjc3kVJW50KGZHGDWiSpJzGhFKTKkCuD0Mo1IguCwGmPwzA81M98Wv413cAsz/MzyaX2B1OHUa/XUUqxvb1NnuckSeIKdqc/53nMY4utSbDjswuOVXKlWCdiKYhXoAh0eiFsjKHRaNBoNBBCkCQJWmvG47GTq80jmWEtaHVUIw8iMIattECHMbfWF7vo2b9TIVxGf70tjD2ei8jaBfs/93M/x9/+7d/y0pe+lDvuuIM///M/561vfSs//uM/ztOe9rRlD29lmC5GtavuPM9d8Aa7jVvsTWnapx12M/9nLWrd//x5bXEfR71ed8Go1Va32+1LFexbOU8YhgyHQwoDUdSiVYvcPBBUDVumM+n2/2VZOknMYdgGR1amVRSFk2odhs2CnhXb/KvRaLC5uYkQguFw6DKwsNtJeFEBii9QXC+sq47dGWy1Wk7aYutDrHPZdA1Ko9FwkkFbx3HcHDfGMFaG8WSdWJNV9107V7XWaAQpkgSQUiBF1a13rAytBQT7QRAQRZGT8dj3cF4NzDwez8lZq2D/Yx/7GB/4wAe4//77+bqv+zqgap7wute9jgceeICf/umfXvIIV4Msy5xsw2ZIbYMre7OC6oaUZRmNRuMmSc9JsW4odtEwjS0MtTeN/UHlopBS0mw2qdVqLti3AexlwlqgdjodDHAj02SlRk/0+1BlT43edbBxFoMcLX+yOyU26LZ9DTY2Ng7NzCtV7SCUZekcVVqtFhrIJ+OKBJX7yowB+nQQZmU/1kLWvuZ+ff9BWHcfK2Podrs37T7FcUyapq4Ttl0MHbUToZRyOx7W3tAHT6tHURT0ej13vRiPxy5zbztAw+410tapWE56TRuVmu1UEwiDEJKelIChOXHcCYKgcrwBpKgaawEEUrKofSS7wBkOh5RliRCCdrtNHMeX7trp8VwU1irY/5u/+RuklLzoRS9yj8VxzAte8AIefPBBrl69eqj/6mXB6odtQGG3lhfpQGMtO+3NsN1u7wlk4jimXq8zHA5dANZut8/N53168XGZs7BCCATQjQRbGgoNBoMAeiUEhMgodkGslSMcFZTaDrc3btxwi8t2u31oVt9q/MuyJIoi11maIGIsIgajMVorpDFcqYd0Ws0TLT7tuIUQbGxsOMmYrRM5as6VZcnW1pZbFKdpSpqmPP7xj98T0IVh6Ho4KKVcD4fDFhLWlrHf77vFUKPRoNvtzlVe5Dk7dq7Yz9vOH1trNL1g3G8Re1KMMdwYpuRZTiCqzl1xrc5IxDRC475bzXqN/iBjbDShgFqtjpGSBTpwujk+3Xn8Ml87PeeLn2snZ62C/U984hM84QlPuMlV46lPfSoA//M//3Ppg31bqDidgbIe87VabY89ovU8P0vQnWUZo9GIMAydXrvf77OxsbHnRmjdSqZtEj1nx8oJbBBZeWIfXQcRSsFGCASwU4A2AgzkRiCSFvUow6iSMAyp1WqHBjRKKcbjMUVRUBQFURTRaDRcoayVNFgple2ma7X1tvhPCFnpkCkJdEkShuRasD3OCKVwHaZtcy2l1B6nn2mklNRqNZd5tztOdrer0+kcmn3NsozxeLwncB+NRq74eM85nARD+z+LgxiNRq5OptFooLWmKAp33FmywbYOQWvtFs+XSY62LOw8CIKAWq3makHsguAsNUdZlpNlOVEYEEqJ1op0PEaGky/n5PXbrSZGBgy1BBlCIGkGUD/CGWge2CDf4/GsPmsVUW1tbbkubtPYx27cuHHeQ1o5bHB/kCWhLchN09Q1Szmr244terUBi3Vk2b+9DTg5kb+BzAdjDIPBwNlc2gxyt9s9ViIiBJRGoAwksnJeQhtyJO16jXp4fCBpA31rPWkbd9kiWVu02O/3ybLMSV5u6ucAKCNAlURRNT9CCaUJnWxAKeUWqkEQuOZF3W73pnE1Gg3yPEcIwWg0crs7tr9Ap9M5MFA+qLvvcbprrbUb41GLInssK3uytRBWdnQUVlpkn28tP1utlv8uzZkoivbo9e08tkXqYRi6nx21EJ4FrRUxmpIIaQARUAARGiF2b91CCJpJRCsI0KYqlA3F5XMX83g8h7NWwX6e5wcGMTaozLLsvIe0cthsrA1yrHTB3pisg4TV18+D6S236W1fz2KxHWunA2fr3jGrHtwYw2g0Js8zhJDkRlA3IbV289jP0O4m2N+zgdC0K43VqdtMvpVFjMdjp4MWQBJHZJnCGI0QAQqQRiNl4I5jFxJQZVrtcew8t9hF7fb2Nkop4jim0Wg4dyYbrNlA3c5f+17s+bN65cMaI1nJ3HSwf9DCwO5iWRmI3eGYtRmXbRJmP9PpWhuoFl1lWbqdHe/3f3qmEyK2QHXaVWeesispJTWhUUKTUe0WJJSHetcHQhAuyXLU4/GsNmsV7MdxfGAL5OnmO9M88sgjPPLII0DVJnk4HALHu8vYn5/FLcS6jVj98Gk47ThsYF+WpZPOHJShnPW4R40jjmPG47HTOSulXGA3/fvLPB/TrMo4DsIGc8dlku3/7Z/9+kb7+GHYcyClRJUFozSjFkdoBKEx5OMReXK0Vh92M9lBELgdHhtcG2O4ceMGWZa5oMn+vpWu2Kx2q9VEJhHXtGaUZghhkBiaQhHH9T3v075XYwzj8dgdezQaMRgMnOSnXq+7+T+dgbXv3crNiqIgTVO3E2V3puyCoNvtUqvVDjyftsjYJhvSNHWe/9PUajXXf8A6utTrdVcYf9D3xF7npn8+/TlrrcnznK2tLUajkXNQSdPU+f0ve36elmV8R5UxDEvINUiRUG/FROyaDpz2/Rw1jjAMieOILBtTF9VrNBt1wuDgObHsa9aqjMPj8dzMWgX7m5ubB0p1tra2ALjlllv2PP4rv/Ire1orv/KVrwTg0Ucfnen1HnvssdMOda6s+jisj74tWCuKgtFodO7jOG/mPQ7b3W+W+fnYY4+5gNcGzTZrXK/XXdfY4xhnBSMlGKchEk1iSnpFRpGlx9ZV2Ay1DXqnA/3t7W0XJI3HYwaDAbVajaIo9vjy7+qee2BAlhqtFEIYyjDgxo3cvZZ1RrHyijzPaTQari/AI4884v5tn2MXAXYhaq1BbYBvO/XajL59bq1WQwjhFrL7mbZinLao1Vrz2c9+9qZgyAZIduGd5znXrl1zz58u+szzfM/3aXrhbutvgiBwxcTTOwdBEDAcDkmSZOnzcxV47LHHUEq53ZeDGl0ZYERIgSRAYxAYBE0KQuZTKHjY+bDNC+13uK/Kmb+78xzHebMq4/B41oW1Cvaf/OQn85GPfITRaLSnSPe//uu/AHjSk5605/e/67u+i5e+9KVAldn/0z/9UwBuv/32I19Ha81jjz3G4x73uFNLXexF/Cwa9elxTBfenmRM8x7HqpyPiziO44Kk3/zN3+T+++8/cn7uf21btGoz6/V63QWqhzF9DvI8Z2enR5wkSCEwppK2WG/+o9Ba88gjj7CxseHqNpIkcRlz62CSpimDwcAVvnY6HZrNpstO2y69VsNuO9Pux/aJ0Fq737XH2draot1u0+l09uzw2QLy3V2EFmEYsrW15YL56a6ntnPvUdah9hxub29jjHFjzbKMXq/H4x//+EPnha1hsOfIugbZOoLxeMzOzg7dbtftmEC1G2IbxEVRRJIk7OzskCSJ21mwsqNWq8V4PF6J+XkazvodNcYwLg2PXb/GLd0u+XBAkuzayLZarT1zpNCGGzkksqplAchU5XlfF5f7mrUq45g1QefxXFbWKth/3vOex+/8zu/wR3/0R85nvygK/uzP/oynPvWpNznx3HHHHdxxxx0APPzww3zwgx8EZveRP8gzflams3Jn0a9btxVrWTnteXye44DVOB/rMo6DmJZuzPra1q99Wnd+HNPnoFarUZYlaZqi2G1SNev8sq44069r56n9Y3XOVrZiF+p24Wqz/zaDbhsU7XfdqtVqTudvi23te7a1IvsXw3bxs7+WJAxDsrwgFxGZKQmBcDIn7E7Bceey3W67oN0eP0mSI+eF3Wkwxrhz3+v1nLuPXZTYhYaVFdXrdSdRsnIpuyiyAZidA0mSuFqGZc/P03CW76gxhkEJAwUZIddGJREhG0lQFaVP5vr0glhiEMIgpopehTBIaZBi+deKVblmrco4PB7PzaxVsH/33XfzJV/yJfzWb/0W29vbroPuY489xutf//plD28h2MytzYparfEsmVfP5eAsBdE202l16Ydl1U/CtO7dzlkbdFsf82nZipUA2VoPK7+J4/imOW7fq3X8scez1rIHjb0oCpe9j6IIKSVJvcGNfEgmNIUuSYFGVKMoStrt1k1SD7uzNh3o2KZbVgY0nYm32IWJdRGymn67mIiiyEmb7Bj3a/Pt+54OjmyHYisdsgulW2+99dCC4stArmGkq6z8CE1oFIUIKQzEwjg51/QcDATEsnpuJI1rYhXLypLW4/F4Vp21iwa/7/u+j4ceeoj3v//9DAYD7rrrLt74xjfy9Kc/fdlDWwg2SLA3piiKDiwC9HhOiw2C54XNvluJTJIkLvufJImz4TTG7OmuPO1pbmU6R4253W6TJInL1jabNzsIWZ98G0RHUVQ1CwpC4nqLhilR9RilDJmBeiOiXt8Nlq023zp9RVG0x9/fasCnrTT3P9d67ANOijP9O9O7IEmSuJ08u+tRq9VuWnzYHRir/5+WcF3ma4MGhAExWRdFUUiRlyiz2/F2vwxFCkEngkFhyE3VqbYbQhIIfMNYj8dzEVi7YD+OY+6//35XLLbuHORqsz/L5/GsEtOB5/4uo1Yzb60ibQOsaSnMQX73h71OkiTO/3z/79tdMZvNt1n2NE0hrlxPkiABEsAgc0UUB3uOMx6P3S4D7Nr7ttttN9adnR16vR5KKYbDIZubm67vwHg83vP6tlB0NBrtqXNoNBoIISqb3GabcaHQxtCoh7TqB9dgSCmdtOeiYhdqWmtnEXwWiUgwScbryXoqihOkMqgiIyuNs9Lc/xqhFGwkAj2xgt2/w+LxeDyrzNoF+5eNOI6dr7bdgvbdMz0XgYPkRdOafcB1IrU9Ayxn7exsjz292LDj0VoTC9vMyxAIQamrIG+/xXmWZXtsQ63sxi5MhsMhW1tbzlmo3+9z9epV4jh2i5bp1wecTabtU9Dtdl1dQ6oMfRMSJDEgSAUkBuI1tFe39Qp2V8dKv87S6C+WgnZo6BWQI1FCcmu7QV3UALPnszwIeUYtusfj8SwDH+wvGNvYxwYt8w7EbTCQ5zlaa5cx9cH+fLC2d1JKXwOxJGzdwPRnMd0o7LTYIkArhbPBfxAExEEVFA5V5cYigU7ETU2LDtpZm8Zm+q3lqA3irRuRfb4dR5qm1Ot11/nXynpsJnlQGgKgFghAkGvDsDDEyfoFofaaZndNbMO1Wq12puM2I0koFDklt8QQBxIhfKOxeWE/JysfO6xWxuPxnB8+elkgWZbR7/ddxnA4HGKMmfvWetV8ZTZ3FM/sWD23zf7WarULL4u4qFg9/zwJgoBGo8FwOHTymSRJ3Os0I0ktrAoyBWDUzceo1+v0er09TcOsqxAcLPew14Moimg0GoxGI9eQKIqiPcGstU+FXfnJ9HpDAgcMay3YX1tgz+V08expiaQgQhNJ383bzr15YaVtVpqWZRmdTsffozyeJeKD/QWSpume4sYgCBiPxwcW1HnOxkEFkGc93mg0cgWWtqB0t8mTZx2o1+tEUeScgWy23RIIUem8DRxUi5kkCbVWh3GaAYZGo0ajUXc/b7Va9Pt9Z3WZ5zndbtfNoUajQRRFTqoyGAxcph/Yk9m2MqLMQEwVpCmgNodY1e4QqMlrtENBIJcTBCtjSEvDWESkKoOipCyqRmLTZgSes2GvaWmaul2l6bl3Gqzz03RzsqIo3LXT4/EsBx/sL5B5ZKA8xzMajVxjpNFoRJqmN3mwnxSlqnypvWHZz9E+vs5kypCVEAlDElQB7zoThuGpJVrDQjMkgnoEBgpZZeDtGUuShNtvv52dnR1nMXrrrbfuWexPSxzs4sDKf8IwdHNZCEE7EhQKxqVBSEEkoLW/kOCElNqwnU/6MACZrgLuzfj8NeraGHZyQ65BBiFlXOdqb4uoTAkntQyDweDM329PlYwaDodu/hdFwXA4pNPpnOm+tf++54uZPZ7l44P9BRJFEcPhEKgyxUVR+OzGnMnznNFo5IoabXb0IA/2k3CYZGDdF2/DQrNTGMoSQm1IQtiI1z/gPw2lNgwURLI6P8YYMl0F4s1o93zZZl9KKT772c8eqV+23vxWuhNF0d6FgRRsRIAUSCEI5dkD8kxVUqWqDgCCyfsoNCTnvAGZKUOqDLUApJCYUDIKY5I4pBFXQWmWZZRl6a+lZyTLMtcgztrcTteInAbrGFWWpZvnSin/WXk8S8YH+wukXq+jlGJra8sV5NmW9z4zNR9sMyN7w7Jb0NYv+7SEYUiSJKRp6vzMoyha65uW0oadssqqFgaUgbwwxMLQji+G7KzUhsLaKorKatHKu47KLmpjMFSZ7VkDHU2VxbcLISEEAnOght7a4c5y7ON2GgIBYbA4rbl9H+dNMdlh6JVVA6tEasbDIVmaMRIKneMsSH2meP5oY1Cm+g5F4nQBvy2mHwwGzj2rVqv5+53Hs2R8sL9ArINLFEVOG2xtMq1lpme+2I6hZz231qM8jmPKsnTe8Ov8mSljGJaTYJKqEHSsYKSgvezBzYANFpXV0WhDVAxRWcpoNGIwGNBut/d8hsYYRqVhpCZdUQW0I2bSq8vJy1h7TjNZMFyMZdEuUSAQylBoQyCqjH4gITzHqa6NoVdUOwwR1WexPS7I0xxdlpQmJ5M4601f83R2kiRhMBgA1cJ+aELCsM6NQlDThk50ul2jIAjodrt7pJCnWTjk2lCoalGXBOImJyyPxzM7PthfIFprer0e4/HYbT+3Wi0nD/GcHSvXscXQSimSJJmLTaZ14LksWLeXEBBiEsyaqjj1IjAo9spRdsYjhrniljgmCAInW5h2VEqVoV9WRamBqPTqpjBsxMdn+MOJZ3u/gJIq0K8FUD+jhv4gSm0Yq4msTEMzmF89UDyRBvVLQ2kqWVI7Eucq3SoNlLpyQJJCM1YwznM0gm4tgFy4Ivzbbrtt7ja4SimKogDOVsMxL6YdcmbdETop9to2HqcMFYgooV2rEUhIFQTC0I7OJuc5LZky9BRgquvSSBm6cTVXPR7PyfHB/gIZDAYMh0PSNN3jqb3uGeLzREpJu90mTVOn492fvfXMRiAEjdCQl1XQX2qIAqhdgKuEmUgQbDbaGI0pS2QYIoR2wcd0wyuo5CJS7Prnx7KSMSlzcwOtg2iEkkhWQbKkCpTPoqHXk5XV9DHsjoU21SKsKABpaM9RUZYEgniquPi8a1ME1WsbY6iHkjgwjE2JMAXNOICoSVEUc9Pqa2MoERTaQFkwHPRdJlpKSafTWZo3vNaa4XC4p0fDSXYz7ELhuE7qdrcyrtXIx5qiLAgm8rBQVN+DeWB3vGadVwbol9X3Mgrs93R9+0l4POfBBbiNX1ysf3aSJJRl6Yp0NzY2iKLIFeHNi2nbyVUIdu17hsVmy2yLe+vGswrv/SISCOiGgp4xGANSVgFv4zz1HKdkOkAJgurfCkFgNDa+sEH+noBD3LxzcdKNjMqz/WxoYxiWhnQiJ6oFhlZYFeGOJwW0ySTwQVbSqsZEPjQvKq3+cghFtSuSKghFtXBrJjG6GOz2GTDGdU4+i8WuMoadAgZERDkUaUqiNPVJfwXrStPtdpdSkD8ajRiPx67fgw36O53Osc8ty5LBoDpnUkrq9brrvnwYgt3FlkXDmef0LBI5Y4xbgEspq9orqmRDPHXZWed+Eh7PeeCD/QVifaGTJEFrTZ7nZ273fhjWRs0Wq7bb7aVuRed5Tr/f36PbnDVbZr2abaOiWq228oWxZVmSZZm7ac2zSc15IYSgFQEYxkWV1W+F8sJsnbciwXZRubkA1JIEmQ4oikqmUZal60xrqUvB2Gh2clMV3BroLsF9aFQaBuVugDMqAQydSKD03kZak3KEapFyMT6aYxFC0Ikq6UiuIRHQaiWMdH1PUqTb7Z75+zUoK7ehCE0iYag0RkTUJjsnQRCglFqKdbIxhjzP9/R7sImh42qRtNbummt7NwwGg6oj9BHXTykEjRCuIyfZ/Or70zilhMeSaY6UyBlj9tjM2mu97Sdh3aBsPwmf1Pd4To8P9hdIrVZzWRaosu2LKMzN89xd1KWUFEVBr9djY2NjaVluazlqdaF2jJubm8c+1/rmW4edPM9XugNjWZb0ej2XTSvL0jlRXDSkELQjSV1ownAxWmFjqsAaTuZ+cxyhFGzGVZAAECYxZdxyDa06nc5NXXhDOZHGaEBUxbXGVJnN8yoBNcaQauseJNAYlDFs5xAJTSQMmRaExlRjNRAHexcA64Cc9BEAW2gviLpd912alxtWoSu5VSUrgSQIyMoSQ7WzYZ28lpHVtztP0zVd9u/HjccuaO0ct4uWPM+PPW+NABqUxLLa0atLQRycMdhX5kiJXJ7nTuJaFAV5njMejzHG0I6gr3AL90hWjd48Hs/p8MH+Amk0Gns0wsYYOp2OayM+L+zN0Go64zjeo2E/b6wjzrTGNAxDZ4F4XHYqTdM9i6JV78Boz7UtFC6KwmWsjttCv2xY15VsEpDXZLW1P6/mTYEQ7E47QTjZFbKyiP0BU6HBILiS7AZTqaqCkvo5RfvV61bXA42hXxiyiWZhOzc0QqhLQ6oFhiqA6kTi2HN2UZv6pWnlnqSUcgXV09/9s147AyCfOkSc1Cj1iDzLXGa/2Wwu7dw1Gg36/b4rGNZa02q1Zh7P9Oc+bUd8FEIIYjTd6Gid/4k4RiJnu1aPx2PneJZlWXXvwLAZS8rJdeKstTAez2XHB/sLxAZ6aZoCldXZIvyGD8oELfMmL6V0GW57k7bB8HE3ksMaWa2yLMZ6uFsbO7uYGwwGJEniawimGJSGsYJkckrGCoSo5CrLwH5r9uv4z9tmvi6rTGaZVwuhQFTZ1iQQpAo2Y2gIgTFgVFUncBi5MvTLSucfThxVVt22UNtGXkXJsD+kFkpX69Tv9+l2u3OTJTZDQZ4ZCiSZAiElj+s0CU2VEQ/DcKnWnvu1+nEc37QjdRC2N4h1nbIJl2UlSepSkGHItUFSOS7VgmpuQ7WoKorC9aCxjb1s8F8LQ7zDqsczH3ywvyDKsnQFZTboX1TQZy/weZ67C2gURUvV7LdaLXq9ntt1EELMVKsghCCKoj1bz0qplW7KYm1VtdYuQLE2oL7T5y7GVBnreCpLF0lDrsCEy1mghqKScpTaEEpBqQ3CVD7z50kjFAhhuK6qtUYjqCxEhRAYUYnJI1kF++UR695CG7YnXcWsZ/52Ydhc4S7I2hh2chvsKwYqoCZCEgyRjDB5ilJqbtezOBBsxDBEUQ+gFgqSQLJKHRKSJCFJkqqA1VTSrRBzZHbbNrSyiZYwDF1B8zKIA0E3rupRFNAMqoXWdC1CFEWMx2OXsKrX6672ydrN6okdbH2BjeQ8nnXHB/tzxjrC2AuYEIJ2u73QgC8MQzqdDqPRyFl7LtveM4oiut3uid14bDMrK4OxRVurLIep1WrUajW39W6MuVT+/CdBsLewdPrv2phzt30MJx7zvUlhbyWROX8/byGEC/h3ckMiq8fKSVZ01jC00OzpNRAElSypnLgUrSLjScFsIkELQW4EhREYDWMgNvOvHYmkoIaiHQnkiu56KGPo51U9B6JamHajo3d17PVzVUgCsesitQ8ppbtH2AYgEmKbAAAgAElEQVSUMNmpFgFbU3azYwWlMbTD87eF9XjWAR/sz5miKBiNRk4fbIs3NzY2FpphieN45TLIp7XbDMOQbrfrpDvLbnBzHLb409YjSCld4dmqj/08ERMf/14JRlfZZ2WgJg3X80lDr4k931EBzbxJAsEViQsslpkBr0kowsqNR1AV5LbD2Tr6XlQUux7spQiJwoBCVTujGE0ZxshVXakskGFpSA1u4Zepqp5jc4aGbxeFOI7Z2NhwiSqodjUKEaD1rt2sNoZxWe14+Tpdj+fk+EhkzhRFsafjoS3aXGXN+Spig+aLQq1WY2Njg+FwiFLKNfu6SO/hPKgHAkHlJw+Vhnc0aaBj7fZ2liA7kUKshLuNEIJ2WJ0XYyopzkn09lUhY9WEKBCgJs4zq9wqIRS7DbUMkCR1dJ6hjSYIJHEtQVzC71GubTdrK3mr5Dzn6RR1HtTrdeI4dvfIoijQwPTXX4qqOP2CNPP2eFYOH+zPmf3FpNYNYV0yMZ7Dsf0AbE8Fn9W/GSEE9VBQn5yaUWmt9arvR3IBZCeLRghBfMrLRSQrPXq/MK4xUSsSK6vXh0pylOtKrqINpAaCMEFMgls0KG0IzmgFedEIgGLq33rSpXmWs6BN9flLcTFcbIIgcEXFUNnQZrp6H1JU8yOUu8W9Ho/nZPhoZM7YYtksy1zzlyRJluru4Dk/bCbfZ/RnQwDG38DnSiwFVxKxdFeuWZFC0I2grqEdGB4dgxJVoBrJ6s+orHoLXCaakWA7r2pJrEFUZwab2lwZeuVkwSygGZoL0QV7mnoAWsC4BEMV6M9iN+vxeA7GB/tzxhbLpumug8Syi2U9nlUlklUGM1MT2YnZDfCWQaZ2rQLjQJxr7cC8uQiBvkUIQRJAKCXNSBMIEAg3J9SyB7gE4kmTuExV8pVYHl7salHasDNxY0pkde76BYTSXJhO2GDlbIJGUC1ygguyQ+HxrCo+2F8AYRiulCOCx7OqhBPZyaCo7PkSCa1wORm8canpTXQTBpDKsBGfvzPPZUZSSZHKSXGmMYYSaFzSXEkkT7bgLM2k6H2yKAgFlMpQqIsV7EMV8PtiXI9nPvhg3+PxLJVICjaT5d7VjTEMy70Fsbk2DAtDvMSxldpMuvxWRbZL6j12bggh6ERVkXY6cWxKROXP7jkeMfnPfgmXz4p7PJcbH+x7PJ5Lj578mY4pJcuVjxS68twvATGxIelE63/RjibyFTXlL++D1dkIZbU4qrowT7ooy6pQe9kUReGcyqIoulAyM4/norPu9w2Px+M5Fsmu9WcSsBLykWFp9kgySm0YlIbuCgRuiyYQ4tK6MZ0FKQSdSdfaUoMMoBmIpfdpGI1GjEajqncClZGF7fbr8XgWjw/2PZ4ToLUmyzJXfB3Hsb9hrQFCCNpT8hExaWa0TPmIMnutBgNrR7i0EXkuAoEQtFdI71WWJaPRiDAMkVJijCHLMuI49p3GPZ5zwgf7Hs+MaK3p9Xrkee5uWj5DtT5EUnBLXBU5wvLlI5GEkYJgor8uJh2G/UzzXCS01q7fDFQLa9td3uPxnA8+2Pd4ZiTPc/I8J0kShKicQtI0dc20PBcfeYaGVvOmGQpKbcg0QGVN2o4Ewqf2PYdgjEEphTGGIAhWIglhm0pqrV2SxBjjmw56POeI/7Z5PCfAZqXs323jNI9n3gSisiUtJtMrnDSaKv10W2vyPGc8HqO1JooiGo3GTEG71prhcEie5y6YbrfbSw+qwzCk0WjcpNn3CRKP5/zwwb7HMyM2Q2Vt7ZSqvFp8d+STYUzVJMg7rByPnDSbsthgybOeFEVBv98HqmSCDfrb7fax7jXj8dhp4YUQ5HnOYDCg2+0u3fmm0WgQRZF34/F4loQP9j0rh9aasizRWhMEAVEULXtIAMRxTL1edzdgIQTNZnNlxrfqVF72hvHEzzIJzNIaaHk8q0iWZRhjXNY7CALyPHeGAEdRFAVBELggOooiiqJw19GzYOVBUCU9TiMPiqLIXys9niXhg33PQsiyjNFohNaaOI5pNpsn2orOsszdtBqNBo1GY9FDnolms0mSJE5/uuwt8ovEqDQMyqrwtPo3gKGzQs4hHs+qYTXuxyGlpCgK9297jTprBt1ek9M0RQhBEAQrIQ/yeDyz47+tU7RaLcIwPPbCavWQs16EDzvG9P9Pe4xVHEee5/R6PXejsZnwo1xr7OtnWcZ4PCZJEqSUlGXJcDgkiqJjby7ndT6CIHCZsoN+77TjOO793X777cfOz1WZEweNZawMoai06ABIw7iEZqAPze6v8/fkoo1jnebnqo4jDEO01iilKgemothjWXnUOGq1GkVRuESJveZa6eFJxjHNeDx212QrD+r3+zfJg1Z5bno8lx3/DZnimc98JpubmzNZgm1ubqK1PnNxpt0aPS2rOI7RaIRSygXEUkrG4zFxHB97UbbFZdPvSSlFnucnHsd+rDzIbncf5ZG/jM9lc3PzyJ+/5jWvATh2fq7KnNg/FqXAGJx3pDKVZ3xZVoWnixzLqpyTizyOdZufqzgOKSW1Wo00TV3gW6/XZxqnlJJms+muoTZBMqvF5WHnI01TYPd9CiHIsow8zw+UB63i3PR4Ljs+2J/iwx/+MF/wBV/AbbfdduTvaa25fv06V65cObW1mdVATmssT8qqjsPKW2xgby/c048dNo44jp2PvXW6sYH5cQuF487HYDBgNBohpXQ2mt1ud88Na5mfy9WrV4/8+Tve8Q5e/vKXHzk/V2VOHDSWFppeCQj7c2iGEEeHj3OdvycXbRzrND9XeRxRFNFsNoG97l+zjCMMw1M1qjrqfERRtCfjPv1aF+Xa6fFcdnywP8VgMKAsy2MvVLYhyCwX4uM4yzFWdRxJkriiMqsjjeN4ppuAfe609rRer89U2HXU+SjL0nni25+laUqWZe7Guv9Y5/25HJeBe/TRR4+dn6syJw4aSyOUCGEYTRJ/7ajykp/lNdbxe3LRxrFO83PVx3GagtpFnY96ve5cgmzBb7PZPPT1VnFuejyXHR/se+ZOrVZDa814PEYpRZIkM3tFSynpdDpuK9pm9c+K3RKevoF4j/zzpQr4BY0lXHVKBDuFATSxhLp3AfJ4ZiKKImq1GqPRyDnqCCHo9/t0Op2VaNzl8XiOxgf7noXQaDTcdvJJbwZWtzpPbLGw3WZWSlGW5cq4/HgWR6ENIyJiBYGEtASFoR1y5qyuxzNvjKm6JpfaIIBaKHaL2pc4pnq97hIv1ojB7t56PJ7Vxgf7noWxSjcB201yZ2eHXq/npEXWz3+VxuqZL6kCAyRBFdyHxjAqoRFUXWn3U2jDsDCUQCSY9AI471F7LiPGGPqlYVhWdewaSLVhI2bpAf9+5iGBKrVBU73X0H/JPJ6F4YN9z6UhSRLCMHQFcFJK0jQlCIIDdfue9UADgl0bvypAMRxk7Fdqw3Zu0AYCAamBsjBs+F5AnnOgNDAuIZG7HabHypCWhuYS+1EkSUKaphRF4SyRkyQ5U7OuUanpl9VCXBhohYaa9B2iPZ5F4NOZnktDWZYopWg2m87dJwzDmW09PReTSIBGoMxEIqEMkayC+f0UGhSQBIJQCmJRPVb40g7POWAMGMGeehKb4T/ZcQz6DD0E9hNFEZ1OxwX3Sa3uinRPQ6EN/aLaWatJQSihX0LuY32PZyH4zL7n0nBQN0ljjJfwrDn1AGooSg2lqDr4dqKDC3S1MYipgMPuAng850EgquC+1IZQiipg52QSl1QZBmW1OxWKyvUqmoNEJo5jgiiiX1Q1BVkBDa1pzOioNY0y1bfKSpMCISipxuzxeOaPD/Y9lwZb+DsajfZ0aZx3MbBntRBCUENxJan+HojDC3PjQIAyFNoQiEpWEQoIJZiz9xjzeI4kkIJ2aOiXkKkq0G+EUJsxH5Frw05ukKKat4WGncKwOQfNvzGGfmFIVbVgNgb6CoQwNA4qfjkCMfmPMcZ1+NX2cY/HM3d8sO+5VDQaDdfy3Qb/Pti/HARCII/JcEZSsBFBvzSUE91+J6oWCN7J23Me1ENJJA2lNgRSEB6xON1PMVkg2Ex+ElSZfqXhDPJ6oJISZbqqJxBCVMG6NmSKE9vpxrJawKSqqqcxVP+O/Sarx7MQfLDvuVTYlvK+INdzGEkgiCXOJcRmHj2e8yDLMkajketa22w2T1QIO70sMMbMPV1upl7jtN8KIQSdCGJpUKb6ntVD4RVzHs+C8MG+x+Px7EMIwRkToR7PicnznH6/jxACKSVZlmGMod1uz1RbFAcCoQy5NkiqYvN4IkM7KxKoSxgpCEWVjdcG6qd0CZKTJnvTaL+o9ngWgg/2PZ7/v717jZGrrP8A/n2ec5nZuezu2NZCaQIUKFBToBcE24L+rYgxbF8gaEMphYJRicobbFLBBEh4ISFBfEE0glwisUqkICQKtgqEUsK10nApvYFNS6+wl7me2/N/cWZO976zu3M5c+b7SRrozOyc30x/O/M7z3me30MjKHVyPi0RNUalM5hh+L1epZST2rzKkALdJpCzFVwA8WCfiOn/HgshkDL8Ofolzy/+U7o/rYeIwo3FPtWN5/kN49jtpnUopZCzPWRtQPMUEtrUum0QUXOYUsCM1ef3VQqBtCGQBuAqxWk3RC2CxT7VRbFYRC6XC+adplIp6DrTLezyjt8JRMD/M+AAQHM39CFqF6ZpolgswnEcCCHgui4Mw5jW5lW1ppTf2jNf7k5lCqDTAHeZJgoxDrlSzVmWhWw2CyklDMOA4zgYGBgIRvopnJRSKJTb6vntJv1OIAUXbbNA1fKUv2Opqzh/mBrONE2k0+lgUXjl72G6Opp3FHKOv1mdKQDLA/rt2m3gRUS1x6FWqrnKvNPKaJRpmrAsC47jwDTNZoZGEeQpv02mACbVpnC4vONhwEa5/7c/F7nLRE3mOzeb6/lzuCU4whN2sVgs+JwM4/Q5yytv/lWOzZQKlpr8Lr9E1Dgs9qnuKiM+YfziopOEEIhr/jb2UgFCKdhKIK2H99/O8RT6bAXH86cPx7XKlIJJ7ujpKWQdv2uJVh5VLXlAwQn/FCalFGzlvxcSfkeWwa8/73jIOgg2LUpIjsCGXVh/3yrUsP8Pd7RExGKfas40TRQKBdi2DSklbNv2t1oP0bxTGl1SF/CUQt4GXM/vtpGc5O6YjaKUQn+50I9pfoFedAFNKKQnWaC78EfztfLEYyEEpFCh30jLfw88fFECiuUKLK0rzIpLmFLA9vyTN034Czdd5Z/UOCzPaIoSukCv5bf3FABcBSR1/yQ57L8vRO2KxT7VnGma6OrqChbodnR0oKOjI1TzTml0QgikDYk4POi6CPW/mQfAVv4aA8CPXRcK1hTmE2gAhPA7jFRG9j0V/g/Ikgf02/7uvgnNH2XNOYBe8jAzLuGWG6bo5ZMYTQgACh6LfZqimOa39yw4fq/9hIYR/fKJKFzC/l1GLco0Tc7Pb2FiGnPfG0XAn3/uqZOdQDwAxhSeS5MCKd0fBXeECubsd4S8iHE8/8qGHDSHunLC41Y2TxUn90xQbJdINRDTBGLa0N8NLtAlCi8W+0TUkqQQSOoK/Tbguv4ooxSY8hz7hC6hSxUUyaZs3uJcy/OvLEj4Vy7GOvHShICAHzPgL1ZW5ZMfUf7ZuASKLiCF/5ymBFwupyQiahss9omoZXVoApoASuX5w3FNwJhGw28zBM3Cc7a/oLYyTprQMeYi6ZgGJA3gcwvI2v57YGr+HOpKZ6JOAzDK6w90+MV+qYGvh6amskjc9RSkFIg18eSTiFobi30iallCCMQ0jJhS0Kqsclcgo1zYKaWQd/wCPT7K+nYpBGbEJOKaQt5REAJISCBhyODkQAox5GpHGPe7KJVKQcvewa0n21Vl46qci/JZn4Ipge4atIJVSqFYLKJUKvkduOJxGMZUJr8RUatgsU9EFBJeeUp9paAT5Wk63jjToaUQSBsC6Rat1wqFArLZbHByUiqVkE6nEYvFmhxZ8zgKwUmelLVtBVsoFJDL5aBpmt/Nqb8fqVSqRpETURiFt9UGEVGbqcy1r+zeq9TJtQhRpJRCoVCApmnBon4pJfL5fLNDa4hSqYRCoYC+vj4UCoVgkWtlrevQk77pb1zleR6KxSJ0XYeu6zAMA1JKFAqFaT4zEYUZi30iopAwBNChA5YCSq4/mhvX/M5AUVQpbge3eK10DYp6d5dSqYSBgQF4ngfP85DNZoOiWwoAwu+2BJw86dNrcNZX6cxUEXRpIqLIiuhXCLULx3FgWRYch9u5UOsTQiCtC2QMf2pOtynQZYjQt0GdKikldF2HbdtBge84DgzDiOxrrqhc0dA0LRhpLxaL8DwPuvR3rnYBFF2/lWpC8zsrTYeUEoZhwLbt4CTDdd22njJF1A44Z7+GPM8L9SZEUeJ5HvL5PIrFYjBSlUwmmx0W0bRVFh23i2QyCaXUkAW67fC7PNoI++DF0wldwqy0ghX+VZ9anABV3lvLsiCEQEdHB+LxOPr7+6f93EQUTiz2a8DzPORyueDDMx6PIx6Ps/CvI8uykM/nEYvFIISA67rBJXEiah2apqGzsxOu6wZ/D8uovmVZsCwLUkqYpgldr91XpmmayGazwRUN27aDz7MKXYqaf0lrmoZ0Og3P8yCEv0s2PzeJoo3Ffg3kcjkUCoWgfVkul4OUEvF4vMmRNUaxWAwWmXV0dASL7OrJcRxIebK9oKZpKJVK/NIiakFCiJoW0rUwvEtQsVhEZ2fnuHFW2lrath18B4z1+I6ODriui76+PliWhXg8jmQy2ZATHSEENK2NLh8RtTkOPU+T4zgoFouIxWLB/EspJYrFYrNDa4hisYhsNgvHceA4Dvr7+xvS2WH4JW+lFK+kEFFNVKYJ6roedAmq3DYWpRSy2SwGBgZg2zaKxSL6+/vHXE8kpUQymUQikUAmk0E6nWYBTkR1weqoDsJyCboR8vl8sMjONE0YhhEsMqunWCwWLGizLAulUolTp4ioJipTawZ/nkgpx+1a47ouisVi8DlYOUGorEUYTWUaTZimLhFR9ITruuk0bd26FQ8++OCo9z3++OPIZDI1P6au64jFYsGHfKWbRGdnZ82PFTae5zWtjZuu6+js7ESpVIJSKuhmkc1m635sIoq2SgFe6QyklILruuPu7DtaG1EgnDsWE1F7iVSxX3Hddddh9uzZQ26rZ3eHVCoFIUQwgpNMJkO13fvgL5tajnxLKRGLxZDL5YI2brZto6OjoyEj7JUCv4JfqkRUC0IIpFIpZLNZWJYFpRRisRgSicSYP1OZxmnbNgzDCAZDwrYWgYjaTyQ/hZYsWYJzzjmnYceTUgbdDSp/DwvLspDNZuF5HjRNQyqVChYSj6dSvEspx309iUQCruuit7cXtm0Hi8yIiFqZYRjo6uoKugTpuj7uVJvK90DlBAHwF+Gyhz0RNVski30AQVvGRi54ClORDwC2baOvrw+apgUbqfT396Orq2vc0aZSqTTiBGGsKxWVL7iBgQF0d3dD1/XQvQ9ERFMx0WDHcJUThEpby7AvuB0+DZOIoimSxf6dd96JQqEAXdexePFirF+/HnPmzGl2WA1X6QJRKexN00SpVILrumMW+5UTAk3TYJomXNdFf39/UMiPpbJIl4U+EbWzyZ4gNEPJVcg6CkoBulRIavVfZ0VEzROpYj8Wi2HlypVYuHAhEokE9uzZg2effRYbNmzAAw88gFmzZjU7xIYabbHsRCM5rusOmWeq6zosy4LjOJx7SkTU4ixPoddWkACkAIoe4HoAy32i6Apt9eZ53pj9iYczDANCCKxYsQIrVqwIbr/00kuxePFibNy4EU899RRuvfXWIT/32Wef4bPPPgMAHDt2DLlcLjj2RLFV87jxKKWCefFTvYw6URyVTadKpRKklMGI/uAdE4fHMfj2CsdxgsdNJY5qNOL9aKU4RlNZazHe84blPQhTLIyj9nGMppXys53jKNoKygP08gwjE0DBUXAhIvF+ENFIoS3233//fdxxxx1VPfahhx7C3LlzR71vwYIFmD9/Pnbs2DHivt///ve4++67g7+vXr0aAHD48OGqjnv06NGqHldv48XhOA4sywrm31fahI6lsnHM4GJfShnsWDvVOBopqnHcdNNNAKrLz7C8B0B4YmEcQzE/2zOOIjSUoMFAeWAHgA2JVIPjGE9Y4iCKitAW+3PnzsVtt91W1WMn6p8/c+ZMHDx4cMTtP/rRj7Bq1SoA/sj+li1bAACnnHLKuM/neR6OHj2KL3/5y1Oem1npxz9Rh4dmxOE4DvL5PDzPg67r4275Xs84JqvV45ioSHr00Udx0003jZufYXkPwhQL46hNHFHKz3aOw/IUei1/Co8UgO0BOhSs3tZ9P6odoCNqV6Et9jOZDFauXFmT5zpy5Ai6urpG3H7qqafi1FNPBQAcOnQI27dvB1B9V53pLMSq7M5YmWozHbWOo7I9fLPjmKooxDEa27aD563nsWv5HoQpFsZRuzhG04r52Y5xxCXQLU4u0O3QgIQGHG9wHONphUXORK0kUr9NfX19I2576623sGfPHixevLgJEREREYVLXBOYYQrMiAl0xyR0yfabRFEW2pH9qdiwYQPmzZuHs88+G8lkEnv37sWWLVswc+ZMXHPNNc0Oj4iIKBSEEGCJT9QeIlXsX3bZZXjzzTexY8cOlEolZDIZfPvb38bq1asnnNdPRESN1e6bOiml2PKSiOouUsX+9ddfj+uvv77ZYRAR0TgcTyFve3AAaFBIGQJGiKaSKKXglqtwTaDmJyRKKeQdhawNDMBE0lboNBVkG5/4EFH9RKrYJyKicPMA9PpreaFJwPKAPkshYwJaCAp+pRQGHIWCC0ABhgQ6DYw6r91TwIDtwVUCUgJJTVQ1/z3vKAw4gC4BCQ95F5C2QqfZ/NdPRNETqQW6REQUbi4kXAWYmoAmBGKagKMAKyTzWfKOQs4BDAGY0m9N2W+rUXcjH3CAnAM4Cig6QK+l4HgTv5CiB+jCv2ogAcSkf5unQvImEFGkcGSfiIgaRpX/DFbL8WylFCzLguu6EELANE1omlb1z1vlQrwypcaUCpbyR/G1QYHayi/Qk8bJaT5FV6HkqqpG99UY/09EVGss9omIqGE0eNDgb+6kC39UXAh/JL0W8vk88vk8hBBQSsEwDKTT6aoLfiGAwQPsHsonI2PEN3g+v0B1hXuHBvTb/oNdCFgukDLBOftEVBecxkNERA2jAeg2/VFypzxa3m1WN9d9Io7joFAowDAMmKaJWCwG27ZRKpWqfo6ELqAAlFwFy1OwPH/TKW1YIa4J/wqA5anygl6/s041C407NIFOw/9/BSClAymdhT4R1QdH9omIqKEMKfAlzS+qBWrX7UYpFezkWiGEgOd5VT+HKQUyJlBw/R1mTekX58NpQiCtA3kFlDxACiCtA7FRHjucEAIJXSAuPdiwkTIER/WJqG5Y7BMRUcPVY1MnKSWklHAcB7quQykFz/MmNWcf8At+s4oRelP6u9EqCAgxcvSfiCgMOI2HiIgiQdM0pFIpKKVQKpVgWRY6OjoQj8frdkwp/ClILPSJKKw4sk9ERJERi8Wg63rQjUfX9bbepZeIiMV+SNm2DcuyoJSCaZowTbPZIRERtQRN0yY9dYeIKKpY7IeQZVno6+sD4M9rLRaLSKfTiMViTY6MiIiIiFoJ5+yHUC6Xg5QSsVgMpmlCSolcLtfssIiIiIioxbDYDxnP8+B53pDWcVLK4HYiIiIiomqx2A8ZKSUMw4DjOMFttm1D1/UhJwBERERERBPhnP0QSiQScF032PVR13WkUqkmR0VERERErYbFfgjpuo6urq5gdJ+j+kREREQ0FSz2Q0pKyXabNCHbU8i7Cp7n7+YZk6oux1FKsVc5ERFRC2KxT9SiHE+h11LwFCAFUHIASwK1LPctV2HA8Y9hCIWU4e8WSkRERK2BxT5Riyq5fhEe0/ziW1cKRRdwUZti3HI9HLcAAcCQQMkTcG2FjAlIjvITERG1BE4EJ2pRwxux1nKajaeAzy2g3waKLpB1/KsHtgIcdoAlIiJqGSz2iVqUIQUUAFcpKKVgeQqaAGQNJvIUXf+PKQFTExAAco6Cp+qzJoCoFlT5d4GIiE5isU/UomISSOuAq4CS54+8dxq1+aV2FBDT/Ck8jqcghV/8awB0fmpQyCilkLM9nLAUTlj+/7PoJyLycc4+UYsSQiBpCMR1BVVepFur1bma8Av9tCGQdxRsDzA0oMsQLTlf34VAwVWQnoIhwUXGEZNzFLIOoJf/WQccAFBIGvx3JiJisU/U4jRRrsyBmk2ziWuA7fpXDeKagKcU0oZAfArD+o6nUHA9uJ5/VSCpCz/mBrE8hSwM6DYgpIIGoMsETBb8kaCUQsH1C/3gJM5TKHhAgi1jiYg4jYeIhnKVP0rqAXA9BUMoZGISSX3yRZMHoNcGio6/6DfvAn1W4+b+K6UwYAMCCnENiJfXOeRsTvGImhE1Pf+JiYgAsNgniiylFFzP/1Pt/GVPKfRZCiXXH4U3NQEbAlJMrduPAwm33B5UlwIxAVgeYDeoo4+Cf5IxeNGyJvwrFhO9Jx4Xe7YEIQTimp9XrlJwlYKj/KtTHNUnIuI0HqJIcpVCzgFKLgDhL+btNCbuj+8ov72mKf3pQZoQKLoKlqumNO1leKkshICAatigq4A/vWPw3gOOV158PMZ7YXsKA7aCW14HkTYATv0Ot5TuL1gpupW/Y0pXooiIoojFPlEEZR2gpPwiH/A76Uih0DmFqnU6JZMGFXT00YR/MiHEyYWU9SaEQMoAjsF/D4TwF+imxgjA9fwrGx5OXgHotRQyRmPipakRQiBtCKR0FfydiIh8LPaJIkYBsFy/e06l6NGFguX5U1fGK4T0ciFuKUAqf4dewJ/OMxU6FDoNIOf6z6kJoEsXDe2GY0iBFDc45FkAABGdSURBVGx0G4CUAnr5qsVobIXyFBD/fk0AJU/BVgDr/fBjkU9ENBKLfaIIEgJQCsGwvIK/QGeiYkgKgS5DoM8DXA+Q0m+3OZ3ONXFNIK6LoD1oMwoyCX/dgJzK6+C0fSIiamEs9okiRgBIaEDWBbzy0LyngFSVU3h0KdBlAFLze+rXojiXg9qDhpnfgx8ouQq69Of3S1Ges8+in4iIWhCLfaII6tAATVbmqZdH1yc5FadWhX4r0YR/opO1/Y4upvRPknThF/5ERESthsU+UQQJIdChSXTwN3xUSinkHQUH/hSfDu3kOgJDCmRiYsj6BrbgJCKiVsVSYJBUKgVd1yf8YldKBY+bahFQ+bnpFBGMI1px6Pr4v46nnHLKhPkZlvcgTLEMj0MphQFHIe/4Vz885U/b6TZH7uw7/PjMz7G1Un4yjmjFMVFuErU7/oYMsmjRImQyGTiOM+FjM5kMPM+D503v2r7rutP6ecYRnTgymcy49998880AMGF+huU9CFMsg+OwPSBrA6YAhOeP7JccIKuA5ASfiMzPsbVafjKO6MQxUW4StTsW+4O8++67WLhwIWbNmjXu4zzPw4kTJzBjxgxIObVNiJVScF0XmqZNeV4044hWHMeOHRv3/kceeQRXX331uPkZlvcgTLEMj8PzFDRPwRi0hsEVClIDdH30OJmf0cpPxhGtOCbKTaJ2x2J/kGw2C8dxJvygEkIEj5vuAsbpPAfjiFYcE42IHj58eML8DMt7EKZYhsfh99kHbM+fn+8pBSUETG3iYzA/x9ZK+ck4ohVHNVfjidrZ1E7hiYhalCZEsJNw0fU3zEppJ3cbJiIiihKO7BNR24lpAl8qL84VQEN39CUiImokFvtE1JY0ITDJrQeIiIhaDi9cExERERFFFEf2iShU3MqGVx6gCQUT/KAiIiKaKo7sE1FoeEqhz1LIuYCjgJwL9Nv+7URERDR5LPaJKDQsz/8TE35bzLgELOXfRkRERJPHYp+IQkUAQY9tIQQEAI7rExERTQ2LfSIKDU0AEIDj+eV95b86u+YQERFNCYt9IgoNQwp0GQIKQMlVcBWQ1vzbiYiIaPLY5IKIQiWuCRgSqKzJVW5z4yEiImplLPaJKHQ0IQDhF/xOs4MhIiJqYZzGQ0REREQUUSz2iYiIiIgiisU+EREREVFEsdgnIiIiIoooFvtERERERBHFYp+IiIiIKKJY7BMRERERRRSLfSIiIiKiiGKxT0REREQUUSz2iYiIiIgiisU+EREREVFE6c0OIGyOHz9e9WMPHz485ePouo5MJoNjx47BcZwpPw/jiE4c1eRetfkZlvcgTLEwjunFEcX8ZBzRiGMy39tE7YjFflkikYBhGHj66acnfOzAwADefvttLFmyBOl0ugHRMY52icMwDCQSiRG3V5ufYXkPwhQL46hdHFHJT8YRvTjGyk0iAoRSSjU7iLDo7e1FPp+f8HE7d+7Ed77zHfzzn//EwoULGxAZ42iXOBKJBLq7u0e9r5r8DMt7EKZYGEft4ohKfjKO6MUxXm4StTuO7A/S3d1d1YdF5RLjrFmzMGfOnHqHxTgYB4Dq8jMs70GYYmEcjYmjlfKTcTAOonbCBbpERERERBGl3XXXXXc1O4hWlEql8I1vfKPp86IZB+MI07HDGgvjCE8cfA8YRyvEQRQlnLNPRERERBRRnMZDRERERBRRLPaJiIiIiCKKxT4RERERUUSx9eYkfP7553juuefw8ccfY8+ePSgUCrj33nvH7Af84Ycf4rHHHsPevXuRSCSwYsUKrF27Fh0dHTWPbevWrXjwwQdHve/xxx9HJpOp+TFt28aTTz6Jl156CdlsFmeccQbWrFmDRYsW1fxYY9m5cyfuuOOOUe+77777cN5559X8mIVCAZs3b8auXbuwe/duZLNZ3HbbbVi5cuWIxx44cAAPP/wwPvzwQ+i6jqVLl+Lmm29GV1dXzeNifp4UhtwEmJ8VYc5NoD3zsxm5CYQzP4mijsX+JBw8eBB/+9vfMGfOHJx++un46KOPxnzsvn378Ktf/Qpz587FzTffjBMnTmDz5s04dOgQ6tkA6brrrsPs2bOH3JZMJutyrN/85jd47bXXsGrVKpx66qn497//jXvuuQf33nsvFixYUJdjjqWnpwdnn332kNvq1ae5v78fmzZtwqxZs3DmmWdi586doz7u+PHj2LhxIxKJBNauXYtCoYBnnnkGn376Ke6//34YhlHTuJifJ4UpNwHmZyvkJtCe+dnI3ATCmZ9EkaeoarlcTvX39yullHr11VdVT0+Peu+990Z97F133aXWrVuncrlccNsLL7ygenp61DvvvFPz2LZs2aJ6enrUxx9/XPPnHs2uXbtUT0+Pevrpp4PbSqWS+uEPf6h+8YtfNCQGpZR67733VE9Pj3r11VcbdkzLstTnn3+ulFLq448/Vj09PWrLli0jHvfQQw+p733ve+ro0aPBbe+++67q6elR//jHP2oeF/PTF5bcVIr5WRHm3FSqPfOzGbmpVDjzkyjqOGd/EhKJRFW9f/P5PHbs2IGvf/3rSCQSwe3/93//h46ODrz66qv1DBP5fB6u69b1GNu2bYOUEldeeWVwm2mauOKKK/DRRx/h2LFjdT3+aBrxugHAMIyqLuu/9tpruPjiizFr1qzgtosuuginnXYatm3bVvO4mJ++MOYm0N752Sq5WYmh3fKzUbkJhDM/iaKO03jq4JNPPoHrujjnnHOG3G4YBs4880zs27evbse+8847USgUoOs6Fi9ejPXr19flkuy+fftw2mmnDflCBoD58+cDAPbv3z/kQ7refvvb36JQKEBKia985Su48cYbR7z/jXTixAn09fWNuDwOAOeccw7efvvtJkTli3p+hi03AeZntZqZm0B75mfYchMIb34StSoW+3XwxRdfAMCooxeZTAYffPBBzY8Zi8WwcuVKLFy4EIlEAnv27MGzzz6LDRs24IEHHqj5l8cXX3wx5usD/AV5jaDrOpYtW4YlS5ags7MTBw4cwObNm7Fx40b8+te/xllnndWQOIarvP4vfelLI+7LZDIYGBiAbdtNmXca9fwMS24CzM/JakZuAu2Zn2HNTSC8+UnUqtq22Pc8D47jVPVYwzAghKj6uS3LCn5uONM0g/trGduKFSuwYsWK4PZLL70UixcvxsaNG/HUU0/h1ltvrTr+aliWNebrA4BSqVTT443l/PPPx/nnnx/8/ZJLLsGyZcvw85//HE888QTuvvvuhsQx3EQ5APjv0VhfVszPqQtLbgLRzM8w5+ZU42vH/AxrbgLT//wkoqHatth///33x2w7NtxDDz2EuXPnVv3clQ8j27ZH3GdZVnB/vWNbsGAB5s+fjx07dlT1XJNhmuaYrw/wR8qaZc6cObjkkkuwfft2uK4LTdMaHsNEOQCM/x4xP6cuzLkJtH5+hjk3axlfO+ZnGHITmP7nJxEN1bbF/ty5c3HbbbdV9djJ9liuPL5ySXqwL774YtRLk/WKbebMmTh48GBVzzUZmUxm1MvNldc80Wust5kzZ8JxHJRKpRFzYxuh8vrHeo/S6fS4o1LMz6kLe24CrZ2fYc7NWsfXjvnZ7NwEpv/5SURDtW2xn8lkRt3EoxZOP/10aJqG3bt3D7k0bNs29u/fj+XLlzcstiNHjtRlA5J58+Zh586dyOfzQ74Qdu3aBQA488wza37MyThy5AhM00Q8Hm/K8WfMmIGuri7s2bNnxH27d++e8P1hfk5d2HMTaO38DHNu1jq+dszPZucmMP3PTyIaiq036yCZTOLCCy/Eyy+/jHw+H9z+n//8B4VCoaovrMnq6+sbcdtbb72FPXv2YPHixTU/3rJly+B5Hl544YXgNtu2sXXrVsyfP79h3SRGe9379+/HG2+8gYsuughSNi/Fv/a1r+HNN98c0krvv//9Lw4ePFiXHKhW1PMzLLkJMD8nqxm5CbRnfoY5N4Fw5idRq2rbkf2p+stf/gIA+N///gfA/xKqdIj4wQ9+EDxu7dq12LBhA375y1/iyiuvxIkTJ/DMM89g0aJFWLJkSc3j2rBhA+bNm4ezzz4byWQSe/fuxZYtWzBz5kxcc801NT/eueeei+XLl+OJJ55Ab29vsAvk0aNH8bOf/azmxxvLfffdh1gshvPOOw9dXV04cOAAXnjhBcRiMaxbt65ux33++eeRy+WCy8xvvPEGjh8/DgC46qqrkEwmce2112Lbtm244447sGrVqmCb+NNPPx3f+ta36hIX8zM8uQkwPwcLa24C7ZmfzcpNIJz5SRRlQimlmh1EK1m1atWY9/39738f8vcPPvgAjz32GPbt24eOjg4sX74cN9xwQ13mQf7pT3/Cm2++iaNHj6JUKiGTyWDp0qVYvXr1pOfNVsuyLDz55JN46aWXkM1mccYZZ2DNmjV1uZIwlueeew4vv/wyPvvsM+TzeXR1deGCCy7A6tWr67rl+y233IKjR4+Oet8f/vAHzJ49G4Bf2DzyyCP44IMPoOs6li5divXr19ft34T56QtDbgLMz8HCmptAe+Zns3ITCGd+EkUZi30iIiIioojinH0iIiIioohisU9EREREFFEs9omIiIiIIorFPhERERFRRLHYJyIiIiKKKBb7REREREQRxWKfiIiIiCiiWOwTEREREUUUi30iIiIioohisU9EDSeEGPJHSonu7m5cdtllePjhhzHext6vv/46brnlFsyfPx/pdBrxeBxnnHEGvv/972Pz5s3wPK+qGFzXxV//+lfcfvvtuPzyy5FMJiGEwI033lijV0lERNR8Qo33rUpEVAdCCADAunXrAPiF9969e/H6669DKYXVq1fjz3/+85CfsW0bP/nJT/DII48AAM4991ycf/75ME0T+/fvx9tvvw3P8/DNb34TW7dunTCG3t5eZDKZEbevW7cOjz322DRfIRERUTjozQ6AiNrX8KL6X//6F7773e9i06ZNWLNmDa666qrgvhtuuAGbNm3C/Pnz8eijj2LZsmVDfvbQoUO455578OKLL1Z1bMMwsHbtWixduhQXX3wxdu3ahZtuumnar4mIiChMWOwTUWhcccUVWLt2LR599FE888wzQbH/1FNPYdOmTZg9ezZeeeUVzJ49e8TPzpkzB7/73e+wbdu2qo6VTCbxxBNPBH//9NNPa/MiiIiIQoRz9okoVBYtWgQAOHDgQHDb/fffDwC46667Ri30B1u+fHn9giMiImoxLPaJKFQGBgYAALFYDABw/PhxvPHGGxBCYPXq1c0MjYiIqOWw2Cei0FBK4fnnnwcAXHDBBQCAHTt2AADmzZuH7u7upsVGRETUiljsE1HTua6L3bt3Y/369di+fTtisViwWPbEiRMAgFmzZjUzRCIiopbEBbpE1DSVFpyDpdNpPP744zjrrLOaEBEREVG0sNgnoqap9NmXUqKzsxMLFy7E1VdfPaT//YwZMwAAx44da0qMRERErYzFPhE1TTWbV1144YUAgH379qG3t5fz9omIiCaBc/aJKNRmzZqFr371q1BKYdOmTc0Oh4iIqKWw2Cei0Lv99tsB+H32jx49Ou5jX3vttUaERERE1BJY7BNR6F177bVYvXo1jhw5gssvvxzbt28f8ZjDhw/jpz/9Ka6//vomREhERBROQimlmh0EEbWXSheeyXz82LaNH//4x/jjH/8IADjvvPOwYMECGIaBTz75BG+99RZc18UVV1yBF198sarnvPXWW/HOO+8A8Ft87tmzBzNnzhzSCej111+vOkYiIqKwYbFPRA03lWK/Yvv27Xj44Yfxyiuv4NChQ3BdF6eccgouueQSrFmzBj09PaO29BzNN77xDbz88svjPoYfkURE1MpY7BMRERERRRTn7BMRERERRRSLfSIiIiKiiGKxT0REREQUUSz2iYiIiIgiisU+EREREVFEsdgnIiIiIoooFvtERERERBHFYp+IiIiIKKJY7BMRERERRRSLfSIiIiKiiGKxT0REREQUUSz2iYiIiIgi6v8BmDBostN9/xgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_B = ggplot(all_data_df[all_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#b3e5fc']) \\\n", - " + geom_point(data=all_data_df[all_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_B)\n", - "ggsave(plot=panel_B, filename=pca_uncorrected_file, dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "Plotting PCA of 1 experiment vs 50 experiments...\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_corrected_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "# Transpose data to df: sample x gene\n", - "experiment_1 = experiment_1.T\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Match format of column names in before and after df\n", - " original_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added and corrected\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " # Transpose data to df: sample x gene\n", - " experiment_other = experiment_other.T\n", - " \n", - " # Simulated data with i batch effects that are corrected\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Match format of column names in before and after df\n", - " experiment_data_df.columns = experiment_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - " \n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space \n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1) \n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - " \n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_corrected_data_df = pd.concat([all_corrected_data_df, combined_data_PCAencoded_df])" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_corrected_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_corrected_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_corrected_data_df = all_corrected_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_corrected_data_df = all_corrected_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "all_corrected_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvsAAAHoCAYAAADXKyDmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xl4VNX5B/DvvbNmMskkgUDCIiCLiIiAsiMgGrGyioBsEgGXVkGtuBRRCy4VpS1u1NqiiIqiVKEVrSgiLkiLC1AXKlgBN5A1JJPJ7Of3B79znMnMZE9mcvP9PA9P652Ze987OffOe+895z2aEEKAiIiIiIgMR092AEREREREVD+Y7BMRERERGRSTfSIiIiIig2KyT0RERERkUEz2iYiIiIgMisk+EREREZFBMdknIiIiIjIoJvtERERERAbFZJ+IiIiIyKCY7FdC07Sof7quIysrC+eeey6WL1+OiiYg/te//oUrr7wSXbp0QUZGBux2O9q3b49JkyZh7dq1CIfDCT+7bds2tc277767PnYtocOHD2PGjBnIz8+HyWSCpml4+umnGzSGVPf0009D0zQsXLgw2aEkXWlpKZ599lnMnTsX/fr1g81m43dTQzVtV3XZHjdv3gxN03DFFVfUel30s/bt20PTtGSHQURNEJP9KiosLERhYSGmTZuGbt26YcuWLbjqqqswderUmPcGAgFceeWVGDBgAJ588knouo4LLrgAY8eORYsWLfDyyy9j/PjxKCgoSLi9Z599Vv3/VatW1cs+JTJ79mw8++yzaNGiBaZMmYLCwkJ06tSpQWOghlWbZHHPnj2YMWMGHnvsMWzbtg1+v7/uA2zirrjiCmiahs2bNyc7FCIAvHghakzMyQ6gsSh/Z/utt97CxRdfjNWrV2PatGkYNWqUem3GjBlYvXo1unTpghUrVmDgwIFRn/3xxx9x9913480334y7rUAggNWrVwMA8vLysHv3bvz73/9Gv3796nan4vD7/Xj99dfRvn17bN++HbrO68F4LrnkEvTv3x/NmzdPdihJl5GRgdmzZ6NPnz7o06cPXnvtNdx1113JDqtJYXtMfW+//TYCgUCywyCiJoiZXA0VFBTg8ssvBwCsW7dOLV+zZg1Wr16Nli1b4r333otJ9AGgVatW+POf/xx19z7SG2+8gSNHjmDQoEG49tprASDhe+vawYMHEQqF0K5dOyb6FXC5XOjatSuTKwAdO3bE8uXLcc0116B3796wWCzJDqnJYXtMfR07dkTXrl2THQYRNUHM5mqhV69eAIDvvvtOLfv9738PAFi4cCFatmxZ4ecHDRoUd/lzzz0HAJg+fTqmT58OAHjxxRdrfFfo9ddfR0FBAbKzs2G323HaaafhN7/5DYqKiqLe1759e7Rr1w4A8O6776oxA+3bt6/ytt544w2MHDkSubm5sNlsOPXUU3HTTTfh6NGjUe/bsWMHbDYbcnJy8P3338es56qrroKmabjmmmvUssi+xAcOHMAVV1yBli1bIi0tDb1798YzzzyTMK5jx45h/vz56NatG9LS0uByuTB8+HCsX78+5r379u2DpmkYNmwYiouLcdNNN6FDhw6wWCy48cYbASTu9hLZ3WLjxo0YMmQIMjIy0KJFC1x11VU4ceIEAODQoUO45ppr0Lp1a9jtdvTt27fCLhr//ve/MXHiROTn58NqtaJNmza48sor8e2338a8d+HChWqcxWeffYYxY8YgOzsb6enpGDp0KD788MOo9w8bNgwzZ84EACxatChqjEpDj9Xo0aMHNE3Df//737ivHz16FFarFS1btkQwGFTLZRtv3bo1bDYbWrVqhcGDB2PRokVV3nZkt4Rly5ahe/fuSEtLQ4cOHfDggw+q8TmffvopRo8ejZycHDidTowdOxb79++PWd+wYcOgaRr27dsX81pkG6uMpmlYuXIlAOC8886L+vvIdVelPf7zn//E4MGD4XQ6kZ2djfHjxyf8nitS1WO8KqpzXF522WXQNA233nprzGu7d++G0+mE0+nEnj171PLIv8Fzzz2Hs88+Gw6HAy1atEBhYSF++OGHOtnPyO95w4YNOO+885CVlQVN09R5Nl63l8h2UFpaiptuuglt27ZV57RXX31VvXfNmjXo168f0tPT0bJlS1x//fUoKyuLG7vH48H999+PXr16qe+lf//+qh2VJ8/zoVAIDzzwALp06QKbzYa2bdvitttug8/nU++V52HZ5iPbY+Rvhdvtxv3334+zzjoLLpcLTqcTHTt2xMSJE7Fhw4aE3zsR1QNBFQIgEn1N9913nwAgRo8eLYQQ4vDhwwKA0DRNHD9+vEbbKyoqEna7XVitVnH06FEhhBADBw4UAMQ//vGPaq/vd7/7nQAgzGazOP/888Vll10m2rRpIwCILl26iIMHD6r3zps3T1x66aUCgGjZsqUoLCwUhYWFYt68eVXa1m233SYACKvVKgYNGiQmTJggOnfuLACIjh07Rm1LCCGWLFkiAIjhw4eLcDislq9du1bF53a71fJ33nlHfd+nnHKKaNmypZg0aZIoKCgQZrNZABC//e1vY+L66quvRNu2bQUA0b59ezF27FgxfPhw4XA4BACxZMmSqPfv3btXABB9+/YVPXv2FNnZ2WLcuHFi/PjxYuHChUIIIVasWBF3e4WFhQKAuP7664XJZBKDBw8WEyZMUN/50KFDxeHDh8Wpp54q2rVrJy677DLRr18/AUDYbDbxn//8Jyb+ZcuWCV3Xha7rol+/fmLixImiR48eAoDIzc0VX375ZdT7f/vb3woA4rrrrhMOh0OceeaZ4rLLLhNnnXWWACDsdrv47LPP1Pvvv/9+MWjQIAFAnHXWWervXlhYKN5///2K/+hx3H///Qn/FpVZvHixACDuuOOOuK8//vjjAoCYO3euWvbYY48JAMJkMokhQ4aIKVOmiIKCAvWdV1W7du0EAHHjjTeKtLQ0cfHFF4tRo0aJjIwMAUDcdddd4oMPPhAOh0P07t1bTJo0SXTq1Em1b4/HE7W+oUOHCgBi7969MduSbWzo0KFRy+O1q8LCQtGxY0cBQIwYMSLq73P48OGEn5OfBSCuvfZaoWma6NOnj5g8ebLo1q2bACBcLpfYsWNH1GfkcVZYWBgTd3WP8YpU97g8duyYaNOmjdB1XWzatEkt9/v94pxzzhEAxF//+teoz8i/wXXXXSc0TRNDhgwRkydPFu3btxcARJs2bcR3331X6/2U3/NVV10V9T336dNHFBUVCSF+bl+RZDsYMGCA6Nevn2jRooWYMGGCGDZsmNB1XZhMJvHWW2+JP/7xj+ocfskll4hmzZoJAGLq1Kkxsf/000/q/JCXlycuvvhi8Ytf/EK4XC4BQMyZMyfmMwBEu3btxKRJk4TT6RSjRo0So0aNUp+ZNm2aeu+uXbtEYWGhSE9PV+2k/G9FMBhU57XmzZuLMWPGiEmTJomBAwcKh8MRt20RUf1hsl+JRMl+OBwWAwYMEADEggULhBBCvPXWW+rHoKaWL18uAIixY8eqZX/6058EADFx4sRqrWvbtm1C13XhdDrFv/71L7Xc6/WKiRMnCgDi0ksvjfpMoiSkMi+99JIAILp37y727NmjlofDYXHXXXcJAOKyyy6L+kw4HBbDhw+P+mH/8ccfRfPmzYXFYhEfffRR1PtlEgJAFBQURF0IbNu2TTidTqHruvjkk0/U8mAwKM4880wBQDz44IMiFAqp1/bs2SM6dOggTCZTVPIrvwP5Ixzvwq2y5ErXdbF+/Xq1vLi4WHTv3l0AEN26dRPTp08Xfr9fvX7HHXcIAGLGjBlR69u6daswmUyidevW4uOPP456TbaVfv36RS2XyT4A8fDDD0e9duONNwoA4vLLL6/S/tREbZL9b7/9VmialvAYGjx4sAAQ1Z5POeUUoWlaTHsJh8PinXfeqfK2ZTLWqlUr8fXXX6vlu3btEjabTTgcDtG+fXvx+OOPq9d8Pp9qw0899VTU+uoq2Rfi53aVaH8q+xwA8Ze//EUtD4fDKqHt2bNn1GcSJfs1OcYTqclxKYQQmzZtErquizZt2ohjx44JIYS4/fbbBQAxbty4mO3Iv4HZbBavvfaaWu73+8W0adNizrU13c/I73n16tVx97miZF/e9Ig8p8m/aadOnUR2dnZU+/7hhx9EixYtBADxv//9L2qdF198sQAgbrjhBuH1etXygwcPqouif/7zn1GfkTGcfvrp4sCBA2r5N998I7KysgSAqGMi0f5ImzZtEgBEnz59RFlZWdRrJ06ciDmXEVH9YrJfifLJfjAYFLt37xZXXHGFuhsrT4KrV68WAET//v1rvD3547RmzRq17MiRI8JisQi73a7uElXFjBkzBAAxf/78mNd++uknkZaWJnRdF99++61aXtNkX941Lv/jLMTJH8mePXsKk8mk7kRK3333ncjOzhZWq1V8+umn4sILLxQAxL333huzHpmE6Lou/vvf/8a8LpOX2bNnq2XyKUH5ixrplVdeUXfipcgf4PIJpFRZcjV9+vSYzzz88MMCgMjMzFSJilRUVCQ0TRPt2rWLWj527FgBQLz66qtx4xgzZowAID799FO1TCb7gwYNinn/kSNH1F28quxPTdQm2Rfi52Ng69atUcv37dsnNE0TnTp1ilqelpYmsrOzaxquIpOX5cuXx7x2ySWXCABi8ODBMa/9/e9/j5scp1KyP3DgwJjP+P1+9fQj8glOomS/psd4PDU5LqVbbrlFABCTJk0S7733ntB1XeTn58fdrvwbxLsDfuTIEeFwOISmaVHnwJrsp/yeR44cmXCfK0r2dV0XX331VdRroVBING/eXADxn3T9+te/FgDEihUr1LLt27erJDvyAkr69NNPBQAxZsyYqOXyfPfWW2/FfGbOnDkx20m0P9KLL74ogJNPyYgo+dhnv4pkn0Sz2YwuXbrg6aefRkZGBl544QV07NixTrbx7bff4r333kNWVhZGjx6tljdr1gwXX3wxvF4v1qxZU+X1vf/++wCAadOmxbzWokULXHjhhQiHw9iyZUut4j506BB27tyJzp07o3v37jGva5qGQYMGIRQK4ZNPPol6rU2bNnjiiSfg9/sxbNgwvPnmmxg8eDB+85vfJNxez549cdppp8UsnzJlCoCf9xuAqng0fvz4uOs699xzAZyc16C8/Px8nHPOOQnjqMiFF14Ys+zUU08FAJxzzjnIzs6Oes3lciEnJwcHDhxQy8LhMN5++204HA6MGDGi2vHHi6FZs2Yx20k1sr0+//zzUcuff/55CCFi2vPZZ5+N48ePY/bs2fjiiy9qvf2K/nYVvZbK3+nkyZNjllksFkyYMAFA9DETT22O8Xhqc1zee++96NmzJ1566SWMGjUKQgisWLGiwsHJ8fa/WbNmuPDCCyGEwAcffFAn+zlmzJiEMVSkffv26NKlS9QyXdfVGKqqtjv5vY4bNy5ugQXZhz/e92qxWHDeeefFLJdxVad99+zZE7quY8WKFfjrX/9ao/EcRFR3mOxXkayzP3PmTNxwww1Yvnw59u/fj0suuUS9p1mzZgBOTkpVE6tWrYIQAhMmTIDNZot6TQ7UlYN3q+LHH38EgIQDbOXyigapVYUcJLhnz56YScjkv2XLlgEAjhw5EvP5iRMn4pJLLkFxcTEcDgeeffZZmEymhNuTP4CJ9kfud2Rs06ZNixtXbm5uwrhOOeWUSvc9kdatW8csczqdCV+Tr0fWqD9y5Ajcbjc8Hg+sVmvc+G+55ZaE8bdp0ybudjIyMlK6Fr5s/y+++CJCoZBaLuebKJ/sL1u2DB06dMBTTz2F7t27Iy8vD5dddlnM56uqun87+VrkIMZUU51jJp7aHuOJ1leT49JqtaqBpsXFxfjlL3+Z8GJYqur+13Y/a3rOqOickOj1eO1Oxr9gwYKE8bvd7rix5+XlxT3vZmRkxGynMl26dMGDDz4Ij8eDq6++Gi1atMBZZ52Fm266Cf/5z3+qvB4iqhuss19FValKctZZZwEAvvnmGxQVFSErK6ta25DlNTdv3ozBgwdHvSaTs/feew/79+9P+ONVHXU1IYqcCTgvL69GP7oHDhxQdxY9Hg++/PLLalUAqkpsF110UYXVkeLdFbTb7TXebkVlS6ta0lTG7nQ6cemll1b43jPOOKPG20k12dnZuPjii7F27Vps3LgRI0aMwM6dO/HFF1+gT58+6Ny5c9T7e/TogS+//BJvvPEGXn/9dWzevBkvvfQSXnrpJQwYMACbN2+G1Wqt8vbr4m9XmYpmz05FtT3GE62vJsclcLI6mbRjxw6EQqEKbxBUVW33s6bnjMraVXXPGYMHD672E+e6Pl/MmzcPkyZNwrp16/DWW2/h/fffx9KlS/HQQw9h6dKluOGGG+p0e0SUGJP9OpSbm4u+ffti27ZtWL16NX75y19W+bOffPIJdu3aBQD4+uuv8fXXX8d9nxACq1atwu23317pOlu1aoW9e/di//796NatW8zr8i5QortKVSXvIDdv3rzapRqFEJg5cyaOHDmCKVOm4KWXXsKsWbPw2Wefqbt75cUrcxi5vFWrVjGxXXnllZUmzKmmefPmsNvt6nF4U5qtctq0aVi7di1WrVqFESNGqLv68glXeXa7HePGjcO4ceMAAF988QWmTp2KrVu3Yvny5Wq+ioYkLzDcbnfMa5HlehtCdY6ZeGpzjFe0vpoclx988AEeeOAB5OXloXv37ti4cSPuu+++Cidy279/P3r06BF3OfDz/tf1fjY0Gf+4ceMwb968JEcDtG3bFnPnzsXcuXMRDAaxevVqzJw5E7feeitmzJgR052RiOpH47z1l8JuvvlmACdrnR86dKjC90bWO5fdc26++WaIkwOnY/7JOuxV7coj+72+8MILMa8dPnwYGzZsUH1Qa6NNmzbo2rUrvvzyS+zevbtan3300UexYcMGDBo0CM8++ywWLFiAn376CbNnz074mR07dkTV0pbkrMORT0UKCgoAAGvXrq1WXKnAbDarWv9vv/12vW5LJqaRteuTadSoUXC5XFi3bh1KS0vxwgsvwGQy4bLLLqvS58844wxcd911AIDPP/+8PkNNKD8/HwDiHhNvvfVWtdZV27/PSy+9FLMsGAzi5ZdfBoCYJ4nl1eYYj6emx2VxcTEuv/xyhEIhrFixAs899xxyc3Nxzz334N///nfCz8Xb/2PHjuHNN9+MOgfW9X42tIY831W3TZrNZkyfPh19+vSB3++Pew4novrBZL+OTZw4EZMnT8ZPP/2EIUOGYOvWrTHvOXjwIObMmaPuUoZCIZWQy0Gm8Zx77rlo3bo1du3aVaVBcNdddx10XccjjzyCjz/+WC33+/2YO3cuysrKMH78eLRt27a6uxnjzjvvRDgcxqWXXoodO3bEvH706FH89a9/jVr25Zdf4rbbbkNGRobqp3/nnXeib9++ePXVV/HnP/857rbC4TDmzp0Lj8ejln3yySd47LHHoGkafvWrX6nll156Kbp164ZVq1bhnnvuiel3KoTAli1baj1Iub4sWLAAuq5j5syZcSfdcrvdeOqppxJOrlNV8s7mV199Vav11BWbzYYJEyagpKQEN998M77//ntccMEFMV0+PB4PHnnkkZgJ4sLhMN544w0AqJP2XRNDhw4FAPzhD3+IaqubNm3CQw89VK111fbv88EHH+Cpp56KWvbb3/4W3377LXr06KFuDFSkJsd4IjU9LufMmYN9+/Zhzpw5qgvQ8uXLEQwGMX36dJSWlsbd3osvvhg1kVMwGMSvf/1rlJaWYtSoUVF97etyPxtav379UFBQgC1btuC6665DcXFxzHt27typjo3aqKhNvvPOO9i4cWNMd7W9e/di165d0DQt4ZgiIqoHySgB1JggQZ39ivj9fjFr1iz12a5du4rx48erCZRMJpOqFS+EEK+//roATk4iVZmbbrpJ1VCuCjnxl9lsFhdccIGYPHmymsimc+fOMZPD1LT0phA/17vWdV307t1bTJw4UUyYMEH06tVLmEwm4XK51Ht9Pp/o2bOnACBWrlwZtZ7du3eL9PR04XA4okpsypKAo0aNEm3bthV5eXli0qRJYsSIEcJisSQsUbd7927RoUMHAUC0aNFCXHDBBWLq1KniwgsvVLWqly5dWq3voCYlEiuarEiIxKXsHn/8cdVmunfvHtWWbDabABA1F4AsvVm+VF5F2ykrK1PfxdChQ8XMmTPF7NmzxZYtWxJ+B5HGjRsn+vXrJ/r166faV+vWrdWyeDXQKyNrdct/zz77bMx7jh8/LgAIi8Ui+vfvLyZPnizGjx8fNVnTkSNHqrS9ikoJVvSdJmovHo9HnHbaaQKAOOWUU8Sll14q+vXrJ3RdFzfffHO1Sm9+/PHHQtM0YbfbxdixY8Xs2bPF7Nmz1b5V1h5/9atfCU3TRN++fcWUKVPEGWecocrARpZtFaLidlqdY7wy1T0uZf37bt26xUxgdtVVV8WU3RUidlKtoUOHismTJ6vttmrVSuzfv7/W+1lZaVQhKi69mehcU1H51kR/859++kn06tVLABBZWVli2LBhYurUqWLkyJHquCj/+4E45Xgr284f/vAHAZycgHHy5Mli9uzZ4rbbbhNCCLF06VIBnJz076KLLhLTpk0TF154oTpfRU6KR0T1j8l+JWqS7EsffvihmDVrlujUqZNwOBzCZrOpWQr//ve/q1ljp0yZUuW65B999JH6cQwEAlWKY/369eL8888XLpdLWK1W0alTJ3HrrbfG1HoXonbJvhBCvPvuu2LixImiVatWwmKxiGbNmokePXqIOXPmiHfffVe9T9bKTjRR2BNPPCEAiLPPPltNPhWZhPzwww9i+vTpIjc3V9hsNnHWWWclTG6FOFnH/t577xW9e/cWTqdT2O120b59ezFixAixbNmyqJrZqZbsC3GyfnZhYaFo166dsFqtIisrS5xxxhli1qxZYv369VEzENck2RfiZNsqKCgQLpdLaJpW4ToSrTPRv0SJREVCoZCqA+9wOERJSUnMewKBgFi2bJkYP3686Nixo3A4HCIrK0v06NFDLFq0SM1CXZ19iKcmyb4QQnz//fdiypQpIjs7W6SlpYlzzjlHrFmzptp19oUQYtWqVaJ3794iLS1Nfa8yCaxKe3z11VfFgAEDhMPhEC6XS4wdO1Z88cUXMduprJ1W9Riviqoel99//72aj2P79u0x63G73WqG21deeUUtj0yWV6xYIXr27Cnsdrto1qyZuPzyy+POnluT/UylZF+IkxfvjzzyiBg4cKA677dt21YMHTpULFmyJGa/a5LsBwIBcccdd4iOHTuqmy1yHXv27BF33HGHGDRokMjPzxdWq1W0bt1anH/++eLll1+OOl8RUf3ThBAi0V1/olSyefNmnHfeeSgsLGyUg+eIGtoVV1yBlStX4p133sGwYcOSHU6DGzZsGN59913s3bu3zip8ERE1NuyzT0RERERkUEz2iYiIiIgMisk+EREREZFBsc8+EREREZFB8c4+EREREZFBMdknIiIiIjIoJvtERERERAbFZJ+IiIiIyKCY7BMRERERGRSTfSIiIiIigzInO4BUUlRUBI/Hk+wwqAlzOBzIysqK+xrbJyUb2yelqoraJlFTx2T//xUVFeGxxx5DMBhMdijUhJnNZsyZMyfmR4vtk1IB2yelqkRtk4iY7CsejwfBYBC9evWC0+lMdjjUBLndbmzfvh0ejyfmB4vtk5KN7ZNSVUVtk4iY7MdwOp08WVDKYvukVMb2SUSUejhAl4iIiIjIoJjsExEREREZFLvxUK2tX78emzZtwr59+zBgwADccsstyQ6JCADw0EMP4b333oPZ/POpbtmyZcjNzU1iVNRUVdYeDx8+jEcffRS7du2Cy+XCjBkzMGTIkGSFS0QGwWSfai0nJweTJk3Cjh07UFJSkuxwiKKMHTsWhYWFyQ6DCEDF7fH3v/892rdvjwULFmD37t2499570a5dO7Rr166BoyQiI2E3Hqq1gQMHon///sjMzEx2KEREjdKPP/6I3bt34/LLL4fNZsOZZ56Jvn37YtOmTckOjYgaOd7ZJyJD27BhAzZs2IDmzZtj9OjRKCgoSHZI1IQlao/79+9Hbm5uVOnSDh064D//+U+yQiUig2CyT0SGNXr0aMyaNQvp6en44osv8MADDyA9PR0DBw5MdmjUBFXUHr1eb8wcBenp6SgrK0tStERkFOzGQ0SG1bFjR2RmZsJkMqFHjx4YOXIktmzZkuywqImqqD3a7XaUlpZGvd/j8SAtLS0ZoRKRgTDZJ6ImQ9M0CCGSHQYRgOj22K5dOxw+fBhut1u9/s0333BwLhHVGpN9qrVQKAS/349wOIxwOAy/349gMJjssIjwwQcfwOPxIBwO48svv8Rrr72G/v37JzssaqIqao+tWrVCp06d8Nxzz8Hn8+Hzzz/Htm3bMHz48CRHTUSNXaPos19WVoa1a9fiq6++wp49e+B2u3HDDTfg/PPPj3nvd999h+XLl2PXrl0wm80455xzMHv2bLhcriRE3jS8+OKLWL16tfrvLVu2YPjw4bjxxhuTGBXRyTkgli1bhnA4jObNm2P69OmsW05JU1l7vOWWW/DII49g2rRpyMrKwrXXXss7+0RUa40i2S8uLsbq1auRm5uLDh064LPPPov7viNHjmD+/PlwOBy4/PLLUVZWhnXr1mH//v34/e9/D4vF0sCRNw1Tp07F1KlTkx0GUYzFixcnOwQipbL2mJubi3vuuaeBoiGipqJRJPs5OTlYuXIlsrOzsWfPHsybNy/u+9asWQOv14ulS5eqGQm7dOmCu+66C2+//TYuuuiihgybiIiIiCipGkWffYvFguzs7Erf9+GHH6JPnz4q0QeAnj17onXr1qzAQURERERNTqNI9qvi6NGjOHHiBDp16hTzWufOnfHNN98kISoiIiIiouRpFN14quLYsWMATnb5KS87OxslJSUIBAKV9tuPLHtG1JCq0vbYPilZ2D4pVbHdEVXMMMm+3+8HgLjJvNVqBQD4fL6o1w8cOIADBw4AAA4fPgwA2L59e32HSlSheGVLg8H4Z1pWAAAgAElEQVQgNE1j+6SkY/ukVMWSz0TxGSbZlwl9IBCIeU1eCNhstqjlTzzxBBYtWqT+e/r06bjlllvqMUqiir3yyiswm2MPS7PZjClTpsDr9SYhKqKT2D4pVSVqm0RkoGRfdt+R3XkiHT9+HBkZGTF3/a+55hqMGTMGwMk7+xs3bkTz5s2Rl5cX9b5wOIxDhw6hRYsW0PWaD3MQQiAYDMJsNkPTtBqvJ9XiScWY6iqehozp4MGDFX5+zZo1mDlzZlT7bIz72VjjScWYGjKeZLbPVPveUzGmpnw+r6xtEjV1hkn2mzVrBpfLha+//jrmtT179qBDhw4xy/Pz85Gfnw8A+PHHH7F161YASHhy03W91ic+uY7anoxTMZ5UjKm28aRSTPKpVbzPGmk/UzWeVIwpleKpz/aZSvuZqjHxfE5EiRjqqBkwYAA++ugj1f8eAHbu3IkffvgBgwYNSmJkREREREQNr9Hc2V+/fj1KS0tVN51t27bhyJEjAIBRo0YhPT0dEydOxJYtW7BgwQKMGTMGZWVlWLt2Ldq1a4cLLrggmeETERERETW4RpPsr1u3DocOHVL/vXXrVtXtZtiwYUhPT0dubi7uv/9+PPnkk1i5ciXMZjPOOecczJo1q9KSm0RERERERtNokv3ly5dX6X2nnHJKVIUdIiIiIqKmylB99omIiIiI6GdM9omIiIiIDIrJPhERERGRQTHZJyIiIiIyKCb7REREREQGxWSfiIiIiMigGk3pTWocwuEwAHBKcyKiKhBCIBAIoLi4GLquw263w2q1JjssIjIQZmRUJ4LBIDweD44dO4bjx4/D6/UmOyQiopTn9Xrh9XoRDAbh9/tRXFwMv9+f7LCIyECY7FOthcNhuN1uBINBWCwW6LoOt9vNHywiogqEw2GUlZXBZDLBYrHAarVC0zR4PJ5kh0ZEBsJkn2otFApFJfomkwkAmOwTEVVCCAFN09R/a5oGIUQSIyIio2GyT3VG9tcnIqLKaZoGi8WCYDAIIQSEEAiFQrBYLMkOjYgMhAN0qdbkI2h5hx84ebeKg8yIiBLTNA3p6ekwm83w+/1qgK7D4Uh2aERkIEz2qdZ0XYfT6cSxY8cghIDJZEJGRgaTfSKiSphMJtjtdmRlZcFkMkHX9ahuPUREtcVkn+qEyWRCWloacnJyWHaTiKgaNE2D2WzmuZOI6gXPLEREREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBmVOdgCpxOl0wmw2QwgRtVwIoZaXf6065Gdrs45UjCcVY6qreBoyJrO54sMxLy8vpn02xv1srPGkYkwNGU8y22eqfe+pGFNTPp9X1jaJmjoeIRF69eqF7OxsBIPBmNeys7MRDocRDodrvZ1QKFTrdaRaPEDqxVSX8QD1H1N2dnaFn509ezYAxLTPxrafjT0eIPViaoh4UqF9ptr3DqReTE3xfF5Z2yRq6pjsR9i+fTvOPPNM5ObmRi0Ph8M4evQomjVrBl2vec8nIQRCoRBMJhM0TavxelItnlSMqa7iaciYDh8+XOHnn3zySYwfPz6qfTbG/Wys8aRiTA0ZTzLbZ6p976kYU1M+n1fWNomaOib7EdxuN4LBYMxJSdM0tby2J1G5vtqsJ9XiScWY6jqehogp3hOlSAcPHoxpn41xPxt7PKkYU0PEkwrtM9W+91SMqSmezytrm0RNHQfoEhEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAyKyT4RERERkUEx2SciIiIiMigm+0REREREBsVkn4iIiIjIoJjsExEREREZFJN9IiIiIiKDYrJPRERERGRQTPaJiIiIiAzKnOwA6tJnn32GBQsWxH3twQcfRNeuXRs4IiIiIiKi5DFUsi+NHj0anTp1ilrWqlWrJEVDRERERJQchkz2u3XrhkGDBiU7DCIiIiKipDJsn32Px4NQKJTsMIiIiIiIksaQd/YfeeQRlJWVQdd1nHHGGbjiiivQuXPnZIdFRERERNSgDJXsm81mDBw4EGeffTYyMzPx3XffYe3atZg/fz4eeOABdOzYMdkhEhERERE1GEMl+6effjpOP/109d/9+vXDwIEDcf311+OZZ57BokWLot5/4MABHDhwAABw+PBhlJaWAgDC4XDU++R/l19eXUIIhMNhhMNhaJpW4/WkWjypGFNdxZNKMVkslpjPG3E/UzWeVIwpleKpz/aZSvuZqjHxfE5EiRgq2Y+nVatW6NevH7Zu3YpQKASTyaRee+KJJ6IuACZPngwAOHjwYNx1HTp0qH6DraZUiwdIvZhSLR6g5jHNnDkTQPz2aaT9rC+pFg+QejHVJp7G1D5TLR6AMVVFqsVD1FgYPtkHgObNmyMYDMLn88HhcKjl11xzDcaMGQPg5J39jRs3AgDy8vKiPh8Oh3Ho0CG0aNECul7zMc1CCASDQZjN5lrf5UileFIxprqKpyFjSnSRKa1YsQIzZ86Map+NcT8bazypGFNDxpPM9plq33sqxtSUz+eVtU2ipq5JJPs//fQTrFYr7HZ71PL8/Hzk5+cDAH788Uds3boVABKe3HRdr/WJT66jtifjVIwnFWOqbTypFFMgEFCfr6t1RkqV/UzVeFIxplSKpz7bZyrtZ6rGxPM5ESViqKPmxIkTMcv27t2Lbdu2oWfPnjxJEBEREVGTYqg7+w8++CBsNhu6du0Kl8uF7777Dhs2bIDNZkNhYWGywyMiIiIialCGSvb79++Pd999F3//+9/h8XjgcrkwYMAATJ48Ga1atUp2eEREREREDcpQyf7o0aMxevToZIdBRERERJQS2ImdiIiIiMigmOwTERERERkUk30iIiIiIoNisk9EREREZFBM9omIiIiIDIrJPhERERGRQTHZJyIiIiIyKCb7REREREQGxWSfiIiIiMigDDWDLhERUUMLh8MIBoMAALPZDF3nfTQiSh1M9knx+XwIBAIAALvdDrOZzYOIqCLBYBClpaXq3Gk2m5GRkcHzJxGlDJ6NCABQWloKj8cDTdMghIDP54PL5eIPFhFRBTweD4LBIGw2GwDA7/ejtLQULpcryZEREZ3ETC6JwuGw+v/JfOwbCoVQVlYGi8Wi4vD7/SgrK0NGRkbS4iIiKk+er0KhEEwmE9LS0mAymZISixACwWAwavtmsxmhUAjhcJjdeYgoJTDZTxKPx4OysjIIIWA2m+F0OpN2F10IEfPDpOt61MUIEVGyhcNhlJSUIBAIQNd1+P1+BINBZGZmJiWx1jRNnStlwh8KhaDrOjRNa/B4iIji4W2HJPD5fCgtLYWu67BYLAgEAigpKUlacq3rOsxms+pzKpN/duGhxiwcDkMIkewwqA4FAgEEAgHYbDZYLBZYrVa1LFnS09MBnDyv+/1+tayxJ/vyd4DHEFHjx2wuCfx+PzRNU3eCbDYb/H5/0h776roOp9OJkpIS+Hw+aJoGq9WKtLS0Bo+lLoXDYfj9fnUxw0fqTUMoFEJpaSmCwSA0TYPdbk92SISTA1lDoRA0Tavx8Vg+8UyFhNpiscDlcqlE32KxwGKxJDmqmhNCoKysDKWlpTh+/DisViucTmfSukoRUe0x2a+GcDis+orqul7jijXlf6BS4c6J1WqFy+VCOBxWFyKNOTkOBoPweDwoKipST1BYIcP4ZDePYDAIs9kc9d+UPHLQqnx6abVakZGRUe1zjMlkgqZpqr++vKBLdiJqNpsNc26JfPIsn/i63W5kZmamxMUVEVVf483mGlg4HIbb7YbH40EgEIDH46lxEmG1WgGcfCQdCoXg8/lgtVqTnlybzWZYrdaogbqNlUws0tLSYLfbVXk8MrZQKIRAIKDasNlsVskhJYcQAm63G5qmwWazwWq1wu/3w+PxVHtdFosFTqdTVQwDwIv4Oiafhsp/FosFfr+fxxBRI8YzZBXJLiE2mw2apsFiscDr9ao7iNVhtVqRmZkJj8eDcDgMh8MBh8PR6BPsVCEnuIm822exWBAMBlkhg6iBhcNhhMNhdZMjclBrTdjtdlitVnUs83iuf5qm8a4+USPGZL+aIk94siZ9TVitVvXjR3VLJgCRyYTsesXEwNhMJpO6Eym78QDgnd8kkomi7HoDnLzbX5tjkcdy/bHb7fD5fAiFQuqf3W7n903UiPHorSJ5opOPMiP7tlPqiayQ4fP5EA6H1TIyLl3XkZGRAZvNBiEETCYTMjIyeJwmka7rSE9PRygUgt/vh8/nU/XxKfXI8RTyZlZaWpohqgsRNWW83VVFsmKNx+NBKBSCEAIOhyNl787LO5pN9W6MrCaUlpYGXdfVWAQyPpPJhMzMTAghoGka54tIAXa7HRaLRd0ssVgsKXkBFg6Ho7pnptod7YY6r1utVjgcDmRnZ6fU/hNRzTDZrwbZV1QmEanaNcDr9arxAPKknSqxyn7zAOq9HKbZbEZ6ejp/rJqo2tyJlOM+gJMXD6mYmDY2qV6SMhwOo7i4WE3Y5fP5EAgEalQ1qD5iKy0tVeU9bTYbx3kRUZWlRgbYiKRK0pyI3++H2+1WlUhkF5ZkzTAZyefzoaSkRI1zsNlscDqdSY+Lai8YDCIQCDTIZGxCCASDQdVNp64T8VAopGZpBaC6AslEVQih6sWX37bs4yxvBtRl1we5bl3XVQnKmggGg/B6vepvxXkITpKTc1mtVtWFRc7Qm+wnuKWlpfB6vaoNlpWVQdd1OByOpMZFRI1DameuVG2yHJ1MuOQMk8muQhMMBlFSUqKSM1k6z2QysS99igkGg2qAnuxbXVFC7ff7ceTIEXi9XgBQf9/yZEWrcDgMk8mkkqrqkHXz5R3O8ol4XfB4PCrB0zQNgUAApaWlcLlcCAaDKC4uVgNMZVcxTdPg8/ngdrvVkyu73V5nT5a8Xq8qJysnCqvJcRMKhVBcXKzW4/P5EAwGeQzi5/lOZJuUA4uTPQ+KPG4iSyKbTCb4fD4m+0RUJUz2qUHIH0yZNMrye6zdnFpCoZDqAqbrurqzmZ6eri4aLRZLVKJ+4sQJeL1eNVdEWVlZ1DqA6CRdJlB2ux1Op7NaCb/H44Hf749KxN1uN1wuV51dzAaDQei6ruIymUwIhULqgjUYDCItLQ1CCDX5kMViiaolL4SA1+uF2WyOGogquwBWh5wRWK5bTu4n/w7VIS/ibDabisfn86n/bsrKT9glz03J7sKVKhcdRNR4Mdk3GJvNpu7WyWQoFSbskj9WkclOZNJBqSEYDCIYDKquHSaTCV6vVyXpmqahrKwM6enpcDgcUU9oZFJks9ngdruj5qDw+/1RSbpMhuXAzaqSiZhsQ2azWT0tiNfGZZefUChU5adbJpNJPTkAEPW5UCik9kHuR0lJCSwWC3w+n7pDHlluUnYHkRdAJpOpWl1nZOzyWJEXIjW5UJZ39CVWWPmZxWJBenq6erIjizJEdkuLbEcNdU6VT3JKS0tVwh8KheB0Outtm4FAAD6fDx6PBzabLaXHWhBR5ZjsG4wsmxY5g6ysSAP8/EgY+PnuekMwm81wOBzweDyqQkp99heWVTWOHz+uuqLwwqJy8mJMCKESQ1mzXiay4XBYJQEmk0mNDZF3mePNaSC7tkR2kYhcHo9sq6FQSFVvMZlMqi+9fE+ixEsOapRPGk6cOAGXy1XpmAKHw6G6Msk4ZSlC+R3J/SwtLYXZbIYQAmVlZdA0TX1P8n0nTpxAUVGReipit9vV7NlVIS8cIi86avKEADiZ0JaVlamLpkAgAJPJlPSbAakiLS0tasKuyLv65Z9YNWThA/l0SLZJOTN4ffD7/SguLlYXqD6fDxkZGUkft0BENcdk34BsNpt63B/5Ix7ZDUGSs/k2hPT0dJjNZjW7rdlsrpcfy/KVK+SAS03T+INVCV3X4fV6UVxcDODnJzKRF0qRCScAuFwueL1elezK90cmSvL/yzaZaIArcPLvJbvnyGRUltOUibIcmyKT63jJqtfrVd2LLBaLuguflpamjgG73R7TBs1mMzIzM9XTDLPZrD4vn1oAJ5M/IYRq17Ldyf2yWCyqy43sgiO7A5lMpqjjsLK/idVqVYmeEAIWi6VGF69WqxXp6ekoKytTT16cTmfSu6qkkniDvuW4Dfl3DYVCcLvdMXf+64umaWqm9fomb8jINhYMBuHxeHjuJGrEmOwbWPkEyOv1IhAIqDtCsiqHw+FosMe08kKkPoXDYdW1RFZE8fv9KvGjxHeG/X4/ysrK1N1z2S9cdkfRNE11cZDtKy0tDXl5eXC73SoRlUmvJOc98Hq9aj0ySY4kB6KWlpYiEAioJzLBYBButxtZWVnIzMxU5WVld5bI2VkleaEQ2eVHXgRGDhLPzMyMqrRTVlam4izfL15ur7S0FMFgMOruruzWJOffMJvNKC4uhtlsVuUcAahkvyp/Ixmv7P5jsVhgNpths9mg63q1+3HLpFGOK4g32zTFku1f/t3kxZrRxhzJJ3qR7VO2j8qeJsnxPQBU+yei1MCjsQkpnxDJ7hdGHPhVfp+qMsAtGAyqRNdkMjXoRVBDkV1w5F1rmUzLJL60tBQWiwVOpxNCCAQCAfUEJrICTvmSqXa7PeoiUlalke+RyX1kklk+GZDbl3fGZbUYm82mEmbZtSiyK4+8S12+vKzs+iLbvJzB1eFwqGXy4kb+neXFhpwDQj5ByMjIUE8v5DgDt9sNn8+nqvEEAoGYcrIyIZfrikzQK0uGZLcRmeDL8Td1MfMs7+RXT2QXrnjjj4xCHnuRY1Yix6kk4vV61cW+/O/MzEy2M6IUwWS/CZHJvbzbLe8wGq2/ruz2EA6H1R3LyAGO8YTDYbjdblXiLhAI4MSJE8jKykrpHyzZr/3EiROqq4i861uevFMsk1vZrSWyyguAqERVJqfybnVlte0DgQCKi4tRWlqK48ePw+l0quRUdg2oaF/k30l29YmsaS8Hpsp66OUryvj9/qh+zLK7jhywHm+wevm7436/P6qvttVqVXfW5dgF+bn09HSV8MskqfwETGlpaTh69KiKTwiBzMxMZGRkVNqNx+fzRc00W9lg5FAopAZVyvE6kRc2VHNyQjDZPmQ7NdrNAOBkd0vZlU6OxamoNKu8gRB5XpD9/TMyMhoqbCKqAJP9JiQtLU2dwCOTOKMlAzIRixyAKJPVRGQyKO9yyzrWqVzLWpazlOMw5EWOTCbLDyiV3ZvkPsrX5LLIu+0yEQ0EAnA6nbDb7ZW2Ezk2QggBs9kMk8kEt9utauonIhNU2TblIFbZv112gZGJdGRyLuOXA9LT09NVH36LxYLMzEyUlZWhtLQUmZmZalZUeeESCoWiLhDK370s/zQo8m6ufDIi4yo/oBP4+cJJ7pNMiKp6zMV7GhXvDqv87o8dO6bq6JvNZuTk5CA/P59dKmpJ13XVfUw+IY28QDYSOWbF7XYjMzOz0mpusutP5IUPu4YRpRb+AjQh8gcrGAzG9Ms0Gln9Jycnp8pl8so/lk/12tYyyRVCRHUl8Xg8auCp7Psu76pXtD/yO5OlNmV5v5ycHLXuyC425cm+8/KRv8lkQjgcrnAGUp/PpwYDA1BPVGRfeKfTCZfLpQbZAtH10GWXIamkpAShUAgul0sNrk1PT0dJSQnsdjusVitKSkrU3fjI7kdAbOlaWYZU13XY7XacOHECANRrFVV5EkLA7XbD6/Wq78JutyMcDlepr7fdbo/at2AwmHBeAnnBVL4e/7Fjx2CxWNC8efNazbpLiJmxVia5RiQv/KtStlle5AaDQXWOkecBIkoNTPabGHn3F/i5BrmRVTXRlz9ushuP/BFP5R8s2b2l/D/g525JstuWEEI9apfdUWSyErmPsqSfvPDRdR1ut1vNGmu32+FwOOJWwCn/JKH8/49HTvIk+wjruq6SBpnwl+8vLMcURCa3chC27G5TPomXzGYzXC5XVDWgyHXbbDb1NEBeRDkcDlXJSZa1jXwtkUAggLKyMnXMyYG9kU9WKiLjlzMTR3aJKk9eaMmLEzlewe/3o6ioSJWfTU9PZ8JPdUrTNDidTnURDZw8b6bqE1GipojJPhFOJoEZGRmq376cUEd290hFkU9m5MBVeZEiu7dEJsqyv73ValUDXJ1OZ8ydaYvFotZ14sQJnDhxQn02cpBu+R9zWSVGdnWQXXIqGyshxxDIu9+hUEg9ZUh0MSrv0suLGNl1SO63nAcgXmJb2QVgoopR8kmAHLBcWdIsL1oAqK5IssJQVbrVyG5CVRmQG3nRItuA3KZ8KiK/Z843QXXNYrHEXETXpFoUEdUPJvtE/0/+YDX0DJk1ZbPZ4HA4cPz4cXi9XpUcRpaSLE/2fZc/whUlrMFgUFXtkRcNgUBAVekpT97h03VddZupbEyIrE8vu0zJx/9V6R4hx2acOHFCXTTIPvjBYDDp1VJk+3E4HKprkHw6UNdty263q7urHo9HJVqR1YEiKwYR1bXqjEUhooaV2tkMUQOT3XlSPdEHfh6DkZmZiZYtWyIvLw8tWrRQCbbNZlN97+U4DZnoRXb5qYjsyiMvDiKr4ySKyeFwqO5AXq8XJSUlqltMeXa7HWlpaQiFQqpLkSw1WRWyIkrkzKIA1BMIOYahOjPW1pXIkpmyO5LL5aqXZFvXdWRlZaF9+/bIy8tDRkYGHA4HcnNzVXcgefEju/wQUc0tXLgQmqZhyJAhMa/deOONaN++fcMHVc6tt96K/Px86LqOG2+8Mdnh1Imnn34amqbhyJEjyQ4lSlFRERYuXIgvv/wy2aHExTv7TUBkCcrGcMeaqi5yEGr5GvNyMKccWJuZmVmtRFNOSibv8Ms+/jJBr0g4HI6ahVd27SnfZ9xsNiMrKytqIKrVaq1ynHKSKDnpT2T1m7KyMpSVlSEcDsPr9apSqhVdSITDYVXPv7IqQuXJUqGRlXlkBSA5W63sT18f3RsiZ1kNhULweDxqsLVM9H0+n5rRVz55YR/++OQEa7Ifus1mUwPhGzN5HMsLeaqd999/H5s3b8awYcOSHUqUjRs3YsmSJVi6dCn69euHVq1aJTukOjFy5Ehs3boVWVlZyQ4lSlFRERYtWoTu3bujW7duyQ4nBpN9gwsEAigpKVHJkN1ujzu4srGRs1fKZLex7099qE6XnXhk3Xj5WVm7PTMzs9I777K8pbyrLLvZyD7vkWQfdlk+VPbfr2pCLPv3R5bElImanHVWVgnxeDzIzMyMux55gSIvjoQQSE9Pr3SgodyWvLCQVYTkfiRjoKKc+MxsNqvjxOfzqRKJ8rvQdb1OJukyIlmyVXZNKS0tBYBGPfA0FArB7XarsTC84Kud9PR0nHHGGbjnnntSLtn/73//CwC4/vrrDfH7KJ/+5ubmIjc3N9nhNDqNvwVQQrIOu+weYbVaVVLSmHk8HhQVFaG4uFhN4GTUEnh1oapdduKxWCzIzs5GixYtkJ+fj5ycnCp1sYm8yw783H89Ud14Wb2jKvX8y5MXFPJOZSgUUmMWysdQUTvxer3qIkV2J/J4PJVWrPL7/SoplCUvZQnQZJLdmuQgbPm9yO9JDhimWHKgtxyMLf95vd5GO+hUloL1+/2qf718+kM1d+edd2LTpk348MMPK3zf/v37MWHCBLhcLqSnp2PEiBH47LPParTNY8eOYdasWWjevDnS0tIwcOBAvPfee+r1YcOGYe7cuQB+Hry/efPmhOvbtWsXxo4dq2IbOXIk/ve//6nX161bB03TsH79+qgYWrdujSlTpqhlmqZh8eLFuPXWW5Gbm4uMjAxcccUVKCkpidpeUVERrr32WuTn58Nms+Hss8/Gm2++GfWeYcOGYdSoUVi5ciVOO+002Gw27Ny5M6Ybz759+6BpGp599ln88pe/RFZWFlq0aIE//vGPAIDVq1fjtNNOQ2ZmJsaPH4+ioqIax/K3v/0Np512GpxOJ4YPH66+o3379qFDhw4AgIkTJ6rf3H379gEAFi9ejE6dOsFutyM3NxcXXHAB9u7dm/DvUR+Y7BtY+RrnskpCYy63GQwGVQlJ2V+7rKwsanp3qluR1TWqSibdkZVh6msAnyyXKX/UnE4nMjIyotq6LDNbWReeyAsjOVahsuROPgmI7EIU2XWuJmQ3HDneobYXs3K/ypdF5R3dxBprUp+I7KIma+fLrmY8d9bOqFGj0KtXLyxatCjhe0pKSjBs2DBs374df/7zn/Hcc8/h6NGjGDJkCL777rtqbS8UCuEXv/gFXn31VTzwwANYs2YNnE4nCgoK8MknnwAA/vSnP8LdTj0AACAASURBVKk++lu3bsXWrVvRu3fvuOv75ptvMHDgQBw7dgxPP/00nn/+eRw+fBjnn3++6sI2btw4zJgxA1deeaVKsq+99lq1rUiPPvoodu3ahZUrV2Lx4sV4+eWXcdVVV6nX/X4/CgoKsH79etx33334xz/+gW7dumHkyJExFz8ff/wxlixZgrvvvhuvv/462rZtm/B7WbBgAdLS0rBmzRpMnDgR8+bNw/z58/Hwww/jwQcfxLJly7Bp0ybceuutNYplx44dWLJkCRYvXoynn34aX3/9NaZPnw4AyM/PxyuvvAIA+N3vfqe+8/z8fDzzzDO48847MXv2bLzxxhtYvnw5evbsGTW/TENgNx6Dkz/wkeUXG/MPvEyiIi9gZG12Sh0WiwVpaWnqx0J2Caqvx8nxymVG1v4OBoOqz3UisutQ5EDWqoxxiTerb22EQiEUFxerbk3yiUPkrMjVJScFk12b5IVNvLkICGpiMo/Ho5bJSdQa8/nTaL8HqeKOO+7ApZdeim3btqFv374xr69YsQL79+/HF198gdNPPx0AMHToUJxyyil46KGH8Ic//KHK23rttdewbds2vPHGGxgxYgQAYMSIEejUqRN+97vf4eWXX0a3bt3Qrl07AED//v0rXN+iRYuQk5ODt956S50PBg4ciFNPPRVPPvmkSuofeeQRnHnmmbj66qsxceJEvPjii3jjjTeQnZ0dtT6bzYZ169apGztpaWm48sorsXDhQnTt2hWrVq3Cjh07sHPnTtW3fcSIEdizZw/uuecevPTSS2pdx44dw0cffVRhki8NGDAAS5cuBQAMHz4cL7/8Mh599FHs378fzZo1AwDs3LkTTz75JP7yl78AQLViKSoqwvbt21UXIrfbjZkzZ+L7779HmzZt0KtXLwBA586do77zbdu2oUePHpg/f75aNnbs2Er3p67xzr6Bmc1mlXAFAgF1B6cx99GNVx1G9pOm1KFpGtLT05GdnY2srCxkZWUlLAdaX2Qp1czMTNWdpaInC/KCwe/3q8m+KisdKj8nJ2STx5lcVhOBQEBdnFgsFlitVnXBUlPy75Genq4GHldUopWgqkrJC8DKJlFLdZEVuoLBoCqjywu+2rvkkkvQvXt33H333XFff//999G9e3eV6ANATk4OCgoK8MEHH1RrW++//z4yMzNVog+cPNeNHz++2usCgDfffBNjxoxR46aCwSCys7PRq1cvfPTRR+p9LpcLTz/9NNatW4eZM2fiV7/6VVQM0ujRo6POmRMmTIAQAtu2bVPbO/PMM9GlSxe1vWAwiIKCgqjtAUCPHj2qlOgDQEFBgfr/JpMJp556Knr27KkSfQDo0qULioqKVEGI6sTSs2fPqLEC8uLg+++/rzCu3r17Y/v27bjpppvwwQcfJK3rJDMkg3M4HOrOt67rKoForCwWC+x2Ozwej7ojJRMiSi2y+08yya49VRnELQc0yxmEZTWiqmwjIyMDXq9XXXjKqjs1Ub7LTryZiWtCVuuhn2cclm0jHtklrKYD3FORLM4g589IS0ur0blTVugCoAbAN2WapmHBggWYMmUKPv3005jXjx8/jpYtW8Ysb9myJT7//PNqbev48eNo0aJF3HUdO3asWusCgCNHjuChhx7CQw89FPNa+bYxePBgnHLKKdi/fz/mzJkTd33lY8vMzITdbseBAwfU9rZv3x63zZT/vYj3nSVSvjqP1WqF0+mMWQacHJ/ldDqrFUu89ct1VUSOWfjLX/6CpUuXwuVyobCwEIsXL27QG69M9hspWU5Q3um2WCxxkxlZ99xIHA4HLBYLgsGguktZ3e4hsjpM5I8eJxsiOVi4umQFnrogk085uZu8UE/2hZNRBINBNSu0vACqqHuOEZJ8KbI8a00FAgEUFxeri1JN05CRkdHkz5+TJk3CwoULcc8996guNFJOTg6++uqrmM/89NNPyMnJqdZ2cnJycOjQoTpZl1zfyJEjVXedSLIam3TXXXfh6NGj6Ny5M6677jps2rQp5vgoH1txcTG8Xi/y8/PV9nr06IEnn3yy0tjq+9irTiw1pes6brjhBtxwww344YcfsHr1avzmN79B8+bNceedd9bbdsurVrK/ceNGvPDCC/jxxx+Rl5eHcePGVdj36IEHHsCGDRuwadOmWgfaEGSpuvJ30IQQanlt7q5Fdj2pDTlJUnFxserSIk/g1Ul66yoeuY6G+o5kQhaZlFX3b+Z2u+H1elVpwuLi4oQ/WHX1PVUWU2V3kfPy8mLaZ11973Jdkf9bm/Wk0vHS2L4jWUpU9hfXdV3Nghuvndd3PJFxVaQ+22dd7afsvgJAVU5yu93VnlOhLmNKte+ospg8Ho+anRk4+Z2WlpaqSk/1EVNtz50NQdd1LFiwAIWFhTFlOAcPHoy//e1v+Oqrr3DaaacBOHmHfuPGjbj66qurtZ3BgwdjyZIlePPNN3HhhRcCOPk3WLt2LQYPHlztuC+44AJ8/vnn6NWrV4U3FD788EMsWbIEjz/+OHr37o0BAwbg4Ycfjpms69VXX8Uf//hHta6//e1v0DQNffr0Udt7/fXX0apVq6TX/q/LWKpyp79169aYN28enn/+eezatatW26uuKh8hN998sxr8IA+2Z555BgMGDMCqVatirmSBk3Ve33333ToKtf716tUL2dnZcfvGZmdn17rChlTbknxer1f1CZblBN1uN3Rdr9FdyboqEZhK31FF8ci7+vJkJEsQyh/9ZMQkX6vI7NmzASCmfdbl9w7U/3429niA+o/JarWqAcNykHBFffYb4jtKhfZZ2/0MBAKqK4uMMxwOw+fz1XjweKq1z/o+n8vuO5Hfn6z0k+g7TPa5s6FMnToVixYtwjvvvBOVE82cORNLly7FyJEjce+998Jut+O+++6D2WyOSpZnz56NlStXVnisjxw5En379sX06dOxePFitGzZEo8++igOHDiA22+/vdoxL1q0CH369MGIESNw9dVXo2XLljh48CDeffddnHvuuZgyZQpKS0sxY8YM9R7gZPWb+fPn46KLLkLXrl3V+nw+H8aNG4drr70We/fuxW233YYJEyao8QozZszAE088gWHDhuHmm29W/ei3b98Ov9+P+++/v9r7UFN1GUteXh6ysrLwwgsvoEOHDrDZbOjRowfmzp2L7Oxs9O/fH9nZ2diyZQt27twZ90lKfapSsi+v1MxmM2bNmoWzzjoL33zzDZ555hl8+OGH6NOnD1577TV15dZYbd++HWeeeWbMhA3hcBhHjx5Fs2bNalVNRAiBUCik+hHXZj1utxu5ublR9cur2se4ruMBUu87qiieYDAY04+7ou+vIWICgMOHD1f4+SeffBLjx4+Pap919b0DDbefjTWeho6pqvMZNFQ8yWyfdbWfclKpZs2aqQv7YDAIi8VS7bvDqdY+G+p8brPZ4PP51Hb8fr/qtx/vzn4qnDsbislkwvz583HllVdGLc/IyMDmzZtx00034eqrr0YoFMKgQYPw3nvvRQ1AlWNJKtvG66+/jptvvhm33HILSktL0bt3b7z55ps4++yzqx1zp06dsG3bNtxxxx249tpr4Xa7kZ+fjyFDhqBHjx4AgHnz5uH48eNR3V3uuOMOvPbaa7j88suxdetWdfzMnTsXhw8fxvTp0+H3+3HJJZfgscceU5+z2WzYtGkTFi5ciPvuuw8HDhxA8+bN0atXrwZPgOsyFl3XsWLFCtx+++3/x96dB8l1lXfj/55z195n0UgaSZZleZHxCjKObXZCDOaFggoFwWAHLHBCyAskVFJQJBhsirAUpCApijUEG5djk/yKF/94gSSY4ECISeJgiFeMkK19pJnRTG93Pfec94/WuZ7RbD0zvc/zqaKweqa7n+7pPve55z7nOWnb0qeeegrPe97z8JWvfAVf+cpX4Hkedu/ejc985jPp5EjHqCZcd911inOuvvvd7867fXZ2Vr3xjW9UjDFVKBTUfffdN+/nN910k+KcN/MUXXf06FH14Q9/WB09enTBz5IkUUePHlVJkqzrOaSUKooiJaVc1+PU63X1+OOPq1OnTqlyuaxmZmbU5OSkiqKoK/Eo1Xvv0XLxJEmiZmZm1IkTJ9Ts7Gz63/V6vWsxKbX8Z3Cpn7XqfVeqc6+zX+PpxZg6GU83P5+tep1CCLV//341MTGhpqam1MmTJ9XMzIwSQnQtpl57j1aKSQihZmZm1MmTJ9XJkyfVqVOnVBzHbY1pPWMn6RwA6lOf+lS3wyCLaGoa4cEHH8SVV16JV77ylfNuL5VKuOeee/Dxj38c9Xodr371q/Gtb32rHeckZA69u6du86f7P2/0jgjN0jXQjuOkbQ717q2EkMGl9xbQ3/9cLpduwEaaYxgGisUiSqVS+r9eqJknhCytqWS/XC5j9+7dS/78/e9/P+644w4kSYLf+Z3fwZ133tmyAMlCuoVmsVhEPp9Pt7gmzTNNE6VSCUNDQxgZGUkXQBJCBpvuvpXP55vaR4EspNeHraUTGiGk85o6HR8dHcXExMSyv3PjjTdiaGgIb3jDG7Bv376ObwW80ejBlgba9aEZKUIIIWT9VAs6QZH2aCpTvPzyy/HTn/4U9Xp92d979atfjX/8x39ELpfDe97zHnzve99rSZCEEEIIIYSQ1Wsq2X/Vq16FIAjw9a9/fcXfffGLX4wf/vCHGB0dXXTjB0IIIYQQQkhnNJXsv/a1r8Xznvc8/PjHP27qQffu3Ysf//jHuPzyy7Fz5851BUgIIYQQQghZm6YKlnfu3Il/+7d/W9UD79mzBw899NCagiKEEELaTZ3ekZUxtu7e9IQQ0qtodWefk1IiiqK0BSchhJCV+b6PmZkZzMzMoFwu0/hJCIBarYYPf/jDuO666zAyMgLGGG6//fZuh0XWiZL9PpYkCcrlMmZnZzE7O4tyuYw4jrsdFiGE9LQoitKGE4ZhQAiBarUKKWWXIyOku6ampvCRj3wEjz/+OC6//PJuh0NahPoO9jHf9xHHMRzHSbctr9VqKJVK1JKTEEKWoCdFdOtd27YRhiGSJKGxk2xo4+PjOH78OLZu3ZpuqEr6H41qfSyOY1iWldaaWpYFIQTNThFCyDIYY/N6glN/cEIaHMfB1q1bux0GaTGa2e9jnHMkSZLuACmlBOecZqYIIWQZeiY/iqJ0HLVtmzbZI31JSoljx47B931kMhls27aN8gAyD41sfSybzaJWqyEIgrSbRD6fpy85IYQswzRNFItF+L6PJEmQyWSQzWapIw/pO1JK/Pd//zdqtVp628TEBPbu3Uu5AElRst/HLMtCqVRCHMeQUsKyLNi23e2wCCGk51mWBcuyuh0GIety7Ngx1Gq1eaVo1WoVx44dw44dO7oYGekllOz3OdM06dIzIYQQsgH5vr+q28nG1NQ1HqUUrr32Wpx33nl44IEHVvz9Bx54AOeddx5e+cpXrjtAQgghhBCyUCaTWdXtZGNqKtm/99578YMf/AAvf/nLcc0116z4+9dccw2uu+46/PM//zO+853vrDtIQgghhBAy37Zt25DP59N1e4wxFAoFbNu2rduhkR7SVLJ/9913wzAMfOhDH2r6gW+55RZwznHXXXetOThCCCGEELI4zjmuuOIKnH/++dixYwfOP/98WpxLFmiq2Ps///M/ccUVV6yq9+qWLVvw3Oc+Fz/96U/XHBwhhBBCCFka57yli3E/97nPYXZ2FseOHQMAfPvb38aRI0cAAO9+97tRKpVa9lykM5pK9icmJnD11Vev+sF37dqFX/ziF6u+HyGEEEII6bxPf/rTOHjwYPrvb37zm/jmN78JALjxxhsp2e9DTSX7lmUhiqJVP3gcx+mGT4QQQgghpLc9/fTT3Q6BtFhTRV3j4+N4/PHHV/3gjz32GC0SIYQQQhYhhIDneQjDEGEYzuuVTgghrdJUsv/CF74Qv/zlL/Ef//EfTT/wT3/6UzzxxBN40YtetObgSO+TUqJer2NmZga1Wg2e50FK2e2wCCGkpwkhUKlU4Hke4jhGtVql3uiEkLZoKtn/vd/7PSilsG/fPkxNTa34+1NTU9i3bx8YY7j55pvXHSTpXZ7noV6vp/+u1Wp0wCKEkBUEQQApJRzHgWmasCwLvu8jSZJuh0YIGTBNJftXXXUV3va2t+GJJ57A5Zdfjq985SuoVCoLfq9SqeDLX/4yLrvsMjz55JN429vehquuuqrlQZPeIKVEGIawLAumacIwDFiWhTAMux0aIYT0tCRJwBhL/80Yg5SSSnkIIS3X1AJdAPjiF7+Ier2Ob3zjG/iDP/gDvPOd78Tu3bsxNjYGAJicnMSBAweglIJSCtdffz2++MUvti1w0ruUUpBSUp9fQghZgm58oZN7IQRM06RxkxDSck2PKqZp4u6778Y3vvENPPe5z4WUEvv378cDDzyABx54APv374eUEldeeSX+/u//Hn/3d39HnXgGHOccjuNACIEkSSClRBzHcByHDliEELIM13XhOA6iKIIQAgCQz+dp7CSEtFzTM/vaG97wBrzhDW/A9PQ0fv7zn2N6ehoAMDo6issvvxybNm1qeZCkd2WzWQCA7/tQSiGbzaa3EUIIWRznHIVCAY7jIAxDDA0NwTRXfUiGUiqdbJFSrukxCCGDbc2jwujoKF72spe1MhbShzjnyOfzcF0XYRiueWZKCAEhRFqzSgcsQsigY4zBsiwYhrGmcVMphXq9njZFUEqhWCzCdd1Wh7qiKIoQxzEYY7Btm8ZwQnrIqr6N3/3ud/Gtb30Lhw8fhuM4uOyyy7Bv3z6cc8457YqP9AnO+ZovPwshUC6X0y4Uut4/k8m0MsSm4vA8D0IIMMaQy+Vg23ZHYyCEkGZFUQTf92FZFjjnCIIAtVotPYHoFN/3065sSikEQYBCoUAJPyE9oulv4g033IB77rkHANIFRd/+9rfx6U9/Gvfccw9e85rXtCdCMvA8z4NSKp2NCoIA9Xq9o7X/UkpUq1XEcQzLsiClRKVSQalUogMWIaQn6Y4+epw0TTNdQ9WpZF9KCd/3YRhG+pz6JKRQKHQkBkLI8prKpL761a/i7rvvhmEYuOmmm/DXf/3X+Iu/+AtcffXVCIIAb3nLW1Aul9sdKxlQSZLMS+o552n9aafoMiLHcdIWokopaiNKSA9TSiGKIgRBMK+zzUbBGJv3mpVSYIzNa+nZbot1X+Oc034BZEk33XQTdu3a1dTv3nrrrWv+PN9+++1gjOHpp59e0/0HSVPJ/h133AHOOb73ve/hq1/9Kt71rnfhAx/4AH7yk5/grW99K6rVKr75zW+2O9aBpXdPLJfLG3IHWsuyIIRID1p6VqobXSnO7HtNCOlNSinUajWUy+V0/KzX6xsq4bdtO93bJIoiRFGUbtLVKZxzmKaJOI4BPLNg2LKsjsVA+pvnebj11ltx//33dzuUgdVUNvXwww/j6quvXnRB7p/92Z9BKYWHH3645cFtBHEco1wuIwxDCCFQq9XgeV63w+oo13XTA1YQBGCMdbwFnd4UTM8O6lZ4VLNPSG/SM/q2bcNxHFiWhSAI0u/uRmAYBgqFAnK5HBzHQT6fRz6f7+hEhR6v9fgZRRFs26aubKRpnufhtttuWzTZ/+AHP5guQCdr19Tpf6VSwbnnnrvoz/Tti+2oS1YWBAGAZ5JK0zTh+z5c190wteKmaaJUKs3rxtPpJJtzjmKxmNbt6y5Dtm1vqJlCQvqFlHJeyQrnPC0p2UgMw0A2m00nKbpxRVKP4bp0xzTNBSVGhKyFaZobJhdqp6amTpVSSy720bOvG22AbRV9wNI6XW+5FlLKNDFvFc55OkPXrS+2aZoYHh7GyMgIhoaGutK+jhDSHJ3c64RSj0e9uimVlHJe2dGgXYHgnMOyLFiW1fPHMLI4XR//5JNP4sYbb0SpVMLY2BhuueUWKKVw+PBhvPa1r0WxWMTWrVvxl3/5l+l9l6qPv//++8EYW7JE5+mnn8bY2BgA4LbbbktzoFtvvXVeTHMxxvCud70Ld911F/bs2QPXdXHFFVfgRz/6UVOv83vf+x5e+MIXIpfLoVAo4FWvehUeffTR5t6kPtWbo+IGYlkWkiRJD1hRFK2rjWW7hWGImZkZzMzMYHZ2FlEUdTukluvl958Q0mDbNlzXRRRFCMMQcRwjk8n05CygXl/g+z6SJEEYhqhUKgOX8OsrKzT511mhkPjav0/jtv97HF/792mEYn3v/xvf+EZIKfGJT3wCV111FT760Y/is5/9LK699lps374dn/zkJ3HeeefhT//0T5tOsJcyNjaGL3zhCwCA3/7t38add96JO++8E6973euWvd+//uu/4o//+I9x44034iMf+Qimp6dx3XXX4ZFHHln2fnfeeSde9apXIZ/P45Of/CRuueUWPPbYY3jBC14w0At5mx4V77jjDtxxxx2L/owxtuTPGWMDN6C1kuu6aesy3UKtWCz2ZLKpFxLrWXghBKrVKkqlUk/Gu1Zzr1roy9GEkN6ia8Udx0m7wfTqrLIQAmEYwrbtND69qHZQriAmSYJ6vZ4u1HVdt+N7pWxEoZD47S8cwKPHAwAKAMM//GwG/+cPdsMx13Zc/o3f+A186UtfAgD8/u//Pnbt2oU/+ZM/wcc//nG8//3vBwC86U1vwrZt2/C3f/u3eNGLXrTm+HO5HF7/+tfjne98Jy677DLceOONTd3vkUcewYMPPogrrrgCAHD99ddjz549+NCHPrRkw5harYb3vOc9uPnmm/HlL385vf2tb30r9uzZg4997GPzbh8kTSf7a629o5q95c3dgVb/u1cTZ90xR8+c6UW1Z7bO7Gee56WbwzDG4DgOLTQjpEfp3Vp7nT4ODmq3L72TbxiGadtiz/PSHYJJ+/zdf87g0eMB4kTnWgqPHgtw93/N4KZrRtf0mDfffHP634Zh4LnPfS6OHDmCt7/97entQ0ND2LNnDw4cOLCe8NfsmmuuSRN9ANi5cyde+9rX4tvf/vaS+0x8//vfx+zsLN70pjdhamoqvd0wDFx11VX44Q9/2JHYu6GpZJ8uybVfL156PtNiC650X+dBIIRAvV5PO/MopeD7Pi0QIoSsi95wKo5jmKaZNiJo9biiN9TSSXYnNyWMomjec+o9ECjZb69DpyI0ZvTnUjg4vfYS2507d877d6lUguu62LRp04Lbp6en1/w863H++ecvuO2CCy6A53mYnJzE1q1bF/z8V7/6FQDgN3/zNxd9zGKx2NogewhlMKRpc9tTGoYBIQQsy2rpAUtKme6oa5pmR7sS6QOwnhHQZVVCCEr2CSFrpltk1mo1xHGcliDZtt2yyTS9DkAn25ZloVAodGQn3cUaS9BV/c7YOWIDYJif8DOcPbr2K16LfWaW+hwtdtVqrl7aXE1/1+68885FTwYG+Tg/uK+MtJxur+Z5HpIkSWsy9Y636yWlRLVahe/7sCwLcRwjiiIUi8WOfAl1cj/3aoWUsmPbzhNC+ptutrBYOaZlWRgaGko7sLVy1l1KiXq9npYe6ll13/eRz+db9jxL4ZzDcRx4ngfTNNMuSYOyHqGXvfk3hvEP/z0zr2b/4m0u3nTlcEfjGB5uPN/s7Oy82w8ePLjifddSHaBn6ed68sknkc1m0+4+Z9Kt4jdv3ozf+q3fWvVz9jNK9sk8Qoh0QfVi5SumabbtUpcQIr3sq+tw9SY5nUj2LcuC67rwPC89gbEsK10ASAghi9Elf77vQ0oJ0zSRz+cXlLAwxtoyeaA74My9KmkYRkdnVXO5HDjniKIIjDG4rps2ciDt45gc/+edu3H3f83g4HSEs0dtvOnK4TUvzl0rnUj/6Ec/wrOf/WwAjZPfZha86nVxZ54oLOeBBx7Az372M+zduxcAcPjwYdx777247rrrlvyOveIVr0CxWMTHPvYxvPSlL13w/ZycnFzyRKHfUbJPUkIIVCqVtOYTaNSwdWODK40x1tEDVjabhWVZEELAMIy0ewYl+4QQ7cwSlSiK0vU+pmmmu6F3qlOZvpKQJEmawCRJ0tGxmzGGbDY7r6EBlfJ0hmPyNS/GbZWLL74YV199NT7wgQ/g1KlTGBkZwT333NPUyV4mk8FFF12Eb3zjG7jgggswMjKCSy65BJdccsmS97nkkkvwile8Au95z3vgOA4+//nPA2j06l9KsVjEF77wBfzu7/4u9u7di+uvvx5jY2M4dOgQvvOd7+D5z38+Pve5z63+xfcBSvY3ID0LpGvUNV2e4zgOgEarzVqthqGhoY4dsHSrVr2IrdPdHPTlaP0eAHTAIoQ0RFEEz/PSWXS9CaCuw9czip3uVMY5Ry6XQ7lcRhiGaQzU+pJ00l133YV3vOMd+MQnPoGhoSG8/e1vx0tf+lJce+21K973b/7mb/Dud78b733vexFFET784Q8vm+y/+MUvxjXXXIPbbrsNhw4dwkUXXYTbb78dl1122bLP8+Y3vxnbtm3DJz7xCXzqU59CGIbYvn07XvjCF2Lfvn2rfs39YuCS/TiOcdddd+H+++9HrVbDrl27cMMNN+A5z3lOt0PrCXoXxyiK0tr0UqmUzmbPLZcxTRNRFKU9rNtNlwjpAxZjDJlMpi9a6xFCBpveZwRAWq4Sx/GiXW/02NqqTmV613KgMU4uNh47jpOWWOo9BwalJTLpjFtvvTXduXau22+/HbfffvuC28/cFXf37t34/ve/v+D3zpwwW+yxrrnmGjz44INNxwQAN9xwA2644YZFfwYAN910E2666aYFt7/kJS/BS17ykiXvN4gGbiT47Gc/i3vvvRcvfvGLcfPNN4Nzjo985CN47LHHuh1aT/A8L62Ldxwnvdys60znlszoXrWtOmCEYYharYZarbbkpT3btlEqlTA0NIShoSHkcrmWPDchhKxHHMfpOh49q6/XONm2Pe8EIIoiOI7Tkvr8JElQqVRQLpfT/y01fuoOdO7RrgAAIABJREFUZo7jUKJPCEkN1Gjw5JNP4sc//jHe8pa3YN++fbjuuuvw0Y9+FGNjY4ueSW5EQoi0XAZAeglaSolsNpsesIIggJQS+Xy+JQeNer2OSqWCIAjg+z7K5XK60+KZOOfU254Q0jf0VUld1pPL5ZDL5Voys1+v19MTCsdxkCQJarUalRcSQpo2UMn+T37yE3DO8YpXvCK9zbZtXHvttXjiiScwOTnZxeh6w5ltMvXlZp1gF4tF5PN5FItFDA0NtaSERgiRbk6lD1i6ewUhhPQDy7LAGEMcx0iSBGEYzpuUME0ThUIBpVIpnThZL6VU2ixg7gSNbvFJCCHNGKip0wMHDmD79u3zugEAjV3VAOCpp54a2LZKzXJdF1EUIYoau+sJIVAoFNIDU7tm1HXvaa1VvfkJIaQTLMtCsVhMF+jqiYv1JPXb3//wnK2QpvF/3wjs3XtpeoueiNEllQDSNVSDsnM5IatFJ7qrN1DJ/szMTLqxw1z6tlOnTnU6pJ6ja+LDMISUMt0Yq5045/N23NWzVWeelBFCSC+zbRu2bafJxnp6yG97/8MLbnv1N4Bje+fflsvlUKlU0qYFQKOFICX7hJBmDVSyrxeenkmXouiWZNrx48dx/PhxAI3NFOr1OgAsmHHW/17vTLRSKm15uZ6Ber3xGIaBbDabJt3reaxmY8rlcqjVagiCAEDjb+K67oLf75X3qBdj0p/tufcfxNfZq/H0Yky9FE87P5+99DpbHdOZXve5h/H//eHF6b8Nw0ChUEjXOOmrr+0aO4HB/rsRshENVLJv2/aiiz51ycrc3ukA8KUvfWneBgzXX389AGBiYmLRxz958mSrQm2JXosHWD4mPegDz/Sr7mY83bLWmHQP4MU+n4P0Otul1+IBei+m9cTTT5/PXotnrl9PLH0M6rRee596LR5C+sVAJfvDw8OLlurMzMwAAEZGRubd/o53vAOvec1rADRm9u+77z4AwNatW+f9npQSJ0+exObNm9dVn6ln0k3TXPcsRy/F04sxtSqeTsa00gH+a1/7Gvbt2zfv89mPr7Nf4+nFmDoZTzc/n732vrcmpulFb/3fr154DOpMPM/ot79br5wcEdKrBirZ3717Nx5++GF4njevHvyXv/wlAOCcc86Z9/vj4+MYHx8HABw7dgwPPPAAACw5uOktyddKL1Jt1eKqXounF2Nabzy9FJO+arXYfQfpdfZqPL0YUy/F087PZzteJ2MsvdK4lsddb0yvuAD4pyfn3+YA+P2rL13099sdz2J68e9G+wcQsnoD9a153vOeBykl/umf/im9LY5j/OAHP8AFF1wwkJ14hBAIgiBdcEsIIWR5eifxmZkZzMzMoFqtzttQsBO+9vZL8ZHXAbq58cvPB5765NoSfUIIWc5Azezv2bMHz3/+8/H1r38ds7OzGB8fx7/8y7/g5MmTePe7393t8FouiiLUajUASHd2LBQKtBkVIYQsw/M8hGGY9s7XzRuKxWJH47j5qkvxtislJiYm1lS6QwghzRi4rPC9730v7rrrLtx///2o1WrYtWsXbrnlFlxyySXdDq2lpJSoVqswDCNN7oMgQBAEyOfzXY6OEEJ6VxzHME0zLQmxLCvdSZzKRAghg2bgkn3btrFv3760M8QgU0qlG60AjZZs6+n7TAghG8XcjXn0TuLUu54QMohoCqOPzV1gBmDeLouEEEIWl81mkSQJ4jhGHMcQQiCTyVCyTwgZSAM3s79RcM6Ry+XgeR7iOE53qW33briEENLvHMcB5zyt1bdte8E+LIQQMigo2e9jruvCsqy0i4TeWZEQQvqVLq9p9yy74ziU4BNCNgTKDNtASokkScAYa3tfYMuy0m3qCSGkXyml4Ps+wjCEUgqu61JpzYCZe2w0DIP+toR0CCX7LRbHMarValpL7zgOcrkcdXgYEFJKxHGcLuizLIv+toS0gO/7qNfr6W6rtVoNSinkcrluh0ZaII5j1Gq1tIlEJpNBLpejhJ+QDqBkv4V0O0wpJWzbhlIKQRCk9fWkv0kp4XkefN8HYyydfczn85TwE7IOSimEYQjDMOY1GQjDcN5u6KQ/6U3MpJRwHCcdS2mdGSGdQRlKC0kpIYRIy2r0pUpqhzkY9G7FutbXcRwEQYA4jrsdGiEDgWZ5uytJEoRh2PId2XX5jj426oYSNHYS0hk0s99iZ87wSilp0WwHSSkRBAHCMITv+4jjuGWL8KSU83px6/+e26+bELJ6jDE4jpPuCA5gXjtM+o61ny5BTZIESil4ngchBGzbXvdj6zFz7qZlSim6IkpIh1AW2kKmacJ1XXieN28Qo8uUneN5HjzPA2MMcRyjXC5jeHi4JYuY5x6kdAKi/5sQsj56nAyCAEmSwHEcuK7b5ag2jnq9DqUUHMdJT648z2tJsm8YBlzXhe/74JyniT79fQnpDEr2WyybzcI0zXkHLNIZQgj4vp++5zrBD8OwJcm+bdtwXRdBEABoJP2ZTIa6IRHSAowxZDKZtCtPFEUQQiCfz9N3rM2klJBSzlsvwTmHEKJlExq5XC4ta2WMwXVduupNSIfQN63FOOcwTTOtUfQ8D0EQIJ/PU+LfAWeW1jDG0n0IWiGfz8O27fRytGmadCmakBaJ4xie56VdroQQqFarKJVK3Q5toOkW0UmSpOOZLkFt1ZVLfTJHCOk8SvbbwPd9JEmSXqJMkgT1ep1mp9pMH7CiKIJlWQsWhbVKKy5rE0IWiuMYUsq0RM40TYRhOC8JJe2Ry+VQrVbTfQ4AUCckQgYEJfttoC8/z535FUK0tLsBWYhzjkKhkB6wpJTIZrNUF0pIH9DtGGu1WrpZoP7u0rqY9rMsC6VSKT1WRVFEZTaEDAj6JrdYGIbwPA9hGCKKonRhkp51poS/vSzLwtDQEIQQiKKIeuAT0id09xfdkjGKIkRRhOHhYZim2dJyPLI4vc/B3K45hJD+R8l+C0kpUalU0rrxuQs5t2zZQsl+h1AtPSH9Rbd61H3X9ThpGAay2SzN7BNCyDpQst9CUkr4vg+gMcOslEp309U76hJCCFlIl97N3bAOwLwOMRuJUipdw8A5h2VZdNJDCFkTSvZbSO+ga5pmWnNar9fbPkDrtmnAM4tUe4XedTZJEpimiUwm01PxEUK6TymVLqrXO47rHcjbualWFEXwfT+dlOmV8UkphXq9nk4eAYDrusjn800fT+aeLDDGYNt2X50sKKVa2vqTkI2Mkv0W0rtAJkmCKIoAIE3820UIka4RAADHcXqmTl0IgXK5nM5MRVGEJElWFV8cx+nB2DRNZLPZnnhtzRJCpH8bWuxGyOL02MkYSycuLMtqa6vGKIrmlV16ngcp5aoS6nbRe4boFqRKKQRBANu2m2rhPPdkQZ8srfZkoZuklKjX6+nVHcZYehJICFk9yj5aSC/G1Z14dBlPOw9Yuo+/PgAEQQDGGAqFQtues1lzL8sDjQOQTvibSdiFEKhUKului0EQpAfjfkj4dTKhZyX1TBUhZD7GGHK53LyrlLpev130WKknYzjnCMMQ2Wy266VDc6/UAs/sH9Lsmi89SbLWk4VuC8MwjZcxlv6bFg4TsjaU7LfQ3NaP+tJjJpNpW1923R5t7uVZy7IQRVFPDIpnXn7VM0zNXpLXg/taTxa6TZdwWZaVXu2Ze1meEPIM27bT1o9AYyzrZNLdSzPecze20sm6nvRohh57554s6Nv7QRzH6SZfQRCkV0ipHSgha0PfmhbTByw92LZ7YDqznvXMQb6bLMuC53lpTHoAX01s6zlZ6DY9C+d5XnoC5vs+wjCknSQJWYRpmh1L5izLSjfs0mUieia82/T6pjNr9pudOJp7ZXluF7heeG3N4JwjjuO0O5O+qlGr1eA4TtevvBDSbyjZb4NOHaw458hkMqjX6+lgrpRCPp/vyPOvxLIs5HI5eJ6XXoYuFApNvz+WZaW7EeuNyXRbzX5gWVa6ZsGyLMRxnNYGO47TNwdeQgaR67ppeYv+jvZKTbsua7Jte03deBY7WchkMn2zi3smk0GtVkt3Q1dKpVd4kyShZJ+QVeqPrIksSS9Y1YtAXdftmZpMzjlyuVwaz2pn9R3HQTabhe/76WY7hUKhb5LkbDaLcrkMIUR6spPNZtMdKvvldRDSTkmSpKU7pml2LJHT38e5u/T2QqKv6Q46a72vHnt1N55+at1pGAby+Xx6tcUwDFrvRMg6ULLfArp2PooicM7hOE5HZ1Bc100PWL1oPTPx6zlZ6DbTNFEsFuF5HmzbTk/K+uWAS0i7CSFQrVbnJfurufrXCv00pqzG3MXH/ch13bTckTGWzuj3y5VdQnrJYI5yHeZ5HiqVCuI4RhAEKJfLaa0hWT9dx9uPB+W5l+KFEEiSBJlMhg5YhKCxiD1JknQjrSRJUKvVuh0W6QF6ssQwDEgp++7KLiG9hDKOddL9kHWPaOCZjVr6eVaFtIZpmiiVSmldcCaTocW5hKCxvujM+mvTNCGlpI2UCIDGuqehoaG0mxlNkhCyNnSK3AJLtZgkBGgkMPl8Hvl8vme6fRDSbbpr2Nze8XoxPiX6ZC76PBCyPpR1rJPuDqN3zNXtzmgGghBClpfL5dJNk3STgVwu1+WoCCFksFBGuk5zN9LSvdSpVIMQQlZmWRaKxeK8Bbo0UUIIIa1Fo2oLzK0r1JemqVSDEEJWRgk+IYS0F42wLUIJPiGEEEII6TWUnRJCCCGEEDKgKNknhBBCCCFkQFGyTwghhBBCyICiZJ8QQgghhJABRck+IYQQQgghA4q68RBCCCGkK6SUSJIEAGAYBnW1I6QNKNknpAWiKEIcxzAMg/qGE0JIE5IkQbVaRRzHABp71hQKBRiG0eXICBkslJEQsk71eh2+70MpBaUUTNNEsVikhJ8QQpZRr9chhIBt2wCAOI5Rr9dRLBa7HBkhg4WulxGyDkII+L4PwzDgOA5c10WSJAiCoNuhEUJIz1JKQQgBwzDAGANjDIZhQAgBpVS3wyNkoFCyT8g6SSnnXXbmnKc1qIQQQhZijIFzDilleptSCoyxLkZFyGCiZJ+QdeCcp7NRQONglSQJ1ZwSQsgKstkslFIIwxBhGEJKiVwuRwk/IS1GRcWErAPnHIVCAZVKBWEYAgBs20Y2m+1yZIQQ0tts20apVJq3QNeyrC5HRcjgoWSfkHWybRtDQ0Pp5WjTNKl9HCGkq6SU6RXHXh6TKMEnpP0o2SdtJ6Vc84EmDMO0paVlWT3b4aZX4yKE9B9d2iKEAOccjuOsqjRQCIFqtZom+9TSkpCNjTIU0ja6jVqSJOCcI5/Pr2oGp16vw/M8MMYgpaSWlhuQlAplP0GigKzNkbF6c3aSkFZRSqXtfBljaeJfKBSaHvv0uOs4DpRS1NKSkA2OsqY58vk8TNNc0PZL907XfdTXSt93vW3Fei2exWISQqBcLkMpBcMwkCQJyuUySqXSsgcsHUscx/A8D5ZlpVcFgiCA7/vI5/Orjme9r23u/6/ncZaLaaUD+datWxd8PvvxdTZLJBJPnAgxUZUAA1yD4+JtLkbzqxu2Bvk96mQ83fx89tr73s6YdDvfuWNfGIYIggC5XG7FeJIkgRAi/XvplpZxHENK2dTi1377u9EEECHLo2/IHM95znMwPDycXvqca3h4GFLKeW3C1qoVbRl7LR5gfky6/MZxHACNhaz6gOW6blMx6R7M+jVKKRFF0aJ/n5XiaYV2/92Gh4eXve/b3/52AFjw+vvtdTbryEyEI7MxNudNGJyhEiR4+GgNV56dhWOuboZ/UN+jTsbTC5/PXnvfgdbHJIRIO3rNHfviOG5q7NOPkyRJmgTrUsjVxLrS+ySEmLewdrmEu9tjJyEbHSX7czz00EO49NJLMTY2Nu92KSWmp6cxOjq6rkVOc9syrqe1WK/Fs1hMemZp7gFgsduWikkv2lJKwbKstO7fcZymZnGaeY+klPA8D3Ecg3OOTCaT7uS4WEzt/rtNTk4ue/+vfvWreN3rXjfv89mqzwLQe5/PWhTBNRksywADw3DOwEQlhlAGcmbztceD/B51Mp5ufj577X1vZ0yc8wVjH2NsxbFPx6PLHSuVSppkG4axqhLIld6nKIpQr9fTWfYoilAoFBaMn70ydhKy0VGyP0etVoMQYsGgxBhLb29F/9/1Pk6vxbNYTPoSdBRFME0zHfAty2rqufTBqVKpIAgCcM7hui6y2WxT91/pPdKJfhAE6YxXtVpFsVhcNOHXj9nOv9tKs3YTExMLPp+t/izox+yFz6drcYRCgaHxOFGiYHAG2+SretxBfo86GU8vfD577X1vR0x67KtWq2k730wmg0wm0/TY5zgOhoaG0pl327ZXVeqy0vuk1xPosTKOY/i+n17JXezxujl2ErLRUbJP2kLPLukTKMMwkMvlVnXAaWdLSyklgiCAbdvpwSOKovQ20joiUTCN1R/otw/ZmCiHOF6OYZkcQiqcN2Yja3dnka4fSzw1GaDsxShmLZyzye1aLGSwWZaFUqmUzuqvZWa8XS0tlVILOqzpnXBpB1xCehMl+6RtLMtK6yzXmqS3c+HVmQu9dOcL0hoznsCvJ2P4sUTW4bhgs4tSpvnym4zNcfn2DGYChTgBCq6BzYXuDFmRkHjkqI+ZuoBjKBybjVH2JfbuzMIdgA5BiVSYrkvIcoysbWA4u/7SPrI+hmH0ZKvMuQt+dXy69JI+M4T0Jkr2Sdv14mYuui42iiLYtp3WlmYymW6H1jNEomBwLHsAV0o1ymsYmzd770UKDx3wMF1PYHCAA6iFCa4+J7+q9pkZm6OQNefFIKXCVF0gEgq2ybApZ4Lz9iYZZT/BqbrAloIJKSUMo7F+YMZLMJZnOHgqxHQtgUgkihkTQ1kDpYyBgtt7ydqZEqnw6PEAj08IjEQBGAPOHXNw7tjKC+nJxpTL5eaVGZmmuWynIEJId1GyTzYkzjkKhQKq1SqiKAJjDLlcrqlOQYPOjySenAxR9hLw04nftqGFpU21MMETEwEqvoRpALs32dgx3KjZPVFL8MQJH6WMCQsMfqxQPRHiwi0uMqW1l0lJqfDERIBDMxE4Y5BKYeewjQu3um1N+KVarO6YIZEST54IcGgmBoPCkydD+JHE7jEHozkTl+3IYDTX28PsyarA8XKMTVmGsaIJkQBPTUXYlLdWdSWGbBymaaJUKiGKorTBQau6GxFCWq/3plwJ6RB9wMpms+ll6SAINvRBK5EKjx33MVkRyNkcBmd49FiAyWo87/fiROGRIz5m6wJDGQOWwfHY8QBTtcZCuVlfIk6A4ayJvGNgNGtgpp6gHq7vvT3lJTg8G2NLwcLWooUtBQuHZ2Oc8lbf2k/K5ku28g6HZTCU/QRSKdTCBKYBBLHCQ0c8JInEsdkYOZs3rjQwwGDAr04EC0rD6mGCp6ZCHJgWOFmNu146FsQSBmfpyZJtcijVKF0iZClKqXTvE8/zUC6X4Xlet8MihCyit6ecCGmzKIrSzhKMMdRqNSilNuwlaS+SmK4n2Fps1N/aJhDGCpM1gbFCY7FfIhUePebjP56qYyRvQihga9GCH3GcqguMZG24JoNrNpJj1+LwIomMxZFz1je/UPETHDkVYqoaI2NxjA/ZYAAi0XzCPFGJcWAyhJAKozkT5445K9bd5xwDl23P4LHjPqZrCTKOibNGbPzqZICjsxEqjoFDp2LsGrHgWBxSNUqQvEgiFgq1KIGQColU2D8ZwgsTVCoStcM+LtwK7Nq0eBeTTnAtjkQqsNMnP5GQYKyR9BOyFL2Xir4aKqVMO/L04loDQjYySvbJhuZ5Hjjn83abDIIAmUymJ9cadAIDoE7/P07/dxBL/OxQHWVfohYIzPoSjANKAQenIwCAyRl0Jc1Y3sBOZaMeSoQiAQPDheMORpooaQmFhEgULINhbtFMnCg8NR1iqpZgS4HDjwVm/QSbCiYcs7kSnhOVCP/6ZA0cQNYxUA1CxFLhsm2ZFcuARvMmrj4nh5oXIuEGHj4WgDPg7GEH5SBBxmL49VSIczY52DFsoxZI5ByG/ZMhjszGYGhsFJaxGS7c6sKMOPI5AwemI2wpWUuuZWh3h5PNBRPjJQuPP60gKyKt2acSHrKcJEkWdOTRu/RSsk9Ib6Fkn2x4cxMpznnLdhTuR1mbY6xg4kQ1xpBrIkoUyl6MxycEqkGCjM0xXRfYnG8sQvUjCYMBvz4Z4lnjbjr7P5plKAxl8PQpgVhI5F0DF41nVtz59vCpEPsnI8SJQsZi2LPZwlixMUyV/QRxInHRuIODpwQqgcBMPcHzczkMZVY+MVNK4cGnPRw6FWE4a2DaS1ByOThinDfmIO8sn6CIRGH/yRD/8XQFs57EjC8xPmTivE2N/udBpNKkP5EKrsMwlDVxYDLElqIFgzOcqMQ4WRHYOdIokbENhnIikSxSUhQJiQNTEU5WY5ic4exRG9tKre94YnCGi8ddGIGJ4U1u2o2HkOXoHX71yahusbxRJ0kI6WWU7JMNzbbtdNMuoHFp2nXdgThgrWZGeKomMFOPAZlg+5ANx+KYqglwMESyMdt+7pgLkUgcPRWjzBOcNWJjKMtwshwj53BcviODUsZIe4OfPepgfMhBIhUck6/Ya3+6JvD4RIChTGOmftZP8MgxH1dnLGRtA0opcHCMFRiOzMawTYaSa6DqJzgwFeG8zc6yr7ccSExUGmsMhrMmlGqUJzX7Hh2YCvFfB+uYqQuM5BzMehFOzApkzBCXbMui4HI8+6wMnjXuQqHRKvToTATLbKx9ABpXB47MRgijRrJf9huz/2eeBCml8OTJAEdmYgxnTAip8OixAAZn2Fpsfe90gzOM5ji2lqyB+OyT9nNdF0KItCMP5xz5fJ5m9QnpQZTskw0tm82mC80ApLv09pM4UZioxJCKIedwZG2OX0+GmKoJWAbDOZucZRPEIzMhHjsegDOGOBZwKxLPOSuHZ211UfYlJmsCOccAP13HPZJrzIrHicJZQzYsznDBFgej+YXPsZoe9JUgAWcsvc9QxsCx2RheKJG1DeQcA67N8NTpsqEtBQthRmLniIOnT0XYNmQhd8bsfD1MUAsSzPoSw1mJUpbj1OmFwqbBUA0kdg5zZFeIUyQKx8oxTM5RchvPc9aIhePlGBPlBKVMhM0FC5duz8xrt+laHJF4ZvZzNGdiLG+hHCYI6hLbcsBF4xlYZ5wIBUJhoiywOW+lJ0mJVJgox00l+7S5EWk33dFM1+zPLYckhPQW+maSDU0fsHR/fc55X81sBrHEYycEVNmHyXmjs8vpovuh0zPCDx/xYZyFtMRmrjhRODAVoeCayFoMScIw6yscPBXi8h1ZmAbgWIBrMsx6CQqugYzFMZZTsA2GMJE4f7ODXaNrW2CqlMLR2QgnqgITszHKQYKxfKOvvlQKSgH6z5G1OS7dnsHR2QihUMjawHljLoZzJg7NhJj1EpjGM7PkJ6sxHj0WIBIJTs0InI0IRcdAxuSY9gT8WGIoy3HpjpXr9XWRjWUAldMlN7bJMV6ysClvYe/ZWWwumAtm6DcXTGwpWjheETAYIAG84LwcxvIGJk542LUji6yzcBjWDXrmd/pcedO3WU/g3/bXcGAyRNbheN65OTxra4YSf9IWjDHacZyQPkDJPiFo70697XRsNsZsIHHhZhMGNzDjxXjwoIfnn5tHxm4k/9UwwVNTEUYX2XxKSIVYAAXnmdttkyGMFUIhUQ0S5G0Dp3iCQEgcOhUiY3O8/OIhbCnaUAooZYy0TGW1Dp2K8PhEgLxtwDY5TlZDcOZj+5CDWiiwpWiiOGemfDhr4vnn5vCLwwG2Fhudb/afDHC0HIGj0TXnWeMuiq6Bhw55mKwJSKkQhhInKxG2DdmohcBWk0Ep4OxRBzsW2UPgTJbRKJ85UY5Q8ROcqnsAOM4atXHJdhdnDS/+GLbZOEGZrArEiUTW5tiUb5QQBRm+5JWPjMWwuWDieDnGcNZEIhX8SOK8ZTa68iKJ//9/ZvDQIR+cMYRC4pcnQrz16mFcsv2Z7lJlP8GJSpx2I+rWrsSEEEI6g0Z5QvpYPZZwjGc2e3ItjiRplHwkUuHgdISnpkLk3UbN/IVbXWTtZxJMx2AouByzXoKRnAGpFOqRRDFr4BeH/Ub/eqUApbA5z3HhVgdnDVmY9RUePFiHUsBI3sTF45l5j9sMKRUOnoowlDGRtTmKGQOMKUzVBPIOw3jJxXiBLziR2D7koB42OttUZyIcmglx8XgGW4o2amGCR44FOGfUwi9PBMjYHI7BUAkUolmBs0dd/MY5LoJYweQMpQxvetZ7LG8iUY2SHk8ojOUZrjw7i90rtM20DIZtQ/Ovqiw3Qx8nCgenQ8x4CWY9gUBIjGRNXLzNwXhp6RIefSUje3pfA4Dh6ekA//pkDReNZ8E5w4wn8IvDPoRUMDjD4VNx42863Pp1AIQQQnoDJfuE9LGCzREKlZbvJBIYyRmY8SQmqwJPTUdwLIZzNzuYqgn8ciLAs896pqyD88YJwCPHfExUYiRJgvEhBwaAGS/BtpKFUEgcK8c4MRXDNg386Fce8g7H+ZsbSe7J04/7nJ2rW+sgG+cQMOacI+QdE67F8eyzGo8lhFhwP4MzXLjVwY5hC4dnYjgWw5aiffr+BmphjKmaQBArjOUNmAZQcjlOBgmiRCHvGMivoeroseM+OIDLd2QwlLMgJFDxW7vxlFIKvzrR2CG4lDGxbciBFyXYs8XF5hVq9aVUCAQw5sw/+fMihShRcDnD4ZkISgGbT5d0BbHEU9MRthRoUSUhhAwqSvYJ6WPbhixsynGcqAhwLmFw4LeeVUA1lPj3X9eQtRjO3exiNGsikY0EPkrUvL70xYyBK87Ooh4mkEmCoZyNR441ZsWBRqmQkI1dZEdyBg5Ox4iTBIlyYHKG4YyBcpBAJI2k8thMiKOTAokTYfuws2Q9vGkWT8ZcAAAfuElEQVQwbMqbODwTYXPeggIw6wucu6nRVWe52W/GGAqugeGsxKHTjx/EEnEiEQmJrG1hvGSiGiRQUJj1JPI5nia5qzVVjfHQYQ8MwKm6wolqgnM2OfBiiUQCZotyZT9uLASeuzBXqtO3rZDsj+RMjGY5TlYEtg1z+HHjbz0+bME8/R6FsYI9529vGQwiUEhos1xCCBlYlOwT0sdsk2PPZhNOIQvFGLJWoxwGaCS/XigxnGskiUI2Tgb4ImUrjslhGwxCNGbO8w7HiWqMksvhxRJQCo7FYRkcpQzHZFVAJI1SmFAoWEajPedDh71GB5y6xNTTdZQmI+wasTGSMxfdUOu8zQ6kUjhZScAYsHPEXtVusiM5AyNZE/9zpI7pegI/ltiUN3HBFgfbh2zUIwWmElgxw7YxF2MFE3GiUA8bu8TmnYVlQmdSSuFXkyHyjoFEKpRchloI7J9sLGI2WryeW2H+wtzGLP3KOwQPZU284YoR3P1fp3B4JoRjcjxrq4uXnJ9PTxyGswb2T4bI2o3XfcpL4JoMUzWBE7MCVl5grEgLLgkhZJBQsk9InzM5w1jBXNBFaNeog/854mO63ugE48USF25xF7R5XMxZIzZm/QQTlRj1MEElSHDFlhxsg2MkZzb68nsJTENCKoVLt2cavxspbCla8KvAiXqC/VPR6daZjYWqW86YnXZMjku2ZRBuVqf/zVbVOcYxObYPW3jsuIfNeROlrIm8w3FkRuC8zQ6OzMTwImBTnuO5uxqlQT876KEcJAAUNhcsPGvcXXazr0QCFT/B1qKF4+UIU7UYieLgnOH8ZXr76z7+FT+ByRk2F60V1zW4JsNY3sSJisBo3oRIFPy4scdBM541nsF7X7YFx8oRDMYwVrQwOuck6+xRB4GQOF4WUErBMTgiofDYcR+VssSM8nHhVoWz19hdibSOUirds6KfOoQRQnoPJfukrfT26YwxmObChJS0z1jBwrPPYjhWjiGVwrl5B9uWWeA5l2NyXL4jixlP4IItLg5MhoiExESlsZnV/7q0BKjGfPNozsRo3sQTEwL26ROJE1UJM8MwnDXTZHP/ZICx/MKOQIwxuNbaW0MqBWwbmr+XwEQlhmtxXH1ODqFIMD1Zw3DWwENHAtTCRuIulcKJSoyMzbFny+LJtFKNNqQHpkLUQ4lixsCWgomEGdg14mB4kasV2tPTEZ48EcI0GIRUODIb4TlnZRfsBTCXXkPBWYDpegKDAxduaf7vBgDDOXPJuCyD4aKtGZw9IiEVcGw2wuGZGONDNmzBkctw/Hoywlhh5RMT0j5JkqBWqyGOYzDGkMlkkMlQC1VCyNpQsk/apl6vw/f99N+O4yCXy1HC30Gj+UYivhaWwRo17gVgvGRhxksgVWOBaymzMGEtugaenooQJwxhoqASiYxtwD49W18NEiQKaPVfn5/uya9JpaAAGIyB80bffc4YokShEkgMZ830fkXXwHRNAFsWf+zJmsD+yQgXj2dw6FRjVn+mLnHNbgcXb1t6tt2PJZ6aijCSM9KrBieqMY7MxtizZfkCf9fiuGxHFnGiwBnW3NZ0KZyzdOOvQ6caVxPmPnfl9PoL0h1KKVSrVQghYFkWlFKo1+tp0k8IIatFyT5piziO4ft+OpuvlILv+7AsK91xkfQP1+IYLy2fpm8tWqiNSRycDhAnQBIpPGvchmNyTFZjlLIGlqmWWbPRfKNu/3glgmNwBEJia8nCUHZ+Um1yBpMDYaLSGvZQqEVPXLRqkMBkjXr4rM1RDy1MVEJcsMVddoZeJApCqnnlQY7JEcTNr4Q9s9xKKYVTp3cudkyWnrSsR8HhODorkXcbz1UNErgWg7OOKy1kfaSUiOMYtm2DMZaW8cRxTMk+IWRNKNknbSGlhFIqncXXB60kSbocGWkXXcM+XjSwxaqixrKoRY2SmqJr4MKtblvKEByT47IdGRwrx/AjibzDsW3IXjAjbnCG3ZtsPHY8gB9xSNXoNX/26NILUi3OEM/ZMZczwAuNZWv8gcbJUdZmmPUTDGUaC3u9SGLnGvvZS6nwyxMhDs1EYGhskrx7zF6xx/9Ktg/bmA0SnJiNMFNPsNlVuHRHZsXXR9pLd6PS35eVdk4mhJDlULJP2kIn9/qApQ9WhkH9vAcZYww5x8CmnIELx3KoxwpKNbre2G1MIF2LN5X47hh24FoGTtUFOGusa1huZn+saKE4GzfWKhgMfiwxXjJRdJd/LZbBcNF4Bo+e3r8AUNgxbGHHEjvtrmSqLnDwVIgtBQsGZ4jE6TKhrIn8OprnWAbDpdsyOKtk4phTwzln5ZB36bDQTZxzuK4L3/dhGEY6dtIVUULIWtGoTtrCNE04jgPf99Nk37Zt2Da19dsoTINh2Oq9k7tNeRObmlzHkDm9wdfxcoQgVsjbDJvzfMm9A+YayZm4clcOXiRhcIaC09z9FhMJBc5ZerXCNjmkShAKiby9vqslBmcYzpkIc5wW5fYAxli6timKojT5p7GTELJWlOyTtuCcI5fLwbbttBuPbdu0OJf0nazN09aXSqlFd/VdimtxuNb6P/OWwSClQiIbpUciUWBsYV0/GQyMMWSzWWSzq9uVmhBCFkPJPmkbzjkch/p1E7Jem/ImtpUsHCvH4IxBAdg1amM4a9A6GEIIIcuiZJ8QQnqcwRku3tbYlEx342m2FIkQQsjGRkcLQgjpAwZnC3Ygpi4thBBCVkIF1IQQQgghhAwoSvYJIYQQQggZUJTsE0IIIYQQMqAo2SeEEEIIIWRAUbJPCCGEEELIgKJknxBCCCGEkAFFyT4hhBBCCCEDipJ9QgghhBBCBhRtqkUGhpSy2yEQQkhfUUrB930IIcA5h+u64JzmAQkZJJTsk4EQRRHq9TqSJAHnHNlsttshEUKWoZQCY6zbYWxoSinUajUEQQDOOaSUiKII+Xy+26ERQlqIkv01klJCSgmlFAzDoJmQLhJCoFKpgDEGy7LSf9NMPyG9JwxDeJ4HpRQsy0I2m4VhGN0Oa0NKkgRBEMC27fTEK4oihGHY5cgIIa1Eyf4aCCFQq9UghAAAGIaBQqEA06S3sxv038GyrPT/hRDp7YSQ3hBFEarVKjjnYIwhCAJIKVEsFjfsLL+UEkIIhGEIy7I6ehxRSgHAgvde304IGQw0Hb0Gvu8jiiJYlgXbttPkfyMLggC+76NarSKKom6HA8bYhk0eCOlVemwwTROGYcC2bcRxjCRJuhxZdyRJgkqlko6d5XK5o+OnYRgwTRNxHANAerWaJq4IGSyU7K+BTvR1MqkT/o1aNuJ5XnqlIwxDVCqVjh6wTNME5xxRFCFJEkRRBM45lQYQQnqa53kQQsCyLDiOA8YY6vV6x44lnHPk83lwzhGGIYQQyGazcBynI89PCOkMOn1fA72QSSeTUsoNO4sspYTv++kMkeM4EEKgXq/Dtu2OxGCaJorFImq1GpIkgWmayGazPXGFgRDyDNu2EQQBhBBgjEEIAdu2N+yJeZIk8167YRiI47ijZTSWZaFUKqXHMcMwNuzEFSGDipL9Ncjlcgtmr/XsyEakFylrnPOO13yapomhoaH033SwIqT32LaNQqGQLtB1HAe5XG7DTpYYhjHvOKK7iXX6/eCcb9jjFyEbASX7a2DbNorFIqIoSg9YnZrF7jWcc5imiSiK0g5FcRxT60tCyKLmjpcbNcnX9BVI3QFHN3ugxJsQ0koDlez/4Ac/wF/91V8t+rM77rgDw8PDLXsu27Y3bIJ/pnw+n7a6jKIImUyGkn1CyJL6IclXSqWlLe1Kvg3DSEsQ8/k8bNumxbGEkJYbyFHlzW9+M7Zs2TLvtlwu16VouiuOY0gpwTlPW1O22tya+eHh4XTBLCGE9CPdYS1JEjDGkMlkkMlk2vJchmHAsizauZYQ0jYDmexfccUVOP/887sdRtfpnRH1TpWZTKbpkx5dktNsLacu56FEnxDSz6SUaXcx0zTTXWZ1q9CV7qs77HDOkclk2jbJQgghzRrIZB9otDRzHGfDdnmIoghBEKQtQpVS8H0/3RtgpftWq9U02c/n89SKjRCyISRJgjiO5415uqXvcmOnPikIggCmaUIIgTiOUSwWKeEnhHTVQCb7H/zgB+H7PkzTxN69e/G2t70N27Zt63ZYHaVn5nVtLGMsvW05QgiUy+V0Fktv+qLLcwghZJDpDfn0FVGguR1l9QmB7pcPIF14S8k+IaSbBip7cxwHL3vZy3DppZcim81i//79uPfee/G+970Pn/nMZzA2NtbtEDtm7kFKH7gArFhiI4SYt4OinqHSl7QJIWSQ6YkO3R1HX+Fc6eqmUmreCQIhhPSKns3epJQQQjT1u7pU5QUveAFe8IIXpLdfffXV2Lt3Lz7wgQ/gH/7hH/CHf/iH8+53/PhxHD9+HAAwOTmJer2ePveZsSx2+2rp7g7r3YSrmXj0Acv3/XQTML0ATN9vsXjm/uzM51zu+frxPeq3mPTs4Nz7D+Lr7NV4ejGmXoqnnZ/PTr/ObDYLxhiiKIJpmshkMgs2mzozJr0hlZ7J1z9baZOqXnuPejGmVn6HCdmIejbZf/TRR/Hnf/7nTf3u5z//eezYsWPRn1100UW44IIL8POf/3zBz770pS/htttuS/99/fXXAwAmJiYWfayTJ082FU+nrBSPPmHSM1NCCHiet+J99IY3mj7oNbPwtt/eo25Ya0z79u0DsPjnc5BeZ7v0WjxA78W0nnj66fO52nhWGje1JEkQhmGalNq2jTiOm0p0e+09Anovpl6Lh5B+0bPJ/o4dO/BHf/RHTf3uSv3zN23ahKNHjy64/R3veAde85rXAGjM7N93330AgK1bt877PSklTp48ic2bN6+r04xSKi2HWe8sRzvjEUIgCIJ0K3fXdVcs4RnU96iTMS11kql97Wtfw759++Z9PvvxdfZrPL0YUyfj6ebns9fe9+ViWm1//l57j3oxpvWOnYRsdD2b7A8PD+NlL3tZSx7rxIkTKJVKC24fHx/H+Pg4AODYsWN44IEHACxd177eLcWVUuljtKKus13xrGfDsEF7j3oppjiO0/u36jHn6pXX2avx9GJMvRRPOz+fvfQ6m4lpLV3geu096sWYWvF3I2QjGqhvTblcXnDbgw8+iP3792Pv3r1diIgQQgghhJDu6dmZ/bV43/veh927d+O8885DLpfDr3/9a9x3333YtGkTXv/613c7PELI/2vv3mObqv8/jr/atR3rGFtlCwok3MfFcAfRcRG/iBhD+UNFF2EMAaMSlX+QBNEESfhDQuLlD2IiyCUSpyhDIREQFAgDwk1kkdvGAAkI4zJgbKPr2vP7g98qY93oZG3Pzp6PhD84Pd3nddpX2nfWs1MAABBTlhr2R48erQMHDujIkSPy+XzyeDx67rnnlJ2d/cDz+gEAAACrsdSwP3XqVE2dOjXeMQAAAABTsNQ5+wAAAAD+xbAPAAAAWBTDPgAAAGBRDPsAAACARTHsAwAAABbFsA8AAABYFMM+AAAAYFEM+wAAAIBFMewDAAAAFsWwDwAAAFgUwz4AAABgUQz7AAAAgEUx7AMAAAAWxbAPAAAAWBTDPgAAAGBRjngHAADgYdXU1CgQCEiSHA6HEhIS4pwIAMyBYd9EgsGgqqqqVFNTI7vdrqSkJDkcPEUA0Bi/369bt27JMAwZhiGHw6GUlBRePwFAnMZjGsFgUBUVFaqsrFRNTY18Pp9u3rypmpqaeEcDANMyDEMVFRWSJJfLpcTERAWDQVVWVsY5GQCYA8O+SQSDQfl8PrlcLjmdTrlcLgWDQd25cyfe0QDAtAzDUCAQqHPajt1uD53SAwCtHcO+SRiGIUmy2WyhbTabTcFgMF6RAMD0bDabEhIS6gz39w//ANCaMeybREJCgux2u/x+v6S7w38wGJTL5YpzMgAwL5vNpuTkZNlsNvl8Pvl8PiUkJMjtdsc7GgCYAn+9ZBJ2u10pKSkqLy/XnTt3ZLPZ5Ha7GfYB4AGcTqfatWvH1XgAIAyGfRNxOp1KS0sLnbrDlSQAIDIOh4PXTAAIg1dGk7Hb7bLbObsKAAAAD4+pEgAAALAohn0AAADAohj2AQAAAIti2AcAAAAsimEfAAAAsCiGfQAAAMCiGPYBAAAAi2LYBwAAACyKYR8AAACwKIZ9AAAAwKIY9gEAAACLcsQ7gNlcvXq1wdsuXbr0UD/b4XDI4/HoypUrqqmpeaifZcY8Zsz0sHlimamx7j1on5Z0nC01jxkzxTJPPPtptsfdjJla8+t5JN0EWjOG/f/ndrvldDq1fv36ereVl5fr0KFDGjp0qFJSUuKQztx5JPNlMlseKbJMTqdTbre73vaG+tlSj7M155HMlynSPC29n2bLI5GpufI01E0Aks0wDCPeIczixo0bqqysrLe9sLBQzz//vDZv3qz+/fvHIZm580jmy2S2PFJkmdxut9LS0sLeFq6fLfU4W3MeyXyZIs3T0vtptjwSmZorT2PdBFo7frN/j7S0tLAvFrUfHWZkZKhjx46xjlWP2fJI5stktjzSw2cK108rHmdzM1seyXyZmiNPS+in2fJIZIqE2fIALQ1/oAsAAABYVMLChQsXxjtES9C2bVuNHTvWFOcvSubLI5kvk9nySNHJ1FqO82GYLY9kvkzRytNajvNhkOnBzJYHaEk4Zx8AAACwKE7jAQAAACyKYR8AAACwKIZ9AAAAwKK49GYjrl+/ro0bN+rUqVMqLi5WVVWVFi9e3OB1fo8fP65Vq1bp9OnTcrvdGjVqlHJycpSUlBTVnNu3b9fnn38e9rbVq1fL4/FEbW2/36+1a9dqx44dun37trp27aopU6Zo8ODBUVuzIYWFhVqwYEHY25YsWaI+ffpEdf2qqirl5+fr5MmTKioq0u3btzVnzhyNGzeu3r7nz5/X8uXLdfz4cTkcDg0bNkwzZ85UampqRGvRzQczUzcl+kk/66Kf/4plN4HWiGG/ERcuXNCPP/6ojh07qkuXLjpx4kSD+5aUlOijjz5S586dNXPmTF27dk35+fm6ePGiYnXBo9dee00dOnSosy05OTmqa3722Wfas2ePJk2apMcee0y//fabFi1apMWLF6tfv35RXbshXq9XPXv2rLMtFtdmvnXrlvLy8pSRkaFu3bqpsLAw7H5Xr17V/Pnz5Xa7lZOTo6qqKm3YsEHnzp3T0qVL5XQ6H7gW3XwwM3ZTop/3o5/0M5bdBFolAw2qqKgwbt26ZRiGYezevdvwer3G0aNHw+67cOFCIzc316ioqAht27Jli+H1eo3Dhw9HNee2bdsMr9drnDp1Kqrr3O/kyZOG1+s11q9fH9rm8/mMN954w3j//fdjmsUwDOPo0aOG1+s1du/eHfO1DcMwqqurjevXrxuGYRinTp0yvF6vsW3btnr7LVu2zHjppZeM0tLS0LY//vjD8Hq9xi+//BLRWnSzcWbrpmHQT/r5L/pZVyy7CbRGnLPfCLfbHdE1fSsrK3XkyBE9/fTTcrvdoe3PPPOMkpKStHv37mjGrJclEAjEZK2CggLZ7XZNmDAhtM3lcmn8+PE6ceKErly5EpMc4cTycajldDoj+th/z549Gj58uDIyMkLbBg0apE6dOqmgoCCitehm48zcTYl+1qKf9FOKbTeB1ojTeJrB2bNnFQgE1KtXrzrbnU6nunXrppKSkpjk+PDDD1VVVSWHw6EhQ4ZoxowZUf34taSkRJ06darzJi1JmZmZkqQzZ87UeVGOlS+++EJVVVWy2+16/PHHNX369HrPTbxcu3ZNN2/erPcxuST16tVLhw4datb16Ka5uinRz3vRT/oZqVh3E7AShv1mUFZWJklhfzPh8Xh07NixqK6fmJiocePGqX///nK73SouLtZPP/2kefPm6dNPP43am0ZZWVmDxyzd/SO9WHI4HMrKytLQoUPVrl07nT9/Xvn5+Zo/f74++eQT9ejRI6Z5wql9TB555JF6t3k8HpWXl8vv9zfbuad0s654dVOin+HQz7roZ8Ni3U3ASlrNsB8MBlVTUxPRvk6nUzabLeKfXV1dHbrf/VwuV+j2SPyXnKNGjdKoUaNC25988kkNGTJE8+fP17p16zR79uyI12+K6urqBo9Zknw+X1TWbUjfvn3Vt2/f0P9HjBihrKwsvffee1qzZo0+/vjjmOYJJ1xXap/zhIQESVJ5ebnatm0b9v50MzJm66ZEPyNdrxb9jC2z9/NBXZHuPm4M+0B9rWbY/+uvvxq8rNj9li1bps6dO0f8s2tfaPx+f73bqqurQ7dHorly9uvXT5mZmTpy5EjEazeVy+Vq8Jilu781i7eOHTtqxIgR2rt3rwKBQGhgiZdwXbn/OZ8+fXqD96ebkWkJ3ZToJ/2si3427EFdkczzuAFm02qG/c6dO2vOnDkR7dvUayvX7l/7kfS9ysrKwn7s2JDmzJmenq4LFy5EvHZTeTyesB831z4OTTnuaEpPT1dNTY18Pl+9c2RjrfYxufdxq33ON2/erHPnzunNN99s8P50MzItpZsS/ZToZy362bBw3axVVlamlJQUfqsPNKDVDPsejyfsF3Q0hy5duighIUFFRUV1PhL2+/06c+aMRo4cGfHPas6cly9fjuoXjXTv3l2FhYWqrKys8yZw8uRJSVK3bt2itnZTXL58WS6XS23atIl3FLVv316pqakqLi4Obat9zn/44QdlZmY2a0/pprm7KdFP+kk/IxGum7WKiopM9ZgBZsOlN5tBcnKyBg4cqJ07d6qysjK0/ffff1dVVVWT3rD+i5s3b9bbdvDgQRUXF2vIkCFRWzcrK0vBYFBbtmwJbfP7/dq+fbsyMzNjfjWJcI/DmTNntH//fg0aNEh2uznq/tRTT+nAgQN1Lq/3559/6sKFC83eFbppjm5K9DMc+kk/myKW3QSspNX8Zv+/+u677yRJf//9t6S7b0K1V4h49dVXQ/vl5ORo3rx5+uCDDzRhwgRdu3ZNGzZs0ODBgzV06NCoZpw3b566d++unj17Kjk5WadPn9a2bduUnp6ul19+OWrr9u7dWyNHjtSaNWt048aN0LdAlpaW6t13343aug1ZsmSJEhMT1adPH6Wmpur8+fPasmWLEhMTlZubG5MMmzZtUkVFReij5v379+vq1auSpIkTJyo5OVmTJ09WQUGBFixYoEmTJoW+Kr5Lly569tlnI16LbjbMbN2U6Cf9/Bf9rC+W3QRaG5thGEa8Q5jZpEmTGrzt559/rvP/Y8eOadWqVSopKVFSUpJGjhypadOmRf08x2+++UYHDhxQaWmpfD6fPB6Phg0bpuzs7CafQ9tU1dXVWrt2rXbs2KHbt2+ra9eumjJlSlR/K9aQjRs3aufOnfrnn39UWVmp1NRUDRgwQNnZ2VH/uvdas2bNUmlpadjbvvrqK3Xo0EHS3QFoxYoVOnbsmBwOh4YNG6YZM2Y06fmim40zUzcl+nkv+kk/7xfLbgKtDcM+AAAAYFHxPwkPAAAAQFQw7AMAAAAWxbAPAAAAWBTDPgAAAGBRDPsAAACARTHsAwAAABbFsA8AAABYFMM+AAAAYFEM+wAAAIBFMewDiDmbzVbnn91uV1pamkaPHq3ly5ersS/23rdvn2bNmqXMzEylpKSoTZs26tq1q1555RXl5+crGAxGlCEQCOj777/X3LlzNWbMGCUnJ8tms2n69OnNdJQAAMSfzWjsXRUAosBms0mScnNzJd0dvE+fPq19+/bJMAxlZ2fr22+/rXMfv9+vt99+WytWrJAk9e7dW3379pXL5dKZM2d06NAhBYNB/e9//9P27dsfmOHGjRvyeDz1tufm5mrVqlUPeYQAAJiDI94BALRe9w/Vv/76q1544QXl5eVpypQpmjhxYui2adOmKS8vT5mZmVq5cqWysrLq3PfixYtatGiRtm7dGtHaTqdTOTk5GjZsmIYPH66TJ0/q9ddff+hjAgDATBj2AZjG+PHjlZOTo5UrV2rDhg2hYX/dunXKy8tThw4dtGvXLnXo0KHefTt27Kgvv/xSBQUFEa2VnJysNWvWhP5/7ty55jkIAABMhHP2AZjK4MGDJUnnz58PbVu6dKkkaeHChWEH/XuNHDkyeuEAAGhhGPYBmEp5ebkkKTExUZJ09epV7d+/XzabTdnZ2fGMBgBAi8OwD8A0DMPQpk2bJEkDBgyQJB05ckSS1L17d6WlpcUtGwAALRHDPoC4CwQCKioq0owZM7R3714lJiaG/lj22rVrkqSMjIx4RgQAoEXiD3QBxE3tJTjvlZKSotWrV6tHjx5xSAQAgLUw7AOIm9rr7NvtdrVr1079+/fXiy++WOf69+3bt5ckXblyJS4ZAQBoyRj2AcRNJF9eNXDgQElSSUmJbty4wXn7AAA0AefsAzC1jIwMPfHEEzIMQ3l5efGOAwBAi8KwD8D05s6dK+nudfZLS0sb3XfPnj2xiAQAQIvAsA/A9CZPnqzs7GxdvnxZY8aM0d69e+vtc+nSJb3zzjuaOnVqHBICAGBONsMwjHiHANC61F6FpykvP36/X2+99Za+/vprSVKfPn3Ur18/OZ1OnT17VgcPHlQgEND48eO1devWiH7m7NmzdfjwYUl3L/FZXFys9PT0OlcC2rdvX8QZAQAwG4Z9ADH3X4b9Wnv37tXy5cu1a9cuXbx4UYFAQI8++qhGjBihKVOmyOv1hr2kZzhjx47Vzp07G92Hl0gAQEvGsA8AAABYFOfsAwAAABbFsA8AAABYFMM+AAAAYFEM+wAAAIBFMewDAAAAFsWwDwAAAFgUwz4AAABgUQz7AAAAgEUx7AMAAAAWxbAPAAAAWBTDPgAAAGBRDPsAAACARf0fn2fqI617xqkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_C = ggplot(all_corrected_data_df[all_corrected_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\",\n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " )\\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#1976d2']) \\\n", - " + geom_point(data=all_corrected_data_df[all_corrected_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_C)\n", - "ggsave(plot=panel_C, filename=pca_corrected_file, dpi=300)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:simulate_expression_compendia] *", - "language": "python", - "name": "conda-env-simulate_expression_compendia-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/Pseudomonas_tests/Pseudomonas_experiment_limma.ipynb b/Pseudomonas_tests/Pseudomonas_experiment_limma.ipynb deleted file mode 100644 index 7a2acf1..0000000 --- a/Pseudomonas_tests/Pseudomonas_experiment_limma.ipynb +++ /dev/null @@ -1,1101 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pseudomonas experiment level analysis\n", - "\n", - "Main notebook to run experiment-level simulation experiment using *P. aeruginosa* gene expression data." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "import sys\n", - "import ast\n", - "import pandas as pd\n", - "import numpy as np\n", - "import random\n", - "from plotnine import (ggplot,\n", - " labs, \n", - " geom_line, \n", - " geom_point,\n", - " geom_errorbar,\n", - " aes, \n", - " ggsave, \n", - " theme_bw,\n", - " theme,\n", - " facet_wrap,\n", - " scale_color_manual,\n", - " guides, \n", - " guide_legend,\n", - " element_blank,\n", - " element_text,\n", - " element_rect,\n", - " element_line,\n", - " coords)\n", - "\n", - "from sklearn.decomposition import PCA\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(action='ignore')\n", - "\n", - "from ponyo import pipeline, utils\n", - "\n", - "from numpy.random import seed\n", - "randomState = 123\n", - "seed(randomState)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Read in config variables\n", - "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", - "config_file = os.path.abspath(os.path.join(base_dir,\n", - " \"configs\", \n", - " \"config_test_Pa_experiment_limma.tsv\"))\n", - "params = utils.read_config(config_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load parameters\n", - "local_dir = params[\"local_dir\"]\n", - "dataset_name = params['dataset_name']\n", - "analysis_name = params[\"simulation_type\"]\n", - "correction_method = params[\"correction_method\"]\n", - "lst_num_partitions = params[\"lst_num_partitions\"]\n", - "train_architecture = params['NN_architecture']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Input files\n", - "normalized_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_test.tsv\")\n", - "\n", - "metadata_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"metadata\",\n", - " \"sample_annotations.tsv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "normalized_processed_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_processed_test.txt.xz\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup directories" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.setup_dir(config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Process data\n", - "This pipeline is expecting data to be of the form sample x gene. The downloaded data is gene x sample." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.transpose_data(normalized_data_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Pre-process data" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Output file\n", - "experiment_id_file = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"data\",\n", - " \"metadata\", \n", - " \"experiment_ids.txt\")" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "There are 135 experiments in the compendium\n", - "There are 5 experiments with gene expression data\n", - "5 experiment ids saved to file\n" - ] - } - ], - "source": [ - "pipeline.create_experiment_id_file(metadata_file,\n", - " normalized_processed_data_file,\n", - " experiment_id_file,\n", - " config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train VAE" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# Directory containing log information from VAE training\n", - "vae_log_dir = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"logs\",\n", - " train_architecture)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dataset contains 11 samples and 5549 genes\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "tracking beta\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Train on 10 samples, validate on 1 samples\n", - "Epoch 1/5\n", - "10/10 [==============================] - 1s 117ms/step - loss: 3858.4126 - val_loss: 3735.3594\n", - "Epoch 2/5\n", - "10/10 [==============================] - 1s 58ms/step - loss: 3718.5757 - val_loss: 3637.9312\n", - "Epoch 3/5\n", - "10/10 [==============================] - 1s 61ms/step - loss: 3609.0437 - val_loss: 3538.1511\n", - "Epoch 4/5\n", - "10/10 [==============================] - 1s 54ms/step - loss: 3523.7488 - val_loss: 3493.7456\n", - "Epoch 5/5\n", - "10/10 [==============================] - 1s 53ms/step - loss: 3459.9624 - val_loss: 3830.6794\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAESCAYAAAArJ3joAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd4FOX2wPHvSSNAIAESaui9hRZCCRBCLypdEUQsWBDE8tMrer0qevWi14tIEREVRVGkCFJFFARCTyih9xZq6IQWkry/P2aDAWkJSWazez7Ps4/Ju7MzZ0H27Jk5875ijEEppZTKSh52B6CUUsr1abJRSimV5TTZKKWUynKabJRSSmU5TTZKKaWynCYbpZRSWU6TjVJKqSynyUYppVSW02SjlFIqy3nZHYAdAgMDTZkyZewOQymlcpSYmJgTxpigjLzWLZNNmTJliI6OtjsMpZTKUURkf0Zfq6fRlFJKZTlNNkoppbKcJhullFJZTpONUkqpLKfJRimlVJbTZKOUUirLabJRSimV5dwy2Rw+c4kLV5LsDkMppdyGWyabkxcS6TZmOXGnL9odilJKuQXbko2I+IrIahHZICKbRWSIY7yliKwVkfUiEiUiFRzjj4lIvGN8vYj0S7OvviKy0/Hoe6djly2Ul0NnLtFp1DKi953KujeplFIKsLeyuQK0MMbUAmoD7USkITAG6G2MqQ38ALyZ5jU/GWNqOx5fAohIQeBtoAEQBrwtIgVud2A/Xy9mDAgnf25vHh63kinRBzP/3SmllLrGtmRjLAmOX70dD+N45HeM+wOH77CrtsACY8wpY8xpYAHQ7k7HLx/kx/TnGhNWtiCvTo3l/TlbSE4xGXovSimlbs/WazYi4iki64HjWAljFdAPmCsicUAfYGial3QTkVgRmSoiJR1jJYC0pUmcY+zGYz0tItEiEh0fHw9AQB4fvnk8jL6NSjNu6V76fbuGc5evZv4bVUopN2drsjHGJDtOlwUDYSJSA3gJ6GCMCQbGA8Mcm88CyhhjQrCql2/TeawvjDGhxpjQoKC/Zsj29vRgSKca/LtzDZbuPEHXz5az/+SFTHh3SimlUjlFN5ox5gywCGgP1HJUOAA/AY0d25w0xlxxjH8J1HP8fAgomWZ3wY6xdHmkYWkmPBnGiYQrdBq9jBW7T2bgnSillLoZO7vRgkQkwPFzbqA1sBXwF5FKjs1SxxCRYmle/kDqODAfaCMiBRyNAW0cY+nWuHwgvwwIJ9AvF32+WsUPqw5kZDdKKaVuYOfiacWAb0XEEyvpTTbGzBaRp4BpIpICnAaecGw/SEQeAJKAU8BjAMaYUyLyHrDGsd27xpgM9zOXLpSXn59rzAs/ruON6RvZcew8b3asipenUxSBSimVI4kx7teBFRoaau60UmdyimHovK2MW7qXJhUCGd2rLv55vLMpQqWUcj4iEmOMCc3Ia/Xr+i14egj/7FiNj7qHsGrvSTp/tozd8Ql3fqFSSqm/0WRzBw+GluSHpxpy7tJVOo9expId8XaHpJRSOY4mm7tQv0xBZgwIp0RAbh4bv5rxy/bijqcflVJu7B4/8zTZ3KWSBfMwrX9jWlYtwpBZW3hj+kYSk1LsDksppbLH5p/v6eWabNIhby4vxj5SjwGR5flx9UH6fLWKUxcS7Q5LKaWyVkoyLP7onnahySadPDyEV9tW4dOetVl38AydRkex49h5u8NSSqmss3k6xG+7p11ossmgTrVLMPmZRly+mkLXz5bzx9ZjdoeklFKZL7WqCapyT7vRZHMPapcMYObAcMoE5qHfhGjGLt6tjQNKKdeyeTqc2A4Rr93TbjTZ3KNi/rmZ8kxjOtQoxn/mbeOVKbFcSUq2OyyllLp316qaqlCt8z3tSpNNJsjt48moXnV4qVUlpq2N4+EvVhJ//sqdX6iUUs4stapp/hp43Fu60GSTSUSEF1pV5LPeddly5BydRkWx+fBZu8NSSqmMSVvVVO10z7vTZJPJOtQsxtRnG2OA7mNW8OumI3aHpJRS6ZeJVQ1osskSNUr488uAcCoXzcez369l1MKd2jiglMo5UpJh8YeZVtWAJpssUzi/L5OebkiXOiX4+LcdDJq0nstXtXFAKZUDbJ4OJ3ZkWlUD9q5n4/J8vT0Z9mAtKhbx47/zt7P/5AXGPRpKkfy+doemlFI3l1rVFK6WaVUNaGWT5USE55pXYOwj9dh1PIEHRkWx4eAZu8NSSqmbS61qIjKvqgF7l4X2FZHVIrJBRDaLyBDHeEsRWSsi60UkSkQqOMZzichPIrJLRFaJSJk0+3rdMb5dRNra845ur031okzr3xgvDw8eHLuCmRsO2x2SUkpd77qq5oFM3bWdlc0VoIUxphZQG2gnIg2BMUBvY0xt4AfgTcf2TwKnjTEVgE+ADwFEpBrQE6gOtAM+cyw17XSqFsvPzIHhhAT7M+jHdfzvt+2kpGjjgFLKSWz6OUuqGrAx2RhL6tKX3o6HcTzyO8b9gdQSoBPwrePnqUBLERHH+CRjzBVjzF5gFxCWDW8hQwr55WJiv4Y8GBrMyIW7eG7iWi4mJtkdllLK3WVhVQM2X7MREU8RWQ8cBxYYY1YB/YC5IhIH9AGGOjYvARwEMMYkAWeBQmnHHeIcYzce62kRiRaR6Ph4e1fb9PHy4MNuIfzrvmr8tuUo3ces4NCZS7bGpJRyc5t+hpM7s6SqAZuTjTEm2XG6LBgIE5EawEtAB2NMMDAeGJZJx/rCGBNqjAkNCgrKjF3eExHhySZl+fqx+hw8dZFOo5YRs/+03WEppdzRtaqmepZUNeAk3WjGmDPAIqA9UMtR4QD8BDR2/HwIKAkgIl5Yp9hOph13CHaM5QjNKxdm+oDG5M3lycNfrGRaTJzdISml3M2maVZVk4n31dzIzm60IBEJcPycG2gNbAX8RaSSY7PUMYCZQF/Hz92Bhca6LX8m0NPRrVYWqAiszqa3kSkqFM7HjOfCCS1TgP+bsoH/zNtKsjYOKKWyQ9qqpsr9WXYYO2/qLAZ86+gc8wAmG2Nmi8hTwDQRSQFOA084tv8K+E5EdgGnsDrQMMZsFpHJwBYgCRhgjMlxt+oXyOvDt0+EMWTWZsYu3sOuYwkM71mbfL7edoemlHJlm6bByV3w4IQsq2oAxB3n7AoNDTXR0dF2h3FL363YxzuztlA+KC9fPlqfUoXy2B2SUsoVpSTD6DDw8oVnlt4x2YhIjDEmNCOHcoprNup6fRqVYcITYRw7d4VOo6NYueek3SEppVxRalWTRR1oaWmycVLhFQKZMSCcAnl9eOTLVUxafcDukJRSriT1Wk2RGlDlviw/nCYbJ1Y2MC/TnwuncYVABv+8kSGzNpOUnGJ3WEopV7BxarZVNaDJxun55/bm676hPBFelvHL9vH4N2s4e+mq3WEppXKy5CRY8lG2VTWgySZH8PL04K37qzG0a01W7jlJl8+WsSc+4c4vVEqpm8nGazWpNNnkID3DSvH9kw04c/EqnUcvI2rnCbtDUkrlNNeqmprZVtWAJpscp0G5QvwyIJxi/rnpO341E1bs0yWnlVJ3L7WqycLZAm5Gk00OVLJgHqY915jIykG89ctm3pyxiavaOKCUupPkJEcHWk2o3DFbD63JJofyy+XF2D6h9G9enomrDvDoV6s5fSHR7rCUUs5s01Q4tTvbqxrQZJOjeXoIr7WrwrAHaxGz/zSdP1vGruPn7Q5LKeWMkpNg8Ue2VDWgycYldK0bzKRnGnLhSjJdRi9n0fbjdoeklHI2NlY1oMnGZdQtVYCZA8MpWTAPT36zhi+X7tHGAaWUJbWqKZq9HWhpabJxIcUDcjO1fyPaVi/Kv+ds5R9TY7mSlOMmwFZKZbbUqiZiMIjYEoImGxeTx8eL0b3qMqhlRabExNF73CpOJFyxOyyllF1SO9CK1oQq2X+tJpUmGxfk4SG83LoSIx+uw8ZDZ+k0ahlbj5yzOyyllB02ToFTe2ytasDelTp9RWS1iGwQkc0iMsQxvlRE1jseh0VkhmO8uYicTfPcW2n21U5EtovILhEZbNd7cjb31yrOlGcbkZSSQrcxy/lt81G7Q1JKZafU2QJsrmrA3srmCtDCGFMLqA20E5GGxpimxpjaxpjawArg5zSvWZr6nDHmXQDHSp+jgfZANeBhEamWvW/FeYUEBzBzYBMqFvbjme9jGL1olzYOKOUuUqua5q/bWtWAjcnGWFJnk/R2PK59CopIfqAFMOMOuwoDdhlj9hhjEoFJQKcsCDnHKpLfl5+eacQDtYrz3/nbeemn9Vy+qo0DSrm0tFVN5Q52R2PvNRsR8RSR9cBxYIExZlWapzsDfxhj0l5saOQ47TZPRKo7xkoAB9NsE+cYU2n4ensy/KHavNq2MjPWH+ahL1Zy/Nxlu8NSSmWVjZOdpqoBm5ONMSbZcbosGAgTkRppnn4Y+DHN72uB0o7TbiO5c8VzHRF5WkSiRSQ6Pj7+XkPPkUSEAZEV+PyReuw8dp4HRi1jY9xZu8NSSmW2tPfVOEFVA07SjWaMOQMsAtoBiEgg1umxOWm2OZd62s0YMxfwdmx3CCiZZnfBjrEbj/GFMSbUGBMaFBSUZe8lJ2hXoyhTn22Mp4fQY+xy5sQesTskpVRm2jgZTu91mqoG7O1GCxKRAMfPuYHWwDbH092B2caYy2m2Lypi/amJSBhW7CeBNUBFESkrIj5AT2Bm9r2TnKla8fz8MjCcGsX9GfDDWj5ZsIOUFG0cUCrHu1bVhDhNVQP2VjbFgEUiEouVMBYYY2Y7nuvJ9afQwEpAm0RkAzAC6OloMkgCBgLzga3AZGPM5mx5BzlcoF8uJj7VgO71gvn0j50M/HEtlxK1cUCpHM0JqxoAccc22NDQUBMdHW13GE7DGMOXS/fywbytVC+en3GPhlLMP7fdYSml0is5CUaFQq588MySTE82IhJjjAnNyGud4pqNspeI8FSzcnzdtz77TlzkgVHLWHfgtN1hKaXSK/Ynp6xqwF2TzfkjcFm7sG4UWaUw059rTG5vTx76YiXT18XZHZJS6m4lJ8GS/0KxWlC5vd3R/I2bJptjMKIuxHwDKXqNIq2KRfIxY0A4dUoG8NJPG/jw123aOKBUTuDEVQ24a7IJqgSBFWHWC/BFBOxbZndETqVgXh++e7IBD4eVYsyfu3n6uxgSriTZHZZS6lbSVjWV2tkdzU25Z7LxzgOPz4PuX8PF0/BNB5jyGJw5YHdkTsPHy4MPutRgyAPVWbT9ON3HLOfgqYt2h6WUuhknr2rAXZMNWH8hNbrBwDXWX9D2X2FUfVj0ASResDs6pyAi9G1chm8er8/hM5foNHoZa/adsjsspVRayVetOdCcuKoBd042qXzyQPPBVtKp0tFaZGhkKMROATdsC7+ZphWDmDEgnIDc3vQat5LJaw7e+UVKqewR+xOc3ufUVQ1osvlLQEnrtNrjv4JfEPzcD75uC4fW2h2ZUygX5Mf058JpWK4Q/5gWy79nbyFZGweUslfyVce1mtpOXdWAJpu/K90InloED4yyZkwdFwkzBlgdbG7OP4834x+rz2ONy/Bl1F6e+GYN5y5ftTsspdxXDqlqQJPNzXl4Qt0+8PxaaDzI+gsdWReiPoGkK3ZHZysvTw/eeaA6H3SpybJdJ+gyehn7Tug1LqWy3XVVTVu7o7kjTTa345sf2rwHA1ZBmabw+zswugFsm+P213N6NSjFd0824OSFRO4bGcXEVfv1fhylstOGSTmmqgFNNnenUHnoNQke+Rk8fWBSL/iuMxzbYndktmpUvhCzBjahVkl//jl9E72+XKlVjlLZIYdVNaDJJn0qtIT+y6D9R3B4HXzeBOa+Chfdtx24ZME8fP9kAz7sVpPNh8/RdvgSvliym6TkFLtDU8p1bZgEZ/bnmKoGdNbnjLtwEv78AKK/hlz5IfKfEPoEeHplTpA50LFzl3lzxiYWbDlGSLA/H3YLoWqx/HaHpZRrSb4KI+tBnoJWM1M2Jhud9dkOeQtBx//Bs1FQLATmvWpVOrsX2R2ZbYrk9+WLPvUY1asOh05f4v6RUQxbsIMrSTr/nFKZJgdWNaDJ5t4VqQ6PzoSHJkLSJetazo+94ORuuyOzhYhwX0hxfn85ggdqFWfEHzu5b0QUa3XJAqXuXeq1muJ1oGIbu6NJFzuXhfYVkdUiskFENovIEMf4UhFZ73gcFpEZjnERkREisktEYkWkbpp99RWRnY5HXxveDFS9D55bBS3fhj1/wmcNYcFbcPlctofjDArk9WHYQ7UZ/3h9LlxJotuY5bw7awsXE3VCT6UybMOPObKqARuv2YiIAHmNMQki4g1EAS8YY1am2WYa8IsxZoKIdACeBzoADYBPjTENRKQgEA2EAgaIAeoZY275VTrLV+o8dwT+eBc2/AB5C0Ort6FWL/Bwz0Ly/OWrfPTrdr5buZ+SBXMztGsI4RUC7Q5LqZwl+ap1v1+eQHhqoS3JJkdeszGWBMev3o7HtcwnIvmBFsAMx1AnYILjdSuBABEpBrQFFhhjTjkSzALA3nkb8heDLmOg30IoUBp+GWDNRHBgla1h2SWfrzfvda7B5Gca4eXhQe8vV/Ha1FjOXtLZB5S6axt+tGamz4FVDdh8zUZEPEVkPXAcK2Gk/TTuDPxhjEk9D1UCSDsDZJxj7Fbj9guuB08ugK7jIOEYfN0Gpj4JZ91zBcywsgWZ90JT+jcvz9S1cbQetpj5m4/aHZZSzu/atZq6ULG13dFkiK3JxhiTbIypDQQDYSJSI83TDwM/ZtaxRORpEYkWkej4+PjM2u3dHBhCHoSB0dDsVdg6y5pV+s8PIdH91ofx9fbktXZV+GVAOIF+uXjmuxgGTFxL/Hn3ngZIqdvK4VUNOEk3mjHmDLAIx+kvEQkEwoA5aTY7BJRM83uwY+xW4zce4wtjTKgxJjQoKChz38DdyOUHLd60ljKo1Na6R2d0GGz62S2nvqlRwp9fBobzatvKLNhyjNafLObntXG4431fSt1WUmKOr2rA3m60IBEJcPycG2gNbHM83R2YbYy5nOYlM4FHHV1pDYGzxpgjwHygjYgUEJECQBvHmHMqUBoe/BYemwO+ATD1cRjfAY5ssDuybOft6cGAyArMfaEp5YP8eHnyBh4bv4ZDZy7ZHZpSzsMFqhqwt7IpBiwSkVhgDdY1m9mO53ry91Noc4E9wC5gHPAcgDHmFPCeYx9rgHcdY86tTBN4ZjHcNxxObIexETDzeUjIxlN8TqJCYT+mPNOIIQ9UZ82+U7QZtpgJK/bpxJ5KJSXC0o+hRL0cXdWATlfjHC6dgcUfweqx4J0HIv4BYc+Al4/dkWW7g6cu8sb0jSzdeYL6ZQowtFsI5YP87A5LKXvEfAuzBkHvqU6RbO6l9TlTko3jnpmWQAGsCuXMPe80Czldskl1YifMfwN2/gYFy0O7/1h3Cefg0jkjjDFMW3uI92Zv4dLVZF5sVZGnmpbD29MpLjEqlT2SEmFUPcgbBP3+cIrPgWy9z0ZEhojIwhuG52JdJ/kJ2CoiZTMSjNsLrAi9p0CvKSAe8MODMLE7xG+3O7JsJSJ0rxfMgpeb0bJKYT76dTudRy9j06GzdoemVPbZ8INLXKtJlZGvij2A9am/iMj9WDdWfgT0AjyBNzMlOndVqQ30Xw5tP4CDa+CzRjBvMFxyr/nFCufzZcwj9RjTuy7Hzl2h0+hl/Hf+Ni5f1Yk9lYtLSoQl/7Ou1VRoZXc0mSIjySYYSPtVuzOw2xjzujFmEvAZ1ik1dS+8fKDRABi0Fuo+Cqs+hxF1Yc1XkOJeH7btaxbjj5cj6FqnBKMX7abDiKVE73P+HhClMmzDD3DWdaoayFiyufGdt+L6VuMDQJEMR6SulzcQ7h8OzyyBwtVgzsswthnsXWJ3ZNnKP483/+1RiwlPhHHlago9xq7g7V82kXBFJ/ZULuZaVRPqMlUNZCzZ7Ma6lwXH/S4lgd/SPF8C0JPrma1YCDw2G3p8a80k/e398NMj1hrkbqRZpSB+e6kZfRuVYcLK/bT9ZAmLd7hfu7hyYS5Y1UAGutFE5BlgDLAZ65TaGaCKMeaK4/lfAS9jjNOmZKftRrtbVy/BilGwdJh1Sq3xQGjysjVLgRuJ2X+Kf0yNZXf8BbrWLcFb91UjII/7tYsrF5KUaK3C6VcY+v3udMkmW7vRjDFjgSeBncB0oG2aRFMQCCIT5zRTN+Gd25pn7fkYqN4Zlv7P+h90/Y+QkmJ3dNmmXumCzBnUlIGRFZi5/jCthi1m7sYjdoelVMatn+iSVQ3oTZ2u4eBqmPcaHF5rda+0/wiCM/TlI8fafPgsr02LZdOhc7StXoT3OtWgcH5fu8NS6u4lJVrr1fgVccqqBpxgPRvHfGWtRKRH6nxnKhuVDLNu+ur8ubV8wZct4ednrEXc3ET14v7MeC6cwe2r8Of2eFoNW8zk6IM6safKOdZPhLMHIdL1qhrI2DWbIUBTY0yLNGPzsJoGBDgGNDbG7M3MQDOTy1U2aV05b13LWTEKPLyh6cvQaCB4u8+3/D3xCQyetpHV+07RpEIg/+lak5IF89gdllK3llrV5CtqrYHlpMkmuysbvanTmeXKZy1DPWA1lI+Ehe/B6Pqw5Re3WcqgXJAfk55uyHuda7D+4BnafLKEr6P2kqwTeypnlVrVNB/stInmXulNna6qYFnoOREenQk+fjD5Uatd+ugmuyPLFh4eQp+GpfntpWY0KFeQd2dvocfny9l57LzdoSl1vaREq8knuD6Ud92PTr2p09WVi4BnlkLH/8GxTTC2Kcx+CS6ctDuybFE8IDfjH6vP8Idqs/fEBTqOiGLkHzu5muw+XXvKya3/3uWrGtCbOt2DpxfU7wfPr4Wwp61py0fWgZVjrLXNXZyI0LlOCRa8HEHbGkX534Id3D8yitg4p56cXLmD1NkCgsNcuqqBjCWbMUAXEdkIzAP2c31lEw64x7manCZPQWj/oTXJZ4l68OtgGNMYdv5ud2TZItAvFyMfrsO4R0M5fTGRzqOX8Z+5W3ViT2Wf9d/DuTiXr2rAxps6RcRXRFaLyAYR2ezocktto35fRHaIyFYRGeQYby4iZ0VkvePxVpp9tROR7SKyS0QGp/c9uZ3CVeCRn+HhnyAlCSZ2g4kPwolddkeWLVpXK8JvL0XwUP2SjF2yh3bDl7Byj3ucVlRO5LqqpsWdt8/hbLup07HgWl5jTIKIeANRwAtAVSASeMwYkyIihY0xx0WkOfCKMea+G/bjCewAWgNxWEtDP2yM2XKrY7t063N6JV2BVWOtlUKTLkODZ6yVQn397Y4sWyzfdYLBP2/kwKmL9G5QisHtq5DP19vusJQ7iP7aun76yM9QIWecQrPtpk4RKSoijRyPoul5rbEkOH71djwM0B941xiT4tju+B12FQbsMsbsMcYkApOATul6I+7MKxeED7KWMqjVE1aMtpYyiPnGLZYyaFwhkPkvNqNfk7L8uPoAbT5ZwsJtx+wOS7m6pCtuVdVABpONI7msBg5hVSRRwCERWeVoGrjb/XiKyHrgONZy0quA8sBDIhItIvNEpGKalzRynHabJyLVHWMlgINptolzjKn08CsMnUbB039aK4bOegG+iIB9y+yOLMvl9vHkzfuqMa1/Y/L5evHEN9G8OGkdpy4k2h2aclXrHNdqXHS2gJvJyLLQYcBCoAowDnjJ8RiHdQpsoYjUv5t9GWOSjTG1se7dCRORGkAu4LKjVBsHfO3YfC1Q2hhTCxgJzEhn3E87Elh0fLxOSX9LxWvD4/Og+9dw8TR80wGmPGYtT+vi6pQqwOznm/JCy4rM2XiEVsMWM3PDYZ3yRmWupCvWLB8lG0C5SLujyTYZma7mV6yk0tgYc+iG54oDK4Atxpj26dzvW8BFoB/Q3hiz13Fd54wx5m8XEERkHxAKVATeMca0dYy/DmCM+c+tjqXXbO5S4kVYPgKihgMGwl+wHj557Y4sy207eo7XpsayIe4sraoW5t+da1LU332m/FFZaM1X1iKIfabnuFNo2X3NphHw+Y2JBsAYcxgYCzS+005EJCh10k4RyY11gX8bVsWSmu4jsC7+p14fEsfPYY7YT2I1BFQUkbIi4gP0BGZm4H2pG/nksVoyB66BKh1h8Ycwqj7ETnH5qW+qFM3Pz8+F82bHqkTtOkHrYYv5cfUBrXLUvXHTqgYylmw8gdudzL7i2OZOigGLRCQWK2EsMMbMBoYC3Rz38fwHq9IB6A5sEpENwAigp6PJIAkYiHWvz1ZgsjFmcwbel7qVgJLWabXHf7WWqf65H3zdFg6ttTuyLOXpIfRrWo75LzajRgl/Xv95I73GrWLfiQt2h6ZyqnXfuc19NTfKyGm0ZUAA0NAYc/6G5/yAVcApY0zTTIsyk+lptHuQkmJNGvjHELgQD7UfgZZvQT7XnqHIGMOkNQf5YM5Wrqak8H+tK/NEk7J4erjXB4a6B0lXYEQd8A+GJ+bnyGST3afR/o3VHLBRRF4XkS6OxxtYMwdUBt7PSDAqB/DwgLp9rKlvGg+C2J+sVUKXj3TpqW9EhIfDSrHg5QiaVAjk/blb6frZMrYf1Yk91V1a9x2cO+SSq3DejQzd1CkiDwLDgaJY98aANUHnYeBFY8zUTIswC2hlk4lO7oZfX4ed8yGwkjUdTg676Jlexhhmxx7hnZmbOXf5Ks81r8CAyAr4eGXKWoTKFV2rakrCE7/m2GST7Td1GmMmY03A2QhrDZteQEOgNHBcRN7NyH5VDlSoPPSebE19k3wVvusCPz3i0q3SIsL9tYqz4OUIOtYsxqd/7OS+kUtZd+C03aEpZ3WtqnG/azWpMn26GhH5J9YMAHfTJGALrWyyyNXL1gqhS/8HJgWavGzNTuCd2+7IstTCbcf45/RNHD13mSfCy/J/bSqRx8fL7rCUs3CRqgZsnK5Gqet4+0KzV6xW6crt4c8PYHQYbJvj0q3SLaoU4beXmtG7QSm+itpLu+FLWb7rhN1hKWexdoLbVzWgyUZlBf9g6PEN9J0F3nlhUi/4vhuc2Gl3ZFkmn683/+5ck0lPN8TTQ+j15SoGT4vl7CXXbZpQdyH1vppSjaBcc7v/jqL0AAAgAElEQVSjsZUmG5V1yjaDZ5dC2/9A3Br4rBEseAuuuG4HV8NyhZj3QlOeiSjH5OiDtB62mN82H7U7LGWXtRPg/GG3r2pAk43Kap7e0Og5eD4GQh6CZZ+6/CwEvt6evN6+KjMGhFMwrw9PfxfDwB/WciLhit2hqeyUtqopG2F3NLa7qwYBEXkiHfu8D+ikDQLqpg6ugXmvwuF1UKoxdPgIita0O6osczU5hbGLdzPij13kyeXJ2/dXo3PtEoibf8t1C6vHwdxX4NFfXOYU2r00CNxtsknBup/mbv+FGE026pZSUqxW0D+GwKXTEPokRL5hLVvtonYdP88/psay9sAZmlcO4v0uNSkR4Npdem7t6mWrA61AaWsWdRf5cpEdySbdNaAxZnFGAsoOmmycxKXTsOgDWPMl+AZAq7ehTh/wcNrvKfckOcUwYcU+Pvp1Ox4CgztUpXdYKTx0yhvXc62qmQnlXOcUWpYnG1ejycbJHN0Ic/8BB5ZDsdrQ4WMoeVdLIuVIB09d5I3pG1m68wRhZQoytFtNygX52R2WyizXqpoy8Phcl6lqQO+zUTld0ZrWP8quX0LCMfiqFcx4DhLutCJ4zlSyYB4mPBHGf7uHsO3oOdp9upQxf+4mKTnF7tBUZlj3nXag3YRWNsq5XDkPSz6GFaOtmQeavw5hT1ldbS7o+LnL/OuXTczffIwaJfLzUbdaVCue3+6wVEa5cFUDWtkoV5IrH7QeAs+tgJJhMP91+Lwp7HHaS4D3pHB+X8b2CWVM77ocPXuFB0ZFMWTWZo6fv2x3aCoj9L6aW9LKRjkvY2D7PPh1MJzZD9U6Q5t/W4u5uaAzFxMZOm8bU2Li8PYU+jQszTMR5Qn0y2V3aOpuXL0MI2pDwXLw2ByXTDY5srIREV8RWS0iG0Rks4gMcYyLiLwvIjtEZKuIDEozPkJEdolIrIjUTbOvviKy0/Hoa9d7UplMBKp0gAGrIPKfsONX64bQJf+1/mG7mIA8PgztFsIfL0fQoWYxvoraS9MPF/GfeVs5deF2i+Mqp7B2Apw/olXNLdhW2Yh1V1teY0yCiHgDUcALQFUgEnjMGJMiIoWNMcdFpAPwPNABaAB8aoxpICIFgWggFOteoBignjHmlvO9a2WTQ505APP/CVtnWufE230IldvZHVWW2R2fwMg/dvLLhsPk8fakb+MyPNW0HAXy+tgdmrqRG1Q1kEMrG2NJcPzq7XgYoD/WEgUpju1SW5I6ARMcr1sJBIhIMaAtsMAYc8qRYBYArvsJ5M4CSsFD30GfGeDpAz8+BBN7WAu4uaDyQX4M71mHBS81o0XVIoxZvJumHy3if79t5+xFneDTqWhVc0e2NgiIiKeIrAeOYyWMVUB54CERiRaReSJS0bF5CeBgmpfHOcZuNX7jsZ527DM6Pj4+K96Oyi7lI+HZZdb1m/0r4LOG8PsQSLxgd2RZokLhfIx8uA7zX2xGRKUgRi7cRZMPF/LJgh06q7QzuHoZooZB6XAo09TuaJyWrcnGGJNsjKkNBANhIlIDyAVcdpRq44CvM+lYXxhjQo0xoUFBQZmxS2UnLx9o/Dw8Hw01uln/2EfVh03TXHaCz0pF8jG6d13mvdCU8AqBfPrHTpp+uJBPf9/JucuadGyz9lutau6CU7Q+G2POAIuwTn/FAT87npoOhDh+PoS1FHWqYMfYrcaVO8hXFLp8Dk/8BnkKwdQn4Nv74dhmuyPLMlWL5efzPvWYM6gJDcoV4pPfd9D0w0WMWriThCtJdofnXq5etmZ2Lt3EWlJD3ZKd3WhBIhLg+Dk30BrYBszAahAAiAB2OH6eCTzq6EprCJw1xhwB5gNtRKSAiBQA2jjGlDsp1QCe/hPu+wSObbLuzZn3Glw6Y3dkWaZ6cX/GPRrKrIFNCC1dgI9/20HTDxfy2Z+7uKBJJ3us/RYSjlpVjbotO7vRQoBvAU+spDfZGPOuIwFNBEoBCcCzxpgNju61UVjVz0XgcWNMtGNfTwBvOHb9vjFm/O2Ord1oLu7iKVj4b4gZD7kLQqt3oHZv8HCKQj7LbDh4huG/72DR9ngK5vXhmWbl6NOoNHl8vOwOzTVdvQyf1oJCFeDxOXZHky10Is500mTjJo5ssCb4PLgSStSDDv+1/uvi1h44zfDfd7JkRzyBfj48G1Ge3g1Kk9vHNWfTts2qsTDvH9B3NpR1j8YATTbppMnGjRgDsZNhwb+siT3rPGJVOnkD7Y4sy8XsP8UnC3YStesEQfly0T+iPL0alMLXW5POPbt6CT6t7VZVDWiySTdNNm7o8jlY8hGsHAM+ea0ZCUKfBE/XP8W0eu8pPlmwgxV7TlI4Xy4GRFbgofolNenci5Wfw6+vuVVVA5ps0k2TjRuL3241DuxZBIWrW8tSl2lid1TZYsXuk3zy+w5W7z1F0fy+DGhRgQdDg8nlpUknXVKrmsCK8Nhsu6PJVjlyBgGlbBFUGfpMh4e+t5Yz+Kaj1S591vW75RuVL8RPTzfkh34NCC6Qm3/N2ETkf//kh1UHSEzStXTuWoyjAy3iNbsjyVG0slHuK/EiLPsUlg0H8YRmr0CjAeDl+rMsG2OI2nWCYQt2sO7AGUoE5Ob5FhXoVi8Yb0/9DnpLblzVgFY2SmWMTx6IfN2aVbp8JPwxBD5rBDt+szuyLCciNK0YxM/9G/PN4/UJzJeLwT9vpMX//mRy9EFdNfRWYr7R+2oySCsbpVLt+t26nnNyF1RqD+0+sGbxdQPGGBZtP84nC3ay8dBZyhTKw/MtKtKpdnG8tNKxXL1k3VcTWMktqxrQykapzFGhFfRfAa3fhX1LYXRD6+bQxIt2R5blRIQWVYowc2A44x4NJY+PF/83ZQNtPlnCjHWHSE5xvy+lfxPzDSQc06omg7SyUepmzh2BBW/BxsmQPxjavg/VOrnNRIvGGOZvPsbw33ew7eh5ygfl5YVWlehYsxieHu7xZ3AdrWoArWyUynz5i0G3cfD4PMhdAKb0hQkPwPFtdkeWLUSEdjWKMndQU8b0rounhzDox3W0G76E2bGHSXG3SkermnumlY1Sd5KcZM2ztvDfkJgAYc9A89fA19/uyLJNSoph7qYjDP99J7uOJ1C5SD5ebFWRttWL4uHqlY5WNddoZaNUVvL0grCn4Pm11nQ3Kz+DkaGw/gdIcY+uLQ8P4b6Q4sx/sRmf9qzN1ZQU+k9cS8eRUczffBSX/tIaPd5R1bxudyQ5mlY2SqXX4XUw91WIWwPB9a0JPovXsTuqbJWcYpi54RAj/tjF3hMXqFEiPy+2rETLqoURV7qulVrVBFWGvrPsjsZ2WtkolZ2K17EWa+s8Bk7vgy8iYdYLcOGk3ZFlG08PoUudYBa81IyPe9Ti3KUk+k2IptPoZSzadtx1Kp3UqiZCr9XcK61slLoXl8/Cnx/Cqs8hVz5o8SaEPgEe7jXf2NXkFKavPcSIhTuJO32J2iUDeKl1JZpVDMy5lY5WNX+jlY1SdvH1t27+7L8MioXA3FdgbATsX2F3ZNnK29ODB+uXZNErzRnatSbx56/Q9+vVdBuznKU743NmpaNVTaayc1loXxFZLSIbRGSziAxxjH8jIntFZL3jUdsx3lxEzqYZfyvNvtqJyHYR2SUi+n+Gyn6Fq8KjM6HHt3DpNIxvB9Oesu7XcSPenh70DCvFolea836XGhw5e5k+X63mwbErWL77hN3h3b3EixD1CZRtBmXC7Y7GJdi5LLQAeY0xCSLiDUQBLwDPArONMVNv2L458Iox5r4bxj2BHUBrIA5YAzxsjNlyq2PraTSVpRIvWB9Uy0aApzdE/AMa9AcvH7sjy3ZXkpKZvOYgoxbt4ti5KzQoW5CXWleiYblCdod2eytGw/w3rPusSje2OxqnkSNPoxlLguNXb8cjI5kvDNhljNljjEkEJgGdMilMpdLPJ6917WbASijT1JqJYExj2PWH3ZFlu1xenvRpVIbFr0byzv3V2HPiAj2/WEmvcStZs++U3eHdXOJFiBoOZSM00WQiW6/ZiIiniKwHjgMLjDGrHE+9LyKxIvKJiKSd772R47TbPBGp7hgrARxMs02cY+zGYz0tItEiEh0fH58Vb0ep6xUsB70mQa8pYJLh+64wqbfVweZmfL09eSy8LEv/Ecm/7qvGjmMJ9Ph8BX2+WkXM/tN2h3e9mPFw4bjOFpDJnKIbTUQCgOnA88BJ4CjgA3wB7DbGvCsi+YEUx2m3DsCnxpiKItIdaGeM6efYVx+ggTFm4K2Op6fRVLZLumKdmlnyXzApEP4iNHkRvHPbHZktLiUm8/3K/Xy+eDcnLyQSUSmIl1pXonbJAHsDS7xodaAVrgp9Z9obixPKkafR0jLGnAEWYSWNI45TbFeA8VinyTDGnEs97WaMmQt4i0ggcAgomWZ3wY4xpZyHVy5o+jIMjIYqHWHxUBgVBltngRN84ctuuX08eapZOZa+Fsng9lWIjTtD59HLeHz8amLjztgXWPTXjqpGZwvIbHZ2owU5KhpEJDfWBf5tIlLMMSZAZ2CT4/eijjFEJAwr9pNYDQEVRaSsiPgAPQH9SqKck38J6P419J0Nufzgp0fguy4Qv8PuyGyRx8eLZyPKs/S1FrzatjLrDp7hgVHL6PftGjYdOpu9wSRetFZtLdccSjfK3mO7ATsrm2LAIhGJxUoYC4wxs4GJIrIR2AgEAv92bN8d2CQiG4ARQE9HBZQEDATmA1uBycaYzdn8XpRKn7JN4Zml0P4jOLQWxjSC396Ey+fsjswWfrm8GBBZgaX/iOSVNpVYvfcU942M4ukJ0Ww5nE1/JtFfw4V4va8mizjFNZvsptdslFNJiLeWpF73PfgVhvpPWctUF6ttTQLqhs5dvsr4qH18GbWH85eTaF+jKC+0qkiVovmz5oCJF+HTEChSHR79JWuO4QLu5ZqNJhulnEVcjFXdHFhu/Z4rv9U6XS7CasMNquw2i7elOnvpKl9F7WV81F7OX0miY0gxXmxZkYpF8mXugZaPgt/+CY//qqfQbkOTTTppslFO7cIJ2LsE9i6GPX/+1SrtV/SvxFMuAvyD7YwyW525mMiXS/cyftleLl5N5v6Q4gxqWZEKhf3ufeda1dw1TTbppMlG5Sin98GexY7ksxguOqZ9KVTBuphdNsK6BpS7gI1BZo9TFxIZt3QP3y7fx+WryXSqXYLnW1SgXNA9JJ3lI62K8on5UKph5gXrgjTZpJMmG5VjpaTA8S1/JZ79y6zVQxEoXttR9TS3PjRd+B6ekwlX+GLJHias2M+VpGQ61ynBoBYVKROYN307Srxg3VdTpAY8OiNrgnUhmmzSSZONchnJV+FQjJV49vxpLeiWchU8c0HJMCvxlGvuss0GJxKuMHbxbias2E9SiqFrnRI836IipQrlubsdaFWTLpps0kmTjXJZVxLgwAor8exdDEc3WuNpmw3KNYfASi7VbHD8/GU+/3MP36/aT0qKoXu9YAZEVqBkwdskHa1q0k2TTTppslFuI7XZIDX53NhsUK65derN/2/TCeZIx85dZsyfu/lh1QEMhu71SvJY4zJULnqT7rVrVc1vUKpB9gebA2mySSdNNsptuUmzwZGzl/hs0W5+WnOQxOQUQoL96VEvmPtrFScgj49V1QwPsRa86zPd7nBzDE026aTJRiluaDb4E/Ytg6sXcKVmg1MXEpmx7hBTYuLYeuQcPp4etK5ehJfz/Er59R9qVZNOmmzSSZONUjeRlGg1G6RWPXGrISXJajYo1eCv5JNDmw02Hz7LlOg45q/bzayUAezyKMeSBmPpXi/43lqn3Ygmm3TSZKPUXUjbbLBnMRxLbTbwhzJNcmyzQdLS4Xj98TbvF/2Urw8UJjnFUK90AXrUC6ZjSDHy+XrbHaLT0mSTTjdLNlevXiUuLo7Lly/bFJVKD19fX4KDg/H21g+GbOMKzQY3XKs5fu4y0x2n2XYdT8DX24P2NYrRo14wDcsVwsMj5yTR7KDJJp1ulmz27t1Lvnz5KFSoEJKDvqW5I2MMJ0+e5Pz585QtW9bucNzXLZsNKv41rY6zNRssGwEL/gVPLrDuQ3IwxrD+4BmmxMQxa8Nhzl9OIrhAbrrVDaZ7veDbt1C7EU026XSzZLN161aqVKmiiSaHMMawbds2qlatancoCv5qNkitelKbDcQDitVyjmaDa1VNLejz8y03u3w1mfmbjzI1Jo6oXScwBhqWK0iPeiVpX7MoeXxy3vWqzKLJJp1ulWz0gytn0b8zJ3Zds8GfjpkNbG42WPYpLHjrb1XN7Rw6c4npa+OYGhPHvpMX8cvlRceaxegeGkxo6QJu9+U0RyYbEfEFlgC5AC9gqjHmbRH5BogAUpfpe8wYs96xSuenQAfgomN8rWNffYE3Hdv/2xjz7e2O7YzJ5uTJk7Rs2RKAo0eP4unpSVBQEACrV6/Gx8fnjvt4/PHHGTx4MJUrV77lNqNHjyYgIIDevXvfc8xNmjRh1KhR1K5d+573lRF2/52pdLC72SDxAgyvaSW321Q1t2KMYc2+00yJPsicjUe4mJhM2cC8dK8XTNe6JSjmnzNbw9MrpyYbAfIaYxJExBuIAl4AngVmG2Om3rB9B+B5rGTTAPjUGNNARAoC0UAoYIAYoJ4x5vStju2MySatd955Bz8/P1555ZXrxo0xGGPw8LBzgdW/aLJRGZYQD/uW/DWn25n91ni+Yn8toZCZzQYZqGpu5cKVJOZtOsqU6IOs2nsKD4EmFYPoXi+YNtWK4OvtmTkxO6F7STa2fWo5lnROcPzq7XjcLvN1AiY4XrcSCBCRYkBbrCWlTzkSzAKgXVbGnp127dpFtWrV6N27N9WrV+fIkSM8/fTThIaGUr16dd59991r2zZp0oT169eTlJREQEAAgwcPplatWjRq1Ijjx48D8OabbzJ8+PBr2w8ePJiwsDAqV67M8uXWol0XLlygW7duVKtWje7duxMaGsr69etvG+f3339PzZo1qVGjBm+88QYASUlJ9OnT59r4iBEjAPjkk0+oVq0aISEhPPLII5n+Z6ZyAL8gqNENHhgBL8bCCxvg/hFQqhHs+h1m9IdPqsHIUJjzf7BlJly65ffH20u8YCWb8i3vOdEA5M3lRfd6wfz0TCMWv9qcgZEV2H08gUE/riPs/d95c8ZGNhw8gzteorgdW690iYgnViVSARhtjFklIv2B90XkLeAPYLAx5gpQAjiY5uVxjrFbjWfYkFmbM33d82rF8/P2/dUz9Npt27YxYcIEQkOtLxRDhw6lYMGCJCUlERkZSffu3alWrdp1rzl79iwREREMHTqUl19+ma+//prBg/++troxhtWrVzNz5kzeffddfv31V0aOHEnRokWZNm0aGzZsoG7dureNLy4ujjfffJPo6Gj8/f1p1aoVs2fPJigoiBMnTrBxo3XK5MyZMwB89NFH7N+/Hx8fn2tjys0VKAP1ykC9vn9vNlj/I6z58q9mg3LNrarnbpsNVo+Diyeh+euZHnbpQnl5uU1lXmxViRV7TjIl+iBTouP4fuUBKhXxo3u9YDrXKUHhfL6ZfuycxtbzMcaYZGNMbSAYCBORGsDrQBWgPlAQeC0zjiUiT4tItIhEx8fHZ8Yus0358uWvJRqAH3/8kbp161K3bl22bt3Kli1b/vaa3Llz0759ewDq1avHvn37brrvrl27/m2bqKgoevbsCUCtWrWoXv32SXLVqlW0aNGCwMBAvL296dWrF0uWLKFChQps376dQYMGMX/+fPz9/QGoXr06jzzyCBMnTtT7ZNTfeXhA0RrQeCD0ngKv7bOWa454Dbx8rQk0v+sMQ0vDt/fDko+tJbVTkv++rysJsHwEVGgFJetnYchCeIVAhvesw5o3W/FBl5r45fLig7nbaPSfhfT7dg2/bjpKYlJKlsXg7Jyih88Yc0ZEFgHtjDEfO4aviMh4IPXCxSGgZJqXBTvGDgHNbxj/8ybH+AL4AqxrNreLJ6MVSFbJm/evBaF27tzJp59+yurVqwkICOCRRx656Y2oaRsKPD09SUpKuum+c+XKdcdtMqpQoULExsYyb948Ro8ezbRp0/jiiy+YP38+ixcvZubMmXzwwQfExsbi6em657nVPfLygdKNrEfzwVYC2b/8r/t7Fr5nPa41GzS3rvkEVrIqoosnIeLvVX1Wye/rTa8GpejVoBS7jicwNSaOn9fG8fvW4xTM60On2sXpUa8k1Yrnz7aYnIFtyUZEgoCrjkSTG2gNfCgixYwxRxwNBJ2BTY6XzAQGisgkrAaBs47t5gMfiEjqnWNtsKojl3Tu3Dny5ctH/vz5OXLkCPPnz6ddu8y9RBUeHs7kyZNp2rQpGzduvGnllFaDBg145ZVXOHnyJP7+/kyaNIlXXnmF+Ph4fH196dGjBxUrVqRfv34kJycTFxdHixYtaNKkCSVLluTixYvky3eTKeCVuplcflCpjfWANM0Gf1rJZ/scazxfMSsxZXFVczsVCvsxuH0VXmlTiaU7TzA1Jo6JKw8wftk+qhfPT496wXSqXYICee/cbZrT2VnZFAO+dVy38QAmG2Nmi8hCRyISYD1WdxrAXKxOtF1Yrc+PAxhjTonIe8Aax3bvGmNOZeP7yFZ169alWrVqVKlShdKlSxMeHp7px3j++ed59NFHqVat2rVH6imwmwkODua9996jefPmGGO4//776dixI2vXruXJJ5/EGIOI8OGHH5KUlESvXr04f/48KSkpvPLKK5po1L1JbTao0c36/dTev6qeY5ug5Vv2xgd4eXoQWaUwkVUKc/pCIjM3HGZKzEHembWF9+dupVXVIvQIDaZZxSC8PJ2j2zSz6U2dDtpG+5ekpCSSkpLw9fVl586dtGnThp07d+Ll5RRnXa/RvzOV0209co6pMXHMWHeIkxcSCcqXi651StAjNJgKhZ3vS9i9tD4716eHcgoJCQm0bNmSpKQkjDGMHTvW6RKNUq6garH8/Ou+arzWrgqLth9nSnQcX0btZeySPdQuGUCP0GDuCymOf+6c30ijnyDqbwICAoiJibE7DKXcho+XB22rF6Vt9aLEn7/CL+sPMSU6jn9O38S7s7bQtnpReoQG07h8IJ45dCZqTTZKKeVEgvLlol/TcjzZpCwbD1kLvv2y/hAzNxymuL8v3eoF061uMGUC8955Z05Ek41SSjkhESEkOICQ4AD+2bEqv289xpToOEYv2sXIhbsIK1OQ7qHBdKxZjLy5nP+j3PkjVEopN+fr7cl9IcW5L6Q4R89eZtraOKbFxPGPqbG8M3OzteBbaDANyhZ02pmoNdkopVQOUtTflwGRFXiueXnWHjjNlOg4ZsceYdraOEoVzHNtJurgAs614JtrNnTnQJGRkcyfP/+6seHDh9O/f//bvs7Pzw+Aw4cP071795tu07x5c25s9b7R8OHDuXjx4rXfO3TokCnzlr3zzjt8/PHHd95QKZUuIkK90gUZ2i2E1f9sybAHaxFcIDfDFuyg6UeL6P3lSmasO8SlxJtM42MDTTZO4uGHH2bSpEnXjU2aNImHH374rl5fvHhxpk6deucNb+HGZDN37lwCAgIyvD+lVPbJ4+NF17rB/PBUQ5b+I5IXWlZk/8mLvPjTesLe/53Xf97I2gOnbZ2JWpONk+jevTtz5swhMTERgH379nH48GGaNm167b6XunXrUrNmTX755Ze/vX7fvn3UqFEDgEuXLtGzZ0+qVq1Kly5duHTp0rXt+vfvf215grfffhuAESNGcPjwYSIjI4mMjASgTJkynDhhrSk/bNgwatSoQY0aNa4tT7Bv3z6qVq3KU089RfXq1WnTps11x7mZ9evX07BhQ0JCQujSpQunT5++dvzUJQdSJwBdvHgxtWvXpnbt2tSpU4fz589n+M9WKXdSsmAeXmxViSWvRvLDUw1oXb0IM9Ydoutny2k1bDFj/tzNsXN/n08xq+k1m5uZNxiObszcfRatCe2H3vLpggULEhYWxrx58+jUqROTJk3iwQcfRETw9fVl+vTp5M+fnxMnTtCwYUMeeOCBW14IHDNmDHny5GHr1q3ExsZet0TA+++/T8GCBUlOTqZly5bExsYyaNAghg0bxqJFiwgMDLxuXzExMYwfP55Vq1ZhjKFBgwZERERQoEABdu7cyY8//si4ceN48MEHmTZt2m3Xp3n00UcZOXIkERERvPXWWwwZMoThw4czdOhQ9u7dS65cua6duvv4448ZPXo04eHhJCQk4OurU7QrlR4eHkLj8oE0Lh/IkAeuMnfjEaZEx/Hhr9v47/xtRFQKonu9krSqVphcXlk/Ea5WNk4k7am0tKfQjDG88cYbhISE0KpVKw4dOsSxY8duuZ8lS5Zc+9APCQkhJCTk2nOTJ0+mbt261KlTh82bN99xks2oqCi6dOlC3rx58fPzo2vXrixduhSAsmXLXlul83bLGIC1vs6ZM2eIiIgAoG/fvixZsuRajL179+b777+/NlNBeHg4L7/8MiNGjODMmTM6g4FS9yCfrzcP1S/F1P6NWfh/EfRvXp6tR84z4Ie1NPjgD97+ZRObDp3N0tNs+i/4Zm5TgWSlTp068dJLL7F27VouXrxIvXr1AJg4cSLx8fHExMTg7e1NmTJlbrqswJ3s3buXjz/+mDVr1lCgQAEee+yxDO0nVeryBGAtUXCn02i3MmfOHJYsWcKsWbN4//332bhxI4MHD6Zjx47MnTuX8PBw5s+fT5UqVTIcq1LKUi7Ij1fbVuHl1pWJ2nWCKdEH+XHNQb5dsZ8qRfPRvV4wXeqUoJBfrjvvLB20snEifn5+REZG8sQTT1zXGHD27FkKFy6Mt7c3ixYtYv/+/bfdT7Nmzfjhhx8A2LRpE7GxsYC1PEHevHnx9/fn2LFjzJs379pr8uXLd9PrIk2bNmXGjBlc/P/27j/IqrKO4/j7A65uRgFpk+IiP9ISCVWDccUAAAtLSURBVAVCoh+kmBWl+GPMSVMTikiM6OdkNZlmjjPojDZlMw2lhlT2w6LQsrLacqyRFMUyfhRkDagpLroKWyTw7Y/zLF0u97Jn13vvubt8XjNn9t7nPPfc7312zj73OefZ59vVxbZt21i2bBnTp0/v9WcbOnQow4cP3z0qWrp0KSeeeCK7du1i48aNzJgxg0WLFtHZ2cnWrVvZsGEDEyZM4NJLL+WEE05g7dq1vX5PM6tu8CBx4qtezg3vmcx9nz2FL575Gg46YBBX/XQNr7v618y75X7uWv0Ez++sTcI3j2yazHnnncdZZ521x8y0888/n1mzZjFhwgSmTJnS4zf8+fPnM2fOHMaNG8e4ceN2j5COP/54Jk2axDHHHMPIkSP3SE8wb948Zs6cyYgRI2hvb99dPnnyZGbPns3UqVnu9rlz5zJp0qR9XjKrZsmSJVx88cV0dXUxduxYbr75Znbu3MkFF1xAZ2c2hF+4cCHDhg3jsssuo729nUGDBjF+/PjdWUfNrPaGHtzChdNGceG0Uaz713PctnIjyx58lF+ufoJDhxzImROP4JwpI3s+0D44xUDi5er7H//OzOrn+Z27+N26zfxg5UZ+veZJduwK/rnoNKcYMDOz2mkZPIhTjn0Fpxz7Cjq2bufHqx5j7qK+H6+wezaSWiX9UdJDkv4i6Qtl+78saWvJ89mSNktalba5JfsukvS3tF3UyM9hZjbQHTLkIN7/pjEv6BhFjmy2AydHxFZJLcA9ku6MiHslTQGGV3jN9yJiQWmBpJcBlwNTgABWSloeEU/X+wOYmVk+hY1sItM9cmlJW0gaDFwLfCrnod4O3BURW1IHcxcws48x9eVlVgD/rsz6l0KnPksaLGkV8CRZh7ECWAAsj4jHK7zkbEl/knSbpO6pEUcAG0vqbEplvdLa2kpHR4f/iPUDEUFHR4dXFTDrRwqdIBARO4GJkoYByyS9GTgHOKlC9duBWyNiu6QPAkuAk/O+l6R5wDyAI488cq/9bW1tbNq0ic2bN/f6c1jjtba20tbWVnQYZpZTU8xGi4hnJLUDM4CjgPVp3a+DJa2PiKMioqPkJd8ArkmPH2XPzqkN+G2F91gMLIZs6nP5/paWFsaMeWE3wMzMrLIiZ6O9PI1okPQi4K3Ayog4LCJGR8RooCsijkp1Di95+enAmvT4F8DbJA2XNBx4WyozM7MmUeTI5nBgSZoQMAj4fkTcsY/6CyWdDuwAtgCzASJii6QvAveleldGxJb6hW1mZr3lFQTMzCwXSX1eQWC/7GwkPQesKzqOHA4Fnio6iBwcZ205ztrqD3H2hxgBXh0RL+nLC5tigkAB1vW1d24kSfc7ztpxnLXlOGunP8QIWZx9fa1TDJiZWd25szEzs7rbXzubxUUHkJPjrC3HWVuOs3b6Q4zwAuLcLycImJlZY+2vIxszM2ugAd3ZSJopaZ2k9ZI+XWH/QZK+l/avkDS68VHmirNqLp8GxniTpCclPVxlv1IOovVpsdTJjY4xxdFTnCdJ6ixpy883OsYUx0hJ7ZJWp3xOH6lQp9A2zRlj4e3ZU26sVKfwcz1nnIWf6yWxDJb0oKS9/tm+T+0ZEQNyAwYDG4CxwIHAQ8CxZXUuAb6WHp9Lli+nGeOcDdxQcHu+GZgMPFxl/zuBOwEB04AVTRrnScAdRbZliuNwYHJ6/BLgrxV+74W2ac4YC2/P1D5D0uMWYAUwraxOM5zreeIs/FwvieXjwHcq/X770p4DeWQzFVgfEX+PiP8C3wXOKKtzBtnq0QC3AW9RWgG0gfLEWbiIuJtsmaBqzgBuicy9wLCy9ewaIkecTSEiHo+IB9Lj58jW+itPjVFom+aMsXCpffbKjVVWrfBzPWecTUFSG3Aq2aLHlfS6PQdyZ5Mnz83uOhGxA+gEDmlIdBViSKrl46mUy6eZ1CSvUIO8Pl3KuFPS+KKDSZcgJpF90y3VNG26jxihCdpTlXNjlWqGcz1PnNAc5/qXyBJY7qqyv9ftOZA7m4HkdmB0RBxHlol0SQ/1rboHgFERcTzwFeDHRQYjaQjwQ+CjEfFskbFU00OMTdGeEbEzIiaSpRiZKuk1RcTRkxxxFn6uSzoNeDIiVtbyuAO5s3kUKP1W0JbKKtaRdAAwFOigsXqMMyI6ImJ7evoN4LUNiq038rR34SLi2e5LGRHxM6BF0qFFxCKpheyP+Lcj4kcVqhTepj3F2EztmWJ4Bmhn79TwzXCu71YtziY5198InC7pH2SX9U+W9K2yOr1uz4Hc2dwHHC1pjKQDyW5iLS+rsxy4KD1+F/CbSHe8GqjHOFU9l08zWQ68N82gmgZ0RuXU3oWSdFj3tWVJU8nOgYb/0Ukx3AisiYjrqlQrtE3zxNgM7anKubHWllUr/FzPE2cznOsR8ZmIaIssp9i5ZG11QVm1XrfngF2IMyJ2SFpAlkhtMHBTRPxF0pXA/RGxnOxEWippPdlN5XObNM6KuXwaSdKtZDOPDpW0Cbic7AYnEfE14Gdks6fWA13AnEbHmDPOdwHzJe0A/g2cW8AXDMi+PV4I/Dldwwf4LHBkSaxFt2meGJuhPSvmxmq2cz1nnIWf69W80Pb0CgJmZlZ3A/kympmZNQl3NmZmVnfubMzMrO7c2ZiZWd25szEzs7pzZ2PWzylbeTmKXCHYrCfubMz2oeQPebWt/D+rzayCAftPnWY1diPw2wrlf29wHGb9kjsbs3zujQiPYsz6yJfRzGpA0hXpstokSYslPSVpm6Q7JI2tUP8ISd+U9ISk7cqyYX6sUk4QScel5eY3S/qPsuyIN6S19MrrLpC0IR1zlaQZZfsHS/qMpLWSuiQ9k+p9qLYtYrYnj2zM8hlSZTXj50pW6QW4GXgWuJIs58eHgbslHRcRWwAkHQL8ATgM+CrZpbjTgOuAVwILug8maTrZunnbyFYBfgQYBZwNHAz8t+S9LwaGAItT+UeBn0gaFRFPpzqfT9s30/u1AscC01MsZvXR21Sh3rztTxvZop6xj212qndFev574ICS189K5YtKyq5JZWeXlAn4USqfkMoGkaVi7gBGVIhNZTFuJKUdTuUTU/klJWUPAj8tul297X+bL6OZ5XMd2ZLw5dsvyurdEFnmQgAi4nbgb2SdTrfTyVKB/7CkXgDXpqfddScCRwNfjYjHygNKrym1NP6fdpiIWEU2ynplSZ1ngPGSxu3z05rVmC+jmeWzJiJ+laPeuiplp5Q8H02WhbHc6vRzTPp5dPr55zwBAv+sUPY08LKS558DfgKslvRX4FfAbRHRnvM9zPrEIxuzgWNnlfLdkw4i4vdkI53zyS75nQn8RtKN9Q/P9mfubMxq69VVyh4pef4IcEyFeuNK9kN2+Q1gQm1Cy0REZ0R8JyLeRzbZ4NvA+yS9qpbvY1bKnY1ZbS1IOdkBkDSL7HLYHSV1bgeOknRWST0Bn0xPu9OCryLrcD4kaUT5G1WaJt2TNBNut3R/6eH0dHhvj2eWl+/ZmOUzTdJ/KpRvjojSSQIvJrss9QOyqc8LgcfJZqB1WwS8G7hVUvfU51OBd5BNBngYICJ2SfoA8HPgIUlfJxv1tAHnAG8gu+HfG2sk3QPcBzxBNupaQHZf6YFeHsssN3c2Zvm8P23lVrDnjLQ5wCVkU6FbyZa4WRgRT3VXiIgOSW8ArgbeC7yUrMP5BHB96cEj4neS3ghcDsxPx9wE3Al09eFzXE822+0TZP+T8xhwE3BVRDzfh+OZ5aK9Z0+aWW9JuoKsQzg6ItYXHI5Z0/E9GzMzqzt3NmZmVnfubMzMrO58z8bMzOrOIxszM6s7dzZmZlZ37mzMzKzu3NmYmVndubMxM7O6c2djZmZ19z/WjuowQFKJIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Train VAE\n", - "pipeline.train_vae(config_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation experiment without noise correction" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 36.8s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 38.1s remaining: 57.1s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 38.6s remaining: 25.7s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 41.4s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 41.4s finished\n", - " score\n", - "number of partitions \n", - "1 0.999980\n", - "5 0.764472\n", - "50 0.833831\n", - " score\n", - "number of partitions \n", - "1 9.271507e-07\n", - "5 5.834413e-03\n", - "50 1.065429e-02\n", - " ymin ymax\n", - "number of partitions \n", - "1 0.999979 0.999982\n", - "5 0.753037 0.775908\n", - "50 0.812949 0.854714\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "corrected=False\n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected,\n", - " experiment_id_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation with correction applied" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 18.6s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 20.4s remaining: 30.5s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 21.6s remaining: 14.4s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 24.8s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 24.8s finished\n", - " score\n", - "number of partitions \n", - "1 0.999980\n", - "5 0.917368\n", - "50 0.237713\n", - " score\n", - "number of partitions \n", - "1 9.356547e-07\n", - "5 4.332237e-03\n", - "50 6.157764e-03\n", - " ymin ymax\n", - "number of partitions \n", - "1 0.999978 0.999982\n", - "5 0.908877 0.925860\n", - "50 0.225644 0.249782\n" - ] - } - ], - "source": [ - "# Run simulation without correction\n", - "corrected=True\n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected,\n", - " experiment_id_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make figures" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ind = [0,1,2]" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# File directories\n", - "similarity_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "similarity_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "permuted_score_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_permuted.npy\")\n", - "\n", - "compendia_dir = os.path.join(\n", - " local_dir,\n", - " \"partition_simulated\",\n", - " dataset_name + \"_\" + analysis_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "svcca_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".svg\")\n", - "\n", - "svcca_png_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".png\")\n", - "\n", - "pca_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_uncorrected_\"+correction_method+\".svg\")\n", - "\n", - "pca_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_corrected_\"+correction_method+\".svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Load pickled files\n", - "uncorrected_svcca = pd.read_pickle(similarity_uncorrected_file)\n", - "err_uncorrected_svcca = pd.read_pickle(ci_uncorrected_file)\n", - "corrected_svcca = pd.read_pickle(similarity_corrected_file)\n", - "err_corrected_svcca = pd.read_pickle(ci_corrected_file)\n", - "\n", - "permuted_score = np.load(permuted_score_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "# Concatenate error bars\n", - "uncorrected_svcca_err = pd.concat([uncorrected_svcca, err_uncorrected_svcca], axis=1)\n", - "corrected_svcca_err = pd.concat([corrected_svcca, err_corrected_svcca], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "# Add group label\n", - "uncorrected_svcca_err['Group'] = 'uncorrected'\n", - "corrected_svcca_err['Group'] = 'corrected'" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
scoreyminymaxGroup
number of partitions
10.9999800.9999790.999982uncorrected
50.7644720.7530370.775908uncorrected
500.8338310.8129490.854714uncorrected
10.9999800.9999780.999982corrected
50.9173680.9088770.925860corrected
500.2377130.2256440.249782corrected
\n", - "
" - ], - "text/plain": [ - " score ymin ymax Group\n", - "number of partitions \n", - "1 0.999980 0.999979 0.999982 uncorrected\n", - "5 0.764472 0.753037 0.775908 uncorrected\n", - "50 0.833831 0.812949 0.854714 uncorrected\n", - "1 0.999980 0.999978 0.999982 corrected\n", - "5 0.917368 0.908877 0.925860 corrected\n", - "50 0.237713 0.225644 0.249782 corrected" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Concatenate dataframes\n", - "all_svcca = pd.concat([uncorrected_svcca_err, corrected_svcca_err])\n", - "all_svcca" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SVCCA " - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuoAAAHVCAYAAACno95DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xlc1NX+x/HXdwaGHQRc2Fxwwd00yzQttzRSU1xyL22zTMstvd5ft82y7u2aS5uVWZqW5lrmmntmLpmptzR3RRQVRBBZB+b8/sAZGBhgQJYBP8/Hg4fOme9y5jDz5f09c77nqymlFEIIIYQQQgiHoivvCgghhBBCCCHykqAuhBBCCCGEA5KgLoQQQgghhAOSoC6EEEIIIYQDkqAuhBBCCCGEA5KgLoQQQgghhAOSoC6EEEIIIYQDkqAuhBBCCCGEA5KgLoQQQgghhAOSoJ7L9u3b6d+/P8HBwRgMBnx9fWnYsCGPPfYYH330EQkJCVbLd+rUCU3TOHfuXKnWa+TIkWiaxo4dO8pl/wBvvPEGmqaxYMGCUt+XuDMtWLAATdN44403yrsqlca5c+fQNI1OnTqVd1XK3QcffEDTpk1xcXGpdG2yY8cONE1j5MiRZbKeEKJsSFDPYdq0aXTp0oVVq1bh4+NDr1696N69O25ubqxatYoXX3yRY8eOlXc1HU5ZniwIIURxrFq1inHjxhEdHU3v3r0ZMWIE4eHh5V0tuxW3o0Q6WISo2JzKuwKO4vfff+eNN97A2dmZZcuWERERYfX85cuXWbx4MVWqVLEq//rrr0lOTiY4OLhU6/fuu+8ydepUatWqVar7KcjYsWMZPHgwgYGB5VYHUbn17duXtm3bUrVq1fKuiqhkvv/+ewBWrFhBly5dyrk2Ja9NmzYcO3YMHx+fMllPCFE2JKjfsmrVKpRSDBw4ME9IBwgICODll1/OU15WwTkwMLDcA3LVqlUlQIlS5ePjI4FBlIqoqCgA6tatW841KR3u7u40atSozNYTQpQNGfpyS0xMDADVqlUr0nr5DfvQNI06deqQkZHBW2+9Rf369XFzc6Nx48Z89dVXluW2bdtG586d8fb2xtfXlyeeeIJr167l2U9+Y9Tzs2vXLsaOHUuLFi3w9fXFzc2NRo0aMXXqVOLj4/Msn3Oc4uXLl3nmmWcICQnBycmJ2bNnA3m/QjWPfd25cycAoaGhaJpm+QHo1asXmqbx008/2axncnIyVapUwcvLi8TExEJfV3R0NO+99x4dO3a0XEcQEBBAv379+O233/JdLykpif/85z/cc889eHt74+HhQaNGjRgzZgwnTpywLJdzjPSJEycYPHgwNWrUQKfTWXrkAK5du8bkyZNp0KABrq6u+Pn5ER4enu/rPH/+PKNHjyYsLAx3d3f8/Pxo2rQpzz33HMePH7da9s8//2T48OHUrVsXV1dXqlWrRsuWLRk/fjzR0dGFtlHv3r3RNI0NGzbYfD4zM5MaNWpgMBgs7zWlFEuWLGHw4MGEhYXh4eGBl5cXbdq04ZNPPsFkMuXZTs73w/79++nVqxf+/v5omsa+ffuoWrUq7u7uNt9vAL/++iuaptGxY0dLWX5j1HO+/3/++We6dOmCl5cX3t7e9OzZk6NHj9rcR1JSElOnTqVOnTq4urpSv3593nrrLYxGI3Xq1LG8T+1RnDoU9rk1HydyytkGp0+fZuDAgVStWhVvb28eeeQRy34yMjJ45513CAsLs7y2jz/+uMDXcOPGDcaNG0fNmjVxdXWlcePGzJo1y+bvF7I+n++++y6tWrXC09MTT09P2rZty8KFCwt8Penp6UybNo1GjRrh4uJi1fmxfv16unXrRnBwMC4uLgQFBdGhQwfefPPNAuue24ULF3juueeoXbs2Li4uVK9e3eZxwPw+3b59O2B9nCrseJpzfH9R2u7QoUNMmTKF1q1bU61aNVxcXKhbty4vvPACly5dKnQ/EydOJDQ0FGdnZ8aPH0+dOnUs7fPkk09aHWfNr8HWWPPirmeWkZHBhx9+SOvWrS2//zZt2jB37lwyMzPzLJ/z7+H3339P27Zt8fDwwM/PjyFDhlhOlnJKT0/nk08+4d5778Xf3x93d3fq1KlDr169WLp0aYG/HyHuCEoopZSaNm2aAlTNmjXVlStX7F6vY8eOClBnz561KgdU7dq1Vd++fZWPj4+KiIhQ3bt3Vy4uLgpQX375pVq+fLlycnJSHTp0UAMGDFDBwcEKUB06dFAmk8lqeyNGjFCA2r59u137v++++5Srq6tq06aN6t+/v+rZs6cKDAxUgGratKlKTEy0Wn779u0KUD169FAhISEqICBADRgwQPXq1Ut99tlnSimlXn/9dQWor776SimlVExMjBoxYoSqUaOGAlT//v3ViBEjLD9KKbVmzRoFqAEDBthsvwULFihAPfPMM3a199y5cxWgGjZsqMLDw9XAgQNVq1atFKCcnZ3Vpk2b8qxz6dIl1bRpUwUoX19f9eijj6oBAwaou+++W+l0OjVr1izLsl999ZUC1ODBg5W3t7cKDQ1VgwYNUt27d1dr165VSikVFRWl6tatqwBVq1YtNWjQINWlSxel1+sVoGbOnGm1/8jISOXn56cA1aBBA9W/f38VERGhWrVqpTRNs7SnUkodOHBAubq6KkC1aNFCDRw4UPXq1Us1adLE5u/flqVLlypADR8+3ObzGzZsUIB69NFHLWUpKSkKUP7+/uqBBx5QgwYNUg899JByd3dXgOX3mZP5/fDkk08qZ2dn1bRpUzV48GD14IMPqsOHD6uJEycqQH300Uc26zFy5EgFqMWLF+dp/9dff91qWfP7f+LEiUqv16v77rtPDRw4UIWFhVnqHR0dbbVOamqqatu2rQKUn5+f6t+/v+rVq5dyd3dXERERqnbt2qooh8Di1CG/z62Z+TiRk7kNnnjiCeXn56caN26sBg0apJo3b64AVa1aNRUdHa369OljObY8/PDDymAwKEB9/vnnVts7e/asAlTbtm1V69atVZUqVVS/fv1Ur169lJubW76/3ytXrqgWLVooQAUEBKgePXqoRx55RPn4+ChAjR071ubrqVmzpnrkkUeUh4eH6tGjh3rsscfU888/r5RS6qOPPlKA0uv16sEHH1RDhgxR3bp1UyEhIUX6XRw5ckRVrVrVciwYPHiwuv/++xWgnJyc1LJlyyzLrl69Ot/j1LFjxwrcT3HbbtCgQcrJyUndfffdKiIiQkVERKg6deooQAUGBqqLFy/a3E+bNm1Uy5Ytla+vr4qIiFD9+vVTb7zxhpo0aZK66667FKDat29vdZw1vwbzMTxnfYq7nlJKZWRkqB49eihAeXt7q4iICNWnTx/l5eWlANW3b1+VmZlptY7579HkyZOVXq9XnTp1UgMGDFA1a9a0HP+Sk5Ot1hkwYIAClJeXl+rRo4caPHiweuCBB5SPj4/q2LFjgb8fIe4EEtRvOX36tOXA6+XlpUaMGKHmzZunDh48qDIyMvJdr6CgDqhmzZqpq1evWsq3bdtmOVj7+/tbwp9SSiUkJFgC5bZt26y2V9Sgvn79ehUfH29VlpqaqkaNGqUA9eabb1o9Zz5Ymw/AKSkpeV5r7qBeWB2UyjrY16xZUzk7O9s8AWrfvr0C1L59+/I8Z8uRI0fUn3/+mad848aNymAwqHr16uU5yenatasC1MCBA/OcoJw9e1YdPnzY8tgcksxBxNbvvlevXgpQQ4cOVWlpaZbyXbt2KXd3d6XX69Uff/xhKX/ttdfyDTbnz59Xp06dsjx+4oknFKBmzJiRZ9ljx46pS5cu2WoWK8nJycrLy0t5enqqpKSkPM8PHz5cAWrp0qWWMqPRqFavXq3S09Otlr169aq65557FKB27txp9Zz5/QCo//znP3n2c/z4caVpmrrrrrvyPJeQkKDc3d2Vr6+v1XutsKCu0+nU6tWrLeUZGRmqf//+ClCvvvqq1TpvvfWWJfxcv37dUn727FlLcChOUC9KHW4nqANq6tSplvezyWSynNw0adIkz7Fly5YtNrdnDoHmk7+YmBjLc6dOnVJBQUEKsHpNSilLSBs3bpxKTU21lF++fNnyntiwYUOe1wOo+vXrq6ioqDyvt1atWkrTNPXbb79ZlZtMJrtOQs3Lmk9apkyZYvV5X7FihdLpdMrT0zPPZ6Wg41R+itt227ZtU5cvX7Yqy8zMVG+++abl5Da//bRr187q/WqW3/HXLL/AXdz1ZsyYYenYyflaLl26pBo2bKgA9eGHH1qtY25jd3d39euvv1rKk5KSLCdS8+fPt5SfOXPG8p6NjY212lZKSorVNoS4U0lQz2HLli1Wf8DNP1WqVFGjR4+2GZIKC+pbtmzJs465B9hWj+ecOXMKDCr2BvX8JCcnW3p6cjIfrF1cXGz+gVWqeEFdqexvK9577z2r8mPHjln+AJaEYcOGKUAdOXLEUrZv3z4FqOrVq6sbN24Uug1zSKpWrZrNkHv69GkFKE9PT3Xt2rU8z5t7kXN+QzB69GgFqO+//77Q/T/yyCMKUIcOHSp02YKY3y9LliyxKk9KSlKenp7Ky8srT89WfjZv3mzpSc7J/H5o3rx5npMjsy5duihA7d+/36rc/M3ISy+9ZFVeWFAfNmxYnn0cOHBAAXl638zfUO3atSvPOvPmzSt2UC9KHW4nqNetWzfPidPhw4ftOrbk/CzmDIE//fRTnnXMv4uuXbtayv744w8FqHvvvTdPr6lSSh08eFABqnfv3nleD6CWL19u8/W6ubkpX19fm8/Zy9zZUatWrTzto5RS/fr1U4B6++23rcpvN6jb23aFCQ4OVv7+/vnuJ/dJjFlZB/VatWopwOa3lOZvSuvXr29Vbm7jV155Jc86K1asyLMf8/E5IiLCZt2EEErJGPUcunbtyqlTp1i1ahXPP/88d999N05OTsTHxzN37lxatmyZZzxxQZydnW3O02u+mKl79+75PmfPWOTCXLx4kU8//ZTx48fz1FNPMXLkSEaPHo3BYODkyZM217n77rtLfAabZ555BicnJ7744gur8nnz5gEwatSoIm0vLS2NH374gVdeeYVRo0YxcuRIRo4cyf/+9z8Aq9e2ZcsWAIYMGYKXl5fd+3jooYdwd3fPU/7LL78AEB4ejp+fX57nH3/8cSDrGgGz1q1bA/B///d/rF27ltTU1Hz3a152zJgx7Nixg4yMDLvrnNOwYcMA+Pbbb63Kf/jhB27evEm/fv1wc3PLs96hQ4d47733GDNmDE8++SQjR45k7ty5APm+Z8zXIdjy/PPPA9m/a7Pi/u5tfWbCwsIA68/M+fPnuXjxIgEBAXTo0CHPOoMGDSrSfotTh9vVqVMnnJ2drcrMx4fCji226uHn50e3bt3ylA8ZMgTIumbAPN7afK1FREQEOl3ePxPmMev79+/P85ymaTz66KM2X1Pr1q25fv06Tz/9NH/99ZfNZQpj/mwNHDgwT/uA7c/g7SpK25ldu3aNr776ikmTJvH0009bjlNGo5Fr164RFxeXZ3uBgYHcc889JVbv4oqMjCQyMpJq1arZfL/36tWLKlWqcOrUKS5fvpzneXs/I40aNcLDw4N169bx3//+1+b4fSHudDLrSy4Gg4G+ffvSt29fAOLj41m6dCn/93//x9WrVxk7diybN2+2a1sBAQHo9fo85Z6engA2A7H5ubS0tOK+BABmzpzJ1KlTMRqNRVqvNGaxCQwMpHfv3qxatYqdO3fSsWNH0tPT+frrr3Fzc7OESnv873//o3fv3gXO2Z7zotQLFy4AUK9evSLVOb92MP8hyX0BoJm5/OLFi5aykSNH8tNPP7Fs2TIeffRRXF1duffeewkPD+epp54iICDAsuzkyZP55Zdf2LFjB507d8bT05N27drRs2dPRo4cafeMKF26dCEwMJCNGzcSFxdnOan45ptvAPK0eXp6OiNHjmTJkiX5bjO/i30Les9EREQQEBDAkiVLmDlzJp6enhw8eJCDBw/Srl07mjZtatfrMQsJCclTZj4By/mZMYeBmjVr2tyOl5cXVapUyfdC15Kow+0q6PhQ2LHFVj1q165tcz8+Pj6Wtrh+/Tr+/v6Wz9crr7zCK6+8km8dbZ10Vq9eHRcXF5vLf/zxx0RERPDll1/y5ZdfUqNGDTp27Ei/fv0YMGCAzdeUW3E+g7erKG0HsGTJEkaNGsXNmzfz3WZiYmKek/3ynH43J3Mb5/e6NU2jdu3axMfHW06Ic7L3M+Lt7c28efMYNWoUU6ZMYcqUKYSFhdG5c2cef/xx2rdvX1IvSYgKS3rUC1GlShWef/55y0wn27dvJzk52a51bfVEFeX54tq7dy+TJk3C3d2dBQsWcO7cOVJTU1FZQ50KnObR1dW1VOqUu2f1+++/JzY2lsceeyzP3PT5Ubemzzx37hzPP/88hw4d4saNG5hMJpRS/POf/7Qsd7uK2w62epb1ej3fffcdBw8e5PXXX+fee+9l3759vPLKK4SFhfHrr79alvX29mbbtm3s2rWLKVOm0KRJE7Zt28b48eNp2LBhvr3atvY5ePBgjEYjy5cvByA2NpZNmzYRGBiYZx7pmTNnsmTJEpo3b86GDRu4cuUK6enpKKUs3yLl164FtZWzszNPPfUUN2/etMzgYP5m5dlnn7XrteRUWp+Z8qhDfjOt2LOf0m4Hc906dOjAiBEj8v2xdZJd0PuhRYsWHD16lNWrV/Pss8/i7e3NsmXLGDx4MA888ADp6em3XfeizORTGs6fP8/IkSNJT09n9uzZnDx5kuTkZMvxt127doDtz1NpHX9LQ0HtXJT355AhQzhz5gzz5s3jscceIz4+ns8++4wOHTowadKkkqiqEBVa+f/VqyDMwSYzM7NYvXBlafXq1QBMnz6dESNGWKYvA0hJSbH5VWVpe+ihh6hfvz4rV67k+vXrxRr68Pfff/P3339zzz33MHfuXO666y68vLwsfzDOnDmTZx1zj+rp06dL4FVAUFAQkPXH2BZzT6St3tBWrVrxxhtv8PPPPxMTE8OECRNITExk/PjxVstpmkaHDh34z3/+w759+7h06RJDhgzhypUrBfZu5mYOUeZe9GXLlpGRkcHgwYPz9Fya3zNLliwhPDyc6tWrW4YV2GrXohg1ahQ6nY558+aRnJzMt99+i7e3920NPymM+WTU/I1KbomJiWXyOTYYDAA2e1bzq1tpiYyMtFl+48YN4uPjcXNzs5w0m3tEIyIiWLBgQYE/ReXq6kpERASff/45J06c4M8//6RFixbs2bMnz/A4W27nM1hcRWm79evXk56ezksvvcS4ceMsU/Oa3e7nqSwU1sY5nyuJdq5WrRrPPPMMy5Yt4/Lly2zYsAFvb29mzpxZ7CFSQlQWEtRvKawX9tSpU0DWH15Hv+nP9evXAdtfPy5fvrxEepxzMoeRgsZTa5rGqFGjSE1NZdq0aWzdupXGjRsX6avNgl7X9evXbQ5Jeuihh4CsAFrQ19D2Mo933rhxo82gt3jxYgAeeOCBArfj7e3Nu+++i6Zp/PnnnwUuW716dcu84oUtm1Pr1q1p1KgRv/zyC5GRkfkOe4GC23bZsmV279OW2rVrEx4ezv79+/nXv/5FQkICw4YNs3kNQEmpXbs2wcHBXL582eobCzPztwylzXzCkHOufjN7h9CVlGvXrrF169Y85eZvOtq1a2c5gTOPxzafwJWmpk2bMmbMGMC+97f5s7V8+XKbc3nb+xksiqK0XUGfpZ9//pkrV64Uqw72HGdLar1atWpRq1YtYmJibL7udevWcf36derXr59n2Mvt0jSN8PBwevbsCSBBXdzxJKjf8uqrrzJ58mSbPa8XL17kueeeA7JuJmM+8Dkq80U78+fPtxqjfvToUf7xj3+U+P7MvS+FXWj75JNP4uLiwuzZs1FKFXnoQ/369dHpdGzbts1qCEhqairPP/+8zYuz2rRpQ+fOnbl69SqjRo0iKSnJ6vlz585ZLkK1R926denZsyeJiYmMGzfOqn337NnD3Llz0ev1luABsGjRIpsBZMOGDSilrMZRf/rpp5w9ezbPsuvXrwfyH3Odn2HDhqGU4t133+XXX3+lUaNGlgtWczK/Zz799FOr8hUrVvD1118XaZ+2mIc+zZo1CyjesJfi7nPSpEkkJCRYys+fP8+0adNKff+A5WZOc+fOtbqR2aFDh3jttdfKpA45vfzyy1b1OHv2rKUtcr5n77vvPrp168bu3bsZM2YMN27cyLOtw4cPs3HjRrv3nZyczAcffJDnBNdkMlm2Y8/7u1OnTjRv3pxz587x2muvWXU8rF69mlWrVuHp6clTTz1ld93sYW/bmT9LixcvtjreXLx40fKeLA57j7Mltd6LL74IwMSJEy03BAS4fPkykydPBmDcuHFF2mZuf/zxB6tWrcoz5CkuLo59+/YBRT/mCVHZyMWkt9y8eZM5c+YwY8YMwsLCaNKkCa6urkRFRbFv3z6MRiP169e33KXTkT355JO8//77/PjjjzRs2JB7772XuLg4du7cSUREBPv37y/wK82i6t27NwsXLmTo0KF0797dcsFj7q+xq1atSv/+/fn2229xcXHhiSeeKNJ+qlevztNPP828efO466676NKlC25ubuzatYvMzExGjhxp86v4RYsW0bVrV5YsWcKmTZvo0KEDLi4unD59mkOHDvH+++/TvHlzu+vx2Wef8cADD/D111+zc+dO2rVrR0xMDDt27CAzM5P333+fli1bWpZfuXIlTzzxBPXq1aN58+a4ublx9uxZ9u3bh06n4+2337Ys++mnnzJ69GiaNGlC48aNcXJy4u+//+bw4cO4uroWOdwNHTqUV1991RLA87twd8qUKWzcuJGpU6eyfPlywsLCOHnyJAcOHODll19mxowZRdpvbj169KBmzZpcuHCBe+65h1atWt3W9uwxefJk1q1bx969e6lXrx6dO3cmLS2Nbdu20bVrV5RSJTpLiy2dO3emY8eO7Ny5kyZNmtC+fXtiY2PZt28fL7300m23a1G0bduW9PR06tevT5cuXTAajWzdupXk5GSGDx9Ov379rJZfvHgx4eHhfPLJJ3z77be0bNmSoKAgEhISOHLkCBcuXGDcuHGEh4fbtf/09HTGjRvHyy+/TOvWrS13MP3tt9+4cOECderUsWsonKZpfPPNN3Tu3Jl33nmH1atX07JlSyIjI9m9ezdOTk7Mnz+/wGtxiqoobde7d2+aNm3KgQMHqF+/Pu3btyc1NZXt27fTsmVL7r//fpvf8hSme/fuuLq6MmvWLP7880+CgoLQNI3JkyfTsGHDEl9vwoQJbNu2jQ0bNtCgQQO6dOmCUoqtW7eSmJhIREQEL7zwQpFfR07nz5+nf//++Pj4cM899xAQEEB8fDw///wziYmJPProo5Yx/ULcqaRH/ZZ//etfLFq0iOHDh+Pi4sKuXbtYsWIFR48epU2bNrz33nscOnSoxKcuLA3+/v789ttvDB06lPT0dNasWcPFixd56623CpzVo7j69evHrFmzCAkJ4ccff2T+/PnMnz/f5rLmsf79+vWzzJBQFHPnzuX9998nNDSUrVu3smvXLh566CEOHDiQ7wwFwcHB/Pbbb0ybNo2QkBA2b97Mhg0bSE5O5oUXXqBXr15FqoN5e5MmTcLJyYlVq1bx+++/07VrVzZt2sTEiROtlp84cSJjxozBy8uLXbt2sXr1aq5evcqgQYPYt28fjz32mGXZt956i6eeegpN09i6dSs//vgjKSkpPPPMMxw6dKjIsyDUrVvX6g/d0KFDbS734IMP8ssvv9ClSxfOnDnD2rVrMRgMrFy50qq3sLj0er2ld7ksetMBXFxc2Lx5M1OmTMHDw4M1a9bw119/MWnSJL777juuXLlSrPdgUWiaxg8//MDzzz+PpmmsX7+euLg45syZw3//+99S3XduLi4ubNu2jaFDh7J37142bdpEzZo1mTFjhs0T3OrVq/Prr7/ywQcf0KRJE/744w9WrFjBkSNHqFu3Lv/97395+eWX7d6/p6cnH3/8MY8++igxMTGsWbOGbdu24evry5tvvsnvv/9u9++jefPmHDx4kGeffZabN2+yYsUKjh8/TkREBLt372bgwIF218seRWk7g8HArl27GD16NK6urqxdu5Zjx47x4osvsnnzZptTStojKCiIH374gbZt2/LLL7/w5ZdfMn/+/EJPNou7nl6vZ82aNcyZM4e6deuyadMmfvrpJxo2bMjHH3/MihUrbvui5rZt2/L222/TunVrjh8/zvLlyzlw4AAtWrTgyy+/ZOXKlbe1fSEqA02V9IBlIQrw8MMP89NPP7F9+3ab80CLyik5OZng4GAyMjK4dOlSkea0Lw179+6lXbt2hIeHs2HDhnKti3Bc586dIzQ0lI4dO7Jjx47yro4Q4g4kPeqizOzfv5/NmzfTtGlTCel3mI8//pj4+HhGjBhRpiH9jz/+yDMN4pkzZyzXnAwfPrzM6iKEEEIUlYxRF6Vu6tSpREZGsm7dOpRSTJ8+vbyrJMrAtWvX+Mc//sGVK1dYv349np6eTJ06tUzrMGTIEBISEmjevDn+/v5ERkby+++/k5aWRu/evfMdCiSEEEI4AgnqotQtXbqUCxcuULt2bd5991369OlT3lUSZSAxMZH58+djMBho1aoVM2bMsDllXWl68cUXWbZsGUeOHCEuLg5XV1datmzJ8OHDLePGhRBCCEclY9SFEEIIIYRwQDJGXQghhBBCCAckQV0IIYQQQggHJEFdCCGEEEIIByRBXQghhBBCCAckQV0IIYQQQggHJEFdCCGEEEIIByRBPRej0Uh0dDRGo7G8qyKEEEIIIe5gEtRziY2N5fPPPyc2NrZY6xuNRq5cuSJBvwxIW5cdaeuyI21ddqSty5a0txBFJ0G9hGVkZBATE0NGRkZ5V6XSk7YuO9LWZUfauuxIW5ctaW8hik6CuhBCCCGEEA5IgroQQgghhBAOSIK6EEIIIYQQDkiCuhBCCCGEEA5IgroQQgghhBAOSIK6EEIIIYQQDkiCuhBCCCGEEA7IqbwrUFpSUlJYvXo1x48f5+TJk9y8eZNx48ZKV2x6AAAgAElEQVTRtWvX8q6aEEIIIYQQhaq0Peo3btxg6dKlREVFERoaWt7VEUIIIYQQokgqbY+6n58fCxcuxNfXl5MnTzJp0qTyrpIQQgghhBB2q7Q96s7Ozvj6+pZ3NYQQQgghhCiWShvUhRBCCCGEqMgkqAshhBBCCOGAKu0YdUdlNBrZvXs3qampNG9xF8FBgeVdJSGEEEII4YAkqAOxsbHExsYCEBcXB0BqaiopKSlF3lZaWprVv7nt3LmTGzduALBr1y5CGt1D6zAJ68VRWFuLkiNtXXakrcuOtHXZKov2dnNzK7VtC1EeJKgDK1euZN68eQD4+Pjw4IMPEhUVRVJSUrG3GRUVZbPcHNIBdBqcO3aQawkNqeenFXtfd7r82lqUPGnrsiNtXXakrctWabZ3s2bNSm3bQpQHCepA//796dixI5DVo75582ZCQkIICAgo8rbS0tKIiooiJCQEFxeXPM/Hp2Zy6czxrAeuXpzUN2DZ1jQWPhFE8yDX23odd5rC2lqUHGnrsiNtXXakrcuWtLcQRSdBHahatSpVq1YFIDo6GgBXV9fb+grNxcXF5vrtWrdgfY3GKJWJzslAk9RMknaf4ImvL7HkmVBa1XQv9j7vVPm1tSh50tZlR9q67Ehbly1pbyHsV6mD+tq1a0lKSrKMO9+/f79lLHqvXr3w8PAo8zrpNY1aXk5cSNYD4OGqp1ltTw6dSWTwvLN8+3QorWtLWBdCCCGEuNNV6qD+/fffc/XqVcvjPXv2sGfPHgA6depULkEdINhN40Kysjy+r5EPh84kkphmYsj8syx+qg5t6pRP3YQQQgghhGOo1EH9iy++KO8q2ORvAFcdpJqyHrcI9cTNoCMl3cTNNBND559j8ZN1aFtXwroQQgghxJ1KbnhUDjRNI8gte5YXZycdHZtVsTxOTjcx7Muz7D59szyqJ4QQQgghHIAE9XIS4m49HePwB6sT4J39BUeKUfH4V+f4+aSEdSGEEEKIO5EE9XLi5ZT1Y5asdCwdVZdAH2dLWapRMXLBOXYcTyyHGgohhBBCiPIkQb2caJpGsJt1r7rezZlVz9UluEqOsJ6hePLr82z9+0buTQghhBBCiEpMgno5CsoV1C8mK2r7G1j1XF1q+maH9bQMxdNfR/LTUQnrQgghhBB3Cgnq5cjdScPPkP34RgYkGhU1/QysfK4utXM8mZ6peHZxJBv+TCiHmgohhBBCiLImQb2c5R7+cjEla371EF8DK54LJdQ/O6wbMxXPfRPJ2iMS1oUQQgghKjsJ6uUs0E0jZ1S/mKJQKiusB1cxsOK5utStmh3WM0wwekkkPxyOL+OaCiGEEEKIsiRBvZwZdBrVXbMfp2TC9fTsx4E+zqx8ri4NqrtYyjJNMGbJBVb9cb0MayqEEEIIIcqSBHUHEOxm/WuIujX8xayGtzMrRoXSsEZ2WDcpePG7KJb9LmFdCCGEEKIykqDuAGq4glOO8S/RKQqTsg7r1bycWTGqLo0DsrvflYIJy6NY8ltcWVVVCCGEEEKUEQnqDkCvaQS6Zid1o4KraXmX8/d0YtmoUJoGWYf1SSsusnifhHUhhBBCiMpEgrqDCHbPO6e6Lf4eTix7NpQWwW5W5VNWXWThnmulVj8hhBBCCFG2JKg7CH8DuOT4bVxJVRhNtsO6r7sT3z0bSqua1mH9n99fYv7u2NKsphBCCCGEKCMS1B2EpmlWc6qbgMuptoM6gI+bniVPh9K6lnVYf3VNNJ/vkrAuhBBCCFHRSVB3IPYOfzHzdtPz7dOh3FvH3ar8jbXRfLIzpsTrJ4QQQgghyo4EdQfi7QSeTtmPY9MhNbPgsO7lqufbp+rQNtTDqvzt9Zf5cPvV0qimEEIIIYQoAxLUHUju4S8Al1IKDuoAHi56Fj9Vh/b1rMP6uxuvMHPLlRKtoxBCCCGEKBsS1B1M7qB+0Y6gDuBu0LFwZB0eqO9pVT5j81Xe++kKStm3HSGEEEII4RgkqDsYdycNX0P24wQjJBrtD+sLRtamU5h1WJ+99Sr/2SRhXQghhBCiIpGg7oBCitmrDuDmrOPLJ2rTtZGXVfkH22OYvuGyhHUhhBBCiApCgroDCnTTyBnVL6WoIgVsV2cdXzxei26NrcP6JztjmbZOwroQQgghREUgQd0BGXQa1V2yHydnwnVj0bbh4qRj3vBahDf1tir/bFcsr/0YLWFdCCGEEMLBSVB3UEWdU90Wg5OOz4bVoldz67A+f/c1/u/7S5jyufOpEEIIIYQofxLUHVQNVw2nHFn9UqrCVIxecGe9xidDatHnLh+r8oV745i6WsK6EEIIIYSjcip8EVEe9JpGgKtG1K0LSY0miEmDGq5F35aTXuPDQTXR6zRW/RFvKV+8Pw6VaeT1HtXQcpwUODs7YzAYbGxJCCGEEEKUFQnqDizYLTuoQ9bsLzVctQLWyJ+TXmPOwBD0Giw/mB3Wr106w/r1+62WbdKkCc2aNStepYUQQgghRImQoO7AqrqAiw7STFmPL6cqMkwKJ13xwrpepzHzsRD0Oo2lB64DsOOKH3tjq9C7qQt36/+iS5cueHt7F7IlIYQQQghR2mSMugPTNI2gHHOqm1RWWL8dep3GjP7BDG/jB0CqSU8DrySqp57K2qeTiwx7EUIIIYRwABLUHVzwbdz8KD86nca/+wYxop0ffoZ0htaJJsQjDYA3vjvM0eiU296HEEIIIYS4PRLUHZyPM3jmGKAUkwapmSUT1t/pE8Sg1j5WF5JeTzLS86PTzN8dK3OtCyGEEEKUIwnqDk7TtDy96pdKoFfdvO1/9anHdZc6JBqz3gpHrnuRlqF4dU00Ixac59rNjBLZlxBCCCGEKBoJ6hVAUCkMfzHTNI3n+rShXquOAGSo7LfElr8T6Tr7JDtOJJbY/oQQQgghhH0kqFcAHk4avs7ZjxOMcDOjZMJ6eno6SUlJNKuedTLQPcyAqy7T8vzVxAyGzj/Hm2ujScswlcg+hRBCCCFE4SSoVxDB7rl61ZNLJqifOHGCdevWsW3bNgDudz3K2x2NuDpZ7++zXbE8+vFpTsWklch+hRBCCCFEwYo1j/rly5fZuHEjO3fu5NChQ8TExBAfH0+VKlWoVq0aLVu2pGPHjoSHhxMQEFDSdb4jBblq/JWgMMfziymKMC+FphVvTnWzsLAwQkNDrcqcnZ25p5WJF5Zc4Gh0qqX8z0upPDznJNN6BzH0Xt/b3rcQQgghhMhfkYL6pk2bmDt3LuvXryczMzPPrCDJyclcunSJw4cP8/XXX6PX6+nZsyejR4+me/fuJVrxO41Br1HNBa7e6tBOzoR4I/je5pTnBoPB5rzpYTVg7Zh6vLPhMl/svmYpTzEqJq+8yI7jibzXPxhfd7lnlhBCCCFEabArZR04cICXX36ZXbt2AdChQwc6depEmzZtaNSoEX5+fnh7e5OQkMD169c5duwY+/fvZ/v27axZs4Y1a9bw4IMPMmPGDFq3bl2qL6gyC3bXuJqWfXIUlazwNZRer7ars45pvYPoGObJ+GVRXEvKHru+7s8bHLyQwseDa9K2rkep1UEIIYQQ4k6lKTsmy9bpdNSoUYPx48czbNgwQkJC7N7BhQsXWLx4MR988AFXr14lMzOz8JXKUXR0NJ9//jmjRo0iMDCwyOtnZmaSlJSEh4cHer2+ROuWaVL8dMWEeRp1gw4eqqFDVwZDUK4mGhn3XRQ7T960Ktdp8FLnakx4qAbO+rIdClOabS2sSVuXHWnrsiNtXbakvYUoOrsuJp01axZnz57lH//4R5FCOkDNmjX55z//ydmzZ5k5c2axKlmRpKenExkZSXp6eolvW6/TCHDNDsPppqwbIJWF6l7OfPNUHd7oFWgVyE0KZm+Lod+npzl/reRfc0FKs62FNWnrsiNtXXakrcuWtLcQRWdXUB83bhyurq63tSNXV1fGjRt3W9sQ5Ln5UUnOqV4YnU5j1ANVWTumHvWquVg993tkCt3mnGTVH/FlVh8hhBBCiMqsVKdnzMzMZN26daW5iztOVRdwyfFbu5KqyDCVXVgHaB7sxqaX6jO8jZ9V+c00E2OXXuCl7y6QmOrYQ5yEEEIIIRxdqQT13377jXHjxhEUFESfPn1KYxd3LJ2mWd2pNFPB5dSyDeoA7gYd7/UPZt7wWlRxsx5ruOJgPN3nnOJgZHKZ10sIIYQQorIosaB+/vx5pk+fTuPGjWnbti0ffvghMTExNG7cuKR2IW4pz+EvufVs7sPm8fVpl2vml/Nx6fSZe5oPtl0ls4x7/IUQQgghKoPbmgQ7ISGBZcuWsWjRIn799VeUUiilCA0NZfDgwQwZMoRmzZqVVF3FLT7O4KEH82yJMWmQlqlwKeNZV8yCqxhY9mwoH+2IYcbmK2SassozTfDvTVf4+eRNPhhUk6AqzuVSPyGEEEKIiqjIQT0jI4N169axePFi1q1bR1paGkop/Pz8MJlMJCQkcPr06dKoq7hF0zSC3TVOJGb3VF9KUYR6lt+dQvU6jXFdqtOhnidjlkYSGWe0PPfrmSQemn2SGQOC6dHMp9zqKIQQQghRkdg99GXv3r2MGTOGwMBA+vXrx8qVK1FK0bdvX1avXk10dDRNmzYtzbqKHBxp+EtOrWu7s3lcA/q3qmJVHp+SyTOLIpmy8iLJ6aZyqp0QQgghRMVhV496gwYNOHPmjOXxAw88wPDhw3nsscfw8ZEe0vLg4aRRxRnib3VcxxvhZobC06n8etXNvFz1fDi4Jp3CPPnn95e4mZYdzBfvj2Pv2SQ+GVqTZkFu5VhLIYQQQgjHZlePunkoS2BgIJs3b2bHjh0888wzEtLLWbB7rl71ZMfoVTfrf7cvm8c14O6a1oH8VEwavT46zee7YjHJhaZCCCGEEDbZFdQbNWqEUopLly7RrVs32rdvz9y5c4mLiyvt+okCBLlq5IzqF1OyLuZ1JLX9DaweXY9xXaqh5ahseqbijbXRPP7VOWISjflvQAghhBDiDmVXUD969CgHDhzgpZdeolq1auzZs4exY8cSGBhInz59WLFiBWlpZXQve2HhoteomuMGocmZ2UNhHImzXuMfDwewYlQogT7WM79sP3GTrrNPse3vxHKqnRBCCCGEY7L7YtK7776b2bNnc+nSJdavX8+gQYNwcnLixx9/ZNCgQQQEBPDnn3+WZl2FDY56Uakt7ep6smV8fXo087Yqj72ZwfCvzvHamkukGuVCUyGEEEIIKMYNj3Q6HeHh4Xz77bdcuXKFL7/8ks6dO5OYmEhCQgIAQUFBTJgwgX379pV4hYW1AFeNnNOnX0pRmBxs+EtOvu5OzBtei//2D8bN2fok44vd1+j18WlOXEktp9oJIYQQQjiO27ozqaenJyNHjmTLli1ERkby73//m2bNmnH58mXmzJnD/fffT/369UuqrsIGJ51GgGt24E03QayDj0LSNI1hbfzY+FJ9mga5Wj13NDqV8A9PsWjvNYcbby+EEEIIUZZuK6jnFBQUxJQpUzh8+DCHDh1i4sSJ1KhRg7Nnz5bULkQ+KtLwl5waVHdl7Zh6PPdAVavyVKPiH6sv8fSiSOKSMsqpdkIIIYQQ5avEgnpOLVq0YMaMGURFRbFx48bS2IXIoaoLGHL8Ji+nKjIqyLSHLk46Xu8VyLdP1aGap/W0/hv/ukG32SfZffpmOdVOCCGEEKL82B3Ujx07xs8//0xkZGShy54/f56ff/6ZEydO0K1bt9uqoCicTtMIytGrnqngSmrFCOpmnRp6sXVCA7o28rIqj76RwcB5Z3l342WMmRXrNQkhhID09HSSkpJITk7GaDSSnJxMenp6eVdLiArBrjuTxsbG0q5dO9zd3fn9998LXd5gMDB48GDS09M5deoUVapUKXQdcXuC3TTOJWUH2YspimD3cqxQMVT1dOLrkbWZ/+s13l53mfRbwVwp+HB7DLtO3uTjITUJzTknpRBCCId24sQJjh49anl88uRJmjRpQrNmzcqxVkJUDHb1qH/11VfcuHGDd955h8DAwEKXDwwM5N///jdxcXF89dVXt11JUbgqzuCuz34ckwZpFbAHWtM0nmlflfUv1iOsunUgPxSVQvc5p1j++3W50FQIISqIsLAwevbsSfv27QFo3749YWFh5VwrISoGu4L6unXr8PHxYfjw4XZveNiwYVSpUoU1a9YUu3LCfpqmWV1UqoBLFWz4S05NAt1Y/2J9RrT1sypPSjcxblkUY5ZeIDE1s5xqJ4QQwl4GgwEPDw9cXbNm+XJ1dcVgMJRzrYSoGOwK6n/99Rdt27bFycmukTIA6PV67rvvPv76669iV04UTbB7rtlfkituUAdwN+h4t28wXz5RG9+cXxcA3x9KoNenFzgaU7FfoxBCCCFEfuwK6gkJCfj7+xd54/7+/pabIInS5+mk4eOc/TjeCEkZFT/Ihjf1Zsv4BrSv52FVHhWfwcRN8OHOODIryCw3QgghhBD2siuoV6lShbi4uCJvPC4uDm9v78IXFCWmos6pXphAH2eWPhPK/z0SgFOOd61JweztcQz4/AxR12UWASGEEEJUHnYF9fr167Nv3z4yM+0fE5yRkcHevXtp0KBBsSsnii7YTSNnVL+YrCrNhZd6ncbYTtVY80I9Qv2txzfuO5tMtzkn+fGIfIMjhBBCiMrBrqAeHh5OfHw8H330kd0b/uijj0hISOCRRx4pduVE0bnoNXLOXpiUCQnG8qtPaWhZ051N4+rTv6X1nOsJKSae+yaSicujSEqTC02FEKKsZSpFaqbihlERm6aITlGcTzJx+EIsx06eKe/qCVHh2HV16NixY3n//feZMmUK/v7+hc7+smjRIqZMmYKXlxdjxowpkYoK+wW7acSkWc+pXsWgFbBGxePpoue9iBqEeSby4W86bqaZLM8tPXCd/eeS+GRILVqEuJVjLYUQomJSSmFUkG4Co8n8ryLdlE+ZyiqzNSuwKTWJ1N+3Z90UA0hMTCzWdW9C3InsCup+fn4sXLiQAQMGMGLECObOncuQIUO4++67qVatGgAxMTEcPHiQJUuWsHfvXjRNY+HChfj5+RWydVHSAlw19JqyHDAvpSgaeyt0WuUK6wCdQzXCW9dk0vcxHDifbCk/E5vOo5+cZurDNXjugarodJXvtQshRGGUyvpbkG4iR/AuIHDfKjOW4IhJlXLTEtIBkpOTC1haCJGT3fMtRkRE8OOPPzJixAj27NnD3r17bS6nlKJatWosWLBAhr2UEyedRg1XjUu3LiRNM8G1NKjmWs4VKyUhvs6seq4us7ddZfbWq5gngDFmKt5af5mdJ28yZ2AINbydC96QEEI4MJNSlmCdHbKze75zBm5jjmVMhW+6VOm8q6J5+KCSsq4hkg48Iexn/8TowCOPPMK5c+dYuHAh69ev59ChQ1y7dg3ImoqxZcuW9OzZkyeeeAJ39wp2//pKJtgtO6hD1vCXaq6Vt1fZSa/xcrcaPFDfk7FLL3AxPntg/s8nb9J19klmPRZCt8YyC5EQonwppchQNgJ3zhCu8vZyO+JsuzrAWQcGXc5/NQzm/2tg0Dnj1LUbN65Gc2DvbpydpdNECHsVKagDuLu7M3r0aEaPHl0a9RElpJpL1kEy/VZXSnSqorlJoa/kQ0DuC/Vgy/gGTFl10WoGmLikTEYsOM+T9/vzrx4BuDnbdR21EEIUKFNZ92Db7tW2HsdtNGXdPdrRZIXqfAJ37jItq0yvZd0Zu3Aamkcl/VpXiFJU5KAuKgadphHoqnH+1t1JMxVcTlN55lmvjHzc9Hw6tCadwzz515poktOzv/j96tdr7Dlzk0+G1KJRgPzREEJkMQ8rMeYI1On5Be4cyznivdb0t0K0QbMO1+awbavM2e7ALYQoS3YH9WeffZbTp0/z9ttvc//99xe47J49e3jllVdo2LAhc+fOve1KiuIJcc8O6pA1p3rwHTIJiqZpDL7Xj3vreDBmyQWOXEyxPPf35TQe+fAUr/UMZGQ7P/njJEQlYh5WYsw1rCTdRllahhPJPvWIincmQ5X3SO68NHKHazDotFw937kCtw70ckwTotKwK6hv3bqV+fPn89hjjxUa0gHatWtH9erV+fzzzxkyZAgPPvjgbVdUFF0VZ3DXQ/KtKcVj0iA9U2HQ3zkH8XrVXFjzQl3+89MV5u6MtZSnZShe+eESO04kMvOxEPw95MslIRxNZo6LJ7OHluQoU7ke3/rX/k5uHegNZTIOxamwYSVa3jIn6eUW4o5nVzpZtGgRmqYxffp0uzf8zjvvsGzZMhYuXFisoG40Gvnmm2/YsWMHN2/epE6dOgwbNoxWrVoVuu6hQ4dYvnw5586dw2QyERQURK9evejcuXOR61GRaZpGsJvGyZtZf4UUcClVUcfjzjrwG5x0vNojkI4NvBj33QWuJGZYntt8LJGHZp1kzqCaPNjAsxxrKUTlVdCc3HnGdufo+bY1J3d505E7cNvq1dZyDDvJ+qmM0+MKIUqfXUF9z549NG/enPr169u94bp163LXXXexe/fuYlVs9uzZ/Prrr/Tu3ZvAwEC2bdvGtGnTmD59Ok2aNMl3vX379vHOO+/QsGFDhgwZgqZp/PLLL8yaNYsbN27Qp0+fYtWnogp2zw7qkDX8pY5HOVaoHD3YwJMt4xswcUUUm48lWsqvJGYw+IuzjO5YlX90r4HBSS40FcIW85zcBY/jtlHmgIEbwFlTqIx0PAzOuDjpbAfuXL3elf2C/NKQnp6O0WgkNTUVgNTUVNLT0zEYDOVcMyEcn11BPSoqip49exZ54w0aNGD9+vVFXu/EiRPs2rWLJ598kr59+wLQpUsXxo4dy4IFC3jvvffyXXfdunX4+voyffp0yxRQ4eHhjB49mq1bt95xQd3TScPHGRJuzVZ43QjJGQp3pzvzj42/pxMLRtRm4d44pq2NJjXHfGdzd8ay+1QSHw+pSb1qLuVYSyFKn8nWsJI8ZY43J7ctTlreHu7cM5gYdJrVMs5aVmA8ffoM9erVw83tDrmApxycOHGCo0ePWh7v3r2bJk2a0KxZs3KslRAVQ6kOzNU0DaWK3pWye/dudDodDz/8sKXMYDDQrVs3Fi1aRExMjOWOqLklJyfj6elpNU+rXq/H2/vOnT872E0jwWg9p3oDrzszqEPW+3JkO3/ahnrwwpJI/r6cZnnuyMUUus85ydt9ghh8j6+MDxUOL+ec3PmP48471MQR5+TWyH3hZI7ZSTTbgdsgw0ocXlhYGKGhoaSmphIZGUmtWrXw8vIq72oJUSHYFdRr1KjBqVOnirzxkydPUqNGjSKvd+bMGYKDg/PcNCksLAyAs2fP5hvUmzdvzsqVK1m8eDFdunRB0zR27tzJqVOnmDJlSpHrUhkEuWkcvWEd1Ot7qjs+hDYKcGXd2Pq8vf4yX/16zVKeYlRMWnGRHSdu8l6/YHzc9OVYS3EnyVSKVBOk612IM2poKIy5b4RjYwYTB8zcOGu5ZyyxMUWgZl1m/5zcoiIxGAwYDAZ0Oh3Ozs64u7vLsBch7GRXUG/Xrh3fffcdf//9N40aNbJrw8eOHePw4cMMGTKkyJW6fv06vr6+ecrNZXFxcfmuO2jQIK5cucLy5ctZtmwZAC4uLkydOpW2bdsWuS6Vgateo6oLxN7qOL6ZATeM4CPHSdycdUzvE0SnME8mLI8iLinT8tyPRxI4GJnMR4Nrcl/oHTqwXxSLMg8hUdbDSAq6KU72nNwG8KnLpZvgCANNZE5uIYQoP3YF9ccff5wlS5bw9NNPs3XrVlxdC75RTGpqKk8//bRl3aJKT0+3eYth8xl4WlpanufMnJ2dCQoK4v7776ddu3aYTCY2bdrErFmzePPNN+0+0ahsgt00YtOse9V9DPKH1KxbY2+2jm/AuGVR/HzypqX8YryR/p+dYVyX6kzoWh2nO2hqS5F98aT1TW5yB+68UwQ64sWTOefktoRsLfcwEi1XAJc5uYUQojzZFdTDw8Pp0aMH69ev57777mPGjBl069bN5rI//fQTL7/8Mn/99Rc9evSwGmduL4PBgNFozFOenp4OZPWQ5+ezzz7j+PHjzJo1C50ua/aODh06MHbsWL744gtmzJiRZ53Y2FhiY7Pm2Db31qemppKSkpJn2cKYTyIKOpkoD1UAHc6YyPqjG5Vsoo5zGhX5b3BJt7W3M8wfUoMv97owY8s1jLc6M00KZm29ys4TN5jVrwYhvnlPIis7R31fF4VJZQVoo9IsYdqoNIwKMkya1eOs57P+r3C8D4mTpnDWsv911t361/I4x/81lRW4wb7PuynrRwHppfsyyl1leF9XJGXR3nJRsKhs7L6YdOnSpTzyyCPs3r2b8PBw/P39admypWWseExMDIcOHeLatWsopejQoQNLliwpVqV8fX1tDm+5fv06AH5+fjbXMxqNbN68mX79+llCOoCTkxOtW7dm3bp1GI3GPL31K1euZN68eQD4+Pjw4IMPEhUVRVJSUrHqD1kz5TgaV48gkl18AEhXGn9FRuOWkVzOtbp9Jd3WnWtASDi8+wtE3cguP3ghlUc+Oc+4+6BzqOOFt7LgCO9rBZg0HSZNj0nTk6m79a+mx5Tn/05kajpMOj1Kc8BrDZQJvcpEZ8rM+tfO/+f37jOH68oesEuaI7yv7ySl2d4yk4yobOwO6p6enuzYsYOZM2cye/ZsoqOj2bJlS57lAgMDmTBhAhMmTECvL94fxrp16/K///2P5ORkqwtKjx8/DkBoaKjN9RITE8nMzMRkyjuuMyMjA5PJZPO5/v3707FjRyCrR33z5s2EhIQQEBBQ5LqnpaURFRVFSEhIgT3/5cE7XeNIjnMPXdUQ6nlk5r+CgyvNtq5XDx64y8TbG2NZ9kd2Wk82ZgX444mevN6jGp4ud8ac66XR1kpldd5m9WDn36NtVBoZVo8Bh+vlNvdeZ/dgO+Xq0c7u4c7uAYsYzjgAACAASURBVM8eSaW79eN8q60vO+QxpLJx5ON1ZSTtLUTRFWl6Rr1ez+TJk5k0aRJ//PGHpQcdsPSwt2rVyqo3uzjuv/9+Vq9ezaZNmyzzqBuNRrZu3UpYWJhVL35aWhohISFAVm+4h4cHe/fuZejQoZae85SUFH777bd8Dw5Vq1alatWqAERHRwPg6up6W1+hubi4ONxXcCGuimPJJsv42RijHoOrc4Ufg1pabe3mBrMHe9C1SQJTVkWRkJJ9krfqcCIHo9L4ZEhNWtZ0L2ArlUt+bZ1nTm6VfbFk/hdTOsKlknnptVxTBOYZx533RjilcfGkIx5DKitp67Il7S2E/ewK6rlnYdHpdLRu3ZrWrVuXSqUaNmxI+/bt+frrr4mPj7fcmfTq1au8+OKLluVmzZrFn3/+yZo1a4CsE4m+ffuyePFiJk+eTOfOnTGZTGzZsoXY2FgmTpxYKvWtKHSaRpCbxvnkrKSeoeBKqiLIrWIH9dL2aAsfWtV048XvLrDvbPZQoXPX0un9yWmmPBzACw9WRVcJ7lhoa05uo0mRlKbjultVjifrMaWaKuSc3Fa3etfyCdxy8aQQQggHYldQDwwMpGfPnjz++OP07NnT5owsJW3ChAl888037Nixg5s3b1KnTh1effXVQsefDRw4kBo1avDjjz+ydOlSjEYjderUYerUqdx///2lXm9HF5wjqEPW7C9B0rFRqBBfAytG1eWDbVeZufUqmbe6gjNM8M6Gy/x8IpE5g2oS6OM4F5pmKtu3drfu+c67jO3M7QRu1UhIg/KYtTvnnNxWgTtXz7fMyS2EEKIy0ZQdtw51cnLCZDKhaRpVqlRh4MCBDB8+nPbt25dFHctUdHQ0n3/+OaNGjSIwMLDI66ekpHD69GmHvSW1UoptV02k3BqargHdAnQYKmBvcHm19W/nkhi79AIXrlvPTOTrrmfGgGAeaepTovvLOSe3zTtP5i67tVymA/Zy6zVy3drdRuDOWXYroN9JgdvRjyGVibR12ZL2FqLo7OpRj4qK4ttvv2Xx4sUcOnSIzz77jM8//5w6deowfPhwhg8fToMGDUq7rqIEaJpGsJvGqZtZKU4B0SmK2h53ThC6XffW8WDzuAZM/f4i3x9KsJRfT87k6a8jeaKtH6/1DMTdYH2tRs45ubNvclNA4K5gc3Kb7zJpa07u7F5ueZ8JIYQQ9rIrqAcEBDBx4kQmTpzI33//zaJFi1iyZAlnz57l7bff5u2336ZNmzY8/vjjDBo0CH9//9Kut7gNOYM6ZA1/qS033iwST1cd7z8WQtemPnz+yzX0eh0ebno8XfXc1OuZvS+BtvU8cTXorEK3I1486aTZvlDSOcdFlSojnSsXowitGYyXuytOMqxECCGEKHVFmvUFoFGjRkyfPp3p06fzyy+/sGjRIlasWMG+ffvYv38/EyZMIDw8nMcff5xHH31UpmByQF7OGt7OcOPWyI24dEjOULg73XnBSyllmQ4w5zhuq3HbKu+MJeZhJS5VPXkxwtPmtpOB5DKc0FqHjTtP5u7V1vIONdHZEbhTUhTxmam46bOCvBBCCCFKX5GDek4dOnSgQ4cOfPTRR6xfv55Fixaxbt06fvzxR9auXYu3tzcDBgyw3ExIOI5gN40bRoXKMKIyjJyL0yzDX5ydnTEYDOVcw6LLNKlc47jJMzuJ1bCSW8NQHFHO8dk2A3fOMs08W4n0cgshhBCVyW0FdTNnZ2f69OlDnz59uHHjBt999x2vvPIKsbH/z959x1Vdtg8c/3zZIKiAoCwBEZzhHimO3DO3ae6Ze/SUab8cmaYtc5dm5p6hPpqYioq5rSxHORBBhoggyt6c3x89Hj0BiocDB/B6v1688tz3d1zcGlzne+77umNYv369JOrFkJO5wvV4FRkRgWSGXecacO1/fTVr1tTr7m5PanI/ncede8KdmmlEUll3Ih8bk/Eoq1hOK0lNzyIpNYu09GxcyhtT0dIoz5rcT+d6S8IthBBCCB0l6k/88ccfbNmyhR07dqg3QtJ2d1JRuMwMFSqYQLSTJ0YV3VClpZB2NYA2bdpQtmxZndzjSU3uHE+4X/DUO/81uQ3AyKxIqgU+qcn97+okz87jfpJwJ6dlscgvkp+uxJH5r9Ir77SowMxOFTE1ejV2NBVCCCGE9gqcqN+9e5dt27axdetWrl+/zpNqj3Xq1GHIkCG8/fbbBQ5SFA4nC4WYdGMUI2P102hzc/Ncp71kqXLuKplbTe5/H1MMC5bkWpP76XSSJ4soNdteZlqJrakRq95yppl7GeYcuEfqM2Vb1pyK4XRQIqsHuuBpb1ZY36IQQgghSgGtEvXHjx+za9cutmzZwtmzZ1GpVKhUKpycnBg0aBCDBw/W69QJkT+VzBSuoiIzLZnMB3cBuBmvQpX2dOfJ4lyT2wAVSlYm5iaGmBoa5LrTpEbCrYBRPhdPFpSiKAxuYkNjNwsmbA/j78hUdd9f91LpuPw2n3R35O3G1jLNRQghhBC5yneinp6ezoEDB9iyZQuHDh0iIyMDlUqFlZUVvXv3ZsiQIbzxxhuSdJQgxgYKFYwyCTl/DDL/KU8SGvMII9ui3YjiSU3uJwsjc523nSMBh/TU1GK/eYZXRTN+mujBop/v893ph+r21AwV7++J4MStBL7o44S1hU5noQkhhBCiFMhXdjBmzBh8fX2Ji4tDpVJhaGioLsHYs2dPzMzkI/ySyjoriZDMpzUEsxMfga2j1tcz0qhUkrMmd267UZb2mtxmxgZ83N2RVp5WTNsdTkxiprrP71o8f4SlsHKAM69Xyb3MoxBCCCFeTflK1L///nsAGjRowJAhQxg4cCB2dnaFGpgoGm52ZblWpiwZSfEAGJa3B3KvyZ3jqbbyr7ndRTStpKRqU92KY9OqMm1XOCduJarbI+My6Ls2mClv2PFuu4oYG8oYCiGEECKfifqsWbMYMmQI1atXL+x4RBEzNjKie8d23Am/z58Xz+LjZEU5SwOpyV1I7KyM2TzCje/PPGThofuk/2/yv0oFy45HcyowkVUDK+NqW/Lq2AshhBBCt/JVI27hwoWSpJdiRkZGONlZA2BmCEYGiiTphcjAQGFMiwr8NMmDqnaaO/deCkuh/bJAfC890lN0QgghhCgu8pWoZ2Zm8uDBA+Li4nLtj4mJ4Z133sHZ2RkzMzM8PDyYOXMmiYmJuR4vio/09HSSkpJISUkBICUlhfT0Itz3/hVW29Gcn6dUZXBjG432xLRsJu8MZ9KOMBJSs/QUnRBCCCH0LV+J+saNG3FwcGDJkiU5+uLj42nWrBnr1q3j3r17pKenExwczBdffEGHDh3IypJEozi7desWBw8e5Pjx4wAcP36cW7du6TmqV4eFiQGf93Fi3ZDKlDfX3Bxszx+Pab8skN/vJuspOiGEEELoU77mqJ88eRKAUaNG5ehbvHgxt2/fxsLCgkWLFtGmTRsCAwP5z3/+w4ULF/jhhx8YPXq0bqMWOuPl5YW7u7tGm7GxsZ6ieXV1qV2Ous4WTNkZxtk7Ser20NgMen4bxHvtKzKptR2GBjIlSQghhHhV5OuJ+qVLl6hevTqVK1fO0ffDDz+gKApz5sxh8uTJ1KpVi549e+Ln54eiKOzatUvnQQvdMTExoUyZMhpfue1MKgqfY3ljdo5xZ1anihg+839mVjZ8djiKfmuDiXgs05KEEEKIV0W+EvWoqChq1aqVo/369etERUWhKAojRozQ6KtWrRqNGjXiypUruolUiFeAoYHC5Dfs+e94D1xtNN8wnQ9Oov3S2xy8mvtaESGEEEKULvlK1OPi4nKtAvL7778DUKtWrVzrqru6uvLokVSvEOJl1a9swZGpVelXv7xG++OULMZsCeV933CS07P1FJ0QQgghikK+EnVra2uCgoJytJ89exaARo0a5XpeVlYWlpay26IQ2rAyM2TZWy6sHOCCpanm/6pbLz6i4/LbXI1I0VN0QgghhChs+UrUGzRowB9//MGFCxfUbUlJSfj6+qIoCm3bts31vFu3buHoqP129EII6F2vPEenetKgsrlGe1B0Gt1XBbH2VAzZ2So9RSeEEEKIwpKvRH306NGoVCo6d+7M3LlzWbFiBa1btyY6OhpbW1t69uyZ45zIyEj++usvatasqfOghXjVuNqasGecB9Pa2vNs4Zf0LBXzfopk8A8hPEjI0F+AQgghhNC5fCXqvXv3ZsSIETx+/JgFCxYwbdo0fv/9dwwMDFixYgXm5uY5zlm/fj3Z2dl07NhR50EL8SoyNlSY0aEiP46tgkM5zRKaAbcSaft1IMduxOspOiGEEELoWr4SdYDvv/+eH3/8kYEDB9KuXTtGjhzJL7/8wltvvZXr8cHBwfTo0YPOnTvrLFghBDStUoZj0zzp9lpZjfaHSVkM+eEus/ffIzVDFpoKIYQQJV2+Njx6onfv3vTu3Ttfx65bt06rgIQQL1bewpA1gyqz/ddHzN5/j5SMp3PUvz/zkLNBSawe6EK1SmZ6jFIIIYQQBZHvJ+pCiOJFURTebmzD4ame1HbUTMiv30+l84rbbDz3EJVKFpoKIYQQJVG+EvWMDN0sUtPVdYQQT1W1M+XARA/eaVFBoz01U8WsffcYuSmUh0mZeopOCCGEENrKV6Lu4eHBmjVryMzU7pd9RkYGq1evxsPDQ6vzhRDPZ2pkwNxuDmwb5YadpeaMtsN/x9N+aSCnbyfqKTohhBBCaCNfiXrVqlUZP348zs7OTJs2jfPnz5Od/fzFatnZ2Zw7d47Jkyfj7OzMpEmT8PT01EnQQojctfay4th0T9pVt9Jovx+fyVvrgll46D7pmbLQVAghhCgJ8rWY9Pjx4xw8eJAPP/yQ5cuXq0sy1qtXj2rVqmFtbY2VlRUJCQnExsZy8+ZN/vzzT1JSUlCpVNStW5cNGzZIBRghikAFSyM2Dnflh3MP+eTgfdIy/5mjrlLBqoBoTt9OZNVAF6pUMNVzpEIIIYR4nnxXfenatStdu3blzJkzrFu3Dj8/P86cOcOZM2dyPd7e3p7+/fszZswYXn/9dZ0FLIR4MUVRGNmsAk3dyzBhWxi3HqSp+y6Hp9Bh2W0+7elIv/rlURTlOVcSQgghhL68VHlGgObNm9O8eXMAbt68yZUrV3jw4AFxcXGUK1cOe3t76tSpg5eXl86DFUK8nJoO5hyaUpX5ByPZeC5W3Z6cns20XeGcuJnA4l5OlDM31GOUQgghhMjNSyfqz6pWrRrVqlXTVSxCiEJgbmzAop5OtPay4t3d4TxKzlL3/fdyHL+HJrNqgAuN3MroMUohhBBC/JvUURfiFdGxZlmOTffEp6pmQh7+KINe395hiX8UmVlSc10IIYQoLiRRF+IVUqmsMTtGufNRl0oYPfN/f7YKvjz6gL5r7xD+KF1/AQohhBBCTRJ1IV4xBgYKE1rZcWCiB+62Jhp9F0OSabc0kP2XH+spOiGEEEI8IYm6EK+oOs4WHJlalbcaWmu0x6dmM25bGNN3h5OUlpXH2UIIIYQobJKo65iJiQmVK1fGxMTkxQeLApGxLrgypoZ83c+Z1QNdKGum+eNg52+P6Lj8NlfCU2Ssi5CMddGRsS5aMt5CvDxJ1HUsPT2d0NBQ0tNlnm9hk7HWnZ51y3N0qieN3Cw02u/EpNN9dRArT0QRcveujHURkH/XRUfGumjJeAvx8iRRF0IA4GJjgu/YKvynnT0Gz+yBlJGl4rOjD5nlD1HxmfoLUAghhHjFSKIuhFAzMlT4T/uK7BlXBWdrY42+P+5D129COfx3vJ6iE0IIIV4tBUrUjxw5Qq9evXBycsLU1JRRo0ap+w4fPsy7777LvXv3ChykEKJoNXYrw9GpnrzpXU6j/VFKNiM23mXWvghSMrL1FJ0QQgjxatA6UZ86dSqdO3fmv//9LwkJCWRkZKBSPd0sxcHBgaVLl7Jz506dBCqEKFrlzA355m0Xvu7njIWxotG38VwsXVbc5npkqp6iE0KI4iU5OZnly5fToUMHHBwcMDU1xcrKipo1azJ8+HD2799PVpZU0hIvR6tEfdOmTaxYsYIGDRpw6dIl4uNzfhTu7e2Ni4sLBw4cKHCQQgj9UBSFtxpas3+cC162mn03o9LosvI268/GaLxJF0KIV82ZM2eoWrUqU6dO5dSpU3h6etKrVy/atWuHkZERGzdupEePHnh7e+s7VFHCGGlz0jfffEP58uU5ePAgdnZ2eR7n7e3N1atXtQ5OCFE8uNua8HVH2H+3PGvPPuZJXp6WqeKj/0YScCuRr/s6Y2up1Y8UIYQosS5dukTbtm1JS0vj/fff56OPPqJs2bIax4SFhbFkyRK+/fZbPUUpSiqtnqhfu3aNZs2aPTdJByhXrhxRUVFaBSaEKF6MDRVmtK/AjtHuVLTSTMj9ryfQdmkgJ28l6Ck6IYQoetnZ2QwePJi0tDQ++eQTPv/88xxJOoCLiwtff/01p0+f1kOUoiTTeo66oigvPObevXuYm5trewshRDHUoqol/tM96VDTSqP9QUImA78PYf7BSNIzZaGpEKL08/Pz4/r161SuXJlZs2a98PgGDRpovFYUBTc3N9LT05k/fz7Vq1fH1NSUnj17ahy3efNmfHx8KFu2LBYWFnh7e7No0SJSU3OuE2rdujWKohASEpKjLyQkBEVRaN26tUb7vHnzUBSFDRs2cOHCBTp27Ej58uUpW7Ys7du35/z58y8eDFEotErUPT09uXTpEhkZGXkek5CQwJ9//kmtWrW0Dk4IUTzZljHih6GuLOrpiJmR5pv2b3+JofvqIG5Hp+kpOiGEKBqHDh0CoF+/fhgaGmp1jezsbHr27Mnnn3+Oh4cHPXr0wMHBQd3/zjvvMHToUH7//XdatGhB165diYyM5MMPP6RNmzYkJyfr5HsBOHv2LC1btiQ8PJzOnTtTrVo1/P39adWqFUeOHNHZfUT+aZWo9+vXj8jISGbOnJnnMbNmzSIuLo4BAwZoHZwQovhSFIVhr9tyaHJValQy0+i7GpFKx2WBbLsYKwtNhRCl1uXLlwGoV6+e1tcICwsjMDCQmzdvcvDgQXbt2sU333wDgK+vL2vXrsXR0ZErV65w8OBBdu/eze3bt/Hx8eHcuXPMmTNHJ98LwHfffcf777/PtWvX2L59O7/++iurV68mPT2d4cOHk5KSorN7ifzRKlGfNm0ar732GkuXLuX1119n8eLFAAQFBfH111/TsmVLVq9eTb169RgzZoxOAxZCFC/VKplxcJIHI5tploVJyVDxnm8E47aG8ThZSpIJIUqfhw8fAlChQoVc+0eNGsXw4cM1vnKbp75o0SKcnJxytC9fvhyAuXPn4unpqW4vV64cq1atQlEU1qxZk+sUGG24urqqp8E8MX78eJo0aUJkZCS+vr46uY/IP61KNJibm+Pv78/w4cM5dOgQFy9eBODUqVOcOnUKgPbt27NlyxZMTEx0F60QolgyMzZgQQ9HWntZMm13OLFJTxPzA1fj+D00mVUDXWjiXkaPUQohRNHauHFjjtrprVu3xsfHR/1aURS6d++e49yMjAz13PBBgwbl6Pf29sbb25vLly/z559/0rRp0wLH26dPH4yMcqaGAwcO5MKFC5w6dYrBgwcX+D4i/7SupWZnZ8fBgwe5fPkyR44cISQkhOzsbJydnWnfvj2NGzfWZZxCiBKgXY2yHJvmybRd4ZwMTFS334vLoM+aO0xpY8+7be0xMnzxYnQhhCjubG3/+SQxJiYm1/7MzEz1n8eNG8eaNWtyHGNvb4+pqWmO9ocPH5Kenk6FChUoUyb3hxxubm5cvnyZiIgIbcLPwdXVNc/7ALLbvB5olahfuXIFAwMDateuTZ06dahTp46u4xJClFAVyxqzdaQb352O4dOfo8jI+meOerYKlh57wKnARFYNdKGyjXzaJoQo2erUqcOZM2f4448/cn3qnR9mZmYvPigP+anA96zsbKnIVdJoNUe9bt26TJkyRdexCCFKCQMDhXda2vHTRA887DSfFP0emkz7pYHs+eOxnqITQgjd6Ny5MwC7d+/OMcWloGxtbTExMSEmJoakpKRcj3lSgvHZ+e1PphwnJibmOD4sLOy597x79+5z2x0dHV8Yt9AtrRJ1GxsbjdJBQgiRm9eczDk8pSpvN7LWaE9Iy2bSjjCm7AwjMU0WmgohSqYuXbpQo0YNQkNDWbRokU6vbWxsrJ53vmPHjhz9165d4/Lly1haWlK3bl11+5P87NatWznOOXr06HPvuWfPnlzfcDy5/7Nz60XR0CpRb9q0KVevXtV1LEKIUsjCxIAv+zqzdlBlyplr/sj58dJjOiy7zR9huqsDLIQQRcXAwIDNmzdjamrK7NmzmTFjBnFxcTmOe/jwITdv3nzp60+ePBn4Z0OiO3fuqNsTEhKYNGkSKpWKd955R2P6TKtWrQD46quvNGqsHz9+nKVLlz73fiEhIXz88ccabWvXruXcuXNUrFiRPn36vPT3IApGq0R97ty53Lx5k6+++krX8QghSqlu3uXwn+ZJ039Vfgl5mE6P1UGsOPGArGypuS6EKFkaNGiAv78/lSpV4osvvqBixYq0atWKgQMH0qtXLxo1aoSDgwMBAQFUr16dhg0b5vvaffv2ZezYsYSHh1O7dm26detG//798fDw4OTJkzRt2pT58+drnDNw4ECqVavG2bNnqVGjBn379qVp06a0b9+e8ePHP/d+Y8aMYfHixdSuXZu3336bxo0b884772BsbMyGDRuwsLDQaoyE9rRaTHr9+nUGDx7MjBkz2LJlC127dqVy5cp5LogYOnRogYIUQpQOTuVN2D3WnZUB0Xx5NIqs/61rysyGRT9H8UtgIsv6u+BY3li/gQohxEvw8fEhKCiIdevWsX//fq5du8a5c+cwNTXFycmJ/v3707dvX7p165Zr+cPnWbNmDT4+Pnz77becPHmSzMxMPDw8mDZtGtOnT8fc3FzjeHNzc44dO8b777/Pzz//jJ+fH7Vq1WLnzp00bNiQL7/8Ms97NWvWjBEjRjB79mx++uknVCoVbdu2Zf78+TRr1kyrsREFo1WiPnz4cBRFQaVScfnyZS5fvpzrymOVSoWiKJKoCyHUDA0Upraxx8fDkok7QgmNzVD3nQlKov2yQL7s40Tn2uX0GKUQQrwcCwsLpkyZ8lLFNvK7c/OQIUMYMmRIvq/r5OTEtm3btLrn66+/jr+/f77vJQqXVon6nDlzXrokkBBCPKuBqwVHpngya18Ee/98OqfzUXIWozaHMqSJDXO7OWBhotUMPSGEEKLE0ypRnzdvno7DEEK8isqaG7JqYGXaVHvEzL33SEp/WuN384VYzgcnsXqgC7UczZ9zFSGEEKJ0kkdVQgi961PfmqPTqlLPRTMhD3yQRteVQaw7HZPvj4iFEEKI0kKrJ+rPioiI4MyZM+rta52cnGjevLlG8X0hhHgRN1tT9o334KujUawIiOZJXp6epWLOgUgCbiXwdT9n7KxkoakQQujSvHnzZLZEMaV1oh4dHc3EiRPZu3dvji1pFUWhT58+rFy5Ejs7uwIHKYR4NRgbKszsVImWnpZM3hFGZHymuu/4zUTaLr3Nsv7OvFHNSo9RCiGEEEVDq0Q9Li6Oli1bcvPmTczNzenQoQNubm4oikJISAiHDx9m9+7dXLlyhfPnz1OunFRvEELkXzMPS/yne/LejxEc+ite3R6TmMmg9SGM8bHlw86VMDWS2XtCCCFKL61+yy1evJibN2/Sr18/QkJC2Lt3L19//TVLlixhz5493L17l/79+3Pz5k0+++wzXccshHgFWFsYsW5IZT7v7YSZsWaVqe9OP6TryiACo1L1FJ0QQojiaMOGDeoHx6WBVon63r17cXFxYcuWLblObalQoQKbN2/GxcUFX1/fAgcphHg1KYrC4CY2HJ5clZoOmhuq/R2ZSscVt9lyIVYWmgohRAmSnJzMvHnzCAgI0HcoxZ5Wifrdu3dp3rw5xsZ5L+oyNjamefPmhIaGah2cEEIAeFY04+AkD8b62Gq0p2aomLEngtGbQ4lNyszjbCGEEMVJcnIyH3/8sSTq+aBVom5ubk5MTMwLj4uJicmxta0QQmjD1MiAed0d2TrSjQqWmstrDv0VT/ulgZwJStRTdEIIUXKlpqbmKAzyRFJSUhFHI56lVaLeoEEDTp48yW+//ZbnMb///jsBAQE0bNhQ6+CEEOLf3qhmxbFpVWlTzVKjPTI+k/7fBbPo5/tkZMlUGCFE6RMREcGoUaNwdHTE1NQUd3d3xo8fT3p6OgB37tyhX79+2NjYYGFhQdOmTTl48KDGNQICAlAUhR07dvDRRx/h5OSEhYUF8fHx6vndJ0+eZMKECdjb2+Ps7Kxx/5EjR1KxYkVMTU2pVasW69evzxFnamoq8+bNw8vLCzMzMxwcHOjduzdBQUGEhISop01//PHHKIqCoiga5SFv3LhB3759sbGxwczMjIYNG7J///4c9/nrr79o06YN5ubmODs7s2DBgjzfcJRUWlV9mT59OseOHaNt27ZMmTKFt99+Gzc3N+CfaTHbt29n+fLlZGVlMX36dF3GK4QQ2FkZs3mEG9+fecgCv/uk/y8xV6lgxYloTt9OZNVAF9xsTfUapxBC6Mq9e/do3Lgxjx8/ZuzYsVSvXp2IiAh+/PFHkpOTefToEc2aNSM5OZkpU6Zga2vLxo0befPNN/nxxx/p1auXxvU++eQTTExMeO+990hLS8PExETdN2HCBOzs7JgzZ476iXpUVBRNmzZFURQmTZqEnZ0dhw4dYtSoUcTHxzNt2jQAsrKy6NatG8eOHWPAgAFMnTqVhIQEjh49yrVr12jXrh3ffPMN48ePp1evXvTu3RsAb29v4J/k+8l+PDNnzqRMmTLs2rWLnj174uvrq/4+7t+/zxtvvEFmZqb6uLVr15a668kHiwAAIABJREFUmRyKSstVWIsWLWL27Nl5LuJSFIVPPvmEWbNmFSjAohYZGcnatWsZO3YsDg4OL31+SkoKQUFBeHh4lLp/LMWNjHXRKc5j/de9FCZsDyPwQZpGexkTAxb1cqRvfWs9Raad4jzWpY2MddEqbeM9bEMIR68n6Py69z57Lff7DRvGli1buHDhQo7ZCiqVinfffZelS5dy6tQpfHx8AEhMTMTb2xuVSkVQUBAGBgYEBATwxhtvUKVKFa5du6bxd7FhwwZGjBiBj48PAQEBGBoaqvtGjx6Nn58fV69exdb26XqhgQMHcujQISIjIzE3N+eHH35g5MiRLFmyJMfDWpVKhaIoxMTEYGdnx9y5c3NstNSuXTsePHjAr7/+iqmpqfo8Hx8foqOjuXXrFvDPQ+OlS5dy4cIFGjduDPyzx4+npydxcXEEBwerHyKXZFoXIZ41axbnz59n8ODBuLm5YWJigomJCW5ubgwZMoRz586VuCRdCFHy1HI059DkqgxtaqPRnpSezZSd4UzaEUZ8SpaeohNCiILLzs5m3759dO/ePdcpxYqi4OfnR+PGjdVJOoClpSVjx44lJCSEv//+W+OcYcOG5fmGacyYMRpJukqlwtfXl+7du6NSqYiJiVF/dezYkbi4OC5dugSAr68vFSpUYPLkybnG+TyxsbEcP36c/v37k5CQoL7Hw4cP6dixI4GBgURERADg5+dH06ZN1Uk6gJ2dHYMGDXruPUoarXcmBWjYsCEbN27UVSwaMjIy2Lp1KwEBASQmJuLm5sagQYOoV69evs4/deoU+/fvJyQkBCMjI1xcXBg0aBB16tQplHiFEPpjYWLA4l5OtPKy5L0fI3iU/DQx3/PHY367m8TKAS40dC2jxyiFEEI70dHRxMfHU7t27TyPuXv3Lk2aNMnRXqNGDXX/s+e7u7vnea1/90VHR/P48WPWrl3L2rVrcz3nwYMHAAQFBVGtWjWMjF4+xbx9+zYqlYrZs2cze/bsPO/j5OSU5/dbrVq1l75vcVagRL0wLV26lLNnz/Lmm2/i4ODA8ePHmT9/PgsXLqRmzZrPPXfbtm3s3LmTZs2a0bZtWzIzMwkNDSU2NraIohdC6EPnWuWo62zBlJ1hnAl6WqkgNDaDXt/e4T/tKjL5DTsMDZ7/VEcIIUq7500/+nffkwWagwcPZtiwYbme82SOeUE8uc97771Hx44dcz2matWqBb5PSaJVon7p0iW2bNnCwIEDadSoUa7HXLx4kR07djB06FDq1q37Ute/desWp06dYsSIEepFA23atGHSpEls2LCBzz//PM9zb9y4wc6dOxk5ciQ9evR4qfsKIUo+h3LG7BjtzuqT0XxxJIrM/xUAyMqGz49EcTIwgRVvueBsbfL8CwkhxHNsHO5WZPeys7OjbNmyXLt2Lc9jXF1duXnzZo72GzduqPsLcn8rKyuysrJo167dc4/18PDgwoULZGRk5LnfTl5TYKpUqQL8sxfPi+7j6upKYGBgjvbcxqAk02qO+sqVK1m9evVzJ+m7u7uzevVqVq1a9dLXP3PmDAYGBhrvpkxMTGjfvj03btwgOjo6z3MPHDiAtbW1eh5VSkrKS99fCFGyGRooTH7Dnv9O8MDNVjMhvxCcTPtlgfx0JU5P0QkhxMsxMDCgZ8+eHDhwINfS2CqVii5dunDx4kXOnTunbk9KSmLt2rW4ubm9cDbC8xgaGtKnTx98fX1zfbPwbF7Wp08fYmJiWLlyZa5xAlhYWADw+PFjjX57e3tat27NmjVriIyMfO59unTpwvnz57l48aJG/9atW1/yuyvetHqifurUKerXr6+ug5kbOzs76tevz8mTJ1/6+nfu3FHX9XyWl5cXAMHBwXne+/Lly1SvXp0DBw6wa9cuEhISsLa2pl+/fnTr1u2lYxFClFz1XCw4MrUq/7fvHrsvPf2FEJeSzditoQy8Zc0nbzpiYaL1unohhCgSn376KUeOHKFVq1aMHTuWGjVqEBkZye7duzl9+jQzZ85k+/btdO7cmSlTpmBjY8PGjRsJDg7G19cXA4OC/ZxbvHgxJ06coEmTJowZM4aaNWsSGxvLpUuX8Pf3V08vHjp0KJs2beLdd9/l4sWLtGjRgqSkJPz9/ZkwYQI9evTA3NycmjVrsnPnTry8vLCxsaF27drUrl2bVatW4ePjw2uvvcaYMWOoUqUKUVFRnDt3jvDwcC5fvgzAjBkz2Lx5M506dWLq1Knq8oyurq5cuXKlwONdXGiVqEdEROQ55eVZ2g7Wo0ePsLbOWVLtSVtec80TExOJj4/n+vXrXL16lQEDBmBnZ4e/vz9r167FyMiITp06vXQ8QoiSy9LUkGVvudDKy4pZeyNISHu6Gcb2Xx9xITiJ1W9Xxtup5JeLE0KUXk5OTly4cIHZs2ezdetW4uPjcXJyonPnzlhYWFC+fHnOnj3LBx98wIoVK0hNTcXb25sDBw7QtWvXAt+/YsWKXLx4kfnz57Nnzx5Wr16Nra0ttWrV4rPPPlMfZ2hoiJ+fHwsXLmTbtm34+vpia2urTr6fWLduHZMnT2b69Omkp6czd+5cateuTc2aNfntt9/4+OOP2bBhAw8fPsTe3p569eoxZ84c9fkODg6cOHGCyZMns3jxYmxtbRk3bhyOjo6MGjWqwN9vcaFVHXVra2tef/11/Pz8nntc165dOX36NHFxL/cR89ixY3FycmLu3Lka7ffv32fs2LGMGjUq1/nn0dHR6r+c999/nxYtWgD/LE6YPHkyKSkpue6g9Sypo15yyFgXndIy1qGx6UzcHsbvocka7caGCrM6VWSsTwUM9LzQtLSMdUkgY120ZLyFeHlaPVGvVasWp0+fJjY2Fhsbm1yPiY2N5ZdffnluKaG8mJiYkJGRkaP9yRa5Twrg/9uTdiMjI5o1a6ZuNzAwoEWLFmzbto3o6Ogc02ae1Ol8Ejf8s/2tNvPb09LSNP4rCo+MddEpLWNtZw7bhjmw8pdYVv3yiOz/PabIyFIx/+B9jl+P44teFbG30l9BrNIy1iWBjHXRKorxljcAorTR6rfR4MGDmTBhAn379mXTpk04Oztr9EdERDBs2DCSk5O1KjxvbW2d6/SWR48eAeT55sDS0hITExPKlCmjUagfoFy5csA/02P+naj7+vry3XffqY9r2bIl4eHh6m1ztREeHq71ueLlyFgXndIy1t0rg1t7WHwaop95uH76TgqdVobwn2bQ1Fm/T9ZLy1iXBDLWRaswx1ubh4NCFGdaJeqjR49m+/btBAQE4OXlRadOnfDw8AD+KXR/+PBhUlJSaN68OePGjXvp61epUoWrV6+SnJyssaD0ScmdvIr0GxgY4O7uTmBgYI6yQE8S/7Jly+Y4r0+fPrRq1Up93NGjR3F2dqZSpUovHXtaWhrh4eE4Ozvn+eRf6IaMddEpjWPt4QFv1MviowPR+P2dqG6PS4M5J2Bo47LMbG+LqXHRLjQtjWNdXMlYFy0ZbyFenlaJupGREYcOHWLKlCls3LiRffv2afQbGhoyYsQIli1bptXOVM2aNWPv3r0cPnxYXUc9IyODY8eO4eXlpX4iHh0dTVpamsYTfR8fH27evMnx48fV5R3T09M5efIkLi4u2Nra5rhfhQoVqFChAoC6HJCZmVmBPkIzNTWVj+CKiIx10SltY21uDt8NLcOO3x7x0X/vkZLxdMnOpotx/BqaxuqBLlSrZFbksZW2sS7OZKyLloy3EPmn9URMCwsL1q1bxyeffEJAQABhYWEAuLi40Lp1a60WYj5RrVo1mjdvzqZNm3j8+LF6Z9IHDx4wefJk9XFff/01165dY//+/eq2Tp06cfToUdasWcO9e/ews7PjxIkTPHjwIM/taIUQry5FURjYyIZGbmWYuD2UqxGp6r7r91PpvOI2c7o5MKypTZ6bdAghhBCFocArphwcHBg4cKAuYtEwffp0tm7dSkBAAImJibi5uTF79uwXzj8zNTVlwYIFbNiwAX9/f1JTU3F3d2fOnDnUr19f53EKIUqHqnamHJjgwWdHovjmZIy6PTVTxYf77hFwK4Gv+jpjW0Z/C02FEEK8WnT+G+f69ev89ddfuLi40KRJE62vY2JiwogRIxgxYkSex3z66ae5tpcvX55p06ZpfW8hxKvJxMiA2V0caFnVkqm7wnmQkKnuO/J3Au2+DmT5ABdaVLXUY5RCCCFeFVqtktq5cydt2rThwoULGu3vvfcetWvX5q233qJZs2b06tWLrKwsnQQqhBBFpZWXFcemedKuhpVGe1RCJgPWBbPAL5L0zOw8zhZCCCF0Q6tEfcuWLfz555/Uq1dP3Xb27FmWLFmClZUVAwYMwM3Njf3797N161adBSuEEEXF1tKIjcNcWdjDEVOjp3PTVSpYfTKGN1ff4U6M1N8WQghReLRK1K9du4a3tzcmJibqts2bN6MoCrt27WLr1q38+uuvWFpasm7dOp0FK4QQRUlRFEY0s8VvUlWqVdQsJ3clIoUOy26z87dHaLHBsxBCiBJiw4YNKIpCSEhIkd9bq0T9wYMHODk5abSdOHECe3t7OnToAPyzKVHLli25fft2waMUQgg9quFght/kqgx/XXOzteT0bKbvDmf8tjDiUmSanxBC6EtycjLz5s0jICBA36HolFaJurm5OfHx8erXkZGR3Lp1S71p0BPly5dX7yYqhBAlmbmxAZ/2dGLDMFesLTR3Pt5/JY52SwO5EKz9bsZCCCG0l5yczMcffyyJOvyzc+ipU6d4/PgxAFu3bkVRFPXT9Cfu37+Pvb19waMUQohiokPNshyb7pmj8kvE4wz6rLnDl0ejyMySqTBCiFdbamoq2dm5L7pPSpKHGvmlVaI+fPhw4uPjadCgAX369OGjjz7C0tKSHj16qI/JyMjgt99+w8vLS2fBCiFEcVCprDHbR7nxUZdKGD3zUzRbBUv8H9B7zR3CYtP1F6AQotQZPnw4bm5uOdrnzZunsRmboihMmjSJffv2Ubt2bUxNTalVqxY///xzjnMjIiIYNWoUjo6OmJqa4u7uzvjx40lPf/rz686dO/Tr1w8bGxssLCxo2rQpBw8e1LhOQEAAiqKwY8cOPvroI5ycnLCwsCA+Pl49v/vkyZNMmDABe3t7jR3lIyIiGDlyJBUrVlTHun79+hyxpqamMm/ePLy8vDAzM8PBwYHevXsTFBRESEiIetf6jz/+GEVRUBSFefPmqc+/ceMGffv2xcbGBjMzMxo2bKixYeYTf/31F23atMHc3BxnZ2cWLFiQ5xuOoqBVHfUxY8Zw4sQJfH19CQ4OpkyZMqxZswZbW1v1MT/99BNxcXG0adNGZ8EKIURxYWCgMKGVHc09yjBxexh3Yp7+YvvtbjLtlwXyWW8netQpr8cohRCvotOnT7Nnzx4mTJiAlZUVy5cvp0+fPoSGhqpztXv37tG4cWMeP37M2LFjqV69OhEREfz4448kJydjYmJCVFQUzZo1Izk5mSlTpmBra8vGjRt58803+fHHH+nVq5fGfT/55BNMTEx47733SEtL0yg6MmHCBOzs7JgzZ476iXpUVBRNmzZVv7mws7Pj0KFDjBo1ivj4ePWeOFlZWXTr1o1jx44xYMAApk6dSkJCAkePHuXatWu0a9eOb775hvHjx9OrVy969+4NgLe3N/BP8t28eXOcnJyYOXMmZcqUYdeuXfTs2RNfX1/193H//n3eeOMNMjMz1cetXbsWc3Pzwv0Lex5VAQQHB6suXryoio+Pz9H3xx9/qPbt26e6f/9+QW5R5O7du6eaN2+e6t69e1qdn5ycrLp69aoqOTlZx5GJf5OxLjoy1s+XmJqpmr4rTOUw40qOr6k7w1QJqZn5vpaMddGRsS5aMt4FM2zYMJWrq2uO9rlz56qeTecAlYmJier27dvqtsuXL6sA1YoVK9RtQ4cOVRkYGKh+/fXXHNfMzs5WqVQq1bRp01SA6tSpU+q+hIQElbu7u8rNzU2VlZWlUqlUqhMnTqgAVZUqVXL8/f7www8qQOXj46PKzNT8WThq1CiVg4ODKiYmRqN9wIABqnLlyqmvtX79ehWgWrJkSZ6xRkdHqwDV3LlzcxzTtm1b1WuvvaZKTU3VOK9Zs2YqT09PdduT7/fChQvqtgcPHqjKlSunAlTBwcE5rl3YCrQzqZubW64fwwDUrVuXunXrFuTyQghRIpQxNWRJP2dae1kyY08E8alPPybd9fsjfg1JYtVAF+q6WOgxSiGELv36MIuoQthKoZuj4YsPeoF27drh4eGhfu3t7U3ZsmW5c+cOANnZ2ezbt4/u3bvTsGHDHOc/mUrj5+dH48aN8fHxUfdZWloyduxYZs2axd9//03t2rXVfcOGDcvz6fOYMWMwNHz6valUKnx9fenfvz8qlYqYmBh1X8eOHdmxYweXLl2iefPm+Pr6UqFCBSZPnpxnrHmJjY3l+PHjzJ8/n4SEBBISEjTuM3fuXCIiInBycsLPz4+mTZvSuHFj9TF2dnYMGjSI1atXP/c+hUWrOepCCCFyerNOefynedLYTTMhD36Yzpurg1gVEE12tiw0FUIUrsqVK+dos7a2Vlfii46OJj4+XiPJzs3du3epVq1ajvYaNWqo+5/l7u6e57X+3RcdHc3jx49Zu3YtdnZ2Gl8jRowA/ikHDhAUFES1atUwMnr558u3b99GpVIxe/bsHPeZO3euxn3u3r2Lp6dnjmvkNgZFpUBP1IUQQmhytjbhx7FVWHHiAUuOPSDrfw/XM7Nh4aH7nLyVwLK3XHAoZ6zfQIUQJUpeT46zsnLu4fDsk+tnqQp5c7bnzeX+d9+TBZqDBw9m2LBhuZ7zZI55QTy5z3vvvUfHjh1zPaZq1aoFvk9hkURdCCF0zMhQYXq7ivhUtWTijjDCH2Wo+04HJdFuaSBf9XWmU62yeoxSCFGSWFtbq8tiP+vfT7Xzw87OjrJly3Lt2rXnHufq6srNmzdztN+4cUPdry07OzusrKzIysqiXbt2zz3Ww8ODCxcukJGRgbFx7g858nojU6VKFQCMjY1feB9XV1cCAwNztOc2BkVFpr4IIUQhaeRWhqNTPelRp5xG+6PkLEZuususvRGkZOiv7JcQQnuNbA3p5qj7r7x4eHgQFxfHlStX1G2RkZHs3bv3pWM3MDCgZ8+eHDhwgN9++y1H/5Mn7126dOHixYucO3dO3ZeUlMTatWtxc3OjZs2aL33vJwwNDenTpw++vr65vmGIjo5W/7lPnz7ExMSwcuXKPGO1sPhnyuG/38zY29vTunVr1qxZQ2Rk5HPv06VLF86fP8/Fixc1+rdu3fqS353uyBN1IYQoROXMDVk90IU21az4cN89ktKfJuYbz8dy7k4Sq992oaaDHst/CSGKvQEDBvDBBx/Qq1cvpkyZQnJyMt988w1eXl5cunTppa/36aefcuTIEVq1asXYsWOpUaMGkZGR7N69m9OnT1O+fHlmzpzJ9u3b6dy5M1OmTMHGxoaNGzcSHByMr68vBgYFe967ePFiTpw4QZMmTRgzZgw1a9YkNjaWS5cu4e/vT2xsLABDhw5l06ZNvPvuu1y8eJEWLVqQlJSEv78/EyZMoEePHpibm1OzZk127tyJl5cXNjY21K5dm9q1a7Nq1Sp8fHx47bXXGDNmDFWqVCEqKopz584RHh7O5cuXAZgxYwabN2+mU6dOTJ06VV2e0dXVVeMNUlGSRF0IIQqZoij0a2BNQ1cLJmwP43J4irrv1oM0uq4M4qMulRjZzPY5VxFCvMpsbW3Zu3cv7777LjNmzMDd3Z1FixYRGBioVaLu5OTEhQsXmD17Nlu3biU+Ph4nJyc6d+6sfjpdsWJFzp49ywcffMCKFStITU3F29ubAwcO0LVr1wJ/TxUrVuTixYvMnz+fPXv2sHr1amxtbalVqxafffaZ+jhDQ0P8/PxYuHAh27Ztw9fXF1tbW3Xy/cS6deuYPHky06dPJz09nblz51K7dm1q1qzJb7/9xscff8yGDRt4+PAh9vb21KtXjzlz5qjPd3Bw4MSJE0yePJnFixdja2vLuHHjcHR0ZNSoUQX+frWhqLRYWZCUlESZMmUKIx69i4yMZO3atYwdOxYHB4eXPj8lJYWgoCA8PDz0WyD/FSBjXXRkrHUnPTObL48+YNXJaP7907dtdSs+7WZLXNRdGesiIP+ui5aMtxAvT6vPLBwdHRk3blyu85qEEELkzcTIgA87V2LnaHcqldX8UPPYjQS6fhPGb/ekhKMQQggtE3VFUVi7di1NmjShfv36fPvtt8THx+s6NiGEKLV8qlpydJonHWtqVn6JScriw2Pw6eEY0jJloakQQrzKtErUIyMj+eGHH3j99df5888/mThxIo6OjowcOVJjZbAQQoi82ZYxYv3Qyizu5YiZkWZpse/PPab7qiBuRxfC1odCCCFKBK0SdXNzc4YNG8bp06e5fv0606ZNw8LCgg0bNuDj40Pt2rVZvny5egcsIYQQuVMUhaFNbfl5SlVqOphp9F27l0rHZYFsvRhb6BuVCCGEKH4KXEe9WrVqfPXVV0RERLBjxw7atGnD9evXmT59Ok5OTgwZMoRTp07pIlYhhCi1vCqa8dNED4Y30ay5npKh4n3fCMZuCeVRcqaeohNCCKEPOtvwyNjYmP79+7N7926mTp2KSqUiNTWVrVu30rp1a+rUqcNPP/2kq9sJIUSpY2ZswOzOdixoAzYWmhufHLwWT7ultzl3J1FP0QkhhChqOkvUT506xdChQ3FycmLZsmWYmpry9ttvs27dOtq1a8e1a9fo0aMHa9as0dUthRCiVGrspOA33oVWnpYa7ZFxGfRdG8znh++TkSVTYYQQorQrUKIeExPDV199RY0aNWjdujVbtmzBycmJzz77jPDwcLZs2cLIkSM5fPgw586dw8rKii+++EJXsQshRKllZ2XE1pFuzOvmgLHh04WmKhUsPR5N72+DuPswXY8RCiGEKGxaJer+/v689dZbODs7M2PGDIKCgujVqxdHjhzh1q1bvPfee9jaau6w17hxY7p27crdu3d1ErgQQpR2BgYKY1tU4KeJHnjYmWr0/R6aQvtlgez547GeohNCCFHYjF58SE4dOnQAwMXFhTFjxjB69GgqVar0wvNcXFxwdnbW5pZCCPHKes3JnMNTqjLvQCRbLsaq2xPTspm0I4yAWwks7OGIlZnhc64ihBCipNHqiXqXLl3Yv38/wcHBfPTRR/lK0gEWL15McHCwNrcUQohXmoWJAZ/3ceK7wZUpb66ZkP946TEdlt3mUmiynqITQghRGLRK1H/66Se6deuGgYHO1qIKIYTIh66vlePotKq8XqWMRvvd2HR6fBPE8uMPyMqWhaZCCFEaaJVpGxoaMmrUqBceN2bMGIyMtJpdI4QQIg9O5U3YNcadmR0rYvjMT/GsbFh8OIr+3wUT8VgWmgohREmnVaKuUqnyvUue7KYnhBC6Z2igMKWNPfvGeVDZxlij79ydJNovvY3ftTg9RSeEEEIXCnXuSlxcHKampi8+UAghhFYauFpwdKonfeqV12h/nJLF6M2hzPCNIDk9W0/RCSGEKIh8z0sJDQ3VeJ2YmJij7YnMzExu3rzJkSNH8PDwKFiEQgghnsvKzJAVA1xo7WXJrH33SEx7mphvuRjL+eAkVr/tQm1Hcz1GKYQQ4mXlO1F3c3NDUZ5uuuHr64uvr+9zz1GpVIwZM0b76IQQQuRbn/rWNHQtw8TtoVwKS1G3345Oo9vKID7sXInRzW0xMFCecxUhhBDFRb4T9ZYtW6oT9ZMnT2Jvb0/16tVzPdbExARHR0fefPNNevXqpZtIhRBCvJCrrQl7x3uwxD+K5SeiebJMKD1LxbyfIgm4lcDS/s7YWxk//0JCCCH0Lt+JekBAgPrPBgYGdO7cmfXr1xdGTEIIIQrA2FDhg46VaOlpyaQd4UTGZaj7Am4l0m7pbb7u50Tb6mX1GKUQQogX0WoxaXBwMF988YWuYxFCCKFDr1exxH9aVbrU1kzIYxIzGfLDXebsv0dqhiw0FUKI4kqrRN3V1RVbW1tdx1IqmJiYULlyZUxMTPQdSqknY110ZKyLjq7H2trCiO8GV+aLPk6YG2vOTV935iHdVgVxKypVJ/cqaeTfddGS8Rbi5eVr6sumTZsA6NWrF1ZWVurX+TV06NCXj6yESk9PJzQ0FA8PD8zNpcJCYZKxLjoy1kWnMMZaURQGNbahsZsFE7aH8de9p4n535GpdFpxm4+7OTC4iY1G0YDSTv5dFy0ZbyFeXr4S9eHDh6MoCk2bNsXKykr9+kVUKhWKorxSiboQQhRXnvZm/DTRg8U/R7HmVIy6PTVDxQd773HiViJf9nHCpozsKC2EEMVBvn4az5kzB0VRqFChgsZrIYQQJYupkQFzuznQytOSqbvCiU7MVPf9/Fc8f4Yls/wtF3yqWuoxSiGEEJDPRH3evHnPfS2EEKJkaV3NimPTPZm+O5xjNxLU7ffjM3lrXTATW9nxfoeKGBvKQxkhhNAXrRaTLl++nHXr1uk6FiGEEEWogqURm4a7Mv9NB0yeSchVKlgZEE2P1UEEx6TpMUIhhHi1aZWo/+c//+HAgQO6jkUIIUQRUxSF0c0r4DfZAy97U42+P8NT6LDsNrt/f4Tqyc5JQgghioxWiXqlSpUwMzPTdSxCCCH0pKaDOX6TqzKsqY1Ge1J6NlN3hTNxRxjxKVl6ik4IIV5NWiXqHTt25PTp06Snp+s6HiGEEHpiYWLAol5OrB/qirWFoUbfvj/jaL8skF9DkvQUnRBCvHq0StQXLlyIoaEhgwYNIjIyUtcxCSGE0KNOtcriP80TH48yGu1hjzLoveYOS/yjyMySqTBCCFHYtCqWO2vWLOrUqcOePXs4ePAg9evXp3LlyrlOh1EUhe+//77AgQohhCg6DuWM2T7zcVmGAAAgAElEQVTanW9+ieHzw/fJzP6nPSsbvjz6gF8CE1k5wAVna9llUgghCotWifqGDRvUf05NTeXs2bOcPXs212MlURdCiJLJ0EBhUms7fDzKMHF7GMEPn053vBiSTPtlgXze25nu3uX0GKUQQpReWiXqJ06c0HUcQgghiqm6LhYcnlqVj/4bya7fH6nb41KyeWdrKCduWvPJmw6UMTV8zlWEEEK8LK0S9VatWuk6DiGEEMWYpakhS/s709rLkg/2RJCQlq3u2/HbIy6GJLF6YGW8nc31GKUQQpQuWi0mFUII8WrqWbc8/tM8aehqodF+Jyad7quD+OZkNNnZstBUCCF0QRJ1IYQQL8XFxoQ971Th3Xb2GDzd0JSMLBWf+N1n4PchRMVn6C9AIYQoJbRO1JOTk1mwYAGNGjWifPnyGBoa5vplZKTV7BohhBDFmJGhwnvtK+L7ThWcyhtr9J26nUjbpYEc+TteT9EJIUTpoFWiHhcXR9OmTZk7dy6XL18mMzMTlUpFpUqVAFCpVKhUKipXroyLi4tOAxZCCFF8NHEvg/80zxyVX2KTshi+8S7/9997pGRk53G2EEKI59EqUV+8eDHXrl1j7NixxMfH07dvXxRFISIigqSkJDZs2EClSpVo0qQJd+7c0XXMQgghipFy5oZ8+7YLS/o6YWGi+Wvlh7MP6bryNjfup+opOiGEKLm0StT37duHo6Mjy5cvx8zMDEV5OknRzMyMoUOH4u/vz969e/nqq690FqwQQojiSVEUBjSy4fCUqng7aVZ+uXE/jc4rbvPD2YeoVLLQVAgh8kurRP3u3bvUr18fY+N/5iUaGPxzmYyMp4uHatasSatWrTQ2RxJCCFG6ediZsn9CFca3qqDRnpap4v/+e49hG+/yMDFTT9EJIUTJolWibmZmhpmZmfp12bJlAbh//77GcTY2NgQHBxcgPCGEECWNiZEBs7s4sGO0OxWtNAsK+F9PoO3SQE7eStBTdEIIUXJolai7uLgQFhamfl29enUATp48qW7LzMzk119/xdbWtoAhCiGEKIlaelriP82T9jWsNNofJGQy8PsQ5h+MJD1TFpoKIURetErUW7RowZUrV0hI+OeJSPfu3TEyMmLKlCl8++23HDhwgL59+xISEiK7mAohxCvM1tKIDcNc+bSnI2ZGikbft7/E8ObqOwRFp+kpOiGEKN60StQHDBiAt7c3Z8+eBcDR0ZFFixbx+PFjJk6cSM+ePdm/fz8VK1bks88+02nAQgghShZFURj+ui1+k6tSvZKpRt+ViBQ6LAtk+6+xstBUCCH+RavdiHx8fDh37pxG27vvvkvz5s3Zu3cvjx49wsvLixEjRmBjY6OTQIUQQpRs1SuZcXBSVRb63Wf92Yfq9pQMFf/5MYKAW4l81suJ8haGeoxSCCGKD51uG9qkSROaNGmiy0sKIYQoRcyNDVjQw5FWXpZM3x1ObFKWuu/AlTguhSazcoALTdzL6DFKIYQoHrSa+iKEEEIURPsaZTk2zZOWnpYa7RGPM+iz5g5fHIkiM0umwgghXm35eqIeGhpaoJtUrly5QOcLIYQofSqWNWbbSDfWno5h0c9RZPwvMc9WwdfHHvBLYCKrB7rgYmOi50iFEEI/8pWou7m5aew++jIURSEzUza3EEIIkZOBgcK4lnY087BkwrZQ7sSkq/t+D02m3dJAPuvtRM+65fUYpRBC6Ee+EvWWLVtqnagLIYQQL+LtZM7hKVWZcyCS7b8+UrcnpGUzYXsYAbcSWNDDEUtTWWgqhHh15CtRDwgIKOQwhBBCvOrKmBryVV9nWntZMWNPOHEpTzdD2vX7Yy6GJLNqoAv1XCz0GKUQQhQdWUwqhBCiWOnuXY6jUz1p4q6ZkIc8TKfH6iBWnHhAVrYsNBVClH6SqAshhCh2nK1N+HFsFd5vb4/hM7+pMrNh0c9RDFgXTGRchv4CFEKIIpCvqS+//PILAI0bN8bMzEz9Or9atmz58pEJIYR4pRkaKExvVxGfqpZM2hFG2KOnifmZoCTaLQ3ky75OdK5VTo9RCiFE4clXot66dWsUReH69et4eXmpX+dXVlbWiw8SQgghctHIrQxHp3oyc18E+/6MU7c/Ss5i1KZQhja1YU5XByxM5ENiIUTpkq9EfejQoSiKQrly5TReF6aMjAy2bt1KQEAAiYmJuLm5MWjQIOrVq/dS15k9ezaXL1+mS5cujBs3rpCiFUIIUZjKmhuyaoALbapZMWvvPZLSny403XQ+lnN3klg90IVajuZ6jFIIIXQrX4n6hg0bnvu6MCxdupSzZ8/y5ptv4uDgwPHjx5k/fz4LFy6kZs2a+brG2bNnuXnzZiFHKoQQoigoikLf+tY0dLVg4vYw/ghLUfcFPkij68ogPupSiVHNbaWksBCiVCiWnxPeunWLU6dOMXToUEaMGEGnTp1YsGABdnZ2+X6TkJ6ezvr16+ndu3fhBiuEEKJIudmasm+8B5PfsOPZfDw9S8WcA5EM+SGEmETZaE8IUfIVy0T9zJkzGBgY0LFjR3WbiYkJ7du358aNG0RHR7/wGnv27EGlUtGrV6/CDFUIIcT/t3fnYVGV7R/AvzPADPsOyr4JKG6opAIabgjlEkJaaqammS1ur7+0tMzSV8vq1VyyV9PMss0Ft0ozBVPUTNswXJBFQZF1WAcYmJnfH76MjjOsDjOg3891deV5nvOcubnFM/ecec5zDMDESIDXozviu+d94GKt/uXwscvlGLo6FYmXywwUHRGRbjRp6kt9jh8/juPHjyMnJwfV1dVa9xEIBNiyZUuzjpueng43NzeYm6uvoRsQEAAAyMjIgJOTU73j8/PzsWvXLsyePRtisbhZr01ERO1HuJ8ljsz1x//tvoFD/5Sq2vPLazFhayZeGOiI16I7QGzcJq9LERE1qEWFelFREcaMGYOTJ09CqWz4oRMtKdQlEgns7Ow02uvaioqKGhy/ZcsW+Pr6cllIIqKHgL2FMbZM8sSOsxIsOXATVTV33pf+e6IAJ9PK8fF4D/g7mxowSiKi5mtRoT5v3jycOHECXbt2xYwZM+Dr6wtLS0udBSWTyWBiYqLRLhKJAKDeq/cA8Pfff+P06dP44IMPdBYPERG1bQKBAM/0s0c/b3O8+HUWUnKqVH3/3KxC1NqrWDbKFRP62vFGUyJqN1pUqB84cADu7u44ffq0Tgv0OiKRCDU1mk+ck8lkAFDvdBa5XI7Nmzdj0KBB8Pf3b/LrFRQUoKCgAMCdq/VVVVWorKxsaJhWdR8iGvowQbrBXOsPc60/zPX9cbcGdj3nivePFuKzM3fWXK+qUeLVPTfw88VirBjlDFtzI+Zaz/SRbzMzLs9JD5YWFepyuRyhoaGtUqQDt6e4aJveIpFIAAD29vZaxx07dgw3btzASy+9hNzcXLW+yspK5ObmwtbWVqPQ3717NzZv3gwAsLGxwaOPPors7GxUVFS0+GfIzs5u8VhqHuZaf5hr/WGu7894f8DPHPjgFFB85+I6Dl+swPlrGVgYDvTsePvKOnOtX62Z727durXasYkMoUWFep8+fXDr1i1dx6Li6+uL5ORkSKVStRtK69ZE9/Hx0TouPz8ftbW1WLhwoUZfQkICEhISsGjRIvTv31+tLy4uDhEREQBuX1E/cuQI3N3d0bFjx2bHXl1djezsbLi7u/NG1lbGXOsPc60/zLXu+PkBkb1r8erePPxyVapqL5ACC44Az4dZIsanDN6eHsy1HvB3m6j5WlSov/HGG4iOjsahQ4cQHR2t65gQFhaG+Ph4HD58WLW8Yk1NDY4ePYqAgADVii/5+fmorq6Gu7s7AODRRx+Fr6+vxvFWrFiBkJAQDB8+XLVyzN0cHR3h6OgIAMjJyQEAmJqa3tdXaGKxmF/B6QlzrT/Mtf4w17rhYQZ8Nc0SW5IK8e8fb0Emv32jqRLAplNl+OUKsHGCEIG2zLW+8HebqOlaVKgPGTIEX331FZ599lk8/vjjiIyMhJubG4RC7ctfNXf1lcDAQISHh2P79u0oLi5WPZk0Ly8Ps2bNUu23evVqXLhwAfv37wcAuLu7q4r2ezk7O2tcSSciogefUCjA8wMdEepngZe+ysLV/DtzpC8VAKM+uY6VY9wQ11tztTEiIkNq8Trq5eXlMDExwRdffIEvvviiwX3lcnmzjz9v3jzs2LEDiYmJKC8vh7e3N958803OPyMiohbp5mqGQ7M74e2DOfji1zv3QZXLlJj1bTYSrpRjZYwrrEyNDBglEdEdLSrUt23bhmnTpkGpVKJXr146X54RuL3yy9SpUzF16tR691mxYkWTjlV3xZ2IiB5u5iIh3ot1Q0SAJebvzEZJlULVt+ePYpy7VoENT3uij5d5A0chItKPFhXqq1atglgsxg8//IBBgwbpOCQiIqLW9Xg3G3R2FOLlrzLx112LhF0vqkHMJ2mYP6wDZg12gpGQa64TkeG06JnKmZmZiIiIYJFORETtlouNMd4dBvzfUHsY3fVuKFcAq37KxdhNGbhRLDNcgET00GtRoe7m5qa2bCIREVF7ZCQU4MWB9tj3oh+87EVqfWcyKhC55iq+Ty6pZzQRUetqUaH+7LPPIiEhQetDiYiIiNqb3p7m+GlOJ4ztbavWXlwpx/NfXseru7MhlSnqGU1E1DpaVKgvWrQIgwcPxuDBg5GYmAilUqnruIiIiPTKytQIHz3lgfVPe8BSrP72uOOsBFFrryL5RqWBoiOih1GLbib19/cHAFy7dg1Dhw6FiYkJOnbsqHUddYFAgLS0tPuLkoiISE9ie9mij6c5XvnmOs5fv1OYp+VXY+SGNCyK7oDnBzhCyBtNiaiVtahQz8zMVNuWyWS4fv26LuIhIiIyOC8HEfbM9MPqo3lYeywPiv99cVwjV+Lt728h8Uo5PnrKHc5WJoYNlIgeaC2a+qJQKJr1HxERUXtjYiTAguEdsGuGL1xs1Avy46nlGLo6FUcvlRooOiJ6GLSoUCciInpY9Pe1wNG5/hjZ3VqtvbBCjkmfXcOb+2+iqoYXpYhI91ioExERNcLW3Aj/neiJD+LcYGaiPjd9S1IhRqxPw+VbVQaKjogeVE2ao143/9zNzQ1GRkbNno/u6enZ/MiIiIjaEIFAgAl97dHXxwIvfXUdF27eKcwv3qrCY+uu4q2RLni2vz0EAt5oSkT3r0mFure3N4RCIVJSUhAQEABvb+8mn4QEAgFqa2vvK0giIqK2opOTGAde9sO7h3Lx3xMFqvaqWiVe33sTCVfK8OGT7nCwaNF6DUREKk06izz66KMQCASqp5HWbRMRET2MxMZCvDXSBREBlpjzbTbyy+9ckPoppQyRa1Kx9ikPDOhkacAoiai9a1KhnpiY2OA2ERHRw2hQgBWOzvPHv3Zm4+dLZar2W6W1eOrTDLwU4YRXI50hMuYtYUTUfDxzEBER3QdHS2N8PsULy59wgdj4zrfNSiWwITEfT2xMR3pBtQEjJKL2SqeFelVVFW7dusU56URE9FARCAR4LswRP7zSCYEdxGp9f2VXYvhHV/HdeQmUSqWBIiSi9qhJhXpZWRnOnj2LK1euaO1PTU1FVFQUrK2t4ebmBisrKzz99NPIycnRabBERERtWRcXU/wwqxMmh9qrtUtlCsz9LhsvfZ2Fkkq5gaIjovamSYX69u3bERoaioMHD2r03bp1CwMHDsTPP/+M2tpaKJVKVFdXY+fOnRg8eDAqKyt1HjQREVFbZWYixMoYN3w22Qt25kZqffv+KkHkR6k4m1lhoOiIqD1pUqF+/PhxCIVCPPPMMxp9y5YtQ15eHuzs7LBv3z6UlZXh999/R0hICFJTU7Fx40adB01ERNTWRQVZ4+g8fwzoZKHWni2pQewn6fjwSC5q5ZwKQ0T1a1Kh/vfff6N79+5wdnZWa1coFPj6668hEAiwYsUKjBo1ChYWFggODsaePXtgbGyMvXv3tkrgREREbV1HaxN8M80HbzzeEXcv/KJQAh/+nIcnN6UjWyIzXIBE1KY1qVDPy8tDYGCgRvvff/+N4uJiGBsb4+mnn1brc3NzQ79+/XDx4kXdREpERNQOCYUCvBThhAMv+8HHQaTWdzZTimFrUrH/r2IDRUdEbVmTCvWKigrU1NRotJ8/fx4A0KNHD1hbW2v0u7u7o7S09D5DJCIiav96upvjpzmd8FSInVp7aZUCM7/Kwryd2aio5o2mRHRHkwp1JycnXLp0SaP95MmTEAgE6Nu3r9ZxVVVVsLGxub8IiYiIHhAWYiOsHuuOj8d7wNpU/S3423MSRK29ir+ypQaKjojamiYV6nVTWA4cOKBqy8/Px549ewAAw4cP1zouJSUFrq6uOgiTiIjowRETbIsjc/zxiLe5Wnt6gQyjNqRhQ2I+FAreaEr0sGtSof7KK69AqVRi7NixePbZZzF//nw88sgjKCsrg4eHB0aMGKExJj09HVeuXEHPnj11HjQREVF752Evwu4Zvpg/zBnCOw80Ra0C+PePt/D0lgzcKtWcdkpED48mFeqDBw/G0qVLUVNTgy+//BJr1qzB9evXYWZmhs8++wzGxsYaYz755BMAQFRUlG4jJiIiekAYGwkwP7ID9sz0hbudiVrfyasVGLo6FYdTeK8X0cNKs8Kux5IlSzBy5Ejs2bMH+fn58PDwwMSJE+Hj46N1f7FYjDlz5iA6OlpnwRIRET2I+npb4MgcfyzccwP7/y5RtUukckz9/Bomh9pjyQgXmJk06foaET0gmlyoA0Dv3r3Ru3fvJu27bNmyFgVERET0MLIxM8LGCR4YHGiFxftuQipTqPo+P12EM+kV+Hi8J7q4mBowSiLSJ340JyIiaiMEAgGeCrHDT3M6oae7mVrf5dxqPL7+KraeKoBSyRtNiR4GLNSJiIjaGF9HMfa96IuXBzlBcNeNptW1SryxLweTt11DYXmt4QIkIr1goU5ERNQGiYyFWPxYR3wz3QcdrNRnqv58qQxD16Ti+JUyA0VHRPrAQp2IiKgNG9jJEj/P88fwICu19ryyWozfkol3vs+BrFZRz2gias9YqBMREbVxDhbG+OxZL6yMcYWpsUCt75NfCjDq4zRcza82UHRE1FpYqBMREbUDAoEAk0Md8OOsTujSUX3ll+QbVYj6KBVfnS3ijaZEDxAW6kRERO1IYEdTfP+KH54Lc1Brr6xR4v9238ALO66jWCo3UHREpEss1ImIiNoZUxMhlj/hiu1TvGBvYaTWdzC5FMPWpOLXjAoDRUdEutKsBx6R7hQUFDS6j52dHYyM7pyAmzLG1tYWxsZ3/loLCwsb/RrUxsYGJiZ3Hl1dVFQEhaLhG5Osra0hEolU2xKJBHJ5w1dwrKysIBaLVdvFxcWorW14eTFLS0uYmt75irekpAQ1NTUAgOrqakilUhQVFakd18LCAmZmd9YfLi0thUwma/B17h1TVlaG6uqG53uam5vD3NxctV1eXo6qqqoGx5iZmcHCwkK1XVFRgcrKygbHmJqawtLSUrUtlUohlUobHCMWi2FldefGs8rKSlRUNPymLRKJYG1trdquqqpCeXk5gPpzbWJiAhsbG61j6mNsbAxbW1vVdnV1NcrKGl65wsjICHZ2dqptmUyG0tKGH6suFAphb2+v2q6pqUFJSUkDI25PLXBwuHOVsra2FsXFxQ2OAQBHR0fVn+VyOSQSSaNjHBwcIPjfunsKhQJFRUUA6s81ANjb20MovH19RalUorCwsNHX4XlEc0zdeaShXN977mmr55FhXazx/QxXrPrxOv7MuutcUgvM/7IEY/vY4ek+drCwMLvv80hTxtx7Hrn73NNYLohIEwt1HROJRPD09FR789Hm2LFjjR5r5MiRaifwX375pdE3pOjoaLWTZFJSUqMn/WHDhqkVNGfOnGm02Bo0aBCcnZ1V27/99lujBc2AAQPg6uqq2v79998bLRr69+8PT09P1fZff/2FW7duqe2TmZmpth0SEgJfX1/V9oULF5Cdnd3g6wQHByMgIEC1ffHiRY3j3qtbt24ICgpSbV+5cgVXr15tcExgYCB69uyp2k5LS8OlS5caHOPn54c+ffqotjMzM3HhwoUGx3h5eaFfv36q7aysLPz5558NjnFzc0N4eLhq++bNmzh37pzaPvfmpEOHDoiIiFBt5+Xl4cyZMw2+joODA4YOHaraLiwsxMmTJxscY2Njg6ioKNV2cXExEhMTGxxjYWGBESNGqLbLy8sb/XcnFovxxBNPqLYrKysbHWNkZIS4uDjVtkwma9K/77Fjx6r+LJfLNcZo+/0bM2aMqlAHmnYeGTVqlFrxePz48UaL4ccee0ytQDt58mSjRVZkZKTah6nTp083+uFw8ODBcHJyUm2fPXu20Q9TAwcOhIuLi2r7/PnzjX5gCQ0NhYeHh2r7zz//RG5urmpbW67vPY8kJyfjxo0bDb7OveeRlJQUXLt2rcEx955HLl++jLS0tAbHdO7cGT169FBtF+deQ4TFZUR01rJz+TUcPw50cPdBRNgjquaMjAz8888/Db6Ot7c3+vbtq9rOysrCX3/91eAYd3d3hIWFqbZv3ryJ8+fPq7ajo6MbfX8kojs49UXHZDIZrl+/3uiVFyIiIn3Z91cJ9vzR+LdDrY3vj0TNI1Dy9nA1OTk52LRpE2bMmKF21aapKisrkZaWBj8/P7WrWPfi1BfdTH25ceMG3NzcOPXlHq0x9UVbrjn15TZdT33RlmuAU18A3U99qS/X7WXqC6B5HqmqUeDTkwU4cvHOv6vSGmMUykR4srct/v2EK4wU1QaZ+iKRSBp9fySiO1io30NfhTrdP+Zaf5hr/WGu9edBz/XBv0vw6p5slFSqf2Dyshfh4wke6OVhXs/I1vGg55uoNXDqCxER0QNoZA8b/DzXH/19LNTarxXJ8MTHaViXkAe5gtfqiNoyFupEREQPKDdbEXbO8MHCqA4wuusdv1YBrDyUi6c/zcDN4hrDBUhEDWKhTkRE9AAzEgowZ4gz9s70g6e9iVpfUloFIj9KxY8XGr5/g4gMg4U6ERHRQ6CPlzl+mu2PMcE2au0SqRzTvriOhXtuQCpr+AZgItIvFupEREQPCWszI2wY74l1T7nDQqReAnzxaxGi117FhZsNr0RFRPrDQp2IiOghE9fbDkfmdkIvD/XVV67mV2Pk+jRsPlEABW80JTI4FupEREQPIW8HMfa+6IfZg53wvyX9AQAyuRJvHczBpM8ykV/GG02JDImFOhER0UPKxEiA16I7YufzPnCxNlbrS7hSjqFrriLhcsMPJCOi1sNCnYiI6CEX5meJn+f54/Fu1mrtBeW1mLg1E28duInqWt5oSqRvLNSJiIgIdubG2PyMJ96PdYOpiUCtb/PJQoxYn4bU3CoDRUf0cGKhTkRERAAAgUCAif3scXhWJwS5mKr1peRUIWrdVXxxphBKJW80JdIHFupERESkxr+DKb5/xQ8zBjiotVfVKLEw/iamf3EdRRW1BoqO6OHBQp2IiIg0iI2FWDrKFTue84ajpfqNpj/+U4rINalISis3UHREDwcW6kRERFSvwYFWODq3E4YEWqq155TWYtzmDKw8dAs1ck6FIWoNLNSJiIioQU5WJvhiqjfeGe0CkdGdG02VSmBdQj5iNqYhs7DaYPERPahYqBMREVGjBAIBpoc74vtX/ODvLFbr+yOrEpFrrmLX7xLeaEqkQyzUiYiIqMm6uprhx1md8Gx/e7X2CpkCs7/NxivfZKG0Um6g6IgeLCzUiYiIqFnMRUK8O8YNW571hJ25kVpf/J8liPwoFeeuVQAAZDIZKioqIJVKUVNTA6lUCplMZoiwidod48Z3ISIiItL0WFcbBLubY/a3WUhKq1C1Z0lqMOaTdMwf1gFDnfNw8WKKqi81NRVBQUHo1q2bIUImald4RZ2IiIhazMXGBN9M98Hr0R1gfFdVIVcAq37KxbJTIvQZMBzh4eEAgPDwcAQEBBgoWqL2hYU6ERER3RcjoQCzBjtj30t+8HYQqfWdTK/GyE03cCZLAQAwNTWFSCTSdhgiugcLdSIiItKJXh7m+GlOJ4ztbXtXqxJhtrdQmHrWYHERtVcs1ImIiEhnLMVG+OgpD6x/2gNWYiG8LSox3KUQtuLbK8Hk5+cbOEKi9oOFOhEREelcbC9bHJnrj4AOZhDceUYSBHdvEFGDWKgTERFRq/C0F+HT6d1h5x4ICwsLAICjo6OBoyJqP1ioExERUasxNhIgMqwn+vfvb+hQiNodFupERERERG0QC3UiIiJqNXVPJq2qqgIAVFVV8cmkRE3EJ5MSERFRq7ly5QpSUu48mTQpKYlPJiVqIhbqRERE1GoCAgLg4+ODqqoqXL9+HZ6enrCysjJ0WETtAgt1IiIiajUikQgikQhCoRAmJiYwNzfnk0mJmqjNFuo1NTXYsWMHEhMTUV5eDm9vb0ycOBG9evVqcNypU6dw8uRJpKamQiKRwMnJCSEhIXjqqadgaWmpp+iJiIiIiO5Pm72ZdM2aNdi3bx8iIiIwffp0CIVCvPPOO2rz3LTZsGEDsrKyMGjQIMyYMQO9e/fG999/jwULFqC6ulpP0RMRERER3Z82eUX9ypUrOHHiBKZOnYoxY8YAAIYMGYJXXnkF27Ztw6pVq+od+9prr6F79+5qbX5+flizZg2OHz+O4cOHt2rsRERERES60CavqCclJUEoFCIqKkrVJhKJEBkZiUuXLiE/P7/esfcW6QBUD1nIysrSfbBERERERK2gTRbq6enpcHNzg7m5uVp7QEAAACAjI6NZxysuLgYAWFtb6yZAIiIiIqJW1iYLdYlEAjs7O432uraioqJmHW/37t0QCoUIDw/XSXxERERERK2tTRbqMpkMJiYmGu11yzk156bQ48eP48iRI4iJiYGrq6vOYiQiIiIiak1t8mZSkUiEmpoajfa6Rw6LxeImHb0P2x4AABnwSURBVOeff/7BunXr0KtXL0yaNKne/QoKClBQUADgztX6qqoqVFZWNjd01YcIrjDT+phr/WGu9Ye51h/mWr/0kW8zM7NWOzaRIbTJQt3Ozk7r9BaJRAIAsLe3b/QYGRkZWL58OTw9PfHaa6/ByMio3n13796NzZs3AwBsbGzw6KOPIjs7GxUVFS38CYDs7OwWj6XmYa71h7nWH+Zaf5hr/WrNfHfr1q3Vjk1kCG2yUPf19UVycjKkUqnaDaWXL18GAPj4+DQ4PicnB0uXLoWtrS3eeuutRj9hx8XFISIiAsDtK+pHjhyBu7s7Onbs2OzYq6urkZ2dDXd39yZf+aeWYa71h7nWH+Zaf5hr/WK+iZqvTRbqYWFhiI+Px+HDh1XrqNfU1ODo0aMICAiAk5MTACA/Px/V1dVwd3dXjZVIJHjrrbcgEAiwdOlS2NjYNPp6jo6OcHR0BHC7yAcAU1PT+/oKTSwW8ys4PWGu9Ye51h/mWn+Ya/1ivomark0W6oGBgQgPD8f27dtRXFwMFxcXHDt2DHl5eZg1a5Zqv9WrV+PChQvYv3+/qm3p0qW4desWYmNjkZKSovYkU1tbW/Tq1UuvPwsRERERUUu0yUIdAObNm4cdO3YgMTER5eXl8Pb2xptvvtno/LO6Ndb37Nmj0detWzcW6kRERETULgiUSqXS0EG0JVlZWdi6dStiY2NV02Gao6qqSjUHz9TUtBUipDrMtf4w1/rDXOsPc61f+sq3o6Oj1iWeidqjNntF3VDqnmKq7Yo8ERERtW0zZsyAi4uLocMg0gleUb+HVCpFWloabG1tYWzc/M8xGRkZePPNN7Fs2bJGV6eh+8Nc6w9zrT/Mtf4w1/qlr3zzijo9SHhF/R7m5ubo3r17i8eXlJSgpKQE9vb2/ETfyphr/WGu9Ye51h/mWr+Yb6LmExo6ACIiIiIi0mS0dOnSpYYO4kFjZmaGkJAQtYc1UetgrvWHudYf5lp/mGv9Yr6Jmodz1ImIiIiI2iBOfSEiIiIiaoNYqBMRERERtUFc9UVHampqNJ6kOnHiRD4J9T5UVlYiPj4ely9fRmpqKsrLyzFnzhwMHTpUY9+srCx8+umnuHjxIoyNjRESEoJp06bBxsbGAJG3P6mpqTh69CiSk5ORl5cHKysrBAYG4plnnoGbm5vavsz1/bl+/Tq++uorpKWlQSKRQCwWw8PDA7Gxsejbt6/avsy17n333Xf48ssv4enpifXr16v1Xbx4Edu2bUNaWhrMzc0xYMAATJo0CWZmZgaKtv1ITk7G4sWLtfatWrUKnTt3Vm0zz0RNx0JdR9asWYNTp05h9OjRcHFxwbFjx/DOO+/g3//+N4KCggwdXrtUWlqKb775Bk5OTvDx8UFycrLW/QoKCvD666/D3NwckyZNQmVlJfbu3Ytr167hgw8+4Hq6TbB7925cvHgR4eHh8Pb2hkQiwffff4958+bh/fffh5eXFwDmWhfy8vJQWVmJIUOGwN7eHtXV1Th16hSWL1+Ol156CdHR0QCY69ZQUFCAnTt3an0qZnp6Ot588024u7tj2rRpKCwsRHx8PG7evAmuudB0o0aNQqdOndTaXF1dVX9mnomah4W6Dly5cgUnTpzA1KlTMWbMGADAkCFD8Morr2Dbtm1YtWqVgSNsn+zt7fH555/Dzs4OqampmD9/vtb9du7ciaqqKqxevRpOTk4AgICAACxZsgRHjx5VFT5UvyeeeALz589XK/4GDhyIWbNmYdeuXarcM9f3LyQkBCEhIWptI0aMwL/+9S/s27dPlUPmWvc+++wzBAYGQqFQoLS0VK3viy++gKWlJVasWKFakcTZ2Rnr16/HH3/8wW9HmygoKAjh4eH19jPPRM3DOeo6kJSUBKFQiKioKFWbSCRCZGQkLl26hPz8fANG136ZmJjAzs6u0f1OnTqFRx55RFXMAEBwcDDc3NyQlJTUmiE+MLp06aJxhdbV1RWenp7Izs5WtTHXrcPIyAiOjo6oqKhQtTHXunXhwgUkJSVh+vTpGn1SqRR//vknIiIi1JYNHDx4MMzMzHDy5El9htruSaVSyOVyre3MM1Hz8Iq6DqSnp8PNzU1jXdiAgAAAtx+bfPebLelOYWEhSkpKNL5qBQB/f3+cP3/eAFE9GJRKJYqLi+Hp6QmAuda1qqoqyGQyVFRU4OzZszh//jwGDhwIgLnWNblcjk2bNmH48OHw9vbW6M/MzIRcLoe/v79au4mJCXx8fJCenq6nSNu/tWvXorKyEkKhEF27dsWUKVNUeWWeiZqPhboOSCQSrVd+69qKior0HdJDoy639vb2Gn12dnYoKytDTU0N5/O2QGJiIgoLCzFhwgQAzLWubd26FYcOHQIACIVC9O/fHy+88AIA5lrXDh06hPz8fCxbtkxrv0QiAYB6z+MpKSmtGt+DwNjYGGFhYejTpw+sra2RlZWF+Ph4vP7663jvvffg5+fHPBO1AAt1HZDJZFrfMEUiEQCgurpa3yE9NGQyGQA0mn8WNM2TnZ2N//73v+jcuTOGDBkCgLnWtdGjRyMsLAxFRUU4efIkFAoFampqADDXulRaWoqvvvoK48aNq3e1nMbyXddP9evSpQu6dOmi2u7Xrx/CwsIwe/ZsbN++HW+//TbzTNQCnKOuAyKRSPUGe7e6k45YLNZ3SA+NuqKF+dcdiUSCd955B+bm5li4cCGMjIwAMNe65u7ujuDgYAwZMgRLlixBVVUVli9fDqVSyVzr0JdffglLS0uMHDmy3n0ay3ddPzWPq6sr+vXrh+TkZMjlcuaZqAVYqOuAnZ2d6iu9u9W1afv6mnSjLrfaphdJJBJYWVnxqmMzVFRUYOnSpar/Ozg4qPqY69YVFhaG1NRU3Lhxg7nWkZs3b+Knn37CqFGjUFRUhNzcXOTm5kImk0EulyM3NxdlZWWqqRj1ncd5Dm85R0dH1NbWorq6mnkmagFOfdEBX19fJCcnQyqVqt1QevnyZQCAj4+PoUJ74Dk4OMDGxgZXr17V6EtNTWXum0Emk2HZsmW4efMmli1bprqJtA5z3brqrpRLpVK4u7sz1zpQWFgIhUKBTZs2YdOmTRr9zz//PEaNGoUJEybAyMgIqampGDBggKq/pqYGGRkZDS43SA3Lzc2FSCSCqakpvLy8mGeiZuIVdR0ICwuDQqHA4cOHVW01NTU4evQoAgICuOJLKwsNDcVvv/2mtgzmX3/9hRs3bvDE30RyuRyrVq3C5cuXsXDhQrWnCN6Nub5/xcXFGm21tbVISEiASCSCh4cHAOZaF7y8vLBo0SKN/zw9PeHk5IRFixYhMjISFhYW6NmzJ44fPw6pVKoan5CQgMrKSua7CUpKSjTaMjIycPbsWQQHB0MoFDLPRC0gUCqVSkMH8SB47733cObMGbUnk6ampmLZsmXo1q2bocNrtw4ePIiKigoUFRXhxx9/RGhoKHx9fQEAI0eOhIWFBfLz8zF37lxYWFhg9OjRqKysRHx8PBwcHPCf//yHUwSaYPPmzThw4AD69u2r9c1y8ODBAMBc68CKFSsglUrRtWtXODg4QCKR4Pjx48jOzsZzzz2HmJgYAMx1a1q0aBFKS0uxfv16VVtaWhoWLFgADw8PREVFobCwEHv37kXXrl3x9ttvGzDa9mHx4sUQi8Xo3LkzbGxskJWVhcOHD8PY2BirVq1SfQBlnomah4W6jshkMuzYsQOJiYkoLy+Ht7c3Jk6ciN69exs6tHZt+vTpyMvL09q3efNmdOjQAQBw/fp1bNmyBSkpKTA2NkZISAiee+65Jj0wiW4XLhcuXKi3f//+/ao/M9f355dffsGRI0dw7do1lJWVwczMDH5+fhg5ciT69eunti9z3Tq0FeoAkJKSgm3btiE9PR1mZmYIDw/Hs88+q/GMDNJ04MABHD9+HDk5OZBKpbCxsUGPHj3w9NNPw9XVVW1f5pmo6VioExERERG1QZyjTkRERETUBrFQJyIiIiJqg1ioExERERG1QSzUiYiIiIjaIBbqRERERERtEAt1IiIiIqI2iIU6EREREVEbxEKdiIiIiKgNYqFORERERNQGsVAnagaBQACBQABbW1sUFxdr3efdd9+FQCDA0qVL9RtcEyQmJkIgEGDKlCmGDqVVrF27Fl27doVYLIZAIMCgQYMaHVP3d1r3n1AohK2tLQYOHIhPP/0UbeXhzQKBAN7e3nobR0REhsdCnagFSkpK8J///MfQYdBd9uzZgzlz5iAnJwejR4/G5MmTER0d3eTxkydPxuTJkzFx4kQEBQUhKSkJzz//PCZMmNCKUd/W0g9QD/oHLyKih52xoQMgam8EAgHEYjE++ugjzJs3D3Z2doYOiQDs3bsXALBr1y4MGTKk2eO3bdumtn3kyBE8/vjj+OabbzBx4kSMHDlSF2G22MWLF2FiYqK3cUREZHi8ok7UTEKhEDNmzEBpaSk++OADQ4dD/5OdnQ0A8PX11cnxIiMjMWnSJAB3PgQYUufOneHn56e3cUREZHgs1Ila4LXXXoOZmRnWrVuHwsLCJo0ZNGgQBAIBMjMzNfoyMzO1zqleunQpBAIBtm3bhvPnz+Oxxx6Dra0t7O3tMW7cOFVxWlFRgQULFsDb2xumpqbo1q0bdu3a1WA8OTk5mDJlCjp06AAzMzP07t0b27dvr3f/oqIivP766wgKCoKZmRlsbGwwZMgQHDx4sMGfp7S0FP/617/g4+MDExMTzJ07t/FkAcjKysILL7wALy8viMViODs7IzY2Fr/99pvWHCUkJAAAfHx8VPPNExMTm/Ra9enVq5cqljo5OTlYtWoVIiIi4ObmBpFIhI4dO2qNrY63tzcEAgGUSiXWrVuHnj17wtzcHMHBwZgyZQoGDx4MAPj888/V5svffZ/DvXPNWzrubj/88AMiIyNhZ2cHU1NTBAYG4rXXXtN6/8Xdv4vJyckYPXo07OzsYGFhgYiICJw6darB13Bzc4NYLIarqysGDBiAt99+W+v+RER0Bwt1ohZwcXHBzJkzUVZWhvfff7/VX+/XX39FeHg48vPzERUVBQcHB+zcuRNDhw5FSUkJBg8ejM8//xyPPPIIQkNDkZKSgnHjxuHw4cNaj1dUVIT+/fvj0KFDGDRoEAYOHIjk5GRMnjxZ602wV65cQXBwMN59911UVlYiKioKISEh+PXXXzFq1Kh6v1morKxEREQEtm3bhuDgYFVx15jk5GT07t0bmzZtgpmZGWJjY+Hv74/4+HiEhYVh586dqn2Dg4MxefJkdOjQAQAQFxenmm/esWPHJmS3fmVlZQAAsVisatu3bx8WLlyI3Nxc9OjRA2PGjIGrqyvi4+MRHh6On376qd7jzZw5E/Pnz4ezszNGjx4NX19fDBgwAFFRUQAAPz8/VeyTJ09GcHBwvcdq6bg6K1euxIgRI5CYmIg+ffogJiYGUqkU7733Hvr164fc3Fyt486dO4f+/fsjMzMTUVFR8Pf3xy+//IKhQ4fiwoULavtu2LABI0aMQEJCAjp16oS4uDh069YN165da5M3WxMRtTlKImoyAEojIyOlUqlU3rp1S2lubq60sLBQ5uXlqfZZuXKlEoDyrbfeUhsbERGhBKDMyMjQOG5GRoYSgDIiIkKt/a233lICUAJQbty4UdUuk8mUw4YNUwJQBgUFKYcMGaIsLy9X9X/66adKAMpHH31U7XgJCQmq40VGRqqNOXv2rNLS0lIpFAqV58+fV7XX1tYqu3fvrgSgXLVqlVIul6v6UlNTlT4+PkojIyNlcnKyxs8DQBkaGqqUSCQNZFWdQqFQvd6CBQuUCoVC1bdr1y6lUChUWlpaKm/evKk2rqH8NqQuTm1xhIaGKgEoFy9erGr/+++/lRcuXNDY/9ChQ0qRSKT08/NTi1mpVCq9vLyUAJSOjo5ax9b9vUyePLnBOL28vHQy7uzZs6o8njlzRtVeVVWlHDt2rBKAMi4uTm3M3b+LH330kVrf3LlzlQCUkyZNUmv39PRUCgQC5W+//abWrlAolAkJCfXGTEREt/GKOlELdejQAS+++CIqKirw3nvvteprDRgwADNnzlRtm5iYYNasWQCAS5cuYePGjbCwsFD1T5kyBY6Ojjh9+jRqamo0jicUCrFu3Tq1MY888ghefvllKBQKfPzxx6r2AwcOIDk5GXFxcXj11VchFN45bXTq1Akffvgh5HI5Nm/erDX2tWvXwtbWtsk/a2JiIpKTk+Hp6Ynly5dDIBCo+uLi4hATE4Py8nJs3bq1ycdsDrlcjtTUVDz33HM4ffo0xGIxpk6dqurv3r07unbtqjEuKioKY8eORVpamsaV5ToLFy7UOlbf1q9fD4VCgVmzZqFfv36qdrFYjPXr18PMzAzx8fFqU37qhIeHY/bs2Wptb7zxBgDgl19+UWvPz8+Hra0tQkJC1NqbunQmEdHDjoU60X1YuHAhLCwssHHjxnqnCujC8OHDNdrqbpr09vZGQECAWp+RkRG8vLxQU1ODgoICjbHBwcEIDAzUaB8/fjwA4MSJE6q2uqkcsbGxWmMbOHAgAODs2bMafS4uLhpFWmPqXnvcuHFaVyupu8Hz7hh1oW5+t7GxMQICArBt2zZYWVnh66+/1rgZs7q6Gvv27cPixYsxY8YMTJkyBVOmTEFycjIAIDU1VetrjB49Wqcxt1Rd7iZOnKjR5+zsjOHDh0OhUCApKUmjX9vvooODA+zt7ZGTk6PW3qdPH0gkEkybNg3//POPjqInInp4cHlGovvg5OSEl19+GatWrcK7776L1atXt8rruLm5abRZWlrW23d3f3V1tUafl5eX1jF1Nx3evHlT1VZ38+vEiRO1FnZ1tH0g8PT0rHf/+tS9dn03QNa137hxo9nHbsjkyZMB3P62wdraGt27d0dsbKzGnPq6Gym13RRcp25u+71ako/WcD85dnd31zrGysoKRUVFam0bNmxATEwMtm7diq1bt6JDhw6IiIhAbGwsnnzySRgZGbX8hyAiegiwUCe6T6+++io+/vhjfPLJJ1iwYEGLjqFQKBrsv3u6SXP6dKEutujoaNUNm9o4OjpqtJmamuo8nrunwujSveuoa6NUKjFu3DhkZmZi5syZmDlzJnx9fWFpaQmBQIBFixZh5cqV9T7NtDXy0RoaynFzft969OiBlJQUHDp0CD/88AMSExPx3Xff4bvvvkNoaCgSExMhEol0ETIR0QOJhTrRfXJ0dMSsWbOwcuVKrFy5Eq6urlr3qytIysvLNfq0zQVuTdeuXWuw/e6foe4K6vTp0xEXF9fqsdW9dn0x1l3Jru+bhNZ06dIlXLp0CSEhIdi4caNGf3p6ut5jaglXV1dkZGTg2rVrCAoK0ujXZY5NTU0RExODmJgYAMA///yDCRMm4PTp0/j000/x0ksv3fdrEBE9qDhHnUgH5s+fDysrK2zatKneKRkuLi4Abi91eK8jR460anz3+vPPP7XOo/7mm28A3L55tU5kZCQAID4+Xi+x1c1537lzJ+RyuUb/l19+qbafPkkkEgDap39IJJIW/z3WfYirra3Vy7i63H399dcaffn5+Th8+DAEAgHCw8Obddym6Nq1K15++WUAqPemWyIiuo2FOpEOODg4YPbs2aiursaWLVu07hMREQEA+PDDDyGVSlXtx44dw5o1a/QSZ526FT/ujuP8+fNYv349BAIBXnzxRVV7XFwcgoKCsGPHDixbtkxjzrtSqURSUpLWGw9bYtCgQejevTsyMzOxZMkStWkk8fHx2LNnDywtLfHcc8/p5PWao1OnThAKhTh27JjaB52qqirMnDlTY452U9V9i3D58mW9jHv55ZchFAqxdu1anDt3TtUuk8kwa9YsVFZWIjY2Fh4eHs067t2kUinWrl2r8fAkhUKBQ4cOAcB9HZ+I6GHAQp1IR+bPnw9ra2tUVlZq7R8/fjwCAwNx6tQpdOnSBU8++ST69++PyMhItcJYH0aOHImUlBT4+fnhqaeeQnR0NEJDQ1FWVobFixerrdRibGyMvXv3wsfHB0uWLIGnpyciIyMxceJEREVFoWPHjhgwYEC9T+VsLoFAgB07dsDBwQErVqxA165dMWHCBAwYMACxsbEQCoXYsmWL6hsKfXJ2dsa0adNQWlqKnj17YuTIkRg7diy8vb1x7NgxTJkypUXH9fb2Ro8ePXDu3Dn07dsXU6dOxfTp07F///5WGde3b18sW7YMpaWlCA0NRWRkJMaPH49OnTrh22+/hb+/PzZs2NCin6WOTCbDnDlz4OzsjNDQUIwfPx5xcXHw9vZGfHw8vL29MWPGjPt6DSKiBx0LdSIdsbOzw9y5c+vtNzMzw9GjRzF+/HiUlZXhhx9+gFwux7fffquaCqAvDg4OOHPmDIYNG4aEhAQkJiYiKCgIn332GZYtW6axv7+/P/744w8sX74c7u7uOHPmDPbs2YMrV66gV69e2LBhA5555hmdxde9e3f8/vvveP7551FeXo5du3bh8uXLiImJQVJSEsaNG6ez12qujRs34sMPP4SPjw+OHj2KEydOYNiwYTh37ly9q+k0xe7duxETE4P09HRs374dW7Zswe+//95q4xYtWoSDBw8iIiICv/32G/bs2QOxWIwFCxbg119/bfDG4aawtLTEhg0bMGrUKOTn52P//v04duwY7Ozs8Pbbb+P8+fNwcHC4r9cgInrQCZT1LU9AREREREQGwyvqRERERERtEAt1IiIiIqI2iIU6EREREVEbxEKdiIiIiKgNYqFORERERNQGsVAnIiIiImqDWKgTEREREbVBLNSJiIiIiNogFupERERERG0QC3UiIiIiojaIhToRERERURvEQp2IiIiIqA1ioU5ERERE1Ab9PxVT3KyWr7NwAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot\n", - "lst_num_partitions = list(all_svcca.index)\n", - "\n", - "threshold = pd.DataFrame(\n", - " pd.np.tile(\n", - " permuted_score,\n", - " (len(lst_num_partitions), 1)),\n", - " index=lst_num_partitions,\n", - " columns=['score'])\n", - "\n", - "panel_A = ggplot(all_svcca) \\\n", - " + geom_line(all_svcca,\n", - " aes(x=lst_num_partitions, y='score', color='Group'),\n", - " size=1.5) \\\n", - " + geom_point(aes(x=lst_num_partitions, y='score'), \n", - " color ='darkgrey',\n", - " size=0.5) \\\n", - " + geom_errorbar(all_svcca,\n", - " aes(x=lst_num_partitions, ymin='ymin', ymax='ymax'),\n", - " color='darkgrey') \\\n", - " + geom_line(threshold, \n", - " aes(x=lst_num_partitions, y='score'), \n", - " linetype='dashed',\n", - " size=1,\n", - " color=\"darkgrey\",\n", - " show_legend=False) \\\n", - " + labs(x = \"Number of Partitions\", \n", - " y = \"Similarity score (SVCCA)\", \n", - " title = \"Similarity across varying numbers of partitions\") \\\n", - " + theme(\n", - " plot_background=element_rect(fill=\"white\"),\n", - " panel_background=element_rect(fill=\"white\"),\n", - " panel_grid_major_x=element_line(color=\"lightgrey\"),\n", - " panel_grid_major_y=element_line(color=\"lightgrey\"),\n", - " axis_line=element_line(color=\"grey\"),\n", - " legend_key=element_rect(fill='white', colour='white'),\n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + scale_color_manual(['#1976d2', '#b3e5fc']) \\\n", - "\n", - "\n", - "print(panel_A)\n", - "ggsave(plot=panel_A, filename=svcca_file, device=\"svg\", dpi=300)\n", - "ggsave(plot=panel_A, filename=svcca_png_file, device=\"svg\", dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncorrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting PCA of 1 parition vs 1 partition...\n", - "[0.55408816 0.08039057]\n", - "Plotting PCA of 1 parition vs 5 partition...\n", - "[0.40020729 0.08856502]\n", - "Plotting PCA of 1 parition vs 50 partition...\n", - "[0.39292195 0.0605442 ]\n" - ] - } - ], - "source": [ - "lst_num_partitions = [lst_num_partitions[i] for i in pca_ind]\n", - "\n", - "all_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "partition_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_1_0.txt.xz\")\n", - "\n", - "partition_1 = pd.read_table(\n", - " partition_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "\n", - "for i in lst_num_partitions:\n", - " print('Plotting PCA of 1 parition vs {} partition...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = partition_1.copy()\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_partitions'] = '1'\n", - " \n", - " # Get data with additional batch effects added\n", - " partition_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " partition_other = pd.read_table(\n", - " partition_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " # Simulated data with i batch effects\n", - " partition_data_df = partition_other\n", - " \n", - " # Add grouping column for plotting\n", - " partition_data_df['num_partitions'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, partition_data_df])\n", - "\n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space\n", - " combined_data_numeric_df = combined_data_df.drop(['num_partitions'], axis=1)\n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - "\n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Variance explained\n", - " print(pca.explained_variance_ratio_) \n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_partitions'] = combined_data_df['num_partitions']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_data_df = pd.concat([all_data_df, combined_data_PCAencoded_df]) " - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_partitions_str = [str(i) for i in lst_num_partitions]\n", - "num_partitions_cat = pd.Categorical(all_data_df['num_partitions'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_data_df['comparison'], categories=lst_num_partitions_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_data_df = all_data_df.assign(num_partitions_cat = num_partitions_cat)\n", - "all_data_df = all_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "all_data_df.columns = ['PC1', 'PC2', 'num_partitions', 'comparison', 'No. of partitions', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu8AAAHoCAYAAAD5bgF0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XmYFNW5P/Dvqa7qbXZg2IwiYVMToiAqoCJuSBTBgBrCIot6vUZjvG4xIb9EkzyiPt7EGLPo1eAOLhEVNXEJogmOgksMSVwwAuKCgAZmenqtqvf3R00VM0z3MN3TPd098/08j8tUd1W9XX26++3T7zlHiYiAiIiIiIhKnlbsAIiIiIiIqHOYvBMRERERlQkm70REREREZYLJOxERERFRmWDyTkRERERUJpi8ExERERGVCSbvRERERERlgsk7EREREVGZYPJORERERFQmmLz3IEqpNv9omoba2loce+yxuOOOO9DRYrqvvPIKzjvvPIwcORJVVVUIBoM48MADcfbZZ2PlypWwbTvjvuvWrfPO+ZOf/KQQDy2jHTt24JxzzsGgQYPg8/mglMJdd93VrTEU0sKFC6GUwpo1a7plv+7w1FNPYcmSJTjppJNQW1sLpRQmT55c7LDKzubNm3O6drnul4lSCgceeGBejtUTHHjggVBKddt+RNT7MHnvgRYsWIAFCxZg7ty5OOSQQ7B27Vqcf/75mDNnTrv7plIpnHfeeZgwYQLuvPNOaJqGk046CTNmzED//v3xhz/8ATNnzsTJJ5+c8Xz33nuv9//3339/QR5TJueeey7uvfde9O/fH9/61rewYMECDB8+vFtj6Ire+EE/d+5cXHfddfjzn/+M3bt3FzucHueuu+6CUgrXXHNNsUPpcUrlCxMR9W56sQOg/Nu75/m5557DqaeeihUrVmDu3LmYNm2ad9s555yDFStWYOTIkVi2bBkmTpzYZt9PPvkEP/nJT/Dss8+mPVcqlcKKFSsAAAMHDsR7772HV199FUcddVR+H1QayWQSTz/9NA488EC8+eab0LSe91106dKluPrqq3HAAQd0y37dYdasWTj44IMxbtw4pFIpTJkypdgh9Sr77bcf3n77bYTD4WKH0iP9+c9/RiqV6rb9iKj3YfLeC5x88smYP38+li1bhscee8xL3h9++GGsWLECAwYMwEsvvYQBAwa023fw4MH43e9+h7Vr16Y99p/+9Cfs3LkTRx99NE455RT86Ec/wr333tstyfu2bdtgWRaGDBnSIxN3ABg0aBAGDRrUbft1hzvvvNP7/1deeaWIkfROhmHgoIMOKnYYPdawYcO6dT8i6n16ZsZD7YwZMwYAsHXrVm/bTTfdBAC45ppr0iburR199NFpt993330AgHnz5mHevHkAgAcffDDnHqSnn34aJ598Murq6hAMBjFq1ChcffXV2LVrV5v7HXjggRgyZAgA4MUXX/Rq7jtTe3vNNdd4tfGvvvoqTjnlFNTW1qK6uhonn3xy2oRSRLB8+XLMnj0bI0eOREVFBaqqqnDkkUfiN7/5TdoxAa3Ps27dOkybNg19+/aFUgo333wzlFLYsmULgLbjFVo/hr1r19esWZPTfq1t3boVF1xwAYYMGYJAIID+/ftj5syZWL9+fbv7tv65PxaL4eqrr/b2Gz58OG644YYOx1IU0iWXXAKlFH77299mvM/hhx8OpRT+/ve/e9v+8Y9/YN68efjyl7+MYDCI+vp6HHbYYbj00kvx6aefdurcra/v888/j0mTJqGqqgr9+/fH+eef75UDbd++HRdccAH2228/BINBHHnkkWmfk9ZtJZ3OlklNnjwZixYtAgBce+21bdqHe+xMJRyty23effddzJo1C3379kVFRQWOPvpoPP300526Nq29/fbbWLhwIfbff38EAgEMGDAAs2fPxj//+c+sjjN58mQopbB582bcd999OPzwwxEOh9G/f38sWLAAH3/8cbt9du3ahV/96lc45ZRTvDbbt29fTJ06Fc8999w+z/PAAw9g/PjxqKqqQm1tLa655hoMHToUQNv3HKUUFi5c6B1j7+cq1/1aa2howIwZM1BfX49AIIADDzwQ3/72t/HJJ5+0u2/r5/HDDz/EnDlzUF9fj1AohHHjxmHVqlVpz/Hyyy/jjDPO8K7VwIEDceSRR+Lqq69GJBJJuw8RFQeT916iqakJABAIBAAAO3fu9Aaazp49O6dj7t69G0888QT8fj/OPvtsDB06FBMnTsTOnTvxpz/9KevjLV26FKeddhrWrFmDww8/HGeccQai0ShuuOEGHHXUUfjss8+8+5555pmYNWsWAGDAgAFenf+ZZ57Z6fO9/PLLmDRpEj766CN8/etfx6hRo/D888/juOOOa1cmlEgkMGfOHDz//PMYOHAgTj/9dIwfPx7//Oc/cdFFF2Hx4sUZz/PSSy/hmGOOwebNmzFlyhRMmjQJJ5xwAhYsWICKigoAe8Yp7OsxDBw4MKf9XBs2bMDYsWNx++23IxQKYebMmRgxYgRWrlyJiRMn4uGHH067XzKZxJQpU/B///d/GDduHI4//nh8/PHHuPrqq/H//t//2+d5C2Hu3LkAgAceeCDt7e+88w7eeOMNjB49Gl/72tcAAK+//jqOOOII3H///aiqqsKMGTMwfvx4pFIp/PKXv8S7776bVQwrV67E1KlTISKYOnUqAoEA7rjjDsyYMQM7d+7EhAkT8Mwzz+DYY4/FYYcdhvXr12Pq1KnYsGFD1x58BlOnTvW+aB966KFt2kdnx4L8+9//xlFHHYU333wTU6ZMwbhx49DQ0IBp06Zh2bJlnY7lsccew5gxY3D33XejX79+mD59OoYOHYqHHnoIRx55JF566aWsH99NN92Ec845B5WVlZgxYwYqKipwzz33YPz48fjoo4/a3PeVV17BJZdcgvfeew+jRo3CN77xDYwaNQrPPvssTjnlFPz+97/PeJ6lS5di/vz58Pv9mDZtGr761a/isMMOS/ues2DBAhxzzDEZj5Xrfq777rsPxx57LJ544gmMGjUKM2fORCAQwG9/+1uMHTsW77zzTtr9Nm/ejCOOOALr1q3DiSeeiDFjxuD111/HGWec0e79bdWqVd45Bg0ahJkzZ2LMmDH44osvcMMNN2Dnzp37jJOIupFQjwFA0j2ltm3LhAkTBIAsWbJERESee+45ASDDhg3L+Xx33HGHAJAZM2Z4237zm98IADnrrLOyOta6detE0zSprKyUV155xdsej8flrLPOEgAya9asNvts2rRJAMhxxx2X1bl+/OMfe9dqyZIlYtt2u/gHDRok0WjU255KpWTlypWSTCbbHGv79u0ybtw4ASAvvvhixvPccMMNaWMZMmRI2ufMtWDBAgEgL7zwQpf3s21bRo8eLQDkqquuavO4H3nkEe/6f/LJJ9529xq713n37t3ebevXrxefzyfhcFiampoyxtKRhoaGnJ5D1/Dhw0UpJVu2bGl32w9/+EMBINdff7237ZxzzhEActNNN7W7/9tvv93msXfEvb6apsmTTz7pbW9sbJSvfvWrAkAOOeQQmTdvXps248Z0zjnntDme21aWLVuW9nzpnu9M7X/ZsmUCQH784x+nPda+9nPjS6VS3m2rVq3ynuuPPvqozX4AZMiQIe3OUVFRIZWVlfLcc8+1ue2Pf/yjGIYh+++/vyQSibQx7u24444TAKLrujz11FPe9mQyKXPnzm33PiQi8sEHH0hDQ0O7Y73xxhtSW1sr1dXV7dqte55gMChr1qxpt29n3nOyea72td+HH34ooVBIfD6fPP744952y7Lk0ksvFQAybty4Nvu0fh4vv/xysSzLu+0Xv/iFAJBjjz22zT6TJk0SAPLII4+0i2vdunXS2NiYMW4i6n7see/BLMvCxo0bsXjxYjQ0NCAQCHg/qX/++ecAgPr6+pyP784y45bLAMDZZ58NwzCwatWqrGYSufXWW2HbNr7zne+0qZcPBAK49dZbEQqFsHLlyjZlP101ZMgQr1zBdeGFF+Koo47Cp59+ij/84Q/edl3XccYZZ8AwjDbHqK+vx9KlSwEAjz/+eNrzjB49GldeeWXe4s7VmjVrsGHDBhxwwAH42c9+1uZxz5o1C2eccQYikUjaHklN03Dbbbehurra2zZu3Dh8/etfRzQaxWuvvdYtj2Fvc+fOhYik7X1/4IEHoJRqM8vSjh07AAAnnXRSu/sfdNBBWY8TmDNnDk477TTv76qqKpx//vkAgI8++gi33HJLmzZzxRVXQCmFF198MavzdKfKykrcfPPN0PU9Q6KmTZuGM888E9FotFO97zfffDOam5uxdOnSdtd66tSpuPDCC7F161Y89dRTWcV29tln49RTT/X+NgwDv/zlLxEOh/HEE0+0eX8YOnQoxo8f3+4YY8aMwUUXXYTGxka88MILac9z7rnn4rjjjssqtkK44447EIvFcPbZZ2P69Onedk3TcP3112Pw4MF47bXX0o5JGjp0KK677ro244Euvvhi1NXV4ZVXXkEymfS2d/S6OOKII1BVVZXPh0VEXcTkvQdy6yl1XcfIkSNx1113oaqqCsuXL8/boKgPP/wQL730Empra3H66ad72/v27YtTTz0V8Xg8YwlGOn/5y18A7CmFaK1///6YMmUKbNvOOHA2F7NmzWqToLi+9a1vtYmptb/97W+48cYbcdFFF2HRokVYuHChV3O9cePGtOeZNm1aSUzr6D4e9wvW3ubPn9/mfq0NGTIEo0aNard95MiRANDpWvF8y1Q609DQgA8++ACTJk3C/vvv720//PDDAQAXXXQR1qxZA9M0u3T+dDPlfPnLXwbgfLmpq6trc1tNTQ369OlTtOvVGVOmTGkXN9Dx62JvblnGzJkz095+7LHHAnDWiMhGuhK/vn37YsqUKRAR/PWvf21zm2VZePbZZ3HNNdfgggsuwMKFC7Fw4UIvac/0mm2dKBdTR++LgUAAZ511Vpv7tTZ58mT4/f4223Rdx9ChQ5FKpbwOHGDP62L+/PlYv359h+t6EFHxcbaZHmjBggUAnN6Z6upqjB49GjNnzmzzgdy3b18Ae3pcsnX//fdDRHDmmWd6dfSuefPm4fHHH8d9992H8847r1PHcwdeZRpw6m5PNzAtV+6A10znaj0YLJlMYuHChVi+fHnG47njCvZWKtM1duUaf+lLX0q7j9sjl0gkuh5gDkaMGIEjjjgC69evx4YNGzB69GgAe9Yb2DvpufLKK/HXv/4Va9aswfHHH4/KykpMmDABp512GhYuXIiampqszr/ffvu121ZZWZnxNvf21olTqcnmdZHJ5s2bAWS+Bq5sa6mzie2jjz7CtGnT8NZbb2U8Hl+zjuuuuw4bNmzAqlWrsGrVKtTV1eGYY47B9OnTMW/ePASDwS48CiLKNybvPVBnVhg99NBDAQAffPABdu3ahdra2qzO4ZbMrFmzpt2gK/fn2JdeeglbtmzJ+IGbjWL3XP/85z/H8uXLMXr0aNx4440YO3Ys6urqYBiGNyBOMsy6Ui4ffB1d41KeinPevHlYv349HnjgASxduhSmaeKhhx5CIBBoN4i3uroaq1evxtq1a7Fq1SqsWbMGq1evxnPPPYelS5fiL3/5C0aMGNHpc3d0XfJ5zcqtJ9SN1+1IyKSQU8qed955eOuttzBr1ixcddVVGDVqFKqqqqBpGm6//XZccMEFfM222H///fHaa69h9erVePLJJ/Hiiy96ifyNN96IhoYGr8OHiIqPyXsvVV9fjyOPPBLr1q3DihUr8N///d+d3vf111/H22+/DQB4//338f7776e9n4jg/vvvxw9+8IN9HnPw4MHYtGkTtmzZgkMOOaTd7Z3tycuGO91ipu2DBw/2tq1cuRIAsHz5cnzlK19pc/8PPvggbzEVkvt4Mj3uQlzj7vDNb34Tl112GZYvX47rrrsOzz77LHbs2IFvfOMbacs/lFI45phjvC+d27dvx6WXXorly5djyZIleOihh7r7IXjlDemm5LMsC9u2beu2WLJ5XWTypS99Cf/+97/xv//7v3lN+rZs2eLNHNRRbM3NzXjuuecwYMAAPPjgg/D5fG3uX06v2XfffRdbtmxp974D5Pc1q+s6pkyZ4pWCbdmyBYsXL8bq1atxww034MYbb+zyOYgoP0q3O40K7oorrgDgzEO8ffv2Du/78ssve//vzu1+xRVXQETS/uPOZe3ed1/cGth0ZSk7duzAM888A6VUxvnmc/Hoo4/Csqx2290VY1v/ovCf//wHQPqforuS7LlJW7a117ns517jhx9+OO3jdp8r937lYsCAATjppJOwZcsWrF27NmPJTCb9+/fHNddcA8CZA74Y3IGy7733XrvbXnjhhazWTci1TbmeffbZdusqAOlfF5mcfPLJAPZ86c2XdK+1L774As8++2yb94fdu3fDtm0MGjSoXeKeSqVyjqs7X69Ax++LyWTSG1dUiNfskCFD8L3vfQ9A8V4XRJQek/de7KyzzsLs2bPx2WefYdKkSWhoaGh3n23btuHiiy/2ZpSxLMv7IHEHsKVz7LHHesuwv/766/uM5aKLLoKmabjlllvazFySTCbxne98B7FYDDNnzmwz+LCrNm/ejGuvvbbNtttvvx0NDQ0YMGCANzczsGdg5u9+97s293/kkUdwzz335ByD21OY7fziuew3efJkjB49Gps3b8aPfvSjNiUDK1euxKOPPorKysoO56wvVW77vP322/H444+jpqbGW0m4td/97nfYtGlTu+3uAkT5bF/ZmDRpEgDnC5TbmwoAmzZtwiWXXJLVsXJtU65IJILLLrusTaL5xz/+EQ899BBCoZA3Y1VHLr/8coRCIVxxxRV49NFH292eSCTwyCOPtJubfV8efPBBPPPMM97fpmnif/7nf9Dc3Ixp06Z5ter9+/dHTU0N/vGPf7QZ5G5ZFr73ve+l/ZLUGf369YNhGPj3v/+d9gtwvvc799xzEQqFsGLFijYz89i2jR/84Af4+OOPcfjhh3e5U+MXv/hF2l93iv26IKL0WDbTy91zzz0Ih8P4/e9/j4kTJ+Kggw7CIYccAsMwsHnzZrz22muwLMvrSXv22Wfx2WefYeTIkRg7dmzG42qahm9+85v4+c9/jnvvvdebzSCTI488Ej/96U+xZMkSTJgwAZMnT0a/fv2wdu1abN26FSNGjMCvf/3rvD72888/H9dffz0effRRfO1rX8P777+P9evXwzAM3HXXXQiHw959r7rqKvzpT3/C1VdfjYcffhgjR47Exo0b8dprr+GKK67wVqvN1vTp0/Hiiy/ixBNPxPHHH4+Kigr069cP119/fd73U0rh/vvvx/HHH4/rrrsOK1euxGGHHYYPP/wQa9euha7ruPPOO7OeLjFbP/3pT71ExC0TeeONN9pM67dy5cqs4jjjjDMQDoe9sRjnnntuu4HUgJO8X3jhhTjkkENw8MEHQ9d1vPPOO3jrrbcQDAbxox/9qCsPLWfDhg3DOeecg3vuuQeHHXYYJk2ahGg0ildeeQWnnnoqotFoxnKWvY0fPx79+/fHI488gsmTJ+PLX/4yNE3D4sWLMXHixH3uP3fuXDz66KNYs2aNN23qSy+9BBHBLbfcknEgZGvDhw/H8uXLMWfOHMyaNQvDhw/HwQcfjIqKCnz88cd444030NzcjDfffLNTx3P913/9F77+9a9j0qRJGDRoEF599VVs2rQJgwcPxq233urdT9d1XHXVVViyZAmOO+44nHDCCejTpw9effVVfPbZZ7joootyej/x+/2YOnUqVq1ahUMPPRRjx46F3+/H0Ucf3eGXmlz3O+CAA3Dbbbdh4cKFOP3003H00Udj//33xxtvvIF3330XAwYM6PSvmx259tprccUVV+DQQw/FiBEjICJ466238N5776FPnz7er7REVCKKMLc8FQgyLNLUGS+//LIsXrxYhg8fLuFwWAKBgAwZMkTOPvtsefzxx70Ffb71rW91uABMa+vXrxcA0r9//zYLvnTkySeflBNPPFFqamrE7/fL8OHD5aqrrpIvvvii3X27ukjTsmXL5OWXX5YTTzxRqqqqpLKyUk488URZu3Zt2v0aGhrkhBNOkLq6OqmqqpKJEyfKH/7wh4xx7GvhHRFn8acf/vCHMmzYMDEMo92CN5kWacp1PxGRLVu2yPnnny/777+/GIYh/fr1kzPOOENeffXVdvfd1zXuzGPcmxtbR/9s2rSp08dzuW0TgKxevTrtfZ544glZvHixfOUrX5Ha2loJh8MycuRIOe+88+Sdd97J+jGku74vvPCCAJAFCxak3TfTAluJREKuvvpq2X///cXv98uwYcPkZz/7mZimmfXCP+vXr5eTTz5ZampqRCnV5jnqzOJO//rXv2TGjBlSV1cnoVBIJkyYIKtWrUr7ePZue629//778u1vf1tGjBghwWBQqqqqZNSoUTJ79mx56KGHsl6kadOmTbJs2TI57LDDJBgMSt++fWX+/PmydevWtPvdfffdMmbMGAmHw9K3b1+ZMWOGvPXWWxkXsmp9nkw+++wzmT9/vgwcOFB8Pl+75zrT85vrfiIia9euldNPP1369u0rhmHIAQccIBdeeGG7BbNE9r1IV7rHeM8998icOXNk1KhRUlVVJVVVVXLIIYfIZZddlvYcRFRcSiTDcHuiHuqaa67Btddei2XLlmHhwoXFDoeoJNx1111YtGgRfvzjH3tjAErF5MmT8eKLL2LTpk0Zp00kIuotWPNORERERFQmmLwTEREREZUJJu9ERERERGWCNe9ERERERGWCPe9ERERERGWCyTsRERERUZlg8k5EREREVCaYvBMRERERlQkm70REREREZYLJOxERERFRmdCLHUC52rVrF6LRaLHDoF4sHA6jtrY27W1sn1RMbJtUyjpqn0TlgMl7Dnbt2oVbb70VpmkWOxTqxXRdx8UXX9zuQ4jtk4qNbZNKWab2SVQumLznIBqNwjRNjBkzBpWVlcUOh3qhSCSCN998E9FotN0HENsnFRPbJpWyjtonUblg8t4FlZWVfPFTyWL7pFLFtklElDsOWCUiIiIiKhNM3omIiIiIygTLZqhbPfnkk1i9ejU2b96MCRMm4Morryx2SEQAgJtvvhkvvfQSdH3P2+Kvf/1r1NfXFzEq6q321R537NiBX/3qV3j77bdRU1ODc845B5MmTSpWuETUjZi8U7fq06cPzj77bPztb39DU1NTscMhamPGjBlYsGBBscMgAtBxe7zppptw4IEHYsmSJXjvvffws5/9DEOGDMGQIUO6OUoi6m4sm6FuNXHiRIwfPx7V1dXFDoWIqCx98skneO+99zB//nwEAgGMHj0aRx55JFavXl3s0IioG7DnnYioxTPPPINnnnkG/fr1w+mnn46TTz652CFRL5apPW7ZsgX19fVtptscOnQo/v73vxcrVCLqRkzeiYgAnH766Vi8eDEqKirwz3/+EzfccAMqKiowceLEYodGvVBH7TEej7ebJ7+iogKxWKxI0RJRd2LZDBERgGHDhqG6uho+nw9f+9rXcNppp2Ht2rXFDot6qY7aYzAYRHNzc5v7R6NRhEKhYoRKRN2MyTsRURpKKYhIscMgAtC2PQ4ZMgQ7duxAJBLxbv/ggw84WJWol2DyTt3Ksiwkk0nYtg3btpFMJmGaZrHDIsJf//pXRKNR2LaNf/3rX3jqqacwfvz4YodFvVRH7XHw4MEYPnw47rvvPiQSCfzjH//AunXrcMIJJxQ5aiLqDqx5p2714IMPYsWKFd7fa9euxQknnIBLL720iFEROWsQ/PrXv4Zt2+jXrx/mzZvHebOpaPbVHq+88krccsstmDt3Lmpra/Htb3+bPe9EvUSPS95jsRhWrlyJd999Fxs3bkQkEsF3v/tdnHjiiW3ud/PNN6edVmu//fbDb3/72+4Kt9eZM2cO5syZU+wwiNq5/vrrix0CkWdf7bG+vh4//elPuykaIiolPS55b2xsxIoVK1BfX4+hQ4diw4YNGe9rGAYuvvjiNtsqKioKHSIRERERUU56XPLep08f3H333airq8PGjRtx+eWXZ7yvz+fD8ccf343RERERERHlrscNWDUMA3V1dZ2+v2VZiEajBYyIiIiIiCg/elzPezYSiQRmz56NRCKByspKTJo0CQsWLOj0XLmtp+ki6k6daXtsn1QMbJtUytj2qCfotcl7XV0dZs6ciWHDhsG2bbzxxht4+umnsWnTJlx33XXw+XwZ93WnNnzzzTe7K1yitNJNs8n2SaWAbZNKGacopnLWa5P3BQsWtPl70qRJGDx4MO677z6sXbu23RRxn376KT799FMAwI4dOxCNRjFt2jTU1tZ699E0DVVVVWhqaoJt24V/EHlUzrED5R1/LrHv2rULq1evhq63fwnrug5d1zFp0iSvfZbz9QHKO/5yjh3IPv5s22Yu5yg15Rx/OccO5Ld9EpULtt5WZsyYgQceeABvvfVWu+T9tttuw7XXXuv9PXv2bAwfPjztcfr06VPQOAupnGMHyjv+bGLv169f2qlOXYsXL+7yOUpROcdfzrEDnY8/17aZzTlKVTnHX86xA/lrn0TlgMl7K4FAwPsGv7cLLrgA06dPB+D0vD///PMAgIEDB3r3ERGYpgld16GUynt8tm1j+/bt6N+/PzQtv2ONyzl2oLDxl2Ls27Zt6/D2ZcuWYdGiRV775PPbMb62Mss2/mzbZi7nyFapXaNslHPsQOnFv6/2SVQOmLy3Eo1G0djYiJqamna3DRo0CIMGDQIAfPLJJ2hoaACANm9GIgJN06BpWkHeBF3uOfKpnGMHuif+coo9lUoB2NM++fx2Dl9b7eU7/r3bZiHOkUm5XKN0yjl2oPzjJyolPW6qyM5IJpNpp4d88MEHISIYO3ZsEaIiIiIiIupYj+x5f/LJJ9Hc3IwvvvgCALBu3Trs3LkTADBt2jREIhFceumlmDRpEr70pS8BcGY/eO211zB27FgcddRRRYudiIiIiCiTHpm8P/bYY9i+fbv3d0NDg1fmMnnyZFRUVOCII47A3/72N6xevRq2bWPQoEGYP38+vvGNbxTkpz1GNEM4AAAgAElEQVQiIiIioq7qkcn7HXfcsc/7XHbZZd0QCRERERFR/rCLmYiIiIioTDB5JyIiIiIqE0zeiYiIiIjKBJN3IiIiIqIyweSdiIiIiKhM9MjZZoiIiPIlbgkSlgAAAj6FoI8reRJR8TB5JyIiyiBm2tidArSWfD1mCaoNQVjnD9dEVBx89yGiHsEWgS0CESl2KNRDiAiaLUBXgF9T8GsKugKiFtjOiKho2PNORGVNRBA1xUmoAPgVUGUAPo2lDdR1Int63QFAKcBm3k5ERcSedyIqawkbaDIBBaeHNGEDjSn2wFPXKaXg14CU7XxJFBGkBPBrzm1ERMXAnnciKmsJS6ApQG/pHvVrgqQNWOIk80RdUWkoCARxy/k76HO2EREVC5N3IipvyiltaI197pQvPqVQYwCVuvs3e92JqLiYvBNRWQtpCnEIkrZAA2CK0zvK2fwoX5RS/BWHiEoGa96JqKz5fQq1fgVDAVBAhQ5UG4q9o0RE1COx552Iyoq7YI4ACPoUApqzcE6AXe1ERNQLMHknorIRM200msqbui9uCaoNIMyaBiIi6iVYNkNEZSNqObXsXDCHiIh6K/a8E1FZEHEWx/G16nJQCrBsgTPLe/ElbUHKEmhKwdD2TF9JRESUL0zeiagsKAUEfEDMAjRNYNqC3ZbzJrY7Kag0ipssxy3B7qTzC4AogQ6g1s9Zb4iIKL9YNkNEZaNCVwj6gKgl+CIF+ABUGEDSBnalBFaRymdsETSlBD7lDJ4Nagq2AM0my3mIiCi/2PNORGXDXTDHGZ8qqNBb5of0OT3fKRvw+druk7IFtgCaAowC9cwLABuAv9XhNeXMOU9ERJRPTN6JqKwopaApgWpZWbWj6dybUzYippNcKwAVupPw53sOeA1OeUxKnAReRGACCPO3TSIiyjMm70RUVmKmjcaUIJICYkpQbQgECj4FZ6GmFklbEDEBXXN67G1x/vZrgN+X+fh7E3F69G04CXq63nulFKoNp/Y+bjnd7QENLb8MEBER5Q+TdyIqGwlL0JgCdKVQ6xfsTgGNKaDGENT4NfhaJdYtOTR8Lb3smlKAElhZnM8WQWNKELcB1dJ9X60LQnr7LnW/ptDHv6dUxtCcc3IaSyIiyicm70RUNpIt00I6s8oo9PPbiNtAtaHa9YhrcMplRATKTaIlu0kl45Ygbjm96EpTMG1Bkwn4NWnzRcHl0xSy6NQnIiLKGpP3HFVWVkLX9Ta9au7/F6qnTUS8c+b7HOUcu3v81v/N97FLLXZd7/ilO3DgwDbtsxyf34QlLcm6kzxrcGrcnZTcPW/bGFozlCCgOcm3pgSWACGfW5PeufhNW6CAlhp5ga45Cb0pgNbJh9nRtbdaSnIAp6fel0Mtfqm1z2zbZi7nyFapXaNsj12usbvHLaX499U+icoBW3GOxowZg7q6Opim2e42y8rmh/ns1NXVwbZt2LZdkOOXc+xA4eIvtdjr6uo6vP3cc88FgHbts1ye35gJNFlOL7kAiACoMQADNpotoMkEErZTohLQAFMBKk2Xd4Vyat6tlsWd/ArIdAnSxS8WkLIAzXYGxtriHMu2ADPLh7n3tTcF2JV0prlUcOKsNZwkPlul1D5zbZvZnCMXpXSNslXOsQOlFf++2idROWDynqM333wTo0ePRn19vbdNRGBZFnw+X95nswAA27bx+eefo2/fvtC0/E5jUc6xA4WNvxRj37FjR4e333nnnZg5c6bXPsvp+RURxE1BQN+z6FLCEkQtG32DPtRogm1xAAoI684g1SiAWp/yeq4tEUTNlqkjNaDCpzpcwClT/BU+gZkUJ8FWgCigxgcEs8iwM1373QkbEXvPYhumABEb6GdkNxtOqbXPbNtmLufIVqldo2yUc+xA6cW/r/ZJVA6YvOcoEonANM20bxZK5X8qOve47jkLcXz3HOUau3uefB+/FGNP12vZ2rZt29K2z3J4fm0AUM486W6Fuk8JLLtlmkhNocIQBFsl43FLYImToDuDTIGkOPXnpuUkxnX+zGUpmeLXlUJdQJCwnVIbn3Jmq8nlMbY+togzWw6wZ+abhAVELQBZXsNSa5+5ts1szpGtUrtG2R6zXGN3j1tK8e+rfRKVAybvRFRSNDi96UnbGRgKOMm33+20y1Da6m5O2c6+gVZJdtxyes9DOYwm1ZTKab+OCABboVU9vbPVynJALRER9T5cQoSISopSClWGgq45de2JlkS8oiWBNloGryZtgSWChOUMJHUrWaTVcfYcFBmT/mJQcBZwUuJ8sUhYAgFQoefWq09ERL0He96JqOTomkKdv9Vc7dgz0FTXFGr9QFNKYIuTtFcZe+rd9ZaSm5Qt0JVzDNUyYLVUKKVQ7Vew4DwGgRN3nb+EgiQiopLE5J2ISpKmFNyy9r1ngXMXRJKW+7Wmawq1BtBoCpLi9NLX+BX8HQxYLYawrsGnBPGW6SiDvtKLkYiISg+TdyIqS7a0DG6FtEvg/T6FPpqT9CvVPsEvFQGfQsBXmrEREVFpYvJORGXBFqA5ZSNpA0lx/taUUxtfbaBdr7WmFEd/EhFRj8MCSyIqeSKCiOkszhSzncWN4pZT724L0Jh0Bq+2lrIFMUsQM23YBVo9koiIqLux552ISp4pQNwGwoYzF3rA55TEJC1BSNcQt51pFt0KlLgl+DxhI2Y5yX1AEwwMKQRKadQqERFRDvhJRkRlQdCySBOchBxwat5FBKrV/Oi2CHYlbcTNPYsqxWxge7x97zwREVG5YfJORCVPU85UiklbYGhOop5sycPjLYsv6S3Zuy3O3PACwNCcVVeDmrOCqWkX6xEQERHlB8tmiKjk+ZRCtQ5EBbBEIagLKuCUzxgKCOt7lkbXlDMvfLLV/hYArRu6KkScOvuk7cxyE/IpGBw0S0REecTknYjKgqEBdT4FgZOo+zJM/6gphVq/QnNM0GwKNDiJdKUB6AVO4COmoNl0vkCIAAlLUGtw0hsiIsofJu9EVDY0taeHvSOVhoYvKRu7kgIBENSAGr+WMeHfm4ggYTsDXwFnAaWAhg7PbYkgajk19u688glLELUEFczeew0RQdxy2o+7+Bbn8ieifGLyTkQ9UoWuIexzkneFjhPvvcUsQVPK6bEHnCS+2nDKczIR2bMolMvtgWfXe+8RNQVN1p4BZXFLUOsHE3giyhsOWCWiHksp1eneepe09KA7M9Uo+DUFXTlTVEoHs9X4FKArp6c9ZdmwxIYlTk889Q52S9sxWrUdpZyEnogoX9jzTkTdLmkJzJZear+GTpezdBcRp9fcpdSe6SkzscSZujJqAU3ivLn2DQhCPgXLKmS0VCqk5Z/WrVmDM2CaiChfmLwTUbdqTtloMp0Ex5nOEaj1l04Cr5SCXxPELEDTnIw9ZQNhvePSm4gpEFHoawhsKCRtASS7ch0qbxoAv3KmKvW3tB1TgApfceMiop6FyTsRdRvLFkQsJ2F3k/W4LYiZgsoSmlOx0lAQCBItXaZBH1DRYb27IGU7s9loSvNmuDGl41Ib6lmUUqgyAEntGbAa3kfbISLKFpN3Iuo2zoqogK9VTYoGp+SklPiUQo0BWLr7d8c96E5tvcAS576AU2ajMWfrdXyaQq1/T5veV9shIsoWk3ci6jaacv4xbYGuKYgIbNmzOmopUUplFVeVrvCflHjTSyoFVOsKzNt6BhGBZVkQEWiaBp8vcy1Mtm2HiCgbTN6JqNv4lEK1AexOCSxLIMopSQn1gEzH71Poo5zBuO7fRssXFCpvIoJIJIJEIgERgc/nQ2VlJfx+f7FDI6JeiMk7EXWroM/plTTFqQn272Pxo3JiaE7CTuXFbllYyS17CvqUt9AWAMTjccRiMQQCASilkEqlEIlEUFtbC03jXKBE1L2YvBNRt9M1xTcfKgm2CBqTgri9ZwakpC2oMfZ8qTRNEz6fz/vbMAwkEglYlsXknYi6XY/7/IzFYli5ciXeffddbNy4EZFIBN/97ndx4okntrvv1q1bcccdd+Dtt9+GrusYN24czj33XNTU1BQhciIi6m5JG4jbQKDlFyARQdwCQj4g0FLW7m532bYNleXiX0RE+dLjkvfGxkasWLEC9fX1GDp0KDZs2JD2fjt37sT3v/99hMNhzJ8/H7FYDI899hi2bNmCm266CYZhdHPkRETU3QQAWs0Io5SCgsBudZ9QKIRUKoVEIuEl8qFQCLre4z5CiagM9Lh3nj59+uDuu+9GXV0dNm7ciMsvvzzt/R5++GHE43H84he/QH19PQBg5MiR+NGPfoQ///nPmDp1aneGTUREReBrqZWxROBTClZLD7s75aeIwFYaQpXVMJMJQGwYhsHBqkRUND2uWM8wDNTV1e3zfi+//DKOOOIIL3EHgMMOOwz77bcf1q5dW8gQiYioRPg1hSodMG1nwTBTgErd2W6LoCkl+CIh2G0qxPUgAuEKb+AqEVEx9Lie9874/PPPsXv3bgwfPrzdbSNGjMDrr79ehKhKi2maiEajME0Tuq4jHA7zJ2Ii6pEqDA0Bn3gLa+ktMwbFTEHU2lMPn7QFjSlBnR9tZqMhIupOPa7nvTO++OILAE6Jzd7q6urQ1NSEVCrV3WGVDNM00djY6NV3JpNJNDY2wjTNYodGRFQQuqbg9ykvcQecwaytV0g1FJCyndVziYiKpVd2pSaTSQBIOyjVrWNMJBJtbv/000/x6aefAgB27NiB5uZmAM6sAy4RgW3b3kwE+eaeq/U586V17MlkEqZpIhAIAAA0TUMikUAymcx5WrRCxg4U9tqXY+xu23VjLue2CZR3/OUcO5D/+Pdum4U4x95yv0YCywZ05WTrlgAQN949cfL9J7Nyj5+oFPXK5N1N0NP1rruJvZu4um677TZce+213t+zZ88GAGzbtq1QYWa0ffv2gh4/lUohHo+3KZNJpVKIRqNdHqRV6NgLqZxiX7RoEYDub5/ldI3SKef4yyX2YrVNIPtrZEGhGToE7gw0CkFYsGEVKMLMyuX5zaTc4ycqJb0yeXfLZdzymdb+85//oKqqql2v/AUXXIDp06cDcHren3/+eQDAwIEDvfuIiFcjXqgejO3bt6N///55XxikdeyWZWHXrl1QSnl/27aN2tranOveCxk7UNhrX4qx7yvxWbZsGRYtWuS1z3Jum0B5x1/OsQPZx59t28zlHNnqyjVK2c687wJnNeBAmhWBe9v7TzZKLf5ifGkkyrdembz37dsXNTU1eP/999vdtnHjRgwdOrTd9kGDBmHQoEEAgE8++QQNDQ0A0ObNSESgaRo0TSvoz3fuOfKpdew+nw+1tbWIRCLeyoLV1dV5mRqtELED3XPtyyl291clN95ybptAecdfzrED+Y9/77ZZiHNkkss1CmhAYB+flHz/2bdyj5+olPTKAasAMGHCBKxfvx47duzwtr311lv4+OOPcfTRRxcxstLg9/tRW1uLuro61NbWck5jIiIiohLQI3ven3zySTQ3N3tlMevWrcPOnTsBANOmTUNFRQXOOussrF27FkuWLMH06dMRi8WwcuVKDBkyBCeddFIxwy8ZheopISIiIqLc9Mjk/bHHHmszOKahocErc5k8eTIqKipQX1+PpUuX4s4778Tdd98NXdcxbtw4LF68OO0sNERERERExdYjk/c77rijU/c74IAD2swgQ53jTvnFXnkiIiKi7tUjk3cqDHfV1WQyCaUUQqEQwuFwscMiIioZIoJ4PI5EIgHAmXY4GAxyMCUR5Q2T917GNE2YpglN06Dreqd7z23bRiQSQSqVgt/vh23biEaj0DQNwWCwwFETEZWHWCyG5uZm+Hw+AEAkEgEAhEKhYoZFRD0Ik/deJJlMorGxEYCTjBuGgaqqqk7N3e6uvBoIBKCUgs/n87YxeSci2tPrruu6l7wDQDweZ/JORHnDouVewrZtNDU1QdM0+P1+BAIBbyXVXIlIHiMkIipv6d4T3XIZvl8SUb4wee8lbNuGZVleL3vr1VM7wy2PSSQSsCwLpmkCAHvdiYhaaJoGwzCQSqVg2zZs24ZpmjAMgzXvRJQ3LJvpJdw52y3L8n7OtSyr04svaZqGyspKKKW8AauVlZVcvImIqJWKigoATpkigDYD+0WESTwRdRmT917CTb4jkQhM04SIQNf1rHrONU1DVVVVAaMkIipv7vtk6yl1RQTNKRsxGwAEIQ0I64qJPBHlhMl7LxIMBqFpmvehout6pwarEhFRdlrP5NVsCiImoLfk6o0mAAgqDCbvRJQ9Zm69DMtciIi6j4ggZgGGBvjcnnZbELOBiuKGRkRligNWiYiIioAz0BBRLpi8ExERFYhSCgEfkLIBSwSWCEwBQhpY805EOWHZDBERUQFV6gqAIGG5fzsDVomIcsHkncqOaZqwbRuapnHALRGVPE0pVBsKojtlMuxxJ6KuYOZDZaW5uRmxWMxL3kOhkDevMhFRKWPSTkT5wOSdykYymUQsFoOu697cybFYDIZhwDCMYodHREREVHAcsEplw11u3J0/WSnlbSMiIiLqDZi8U9lwf3J2p1dz/8ufoomIiKi3YNkMlQ3DMBAMBhGPx72ymUAgwJIZIiIi6jWYvFPZ0DQNlZWV8Pv9ME0Tuq7D7/d7iTwRERFRT8fkncqKpmkIBoPFDoOIiIioKFjzTkRERERUJpi8ExERERGVCSbvRERERERlgsk7EREREVGZYPJORERERFQmONtMjiorK6HrepspCvdePCjfRMQ7Z77PUc6xu8dv/d98H7vUYtf1jl+6AwcObNM++fzu+/h8bWU+fuv/7ku2bTOXc2SrFK6RiMA0TQDOrFk+n6/Txy527F09finFv6/2SVQO2IpzNGbMGNTV1Xlvxq1ZllWw89bV1cG2bdi2XZDjl3PsQOHiL7XY6+rqOrz93HPPBYB27ZPPb2Z8bXWss/Hn2jazOUcuinmNRATNzc1IJBIA9qxZ0dkF5krp+c1FKcW/r/ZJVA6YvOfozTffxOjRo1FfX+9tExFYlgWfzwelVN7Pads2Pv/8c/Tt2xealt+Kp3KOHShs/KUY+44dOzq8/c4778TMmTO99snnt2N8bWWWbfzZts1czpGtzl4jNw6lVKd7xlvvlyn+WCyGVCqFUCgEpRRSqRRisRgCgcA+n7NSe36zVWrx76t9EpUDJu85ikQiME0z7ZuFUqogb4JKKe+chTi+e45sju32pOzrTbk7YnfPk+/jl2Ls6XotW9u2bVva9lnObdM9TyGObwrQaAq0FBDwCSp0Ba0A7ag3XPtc22Y258hWZ66RaZqIRCJIpVLQNA2hUMhLtrM5T+v7WyIQAZIps01yaRgGkskkRGSfxy+15zeX45ZS/Ptqn0TlgMk75Swej6O5uRkiAp/Ph6qqKtYTUtkxbcGuJJCCD7YAzaaTdNUYKGiyQaXDtm00NTXBsiz4/X6vzCXXFZ1FBFFTELEACJAUHww7BbdIxu30YPsiolxwthnKSTKZRCQSgaZpMAwDlmWhsbGxoDWNRIWQsAQ2AAM2DA0IaEDcAlKFGb9HJci2bZimCb/fD6UUNE2DpmlIpVI5HS9hA00WoCsg4FPQjQBiykAsnkAymUQqlUI4HM6qNCcfRAQpW5C0BXaBBqgSUeGxm5RykkwmAcD78PH7/UgkEt4HIFG5sAG07v9USgGKiU1v1LqMxbbtnHvGk7ZACeDTnP1Dhg+CCgRFhw82DMPo9vdJSwRNSUHcdtq7rgE1BuBj5z9R2WHyTjlLN9UbUbnxawoROL3vIkBKBLpiUtOb+Hw+BINBxONxaJoGEWlTMmNZFmKxmDcwMhwOdzjOZ+9bRAQ+TSEcCMHQ2jcsu6U2XlOFK6VpNgVxcX5ZUkohYQmaUk55GBGVFybvlJNAIIB4PO4N7kqlUvD7/ax5p7IT8ClU6cBuaEjagOEDqg0FH+uRew2lFCoqKuDz+ZBKpaCUQigUgq7rXj28+16XTCZhmiaqq6szJvBBn0LMEiQsgaYAS4Cgzymj2VvUtNFsArYAPg2oNpwvlPmWtJ0PfG/QrOaUhrHbhaj8MNOinBiGgerqakSjUdi27c3MUIipwIgKLawrVCKJvgFA1wo7KwaVJk3TEA6H221PpVJIpVIIBAIAnF50N4HPVPqiawq1fiBmCSwbCPuAkN6+XSUtQVPK+ZXH35JM704K+gSQ9y+PPgCtK/htcX4hYEsnKj9M3ilnfr+f9e3UY2hwEiYm7tTa3iWBbvvYV6mgoam0JTKtpWyBwEn2AcCvnAHUpg3keyxrha7wn5QgbgkUnB73as6oRFSWmLwTERFl4A7Kd+vdTdOEpmkFmSlGRCAKKEQ+7fcp1LV8OQCc0pyAT3G8ElEZYvJORESUgWEYqKqqQjQaRSKRyOuaFoE0tfF+JYiZgkZRUABCWv6Sa7+mClJPT0Tdi8k7ERFRB4LBIPx+P2zb9uaAzwddU6jxA1FTYAkQ0AQWgJiloCtnGtPdKSDFJVmIqBUm70RERPuwd9JuiSDZsiad3oU5WwxNocbv9IZbtmBnUrzpHAFnGskUh5USUStM3omIiLJg2oJdKWdgacvwVVRqXf9AFfdfKs32PLAsy1t8yufzcbAqUZli8k5ERJSFiCmwbWc+d8CZNSZiAiFDupQQ+5SziFJcAD8Etjh18F3p2XelUik0NTXBtp2fCwKBACoqKpjAE5UhFtIRERFlwWxZDdXlaxlsanfxuEopVPkVgppzDgFQpQP+Lh7ZXWhKROD3+2EYBuLxOBKJRBcjJqJiYM87ERFRFnQFJOw9H6CmOAl8PnrDfEqh1q9gS8t87AI0dfGYtm3Dtm1vXQ6llLcydjAY7HLMRNS9mLwTERFloVJXMMVZ8AhwStQr9fwueKR1cjGozvAGv7bMluMelytiE5UnJu9ERERZ0DWFOj+Qaqlm8QFdr5kpIJ/Ph3A4jObmZijlLMyk6zp73YnKFJN38rg/rbo/qRIR9Sa2CBK2U6riU84iSpn4lIK7yKoIYGaRvNviLMRkwvkQDunK62kvlFAoBJ/Ph1QqBU3TEAgE4PP5uMIqURli8k4AgGQyicbGRgBOL01lZaVXH0lE1NNZItiddOZuV3AHiwoqjPx2ZNgiaEwK4rYz6DUmQNIW1PhR0AReKYVAIIBAIFCwcxBR92D3KsE0TTQ2NsK2bRiGARFBU1MTTNMsdmhERN0ibjqJe0BzetwNDYhYzpzu+ZS0gXjLefyaQkBzBr8mS7jshohKC5N3gmmaXuKuaZqXwDN5J6LewoTTE+4O7vQpBeRh+se9CQDV6jxKKUDlbyEmIur5mLwTgPazJIh0bbERIqJyogOwZc/sLqYtUMqpfc8nX0tNjtVyHksESvJ/HiLquVjzTtB1HZqmIZlMAnCW0Pb5fPC5o7E6wTRNr6de13XoOpsWEZWPkK6QEqcWHS2Je7Xe0gOfR35NocoQNJlAqmUu9yrD2U5E1BnMsAi6rqOmpga7d++GiCAQCCAcDnc6AU+lUmhsbIRlWQAATdNQXV3NAa9EVDY0pVBjACHbKWHxKcAoUEId1jX4NYEN5+dvnYk7EWWh1ybvGzZswJIlS9LeduONN+Kggw7q5oiKy03gdV1vs6BHLBbzeuRDoVDaeYEjkQhExLstlUohEomgT58+3fcAiIi6SCmFQOd/cNwn0zS9xZD2/iWTCTsR5arXJu+u008/HcOHD2+zbfDgwUWKJne2bSMajSKZTEIphXA43OUpwaLRKKLRqNcD39TkLNLdOoF354Zv/cGk6zpSqVSb1fwKwTRNxONxr8zHMIyCnYuIqLNEBM3NzYjFYgCcXyMrKyu992QRQTweh2maUEohGAyy1JCIOq3Xv1sccsghOProo4sdRpfYto1IJIJ4PA7DMGDbNpqamqCUyrl0xbZtxONx+P3+Ngl4LBZrk7y7PUqmaXoJfCqVgs/na7Ofm+TnK6F3p7e0LMur108mk9B1PatafSKifEsmk4jFYt4MXqZpIhKJeOOL3MRe0zSICJLJJKqrq5nAE1GncLYZOD3Mbr12OXITbXfFPLcHOh6Pd/nYrWeccZfV3ltlZSU0TUMikUAikYBSCpWVld7tzc3N+OKLL9Dc3Izdu3cjlUp1Oa5EIgHTNBEIBGAYBgzD8LYRERWTZVltVqrWdR22bcOyLFiW5XW0GIYBv9/vvYcTEXVGr/+af8stt3g9IF/5ylewcOFCjBgxothhZW3v3uy9p3ncu349EAggGAxm7AV3l8+OxWIIBAIQEaRSKVRUVLS7r67rqK6u9r4A+Xw+rwcpkUggFot5PfG2baOxsdGrr8+VW0faOt58TW3pznuvlGIvPhFlbe+ODvf/3e17v3+562q4JYBERB3ptcm7ruuYOHEiDj/8cFRXV2Pr1q1YuXIlvv/97+OGG27AsGHDih1ip2maBl3XvcQ8FovBNE3U1tZ6ZSqxWAzNzc1ewuwOMk2XjLsqKiq8n3QBIBwOIxQKpb1vpukh3V529+div9+PZDIJ2+7a0ieGYSAWi3mPL5VKQdO0LpfkJJNJNDU1ecl7IBDI+JiJiNLx+/3er4FKKdi2jVAoBF3XISLeuCDDMBCPxxGJRLwe+IqKii6PVyKinq3XJu8HH3wwDj74YO/vo446ChMnTsQll1yCe+65B9dee22b+3/66af49NNPAQA7duxAc3MzALRJQkXEq+suxAJH7rnSJb7hcBi7du3C7t274fP5EAgEvCkcw+EwotFom7nb3QFTbmKaKfbKykrvfG5inE3iLSJtepPc2Rfc8+XKMAwEg8E2A8JCoZDXu58L91cBEfE+SGOxmNdr1tUvHJkUot24pVNuzMVsm/lQzvGXc+xA/uPfu20W4hx76+gaiQgSNpCyAQUg4Mt+isi941dKoaKiAolEwhvQHwwGvfeScDiMSCSCSCSCaDSKcDiMcDgMy7La/TKZy/MrIkjaQNJ2Vo0N+mi9XlUAACAASURBVDLPV8/2SVR+em3yns7gwYNx1FFHoaGhod3Pl7fddlubhH727NkAgG3btnV7nNu3b0+7PRaLebWW8Xjce0MLhUKIx+NtajBt24aIeCVDheLOCON+aO3YsQOGYSCZTOblvK0Hwbq95l2JNRaLtfkFwTRN6LqOUCiU8bqXokWLFgHo/vZZTtconXKOv1xiL1bbBNJfozg0xKFDQSBQ0CCogAkf2o/vaU0AmNCQgkIKGjQIDAj8sNIOJtu9e3fb/UWQSCSQSqUQi8W8mnf3b13XYbecw4YPH23fCQM2OpOexuFDHD4oAGbLHiGkEICNYhXllEv7JCoHTN730q9fP5imiUQigXA47G2/4IILMH36dABOAvr8888DAAYOHOjdx61bbD1Xej7Zto3t27ejf//+aRPf3bt3wzRNb4YZ27aRTCZRV1eHeDyOWCwGv9/vxRkMBr2BpYWMPZVKIRqN4vPPP0d9fT0qKiry/oUhH/Gbpoldu3Z5M0QATs2+3+9HNBrNeN27KpfY95X4LFu2DIsWLfLaZ7HbZleVc/zlHDuQffzZts1czpGtTNfIEsHnCaBacxZlAoCE5fS+1xiZ4xARREygKQXELUAEUGLCb+gIG0CN3n7cUTrxeBxNTU3eDF6tZ57xGQZ2J4GEJWhs3IXq6lpUGgqV+zi2+5hqNKfnvdls+VVBAwIGUGu0nWOe7ZOo/DB538tnn30Gv9/fbjGiQYMGYdCgQQCATz75BA0NDQDQbtCRW3ddyJ/vMtV2h0Ihr17bnZ4sEAhA13VUVlZCKYVEIgEA3s+07nEKGbs7I0wsFkNVVVXB3sC7Gr/f7/dKjNwp3Hw+X5ttpRr73tyxBt3x/LZWTtconULEX86xA/mPf++2WYhzZLL3NbJtAZTAp/YkxD5N2sW3t5QtiNsCTQl0DQhrQMzUoCkgZStYSsHfidKbYDDoTXPrlvwFAgEEAgFETUEKQECzoMwUdFiIWTrChtZhWY/V8piUBsRNgeEDfBqgK0CgEBegugSufb50V/xEpaTXJu+7d+9GTU1Nm22bNm3CunXrMHbs2IKWkuSbaZowTdMbAOVOR2YYhjeNIwBUVVV5A1RL/fG5vxq4Uz921yIm4XAYuq57i6cEAoGSv1ZElBtNAYYGpATwq5YxOgKE91FbIgKIApRy6uSVApQAUM72fVTc7Dm/pqGqqsqb5lbXdQSDQWeQKwRWKolEPIpEIoFocwTwB2EHQs6JMvApJ1FPWgJbAB8AWwBdcx6vVZjScyLqRr02eb/xxhsRCARw0EEHoaamBlu3bsUzzzyDQCCABQsWFDu8TjNNE01NTUilUt5AqUAgkLE0pVwSUXd2HLcHPJFIdHl6yc7QNK3dry6FGmhFRMWlKYVqA9iVtNGcsCAQhHUNIb3j7F1rSdqhWmrfbSdBtgEYcHq6O8v9da/dOUQQjScQUM5sYpruzF6TSmgIhDPPgOU+pv8kBRacZD3sAwIakOzEFxMiKn29NnkfP348XnzxRTz++OOIRqOoqanBhAkTMHv2bAwePLjY4XVaPB5HKpXyEk53sQ935pVyZJomotEoAoGA9zOou2JhVVVVkaMjop5EV0AgFYMVTzgzl2gKSVXR7kv8/2fvzIMsqar8/7n35vL2qupulgZFdFQEFwIREERBDERkUdxHcWnQEWPA0HAXF2DQEQeX0BG3EUFFXEaUQJTBBQS1FRdmZJxxC5WBHyDQXVVvzfXe3x9ZN/vV/qq6XlV1d34iOroqK1/mefnuyzz33HO+Z9prpKDhGJqJwJWGdpig45BEC0bKLpKdl3p00fikpNIjERKNpCoN6MUbCnpKsKkkqaaGVmQQQGwEJQVlp0gtKSjY1dljnffTTjuN0047ba3N2GmsDJnF5v3N1Ql1V8IYkzvuSZIQRRFpmuZayQUFBQUrQRRFhEGP0lShepqmeU+Mhe41ZUfiSkM3jFFxC3SKbxx67YBIG4ybOfBlCRVHLDkfW0pBmRQhYhId0ZBJXs80CEoIao6grEyWKiPAFYMV0hYUFKxvds3QbEGOUiqXfQTyLqeD3qBtbrnNuVwP2KZTcRwThiHNZpNut5v/vF7sLCgo2PWx8rrWKbb31EHS5Rwp0GGPkiMo+y6e55Iol+3deCoxHloJdJKlB1Mcx6FarWCSGJKIJArz/hZLQQmBp7IC2sJxLyjYPShCmLs45XKZNE1zFRkhBPV6faDotNaaTqeTNxKxzS5sUWsURcRxjFJq0SjUSiKlpFar0Ww2abVaCCGo1WqUy+UifaagoGBFsSovdrWvv9HSIFi1ExtAiZAodK5gI4yhl0LVMUt2niuVCkopOp0O9XqdUqm0aOTdNuCzuvG2S3T/uY0xeU1t4c4XFOx6FM77Lo51dG33PutoD4J1hG1uudWC932fKIrodrt5N1THcWg0GnMe26rdACvm5HueR71eJ0kSXNfNNXyVUvnqQkFBQcHO4nkenucRhmHuhC8lPc913byDtdaGJNF4rosQO7+wLYTA8zx83x/IcYesDqrdbqOUIkkSJicn8X2fkZGR7DkhBK0468AqgLI0eIsc0zr7sojcFxSsCwrnfTdASpk3ZloKSZJM08a1Eom2YFQplefTh2FIEAR5UydLFEU0m818iVkpRaPRyFug7wyu6+bvy+bxJ0kypzJDQUFBwXKQUtJoNIiiKK8h8jxv4Ch5pVJBa02320VrTc31Sf0y6VQkPtZQGbBp00oQhiFKqTwCb/t7tNtt0lST+hUCPSWNSZbWUxEw3y27FWu2BYYEKCnY5AtKC8jppNo6+oWzX1AwLArnfQ/GcZw5l4tt+kz/hMAWcsVxnGugO45Du91GCJHnYUZRRKfTYXR0dKft60+fCcNMCWI5OZ8FBQUFCzGXROxSXlur1fA8Lw94dFPoTS0QVhyoraLCi03fCcNw2mql4zj0whCtyvhqR1qQIw3RPIuZnURzT88gyfTj2zEk2vCQisaZsQpgjKGTGDopMKUr33AznfmCgoKVpXDe92A8z8N1XaIoArJIfK1Ww3XdfMnVcZyscUmaIqVkcnIyT6WxXVzL5R2awyud1uJ5HqOjo3lRmeM4u6wEZkFBwe6JdZJtel9NZjnu9m+rie/7dDqdPDCTJAme52X3zTRLb5zqJ7Xj53lM7CQGY6DsZju40tBJIEihNuM23EsNrSTTkxcia3w1GRtGnV1b+aygYD1SOO97MFJKRkZGpnUyLZfLKKWo1+t5xBuyFJYkSabl1Fv5RpuXDuQRnpVkNYtlCwoKClaCtVJ2scEUK7Hr+z6+72f9QHwfLaEdp7hSIKVAG6jNEx6fy+2ezxWPDUgMZiptxlOSIIW08N0LClacwiPaw7HLxTZCY6PaNuJtc9mFEExMTEzTlFdK4fuZlnEURXnB7My8+IKCgoKC1UEIQaVSwfd9er1efm+2Tny7PYlODB2h8FyHsWoZb555Rk0JJoShlxgcCVEKJQn+HM6+TjSdbg+ZxgC4rofyy4WaTUHBECic94J56Y9220Ku/ih7kiSUSiXK5fKKq83sydhJVJEeVFBQsFxsIMUGYIwxNJtNwDBadjHGEEU9iAXMI3hQdSX7mpTtISQaygr2LgncOfLd06CdNX9VHhJDO0oYVRHKX7qYQkFBwcIUXlbBQNiirFarNa141EqqFQ77zpOmad6MyhYBVyqVwokvKChYNvb+YZXE7GqpbUxlc+LnY8RTNFyDNgY5j/691hrShDHPJTQ2bcbgpSFC+EN5XwUFezKFx1UwMJ7nMTIysksWj8ZxnBfdrle7bcMs+3DtdrsIIfKmWQWLk6Zprp7Un+JVULCnYxtPaa3z+58VHhjktWqBHH57bGk0NZXtF2uNUjsvGVxQUDCbwnkvWBJLjbKHYUiv10NrTRAE0x4cq0W326Xb7QLkEpiNRmNdOfBa67y4zEa2rBJQ4bwPRhAEdDqd3HmvVquFrGjBHkkURQRBMG2FVClFpVKh0+nk95hBJTJt4GO+IlwpJeVyeZrKDVB8/woKhsT68V4KdjvCMKTVapGmae6cWid6tbANp6xDJ6XMO8uuR+xDb+bPBQsTxzGtVitvWCalpN1u57UYBQXDYr19T23jPLva2G636XQ6QKZE02g08pS8+bpmW5Ik4b777uOuu+7irrvuYmJiYt73Wy6XqdfreS+OkZGRZTUP3B254IILEELwtKc9bdbf3vCGN3DggQeuvlEzeOtb38rmzZuRUvKGN7xhTW254IIL+OlPfzpruxCCSy+9NP/9iiuu4Mtf/vKs/Y4//nhOPfXUodq41hSR94KhYbv7ua6bK9EEQUClUlm1HPn+iL996PSr5KwXbASs1+vl10ZrXSj3DIjtLWBTZWy/gWFIlxYUQOa093q9vAbIcRxqtdqKSURqrUmSJA9+LLr/1P2t/74L2b0lDMM8+m5VZ/rfx3znf+CBB+h0Ovi+j9aabdu2IYRgZGRk1v62TqeIts/Prbfeys0338zxxx+/1qZM4/vf/z7/8i//wkc+8hGOOuoo9ttvvzW158ILL6RWq3HMMcdM275161Ye9rCH5b9fccUV1Go1XvrSl07b77LLLtvt0yaLp1rB0LDR7rUkTVOCIMDzPDzPy7oAdjpUKpU1tWsubHFqFEW53FvxIBwMO87smLONxAoKhkWn05k22e52uziOsyL3ljRNaTabJEmCMYZut0scx3MGHWxn0+5Ub7w4Ab9PoNF+HyzaGLTJGiktlMeeJAm9Xo9yuZynGGqt6XQ6czrvBQtTrVZ57GMfyz/90z+tO+f9d7/7HQCvf/3r1zSd1I63+Xjyk5880HEOOeSQlTJp3VKkzRQMDdvYSWuN1po0TXFdd1VvDlLK/IEXxzFxHON53rqLvENma7VaZWxsjNHR0cJxXwKu6+Y1AnEcE0VRvq2gYKWxaYCO46CUyqVdgyBYkeN3Oh2SJMkd7yRJaLfbc05Iu4mhnYAS4AhIlUcrNqRpttoYx3F+341Sw/bIsC3M/nVivegkd+bf1zogsyvz7ne/mx/+8IdzpoT0c+edd/KCF7yAkZERqtUqJ510Enfccceyzrl9+3bOOussNm3aRLlc5phjjuGWW27J/3788cdz3nnnAdmKpRCCm2++ec5jXXDBBdRqNX7xi19w5JFHUiqVOPjgg/n2t789bb/rr7+eE088kb333ptGo8FRRx3FDTfcMG2fK664AiEEW7du5cQTT6RarfKWt7wlH1/25357+tNmjj/+eH70ox9x/fXX5/tdcMEF+d9mps3ccsstHHPMMZTLZTZt2sRZZ53F9u3b87//9a9/RQjBl770Jc4991zGxsbYvHkzb37zm6elX95999286EUvYp999qFUKvHwhz+cN77xjQN+GitH4bwXDI1yuUylUiFJEuI4zpeVB3HetdZ0u10mJiaYmJhY9kOxX3LR/iuVSrv9ktqehpSSer1OpVLBdV2q1eq6K0ou2P1IkoRWq0Wr1aLb7ebpWzMxxhCmhl5qCNLFV4Vsd9ROp0MQBLnzPtfxA5057UoIpBDUSi7SL5Gkae6412o1NDAZG4wBXwmUgGYC0TwZOa7rUqlUCMMwt0drXRTQ7wSnnnoqhx12GBdeeOG8+7RaLY4//nhuv/12PvWpT/GlL32Jbdu28bSnPY277rprSedL05STTz6Z6667jksuuYSvf/3r1Go1TjzxRH71q18BWYqJzXHfunUrW7du5YlPfOK8x4zjmBe/+MW88pWv5JprruGRj3wkZ5xxxrTJxV/+8hdOO+00vvjFL/KNb3yDpzzlKTz72c+ec1Lw0pe+lBNOOIFvf/vbvPzlL2fr1q0AnHfeeQvac9lll3HYYYfxlKc8Jd/v1a9+9Zw2/+pXv+LEE0+kXq/z9a9/nUsuuYTrrruOk08+edZ36vzzz0dKyde+9jXOOeccPvShD/Fv//Zv+d9f8YpX8Jvf/IaPfexj3HDDDVx44YXzfu+HSZE2UzA0rDZ8pVIhTVOiKBrYabYKMY7jYIyh3W4DS1cvcBwnzyW3jpzv+0Uh1S6OLX62ahqVSgWlVOFYFKwKVnml2WzuiGpPqUXNVNQyxtBODN0kS1kxBsoOjHrzq7cYYwiCIE8hkFKSpilJksyq4RBAv/9tEJTLZcbcEqLP1jDN0mX8KSlHJQQSQ6wNag4zhBBs2rQJKWVe4L9hwwbq9fqyr1sBvOtd7+L5z38+t912G0ceeeSsv3/+85/nzjvv5Le//S0HH3wwAMcddxwHHHAAH/3oR/nQhz408Lmuv/56brvtNm644QZOOukkAE466SQe+chH8v73v59vfOMbHHLIIXke+SBpKVEU8a53vYuzzjorP96jHvUo3v/+93P11VcDcO655+b7a615+tOfzm9/+1s+85nPzEoZOuecc3jb29426zwHHHDAgvYccsghNBoNarXaona/733vY9999+Xb3/52vhr70Ic+lJNOOonvfOc7nHbaafm+Rx11FB/72McAOPHEE7npppv493//d8455xwAbrvtNv75n/+ZF7/4xflrXvGKVyx4/mFQhKUKho6UMl9aHgRbZOp5Ho7j5A/H5SjE2FQUq7BQr9eLiOwuThzHNJvNPNrR6/XmTSlYS+I4ziehherN7ofruniel6e21Gq1vFDaprrEcUyY6MxxjyOiTouwPcm2Zpd2OP+YKJVKeQOlOI7zbXNRcQSpgVgbEm2IpzqhOkrlaRCQ5bjDDEUrAQslwTiOw957781DH/pQDjjgAMbGxoq0mZ3kjDPO4HGPexwXXXTRnH+/9dZbedzjHpc77pBNmk488UR+/OMfL+lct956K41GI3fcIRu3z3ve85Z8rH7OOOOM/GelFM997nP5+c9/nm+7++67eeUrX8n++++fP8NvvPFG/vCHP8w61imnnLJsOwbl1ltv5TnPec60NMpnPvOZjI6OzroOz3zmM6f9fsghh3D33Xfnvz/xiU/k0ksv5ZOf/CR/+tOfhmv4AhQeTMG6pf8hMbPoCnZ0DFwMq+RSq9Xyh2LBrksYhkD2EFJK4XkeURStydLlfPTCiPsnmmxrB0x0ejSbrdwJK9g9sPeVRqNBo9HIezTYovjx8fEs7a/ZpBcEhEEXKa36lqY5TxoMZA3xbIpfuVzOAxlz3bt8CSOeQIrMQa87UHNmO9iuAF9BqCFKNZORJkwNsYFkETGbhTTeC5aGEILzzz+f66+/nl//+tez/j4+Ps4+++wza/s+++wzLUd7EMbHx9l7771X5FgW13UZGxubdbx7770XyIJvp59+Oj/+8Y+56KKLuOmmm/jFL37BySefPGf661zvdaVZyjUdHR2d9rvnedPs/upXv8oznvEMzj//fB71qEfxmMc8hmuuuWY4hi9A4cUUrDusVreVYLNRLJvqEkUR/+///T/+7//+j7vvvpvx8fGBpNQKdk+MMdOkQNeaXhhx17ZJJiJNgCJQPj0tcq3tgt0DuyJoi/JtXU+apvR6PVzXxfd9JIZur0uqDVIqQKAcBTqd13l3XZd6vT6tE2q5XJ6zAFsIQVkJNvqSjb6k6s7taAshaLiCmjJEGuIUHGPoxobJBBK9Pr4/ewIvetGLOOigg/inf/qnWX/bsGED999//6ztf/vb39iwYcOSzrOSx7LEccz4+Pis423evBmAP/3pT9x+++18+MMf5uyzz+a4447jSU960rwr56sxKVzJ67B582Yuv/xyHnzwQW677TYOOuggXvziF/PnP/95pcwdiCU579///vc5++yzOfnkk9myZQvXXnvtgvtfcsklnHDCCTtlYMHaY/WGV3Pp30adrHqILTrVWnP//ffnD0chBNu2baPZbK6abQVri5X8tCkFk5OT9Hq9/P+1dOKjKOL+7ZN0gggRh6RBF+KISLrE6fqZYBTsPNbBVkqhtcb3fer1Omma5g3hAEqug28SYj0V9QZ8NC4LS+lWKhVGR0dpNBp5sf3OOjpSCEqOhDTBjVrE3exfN4jopcXYXC2klJx//vlce+21/OY3v5n2t2OPPZY77riD3//+9/m28fFxvv/973Pssccu6TzHHnsszWaTG2+8Md+WJAnf/OY3l3ysfr75zW/mP6dpyre+9S2OOuoogNxJ768ru/POO/nJT34y8PFd1x1IpGJmVHw+jj32WL71rW9N82G+973vMTExsezrIKXkiCOO4OKLLyZJklVPoRm4YPXNb34zH/nIR4AdOXNf+MIXOProo7nqqqumCedbfve73/GjH/1ohUwtWAtsh1KbqlAqlahWq0NPPbHKNFYz2RZpBUFAFEWztIe73W7R0GgPwfM8arUa3W6XdruNECIvomu329PkQVcT28SmE8To1BAlmnLZIYljtALpO0XqwS6CXfGzEnTzYftHWClcW9szTVdda6pKoKUBHWaykmlCqeQv2kDMpsr0564PilW3MQZKCkoqey9xktILevgSHMdF65QgDIjLLniFCtdq8dKXvpQLL7yQm266aZr/tGXLFj7ykY9wyimncPHFF1MqlXjf+96H4zjTOp+effbZXHnllQsG1U455RSOPPJIzjzzTD7wgQ+wzz778PGPf5x7772Xd77zncuy2/M8Lr74YoIg4OEPfziXXXYZd911F9/61rcAeMxjHsNDHvIQ3v72t+cdft/73vey//77D3yOgw8+mGuvvZanPvWpVKtVDjrooDkLpQ8++GCuvPJKrrvuOjZv3sx+++03Z4Op888/n2OOOYZTTz2V8847j7/97W+8/e1v58gjj+TZz372wHZNTk5y0kkn8fKXv5yDDjqIKIr4+Mc/zujo6IIKPcNgIA/suuuu48Mf/jBKKV7zmtfwiU98gje96U1s2rSJn/70pxxxxBH84he/GLatBWtAt9ud1uQoDEO63e6qnFtKieM4cz7gigjmno1txV4ulxkdHUX1Fef155ZbpyqKIoIgIAzDoaVY5d8VR+GXKxiyKFQQRSgpqBdKOLsEdjXH5qxHUbToa/oda9/PnPIwDPOVw1qtyl5jI9RLHmVHUq1W8m6sdoyu5D0tSA3j0VR6jIHJONODB0CnCGPQcuq+KhQGgdDrp2ZkT0ApxTve8Y5Z2+v1OjfffDOHHnoo//AP/8DLXvYyxsbGuOWWW3joQx+a72c7SC92ju985zuccsopvOUtb+H5z39+Hok//PDDl2W367pcffXVXH755Tz3uc/lj3/8I9/4xjd4whOeAGTj/5prrsH3fV74whfynve8h/PPP5/jjjtu4HN84hOfQGvNySefzBFHHJHLWs7krW99K095ylN4xStewRFHHMFnPvOZOfc7/PDDufHGG2k2mzz/+c/nLW95C6eccgrf/e53lyQbXSqVePzjH8/HP/5xTj/9dF7+8pejtebGG29k06ZNAx9nJRgo8n7ZZZchhODaa6/l5JNPzre/613v4rWvfS1f+9rXeMYznsE3v/lNnvGMZwzN2ILVxTYisYVYkN0MBnmYDQvbYCkIAlzXzW9ghUTgnokxJo94ztze6XQIwzDXqfZ9HynltHSHlcR2wIzimJLrIKs1giCkUi6zT6OC5xRRzfVOmqa0Wi2MMblyTKvVYmRkZNEouUUpRaPRyCeKqVBo1yNA4FdreHKHo9/r9ej1emitcRyHarW6Io3FOkkm/+hOnSvRhl4KFcegpKAqUiIcQiMQQImU8lx6kbsQtmhdCIlyXRwlketkpeuCCy7IGwj1c/bZZ3P22WfP2v6whz2Mb3zjGwse84orruCKK65Y9NwbN27k85///IL7vOENb5gW1V+Mo446il/+8pfz/v2II47gtttum7Ztppziq171Kl71qlfN+fpjjz12Tod95gR3//335/rrr5+131x68scdd9yCzbEOPPDAOSfQH/3oR/noRz8KZBOTz372s/MeYzUZ6G70y1/+kiOOOGKa4w4wMjLCV77yFQ477DDe+c53cuqpp3L11Vfz3Oc+dyjGridqtVquQW6xPw8rKmyMyc+50ueYy3b7c5qm+YPLRi2Xev6Vsl0IwV577cWDDz5IGGZL0KOjo9RqtaFcFxjudbfH7/9/EBZzJPbdd99p43NXHpv2+P3/R1FEq9UiCAI6nU6uyAHZBM9KNCqliOM47/Lr+z5RFNHr9aZN+Baz3xiTN6mxBdUz0xjsxABAJCFo8B3BvhtqeEruNtd+MZY6NpdzjqUy6DWK45gkSXJZRts1NY7jBSd7M+2XUlIulwlSQzsyiBQMhm5iGHEFvhIEYcSDzS5COSjpoJMY3WrRaDSmnWupn68xBm3MNAlIKTIJSW2yyUXFdxFBD6EUaZLgugrXdYY2foY9PoMgoNfrkSLoaoVRimqlQsOTVJzpCQaDTsIKCtYzA43iyclJHvGIR8z797e97W3sv//+nHXWWbzoRS/ic5/7HC9/+ctXzMj1yGGHHcbY2Nic+WbDlKwbGxvLHZFhMNN213Xpdrt5KoLWmlqttqzi1ZWy3Trw/c1Q+icaw2DY1x2WZvtMqa6Z2GjOzM9pVx6bsGOpeHJyEiFEnvtum3CVy2XiOKbVauUpCTaqGYbhlEyfyVeUBrG/P4pvx5nv+3nag8UWWUkpcR0Hxxiq1Sqekrntw2I9jc/ljs2lnGM5DHKN7Pjqt22ubQu93mKm0lUwMDUEiDU0NYy6sL0b0k7Bk6BTg4PCDwNKUTQr+r7Uz1cZ6KbgTw3PSGcykTYzplQqIYTIJirlEqVSKS8CHwbDHJ9a66xQHUEgXFACkcSEvS4TpoLRGr/Pf19sfBYU7AoM5Lxv3LiR++67b8F9zjzzTEZHR3nhC1/Ili1bdnv1j9tvv53HP/7x7LXXXvm2/iX8YRSm2YK4jRs3rnjB6Hy22xUG67z7vr/kLqcwXNthuNe+33b7O2TRtZV4L8ux/YEHHljw75/73Od43vOel4/PXXlswnT7rZqHHYcjIyNZQbVUpfxsLQAAIABJREFUtIMspSvLPc/SEGykTSmF4zh5BL4/AreQ/XEc54pHthjRpkT0TwBsfUa/Dr1dDdgdrr0xJotuTq3E2a62M1nq2Ow/x1pfIyklYRjm7zFN0/yet1jkfab92hhEanAlefqGMFmXUyMhES4lleTpVEEKiXBm1fks5/MdUQaZGIIpZ73iQN0VqL5ra8fmern2y8WurCm/BMahJCAVBikFjpJoAU5f9H2x8VkwP/Ol/xSsPgM574ceeii33HILnU5nwdziU089lRtuuIHTTz+d17/+9dNuzrsb7XabJEnm1dMdxk3QRkqGdXx7jv5jr1TL+dWw3Z5npY9vbdda0+l0iKIIIUQefV2pB9JSbF8sQnbffffNOT53tbFpC03tKou93rYZjo2uB3FKB3C9ElIKqCi6ze15d79Op5OnzHieR7lcntUEbD777Xns52x/ttv7sYXdM19vXzfXtbG1JXaFwEqgDspqfLfSNKXT6WCMQUqZ2ztXt+Lljk1Y+/GplGJkZIROp0OapnmzpEFTLfqPr4RAkTDZCXGMRimJ8EpUnKybkuO6pGlIFMUYKQlTQ8n1Zn3+y/l8lRCMuIa6AwZQYnE97bW+9svFFqvrVIMErbO+D67rYrDNq3act+h2XLA7MJDXccoppxAEAV/4whcW3fe4447jpptuYuPGjXOK4hcU7KpYx933/VxfdrWUd/ZEoiii2WzmkbVOp0On08FxHDzPo9frMTExwbbt2xkPsn1KSuACKA9VqeeykXvvvTebNm1iZGRkTodzIexkwa642IZQK1HwqrVmYmKC8fFxms0m4+Pj63JMxXGcO7N2gmHzw3c3bMHp2NgYjUZj2TnSaZpiuk1MEmW572FMEnSpOuAIcB2JW6oRK4+OUSTKx5SqxCuUWSKEQEmBI4cbMFlrpJRUq1UUBpFEdJMUlIvwSkgB/i5eiFtQMBcDPcGe85zncMwxx3DrrbcOdNAnPvGJ3HrrrRx66KEccMABO2VgQcF82OZRq9FddabyjhBZm/O1VN7Z3QmCIL/O1mG0eefVajWPaJfLFfxylTSKpiJ8oNAY6aCUynN5jTF4njetP8AgnVld16VSqZAkCWEYEsfxvN0ul0qv16PZbBJFUb7K0Gw216VTPDMavDs7hCtBFEWgUzb4ig0+bPAFfhJg0hQlBSOuIEag3RKVcpm9qh6+gmaSFZwWDI7ruoyOjrDvSI296hVqlQolKRj1RK64U1CwOzFQSOGAAw7gxz/+8ZIOfNBBB3H77bcvy6iC9UW/k2y114fdpGkxrJqIjYCuRuMoG321Ede50iYKVo6ZTnV/9NsqWGROPMSpQKfZaojve0QapE5IU/IiVdvAKVOj6dELAjAG13XyZmDzUalUcF132ndgJT77brebrRhMFRCmaTotr3y9YG1JkgQpJWma5s2DCuYmV54RU1EyIQjFju2+ElRdcBV4MstHN8YQTqnCFD7n0rA1LUuvyCoo2PVYWw+sYN1j0xUmJydpNptMTk7S6XRWJdo9H1EU5TKAnudhjKHVag3VJqtkkiRJXsCotaZcLg/tnHs6tnOljY5HUTTNad6R9w5VaVCOhyyVEV6ZSrlM1clSZuxD3RYjtroB97VDJo1DW7h0oyTP514I13XxfX/JOemLMZdk4nzYFSArX7haOI5Do9HIJxhKqaFo5e9O2LFqi32t3GT/NXOlQLKjkFTDVI529ndtDJE2JIg1jcb3Fy0X7L7YbqjPetaz2LBhA0KIgbTkC1af9RPaKViXJEmSd1i1zlIW3fRnFeatFtZpsQ9B13Xp9XokSTKvTVbb2xYyVSqVJUfqS6XSNDWRUqk0S26wYOUolUqkaZp3RrXOT6vVyiQYpzr+KqVAa0YcSaVexXEU0mhacWfWMVMDzTAFIfGlJAUC6UPYWxPHpFQq0ev18gJQYwylUmnOlBytNeOtNr0wQgCegFqtumpj0Bbj2hWnYtVpYTzPo1qt0uv18rFbq9WmOe8VJYi0IUh3jL2GmxWcptowGRvCFNq4TEQw6hucVQ7Jx3FMu93OV53sd69g9+PBBx/koosu4oADDuDQQw+ds9lRwfqgcN4LFsQ6FDOjnWsZeZdSTjv/YukrSZLk0qVKKbrdLkmSLKtwsVQqLUsqs2DpWB13pRRJkuTSi9aZqNezgtQkSXAcZyoPPbulGSNz5942iNFa43g+uhuj0AihcIBgKrK5Fq5opVIhCAImJydJkmSHckZfDwPLeCfkwUDjqhJCQqpTTLuzqtHvwmlfGuVyGd/3ZykWWRwpGHMzHXZtDK4UeFMFlq3EEBvwJXhoEgPt2DDqr971T5KEiYmJPD1Ra73kjrMFuw6bN2/m3nvvZd99982bcxasT4pvX8G8JElCFEV51MjmDs/1EFpNXNdFKUUURbnzZlUw5iIIAowxeYRSSpkrZRQRpPVPHMc7UlWExDgenSiirA21Wm3O11jHXwhBHMf577guridIenFe3JqmUPJ9oiRc5Xe2Y/VICIHn7ZAJbLfbjI6O5vsl2tBODC4GX2UNgCKhCNOkSGVY5yx2r1RSUM6S4vNtxhgSnanS2K2OhNhkTr5cpQmU7WBs34PjOPlkunDedz9832ffffddazMKBqD49hXMiZXpS5KEJEkYHx/PG97Y9JG1wnEcRkZG8mK/SqVCuVxecDVgplJG4fDsOuSrPQg6qSQyhsQ4qBgaJsFBI4SYVUQqpaRer0/TWU+Noew59KiSRCGJMVR8h0bVY1u3tervLY7jvH7DcV2C1NCNDCWhKSUppakGPtqAkBIpzI6VJq0xRSR8zUhNNqGKNSgMPiv3QM1WOAxpX+GqNiAlq7ZC1N+Uy64e2Jqf/ollwdqhteaee+6h1+tRLpfZb7/91lxMomB1KJz3gjlpt9sIIXLH2DoYdrl0LW8QSZLk+et2MjEzlaYfx3Hodru5RrgtdC0iR7sGvu9nhaaRJlUpOuwhBExMJExiGHNAyqzjarVanbMxlSVrXgOOcEg8ByWg5ggkazOZs0WASiki4RA4LkkUghZMxiCEwVdZoxnPdYkSlySJMQYSJCOVHRNpWxRpU25WQsqyYG60MUxGhshkD9HIQKjBdQzuDF1xq9YFLOneWXMEE3HWJTVGog00nNWbrNlJr01Vs/dYq7ZUsLZorfnVr35Fu93Ot91333088YlPLBz4PYDiG1gwC6vwYR/+thW91nrN00xs/rpVvOh2u8RxTKPRmHN/q84BOyJJNnJf3OB2DTzPo16v05zsoZPss3Rdl26vhxYKM9VOvtfrzepwarXZrca753k4UjDizXSw1sZ5t+lcUZIwkSgSo0Eoyl6J1EA3yZx3RwrqrqBJhTRJMBjqjmKs7IDJovHdbjd/r/0T74WcvTRN8wJwZ+o6FixOrLM8dV9m90cH6CTZNrevBCFJElqtVu68u647sEqPrwRjAsLY0CNl1IPSAg2H0jQFdjQV21nsalapVCKOE3raEEo/q9PQgoospHLXknvuuYd2uz1tFbnVanHPPffwkIc8ZA0tK1gNijt1wSysfnMcx7kjlKbpuojkWb15m7/uOE4umzfXA9E67yMjI/m2MAzzB13B8InjeJYDvdSHvud51KuCyU4P34c01SAdHCmI44hyyc9l+frPOz4+ni/9CyHYsGHDtLGw1tgi3BAXY1xKJLjKx3U8eim4cseDuepKXGVIjYcEXAlSZBKCVh/eNqGyEq+2G+1c9E+EYUea0VpP0FcTq54VhmEepFjK+Jy5n3WkkiSh2+0yPjlJYgS1Wh1XQpLEdDqdeYMNM/GkwHEFLVK8eVRmjDF0Oh2CIACye+JCE4Q0TdE6SzVbaBIhhKBardJsNtGOR6xlVlBbrtBKQGOou4Xzvlb0er0lbS/YvRgo9GiM4cQTT+SRj3wkW7duXXT/rVu38shHPpKTTz55pw0sWBtssV8YhgRBkEuErQdmpsdIKefNYe/Pd7b/Ftq/YGXphRH3jbfY1o2Y6MVMTDZzJ2OpVBUIDKEWxFOJLiVSBNnnbIyZtprSbrfpdru5UyalZPv27bnU53ogd7QcF09KlFuiXK7iqiy6O9M38qSgrMRUKs30AkfIvgupgZ5RtLWiHel59cFtzYjv+/lkeBC9+92JXq+XyyDaycwgXZMdmRWTRjrrhppoAwI8lU0gm80W7V5IUzt0jMODvYhmqtDSybv9ruR76Ha7eRdiG+2f6xxRFDE5Ocnk5CQTExOLft6e5zEyMkLsVjBeGVGqERqJNoZeStEJdg2Zr8dI0Xtkz2Ag5/3aa6/lBz/4Ac985jM5+uijF93/6KOP5lnPehY33ngj119//U4bWbD6uK7LyMgIjUYj/3/YS+pW3cZqXs+FUirv8GgLqIB5bbP7R1E0rdHIelhF2N1JjeGBTkiAwjgesfIIZdbddDlSo64SbCwpSiairgwNpUl6nbyBk1VrsVgnySq4WLWkQZyz1cTzPEZHaozVK9QrJVIhCFPwJFScwSPAZsqJbKaSQAtSBF0jacZmTgfNpp4ZA71UZFriMXRivUc48FprgiDI04WsitUgkUslBA1PIIwhTDRJqmk4mdRjN4wZjw0TokKosjQtlSakaUo7ASFWJq3FEsdxnktvx7ldoewnTdM8P9rW/PR6vUUn00Y5JMrD91xKjkQA3QTSNUo1K8jYb7/98iCb/Vev19lvv/3W2rSCVWAgb+zqq69GKcV73vOegQ/87ne/m09/+tNcddVVnHLKKcs2sGDtWM0c2CiK8i6p1uGq1+uzzu+6LrVajU6nk6fK2ImFdeT7kVLSaDRotVpEUZTnAhda7cMn0hClBl8alAADhEYSm+WnLNWrFRyZrQi5JZ9auZR3UbUpIxbHcfL6DSspaidzw8SmYlinaOakYi4qjiQ0hlgbnKlrVXfAU4PZqpSiVCrRDBICDL7QVHyPsqcIUqg4WVOnma+JoogQh67ONDOlUrRSkNIMPHHYlZm5WmO3DYJIE1SvjU4SBKB9j8RVNBPQZBqPnuPRiwxuEiOTCOm4lCuVFX0PM9Wz5ut7obXuU46B0Ch6RhNHmrrQKB1jELhK4jk70mlSk6VoJSabkEuR/aym0rYK1gYpJYcffnihNrOHMpBndtttt3H44YcvSf9zn3324UlPehI/+9nPlm1cwZ6B1jqPCFlJMpuuM5eOt81LtU7ZYmkwtkC1f/+C4WPMlAMdB8ip3O00TVGes+zIo5SSWq1GZcoBWuizrNfrdLtder1e7rTbpjlLfy+DF+cFQUC73c7ziTudDr7vL+jAq6lmPUEKGnClwF/CMLU69omTYGJN2bVqMwKEYS4xnWq1SpKktKMEicFRkkq5jBGC3pTDvzsjZdbIKwiC/LNJ03Sg9EDbrMgYQ7nko7XOFLCUC8rDk4LUTK1sOA6uU8Ivlyj7JXxvZZtqlUqlfMVSCJHL587MZ7fjV2tNYBQ9I0iNAA3/NxkgMShhcJTDXvUKdX+qBwFZYa5rMlUdM+XM1/aAyd16R0q54sWp//qv/8rExAT33HMPANdddx133303AOedd966qhnakxno9nzffffx5Cc/eckHP/DAA/mv//qvJb+uYM/CRoRsoZxVObAqGHOxVCe8cNpXH0dkk7HYaJIkIjUCRzk0apWdThsY5LN0HId99tknV/twXTfvVTAoYRjmsqT29TPPbXshQLYyFARBpts+dR5bO6K1XrBAUElBdZ6ixEEQQlArecTSIKea/sTaoMiipLPOpxSNkQa9boIjwJ1KvUi0WSPhzNWnWq3mEpuQ5QsPsiqXpmkexYYdCi86TVGexK9WMN0enTRFK4dSqUrFV4x4Ky/16HkejUYjb0bned6c70EpRblcptPt0Qak0XhKkqQpgYaa61JRmiiO2dYJ8N0KnhR4MlO+iTRUyLTny0osqHxTsOty6aWXcuedd+a/X3PNNVxzzTUAnHnmmYXzvk4Y6Cnmuu6y8kTnUwApKOjHOtb9zs16kKUs2Dk8JWi4grYok+oSUsCIK/Dd1bsnOI7D2NjYsl5rU7lskbN1jur1eu6A9ad72fOlaTrNwV9NOT1PZuk2nTTryqokNFyBmscGRynqvqCbAiJLi0gM1PeQ27ZV2LHqK4NO8Puj2PY1xmQ570ZCqh1qtRre1ErKqJc5u07f5CxMDd3EoMk+t6ojlp2GMlMidT6bq9Uq0nHp9VJ8KXBdh/F2Bymy7k9CCFxHEemUdGoGJ4VgxINeYrIJuIDSTthasL7561//utYmFAzAQM775s2b+d///d8lH/x//ud/iuKJPRybc7wQVsmm3W7nRYZKqTw1omDXpepKSo7JukMK5nUil0scx7nUoS04XClswMKmVEgpCcOQSqWSO+nNZhMgj8BGUUQcx3lTG1tI6Lruqqz8CCGouoKSYzBT13wxJ6vmCsAQTH1Nq87ghbK7A4tJJs6FjWLb5nU28FAu+VSUoJ0YEiMoO9n1dWesqESpYSIyCJGpRnSSbOI04g53sieEoOx7jAhDpEFJg0CgDdgrkKZZK9d+K5QQU+OkoKBgPTCQ8/7Upz6Vz3/+8/z85z/nqKOOGujAP/vZz/jd737H2WefvVMGFuy69DcosUV8/ZGqfqyUn3V6XNctGsbsJighmGuF3ebpAovmhM9FL4zY3myhNShhKDlyRVWRFqqjCMOQVqtFs9lECIHv+3lDpHa7nXc6BWg0GjQajWl66sN25JXICiYHQU4pp9Ss3GQRUV0UG8VWSk1TvHKcrJ5jdGZ18Ax6U0otVrtdmayTas3J0s2GSWoMIo2JIk0oBI7nUUq6pImmmxqMkGyolPCKLMOCgnXLQE+517zmNVx++eVs2bKFW265hU2bNi24/4MPPsiWLVsQQvDqV796RQwt2LWwBV02lz1N09xZm8+5GmTpt2D3wDq/liAIqNfrAxeTJlrzt1aPGAflOCTCoJMIp9sduAHOYthixiRJcrUaz/MwxtBqtfI8Z1sUa5t/RVHE6Oho3jQqDEOazWZeWK2UylIq1tlYL5z2pSGEyDW1+2VrB8LAzMu9Glc/SDR/a3bpBiEG8DCM+Iqxmk+ExCAoeS41XxXjoaBgHTPQ3Pqoo47irLPO4ne/+x2HHnoon/3sZ/Pl4n6azSaf+cxneMITnsAf/vAHzjrrrIEj9QW7F/1FqHZZ2hbuFezZGGPodru52oeVeOx2uwMfox0ZYp0VzvkyK8oMhSJKVq5zru/7udqRHcu1Wi2XM7XpDVZHXmtNGIbTNLdteo3tdmonJ3ZiW7B7kRpDK9ZMRJpOPH+DLE9mufCpyZo8RTrbNswa0NQYxoOEdruNiENEEhFoQzsMEWg21cvs3SjTKDmF415QsM4ZeH35U5/6FJ1Oh69+9aucc845vO51r+MRj3gEe+21FwAPPPAAf/7zn/NOhy95yUv41Kc+NTTDC9Y/M50cYEVykpMkodfrEcdxvnxdNF3atZg5LqxW9cCSjDJTZ0lTjeNIlIDAGNQKp1pZ9ZF+PXDrdNsmRzZCb9MobAReKZU3BcubixlIpEsYxXhxSk2ubMOegrUjNdmkMkUggMBAPE8ee0kJEq2Z7EXESYonYaRWQojhpQpqA51egElinJIPCHSq6UWzGzoNi7k6IRcUFCydge8UjuNw9dVX87znPY9LL72UX/ziF/zpT3/iT3/607T9jjzySN785jfzghe8YMWNLdh1sJraVjbPOjw7mypgNeGjKMJ1XbTWNJtN6vV68UBYZ0RRRLfbzZtuVSqVaRHpKIqmOcR2lWYQXCHwS2WSXoc4jrJGMo5LdQhFzrZ7ocV24+z1erlzXiqV8qi6Uipv0GS7HgohSA20UkmsITUCEQukMlSLQsDdgkhDPCWjCFPNujRUzOwGWQCEXbwwoKQUJtF0WxHOEDtZCwCjQYqp2iMFUmKiZOgTSLva1l8EPpfsakFBwWAs+S7xwhe+kBe+8IVs27aN//zP/2Tbtm0AbNy4kUMPPXTRfPj1RBzHXHXVVdx88820220OPPBAXvayl3HYYYettWm7PFZBxhah2vzQlXDekyTB9/08Hcfm0hddU9cPQRTzt4k2CRJXStw4K1a2jmy1WkVrPethPihlRxAbRVfU0WmCKwQbSmpaZ8hhYbv22tUeqyEfxzHlcpmNGzdO03X3PI/JyUlaQUwoHFxSSp5HyZO0Uygpg9oJffeC9YE20/PWhRCgM9WfmdhaCN/fMWFdrCZoZ3GkoOQoul6ZXpIitEGZhKqrltW4bCnYibxNMbOT23q9PtTzFhTsriz7LrFx40ae8YxnrKQtq85HP/pRfvrTn3L66aezefNmfvjDH3LRRRfxvve9j0MOOWStzdvlsQ48kHcg3FmsAsjMSNGgLc0Lho82hge7EZGR+K6DJstHl2FApZLiOE7WIKhPgcWmlQyKFIIRFypKoPFwBNM0tIeNHduVSoUwDEmSBKUyJ8iqJVmMMdRqNeIgRWtDyfGmnDZJrDOd7z1EVn23xpXQ01luuRJZg6xMHnX2vvOliA0rfcUYQycxCK+MlxgiFC4xdQRjIxuG3o8lSZL8ew/kk9351McKCgoWZknO+3e+8x2+9a1vcdddd+H7Pk94whPYsmULD3/4w4dl39D4wx/+wK233sqWLVs444wzADjhhBM499xzueKKK/jgBz+4xhauDjb6aRvQVCqVoUdhdgalVJ5X7Hle/rBbb8odezKJhsQIHAxKZI5pqCHSYtoka2clE4UQrHCn+WXZMN+Kj+3caWs/6pUSIhX4MntdrLPrUwTd1yex3qGVP8jE0JNQF9DVWYMs25RsrtfaDrxxHOM4Tj5GhlW7ExtoJ1B2JaV6hTCKibTHSNmh4rtLU8pZJsZk/R5SINUgi3hLQcGyGdh5f9nLXsZXvvIVYEeU87rrruPSSy/lK1/5CqeffvpwLBwSP/nJT5BSctJJJ+XbPM/jxBNP5Itf/CIPPPBAXoy7O9Pr9eh0OrkUXpqmmVM0oDPc34RpNfSrbUdEq6UthKBWq+H7/qo8gAoWxwBCSJI0IY7BcRRJqin3Rd52d7TWbG+2CKMYAUid0hgZoaQ8ghRgh3O30o2rFsI2kILsflf0UpiNMVnn03YCZkouv+4YKs7i97aqKymTpdCoBRpkSSmp1Wp5/Y5dyRlWEEL3dUtFKcolgdTgDPCeVgLXdYkSTaA1icm6adfKJcyqCGQWFOx+DPTN/dznPsfVV1+NUopXvepVfOxjH+N973sfT37ykwmCgFe84hVMTk4O29YV5c9//jP777//rC6ej370owH4y1/+shZmrSo2lcV13Wka64NK9tni0e3bt7N9+3aazeaqONCO4zA6OsqGDRsYGxsrct3XEcYYgl6PIAzoaWh3O3SCTD5xtL7nFKhtawds66UE0id0SvRQdDsd6sqwwReMeYINnsAfpjbgDLpByN/GWzzY6jHe7jIxMZk78gU7iDW0kiwNpiQFjoBWnEXiB0GJrKPqYnKLrusyMjLC2NgYo6OjVCqVoRWO2m9dds/v0my2aLU6dLudVUk5dFwXXaqihaSkDI1yGeX5tJIi/L6n8apXvYoDDzxwoH0vuOCCZX8nrrjiCoQQ/PWvf13W69c7A4VdrrzySqSUfPe7352W5/6Od7yDLVu28IUvfIFrrrmGLVu2DM3QlWZ8fJyxsbFZ2+227du3r7ZJq45dqu13qGwjmUHodDoEQTCtNXx3BZvkLMae4gjuSnTCmAc6IUI6CN8Ft4TUMXvXfMrenhHlbfdC7p9so5MIkToor0QsPUIdYYzBW0WH3RKnWVOrRKhsJQQwaYzb7TIyMjLQMSJtCKZSSTyZqarsjjKXqQH6ouZKCGJMpmi0wudajdVKyCYiFQe2tUPiKEJKh5LUpEGPnhp8pXW5CCFwXJ+xUim/rok2JGa2bGzBnkW32+WDH/wgxx9/PMcff/xam7PLMNDT9I477uDJT37ynAWq73znO7nyyiu54447Vty4YWKlBmdib2Izmwnde++93HvvvUCmad/pdIDpBUbGmDyNZBg3I3uulSxqchwnbyyTJAnGGMrl8kDnsDKQ/ccKgiCXBBy27f0YY3K1BptPulIPxdWwfaXHjR3b1ubVGJsamAgz6cSKgpLWRErgao3SCVovP2VmV/luxXHMZKsFUuJIgdaGIOiB65OKHe9jJRnE9k6sibWh7AgEWe5xgMSLF9f4NsYQJJq2kYipNJJeAukyZS5njk17jvXy+Rpj0CloDEKAMfafQeu5bRum/Ss1NstoVK+FFAJHpJSVAqno9Xp5wfgwrz0YEg3uVLJ7ajIHxF7b5TLssVMwXLrdLhdeeCHALOf9Xe96F29/+9vXwKr1z0DOe7PZ5O/+7u/m/JvdPlfH1fWM53lzLhlb6bqZRZuf/vSn8wEG8JKXvASA++67b4hWzs3999+/YsfSWuct4K3+dhzHtNvt/O9WEWCmM9xutzHG5HmzVjmkX797mLb3E8dxLj9mbSqVSisa1RqW7cPAroKt5vg0CCabLXQUEE511E2MgDRCxN11m1/dX7dx33337dSYieOYThARuRV0HJBoQao1yo1RHjzwQLRSZs9iofHZMZJekBCYBKUcjDGEGoxMSKLFux53UKRIHDInSwOTSGpEg+Ve9rEWY9MyyHfYAF0cxpHIqd9dUjTpmmZo7+z9JwgCWq0WCAFSoaTEcx0EWbBqmI6vAIKJB+lOuRyGLJWnQkxIkTpTMDeO46zb58ZaM9BVsR0C58I+6FarQ9tKMTY2NmdqzPj4OAAbNmyYtv21r31tXpT7wAMP8P3vfx+AfffdN9/HGJNLYg0rgnH//fez9957r6hTqrUmTVOSJMHzvPyzTpKEVquVO/alUmlaVD0IgqzVttjRlKRWq82Zg76ztvd3a535+jRNGR8fx/f9vBtmFEVUKpUlaYcvdO5hXHfLcsbNYo7P5z//ebZs2ZI8ZCChAAAgAElEQVSPz9UYm/fdfz8bNmwkjQKSOJvAhVpQ9+rs3aiQJEk+EbR6z4MyLPv7x/jExAQbNmxgZGRkoAdGf7TPfmeCIKDUahM7JcaTEUyqQWuqnsPejTL1Obv17ByDjM9uYhgPU9JeF2NSEiOoOg77Ncq4i2jjG2N4sJuAcnJ1H2OypkQbfWYV3C51bNpzrKd7pzaGIJ2KDkvw5fzFpzBc++ezXWtDqxcQJylKQtX38by5E3uSJGFychLpeowHKUYqEmPwfcW+ow08zx36td9/702kCKIpV8GT4K6A1NJSr/1aTBp3BS644AIuvPBCfv/733PRRRdx3XXX4Xke55xzDhdddBF333035557LjfddBOVSoW3vOUtvOlNbwKy/PItW7bwl7/8ZVo++80338zTn/50brrppjlTYv7617/maoUXXnhhHiB973vfywUXXJDb1L8yI4TgH//xHzn66KO56KKLuPPOO3nsYx/LRz7yEZ72tKct+j6/+93v8v73v59f//rXSCl52tOexgc/+EEe+9jH7sTVW3322CnNIx7xCO644w663e60otXf//73ALPkLzdv3szmzZsBuOeee9i6dSswPe/a5o8Pa/nRYs9hGxZZh2i5eYtSynzZ1N4AbTGqTaMxxhAEAY7j5NerUqngOA6dTiffr1wuD2T7oGit6Xa7uZSl67rUarXcubKpMrZJkz224zgr3oZ7WPmpwxg3dlXJ2jvssal15qTWPUVbVRGuR5Jq6kqyqeISBL1pOv+lUolarTawLcOy346rUqmUp3N0p/LAFzpPFEW02+1cnalSqVAul/F9nzAMiaIERzh4UuN4krLvEhioMrd04Eqw0PisuIYEQU/V0VpTEjDqS/wBmloZY/AdSc9kqyuCTHrQV5mE4lI/j5lj055jNe+di+4H1JaQ5bUa9vfbboxhWydgMogQQmIwdKMu+4zU5nXgozimoxVCgtRJpgZVGUP4ZaTQq3LtHSlZaSHi1Ro765HUGO7qGrpJVtPw0MrOq1e9+MUv5uCDD+YDH/gA119/PRdffDEbNmzg05/+NCeccAKXXHIJV111FW9+85s54ogjBnKY52Ovvfbik5/8JK973es444wzeN7zngfAE57whAVf96Mf/YivfvWrvP71r8f3fS677DKe9axncdttt/G4xz1u3td98Ytf5JWvfCUnnXQSl1xyCd1ul09+8pMce+yx3H777QMX0q4HBvZErrzyylxje+Y/IcS8f1+vSx7HHHMMWmv+4z/+I98WxzE/+MEPePSjH73uZSK11nQ6HSYnJ2m32zSbzTzVZaWOr7XOJwQ2utifamQ14u0Eor/99UoRBAHdbpZyYVOd2u12/v7t+w6CgE6nk68ApWlaFLSuEkEQsn18gk63S9SaoKE0Y2WPvWsl9qn5CJOlZrmui+/7eJ5HEAQrPlaWio3YzazbSNN0wRzcNE2z9AOy9Do7gbWa7kIIojRBpjH1ksNotYKnJIYs3WQtyJpaCTaVJHuVHfauOJSX0I22rDLnINZZxN2VUHd3z4LVXYFeommGMWVHUXEVZcchMILWPI3wpJSEcYJGUCv7VKsVyqUSimwiVrDrkRrDTx/U/HbS8JeO4beThq0PatKdVA868sgj+fKXv8zrXvc6rr32Wh7ykIfwpje9iS1btnDZZZfxute9jm9/+9uUy2Uuv/zynTpXtVrlBS94AZA57GeeeSZnnnnmos77f//3f3PDDTfw7ne/m7e+9a3ccsstGGN4z3veM+9r2u02r3/963n1q1/Nd7/7Xc4991ze+ta38rOf/QxjDO9///t36r2sNgN71sstKFmvnS8POuggnvKUp/CFL3yBiYmJvMPq/fffz3nnnbfW5i1KFEX0ej1830cIkUfG+yUfBz1OEAS501Gr1XJnZmYXwJmRbKsuY22I45hWqzVw2sEgxHE8rfum53l5pL1f5tIYQ7PZxHXd/F8hITl8emHMvZMdtHAInCqBFoh2i9HRkR3pV/F0VSM7ntY61c6mYCVJktuWpmkekJiPNE3RWud1Mfa1vV4vL/r2XZdEC4RQKCUJ4zRLNR7+25oXIQTLqC8FskZFdSWoOlaBZXaX44LVI9UGbQxCZCPKLuak83ylHMfB9zzaEXl/DNd10QJ0mhadwnZB7uoamjHTKgYm42z7gdXlf56vfvWr85+VUjzpSU/i7rvv5uyzz863j46OctBBB/HnP/952efZGY4++mgOP/zw/PcDDjiA5zznOVx33XX5PXwm3/ve95iYmODv//7vefDBB/PtSimOOuoobrrpplWxfaUYyMNa64fssHjjG9/IVVddxc0330y73ebAAw/k3e9+94LLLusFG/G2qxv9DvZSjjE5OZm/1haa1ut1HMehXC7T7XZRSuXH7XeIrdNjX++6LmEYrvh4mes9zVQXqFarpGmK7/t5s5Mi8j5ctDGMhwkpgpJS9ASEykOkwbQbqB0jNr3Lfp5zfT5pmtLr9fJ9y+XyUBs7VatVWq0WYRgSxzHGGKrV6oKOaf93rX+/KIryBmdKQ5pAK4wwjgcGRpzBOnWuV4QQOLuJwx6mWSMmyHKvK87arCLYiaBNXRwUV0kcpYjjBM9zs/uhMXju/I/0Rq1G2OqSOCVMktIJAqRICKWmW/Ko1+vFhGwXojtPS5X5tg/KAQccMO33kZERSqUSmzZtmrV927ZtO3eyZfKoRz1q1rZHP/rRdLtdHnjggWn1NJY//vGPAJxwwglzHnO1JK5XivWZ07JKeJ7Hli1bdil9esiWf9rtNp1OhyiK8kJNWFo0LAiCWd1UgyDIiz6tA28fLv15wZZ+x3q+gtKdoVwu510hhRCkaUqpVMqdc3tOrTVKKSqVShFxXyVSA4kRuMJMRZUNEkNspo9Bq/wzM+d95gqR1prJyUmiKMprFpIkodFoDM2pcF2XRqORr+SMjIwsunLlOE6e225rT6y9kHWz7BlBiiA1KQJD3WGgDp0FwydMDRORyWUvwySThawvd1limfR6Pbrdbn5/tXUTg+ArwVi1zHinRyeKQQhGfI9GZf57X7VayXLl2x3Gm53/z967xMiyZXf5337EKzMrq+rcvu524//EAg/abgk3E/uPLbAMmAkMLAYt20g2PbCEZFmeWLJAQh5gWfIAISEQCItGCAnEyEKMMBJi4gEW9oSJ1Qwwgm735d57qipfEbEfDHbuOFl16pFZlVWVVWd90lGdyqqK2BkRGbH22r/1WzhtqMuSWe9xPkkT91HgLzwNoxuit5te35brJpE3TSzzPe+m+3N2oDsEclLxX/2rf3VtcH+oEu+beFmjFXDOsVqtaJoGpRRt2w4a8G0Cj02uK+j03nN+fj64uxhjODo6una7dV3Ttu0QxHjvaZpmr8F7WZZMp1MWi0XyD18/4HJWNmdpY4yDnlp4HHKWcNNdxRYFfadxricET9/3jIvL9l5KqWE15Da3mcVikRwx1lKWXOPQ9/2t5zUXbufrddebcO4JUBTFVn+b5WW5N0K+Ftu2ZT6fs4yGVdQo3zOxBpSiCxEJiw6DhUuBe7leBdExsvQwsvHBxX7bkmt3rLUURYH3nvl8Pnx/F0opTmtDY0e4kMZd29sTJ1prxuMRi8WCRVlQ1yMMka739FHTdD0Su78c/r+RGqQzmeMivf7U5OaWb9++vfT6//yf//POv71PYiZn0Tf5oz/6I0aj0Y31itnW/Hu+53v4S3/pL+28z0NDgvcXRp7p5ixzLv6bTCaXXHO2ITdoyhrfzYK7uq6H12azGScnJ+89GKy1HB8fD5r5pmn27q0O3KjjH4/HSbe5nlHvO+svvGPVdpzPZngfsAqaJtmGjqxiPprQrxZ4DGVZ8tHR+xO4qys8V/HeD+5GRVFcquG4jRAC5+fnQyG1Uoqjo6P3+jQ8hOuySzlTukld1zjnOVt5VOwoC0vTjEBD56ST5KGwbqA6oIEHKg12Jt+z8iTYGINzDu/9VsE7pOuxKXaTlMUYiUoRi5qSkLyDNHQh0EW5d74kjFL8/1/Qe3ebuQ85MP4v/+W/8Gf/7J8F0j39n/2zf3bn3+b76NXA/zZ+7/d+j//23/4bX/va1wD4X//rf/E7v/M7/NW/+ldvXCX4qZ/6KabTKb/xG7/BT/zET7z3Ofvkk08O3qhkEwneXxhX9bY5U1NV1XsBk3PpkXRTNjFLYjZtGIFLOnZrLV3XDRnTq1hrmUwm124/Z0MfM6jOwV2WWAj7p3OePzlf0EeLsRoTA36RioWnZYlRmtaM6dslX5o21Du4mGSy5aK1dpBAdV13Y/FRZrlcDpl5pRTOOebzOUVRPPiayw5KbduhtaKqqmHF6zq01kwmY5Y2teQsrUIpjXulNUMvlUrDhQMTI4rknlPp/RUT546f29z38v3xqjnAY5FXzYyJONej158ZpQ3lHie8wtNglHpQceq++MEf/EF+5Ed+hF/7tV/js88+482bN/ybf/NvtnomN03DV77yFf7tv/23/MAP/ABv3rzhh37oh26tPfyhH/ohfuqnfuqSVSRwqZHmVabTKf/kn/wT/ubf/Jt87Wtf4+tf/zoff/wxf/zHf8x/+A//gT//5/88/+gf/aPd3/wzIcH7CyPrh9u2vVREupmhzDaKueNoVVVMJpP3HiS5ODX7uOdA/qod5H38zefzOYvF4lJBqfAyOe8CXYCmSNdAj2FFsg2tqoqjQjE2gQ4/SBHuQ66r2CwezcXTV4uWs8zg7OzsklwmrybdNNnchc9nC94ue7SxWB/pZnOAW1e4tNYclYGzHlZ9ADwRzdiIO8uhMLIKT5LKQCpY3ZftZZ485sZ22liKqqIwhmrDfz27ZGWTgGzLu23W/b4YYxiPRlz4JW20eNdhCks5OmJUSjgg3J9//a//Nb/4i7/Ib/7mb3JycsI3vvENfuInfoK//Jf/8p1/+8//+T/nl37pl/iVX/kVuq7j7/29v3dr8P4X/sJf4Ed/9Ef59V//df74j/+Yr3zlK3zzm9+802LyZ37mZ/jyl7/Mb/7mb/Jbv/VbtG3Ln/pTf4of//Eff3G1j/JpfYHkosyc3bmaZVwsFoONJLwrTD06Orp2e5vFgaPRiPPz80vtsq8L/G8jW0jmbGj2xX6trkWvmRhTcx9DBNarPUTaqAabun2Qffy7rqNpGrz3jMfjayd9IQQuLi7o+x5rLYvFgtlsNjR9ygXMWY9+nyC+9YHPW48xqbGMi4qgIsWqvVOeVqmIWS2YdWkSXKqIGdXI7fYwUEoxLRRjGyEml8R9BO45aZJXjj6fLTjvIlXTU1jLF8YVJ+NUkJoTJ6vVO2emq5LDGCPe+zv7DtyGc463swUzF1HaMG1qpk3Nl63lbevxEYyxNDrSGJlcfsjkjqZX+eY3v8k3v/nN917/z//5P1/6/vu///v5j//xP773e1ev3eu29aM/+qP8/u///tZjAvjZn/1ZfvZnf/banwH8/M//PD//8z//3ut/8S/+xWu7vb405GnyAsmdUK8jhEDbtpcKAnNQtE02MuvYc2Z/V9944JL+GBiaO0nw/vJQKnUEtWVB37VJBhLBGr1XXXkOZhaLxeAoVNf1tZIZ7/0glck1D7lJV67VyBao1lqOjo52tptsfXrgWJWCu4LIKmo8d7sntG0L/ZKP6mqQ8iwWc5rm+vfzULJt6qH21DhUTLab2RM50K6qitmyZR4MhY2UCrRWfDJvqcuSunhnoXrTRDB3uM737cViMRRx7zKez84vOHPpM+z7nk9DoI1jaqtpKk2pFaWGuJatCYLwMpDg/ZVxXYvoXR/qWX5wXzZ94e+zf+GwmBQaFxp6bQnBUyrNR6MSew9t+20kzfj19RO3/c14PEZrnfzV1xPFHOTkguub7CY3OwRv2poppSisxfctADEmX/uyvH3C0nUdn3766dBIbDQaXaob2WfwHmNksVgym8+ZLxZcXFzca6Ii7I+sXXchgkorVlorSmPovaP3YQjeb2OxWLBarYYJcoyR2WzG6enp1kG2c45lH7BFRakAY5itev7vyvGmthilaD1MCwkEBOGlIZ/ZV0hd18zn8yFods4NAc5TkIP/1WqFMWbQc3Zd9yT7F/ZLbRRvKk1bpIC40oryGZfYjTEURTHIZkIIFEXB0dER8/n8UofUbOd4XTHgcrlkPk869hDC0CG1LMv0Hqsap8D3PW7dVr6piqHnwNVOrH3f893vfpf5fD5kYUMIQ9OnfWc2zxcr/u+sJeqS1o6Ytz1K3TxRER6X7P/fdV0K4L2ntGmVNBdkmy3vwc65oflerunIk8xtJ2dXkyYxQofGrm0yrVb0ITJ3kWOZ7wnCi0KC91fIaDRCaz0UrE4mkydtXGStZTqdDhaSxhiqqmKxWOx1P/lhluURwuNRmucN2DfJEpvNwsDciyAH4JmbHDxysJ6cN96tFOVajdIoTivNzDSEqqbQUOOZXZwPgVhd14zHY1wE5wNv355zMZthjRn6H2Qr1n1nxF2IfL7yoDSV1iyUojU1pmuZ7DnD/yESY6TrOvq+R+skEbvrmGb//+VyiTY9LY6AoXURD0ybmrrYLnjPvQ42x3PdquptWGupjOLCeZRRBBfw2jK2lvxR1io1FZPFUeGlICv5CYl4XilZM7wPslZ9l8z9VQvJbfXuudAwb+O6fWY96HK5HOzYNrvMCi+TrN3O5/S2QMUYw3Q6HX4//27TNJyfn9N13VC4el3BdXZX2nT3yL+fqY2iNmr43bOzGZDcm3Lw32FYqYLlYsHZ+ZJ25bBuRrGeTK5Wq8Ehap+4CAGw6+62hkgk4vcp4v6Amc/nw/0lxkjbtoPz0W1k6dcEmHrPeetxIVIYzXFt0VsG37mzdNsm2dY2DfCyUUDujj0ej3kznRAvFix8RBnNcVmRTWX6EFgFaMTeXRBeHBK8CzeSA5TsA19V1c7ymxwMbRO8O+c4Pz+/FLxPp9NLD0znHG/fvuXt27dDUFQURcp23VLIK7wjhDBovfOqyHM3t3LOcXFxMWTSc1b7rkzj1XGXZblVwXW+VrI+/rpgPpOD+lyInbPpHsW8C+i4wERPYzUzXaCUo1yvBmXHkMeQsRRliV/26xUoT987jkfPfy5fOrmL9aaLV9d1QzO8bSmM4aPR/VZAiqK4tgFeZrNGwxgzdMbOE9/8d9PplC+9OU73X6VAKc67yEUfWYZ1QTZwEeDUShMxQXgpSKQj3Eh28MjONcvlkhgj0+l0q7/PAVm2OtvUvOcH5KZN2mw2I4QwPKS6rhu6u8I7i8Cu6wZrwWxpeTVrKlxPjJHPzmcs2n5t++gZdR1HR0fPFvTllZTs1JHdNYwxNE2z8/aKorjTL1spxXg8ZjabDYG+tfbG/WVfeWMMWmv6vsehUZMRMQSsNVRVidGaqDXOpUlBnoDse6m30DAqLUvGuHaJV5aTpuJ4UksA9kBy0enm5+ExzuFd5NXL/PnI5zVb7+bJ5OYkY7PRXt/3eO+x1l6S/Exs8rg/tUn7HmNk3kPtI2OZ9wnCi0CC91dMlqBsNrHZhRwk5xt/VVW0bTsUU9217xy4F0WBc462bem6jrIsL/l056xWLmzN5EKvbHGZ30/eXn7A9n1/yRrz0MhykPt6ju+T82XPZ23A2gpQeBWJqyV13e/V+nEXclY7n3ut9eAac5/gfVtydjNfS1nffB3ee8qyHCaiKVPvKK0h+H5d27GWx8SexiTZQm5kte9r0yjFcQFWWXo7wXUrvjipKUTr/mByHUS+r+Qs96Gs6s1ms0u2kX3fX7on5zlGvk6vEpVCa4aGamqdffciJRaEF8Nh3I2EvZOz3tkZQynFdDrd2bP9KrvYlDnnhoAwP1hyR8Ec1MC7NvR5nPn1LDe4mgHLtoBt2+K9H3Smj92d8D60bTusKORCy4eeg/sSIsx8xBCpNECkWztQPCSrGGNktVqxXC65uLigaZqd3mM+75vFpU/RKh4YrqWsnb+JLBsDhmuuCpGyMMyoWS1Tcfi4tIReYdfuIEdHR0yn00fJ2lqtOC7TilOHxz6gu63wjvw5vbi4GFb2rspWnovNicRmHw3nHBerjuWiB6UpdOS0ub7IVgFqbX2q15+7QArgBUF4GUjw/kpZLpf0fT88cLLf9cnJydbZ37quubi4ABiazdR1vVUG6qaALH/NY1gul5eC8MVicamZ1PHx8bDNLJV5+/YtwJCFPzk5YTweH5xspu97zs/PB+vMrEs9OTl5lixeBJTSaCAEj9YGFQOeh60ILJfLYYKSHTpumig65+j7nhjjIG/Jsqlct5CvmccOlnK2PTc4ui3AznUVRVFQVdV61UhxXGrGpWVpNTE4ikmJ+fhkeA85677pHCIcPnlVJk/qrtqCPhebEsH8mQ0h0AdYqoIYHUTPKhg6U6W0+hUKnbrLzhxAJEYoFdT2+d+fIAjbIcH7K+WqtGWzUcwuwTswOBg0TXNna/hMlunkbq+5EHHTcm21Wg2uIMYYxuMxXdcNAVLuoJnJspnNjNNkMmEymRyk5j1LLPL7zedgG9nRY6CBqjCEusG3S5zz9BhOmvreqwG5u2mWV5VlmZrDLJfvbbPv+0FKlc9hDvLH4/EgVcjuQY+5khJjHBxFNt/HTQF8HuOmm8dkMkkSC6AalcD1x1CszV4mWT5zSCilGI1Gw6oApOvLK0Nd1akZE5G+9yx7j4/JDvIqY6sodLIcVUphwrrjrCAILwIJ3l8pxphLBaL31Vzf13IyS1nyCkAuBszFVdPpdOhEWZbl0IlysVgM0pqrwV+efORsfC6CzRn4Q+Tq8b5LnvGYKAXTQoEq6YwlxMDUak7rhwUomxOUtJ/rJ1Lz+Zyu64aiz/xarldomuZRNe6b5AlGvh5DCLx9+5au62ia5tp6kdFoRFVVQ1Y9a/U3348gPDbZHSoXrBpjaM8XpE+cAhRaBwJpte06lFJUBqq1FaqT+aUgvCgkeH+ljEajwdElL7Ve53f9mFhrOTo6At7ZTmbKshxafeeHUfbnrqpqsI08Pj7eKMS6LG3YlOYcItmnfrAWXBfvPudEo9CK0xJ8YQBDobavY7iO3CArO7Zka8SrQXguYM72lMCwsnKXvj3LWuDdhC27FG06bezC1d4Fm9KuTVej/LPc6Cx3DM4/z6tGh1pzIbxONu8jMUZGZce3F4GFMSliD4o34wJRwgjC60SC91dK9kjfzB4+V6HkTdR1zdHR0eAlnxuh5MBvtVoNWXtg0J1mf+OsIz60pe1MPge562dd13c2WnkKjFLsq1lqDmxzpjpnrq/KqzYlW/l8LhYLjo+Pbwzcs7Qlt5vPK0ebK0plWd7L5jI3gcpjypOD7JGdV4Ty9ZZXCIwxw+pQ/nnXdczn81vfiyA8FkopTD2icCu63oNS2LJiUhdbN4USBOFlIcH7KyYXSh4y4/F4cI4BLmVsrwZCOVP72WefDQWu0+n02YPh29hcfXit5G6ns9mM09PTS04Ymdxopu97Fr2nwxB0xaQYpULaa7a7XC5ZLBZDdj0XT+dgfbOF/a42l1nGlV2OcoOmzYZfV908kh2kGVYP8s+LohgKX7edSHrvB+3/dcdLELYlxEgXFV+YNKiYOu66qOgPc0FSEIQ9cNiRnfBBkDXP2Qe+KIohsNkMhrJfetM0gyTFe89yudy6kFZ4HPK5usmVI5/HohmzdFCEgCLS64LzPnJcXJ6s5Zb0OdvtI2BLlsslE9SwT2BYidl1vKPRaLCJzM4z2Yo0v5Yz75v1IlrrS+4xOXu/bQC+WbgLScP81JI24fWh2JCBXZES+hhx6zKUQiMZeUF44UjwLhwEWWIym80Gx5GrnuhZmtE0zaVAKRduCYdLWZY0TcOni46IptCKphlRFpqVh4nlkj53U4O+7D0zr1g6hdMlZ33kuFSomKKRfcimcv0EJDlX13WXNO/ZDQfS6lCWCOUxbht8526Z2Tc+T1JyQawgXCXEeGPhKaRAvDaRhYNCJ+vHPsJ0/bFY9Z5PZitcjGhtGVcFp5XGSF8AQXixSPAuHAzZWzlzXTC0WaCaG5YcquZdeEfWxre6pwuR0iTte4zxWskMpCD6088+420PAQWuoypKWh85bx0j5XduCJW5ahWZg2hgkGNlP/pcGJspioLpdDoE77n/wDbkCWiW+eRMv/jAC1fpfeCij/QBLih44yPNDfPDiVVApPUpAz+1MLIK5zx/cj6nc55SK0Lf8bY3EEe8qcUlSRBeKhK8CwfFbQ8Ta1P7+WzpByn4+eIXv/hUwxMegFKKcWVxPaBSRrEPUGquLaAtigKUQhlDpSKmHKG1xpQFVVlyUt1fL9513SWrSO/9Jf189pq/ifvWk+RgfXPSudm0TBBCCMzmCz5dOYLSNIWFGDnrwZhIeU3GXCvFtFBEmxIb+TPR9T2d89RFkWRqfcdiviD0PXZk71XsLQjC8yPBu/CiGLTTay10dgfZtWBReFpijPQxZQVHJtIGhYtQaTgq1LUBeIyR0hZM6lTErIIjRghRUZeWorg+6Oj7fmi4VBQFdV1fW0CbA2l4N2l87EZfxhiapmE+nw9NvPKkVBDyitDFYoXXNSWedrUkup4I9P764D3z3ucoRrRSBMC1Lc55lDEYBW3bDvJEQRBeFhK8Cy8K7z11fbkjaNu2OOckg3SghBg579OSfmSdJbRQGpVaytyQOddaY4ymxrHA4oIixMi41IxvMLDu+57z8/Oh2HS1WuG9ZzweX9pPdqvJv7dpFbkrm9vZZhUgF1xnqcxm12HhwyaEQNu2yYErKjSWECLe329SWRSWRi1Yes3KBzofCa5nFDtWiuGzIQjCy0KC93symUwGzW5ms5HMY5CzdFebFe1r25tf982+xp6b6GSuZkofY/yPedzz9je/bsNdko0vfelLl67P5zy/SxdYOqhNCtRdiJz38EYnz/mbxqS1HrLUVehRPlBXFW/GJVZd/15yxjps2H4AACAASURBVD1P7owxLJfLocFSpiiKwaI0W0U2TYMxZqdj5JxjNpsNjjS5C+vVY7P5Ne9/U0f/0M/EIV2fu16b99nHrhzaMbptOzFGDJEC6KJKq03aoEhOMbveJ07GDXq+pOuXqFXLSVMxqsphhSp3Cf5Qjv2h2ycLwjbIVXxPfviHf5jT09NrC83uY123Laenp4Nl4mNw6GPfbPCTtcObQdBjjf+xjzvsNvbT09Nbf/6Nb3wD4L3r8znO76qHGGBzz12Ark/ByG0URcFkMrnsiR4Dzl1/Hvq+x3t/6X1774fi001yBjxbPZ6enqZW8VsWj4YQOD8/v+T//vbtW6bT6bXdVg/9s3UX247/vtfmLvu4D891jO7qIHz1d7WxXCxbovZ4FD4E3hxPOTIBFRgsH2Nk6JFw2+aLouB0arAq8mmfOiEv2g4Vw7AClDtAPxYv6foUhJeABO/35A/+4A/46le/yscffzy8llvD3+R1/VBCCHz66ad89NFHe5eIvJSxZ3/35XI5ZEtHo9Hgx/0Y43/M4w73O/affPLJrT//7d/+bX76p396uD6f8/yWMdB5sOuq1BAjVkFhFfaKfteFSOsjASi1otQMWbttxl/X9SChUkoNBahlWV577nKQfZ9znDu/bjYWa9t2yDRmXspn6yZ2Hf+u1+Z99rErz3GMcmfefD3mvgK34WMkNlMCq/XkRnFaG2hn1NN33ZlbH5n5iI+p2HtaKIo7rB/r8RGxi/RoFNBYRRXdsCL1mo79bdx1fQrCS0CC93sym81wzl17s9hW+7orSqlhn4/VkfEljL2qqhulCY8x/qc47nk/227/ruzwd77znWuvz+c4v6NC08XI0udOqoojC4W5/CB3IfK2j7gIGsXCw5GFcaEu7ee28TdNQ4yR1Wo1dE2dTCZ3asrvc47z717NrN60jZfw2bprP9ts/77X5i772JWnPkbZz7/v+2F15+LiguPj42tXZTKtizgUJ+MGtXZk6jz0i/Nh232InDtQKAoNLsJZD29KbvRuDzGywFJVNcH1gGYZoCyqoVHZazn2dyG2rMJrQIJ3QRAeFaMUJyV0fp1114pCvatdyNm4z7vA2z41a7IqUhmYe0VtI9vm63JDpbquB4/2XQOGbWUO1lqKoqDrOqy1Q/bvPr7zwtOSO+ju0hl3F5L1aI8qKxwKYyOha+n7/tbg3QNavSvi1koRCZeaNLkIAajXgXqpYOWTm9NNU1QfIUQo6hGztscHD0phmmroKCwIwstBgndBEB4doxSNBbiclYS0kmLrEec9qAhGQx9SwFHpSIyKGzs53bS/e7i3eO8HDbvWmvF4fGuglW32FosFzrmhi6wUxB0uMUYWiwXL5XKQN2XzgX0SIsyjIXqFQoFSFFHT3BEkW5X+Nk8gXUhNzPTVHqs71n0qoIvQehhVBVqVzF1kGdOEWhCEl4U8ZQRBeDJijMxmM9q2HQLjxWIBwWBViVvH6YVmcKh5ii7uIQRWqxV1XQ9Z9PPzc46Pj28N7Iwx4pP9gmjblvl8PtRRzGYzlsslp6ene/Xa79EEU6CdoygMvQ8so+aj8vZ+FLVRdCGyCqBCaoxwZOFs43dKlYL81keMSpPcQt9e/J1Wu2BJ+v0+RCqdtuPjznNjQRCeGQneBUF4MmKMg3Qgy2WstSy7lnJUYiK0ISUWo0oNnPQtdpK7OHnchnOOEAJlWaKUwhhD27aDZll4HWTtdW6GFGOk6zqUUhwfH18qPn4IQSnGoxFutSAEj9UKWzeYO64lrRTHBYxCksZYBZrLwbvRiuMS5n3EkRqdTazC3PE5GNnk8mT1uwlyiOrgA/d9fcYF4TUhTyVBEJ6cq8F4aSBohV470Tig0TAy1z+0vfeDv3rWuWeteYzJrUaRgiFByOTA/aorkLWW5XJJVVV7cUQxaWfrBkjpenRRbVW7oZSi3FB9hfD+xLXQipNqt2t7ZDVdSA41ep1xH9nkVvN4JpH3J/dQ2FbGJggfEhK8C4LwZGitqeuaxWIxNG0JITCdjsEq5i5lHJt1NvG6jFt27sj+1Nlv/fj4GG0s532kW0sBRiYyvmE7m2QL0lx8mgOGxw4W8vtXSkmH4CegLEu6rqPrOoChVqEoimt7AdyXxib5SxtIJuwxyV+uWqM+JYVOheNLH4lrqU1zw+T4ufHec3FxMRSBO+cGtx7pRiwIErwLgvDEZF/+HEBNJpNBrlJtEUzkpktXJS5d19NZQxeg1GkScOFAq8jIqmGycF2QnCcVRVEMTZdGo9HOkpnWRxYuZVorDSN7sywhrx70fY9Sirquh2MjPA5FUTCdTnHODZ1367oe5FH7mkBplaQtXUjNlIxOfQuem0K/7wf/WJ1VH4JzDuccVVURIqAMq66j7npGjQTvgiDBuyAIT4pSitFoxGg02ut2A0kvX+m0D0OynGx9RPXLwWGkKArG4/F7GTxjDNPp9Fa/aB9T1lKr9yU5rY+87SJqrVOeOQhEJtfEGrlYMuv/swuK1npvumvheoqi4OOPPx4Kp/Nqy2Qy2evESStFLXHmg3ARZl7jgT4a6KGs4rOuYAjCISDBuyAILwpjzCBzyLIZpRRFUaDCu5bxkP7vnGO2mGGMGbL0McYhUL/KTQHcwoUUkMdU9De1UG50jZ312Y87SSaIMHfX6/ZDCEPgrpTCoeiVYbbqqepatPqPTLb5zBMlY4zIlg4Iay3GGM5aR9AWGwO1UShTMOvjznp/QXhtSPAuCMJBkAtNNTcH0PAu8Mqt57PEpSgsjYvMHakJFEmyoF2L0nqQwGTds/d+a1lMFyIXfSruy10t3/aRN+vCv4s+ctbBwoNRkdqklQA8nBbx2uY5uXhyFTTzqPDBYJSm6CLTUoptH5s84RMOj2TBOuXsfIkJHmM0dd2gjKKP4kAjCBK8C4Lw7LQ+cuGSE4ZZe1vfpn/PEperD/GJBUPyyS6AUaFoe+gfOL7eR/q1ZKYHCqPwATofmfmU6a9talMf1wlcRbK77H3SPF8df1VVXMwXLHSFjpGCyLhu0thdZFxIcCJ8uBSFZToZ42OkXK+KdCF520vgLnzoSPAuCMKz4kLkrE+dJEuVstpn66z2XdrWqw9xrRTjQjHe/J26puu6weM7F8Lt4lrRR5j1G41wfKTU4FGEmJrrQKSxqTts62FcJJ/ueMNbGI/HeDTLlae0iqoqsbYg+HiQ1n2C8NQcWcXbHlY+CdK0Sq8JwoeOBO+CIDwraRn8nX68WHeP7ON+blBlWXJ0dDQUrDZNs7OrSxciORFuVArOjUoFsZDkL0YrapMmIdMiFc72UaWA/xpDD6UU41HDyiZve7OW0US4VmYjCB8apVGcqrTClb+/6pYjCB8iErwLgvCspJz1ZTaLTvdBVVVUVXUvrWyMEYXiqIz0IRWsjm3Kwlc6OYqshmAevEqDd1ExsimI9zek0q1WHNmkp3cqyXJqk3zCBUG43t5SED50JHgXBOHJ6NcdHnN7dq1SZtrqlG036wJQqzckKntkM3CPMQXjEVC3eF0rpSh0pPWK0Tol3q0tKbXWTItIodJKQW0UpQKlk7/7NjH4yGqsXne+5N1xEQRBEITrkOBdEIQnYekC5y5JZCAFv9MyyUVOCpi7iIvp9YlVmEcMYEOMnPepsFVFIEJ/S/P6I6sIMdKux15omKx1NFlnfxPbNME5hAY+giAIwstAgndBEB4dHyMzl7Tc1iRtdxtg6SKTQmG14rh8ugB26SIrv27opBW9jyyx+BivDeHNurW8W8fh9pomTYIgCILwFEjwLgjCoxNiksPU66JUpRRaxSEY3n47EbeWuiTP9fsF0I7kXJFlNFYnX/Zwy3i0SpIYQXgoubGYWB4KgnAfJHgXBOHR0Sr9cyG1Ns8NmW6xcn+PEGHWp4x9/rOjIjKyu4vjDesmSmuyDl/UK8Jj4r1nsVjQ96nzQNM01HUtQbwgCDshwfsLoO975vM5fd+zWCxwzlGW5XMPSxC2xijFJLuqhAgRSg2jHVxVVh5WazcWpRQ+Ri4clDre6Qd/lcYq2hAH/+gYocI9qs5e+LCJMTKfz2nblqIoCCEwm81QSlHX9XMPTxCEF4QE7weOc47z83NijGitcc5xcXHB8fHx1q3dBeEQ2HRVUaTgfRfduI+pU2nOUhql6NcZ/F0xKmnYuwAhRLSC+21JELYjhEDXdZRlmWRjWhNjpOu6vQfvIYRBmrNLMzJBEF4GEv0dOM45vPfUdU2MkaIo8N7jnJPgXXhx7OqqEmPSxfuQmhf5AFHFIfOu4BaPmNsxStEYwChCkMBdeB10XcdsNhuu6dFoRNM0Is0RhFeERH+CIBwkMUbmLjJ3qVDVe1AKWkXyd4xwZNlZMiMIz4HWmqqqWK1WWGtT3UcIVFW1t31475nNZsQYKcuSEALz+RxjzF73IwjC8/JBBu//6T/9J/7hP/yH1/7sX/7Lf8np6ekTj+hmrLVoren7fpDNKKU+yKy7cw5ID0GtH6GDj3BQdAFm7p28povgVOpuarXCKPFHF14OSinG4zFKKbquQynFdDrde/DuvR+2qbVGKUXf9wcfvDvnWCwWhBCw1jIajeQ+Lwg38OFFgBv8zM/8DF/84hcvvTYej59pNNdjrWU6nTKbzYYA/ujo6IMK3kMILBYLVqvVIB2aTCYHeQyyrjXGiDFGCosfQBgcYBQQ19aOyR6y3sWmRhAOBK01k8mEGOOjyFjyNje3n+ulDhnvPefn54QQ0FqzXC7x3nN0dHTwYxeE5+Dwop8n5M/9uT/Hn/kzf+a5h3EnZVny5s0bnHMfpNPMarVisVgMhV5t23J+fs50Oj2oAD6EwNnZ2bBCoJSiaZqDmxC+FJRKfu4pEFl3ZlXvbCIFYRciqVkYMT57g63H0p9ba6nrmtVqNRTEWmsPPuvetu2lFQNjDF3X4b2X4F0QruFwIp9nYrFYUFXVi6jI/1BvYn3fX5IPrVYruq7DOcfJycnBTGaWyyV93w/OEXnFoKqqg5pkvBRKnWwhlx40qXB1bNLrgrALi95z5g0sPGUB00JTvcLVmyzNMcbgnENrTdM0L+L5tsnmqoEgCO/zQUcUf/fv/l2WyyXWWr72ta/xt/7W3+LLX/7ycw9LuIYQAt575vM5AEVRAAy2mYfwcLq6PJ3/L04m90MrxbSAyoD3kahgbKUrpbAbi1XHt88XtKsVq/mMZVEzLyu+UKtHvZ5CCMM94SmvWa01o9Hoyfa3D6y1yUFqnWl3zmGMOYj7uiAcIh9k8F5VFT/5kz/JV7/6VUajEd/61rf4nd/5HX71V3+Vf/AP/gEff/zxcw/xPZxzdF1H3/fPvpQYQqDv++HB9NiZ76Zp6Pue5XI53NSrqqKu62Fp9RBu8kqlzqFZb+q9H/ychfuh13aOUWucCxK4CzvhvedsPgcU1ho6XdD1PVYZlLYEkmPRPq+rGCPL5ZLVajUUX15Xo/NYuveXSFmWjMdjFoslC+dQyjAZj1Fy7xSEa3nxwXsIYdAY30VRFCil+LEf+zF+7Md+bHj9R37kR/ja177Gr/3ar/Hv/t2/42//7b/93t9++9vf5tvf/jYAn3zyyZAB3syqZuuv3BxjV7KmXWs9yEQgyUYuLi5wzrFarXj79u3emzRtO/YQAhcXF7Rti1IpazUaje7M9OTjdJ8sdH74vX37lhgjVVVRVVXyAHduGPdDjv0+xl5V1TDJyNm2pmnQWt/6tw+9bq4jr0zk/T7GPjZ5yPndhpc8/pc8dtj/+K9em4+xj4xzDu8cSld4DApFqSIxeAos8z5SqUjxQNeizfFnn3VrLdZa+r4fanS01vgYmbnkpqSBieVWCc9LO79X2Xb8ZVmypAAfUUoz8+DawLS4vZnbY49fEA6RFx+8//f//t/5O3/n72z1u//4H/9jvu/7vu/an33lK1/hB37gB/jDP/zDa3/+T//pP+XXf/3Xh++//vWvA/Cd73xnxxFfT9ZyA0ORUV3XaK1ZLBZ474eHwWeffcbZ2dmzLI12XUfbtoNdYwiBzz//nPF4vFWG+bvf/e69952lM2dnZ8O+lVLDhOex2Wbs+SGSs2r5wf3U/MIv/AKwv+tzW3Y5v+v604PiIddnJqt0n/q97WPsT8FTXpvee2aLJX0xolcl7WJJ9I7CtthuhkPT02PZn7Z6tVpdaqKXkwzz+RxtDHMsDo0lEFD8XxTjLcbwUs7vTdw1/h7FnIKCQPKXgrdoznGU0v1YEC7x4oP37/u+7+OXf/mXt/rdu/zbv/CFL/C///f/vvZnv/iLv8hf/+t/HUiZ99/93d8F4Etf+tLwO/kmnfV72+K95/PPPx+WVnP2JnfG++yzz4ZtfvbZZ7x582Z4P/sKWrcd+2w2o23bS1KZtm2ZTqe3ymdCCHz3u9/le77nex405vwQDCFgjGE0Gg0NT+5z7LdhX2O/ifuM/a7A51/8i3/BL/zCLwzX52MeH9jtGLkQmXnoAxhgUtzt135I47+NLkQu+mRzaVV6b1bxIsZ+E7se+12vzfvsY1tijMxmc97Ol3yy6LCjCY0u+cJ0hFIaH+FN+fBGX5vjn8/nl+6RMUa6ruPk5ISoDbqDSic3JYDWQ2PgqLh+DPc9vyHGZLeqUjfhbcb+nNfnykfKPhWpv3sNpgU0t6xM7Pv6FISXwIsP3k9PT/nJn/zJvWzrT/7kTzg+Pr72Z9/7vd/L937v9wLwf/7P/+H3fu/3gMsOMFkDvmuBUtaw5+VkY8wQkFprKYpiCFYzOQu/L7YduzFmcABQSg3Z702Zz208tMFSWZbXThLue+zvIjcOyf/yZGGfPMbY+74H3l2fj3V8rnLX+Q0xcuHBBbAafIRzB6elulW6cCjjvw0XIucOUOm9uQAXDk5KDn7st7HvY3/12nyMfWxuVzVjCAW2+5y6qiiLEr8OaI8LKO3Dj9nm+HONTu7L4b2naRqKosBFUCpZn+b3qVRE67vdxK47v33fD97om8Fr6yPn60mkUkmaM7rhfR7KZ6sgol0kkM5NWFvEWq3QB3BvEIRD4sUH7/fh7OzsvSD993//9/nWt77FX/trf+3Jx5MLHTcLL733g+XgeDzm/Pyc1Wo1PPgmk8m99hVCGJZ1tdbUdb1TMJofTG3bAu+cDV6jFWLW9+ei2Fwwe2j+8i8JF6CPDE2WjEoZt84/XHf8/r4iMxfxEQoNY6Mwj9iRtY8QgHq9D2PSe+vDB3qjPQC6AAuvmDQl/dJyMippIxxZRfNI10NRFEynU5bLJSEEyrJkNBqhlMIQKXUal9UpMw5Q3WMcOaGQkym5p4SP8LaPGJKW3q1Xg6yOT96ROE9icm3SrcG7VkxsqgfoiSjSpEOsYQXhfT7IZ8qv/uqv8v3f//386T/9pxmPx/yP//E/+N3f/V2+8IUv8Df+xt948vFYa9eV9ouh+LYoiqFhRVmWnJyc0HUdy+WS4+PjIUu/CyEE5vM5y+USY8wgz5lOp1u7tWitmU6nT+o281zkh06e4NR1PbwmwfsDeALrZh8ib/uID2mCsPTQh8hpeXvx24MRW+qDIgAoyDGr0WBDCtofcyJXFMW192i9zvZfuDSpUwqOC0W5o+d83/csFothxTOEwHK5pCgKoi2JEex6m1anAN4HUoXsFuzD5jJPLvLYZrPZULR7E+NCU5o0qdHrbsqCILzPBxmB/PiP/zj/9b/+V/7wD/+Qtm05PT3lr/yVv8LXv/71O3Xxj0XOXueK/LIsL93k8k26LMt7B47ee9q2paqq4Ya8Wq1o23an4let9cF37NsH11m5iWf7w7A6ZcFbH7H63bL+rsHLXXQxZfmHDH+MtCHp7KtHchUtVJoodCFiFPjw7v1G/zj7FG5HA8R3c6oYIaqtY9jHIQZGeKICaw3G7D6azeAa3kluvPeY9ePh0v1rh+rw3NE6SzUnk8nOyaIsN8xSHmstbdvSti1N09z6txKwC8LdfJDB+8/93M/xcz/3c4++n7uWCa/y2BnsbKm1GZDmFtrC++RJUtaV9n2flr4PwFP+pZIzj7M+0q+za1N7u979XlwJVtI1Hx81MW614riEeZ+6wZYaxoXCKNjOzFbYN0OXXgcdmjbAuHg+KUbXdVxcXAz9IMqy5OjoaOdahc0GcPkeHmPEGEOhU0FsG8CoiCdNILd5z33fM5vNhhos59y9GuHl8eSx5X4X3sssVhD2wQcZvD82zjlms9lwYx2PxwchLclFPVn2kYN5kYBcj7WW6XTK2dnZkOmaTqf3kiwJ77BacVKpR21SY3WK3d06C+5iyorbR07qlVpRXnlvMjl+PlQuSlWRFY6TAupn6tIbQmA2m6GUSvKWtQvNcrmkaZqhqZsx5s7xWWtpmoblcplWE2KkaWqKokidiUtYuJhWnzSMjBocZzYNB66S5ZD5mVAUBW3b7twIL/cAyWYM+VkjiQ9B2A8Ste2ZXOQI6Qbrvef8/JyTk5NnD5JzMJqLMGOMjEajg5hYHCplWXJ6ejrIq577HL4mHjOAKvS7DH+3DtynhXqwJeC2iOvF4aCUojaKikBlnjZwD+tAWa+dubz3g+QwZ6Pbth0KO5VSlGXJZDK5NRufm+N1qmDhI1opYmkH/0mj1HvWk9575vM5zrnh76/KH68em/tOPHMd13w+H+qEcnM9QRAejkQieyZX1WenGK31e007npOyLDk+Ph4yg5uNRITrySsWT9EIStgftVGUOiloNBJQC09HjJGFiyx8uv5KHRmbd9KRnIHOHcKLohiSKLkJ3l2OYgsPnS5o1o+VRQDt4rV+8SEEzs4vWDmPNgazTjLlVYBMWZYYY+i6bhhrURT3enY1TYO1dugMfh95kCAI1/P80aTw5BzCJEIQnoJHdZYRhBtY+siFS1pzBazWtjdNM2KxmA+uYlrroa9HnlwaYwZL4JuIMbLySQaW5TClTq9N7PtytLb3fN5FlK1gXWtShZau6y4F78YYptPpULBaliVN09w76FbGsgqahW1428NU7d8SVhA+RCSK2zPW2iFzkWUzuYGG8HTkjBa8c+oRBEF4ClqfpFo5sK5IbkdHTY21ZuizYa3l/Pz80spnLjy9k1SDvfF3NxvKzD14YKRSYN9HWETD5JoF1yyvfCghRs76SOdBkQrU33bJrvWp5GuC8FqRiHLPZB/0+Xw+BO7j8ViC9yckFwxvFl9JYyVBEJ6SeMP/r3aJbpqG2Ww2OLEope60U1RK0eiU3c+dnlxMTY02s+7OObquY7EK6Bjo+5RUwkdCjJSPqEHv19astYE5awecmF7bQ1NbQfigkWjmEbDWcnJysrNVpLAflsslXdcNfvbZnu34+FjOhyAIj05jFW0X6UPqFOoijGyqveh8pF2/XhlFXddorQepTFVVWzlajWxKvS/XrSeOTH4tkW0enXPEaPARNMnCMWrFpGooi6cNAVSUPmaCsA8keH9EJFC8m015y6a8yDlH27ZD5vxq06rb6PueoiiGDFRRFINXu5wTQfiw6Pue5XI5/BuNRvcuXs73q+xhflOQXRvFSQlzl3oLjA2MrWLlI+drOXsEFj5yUqp7ObEopRgXitEN1o+r1Wpwt7ERcNC6QN1MqI3mpEjOO49lVmB1+teG1Om2D4BKdQCCIDwMCd6FZyP7Hucg3RgzOBJcXFzQ9/3Q+rtpGsbj8VbBd/ay33R0yLZsgiB8OPR9z/n5OSEEQgjM53NijIzH450D+GwD3HXdEPROJpMbJS61UUOHX0ha9rlb9xtYa767EJn3kbK6vwb8pvex2ZDPKDi2sAieqYX6CWxTzdpj/6yNBDQKOC4eoSGbIHyASDQjPBuLxYLVakVZloO1Zg7m+76nrmvKsqSqKtq2HTL0dzEajYBkudZ1Hd77rQN/QRBeDzkxkC0Qy7JktVoRQth5W6vViq7rBs26tZbFYrF119Cw/rcZu2pSIeljUBTF0FwOwLuexmpGhd4qcI8x0vf9cA+91xi04rSECR1vyiQTEgTh4UjmXdiZEAJd1w3e9btIWjbx3l+ySCuKgtVqhTHm0vbUusHJtpRlycnJyaUHtzSiEoQPj83sMzBkzO8jFcnb2rR0zH09tloRJFk79gEqk4JjB4weKadQ1/Ul+aEx5s7mT5nNVVFIq5lHR0f3uo8qpaTPgiDsGQnehZ0IIXB2dnZvScsmWuvBUjNvO+ve8wNns8X2Ltu31oq7jCC8QLz3tG1LCAFjDFVV3XvVrCiKYVsxxsHX/D7by/e7zfvSLnI8pRTTAs76yCpEVEwOLGP7OEGtUmqQ9WSN/lYWlKRVhrZt18G6Ghy8Tk5OZAVTEA4AiW6Enei6bpC0QMoetW1LVVU7Z2WapqHrOlar1fBAaJpmeNisVqvhQXl0dCTBuCC8crKuvO/7IUve9z1HR0f3ytzWdY33fpC37JJ9vkpRVajOMWs7LBGjFePxGGPM1pl8u5aRuPWvW/W4jcQ2u2jvgnMOlGYeNF1UKFViXMuRl6J/QTgEJBoSdiJnwTMPcSuw1nJ8fHytvGUymVDX9aVsvCAIr5uu6+i67r3kQNM0t9oneu9ZLpdDofpoNMIYM2Sfq6qi67p793twIXLuFH05JugKR+SoMjTV5THFGPHe35rp1kpRHriCRCnNzCui0hQq4mNgiaWPirtNLAVBeGwkIhJ2whjz3tIx3N8W8zZ5iwTsgvBhcZ1G/a4EwWa2PuvQnXNMp9MheM51NPe9T81cxAUYWQ22pAuRJdCs74OwdpOZz1mtVsM+J5PJi6y3KesGvwoY1+LXp6MuG/obe7gKgvCUSHQk7ERZloxGo8GxQSklHWQFQdgLV+tfnHN36sr7vqfv+0s+6dmdaluN9124mOwWh3Gq9FqEIZztuo7lcjkU8OcmSScnJ3sbx1MQY6SNEKsxwfcUKjIqDUG/nPcgCK8dibiEndBaD8vQeWlYAndBEPZBURSMx2MWi8Vwf7lvcmCfzYcM0MV38+5jlQAAIABJREFUD0wfk+XjZh7aOXcpu58L73Ph7Uth5pIffaGhjQVBpfdv4mXfekEQng+JuoR7sU37bkEQhF1QSjEajSjLcmuHlCyJyZn27AKzz6TCpFC87ZJLDKSg/cSqSxKf7EaTuWoteRd5svGcloohRpYeSqOoLCxdZOmgC/ClRolPuyAcCBK8CwdN9pTvug6ttXi2CwdF3NA8bxJixK8Tv4bHaT//mtkl8LbWcnR0xHw+Hyxs9+1OlZsN9RGIYDXvdQoty3LwVc86/aZptsq6tz4yc5EQwarI0RN0QL2O9dtDARrF2CoqnSYhjQTugnAwSPD+yshtwB9SnHVILJdLFosFWmtijCyXS46PjyWAF56VECNzF2kDQKTWkcYojNa4EDnrI31IQVCpIyOJex6V3PE0T6Ye495ntbr1gWmMYTqd0nXdIJWp6/rOTHofIm/7iCZJcfqQvOBPy8e1kbwOTfKeXwUoiUTARcXRy1H9CMIHgQTvr4i2bZnNZsOD46U6HWRCCCyXS6y1Q/aq7/uhKEwQnouZiywcGJX0wZ8GGJnIceFxIQU81Tp+XIWUzSxFafaoHEKyIttU7kLnIzFCYXLnVlj5OHRifUqUUhwVQJ8mpgoYWxg9UiMpQRDuhwTvr4S+7zk/P8cYMyzfnp+fc3JysvPycc4cAYNzwnOQLSmv+spv6koF4anxMbLyUGpY+FS8WKj09cKBDzAp3mmXCxXp/TMPWngy/FoypUiuNNto2K/7jecKl41SHBcQ1mN46uy/IAh3I8H7KyH7redAvSgKuq7De79T8J59inPxVNaT3rWNrE13zmGt3UvQn51s+r4fCthCCEMDF0F4LpI2OGVHCw0hZokMnLv0fZYsB979X3jddCFy3oMHiFAbmBa3B8ClUSgf6ULEKHDra8ruKWfiQsTFJIkp9JaTCaUQpYwgHC4SvL8irlqj7Zqhds6xXC4pimIIvFerFW3b3hq8hxA4OzsbisVCCDRNw3g8flAAnwvPLi4uhtWAuq53XpYWhH2SdcFLn4L0SPo6MQCKxqZgKYQkhwAYSyT06gkRzvtU7lnrVLC68mnlZVzcHDAXWnFSwMW6YLUyMLHqvYDfez/cB621FEVxZyC+dIFzB0SICmp992RCEITDR4L3V0LuVJpdWbz3FEVxL0vHzYA7W6/dRs64X21pXlXVg7Xp1lqOj4+HichrKcQVXi5KqXUAlDKtKw9jnb73EU4K0FrRhogCKq3QovQ6eGKMlzpG73qf8TFJpuq1PlwphVZpIncXpVF8ZNTN7kXrLrKb9+LxeHxrIsPHyIVLHu3WbD+ZEATh8JHg/Z5MJpPB3SCT/7/P5iCbxBiHfV7dhzGGo6MjFosF3nuqqqJpmjtbi29uOzu6ZOlLCGHY1m3bcM5d+j7r0rNm/a6x34VS6pLd2nV//5jH/iFj33b7m1+34S4Z05e+9KVL1+dzXpv72v7m18fY/i7jV8CRVYx1Klxt17KZiYnURqFUCtrztv0Bjf0+29/8ehe7Xpv32ceu3HWMYoyDZBDe3U+3lRzGGN/JpGIYMtshpgncLu/r6u/mMfd9T9M0abshsFgsKMvyRitKHyIhRkqjgIhSoFWkjxzUsd/H9je/3oU0FRReA3IV35Mf/uEf5vT09L3AFbgzU/0QTk9Ph8D4Oq5mYq4b301orRmNRsznc9q2BRiy97dtRyl1qY25c264UW/+3V1j3wePdewPbeynp6e3/vwb3/gG8P75f85rcx8c4vhrDZtVGDcN8RDHvgvbjv++1+Yu+7gPtx2j5XLJfD6nLEuUUnRdx9nZGdPpdOumSUZBrQLzjjSTi2A0FAace9h5GY/H9H1/6Zg55+j7/sag1UcIPjVYyhOLLkBpwKn3xyPXpyC8HCR4vyd/8Ad/wFe/+lU+/vjj4bW87GqMeZQueSEEPv30Uz766KO9S0fy2EejEVVVDa2+rbV37ivr3Fer1aB7H4/HlwpLH3Psm+N/jGN/iGP/5JNPbv35b//2b/PTP/3Tw/X5kq9NeNnjf8ljh93Hv+u1eZ997MpdxyiEQFmWg8zQGEPXdVt3as3jPyo1VaHoQ/Jtr8zDmy2FEIaJRT4+zrkhsXJT5t0CUwIXPhVNxwi1hUmpMBvH+LmP/UPZ9/UpCC8BCd7vyWw2G7LNV9mlJfYubGa4H6uFtlLqUrY97++2ID4vMdd1Pchvrj7wnmLseT/73v4hjv2uFZXvfOc7116fL/nazPt5qeN/yWPP+9lm+/e9NnfZx67cdYyMMZfGne9jWuudxqO1plGKZi+jTuQVzaqqhgmFUmorWc+kNBR+bV2pkhuSueH9yPUpCC8HCd6Fa2nblouLC+BdVmo6nd6aOblPcawgCMJzU9c1XdcNwXEIgdFodGNW+6nJwfpm74tttduVkeJUQXhtSPAuvEcIgdlsNjwgsnvMYrFgMpk89/AEQRD2SlEUTKdT2rYlhEBRFAfXTyKvigqCIEjwLrxHdpnJD6/s9vKYBU2C8JyEtSNMiEmrLHx43NdaVxAE4amR4F24luwVn5eNQwh7WULuum74f/amF4TnZOECFx1cUFJ1cFJFyi2LDLPTx2NqeYXd8TGycEnrbRXU+nFsEAVBEJ4DiZyE97DWMhqNWCwWg+2jtfbBy8hd13F+fg68a4IynU4lgBeejc6ndvZGQ0GysTvrIm+qmwv7IGXo5y41vVFAYyIj+7gFecJ2+Bh52yU/cwOsIrQqdcK9iRgjfUiuLFqx9eTtKfExEkLyk5cOqYLwYSNRk3Ato9EIay3e+8Ft5iFBdm7tfXR0NCxNt23LarUSHb3wbPQhhXRWpSC80NAGcAFuW2iau8jMJfeOGOHCAUjnykOgC9AHqNeFmnbdWdRx/bmJMXLhUrMtWDfbspFxcTgCqhbNpy0oFTEKjgopRBWEDxkJ3oUbKctyb9uKMRJCuDQBEB29cBBsxEAxpu9vS2zmNvOD7Z4CQmQZYPzYYxXuJMZLp3S9GrI+sdfQBlg4qHT6XR/XEzMTKQ4gA9+GyBLLkQark4f8WR/5SIE5gPEJgvD0HE5qQXjVZJlM9tjN3VcPxYpN+DCpjMIqaD14FG2AWqVMvPB0xBhZOrjoA/M+4LdsdX8ddv1Uy9tw64ZJ+gbhzHrxZZA8ZbmUPxCZvFtLs3KivdCKEMEdyPgEQXh6JPMuPAlaa+q6xns/ZOEP0Y5N+LCwWnFSwAURRWRkUgfK2zTFSilqk7KzhVoHiBGOZB56L7JsZebTAykCqxA5KW+vO7iJUiuOinR+3FojPi3g8xuC95y8jjEmj/cYiRuvPzdaX9brvyuSfp7xCILw/EjwLjwZ1lpOTk4IIQyexY/RLlv48AgxOYtotXvAZ7XiuFAscRwVtwfumbFNUozWAyoF7iNJ19+LPsLCQ6mgMApQLH2k89Dc8oQKMbJ0kS6k895YNRSajqymMpGwvibULVnqUkNtWBcfR6KCkYVDKV8oNRiSVMvqdJ3X5nDGJwjC0yPBu/CkWGslYBf2Susj530K1JRKxYYj+7jXmFaKo0IxsWIV+VBiBOLlTLImBec36dRjjMz6yMInOUkISRt+WjLo1I1Sg9Qk3CLD0UpxXKSAOMS0vVIfzjk1SjGiZ2SSG87IpInKoYxPEISnR4J3QRBeLG5dvKdJ+nUfIxd9ylA+hd2fBFAPx6iUHXchPZBCTNnv24oxfYSlf1dkCmkSt/T3KzJNUqj7voPHx0BaFZLEhyAISMGqIAgvlC5EzvrA3MVBE5wlMy4837gyMcbkzf2A4ssPAasV00IRI6x88lufmBSY38Q6WX9p8qTu8HIXBEF4LUjmXRCEF0fr1414wtopJkSOSqi0Wgd1zzu+LkQu+oiLoGKkUTCRu+2N1EZxWoIyCqMU9o7suVFrT34fKXWSk4SYdPOCIAivHcm8C4Lw4pi55CIytoqRTYHbRR9Z+UChk2b5ufAxctalwsJyLQk5dymgF27GrDub3hW4Q9KpTwuF1akpk49wZN81ZhIEQXjNSC5IEIQXRYyRmF1ElGJikxtHF6ExMLFqa8eZGFP23ofIvtqFuZC0+M26aNYqaCP0PlIdsK76pVFoxZsyBe7qHi5DgiAILxUJ3oVXTwhJAC3FXq8DpRSFTh1NNRFF0k2PDRzvkHIPMXLeRVYRYoA5JW2INA+4TPoQOesC5w76EBgVqQlUBPShGIe/IpRS0lBLEIQPDgnehVdLCIHlcslqtSLGSFmWjEYjrJXL/qUzKRSxi6zWhamlhqMdo7iFS39facDAOcmppjJxK6/3q/iQ5DIuJAnIhYM+RhqTun6KL7cgCIKwDySKEV4tq9WK+Xw+NINarVYATKfTZx6Z8FCMUhyXMI75e3YOuPt1kK2UIsaIIenUc2OfXeli8hp3ce1dDsxdkvIcW7bScguCIAjCXYiOQHi1dF2HtRZjDEopqqqibVucc889NGEPJPlM+nefTLnRKVDPBFJLoPtKp2OMLBx4UhOdaZFWBKxKmXdBEARB2AeSeRc+KKSpjpAZGUUXIiufCmAdOhW/3vMayaqdGFn7uyc7Q0EQBEHYJ/JoEV4tdV0TQsA5h/eeruuoqko07wKQZCynpeK4SI41E3pGD6h+LLRiUqybBcUkyWmsZN0FQRCE/SJRjPBqqesagOVySYyRpmkYjUbPPKrXSYiRDp3a0xMpX4i+2yhFYyEExcUD+3MqpTgtNbqLpJ6vCp2bMx1Ax1dBEAThdfCqgvfPPvuMf//v/z1/9Ed/xLe+9S2WyyV//+//v/buP7aqu/7j+POc23tpbylwx/jN+DEGY4uAOJgRcHQwxBjxjxmUyAAZMzqzZInZXMKiIPh1GVn8yxAXqaALihrdQkaUCQJzDJzbANlgpKNUfg0KhQ5oS++P8/n+cXqvvbSF29J7ej/t65EQ6Oece8/7nr65ffdzP+d9/o9Jkya1uf/Ro0fZtGkTx48fJxqNMmvWLJYsWUJJSUnAkUu+FBcXZ4p4yQ//pkTQQJgrCXCThrKwIdoLp5yLQw5uxL8YFiAS8lsZJlW8i4hIF+lRP13PnDnDn//8Z2praxk9evRN962qquJHP/oRTU1NrFixgi996Uts376dF198MaBoRXqGhqR/g6QwKYqb2yJeS/pFfW8UCTmUhl1Kwy5hSz6BEBERe/Somfdx48axefNmysrK2Lt3Lx999FG7+77yyiv07duXn/3sZ5mlFIMHD+YXv/gFBw4cYOrUqUGFLWK1VPpup81fhxyHhOdfsGnz3eq95otO27t7pzEGD38GRBdCi4hIUHrUzHs0GqWsrOyW+zU0NHDw4EFmz56dtQb64YcfpqSkhLfeeiufYYr0KGHHb7mYnmdPeqa573q3hnVb4inDpbjhYpOhtslQn8he99KUMtQ2b78UN8S93vkpg4iIBK9HFe+5qq6uJpVKMX78+KzxcDjM2LFjqaqq6qbIROxTUuQQcSGOy/WU3+f8dloudreUMXya8NtHFoeczN1Sm1J+gZ70/rc9/YtLXdyQVAEvIiIB6JXF++XLlwGIxWKttsViMS5duhR0SCLWch2H/mHoS5L+Ybgj4lBi8cWqSY/mHu3+Lx/pX0LSxXmi+VOG9M2hwq6DZyDZwdrdM4aUMZheem2AiIh0TsGueU/3585FOBzu0JrTeDyeedyNIpFIZntLn3zyCZ988gkAFy5coL6+PhNnmjEGz/PwPC8va2DTx2p5zK5ic+yQ3/htjD2d2+mY8/39xRjCeEQcg4vB6+JZ6CDz0+AX455nMndb9Yzfu93zPIxnSHlgnP+9RuP5+3vtrY1vEbsxhvokNKb8XwL6hG7vkwrb8vPG3MzHMW5k2zlqyebYwf74RQpRwRbvH374Ic8//3xO+65fv56RI0fm/NyRSASARCLRals8Hs9sb+nll1/mJz/5SebrRYsWAXDu3Lmcj9tVampqAj9mV1HswVi+fDkQfH7adI7AL549HBwMLn78BmggxCVChDCY5u0eCa7gt2y/RphPcfxfVJr/TpHI6aPMJlwaKCKMhwNcwiVMiigpbqf0sOXcd1dugj3nqC02xw72xy9SSAq2eB85ciRPP/10Tvu2tfwll/3Ty2daunz5MnfccUer8e9+97t87WtfA/yZ9x07dgAwdOjQzD7GGJLJJEVFRXmbwaipqWHw4MG4btcuS7A5dshv/IUY+60Kn40bN7J8+fJMfur721rCM1xN+MtdjDE0flrLXYMGEgq5eMbQmPSXyIQcKAn5d2RNS3qG+pS/xKbIhdIbtt8s9ktxQ6mBcPNp8ozfF35gn87Nvhfaue9obnbmGB1VaOeoI2yOHQov/u74pVGkqxVs8R6LxZg7d25ennv06NGEQiEqKyuZNWtWZjyRSHDixAlmzpzZ6jHDhg1j2LBhAJw9e5Z9+/YBZL0ZGWNwXRfXdfP68V36GF3J5tghmPhtij39qVI6Xn1/s3nGcK354to+Ib+AvkSIJuPQ13VxgbJQ+4+PuBDJ8d3zxthDjufff7X5dTgYXBfc5jX0nWXLub8xN/NxjPbYco7aYnPsYH/8IoXE3qvKbkNpaSlTpkxhz549NDQ0ZMZ37dpFY2Njm8W7iNjBGENTytCQNFxPtX1BqGf8WfOI6xfRrgMhDIkArh0tKXJIGX/mP+kZmjwoDtnbnUdERIJVsDPvnfWHP/wBgJMnTwJ+QX7kyBEAvvnNb2b2W7JkCT/84Q9ZuXIl8+fPp7a2ltdee42pU6fywAMPBB+4iNw2YwxXk4aGFDjNXWGKQ9A/3MaNlBx/e3rUX9uef8UhhwER/860BugXgmiRCncREclNjyveN2/enPV1em06ZBfv48aNY+3atWzatImKigpKSkp45JFHWLp0aWCxikjXShhoSPoz6q7rd3a5nvIL+OIWy2DS69gbkhBy/O4x4I91hDGGxpShKdX8+CKHPu6t77haHHIotvn2syIi0m16XPG+devWnPe9//77WbduXR6jEZEgpTtUpteO+0W04cbOlY7jUFbkL5WJe1AUglISmd7uuWpIGq6mIIQ/i98UN/QP+0W8iIhIPvS44l1Eei/X8ZfBeMbgNvdUT4/fyHEcSsMOpfgdMRrp2IJ3Y/zlOUX8r9NMwvPHSvTOKiIieaIfMSLSY0Rch75FhmtJMM3FeLQI+uTh0vx0qd9yhYzTPG6MUecLERHJCxXvItKjlIZdwiF/qYyL3089H4W06ziEXX9Nvev6vyokjd/zXYW7iIjki4p3EelxIh1cu95ZZWF/rr2p+YLXaAhKtd5dRETySMW7iEgnhRyH/mFort1x0ay7iIjkl4p3EZHb4DgOHewwKSIi0mkq3kXESk0pw/XmHpDFrkMf9U0XEZFeQMW7iFinMWX4NG4yLSAbk4YBEXTjIxER6fHy0EBNRCR/jDHUJw1Fjn9hasR1CDlwLdmxPu0iIiI20sy7iFjHmOwbL7mOf3fV9vqrp4yhMWlIeFDkQrTIIaQLS0VExEKaeRcRqziOQ9iFRHOxbowhYSDSTj93zxiuxA31Sb8Pe30K6uKGlNFMvYiI2Ecz7yJinbKwA/H/9VcvdqFvuO2Z9IQHTZ5/l1XHcQgD11OGuAclahMjIiKWUfEuItYJOQ79I5Ay6a/b76+enl9vud1puUFERMQiKt5FxEqO45DLzUyLHHAcSHqGItch2dxeMqRFgyIiYiH9+BKRHq3IdRgQdjD4veE9oCzsd6oRERGxjWbeRaTH6xNyGOj6HWkcB3WaERERa6l4F5FewXUcNNkuIiK207IZERERERFLqHgXEREREbGEincREREREUuoeBcRERERsYSKdxERERERS6h4FxERERGxhIp3ERERERFLqHgXEREREbGEincREREREUvoDqud1LdvX4qKijDGZMbS/2451pWMMZljdvUxbI49/fwt/+7q5y602IuKbv5fd+jQoVn5qe/vrZ9f/7faf/6Wf99KR3OzM8foqEI7Rx19bltjTz9vIcV/q/wUsYGyuJOmTp1KLBYjmUy22pZKpfJ23Fgshud5eJ6Xl+e3OXbIX/yFFnssFrvp9hUrVgC0yk99f9un/1s3l2v8nc3NjhyjMwrpHHWUzbFDYcV/q/wUsYGK9046cOAAd911FwMGDMiMhUIh+vXrx5UrV/L6RpgPNscOdsffmdjr6upuur2iooI5c+Zk8tPm8wN2x29z7NDx+Duam505RqGxOX6bY4euz08RG6h474RoNEpTUxO/+93vAj3u1atXee+993jggQcoKysL9Ni3S7F3vXA4TDQabTUejUapra0NND8L9Rzlyub4CzH2QspNKMxzlCubY4fCjL+9/BSxhWPytdCth6urq6OhoSHQYx4+fJgvf/nL/O1vf2PSpEmBHvt2KfauF41Gs2YvWwo6Pwv1HOXK5vgLMfZCyk0ozHOUK5tjh8KM/2b5KWIDzbx30oABAwL/z3/u3DkABg0axPDhwwM99u1S7MEKOj9tPEct2Ry/bbHrvbNjbI4d7I9fpBCpVaSIiIiIiCVCq1evXt3dQUju+vbtS3l5ecGsHewIxd6z2X6ObI7f5tiDYvM5sjl2sD9+kUKjNe8iIiIiIpbQshkREREREUuoeBcRERERsYSKdxERERERS6hVpAUOHTrE7t27OXr0KBcvXiQWizF58mQWL17MHXfc0Wr/o0ePsmnTJo4fP040GmXWrFksWbKEkpKSwGNPJBJs3ryZ3bt3c+3aNcaMGcPixYuZOnVq4LG0p7Kykp07d3L48GFqamooKyvj3nvv5bHHHmPEiBFZ+546dYoNGzZw9OhRioqKmDZtGitWrKB///7dFH33sjk3QfnZ09mcnzbkJig/RbqDus1YYN26dZw+fZoZM2ZQXl7OwIED2blzJzt27KC8vDzrB0tVVRUrV66ktLSUhQsXMnz4cF5//XUqKyspLy8PPPaf//zn7Nixg/nz5zN79myqq6t59dVXmTx5MoMGDQo8nrb86le/4sCBA0yfPp25c+cyYsQI9u7dy7Zt23jwwQczPakvXrzIs88+S1NTEwsXLuSee+7hH//4B++88w6PPPIIoVCom19J8GzOTVB+9nQ256cNuQnKT5FuYaTgHT582KRSqVZjCxYsMK+88krW+OrVq82yZctMfX19Zmz79u1mwYIF5v333w8k3rRjx46ZBQsWmL/85S+ZsaamJvOd73zHPPvss4HGcjNHjhwx8Xg8a+zMmTPm0UcfNS+99FJmbP369ebrX/+6qampyYwdOHDALFiwwPz1r38NLN5CYmtuGqP87A1szU9bctMY5adId9Cadwt85jOfwXXdVmNlZWWcOnUqM9bQ0MDBgweZPXs20Wg0M/7www9TUlLCW2+9FVjMAHv37sV1XebPn58Zi0QizJs3j48++ogLFy4EGk977rvvPsLhcNbY8OHDGTVqFKdPn86Mvf3220yfPj1r1uuzn/1sZqapN7I1N0H52RvYmp+25CYoP0W6g4p3SzU2NtLY2Ei/fv0yY9XV1aRSKcaPH5+1bzgcZuzYsVRVVQUaY1VVFSNGjMj6YQgwYcIEAE6cOBFoPB1hjKGuri5zfmtra/n000+55557Wu07fvz4wM9tIbMhN0H52VvZkJ825yYoP0XyTcW7pbZu3UoymWTWrFmZscuXLwMQi8Va7R+Lxbh06VJg8aXjaS8WIPB4OmL37t3U1tZmzm861rYucovFYly9epVEIhFojIXKhtwE5WdvZUN+2pyboPwUyTd1mwmY53kkk8mc9g2HwziO02r8gw8+YMuWLcyaNYspU6ZkxuPxeOZxN4pEIpntQYnH4+3GAtDU1BRoPLk6ffo0L7/8MhMnTmTOnDnArc8t+K+nre226E25CcpP2/Sm/LQ1N6H35qdIkFS8B+zDDz/k+eefz2nf9evXM3LkyKyx06dP88ILLzBq1CieeuqprG3pN8G2ZjDi8Xhme1AikUi7sQD06dMn0HhycfnyZdasWUM0GuW5557LdEC41bmFwnw9HdGbchOUn7bpTflpY25C785PkSCpeA/YyJEjefrpp3Pa98aPTS9cuMCPf/xjotEoq1atarUeMr1/+iPgli5fvtzmR5b51N7Hzen4go7nVurr61m9ejX19fW88MILDBw4MLMtHWt7r6esrMz6WaPelJug/LRNb8pP23ITlJ8iQVLxHrBYLMbcuXM7/LgrV66watUqEokEP/3pT9t88x49ejShUIjKysqs9ZyJRIITJ04wc+bM24q9o+6++24OHz5MQ0ND1g/LY8eOATB27NhA47mZeDzO2rVrOXv2LGvXrmXUqFFZ2wcOHEj//v35+OOPWz22srKyoF5LZ/Wm3ATlp216U37alJug/BQJmi5YtcD169dZs2YNtbW1rFq1iuHDh7e5X2lpKVOmTGHPnj00NDRkxnft2kVjY2PgP4BmzJiB53ls3749M5ZIJNi5cycTJkwomBuNpFIp1q1bx7Fjx3juueeYOHFim/t94Qtf4N///ndWm7ZDhw5x5syZbik+C4GtuQnKz97A1vy0JTdB+SnSHXSHVQu8+OKL/Oc//6G8vJzi4mKqq6szf86fP5+1tvOuu+5i27ZtvPvuuxhj+Ne//sXmzZuZPHky3/rWtwKN+8477+TkyZNs27aNxsZGzp8/T0VFBadOneIHP/gBgwcPDjSe9lRUVLBr1y6mT5/OkCFDss5vdXV1ZlZozJgx7Nixg3/+8584jsOhQ4fYsGEDw4YN48knn+yVdwi0NTdB+dkb2JqftuQmKD9FuoNjjDHdHYTc3BNPPEFNTU2b2wYPHsyGDRuyxo4cOcKmTZuoqqqipKSEmTNnsnTp0lbrPIMQj8fZvHkzu3fv5tq1a4wZM4bFixfzuc99LvBY2rNy5Uo++OCDdrdv3bo18++TJ09SUVHBkSNHKCoqYtq0aTz++ONttnXrDWzOTVB+9nRWsUZWAAAEOUlEQVQ256cNuQnKT5HuoOJdRERERMQSWvMuIiIiImIJFe8iIiIiIpZQ8S4iIiIiYgkV7yIiIiIillDxLiIiIiJiCRXvIiIiIiKWUPEuIiIiImIJFe8iIiIiIpZQ8S4iIiIiYgkV7yJS0BzHyfrjui4DBgzgi1/8Ihs2bOBmN4nev38/TzzxBBMmTKCsrIzi4mLGjBnDN77xDV599VU8z8sphlQqxR//+EeeeeYZHnroIUpLS3Ech29/+9td9CpFRERy45ib/eQTEelmjuMAsGzZMsAvpI8fP87+/fsxxrBo0SJ+//vfZz0mkUjw5JNPUlFRAcC9997LfffdRyQS4cSJE7z33nt4nsecOXPYuXPnLWOoq6sjFou1Gl+2bBmbNm26zVcoIiKSu6LuDkBEJBc3Fsl///vf+cpXvsKWLVtYvHgxX/3qVzPbli5dypYtW5gwYQIbN25kxowZWY89e/Ysa9as4Y033sjp2OFwmCVLljBt2jSmT5/OsWPHWL58+W2/JhERkY5S8S4iVpo3bx5Llixh48aNvPbaa5ni/U9/+hNbtmxhyJAhvPnmmwwZMqTVY4cPH84vf/lL9u7dm9OxSktL+e1vf5v5+r///W/XvAgREZEO0pp3EbHW1KlTATh16lRm7KWXXgJg9erVbRbuLc2cOTN/wYmIiOSBincRsdbVq1cB6NOnDwAXL17knXfewXEcFi1a1J2hiYiI5IWKdxGxkjGG119/HYDJkycDcPDgQQDuvvtuBgwY0G2xiYiI5IuKdxGxSiqVorKykscff5x9+/bRp0+fzMWjtbW1AAwaNKg7QxQREckbXbAqIlZIt4xsqaysjN/85jeMGzeuGyISEREJnop3EbFCus+767r069ePSZMm8eijj2b1Xx84cCAAFy5c6JYYRURE8k3Fu4hYIZebIU2ZMgWAqqoq6urqtO5dRER6HK15F5EeY9CgQTz44IMYY9iyZUt3hyMiItLlVLyLSI/yzDPPAH6f95qampvu+/bbbwcRkoiISJdR8S4iPcrChQtZtGgR58+f56GHHmLfvn2t9jl37hxPPfUUjz32WDdEKCIi0nmOMcZ0dxAiIu1Jd5npyFtVIpHge9/7Hr/+9a8BmDhxIvfffz/hcJjq6mreffddUqkU8+bN44033sjpOb///e/z/vvvA35Lyo8//pg777wzq9PN/v37c45RRESkM1S8i0hB60zxnrZv3z42bNjAm2++ydmzZ0mlUgwdOpTPf/7zLF68mAULFrTZgrIt5eXl7Nmz56b76O1URETyTcW7iIiIiIgltOZdRERERMQSKt5FRERERCyh4l1ERERExBIq3kVERERELKHiXURERETEEireRUREREQsoeJdRERERMQSKt5FRERERCyh4l1ERERExBIq3kVERERELKHiXURERETEEireRUREREQs8f8RUyJJUuNTywAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_B = ggplot(all_data_df[all_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of partitions'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of partition 1 vs multiple partitions\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#b3e5fc']) \\\n", - " + geom_point(data=all_data_df[all_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_B)\n", - "ggsave(plot=panel_B, filename=pca_uncorrected_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting PCA of 1 partition vs 1 partitions...\n", - "Plotting PCA of 1 partition vs 5 partitions...\n", - "Plotting PCA of 1 partition vs 50 partitions...\n" - ] - } - ], - "source": [ - "lst_num_partitions = [lst_num_partitions[i] for i in pca_ind]\n", - "\n", - "all_corrected_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "partition_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_corrected_1_0.txt.xz\")\n", - "\n", - "partition_1 = pd.read_table(\n", - " partition_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "# Transpose data to df: sample x gene\n", - "partition_1 = partition_1.T\n", - "\n", - "for i in lst_num_partitions:\n", - " print('Plotting PCA of 1 partition vs {} partitions...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = partition_1.copy()\n", - " \n", - " # Match format of column names in before and after df\n", - " original_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_partitions'] = '1'\n", - " \n", - " # Get data with additional batch effects added and corrected\n", - " partition_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Partition_corrected_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " partition_other = pd.read_table(\n", - " partition_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " # Transpose data to df: sample x gene\n", - " partition_other = partition_other.T\n", - " \n", - " # Simulated data with i batch effects that are corrected\n", - " partition_data_df = partition_other\n", - " \n", - " # Add grouping column for plotting\n", - " partition_data_df['num_partitions'] = 'multiple'\n", - " \n", - " # Match format of column names in before and after df\n", - " partition_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, partition_data_df])\n", - " \n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space \n", - " combined_data_numeric_df = combined_data_df.drop(['num_partitions'], axis=1) \n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - " \n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_partitions'] = combined_data_df['num_partitions']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_corrected_data_df = pd.concat([all_corrected_data_df, combined_data_PCAencoded_df])" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_partitions_str = [str(i) for i in lst_num_partitions]\n", - "num_partitions_cat = pd.Categorical(all_corrected_data_df['num_partitions'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_corrected_data_df['comparison'], categories=lst_num_partitions_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_corrected_data_df = all_corrected_data_df.assign(num_partitions_cat = num_partitions_cat)\n", - "all_corrected_data_df = all_corrected_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "all_corrected_data_df.columns = ['PC1', 'PC2', 'num_partitions', 'comparison', 'No. of partitions', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu8AAAHoCAYAAAD5bgF0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XmUVNW5NvDnzDX2QNNMBpHIoCZEUVRARZyQKAgBNYRBEPV6jYnXm6gx4X5GkyxRlzcxxgx6NTiDQySKJnEIogmi4BBjEscIiDIL9FDTmfb3R3EOVd1VPVR3dXV1Pb+1XNI1nLPr1K6q9+zz7ndLQggBIiIiIiLq9eRSN4CIiIiIiDqGwTsRERERUZlg8E5EREREVCYYvBMRERERlQkG70REREREZYLBOxERERFRmWDwTkRERERUJhi8ExERERGVCQbvRERERERlgsF7HyJJUtZ/siyjpqYGJ510Eu6++260tZjuq6++iosvvhijRo1CNBpFIBDAIYccgvPPPx8rV66E67p5n7t+/Xp/nz/60Y+K8dLy2rVrFy644AIMHjwYiqJAkiTce++9PdqGYlq0aBEkScKaNWt65Hk94ZlnnsGSJUtw+umno6amBpIkYfLkyaVuVtnZtGlTQceu0OflI0kSDjnkkG7ZVl9wyCGHQJKkHnseEVUeBu990MKFC7Fw4ULMmzcPRxxxBNauXYtLLrkEc+fObfVYy7Jw8cUXY8KECbjnnnsgyzJOP/10zJgxAwMGDMDvfvc7zJo1C2eccUbe/T3wwAP+vx966KGivKZ8LrroIjzwwAMYMGAAvvGNb2DhwoUYMWJEj7ahKyrxh37evHm48cYb8ec//xkNDQ2lbk6fc++990KSJFx//fWlbkqf01tOmIiosqmlbgB1v5Yjz88//zzOOussrFixAvPmzcO0adP8+y644AKsWLECo0aNwrJlyzBx4sSs527duhU/+tGP8Nxzz+Xcl2VZWLFiBQBg0KBB+OCDD/Daa6/h+OOP794XlYNpmvjDH/6AQw45BG+99RZkue+diy5duhTXXnstDj744B55Xk+YPXs2Dj/8cIwbNw6WZWHKlCmlblJFOeigg/Duu+8iFAqVuil90p///GdYltVjzyOiysPgvQKcccYZWLBgAZYtW4bf//73fvD+2GOPYcWKFRg4cCBefvllDBw4sNVzhwwZgt/85jdYu3Ztzm3/6U9/wu7du3HCCSfgzDPPxHXXXYcHHnigR4L37du3w3EcDBs2rE8G7gAwePBgDB48uMee1xPuuece/9+vvvpqCVtSmTRNw2GHHVbqZvRZhx56aI8+j4gqT9+MeKiVsWPHAgC2bNni33brrbcCAK6//vqcgXumE044IeftDz74IABg/vz5mD9/PgDgkUceKXgE6Q9/+APOOOMM1NbWIhAIYPTo0bj22muxb9++rMcdcsghGDZsGADgpZde8nPuO5J7e/311/u58a+99hrOPPNM1NTUoKqqCmeccUbOgFIIgeXLl2POnDkYNWoUwuEwotEojjvuOPzqV7/KOScgcz/r16/HtGnTUFdXB0mScNttt0GSJGzevBlA9nyFzNfQMnd9zZo1BT0v05YtW3DppZdi2LBhMAwDAwYMwKxZs7Bhw4ZWj8283J9IJHDttdf6zxsxYgRuvvnmNudSFNMVV1wBSZLw61//Ou9jjjnmGEiShL///e/+bf/4xz8wf/58fPGLX0QgEEB9fT2OOuooXHnlldi2bVuH9p15fF944QVMmjQJ0WgUAwYMwCWXXOKnA+3cuROXXnopDjroIAQCARx33HE535PMvpJLR9OkJk+ejAsvvBAAcMMNN2T1D2/b+VI4MtNt3n//fcyePRt1dXUIh8M44YQT8Ic//KFDxybTu+++i0WLFmHo0KEwDAMDBw7EnDlz8M9//rNT25k8eTIkScKmTZvw4IMP4phjjkEoFMKAAQOwcOFCfPbZZ62es2/fPvziF7/AmWee6ffZuro6TJ06Fc8//3y7+3n44Ycxfvx4RKNR1NTU4Prrr8fw4cMBZH/nSJKERYsW+dto+V4V+rxM69atw4wZM1BfXw/DMHDIIYfgm9/8JrZu3drqsZnv4yeffIK5c+eivr4ewWAQ48aNw6pVq3Lu45VXXsHMmTP9YzVo0CAcd9xxuPbaa9Hc3JzzOURUGgzeK0RTUxMAwDAMAMDu3bv9iaZz5swpaJsNDQ146qmnoOs6zj//fAwfPhwTJ07E7t278ac//anT21u6dCnOPvtsrFmzBscccwxmzpyJeDyOm2++Gccffzx27NjhP/bcc8/F7NmzAQADBw708/zPPffcDu/vlVdewaRJk/Dpp5/iq1/9KkaPHo0XXngBJ598cqs0oVQqhblz5+KFF17AoEGDMH36dIwfPx7//Oc/cfnll2Px4sV59/Pyyy/jxBNPxKZNmzBlyhRMmjQJp556KhYuXIhwOAzgwDyF9l7DoEGDCnqe55133sHRRx+Nu+66C8FgELNmzcLIkSOxcuVKTJw4EY899ljO55mmiSlTpuD//u//MG7cOJxyyin47LPPcO211+L//b//1+5+i2HevHkAgIcffjjn/e+99x7efPNNjBkzBl/5ylcAAG+88QaOPfZYPPTQQ4hGo5gxYwbGjx8Py7Lw85//HO+//36n2rBy5UpMnToVQghMnToVhmHg7rvvxowZM7B7925MmDABzz77LE466SQcddRR2LBhA6ZOnYp33nmnay8+j6lTp/on2kceeWRW/+joXJB///vfOP744/HWW29hypQpGDduHNatW4dp06Zh2bJlHW7L73//e4wdOxb33Xcf+vfvj3POOQfDhw/Ho48+iuOOOw4vv/xyp1/frbfeigsuuACRSAQzZsxAOBzG/fffj/Hjx+PTTz/Neuyrr76KK664Ah988AFGjx6Nr33taxg9ejSee+45nHnmmfjtb3+bdz9Lly7FggULoOs6pk2bhi9/+cs46qijcn7nLFy4ECeeeGLebRX6PM+DDz6Ik046CU899RRGjx6NWbNmwTAM/PrXv8bRRx+N9957L+fzNm3ahGOPPRbr16/HaaedhrFjx+KNN97AzJkzW32/rVq1yt/H4MGDMWvWLIwdOxZ79uzBzTffjN27d7fbTiLqQYL6DAAi11vquq6YMGGCACCWLFkihBDi+eefFwDEoYceWvD+7r77bgFAzJgxw7/tV7/6lQAgzjvvvE5ta/369UKWZRGJRMSrr77q355MJsV5550nAIjZs2dnPWfjxo0CgDj55JM7ta8f/vCH/rFasmSJcF23VfsHDx4s4vG4f7tlWWLlypXCNM2sbe3cuVOMGzdOABAvvfRS3v3cfPPNOdsybNiwnO+ZZ+HChQKAePHFF7v8PNd1xZgxYwQAcc0112S97scff9w//lu3bvVv946xd5wbGhr8+zZs2CAURRGhUEg0NTXlbUtb1q1bV9B76BkxYoSQJEls3ry51X3/8z//IwCIm266yb/tggsuEADErbfe2urx7777btZrb4t3fGVZFk8//bR/e2Njo/jyl78sAIgjjjhCzJ8/P6vPeG264IILsrbn9ZVly5bl3F+u9ztf/1+2bJkAIH74wx/m3FZ7z/PaZ1mWf9+qVav89/rTTz/Neh4AMWzYsFb7CIfDIhKJiOeffz7rvj/+8Y9C0zQxdOhQkUqlcraxpZNPPlkAEKqqimeeeca/3TRNMW/evFbfQ0II8fHHH4t169a12tabb74pampqRFVVVat+6+0nEAiINWvWtHpuR75zOvNetfe8Tz75RASDQaEoinjyySf92x3HEVdeeaUAIMaNG5f1nMz38bvf/a5wHMe/72c/+5kAIE466aSs50yaNEkAEI8//nirdq1fv140NjbmbTcR9TyOvPdhjuPgww8/xOLFi7Fu3ToYhuFfUv/8888BAPX19QVv36sy46XLAMD5558PTdOwatWqTlUSueOOO+C6Lr797W9n5csbhoE77rgDwWAQK1euzEr76aphw4b56Qqeyy67DMcffzy2bduG3/3ud/7tqqpi5syZ0DQtaxv19fVYunQpAODJJ5/MuZ8xY8bg6quv7rZ2F2rNmjV45513cPDBB+MnP/lJ1uuePXs2Zs6ciebm5pwjkrIs484770RVVZV/27hx4/DVr34V8Xgcr7/+eo+8hpbmzZsHIUTO0feHH34YkiRlVVnatWsXAOD0009v9fjDDjus0/ME5s6di7PPPtv/OxqN4pJLLgEAfPrpp7j99tuz+sxVV10FSZLw0ksvdWo/PSkSieC2226Dqh6YEjVt2jSce+65iMfjHRp9v+222xCLxbB06dJWx3rq1Km47LLLsGXLFjzzzDOdatv555+Ps846y/9b0zT8/Oc/RygUwlNPPZX1/TB8+HCMHz++1TbGjh2Lyy+/HI2NjXjxxRdz7ueiiy7CySef3Km2FcPdd9+NRCKB888/H+ecc45/uyzLuOmmmzBkyBC8/vrrOeckDR8+HDfeeGPWfKBvfetbqK2txauvvgrTNP3b2/pcHHvssYhGo935soioixi890FePqWqqhg1ahTuvfdeRKNRLF++vNsmRX3yySd4+eWXUVNTg+nTp/u319XV4ayzzkIymcybgpHLX/7yFwAHUiEyDRgwAFOmTIHrunknzhZi9uzZWQGK5xvf+EZWmzL97W9/wy233ILLL78cF154IRYtWuTnXH/44Yc59zNt2rReUdbRez3eCVZLCxYsyHpcpmHDhmH06NGtbh81ahQAdDhXvLvlS51Zt24dPv74Y0yaNAlDhw71bz/mmGMAAJdffjnWrFkD27a7tP9clXK++MUvAkif3NTW1mbdV11djX79+pXseHXElClTWrUbaPtz0ZKXljFr1qyc95900kkA0mtEdEauFL+6ujpMmTIFQgj89a9/zbrPcRw899xzuP7663HppZdi0aJFWLRokR+05/vMZgbKpdTW96JhGDjvvPOyHpdp8uTJ0HU96zZVVTF8+HBYluUP4AAHPhcLFizAhg0b2lzXg4hKj9Vm+qCFCxcCSI/OVFVVYcyYMZg1a1bWD3JdXR2AAyMunfXQQw9BCIFzzz3Xz6P3zJ8/H08++SQefPBBXHzxxR3anjfxKt+EU+/2XBPTCuVNeM23r8zJYKZpYtGiRVi+fHne7XnzClrqLeUau3KMv/CFL+R8jjcil0qlut7AAowcORLHHnssNmzYgHfeeQdjxowBcGC9gZZBz9VXX42//vWvWLNmDU455RREIhFMmDABZ599NhYtWoTq6upO7f+ggw5qdVskEsl7n3d/ZuDU23Tmc5HPpk2bAOQ/Bp7O5lJ3pm2ffvoppk2bhrfffjvv9viZTbvxxhvxzjvvYNWqVVi1ahVqa2tx4okn4pxzzsH8+fMRCAS68CqIqLsxeO+DOrLC6JFHHgkA+Pjjj7Fv3z7U1NR0ah9eysyaNWtaTbryLse+/PLL2Lx5c94f3M4o9cj1T3/6UyxfvhxjxozBLbfcgqOPPhq1tbXQNM2fECfyVF0plx++to5xby7FOX/+fGzYsAEPP/wwli5dCtu28eijj8IwjFaTeKuqqrB69WqsXbsWq1atwpo1a7B69Wo8//zzWLp0Kf7yl79g5MiRHd53W8elO49ZuY2Eeu31BhLyKWZJ2Ysvvhhvv/02Zs+ejWuuuQajR49GNBqFLMu46667cOmll/Izu9/QoUPx+uuvY/Xq1Xj66afx0ksv+YH8LbfcgnXr1vkDPkRUegzeK1R9fT2OO+44rF+/HitWrMB//ud/dvi5b7zxBt59910AwEcffYSPPvoo5+OEEHjooYfwgx/8oN1tDhkyBBs3bsTmzZtxxBFHtLq/oyN5neGVW8x3+5AhQ/zbVq5cCQBYvnw5vvSlL2U9/uOPP+62NhWT93ryve5iHOOe8PWvfx3f+c53sHz5ctx444147rnnsGvXLnzta1/Lmf4hSRJOPPFE/6Rz586duPLKK7F8+XIsWbIEjz76aE+/BD+9IVdJPsdxsH379h5rS2c+F/l84QtfwL///W/87//+b7cGfZs3b/YrB7XVtlgshueffx4DBw7EI488AkVRsh5fTp/Z999/H5s3b271vQN072dWVVVMmTLFTwXbvHkzFi9ejNWrV+Pmm2/GLbfc0uV9EFH36L3DaVR0V111FYB0HeKdO3e2+dhXXnnF/7dX2/2qq66CECLnf14ta++x7fFyYHOlpezatQvPPvssJEnKW2++EE888QQcx2l1u7dibOYVhb179wLIfSm6K8GeF7R1Nve6kOd5x/ixxx7L+bq998p7XLkYOHAgTj/9dGzevBlr167NmzKTz4ABA3D99dcDSNeALwVvouwHH3zQ6r4XX3yxU+smFNqnPM8991yrdRWA3J+LfM444wwAB056u0uuz9qePXvw3HPPZX0/NDQ0wHVdDB48uFXgbllWwe3qyc8r0Pb3omma/ryiYnxmhw0bhu9973sASve5IKLcGLxXsPPOOw9z5szBjh07MGnSJKxbt67VY7Zv345vfetbfkUZx3H8HxJvAlsuJ510kr8M+xtvvNFuWy6//HLIsozbb789q3KJaZr49re/jUQigVmzZmVNPuyqTZs24YYbbsi67a677sK6deswcOBAvzYzcGBi5m9+85usxz/++OO4//77C26DN1LY2frihTxv8uTJGDNmDDZt2oTrrrsuK2Vg5cqVeOKJJxCJRNqsWd9bef3zrrvuwpNPPonq6mp/JeFMv/nNb7Bx48ZWt3sLEHVn/+qMSZMmAUifQHmjqQCwceNGXHHFFZ3aVqF9ytPc3IzvfOc7WYHmH//4Rzz66KMIBoN+xaq2fPe730UwGMRVV12FJ554otX9qVQKjz/+eKva7O155JFH8Oyzz/p/27aN//7v/0YsFsO0adP8XPUBAwaguroa//jHP7ImuTuOg+9973s5T5I6on///tA0Df/+979zngB39/MuuugiBINBrFixIqsyj+u6+MEPfoDPPvsMxxxzTJcHNX72s5/lvLpT6s8FEeXGtJkKd//99yMUCuG3v/0tJk6ciMMOOwxHHHEENE3Dpk2b8Prrr8NxHH8k7bnnnsOOHTswatQoHH300Xm3K8syvv71r+OnP/0pHnjgAb+aQT7HHXccfvzjH2PJkiWYMGECJk+ejP79+2Pt2rXYsmULRo4ciV/+8pfd+tovueQS3HTTTXjiiSfwla98BR999BE2bNgATdNw7733IhQK+Y+95ppr8Kc//QnXXnstHnvsMYwaNQoffvghXn/9dVx11VX+arWddc455+Cll17CaaedhlNOOQXhcBj9+/fHTTfd1O3PkyQJDz30EE455RTceOONWLlyJY466ih88sknWLt2LVRVxT333NPpcomd9eMf/9gPRLw0kTfffDOrrN/KlSs71Y6ZM2ciFAr5czEuuuiiVhOpgXTwftlll+GII47A4YcfDlVV8d577+Htt99GIBDAdddd15WXVrBDDz0UF1xwAe6//34cddRRmDRpEuLxOF599VWcddZZiMfjedNZWho/fjwGDBiAxx9/HJMnT8YXv/hFyLKMxYsXY+LEie0+f968eXjiiSewZs0av2zqyy+/DCEEbr/99rwTITONGDECy5cvx9y5czF79myMGDEChx9+OMLhMD777DO8+eabiMVieOuttzq0Pc9//Md/4Ktf/SomTZqEwYMH47XXXsPGjRsxZMgQ3HHHHf7jVFXFNddcgyVLluDkk0/Gqaeein79+uG1117Djh07cPnllxf0faLrOqZOnYpVq1bhyCOPxNFHHw1d13HCCSe0eVJT6PMOPvhg3HnnnVi0aBGmT5+OE044AUOHDsWbb76J999/HwMHDuzw1c223HDDDbjqqqtw5JFHYuTIkRBC4O2338YHH3yAfv36+VdpiaiXKEFteSoS5FmkqSNeeeUVsXjxYjFixAgRCoWEYRhi2LBh4vzzzxdPPvmkv6DPN77xjTYXgMm0YcMGAUAMGDAga8GXtjz99NPitNNOE9XV1ULXdTFixAhxzTXXiD179rR6bFcXaVq2bJl45ZVXxGmnnSai0aiIRCLitNNOE2vXrs35vHXr1olTTz1V1NbWimg0KiZOnCh+97vf5W1HewvvCJFe/Ol//ud/xKGHHio0TWu14E2+RZoKfZ4QQmzevFlccsklYujQoULTNNG/f38xc+ZM8dprr7V6bHvHuCOvsSWvbW39t3Hjxg5vz+P1TQBi9erVOR/z1FNPicWLF4svfelLoqamRoRCITFq1Chx8cUXi/fee6/TryHX8X3xxRcFALFw4cKcz823wFYqlRLXXnutGDp0qNB1XRx66KHiJz/5ibBtu9ML/2zYsEGcccYZorq6WkiSlPUedWRxp3/9619ixowZora2VgSDQTFhwgSxatWqnK+nZd/L9NFHH4lvfvObYuTIkSIQCIhoNCpGjx4t5syZIx599NFOL9K0ceNGsWzZMnHUUUeJQCAg6urqxIIFC8SWLVtyPu++++4TY8eOFaFQSNTV1YkZM2aIt99+O+9CVpn7yWfHjh1iwYIFYtCgQUJRlFbvdb73t9DnCSHE2rVrxfTp00VdXZ3QNE0cfPDB4rLLLmu1YJYQ7S/Sles13n///WLu3Lli9OjRIhqNimg0Ko444gjxne98J+c+iKi0JCHyTLcn6qOuv/563HDDDVi2bBkWLVpU6uYQ9Qr33nsvLrzwQvzwhz/05wD0FpMnT8ZLL72EjRs35i2bSERUKZjzTkRERERUJhi8ExERERGVCQbvRERERERlgjnvRERERERlgiPvRERERERlgsE7EREREVGZYPBORERERFQmGLwTEREREZUJBu9ERERERGWCwTsRERERUZlQS92AcrVv3z7E4/FSN4MqWCgUQk1NTc772D+plNg3qTdrq38SlQMG7wXYt28f7rjjDti2XeqmUAVTVRXf+ta3Wv0IsX9SqbFvUm+Wr38SlQsG7wWIx+OwbRtjx45FJBIpdXOoAjU3N+Ott95CPB5v9QPE/kmlxL5JvVlb/ZOoXDB474JIJMIPP/Va7J/UW7FvEhEVjhNWiYiIiIjKBIN3IiIiIqIywbQZ6lFPP/00Vq9ejU2bNmHChAm4+uqrS90kIgDAbbfdhpdffhmqeuBr8Ze//CXq6+tL2CqqVO31x127duEXv/gF3n33XVRXV+OCCy7ApEmTStVcIupBDN6pR/Xr1w/nn38+/va3v6GpqanUzSHKMmPGDCxcuLDUzSAC0HZ/vPXWW3HIIYdgyZIl+OCDD/CTn/wEw4YNw7Bhw3q4lUTU05g2Qz1q4sSJGD9+PKqqqkrdFCKisrR161Z88MEHWLBgAQzDwJgxY3Dcccdh9erVpW4aEfUAjrwTEe337LPP4tlnn0X//v0xffp0nHHGGaVuElWwfP1x8+bNqK+vzyq3OXz4cPz9738vVVOJqAcxeCciAjB9+nQsXrwY4XAY//znP3HzzTcjHA5j4sSJpW4aVaC2+mMymWxVJz8cDiORSJSotUTUk5g2Q0QE4NBDD0VVVRUURcFXvvIVnH322Vi7dm2pm0UVqq3+GAgEEIvFsh4fj8cRDAZL0VQi6mEM3omIcpAkCUKIUjeDCEB2fxw2bBh27dqF5uZm//6PP/6Yk1WJKgSDd+pRjuPANE24rgvXdWGaJmzbLnWziPDXv/4V8XgcruviX//6F5555hmMHz++1M2iCtVWfxwyZAhGjBiBBx98EKlUCv/4xz+wfv16nHrqqSVuNRH1BOa8U4965JFHsGLFCv/vtWvX4tRTT8WVV15ZwlYRpdcg+OUvfwnXddG/f3/Mnz+fdbOpZNrrj1dffTVuv/12zJs3DzU1NfjmN7/JkXeiCsHgnXrU3LlzMXfu3FI3g6iVm266qdRNIPK11x/r6+vx4x//uIdaQ0S9CdNmiIiIiIjKBIN3IiIiIqIyweCdiIiIiKhMMOe9CzLLdBH1pI70PfZPKgX2TerN2PeoL2DwXgCvtOFbb71V4pZQpctVZpP9k3oD9k3qzViimMoZg/cCqGr6sJ1yyimora3Nuk9RFESjUTQ1NcFxnFI0ryDl2O5ybDPQPe3eu3cvXnzxRb8vZsrXPyv5eJVCpba7kL7ZHfstFba7ZxWzfxKVC/beLhg5ciSGDBmSdZsQArZtY+jQoZAkqVv357outm/fjkGDBkGWu3e6Qjm2uxzbDHRPu7du3YoXX3yxzce07J+VfLzyYbtb62q7C+mb3bHftvTm49UWtru1nuifRL0dJ6wSEREREZUJBu9ERERERGWCwTsRERERUZlg8E5EREREVCYYvBMRERERlQkG70REREREZYLBOxERERFRmWDwTkRERERUJhi8ExERERGVCQbvRERERERlgsE7EREREVGZUEvdACIionLlui5M04Rt21AUBaqqQpY5LkZExcNvGCIiogIIIfzA3QviU6kUhBClbhoR9WEM3omIiArgOA4cx4GiKFAUBZqm+bcRERULg3ciIqICcZSdiHoag3ciIqICSJIEWZbhui6AdP67JEmQJKnELSOivozBOxERUQEURYGu6wAAy7Lgui4Mw4CiKCVuGRH1Zaw2Q0REVCBVVREIBKAoCmRZ5qg7ERUdR96JiIi6wEufYeBORD2BwTsRERERUZlg8E5EREREVCYYvBMRERERlQkG70REREREZaLPVZtJJBJYuXIl3n//fXz44Ydobm7Gf/3Xf+G0005r9dgtW7bg7rvvxrvvvgtVVTFu3DhcdNFFqK6uLkHLiYiIiIja1udG3hsbG7FixQp8+umnGD58eN7H7d69G9///vexbds2LFiwADNnzsTrr7+O6667DpZl9WCLiYiIiIg6ps+NvPfr1w/33Xcfamtr8eGHH+K73/1uzsc99thjSCaT+NnPfob6+noAwKhRo3Ddddfhz3/+M6ZOndqTzSYiIiIialefG3nXNA21tbXtPu6VV17Bscce6wfuAHDUUUfhoIMOwtq1a4vZRCLqxWxHoDnloCnpIGW7pW4OERFRlj438t4Rn3/+ORoaGjBixIhW940cORJvvPFGCVrVe7iui2QyCdvhmtfvAAAgAElEQVS2IcsyAoEAVLUiuwpVGNN2sa3RQspyIUkSJABDanSE9D43zkFERGWqIn+R9uzZAyCdYtNSbW0tmpqaKjbv3XVdxGIxNDc3w7IsJBIJNDY2wrbtUjeNqOj2xhxYtkBVUEU0oEBRJOxssuC6otRNIyIiAlChI++maQJIp9i0pOs6ACCVSmXdv23bNmzbtg0AsGvXLsRiMQDpYDeTEAKu68J13W5fKtvbV8t9dofMdicSCWiaBllOn9slEgkkEgmEw+GCtl2sdveFY12s5dS9vpvZfh6v1lq2O2k5UGTh/63JAgnThe24UNG5ffN455arbxZ7v+V6vNju1nri+5Oot6vI4N0L0HONrnuBvWEYWbffeeeduOGGG/y/58yZAwDYvn17sZqZ186dO4u2bdu2EY/Hs05cvNuampq6tO1itrtYyrHNAHDhhRcC6Pn+Wa7Hy2v3vpiDWEogvD9NJmkLSBIQsuVeGSiU4/EuVd8EyvN4AWw3EWWryODdS5fx0mcy7d27F9FotNWo/KWXXopzzjkHQHrk/YUXXgAADBo0KOtxQgjYtg1VVYsymrFz504MGDDAHxXvLl67ZVnG3r17IcsyNE2D67pIpVKoqqpCIBDoVe0u92PdlXa3F/gsW7YMF154YVb/rOTjlU/LdvezXWxvtJC0BCRICMkCQ6p1BAvIea/U411I3+yO/balNx+vtrDdrRW7fxKVg4oM3uvq6lBdXY2PPvqo1X0ffvhhzvrwgwcPxuDBgwEAW7duxbp16wCg1ReTEAKyLEOWizdS522/O3ntVlUVNTU1ft6/EAKRSASBQKDL++zudpf7sS5mu72rSplt5/HKz9t+QJfxhVoFyf1VZnRFgq4W9np4vHPL1Td7Yr/ePjt6vBzHgeM4AABFUaAoSs7H9bZ2dxTbTVS+KjJ4B4AJEyZg9erV2LVrl18u8u2338Znn33mj7BXKl3XUV1dDSEEJElipRmqKKoiIZInUKPKYNs2UqmU/7dlWTAMg9+FRNQr9MlvoqeffhqxWMxPi1m/fj12794NAJg2bRrC4TDOO+88rF27FkuWLME555yDRCKBlStXYtiwYTj99NNL2fxegT9SRFSpTNOEJEn+aLvjODBNk9+LRNQr9Mlvot///vdZE2XWrVvnp7lMnjwZ4XAY9fX1WLp0Ke655x7cd999UFUV48aNw+LFi3NWoSEior5PCOGnZngkSfJvZ6oGEZVanwze77777g497uCDD86qIENERJXNG3F3HMcP1F3XhaIonQ7chRD+NomIukufDN6JiIgKpes6UqlU1oRVr8RwRwghYJombNv25w1pmsYgnoi6BYN3IiKiDLIsIxAI+IsMdbayiRe4e6k33vohnTkBICLKh8E7dYjrukgmk7AsC4qiIBAIcPIWUQFc1/Vzp7u7jB51n8wJq52RuWZG5vtr2zaDdyLqFoy+qENisRgSiQQURYFlWUilUqiurmYAT9QJpmlmreys6zonyPdBTI8homJi5FVBbNtGPB6H67pQVRWhUKhDI3+2bSORSMAwDP9HKZVKIZlMIhKJFLvZRH2C4ziwLMsfkXVdF6ZpQpblgkZ4qXfycty9VBkg/d4bhlHCVhFRX8LgvULYto2Ghga/BFoymYTruohEIu0G8N5zMkeTvOCDiDrGqzzifd68z5B3O/Ud3tUU27YBgAs8EVG34rdJhfCCdW/0x6uG4DhOu8G7oiiQZRmWZUHTNAgh4DgOgsFgTzSdqE9i3fC+S5Ik6LrOHHciKgrOlqogmUFC5qIj7ZFlGdFoFJIkwTRNmKaJUCiEQCBQzOYS9SmZJ8G2bcO2baiqykmrRETUKRx5rxCapiGRSMB1XUiSlLMaQnvPr6mp8VNleAmYqHMkSUIgEIBlWXBdF7Iss/Y3ERF1GiOwCmEYBkKhkB/Aq6qKaDTaqSC8M8E+UV8lhIDjArIEyHLnAm8vnYKIiKhQDN4rSDgc9nPeGYgTdV7KdrGryULSElBkCf3CCqqD/BolIqKew1+dCsN0F6LCOK7AjkYLpiMQMmTYjsCOJhuqLCFssNQjERH1DA69EhF1gOkIJC2BiKFAliToqgxZAhImS6YSEVHPYfBORNQB6ez27ApNQgCcb0pERD2JORRERB1gqBKiARVNSQeGJsF2BGQJTJkhIqIexeCdiKgDJEnCgKgKXQbilouQrqAmpCCg8QImERH1HAbvREQdpMgS6qIa6krdECIiqlgM3qksuK4Lx3EghIAsy6yaQ0RERBWJERD1eq7rIhaLIZVK+SvERqNRv2Y9ERERUaVg8E69nmmaSCQSMAwDkiTBcRw0NTVBUThRkIiIiCoLZ1pRr2fbNmRZhrS/Jp+iKBBCwHVZX5uIiIgqC4N36vUURckK1L28d4kFtomIiKjCMG2Gej3DMJBMJpFMJiHLMlzXRTAYbBXUExEREfV1DN6p15NlGdXV1TBNE7ZtQ1VV6LoOSZIYvFcoIQSvvBARUUVi8E5lQZZlBAKBrNsyl6mnyiCEgGVZsG0bAKBpGlRVZSBPREQVgznvRFQ2TNOEaZqQJAmSJME0TTiOU+pmERER9RiOvBNRWUiaDuIJE5qqQpPT4w5CCD+Vqiu89CvvpICoJ5m2iz0xBynHha7I6BdWYKgcWyOi3Bi8E1Gvty9uY09CIJm0oSouBkRVVAW7/vXlBf+JRAKSJEFRFBiGAVlm4EQ9w3YEtjdaMG0BXZUQMx2kbBcH1ehQeB5JRDnwF4qIerW46WJ3s4OQoaAmpEGRXOxsspBI2XBdt0uLddm2Ddu2oSgKVFWF67pIpVKcT0E9JmW7SFoCkYACXZURMRSYtkDS4mR8IsqNI+9E1KtZjoCQAFWWACNdZWhfzITpCIQCepdSZhzH8VNlJEmCqqqwLIvVbKjHCAC5ulpHzh+FEIibLmwXUGUgpHP9C6JKwOCdiHo1WToQyEiSBE3XYDgywiEdul74qLu3vUwM2qmnGaoMVZYQN10YqgTTEZAlwNDa7odCCOxqsrE37kDa/xmpDSmoj7L6ElFfx+CdiHq1kC4jrMloSNjQFBm2I1AdVBHSZQgh0Jh0EEu5UCQJ0aCCkN7xbEBv1N5LnXFdF5qmMeedeoymSBhUrWFXk4Wk5UJVJAys0WGocpvrWCQsgb0JB9GgDAjAdgX2xm1EAgpCOoN3or6MwTsR9WqKLGFQtYqELcFxsT8vOJ0e8HmThc/jDjRFgitcNJsOBlfrHQ7gFUWBpmlQFAWyLENVVWiaVuRXRJQtqMkYWqvDFekrTR0ZOXfc9Ah9wnTxecyB6wpYtot+YbVTJ7BEVH4YvBcoEolAVdVWE9u8v4sx4U0I4e+zu7dfju0uxzZ72878fyHay/MeNGhQq/5ZzsdLkSVUB5WsoMayXeyJ2wjq6bQDQEIs5aIhYSPYwQBcCAFd11tVmOmO11DOxzvz/51VSN/sjv22pTcfr0yy1Hqb+dqt7A/cGxM2DE2GKgMxR+DzZgs1QQVqO6VqKvV4d7WsLFFvwF5coLFjx6K2ttZf6bGlYi0cU1tbC9d127yc2hXl2O5ybDPQtXbX1ta2ef9FF10EADn7Z185XqYtYDsO4Lhw3P2BiuvCNGXYdsfTBnrz+9yW3trurvTNruy3Pb31eLUnX7tVScCQHTQnLbiuDMsBAiqwt9nC7oCE/pGO/bxX2vFur38SlQMG7wV66623MGbMGNTX12fdLoSA4zhQFKXbJw25rovPP/8cdXV13Z6TW47tLsc2A93T7l27drV5/z333INZs2Zl9c9yP16SJPmjbbIsI2hIiAQEEpaLiCHDFYANCXUhtcOja739fc6nN7e7kL7ZHfttS285XknLhe0KKJKEgNb+gmDttXtAtQTTlSHLEj5vtiAkCc2WwM5mF0EDqG5jLYRKON65tNc/icoBg/cCNTc3w7btvF8exVipUZIkf5/FqiZQju0uxzZ7+yh02/lGLT3bt2/P2z/L8Xg5jpP1eiRJQiAQwMAqDTubLMRSApIE9A+rqA4eqLbhOA4sywKQDvg1TctqX29/n9vaZm9td1f6Zlf225becLz2xmzsbrYBKV0esjaooH+k7cow7bU7ZCgIGwp2NtmAJEGSZdRHZVSHZOyNu6gKALLc9uvtq8c7n/b6J1E5YPBOBfEWt3EcB5qmQdf1UjeJ+ighBCzL8ieUAun+Z5omAoEAhlTrsN10iUctI8/Xtm2kUin/B9770WZfpZ6WsFzsbrYRNNLzM1whsCfupCspGYWXOzVUGUNqdOyL2XBdCdVBGdUhFbIExFMuHMGVGIn6Igbv1Gm2baOxsTFrZCUUCiEUCpW6adRHua6blQojywfK6MmyBL3F6KLrCsST6RF3Q00HR5IkwbKsVqPvRMXmuALwFhoDIEsSZAmw20kHF0LAbWdiZkCTMazOwOdxB9FAugpTLOXAUCWojNyJ+iQG79RpiUQCjuMgEAgASKcmxONxBAIB1semovCCda9/ua4LRck9Ypm0XOxsstDQlAIkoD4C1IQO5MdyISbqabIkQQBwhUj/Wwi4AlDyfF0KIbAv7mBPzMLuBhdaxEL/qA4lTwpMTVhFygGaUg4g0gs89QvJ/gBLMfLaiah0GLxTp3mThTyyLMOyrKzgiqi7SJIETdNg2zYsy/Kv9uRKf3FcgR1NFmxHoCasI55KYWeTDVWREFQFgxgqiaAmoTaoYE/cgSwBrgCqAwpCWu7vy4aEg51NNgwVUGVgT9yBJNkYUJW7BKoiSxhUpSLlKBACkFwLrmPC3F+QRVEUGIbBvk/URzB4p05TVRXxeNwPhGzbhqqqDNypaLzFlDKrzeTqb6YjkLIFqgIKhJARAmA5KcSSFiLVBnRdZwBDPU6S0qUbQ7oM202PuIc0Oe9k0qakA0OToCsSVFlC2JDRlHJQ56p5R99lWUJQluC6LhIJ2/9+FkL439GscU7UN/CTTJ0WCoWyJgNKkoRoNMrgnfJyXReWZUEIkbPqS0fIstzuc2QJkMSB9ARN16DZQDiowjC6J9fdC4a8OtMMiqgjJEnq0uTUjvIWRsqszCRJUtHqrRNRz+MvDnWaLMuoqqryq3dkVgEhasl1XSSTST+gsG0brusW5TK+rqRXYt0bt6FrMmxHQFcVRENtl+TrDMuyYJqmf7KaSqUAcOVG6j5VQQXbG20IIWA6ArGki/qolnfUPVNmsC7Lsh/Mc3CFqO/grw0VRJZlltyjDrFt218uHUj3Hcdx2px0WigvPUFTpPTiTbqMaECB0U1lN2zHRXPChK7Kftu9WvIM3qm7VAXSfWtPzIIQQP+Ign7hjvUv77vZNE1/tF1V1W7/rBFR6fDXhoh6VOZKqcUgyxJqwyq6exH05pSDHQ0mmuMmDE1FfVRCxJCL/nqob3Fd178KlW80XJIkVAdVRA0ZhqmgLqK1u9hSJk3T/FF3bz+c60HUdzB4J6KiyizvmHk5v1jBRDFKQSYtF9sbLOiqjJqQjljKwrYGgaE1GlRZQNNyVwEhyuTNFfJomla0dQc40k7UdzF4J6KiUlW11YRVwzC6PQfXW3UVOJA60F37sBwBAUBXZbiyhjCAfXETCUtGbVhn8E7tcl3Xn+SvKEo6n33/3AlFUVqNyHOknIjyYfBOREWn67qfE+5NqOtOjuNkVT9yHAemaXZpUmx2xQ7Ay4yRZRm6ocNwZISDGgyDgTvtXw11/9WlXH3cdV04juPPFcrsq47j+HNDJEmCqqqcU0REeTF4J6J2CSHQnHJh2i40RUbYkDtU+SJTsapdOK5Ac8KCbbsIGencYC8oKmRSrOu6/mQ/bzGooCYjpEtoTDjQFAmWIxAJKAgZ/AqlA33G4wXfXgBv2zYSiQRSqRQcx4FhGP7ou+u6fj9tWZedo+9ElAt/eYioTUII7GqysTexf3VI10YkoGBwVecm0RVD0nKxo8lCLGHBsmxUhyTUR9S8y863J7OspTfhL5lMIhgMYlCVjoa4jZQjUBWQUR3Mv2AOVY7M9BdVVf3g2zvx864KKYoCXddhWRbi8bh/NUpRFDiOk1WXvWWtdiKiTAzeiahNCUtgX8JBNCBD3h9YNCYcxAIKooHSTYoTQmB3swXbEagOaUgmHTQmLCiSQL+QnHcV1va26bpuVg67ZVn+JNuw5iCkpgN7WRIAGFxVOq/PtEwL88o0ev9XFMUP8E3ThKZpMAzDD9Jb/p+BOxHlw+CdiNqUDiYAOWNkUJYluCWujui4QNISCBnpkwrDMGC5JhKWA0XRstIWOipXycfMHHpvRN5baCoQCDDIIgDZfSfz35mlRL3Jqpqm+ROqvTUQWua8e/cREbXE4J2I2qTIEiSkK65oigTHFRAC6KZ1jwomS+m2pVdRTQc8mi4hqMkIBAqb7OeN1tu2nbU6pekIWKaDUEDzq4F4I/IsyVfZZFmGpmlwHCcr2Pau3mT2KW9E3gvOAfjpNV7KTWa1GQbvRJQLg3cialNAk1EfVbGryUbCTCeK1IUUhPTSRu+ynF5NdVuDCdNJn1AoElDbwZUoc29TRiAQQCqVSlcHEUCDqaIpYcO2LFTtz6lXFYnBFflUVYWmaf4k58zg3OtTXqlUVVVbTUb1RuSJiDqCwTsRtas6qCKgyXDc9Ih3QCvxsPt+0YACRTaQMB3IkoSQIcPo4iUBWZYRDAb9iboJy0FVUEFKltEYtyAD6B+R21whkyqLF7DnS6Hy1jYgIuoODN6JqEO6GhQXS0iXi3YVIGa6COoyVCUdlLnCRFPSQl1YRyAQYPBOREQ9jsE7EVEO6ZH1dB15TUmPrKq6BFUXMAIGmlIubMeCqkj7rwBw4ioRERUfg3ciojzqwiq27bPguA6AdCA/MKphZ5ODppQNVU5P4I2bAoOq1JLXvScior6PwTvBdV3E43Ekk8n0apLBYFada6JKFTEUDKkBYql0re6wIUMAaErZqAocWBGzKekgYckIG7knHQoh/BVfAWRNaCQiIuoMBu8VznVdxGIxxONxAEAqlYJpmqiurmYATwQgbChZQXnj/pVmM1fEBNBm3XvLsmCaph/s27bNnPlezFt4CQAnJhNRr8PgvcK5rotEIgHDMPz6w6ZpIpVKMXgnykFTJUAcqHtvOelFrLxJrS25rgvTNLOqkViWBdu2oeuF1aOn4hFCIJVKwXHSqVLS/gXAWMqRiHoLBu8VzlsxUpblrJEm799ElC24v+797uZ03XtZAgZEVQRzlM9sTjnYG7eQSFqIBtM59F6NeCq9liuhAukTK8dxoCiKv7puKpVCMBjk+0ZEvQKD9wqnKApkWYZpmn4A7zgOgsFgqZtGBABIWC4+b7QgJBdhQ0ZNSC15ZZeakIqQLsPZvzCUnqOMZtx0sb3Bhq7J0BQJ++I2HBcYGFX8k2YqHcdxYJqmv7CSt8qp97cXqCuK4i+wxOCdiHoD/npUOFmWEY1GIUkSUqkULMtCKBRCIBDo8Da8tADbtjliT90qabnYus9E3HThCIHdMRu7muxesbKprsoIanLOwB0AmpPp3PiQoSIUNBDWgca4iaTlQNM0pmGUkOu6/iq63vvgpcq0XDnXC+aJiHoLjrwTNE1DTU2Nn5fbmVx30zTR1NTk/8AZhoFwOMxRReoWsaQDV6SrvCiqjIAGNCUd1IQUBLTeHVBlxntevrsFF4GABl3PvxonFZ93hVHTNEiSBEVR/MEHTdPgOA5s2/Yfr2kav9OIqNdg8E4A0iPwqqpCVQ90Ce8HDjiQXpPJdV00NzcDAAzDgBACyWQSsiwjHA73XOOpzxIAZEna/690XrLo5TFv3HSRSDlIWi7ipgtdd6EqMhImUBXUEGTgXlKu6yKZTCKZTPoBvKqq/mi7LMsIBAJ+8O59NxIR9RYV+430zjvvYMmSJTnvu+WWW3DYYYf1cIu6znVduK7rT0DtCtu20dzc7P+AKYqCaDTaKrj3St4BB0qqZY5YEXWUVwsdONCXgrqMz2M2LAhIikDCdBFQJWh5KruUWizlYFuDtf9UQ8AVQMp0AV1CdUBBXYSBeyl5KX5AejTdtm04jgNd16Eoip9CI8syKwERUa9VscG7Z/r06RgxYkTWbUOGDClRawpnmiaam5vhOI4/8t2ZvPWW4vE4LMvyf8BM00QsFkN1dXXW47z8UC8g6YmJeMlkEolEwi9tGYlEmD/cCZkLBsmy7FfVKHWbUqkUbNv226JpGsKGjgFRFbsaTdgpF0FdRn1UK/mE1Xw+j9lQFAlBTU5/LlwHmibj4H56yY8xHajf7s05UBQFpmlCCAHDMJgaQ0RloeKD9yOOOAInnHBCqZvRJbZto6mpCQCg67qfzlLo6JHrurAsK6sutaZpsCzLD/iAdB5vMBhEPB6HLMt+4F7MSjXJZBJNTU1+wOntOxqNFm2ffYkQwp9cnFlNwzCMkgaXXo6x1+eEELAsC4qioCakIqgKyIoKrReXWRRCwHGz672rsgSHc7h7Je/70fs/BwCIqFxUfPAOpEeZy3kRDm8U1TAMAPAnX3kpCJ0ly3LOigu50nFCoRBUVfVTZQKBgJ9a47ou4vE4EokEmpubkUwmEQqFCmqTJ5FIQFEUfx+O4yCZTHKSbAd5qU6ZQbLjOHAcp6R5vS3L82VeyQEARZYKro8uhEDKTqewqHLuso6FyLUKZ1CT0ZR0oAbSJ7NxW6A2JHfrCYe3395QcafceFeabNvOWtuiXL/7iagyVXzwfvvttyORSECWZXzpS1/CokWLMHLkyFI3q1NaBtoActYk9moaexOw2gp2w+Ewmpqa/PxQAIhEIq0e503uasl1XcRiMT/YFkL4VwO6ks7TUq7XTu3LFySXinflxuu3Xnu6GvQKIbC72ca+uAMhpWuyD6zSEDG6Fqx5pQa9E2RZlmEYBuoiKmzXRVPKBYRASJVRF+m+r1lvwSDHcbhKawG8iljed6GiKKwkQ0Rlp2KDd1VVMXHiRBxzzDGoqqrCli1bsHLlSnz/+9/HzTffjEMPPbTUTewwr7xjKpWCLMuwLKvVKLk38u0JBAIIhUJ5f7S8NAoveNd1vVNBglfRwbsa4I30plKpLgXvuq4jFov5o7ReXfqu/Ph6k9i8haoCgUCf/TH3jpt3EtcdQXJmnf9Cg0kviGpZns878StUc8rFnpiDaFCGLEkwbRc7Gi3otVKXRuC9VTi9fp25CueQah2mkz4RkYXTbZNrvc+UV9rQS4HKnGhJ7evuAQQiop5WscH74YcfjsMPP9z/+/jjj8fEiRNxxRVX4P7778cNN9yQ9fht27Zh27ZtAIBdu3YhFosBQKtFibxL2sVY2MPbV66FkCKRCGKxGBobG+G6blaQ6zgO4vG4P8LkpbOoquoHWrnanat0ZGfamplW0HIfhTIMw0+VAdLBfCgU6tI2m5ubEY/H/YAokUj4OfTFWHSqmH3E49Xqb3n8gQNpVZZlQZIkv9Z1Ia/VG4H20rS8icSFBPDe1SBv9F1RlKx+VMjxSpkOJMkFhARXCKgykDBdWLYLVW77M9UWb86Ad7UAgJ9+JMsydAUQArBt0W3vs1eH3FsFVJZlf5/FSMspVv/M1TeLvd9C3+eOYLtbK9d2E5WLig3ecxkyZAiOP/54rFu3Do7jZI1m3XnnnVkB/Zw5cwAA27dv7/F27ty5M+ftiUTCn+RnWRYaGxuxZ88eKIqCZDKZtfiSZVmIx+NFu+TuBXVeewBgz549CAQCSCQS3bJ9ID2KtmvXri5tJxaLZV2p8I5dMBjMe6x7uwsvvBBA/v6Z+aPalasMmekHsixj7969EEJA10tTXaXllYTGpIPdMYGEkX6NjiuQsAR0U4GhHmhfZ9/nlpO3vUDCOxEqBu8KR+b30p49e6CqalmNvLfXN4upXD/PXW135tWrnvxcluvxJurtGLy30L9/f9i2jVQqlTW58tJLL8U555wDID3y/sILLwAABg0alPV8IUTWhMDu5Loudu7ciQEDBuRcMGnv3r1Zl9C9kbpwOIzm5uaskfdUKoXq6mo/raUY7XYcB7FYDKZpYt++fRgyZEiXU1wydUebbdvGvn37/OMAwA+QkslkzmPdVd3R7vYCn2XLluHCCy/M6p/d+R7bjsCeuI24k4CkuKgNa0g17UF9fT0cxynJ++w4Tqtc5v6QEWq0EDNdKBLgusDQiIK6yIHR33yfqbZ4aTKZo3+GYWRdqeruz1TLcpq7d+9GfX19t6d5dbXdhfTN7thvWwp9nzuit7c783ORWVmnt7c7n2L3T6JywOC9hR07dkDX9VY5kYMHD8bgwYMBAFu3bsW6desAtB619MolehVbiiFX1RevigKQPRlRURQEAgE/pcG71B8Oh7PqGhej3bIso6amBrZtwzRNRCKRbg8yutpmLzXItm1omuanQei67q8WW4wfn2L3EcuyAGT3z87uN2W7cFxAkQFDzd7O53EHjQmBoK4haZnY2WRDs9LHzhsJ7q7X1pF2e6PS3ui3N6EzEAhgSI2BmOnCdlwYmoyw3no7nX2fvc+b4zgQQuTMOy/G++yt/OlVS8ms7tRdit0/c/XNntivt89ifZ69+STFaHuh7W75ufD+DgaD/jYLOd5eHwQOzE3pzna3pSf6CVFvV7HBe0NDQ6sFhzZu3Ij169fj6KOPLssJi6FQCM3Nza0qxHiLNum67ucT92SFhWJ8gXcXr0Z8ZmWdYDCIQCCAxsbGEreudPbGbOyO2RAAZAD9IypqQumvC8sRaE46qArKAGTIkkBDPIWmePrHvBQ1473ceC+Q9U7IvBzx6qACoHtTS0rRr72RU2+Senv793LiAXBia5F4E4cz52p49eNLrWUpTC+l0rs6VQjLsvwTAq/UbMurTkRUXBX7abvllltgGAYOO+wwVFdXY8uWLXj22WdhGAYWLlxY6uYVxLt87k3mDAQCfk67V8qOWtM0DTU1Nf7Ev97wo1tKcdPFrpiNkC5DlSVYjlCdMuwAACAASURBVMCuJhuaAn/lUI8kSdANHQEHcHQNgUCAAWIv4aX/ebwrEXx/CuedEAIHJlhbluWvRi3Lsj8iXeqFz/LpSpu8xdMyT1y9q1wM3ol6TsV+2saPH4+XXnoJTz75JOLxOKqrqzFhwgTMmTMHQ4YMKXXzOsU0TSSTSQghoGlat6en9CSvEo5XCSUYDPbISUfLUdRiVEkoF7YjAJFeHRQANEVCg2WhKWYB+yd+hjQFjQkXIUOG4woISUY00PbaAcXkvX+Zi+9014mYEAJx00XScqEq6bQbtZvKPxZDynaxN2ajMRZHQFPQL6xBUyS/whCD98J4I86ZfwcCgawF7CRJgqqqfjpVqYN3r03d+bnw0lY8XGuDqOdVbPA+ffp0TJ8+vdTN6DLTNP30Dq+OupfTXo5isRiSyaT/A9jU1AQAvGrQg5T9v8te8OHlt2qK7r8vEc2GomhIWAKyDAyq0hBzSxeoeFeWMlMCuit1YU/Mxu6YA1kCXNdBUJcwuFrPqt/eXdV7uspyBLY1WDAtB44LNCZdWK6FwVUHJqtT53mpMZkn+d7JkHd/S6UO3IEDNe0zJ3J7n4tCAm4vLSizGpvjOFwojKiHVWzw3ld4ZRe9L09FUZBIJPwJSeXEtm0kk0m/zKCXn5m52BMVX1CTETEUNCZsKIqERNJCVUBG2DiQN+u6Luojqj+y57ouYiVudzFyuk07vchT2JD9KxGNCQeNCduvWNMyPaWU+b8J04VpC0SDKlJJB65wETcFEqYLQ3GzysVSx+VazMwbcVZV1V/11qu9X6pSqbl096JUuq77r9d7/exXRD2LwXuZy3cJM7MGdbnqjkWdqPNkWcKgKhURQ4bluOgX0KHC8oORzHSA3hKgFIsrACEdSCECAFWR4Ozvkl7JSG9E1ivDWsq5ExIOzEVIpVJwHQeOK0E1NAZZBfLeT29VXe+7yZs8nFlyV9f1Pn2cvZOBzBOavv49QNTbMHgvc5qm+auDSpLkTxwqx8BdlmVomuZfno7H40ilUggEAtA0rVtrh1PbZFlC1f4KLa6rIJl0s1YV9RZl6utUWYImS0haLgKaDFcI2I6AoUkwbRfNSRvJpI1IQIchww/wSpUDrO9feCppudBVCULWEQy6qArrMLTuK99ZaSRJ8kecM8skeqPtXsnZSjm+DNiJSovBe5kLBoNwXRfJZNJPNYlGox0KrLyav7Zt+5c/S1kxQJZlRCIRNDU1oaGhAa7rIhKJQNd1xONxyLKctXAW9QxvpM2rtOGdZFXCj7eqSBhYpWF7g4nGZLrkYk1QgSZL+GyfhUTKgmW52Je0MLhaQ0gv7QlNQJMxpEbDziYb8VQ6gB9cE0BA6/snWsWmKAqCwaCfP+6liyWTSSiKwmorRNRj+G1T5rwa7sFg0P+7oyOi8XjcD4q9HyMvfzGVSvm1fHVd77EJSaqqIhwOwzRNfyVA4ECJMioNr754sSSsdK62BCCoy1mTQUstpMsY2s+A5QhIEhBQJWxrsOEIgdqIjlRSIJaysLPRxZAqxV+kqlTChoJhmgxXpCcft3eSZTkClpO+UhBQJVTAOVnBJEnyJ2tmrmTtjcQTEfUEBu99QCGLxdi2jUQikVWLOB6PI5lMwrIsxONx/7HJZBJVVVU5gzfbtv366N2VrpO58p+Hpcj6ruaUg+0NFkS6QiUMTcLgKg262ntGizVFyjqhsFwXuiL5ueWQZMRNB6qmw9C1kpfPk2UJHTl6cdPF9gYT9v4c/oihYECUpSTzaWviailKQ3qLJHkpbaU+cSSinsHgvUJ5PzQtf2wcx4FpmlkjS14w3zJ4T6VSaGxs9C8f67qOqqqqLgfwqqoiEAj4l6O9H0zv6gL1TglL4NO9JlxICOsyakNqu/XQXXf/AlCqBGN/sN6UdLA35mBgde8J3lsKKDKaUv+fvTePtqQq7/4/tWs84516bsCWgB0RIYDQjIL6toCgBhUHQKQBI64lLF3BOCAGCA68YmRpgsZEbST80PiK8EOUFzEgGDHg8L4hGkR+CEJoerh9+56xxl2/P07v6nPnc+dzb+/PWr363jp1qvY9Z1fVU099n++T4Fh7de6GSSlv4bnd4zIyFVKm7KhGGMKg7LasA6t+gmOm9HhL429YaFThqgqWgSwTvxjfu/KeV9aPcRzrRlwazX6ADt73U9TFJo5jLMvK2subppk19FC0+0O3/1+tVrNMT5qmBEFAs9mcE4/5QqGAECK7MOXzee0l3MU0I8mOasKqXIptGQw1EqIE1vZMXsSXpK2mUMU2TbZtGkRd7jDUX7SIpKTSbOngHctgZWlp1QHEMiWKU0q5VqBnGAa2ZRDEKS3PGs14qPNQkrS++7nMdqvzMEzdL0BJCduLx1W3Ux28azTLGx2876cIISiVSlSr1cyj2vM88vl8ln13XTe7QLiuS6VSyXTwKuBXF7L25h1zNb5CobBkm03tb9SDhBSDnNOSO9lmSs1PCGITz544EDQNcGwDP0rJOa31wjilkO/u4MM2W42agrgll3Cs7tLpd4IwDEzR0ryrsSdJiq2LWydFNQRrl0XNxXlP2Y6qBIlpmpNaTo4n4WlfrtFoli86eN+PcRyHnp6eEc4J7Y4vqhW4bdtZZt11XaSUNBqNrBlJe9ZHN1PSwF4dcAexrBAGK4stN5eqn5CmkHcM+vLdf2oyhUHeWVoBezuWaTBQtNheifANgzRt1Rv05Eygu598LDbtksO5CJZVB9c0TbPzrdKyTzaG0d7zyjVMo9Esb/RRvp+jTvRKL6mW9fT0ZIWoUkqGh4ez4lbTNHFdF9/3M5tJddGZy05+mqVDzm5pboNYYlsGfijJ2wZOB9lo5eYSxq2bSNcyMMXSDYqXEj05C9sUBJFECIO8I7AExLEO3hcS1fRJyV3aA/OJMAwD13Uz73l1Dl7ODaI0Gk0LHbxrxqXd7WW87E+applFZbvbjM767F8oWZWRhPS6CVEYIyXkHYsVRRPRYRDecnPpbqnMciXviBH+9PuL7EIFzIvZDVehMvntjjVqbJOhu51qNPsnOtLSTIlyfwmCICtOTdMU13V1Eel+jmryZRgGeRv6CxLXM/Fcnf3TdC9KX66CXpWxXqzAt72Dq2wr1u4ki64Ddo1m/0MH75qOKBQKGIaR6eCLxaKWyMwBYRhmRcCu6y6pJxdKaqVu6IQQrZ/l3BQtazTzgZQyK9JXWnHlarWYx59lWVkTKCVP1Gg0mvFYOpGCZlFRhayauaPRaNBsNoFWIOz7Pj09PUsqgNdolhqjCztV5lp2gT1pe38NoCvGpNFoug/tCaZZtsRxTL1ep16vZ08MugXl2GOaJo7jZNZz7Z1tux1V5xDHceZPLaXUNx+armYuXWI0Go1mMdBXWc28EMcxzWaTKIqy3xeSKIoYHh7OCsCazWZXSX1UsDtRM6ylgqp5UN/zUpP+aPY/1E1nFEVZZ1K1TKPRaJYC+mylmXOklNRqNcIwxLbtLJAPw3DBgmeVwVbBpZSSer0+wpd+MVH68DiOM1/nOI7J5/OLPbRp0a7VX+yiP42mE1RxqLJiVFr3bjgvTBfl9qSKxm3b1jchGs1+gD7KNXOOai6ifOFVdmshg/ckSWg2m1kQr2wsVSOqxUbVENRqNXzfzwKKpRa8K7TjhWYpoQLd+fBET5Iky+bPd9Fpu9tTEAQ0Gg1c18XzPB3EazTLGH10a+YcVRDWHswtdGAXhiHNZpN8Po8QgmazSS6X64rAXdHe4RZYstm/qUjTlHoo8UOJYUDRM3Gt5fd3ajRhGGYSMmhZPc6Xna6UkjiOEUIQRVHmCx9FUXa+1QG8RrM80Ue2Zs5RWe522QywYJ7wqlOhaiCliii70Xptf7i4DjVidtYSLAEyhYovWddrz0kAH8SSRIIpmHR7QSyp+QlpCp4jKDhCPynQzBlJkhCGIUEQ4DhOJoWLomiMg8xck6YpSZJgWVYmAzIMgziO9z5tTIllK5lid9DxWKPRdD/LP3LQLDhCCEqlErVajSiKFqWhkxCCfD4/wlmiGzop7m9EScruekLBFVh7u61W/YRKM2FlaXbfxWAtYncjIaVlm7WyZNGTG3tKC2LJC3siYpkiDBhsJKwsmvQXdCMpzeyJ4zjzjU+SJMu8p2lKEAQkSYLneZPWg4SxxI9a7jeubWQ3olKmVPyEZE+IY5qUcmbWDVfJcsIwzJyegBE3CmEs2VGNaIYphgF9OZP+oqVvXDWaJY4O3jXzgmVZ9Pb2IqVESjniUfJkSCnxfX+Ee8l0dfKqZXi9Xs8y20mSaJ/6RUCmKTIlC9yh9XOUzM6mrxFKBusJ+b03BVGSsqMa41oCzx55U1BpJsQypeS1gppYtm4oyp6F0DGMZpaoc5WqqVHuVqoORAiRWdWOl8DwI8m24Sg7JoQB63od8o5gdz1mZz3FKaWESUI1SFjf55CzRVYnozLvURTheV7mWmVZditwj1KKnkCmsKuRYJoGvXl96ddoljL6CNbMK9PNdDebTer1epY9UhfG6QbwuVwuK+IC3RF2sbCFgWsbNEJJ3hHINCWMJb252WW9oyTFYN9NgW0a+GErMB9v3dE3D2naurHQwbtmtrQ/1VNywTAMcV03c39REhoVaAOZQ9PuekKSppRzrXNeM5K8OBxS8kyeGQwxANdqZdlrQUK1mZDbe4MqhCCXy+E4DmEYZtl3x3FIDUEtiDOJmGmAY7aOxd6lWRev0Wj2ooN3Tdegsu62bWfBu7KZnEn2PZ/PL1n3luWCEAarSjbbKxGVZoIB9OUtenKz0wCbAiT7Aqc0TVvymXHkADlbUPUjXNtAGK3gxbGNvQG9btSjmR2maY7Jvrc7vqj5qZqZqaeBKhsfJilOmxZdAM/tiSjnJHuaMX49oa+RMFAyMQ2D8R5aqRof1XgqTWFHJeK/hwIcE4qOyYqSjUzBNLR0UKNZ6ujgXdNVjG5cpC58mqVLzhYc2OcQJq1Mt2PO3lYybwtKrkmlGWOaBomEHs8kZ4/dbk/OJEpShpstfbxjtW4ohDCQ42TqNZrpYNs2URSRJEnW98B13cwyUmXb0zQd4yjVCCKkNKmGkhXF1nExVI+JZcpA0SSKLZ6vGuxpJHhOTMWX9GNSaQoKrsAc9ehIHVdDjZihRkTJSRiqx9SaBpVmwNq+POX8wtUeaTSa+UEH75quQQiB4zj4vo/rugBZsZdCXSRN09wvnFqWC6YwyM2hRkUIg9Vli6IriBKJY03sICOE0SpmzZvItHXzMDro0WhmihAC13UxTXNEvwPVPClN03GLVWuB5MVKhGEaDNZjqs2E/oKFTKEnJ9hZjWmEklooMeoxKQaObRAkKdsqIQVHsKbsYI3jIFMLEkQas6JgkbctamFKEEb0ezKT3Gg0mqWLjn40XYWSuSituud52bJKpcLg4GBmh9bb20upVFq0sWoWF1MYe3XCU0twDMPAtXTArpkflOa9PUBXlpHqdeXBDhAnKdsrITnHppi36c2b7KrGLTcZ2+Dnz9RJJBQdA1u05GCeLVjTa2f1G5VmQi1Ixi8+TSGREteyKOcEOScliAw82xjTg0Oj0Sw9dPCu6Sosy6JYLGYBu8qu+77P4OAghmFk/u2Dg4OYpkm5XF7MIWu6BCWBETqrrukS2oNk5f0exzFhLBHCopBrSVgsU1DOWyRJSjWQeJZAGBDECbUA1q0WJHJk4bUpWjcB49FXsBiuGTTCGMu0CJOUHg+svU8HNBrN0kYH75oJUQWkQRBkXu0L0aVUCDFmH0ouUygUsnWiKML3fR287+dImTLUaOmB0zSl7Jn0FywdxGu6CsMwsG2HamgwFCbsakYYZkxvvlXUGicppmWQGrCiaGFbBlJaGIFBzjZJ0pZvu2O1XJtiCY4lSNOURihbxajCIO8ISp7JQSvz7NjTJE1j+nOCnpyVPQnQaDRLGx28ayZE2Taq7He9XgfIAuiFRGWLpJQIIbKmJDqLpBlqxOyqJ3ub17T0wwYwUNKBiqa7GKrHDNYTco6gJ2fy3FCEH6XkXUHeFhRck2YoyTkCP0qx9yrChIADeh2qviSIEtK9DZfytsH2SsywnyCMlnfSyoJFX8GiJ+9Q8qzMPnK8pIhGo1ma6OBdMyFBEIywbTQMA9/3FyT7PhrP88jlcjQaDWzbJkkSHMdZlBsJTXdRDSQ5e1/r97xrUgkkfYVUZ981XUMiU/b4CQXPxBIGq8sOtilIU8nacqspUwpUg5YrUhgnDDViXMtgw4BDX8GhLy+Jkta89iyDWiAZ9hPKXktvH8uUXfWYnNNqVqYDdo1meaKD9xlSLBaz5hvt7PPZnXsLOmU1puzH5nrb7f+rzqjtJ3613+nufy7GbZomK1euZGhoiCiKyOVy9PT0YJrmkv+sZ8JUTjtr1qwZMz+Xy9wcZw1kOnK91s8pUw2l27/nybbdreOeydyci/1ORjd8XiPPn61lOdvANCxK3r7z7JqSxbCVUPIEL8Ei8QPKXus8Z5v7blIBokRisG//pgGpTEnk1H/ncv+8J0K7lGmWA3oWz5CjjjqKvr4+4jge93XVRW+u6evrywLr+aB93KZp4vt+5l+s2m/PZP9zMW7DMOjv7590zHPJQn7W06Wvr2/S1y+55BKAcefncvu8ClbKzlpMstdNxo9SVhSsbP00Tan4CVVfYhhQ9kyK7j5nkG7+niejW8c9m7k5m/1ORTd8XjkrZU89ouC0Qu5GJFlVtEZ8FgLoyxnA3iC9ODDhuIMwotKIMdJW19VYpiRJikxi4rizjPty/rzHY6r5OR9cc801XHvttZxyyik89NBDI1774Ac/yJ133skzzzyz4ONq56/+6q+49dZb2b59O1dccQU33XTToo3lmmuu4fWvfz0nnnjiiOWGYfC5z32OK6+8EoCtW7fiOA7nnXfeiPVOO+00isUi3//+9xdszAuNDt5nyK9//Wte+cpXsnLlyhHLVUMOcx6q+qWUDA4OMjAwMOePQscbd7lcxjTNrGC1UChQKBSmve/5Gvdy+qyny86dOyd9/Wtf+xpvectbRszP5fp5DZRanv/DfutivrZo0pszRzSsGayDY5tIYGc9RZgGPTlr3scdhDGBNDJ/+YI7u86yim6enzOZm3Ox38nols9rdY+JZcbUglZCZG2vM2KuTmfcg7WIYR8CCX/YldBbSOnNW6wsmxRzU9d7jB63csKBVuJmNp/TfHzeanxxHGeyyfH886diqvk5nzz88MM8+OCDnHbaaYs2hvG4//77+dznPscXvvAFNm3axLp16xZ1PNdeey3FYnFM8P7II4/wkpe8JPt969atFIvFMcH7zTffnMl9lys6eJ8htVqNOI4nPHG0N+uYKwzDyPY5X4Wa7dtWNoztBU8z3eZ8jns5fNbTZaKspeLFF1+ccH4ut8/LMAz6CoK+wtiAJU1ThpuSnCtwrNb8DYRk2Jf05o0Jx60KooEx/t2dEiUpLwxHxKlACIM0hZXFlo3fbOnm+TmbuTmb/U5Gt3xelmmwusdhpUwxDKZcf6JxN0LJ7qakmLMo5y3qgaTmJwwUbAaK05tfhmEgpaRWqxGGYWuclkWpVJqxxGQ+Pu84jgnDMLvRUD87zvQ6xk41P+eLQqHAK17xCv7mb/6m64L3J554AoArrrhiUWskms0muVxuwtePP/74jrZz2GGHzdWQuhZdyaKZkv256EnZZdZqNer1+qKd+DUzQ8li2wMIA5jsSX6SJDSbTXzfH2GVOl0qzRg/TinnTEqeSd4VDNZbHt+a/RshZhfUJjKFFCxhIAyDkmdScM0RengYm62eiEajQRiGOI6D4zgkSUKtVpsXPfxMiaII0zSzpwKmaWYdbJcKV199Nf/6r//Kz372s0nXe/bZZ3nb295GT08PhUKB008/nccff3xG+9y9ezcXX3wxK1asIJfLceKJJ46Q7px22mlcfvnlANlTmAcffHDcbV1zzTUUi0Uee+wxjjvuODzP4+Uvf/kYeco999zD5s2bWbVqFeVymU2bNnHvvfeOWGfr1q0YhsEjjzzC5s2bKRQKfPjDH86OC/Vz+3gMw+DGG2/Mxv2Tn/yEe+65J1vvmmuuyV47++yzR+zvoYce4sQTTySXy7FixQouvvhidu/enb3+zDPPYBgG//zP/8wHPvAB+vr6WLt2LVdeeeWI6/7zzz/P29/+dlavXo3nebz0pS/lQx/6UIffxtyxf0ZkGk2HNBoNKpUKvu9Tr9epVCo6gF9CCGFQdAWNMCGRKbFMaYaSsjv+qS9N06y7r2VZmKZJkiRZZ8zpkEho70RvCQMJyKUTa2i6FFO0NPNyRJF2q3GTQs1ldRPq+36WWW9HBfiWZWVBkGVZRFE0b3r16bKUAvTJOPvssznqqKO49tprJ1ynWq1y2mmn8etf/5qvfOUr/PM//zODg4O8+tWv5rnnnpvW/pIk4cwzz+Tuu+/mhhtu4Dvf+Q7FYpHNmzfzy1/+EmhJTD74wQ8CLVnKI488wtFHHz3hNqMo4h3veAfvec97uOOOOzjkkEM455xzRtxc/OEPf+CNb3wjt956K9/97nc56aSTeMMb3jDuTcF5553Ha1/7Wr7//e/z7ne/m0ceeQSAyy+/fNLx3HzzzRx11FGcdNJJ2XqXXnrpuGP+5S9/yebNmymVSnznO9/hhhtu4O677+bMM88cc1N71VVXIYTgX/7lX7jsssv4/Oc/zz/90z9lr1944YX8x3/8B1/84he59957ufbaa+etbmQytGxGo5mAOI7xfR/XdbNsgLoIFovFRR6dplP6CxZp2rLgU79PJF1RchklF1DBTCdBjJQyaz0vhMCxDCJJtiyIJZbBiC6ZGs1MyNkGfTmToUaCEK0bwp6cubfXQYskSUiSJAvK0zQliiIsyxrxJFXN1ziOM52wmrPd0kej/YZC9flQuvduGWOnfOITn+Ctb30rjz76KMcdd9yY17/xjW/w7LPP8pvf/IaXv/zlAJx66qkcdNBB3HTTTXz+85/veF/33HMPjz76KPfeey+nn346AKeffjqHHHIIn/70p/nud7/LYYcdlunIO5GlhGHIJz7xCS6++OJse4ceeiif/vSnuf322wH4wAc+kK0vpeQ1r3kNv/nNb/jqV786RjJ02WWX8ZGPfGTMfg466KBJx3PYYYdRLpcpFotTjvtTn/oUa9as4fvf/37WqOzAAw/k9NNP5wc/+AFvfOMbs3U3bdrEF7/4RQA2b97MAw88wP/6X/+Lyy67DIBHH32Uz3zmM7zjHe/I3nPhhRdOuv/5QGfeNUuO+XQwGI/2i4O6cGiWDqYwWFW22TDgsmHAZWXJntT/XQU6iqm+byUxGB4epl6v02g0iOOYsmdSsA121WJ2VSOiWLK6bGOZSyvY0HQfhmGwsmSxvs9mVclmfa/NqpI14lylzpFqmZrX483nXC6HlJIwDAnDkDiOyefzXSWXtG0by2q5SEkpsW172nr3buCcc87h8MMP57rrrhv39YcffpjDDz88C9wB+vv72bx5Mz/96U+nta+HH36YcrmcBe7Q+hzf8pa3THtb7ZxzzjnZz6Zp8ud//uf8+7//e7bs+eef5z3veQ/r16/Hslqdfe+77z6efPLJMds666yzZjyOTnn44Yd585vfPKLD8Otf/3p6e3vHfA6vf/3rR/x+2GGH8fzzz2e/H3300dx44418+ctf5qmnnprfgU9C9xyZmq5FSkkcx4v+CFVKSaPRYGhoiKGhIarV6ryOSRUqKpmMysrqFuNLE1MYmFNkvYUQ2LadzXlVdDfRdy6lzAJ2IAssgiDAjxJimbbkDRi4piBn61OuZm4wDIOia9KTMym65pgbUpVoaO/dMVE23XEcenp68DwPx3EolUqTFg5Ohjp21LEwVxiGgeu65PN5crnciCeiSwnDMLjqqqu45557+NWvfjXm9aGhIVavXj1m+erVq0dotDthaGiIVatWzcm2FLZtj7HbXL16Ndu2bQNa3/+b3vQmfvrTn3LdddfxwAMP8Nhjj3HmmWfi+/64Y5lvpvOZ9vb2jvjdcZwR4/72t7/N6173Oq666ioOPfRQ/vRP/5Q77rhjfgY+CfpKopmUMAwZGhpi9+7d7N69e9yDbyHHUq/Xs2Il3/dpNBrzFsALISiVSpl2VDWHWorZnm5D3QgpqUk34TgOruti2za2beN53oS2YypIUZ2IhRAkSUKcJGyvRCQSVpVsVhRNmrFkqKHrJTQLg2m2LFTjOM7067ZtT5hNdxyHYrFIuVzG87wZBcbtxd5KdjjXeuBukvPMlLe//e1s3LiRv/mbvxnzWn9/Pzt27BizfPv27eP2OZmMudyWIooihoaGxmxv7dq1ADz11FP8+te/5m//9m+55JJLOPXUU3nVq15Fs9kcd3sL8V3O5eewdu1avv71r7Nr1y4effRRNm7cyDve8Q6efvrpuRpuR0wreL///vu55JJLOPPMM9myZQt33XXXpOvfcMMNvPa1r53VADWLRxzHVCoVDMPIAph2O7GFxvf9LHAXQuA4DmEYThr8SSmJomjGRaYqI9XT00Nvb++MfO41I1GZ6WazSaPRmLGby3xiWVbmvDHR952mKUGUgLFPSpX5ZUsIk5S807owCcPAtgTNuLv+Tk33MJEcUBWUJkkyreNEZao9z8v+zXfiQdk3tt8kLNb1opsRQnDVVVdx11138R//8R8jXjv55JN5/PHH+d3vfpctGxoa4v777+fkk0+e1n5OPvlkKpUK9913X7YsjmO+973vTXtb7Xzve9/Lfk6ShDvvvJNNmzYBZEF6+1x79tln+bd/+7eOt2/bdkeJwtFZ8Yk4+eSTufPOO0fEAT/60Y/Ys2fPjD8HIQTHHnss119/PXEcL7iEpuOC1SuvvJIvfOELwD4N6De/+U1OOOEEbrvtthHG+YonnniCn/zkJ3M0VM1Coya6Kt5T1lyLLZ/plDAMa1mrkwAAIABJREFUqVar2aPjXC43Ix2nbqc9t4RhmDWHATJpiuu6izyyzgljyY5qRK2ZEAQxPR4U5b4gxXNtzKDVpl7NnkSm5C1946cZifIsbz/fqkJM5W0eBEGWuJiOXEQVei4E6mmaaZpjbmZVAaxmH+eddx7XXnstDzzwwIj4acuWLXzhC1/grLPO4vrrr8fzPD71qU9hWVbmCgOtTsW33HLLpImps846i+OOO44LLriAz372s6xevZovfelLbNu2jY9//OMzGrfjOFx//fX4vs9LX/pSbr75Zp577jnuvPNOAP70T/+UAw44gI9+9KNZPdBf//Vfs379+o738fKXv5y77rqLU045hUKhwMaNGymVSuOud8stt3D33Xezdu1a1q1bN26DqauuuooTTzyRs88+m8svv5zt27fz0Y9+lOOOO443vOENHY9reHiY008/nXe/+91s3LiRMAz50pe+RG9v76QOPfNBR1eSu+++m7/927/FNE3e+9738vd///f85V/+JStWrOBnP/sZxx57LI899th8j1WzwCiXjfZsz2KegD3PQ0qZuSgoX+LxxhTHMdVqFSDLoCovY83iMbqro2EYmR3jUkHKlB3ViGaUUsrbFD2HndWIoVqAlBLP88jnXAaKNo0opR5Iqn6CAHryy7vrn4YJi0InIoqiER7mURQRhmH2hApmb1u6ECjXmvZjWUo54yZnyx3TNPnYxz42ZnmpVOLBBx/kyCOP5C/+4i84//zz6evr46GHHuLAAw/M1lPXwan28YMf/ICzzjqLD3/4w7z1rW/NMvHHHHPMjMZt2za33347X//61/nzP/9zfv/73/Pd736XI444AgDXdbnjjjtwXZdzzz2XT37yk1x11VWceuqpHe/j7//+75FScuaZZ3Lsscdmtpaj+au/+itOOukkLrzwQo499li++tWvjrveMcccw3333UelUuGtb30rH/7whznrrLP44Q9/OK1OrJ7n8cpXvpIvfelLvOlNb+Ld7343Ukruu+8+VqxY0fF25oKObslvvvlmDMPgrrvu4swzz8yWf+ITn+B973sf//Iv/8LrXvc6vve97/G6171u3garWTjag/ZGo4HrulnQtViZaBW8+75PmqZ4nofruuNm0tUjaJXNbbdD0ywuKhunLuhLKSvnR5Ld9ZjndkcMFATCsLAtgetYCMejWHSygr2+vI1IJVHaaqRT9ExcnXlftigrRnWOMU1zSitDJYlRN7Pqfe1PptT5bTq2pYuF4zgEQZA9oVXyxv2da665Jmsg1M4ll1zCJZdcMmb5S17yEr773e9Ous2tW7eydevWKfc9MDDAN77xjUnX+eAHPzgiqz8VmzZt4he/+MWErx977LE8+uijI5aNtlO86KKLuOiii8Z9/8knnzxuwD76pnj9+vXcc889Y9Ybz0/+1FNPnbQ51oYNG8a96b7pppu46aabgNaNyT/+4z9OuI2FpKMryS9+8QuOPfbYEYE7QE9PD9/61rf4zGc+Q71e5+yzz84enWiWLnEcMzw8TKVSyS4uUkpyuRzlcnlRZST5fJ7+/n76+voolUoTSmBUtmc6ln+a+UfpYdUTFNUhcTEdfNI0pR4kVJoJ9WBiXXEzkvz3npBhPyGIJTtqCUP1mDiJMU0bx7Gz7KkK4AquYEXRZqBo68B9maMkLirIVhn0yZgssG+/uVWogLhbMU0zS6rYtj1hckWj0cyOjo6q4eFhDj744Alf/8hHPsItt9xCkiS8/e1v59Zbb52zAWoWHuVT7XneCJ14Pp9f1MBdFZ+qR8qToSz/6vU69XqdZrOJEALP8xZotJqJaL+oq4v9Ys2rNE0ZbEhe2BOxvRLx/J6IXbV9LddVNtX3fXbuaRAnCb05kxUlC5nCjmpEpZkAKaUJurZq9g+SJEEIkf1TTi9TJQ1s284kEO2NlUzTxLbtLIGiGhR1ew2OGqP6HDQazdzT0VlgYGCAF198cdJ1LrjgAnp7ezn33HPZsmULlUplTgaoWXhUq2yFZVlZwLxYJ2Plp62cSYQQFIvFCcejZDPKa9g0zUV/aqDZh2VZXfFdNEJJ1U/pXyGwTBOZpgw1EgquSd7Zlz0VQhAlkjhKSBxBf8HCNGBXNaXg2fTlwLXI5pyWCmg6RXVAVU9rVDMiaMlQlGWpDog1i81E8h/NwtPRWeDII4/k5z//OfV6fdL1zj77bO69914KhQJXXHEFP/zhD+dkkJqFZXQBodJfLuZFw/d9ms1mlrU1DGPSJk3NZpMoiiiXy/T19eF5Hr7vd7VeVLPwJClgtKwcofW/QcsZRmXdlRSm5JrECYRhnFk/bljhcvCqAkXPHuH53q2NvFTB8HRtBzVTo1xW2hMHKjCfDOUIo+wcbdse09XZcZwseNdoNJqOzgRnnXUWvu/zzW9+c8p1Tz31VB544AEGBgbGNcXXdD+FQgHDMPB9nyAISJJk0f3NRxd1WZaVXSgnWr/9Imjb9pKyudRMjfr+ZxOEWsKAFOTebSQyJTVa3Vjb7e4AyjmT/oJFI0yoNhMc02BV2SZNW4FatxfdSilpNpvZP30zO7coi0flNmPbtn4Co9Fo5oWOorE3v/nNnHjiiTz88MMdbfToo4/m4Ycf5sgjj+Sggw6a1QA1C49lWfT09FAulykWi/T29i66B7cQYkSgMZUd20SWZTpz1Z2kaUojlFMWjSriOM6aPDWbzRm7COVsg7JnUPcl1WZCPZQM5EzyjhhhY6nG058XvHRljoMGHAbyFrtrEc/srFMNZCYFiqKIZhAxWIt4sRIx1IhJ5OJnuVVDM/VkQEqprVPnEFWMnc/nyefzUzrNaDQazUzpSHR60EEH8dOf/nRaG964cSO//vWvZzQozeLTLZpkhed5hGGYdVlV7jcTjTGfz1OpVAiCILuATqaR1ywuu2sxg40EwwCZQq9nsqo8vuRA+V+3O9eo3zvx7B3tld2XM+jrc5AYmMIg7+yz5lNdfNWNoMqu+nHKH4eCVpOmKMQUFutjSY8LzSBktx9iWC6WkVKPIvwI1pQthFicYE7JZdrnvzqOlpJVp0aj0Wg6zLxrNPOFKkTdvXs3u3fvpl6vj/so37IsyuUyhUIBz/Mol8vk8/kJt2vbNj09PeTz+cziUjvNdCfNSDLYTCi4gpJnUvIEe/ZmwcdDzY92H+xOG+OoPgGqkDmKIpIkwbMNiq7AIqbRaGQNvVTn11wuRy6Xy+otdlUjdlQTwiQlkQZ1P+ap7XWCKMGPUupBTM6UeLag7JlUgwQ/Xrzsu7IvHG2dqpZrNBqN6oZ6xhln0N/fj2EYHXnJaxYeHbxrFpVms0m9Xs+CiHq9TqPRGHddy7IoFAoUi0U8z5syi67WLxQKWnvaxSQyxaClM4dW0agQkEwixx4dqHcSgKZpSsOPiJI0s+IzTTPLPitnGTUXVct61eCrfb5V/QQpU8p5i4Jng4zZXolohgmmZeO5DnHSqrEwDANhLH6fAdd1M9tBZWGojwuNRqPYtWsX1113Hf/1X//FkUceudjD0UxC9+giNPslQRBg2/YIuUMQBJm3vGb50Z4lF0K0gva0FcSbwkCmKVKCOcHX395GXmXdVYA9EVGSsqMasacWIpOYvoLBQGFfAXQQJQRhhCkEdtt2oijCsqxMNqOkOY5pkMgUP0oZakh2NqAZCqqxyaqcjYgkURJjWxDEEgOwzcXNcCtPffW3qM9Ro9FoANauXcu2bdtYs2ZN1pxT053o4F3TVehH+MubJEkIgiDLSNu2Tc5x6C+YLc07Lc17X96k4IwfjCspS3sL9sls9NI0ZWc1phFIyjkTP0jYXY8wjZSSC7UgJdwT4wet4H1VKaUnb2XvVe3e1b5t22ZV2WZXPeHF4RA/lpRzLmtLJmECfgz9HuyqG9SjFM+AtT02zhx1WI2SlCSRmUPOdNAB+/5Fe02DToZopsJ1XdasWbPYw9B0gA7eNYuK4ziZTEa1FM/lcvpCswxRhaVAVmiqsucDRZucY2bZ95w9sRZbNemaTPLRbiOaSGiECQVPkEoglcgoYnc1wjFdhiPBgY5JznLww4jt1QhLgGOmWfMc5detxlzwPA4ecKg2E4pe60ajP++RxBE1P+KlKzz6y3miJMFzbKyJHiNMgzRN2V2LGWomJFJSq0gGVkpyE9zkaPZflAysvTDbdd2uMiHQzB4pJS+88ALNZpNcLse6dev0tXM/QR/JmkVFFZ2qzqme501aiKpZuii5jAoglNuJCrLzUwShyiVGZdsdxxk3i5ymaaZXT9MUmUIqBVGUksQhlmVhuwLLkMTSAAxs08CwWo2VmvWAKJEUc/s04upGot2ydGXZZsOKBJlC0TMxhUEjEORNg9ze9wojzbT8s6XiJww2EvKuwEhhMIGd1ZgD+sxFc7HRdCdJkhCG4YibziAItF3uMkJKyS9/+UtqtVq27MUXX+Too4/W3/F+gA7eNfOC8pBW9nQTNYMRQlAsFrOAXZ90lj8zsSaUUmbSFaVz931/3Kc0cRy3XGQQ7GmmBGFCIwyoYeFYEiEsDEOwsuzsvRlIs2y+7di4iSCft3EcK/NBV2NW81gVta7tddi2J6IZSdIUDGCgOD/dVRthim0aWMJASoOCY9CMJJFMcXXwrmlDydLabzp1V93lxQsvvECtVhvxnVarVV544QUOOOCARRyZZiHQwbtmzonjmGq1ShRFmT3dVM1gdNC+/BFCZE2P1LxQreGnor1rpaI9C9+OlJJYws5aQizZK1kxSJFYwiDnGJQ8i7wj8IkpOgZVX2JbEMuUoivIO62MvpL3tGveHcfJ9ll0Tdb3GTSDBAzIuyY5e37msmlA0nahTmSKYbTceTSadiayBdUsH5rN5rSWa5YXHV1l0jRl8+bNHHLIITzyyCNTrv/II49wyCGHcOaZZ856gJqlRxAERFGE53m4rott20RRNOMumJrlgSo0tW07KzLtxPJzJvtphpIgSSm4Asc0KOdMXNukL2+ysmiSs1tadtuyWFkyWVWyKHsmq0s2a3ucTOqixux5Xvav/QYCWnKfgZLd0u3PU+AOUMqZGEAtSGiGknqU0pczF93FZqmgkgjNZnNWXXmXAqZpIoTIzruqbkMnSZYPuVxuWss1y4uOjuS77rqLH//4x7z+9a/nhBNOmHL9E044gTPOOIP77ruPe+65Z9aD1CwtlARBoX6eSDqj2X9QmWt1Y9dpMCGEyIpHVSZ8Iv1uK0hprRsnrX+2ZWPbDq7jZt1GTdNs6eaFoDdvsbJk05u3xmjU1dMB5Q2/WORswbpeh7Jr4loGKwsG/QX98LRTlA4cxroILTeEEHiel9WFtBdba+nM8mDdunUUi8VMHmUYBqVSiXXr1i320DQLQEdXzttvvx3TNPnkJz/Z8YavvvpqhBDcdtttMx6cZmliWVZmUQaM0CrPBtWNtVarTdiJVbM8MQwDz/MwTTO7OZwo+BdCUCrk8FyHJDWxbIcwFdimQd6zyeVy5PP5ecn6S5lSDxKqfkIzahXjqm6uc0HOFqwq260g3jO1FKJD1A2byj6rgHa5Bu9A9nRLzT3lQKPMATRLGyEExxxzDIceeigHHHAAhx56qC5W3Y/oKG3z6KOPcswxx0zL/3P16tW86lWv4uc///mMB6dZmjiOQy6Xw/d9gMxFZjY2ZVJKKpVKpqNXWST9iHD/QWUTO9Hv5l2LAwdy7KzFREmKYxmsLNnzKjFJZMqLlYhaIBEGhGFI2YrpLbRkQrZt646mi8REwepyD2LVjaOSeqmbmPFqRVRw396DQQeC3Y0QYs6LU//u7/6OPXv28MILLwBw99138/zzzwNw+eWX09PTM6f708yMjqKpF198keOPP37aG9+wYQP/9//+32m/T7O0EUJQKBSyduxzkeGK45gwDHFdNyvG8n0fy7J0QLSf0Wm2ueCa5B1Bsrdba6fvC2NJPWg1QfJsQcHtTCpT9RNqQULZM1sZ9zBhyE/pKVoI0Sqw1U2SFgcVsDYajewJjpRy2Z87Rt/oji5kbV9P2auqdZIkmZenU5ru5sYbb+TZZ5/Nfr/jjju44447ALjgggt08N4ldBS827Y9pVvIeKiLlWb/o72JzlxIBlSmSF2I1P/LPXOmGZ8kSTLrO9M0J3yqYxgG1jROQUEseWFPRJSkCAGynrCqlNKbn/pUGcYpljCy4Mc2DfzIQKYpQpgjpGSahUPd+Ksuo77vZ3UXo4uPlxvt9UbKLrLdQlKhgnc1P5U8LY7jZX+DoxnJM888s9hD0HRAR8H72rVr+a//+q9pb/y3v/1tVxdPRFHEbbfdxoMPPkitVmPDhg2cf/75HHXUUYs9NM0o1E2gKjRUFyOdFVqejC6ua/+ekyTJJFlAVsQ6F0HGcCMhlinlXGu+RUnKYD2m6JpYoyQ3oz3fHcsgbrY6u6YyJYgShAGmMDKrS61RX3hU4G6aJrlcLvsulntQqroMtzdsMk0zy6a330gmSUIQBCPOs0ozr9Fouo+OIp9TTjmF3/3ud/z7v/97xxv++c9/zhNPPMGrX/3qGQ9uvrnpppu46667OPXUU7n00ksRQnDdddfx29/+drGHtmDEcZwVgYZh2LVFoLZtk8/nieM4s6LM5XLL/gK8PyKlxPf9LCgfXWSnWr4rBxhliTcXWe1IpiOCdEuAlCBHbTuKIprNJo1Gg2azSZIklDyTvG2wc0+TXZUGdT+iYEYYaaKt+hYJNSdGS0cmko8sF9I0pdlsjijsT9MU13XHfRqu3JuArJg3iiI9XzWaLqWjI/O9730vaZqyZcsWdu3aNeX6u3btYsuWLRiGwaWXXjrrQc4HTz75JA8//DAXXnghW7Zs4YwzzuD6669n5cqVbN26dbGHtyDEcUylUqFer+P7PpVKpasbPOTzefr6+ujp6aGvr49CobDYQ9LMA0peojKFtm1nMhkYX8erls8WzzII433ylmaU4titrqYKlclURagAvu+TyoReJ2Zdr8WBA3kOXlWgN29nhbaqXkOzcKiMu5JYtduELufvIo5jGo1GdiwpCcxktUeO42AYRlYfoG82NZrupaMjc9OmTVx88cU88cQTHHnkkfzjP/4jlUplzHqVSoWvfvWrHHHEETz55JNcfPHFbNq0ac4HPRf827/9G0IITj/99GyZ4zhs3ryZJ554gp07dy7i6BYG3/ezoiTVPKfT5iUqOzo8PEy1Wp1RTcRMUAWq+nHu8mayQNyPDZ4fCnlud8CeRky0N2vYjFL+e09r+a5KSBhGWfa+U3rzFj2eRTWQVJoJRtpqhCTbhqNuItozlWq5MAzKOZuSZ5JzLILEIEgEErGsg8VuRp0v2u0il9oTuyhJGaxFbB+O2NOIkXLyG9V2lxlVEyKlnPBYUHNYNSSzbXtafRg0Gs3C0nEE9JWvfIV6vc63v/1tLrvsMt7//vdz8MEHs3LlSgB27tzJ008/nd3lv/Od7+QrX/nKvA18tjz99NOsX7+efD4/YvnLXvYyAP7whz9kf9tyRekaFaqgqRPUI1lV2OT7Pj09PUvuoqjpPpSsQVnWqSI7IQT1IGFnPUXSmqvbhhMGCiZ9JY9tw1FLXy4TdlcCap7BiqI1wiN+KkxhsLps0RubNEPJUDNmeyVGiJj+vEVfwRqjF27Xs2fZXQnbKzFD1ZhcFOP6sLbHIe/oYGihUV1ylYXtUsu6x0nK/7ejyc5aQpikOKbgoH6HDSsmfpKjjhd1jlf694mOAdu2M308tJIk+kmRRtO9dBy8W5bF7bffzlve8hZuvPFGHnvsMZ566imeeuqpEesdd9xxXHnllbztbW+b88HOJUNDQ/T19Y1Zrpbt3r17oYe04FiWlTkMKI2jaqs9GVJKms0mjuNk66q24zp418wW0zRxXXdEDYbKAu5pRtiWwMu1/N6jRBIkMNxseavnHUHgR+Qdg3osWCEsDCRBEJDL5ToKRgzDwDbhRT8BDIqeQSxhZy3GsQxydqtQWtnqKYmBym7GccweX1JpRpTzFvm8RSQNtlciDup3xnRw1cw/6oaw3bFqKZCmKf/fYMg19/6B3w+1lpVt+MQb1+LZBmt73XHfp7oHqwy8KtCdzJVJWfuqJmhL6XPSaPY3pq09OPfcczn33HMZHBzk//yf/8Pg4CAAAwMDHHnkkaxYsWLOBzkfhGE4rk2YCj6DIBixfNu2bWzbtg1oPWWo1+vAWBtEleFQWcO5RO1rropKXdfNigHVNpWOfLJ9KCmCOtG3j2+89831uBWjdZyTWQZOl/kaM8zvHFGoud0+/oWYm0mSEEVRlsFTj+2ni+qgquaXCkL2zbu9khXR0qjHUsLevy9OYoQBMpEkiUSY+94/+u+e6Hv2I0kQJpRyrSdLrRpWSSOIye1ttqSOA8uyss9b/R/EIZ5tYVutcTpmywc+ihMMa/bZ96U8P8ebm/O936X6ee2uBXz0/63xXH3fskoEH79jG99+r0NPzsSzx84nwzBwHGdEcsbzPGDfZzDRuNufIM2Upfp5azRLhRlHOgMDA7zuda+by7EsKI7jZK4V7SjttuuOzGj8wz/8A9dee232+zvf+U6g1cBqodmxY8ecbas94BZCMDQ01NF7lBuIetyq9JWTFbzO5bjVOIIgGKHRt207u0jNBXM95oViy5YtwMLPz23btmXfRyNqaXVdx6LoWSOKPjtBXaRhnwyg7rdkM3nbwKBVUJp3DHIWDDZSPNsgSSLqgaTgCIZSkQUvlUplwov96O85iFN2Dic0HAOx9z3VQBLnDaLa1DcjzXrCcJBS3CuTCZOWlCYfiznNvC/F+blYcxOW3uf1ux3hiMBdEQNfe+BZPrq5b1IpVvvxU6vVRtwAK6vd+QyAl9rnrdEsFaYVvP/gBz/gzjvv5LnnnsN1XY444gi2bNnCS1/60vka37zR19c3rjRGBa/9/f0jlr/vfe/jTW96E9DKvN9///0ArFmzZsR6KhtsWda8ZI927NjBqlWr5ryQaPS4lTQmiqLskWp7UBzHMbVaLQvUXNelUCiMO675Gnez2WR4eDjTM6tMaE9Pz6wz8Av5Wc+EqQKfb3zjG2zZsmXE/Jzvubl9+3Z6e3uxLIvd9YRaQ2KmCREG0vNY0eOM8UqfbHtBEGQZ/CRJyOVyrLZtVtQT9jRjUmCNY7KiaGEKWNlMGKrHJDKlP43py4Fjiaxh2HhPACb6ntM0xS3FVPyk5d+epBSFwbpeG7eDzPlAkvLCnpB6M8KyTTxDsKZsUfLmpmldN8/PmczNudjvZCzE56XOQSownu3fIWXKU9UKUB339d0BrFq1muIkc0o9CVPjbG/SpDLX+Xx+SX7e8zU/NZqlQMcRzvnnn8+3vvUtYJ8TxN13382NN97It771rSywXSocfPDBPP744zQajRFFq7/73e8AxtyQrF27lrVr1wLwwgsv8MgjjwCMOTEtREZjPpoTjR638q+2bZs0TWk0GpnlHbSeXPT29o7I2k81pumOW0liVBfN0Xp6dfFRgbpt25ncaa4+n4X4rOcDdcEeHZDO934NwyCSUAnSvYGqgTAEQWJQD1P6Cp0Fr+p7V9IZ1brdcRxWlB36ijZpCqbYZxU5UDTpzbeWCyOd9dxc0yPwnIRmJCm6Bj15s6PAHcAVcECfy7ALlmXj2oLcXnlDEEt21xPCROKagr5C59vtZNyzZb7nyXhzcyH2q/Y5H5+XYRj4vk8QBNk+VBfXmf4tMk0puhN3gN30J1DwLMQET3KUpSmQjU8IkdV+SCmz1+fLVWYpzk+NZinQ0VH1ta99jdtvvx3TNLnooov44he/yKc+9SmOP/54fN/nwgsvZHh4eL7HOqeceOKJSCn53//7f2fLoijixz/+MS972cuWhNOMyn4PDw+PaMYxW5QsRjX0UBmO9q6Waj0VYM+1tlF50FcqFWq1GpVKJdt/HMdUq1UajcYI2Yy6iOoT+uLRyj4me5saSeK9zZOEAckU9nbtqA66CvVz1r5dGFjm2O9aLVeZz9l4VQth0F+wWN/rsKrcWcZdEcSS7dWIoYak6u9zcIqSlBcrEbUgwQCqQcKLlYg4Wb4Ng/YHgiCg2Wxmc011Ae7UvWs8TAH9BZOjVo19bYUD5/7ZgSTxxM3J2p1j1Hlc+d0D+jypWRQuuugiNmzY0NG611xzzYzn6datWzEMg2eeeWZG7+92Osq833LLLQgh+OEPfzhC5/6xj32MLVu28M1vfpM77rgj0zIuBTZu3MhJJ53EN7/5Tfbs2cPatWv513/9V3bs2MHll1++2MObEhXcKiuwMAxJkoRisTjrTIfSRLYzuiOh2r/SUAohKJfLc+Y2oxqMqEx/kiTU63WEEFSr1WyfcRwzPDycFdrm8/lxC5E1848qkkvSCJk02FMJKXgOURLjxymrSvmpN7IX9d2quay+76UQcMRJyrbhiCiR2KKld9+2J+SAPocwSQkiSTnXOvU6FlSaMX4sKc6gsFfTHSjnISXNUomN2RR9GobBmh6b955Y4P6n6/z4d5CEcOhquOoNa1nT42SdhUfXaKmnVVEUjWi4pOpI2m0kl8IxpVm+NBoN/uf//J+cdtppnHbaaYs9nCVDR8H7448/zvHHHz9ugerHP/5xbrnlFh5//PE5H9x886EPfYjbbruNBx98kFqtxoYNG7j66qs5/PDDF3toUxJFrQY0KrgdLS3oBKVrVydxFfQqpw+VfVcaw/aOpo1GgyRJsouGegrQ29s7J49Jx/Ogj+M400Grv7tcLhNFEbZt68C9CxBCkPccVpVCdtYEESZpklJyJDmr80BGFUK3P1WZ76YxiUxpRpI0Bds0xnXx6IQgloRxSzaUxCmuJaj6Ej9KacVJI4MlAx08LRcm6v47UxxL8Mq1Dn9y4GrOO16ShAE9BcGGgRymKbJzs+qOqsagzpPKZUlp8kcfV+3v02gWg0ajkZmBjA7eP/GJT/DRj350EUbV/XQUvFcqFf7J6PmYAAAgAElEQVTkT/5k3NfU8vE6rnY7juOwZcuWJfXEQKEyKu1SkelIV6SUVCoVwjDM2ocLIejr68M0zawOQGki8/k8uVwue7/qVKgwTTPz5Z6LAMuyLJrNZrYPdfFResf29dI0pVAoaI/5LqLomhRzLnHSkswIkmllIVWRdLub0Xx21Y2TlB21iEbYCrANYE2PTdGd22y4axmYApqhxLEMwjjFFOB0WMir6U4cxxlTYJ3P5+dkzuYcwfoVLpE0aDYFrsWkEi4VnKtERhzHWYKjUChkT1FVAzSNpltR0kfNWDqKslTB4LgbaHusrVkYVEOkWq3Gnj17soz7dIqD4jgmDMMsQPI8jyiKsmDdsizK5TL9/f309/ePkeMoZwVFkiQdNXjqlFwuh23bWRFYmqYUi8URMhqg48ZSmoXFMAws0Qo83L0Z7PYMXyOUDDcTqn4yod5byRBmo1vvlEozoRGmlHMmJc/EsQx2zFCL7lgCxzKoBa2/rRFKLAGebeBYgrU9DqZoecmbAtb0ODhz4P2uWTzan/xZlkWhUBiR7JgtjiUoeSZ9RQfT2OdzrpIo7ceWksaomwl1HKmeC0KIJddlVjP/KH35k08+yQUXXEBPTw8rV67k6quvJk1TnnvuOd785jdTLpdZs2YNn//857P3TqQvf/DBBzEMgwcffHDcfT7zzDNZfeG1116bJSKvueaaEWNqxzAMPvCBD3DbbbexceNGPM/jmGOO4aGHHuro7/zhD3/IKaecQqFQoFQqcdZZZ/Gb3/ymsw+pi9BXjCWGyphblkWxWERKyfDwMFEUUS6XO75LHU9DbBhGVgyqimBhfCeCfD6PaZoEQZBl3OdCb6+wLIuenh56e3spl8v09vbiOE7W4lwVhAkhKJVK+u68i1CBgipmVjdYKgGwpxHz30Mh2ysRLwyHvFgJF71g048ldlv227EEiYR4b4A0naJs2zRY22OTswSRbGXV1/buC9DzjuDAPocNAy4H9jmT+nRrlgbqSVGhUKBYLJLL5eblhtOyLBzHyZoo2Xsbho1GNUpTT2Rnq7/XdCdBLPnGzwa59vvb+MbPBgni2SdR3/GOdyCl5LOf/SybNm3i+uuv56abbmLz5s2sX7+eG264gUMOOYQrr7yy44B5IlauXMmXv/xlAM455xxuvfVWbr31Vt7ylrdM+r6f/OQnfPCDH+SCCy7guuuuY3BwkDPOOIP//M//nPR9t956K2eddRbFYpEbbriBq6++mt/+9recfPLJS66wteOI55ZbbuGWW24Z9zXDMCZ8XQWEmrlBBRC2bWcZ82azSbFYnJZsRAW7KmOuApR6vZ5lZ9QFYLygXGXm1Xc7H4+3lN3aaAqFQqbFl1JquUwXYts2QojsJlH9i5KUwXqM54gsWK40E4abMQPFhatXaO8yCeBZgkZTonKlQSwRRkochsRpkt3kOo7TUV2FawnW9zlEkYFt2+Nmj7RSZvkxk4B9vGZkE6GKwtUcHC97rjLt7daV05VVarqfIJac8+Wn+c02H0gBg+/8aojvXXbwjK1nAY477jj+4R/+AYC/+Iu/YMOGDfzlX/4ln/nMZ/jIRz4CwLve9S7WrVvH17/+dV796lfPeF+FQoG3ve1tvP/97+eII47gggsu6Oh9//mf/8kvfvELjjnmGKDVNHPjxo188pOf5I477hj3PbVajSuuuIJLL72Ur371q9ny97znPWzcuJFPf/rTI5Z3Ox1HWzO9a9d3+3NP+0lYPQKdbgt6lbmv1WqZfZiSJ6giVFUEO7p4tH0bi5XxVlp3fWPYnbT777eTyJREpiOy3JZpEC2g9Fa5cCjdr5SScs7ET1KGmy0LRwMYyBsYJJhtjctUjch4x0O7DZ86HjuVJsRJShBLUlqBv60j+/2CdqMBNR9d153yvDrZvFJzVSV3VAKtfc5rlj7/z6ND/GabT5Q9tUz5zQs+tz82xEUnDMx4u5deemn2s2mavOpVr+L555/nkksuyZb39vayceNGnn766RnvZzaccMIJWeAOcNBBB/HmN7+Zu+++O0tIjuZHP/oRe/bs4V3vehe7du3KlpumyaZNm3jggQcWZOxzRUeRl75j7x5UNtr3fSzLygr5ZhJEe56XBcEA9Xo9a6AC+y4CM7kBa2+Qo9EoLGFgCYMglrhWKzPvRwm93sLMExXEqGykkvYII2Vtj4MfSeRetxlDRsTxvkBJPUkY73hQ9SLqNSVv6IQwlrxYifCjFEixTcGaHjtr6qTpDlSHUtiXIZ9tIKw6oCrdepIkIxo9zQSV0FHBentTIx28Lx/+uDuklXFvJ+XZwXBW2z3ooING/N7T04PneaxYsWLM8sHBwVnta6YceuihY5a97GUvo9FosHPnzjHdmwF+//vfA/Da17523G2Wy+W5HeQ8o4XCSwyl8fZ9P7MIG+1qIKWk0WgQRVHW/nqiQEK9T+kn2x1jZlIMqvatOp26rpsVmWo0lmmwumyzbTii2ozYVY9xTYFrJXiOOe/679E3lcrBKE1TLGFQaHOXCcORvQ3apQ2jtxmG4YgASQVlnRw7u+sJQdwqloVWMe+uasQBfdrGr1tQ9ovKzx2YUG8+HVSXaLVNZQQw2yfW6ulp+w2G9nRfXhzU79B6Rtg+VwxeMjC7OTle1nqiJ/tTNfzqJjcjdf6+9dZbxw3ul1rd3NIarQZoHUilUmnc16SU1Go1fN/Htm2SJGF4eJienp4pLzSqEMr3/SyjXywWpzWpG43GCIvHZrOpn9xoRlBwTdb0wLODASuLNmVPkKTwwt5GRjP1V58JkwVJ6vhpl2YpLf9421DLpxsg+bHEMVvuMylgGq3GTjJF6+K7BDUPVIY8TdM5c7pqn4MTBUNKIqgSK+3B1HjzTZ3LVdEqtAJ6HbwvH847ro/v/HJohOb9Fes83nVs34KPpa+vtc89e/aMWP7ss89O+d6ZzEmVRW/nySefJJ/PZ+41o1G25qtWreJ//I//Me19dhs6eF9mqCygOlEr//UwDDvKEhUKhSxTPt1Ht8qeTLXjVgRBoAN4zQgMwDZFlm22gWqcEMYp3jzWrVqWlUlllExhonluGAae52Va9tFBU/t6QPakC6YnNbSEwXN7QkgNUlLiGNb0WAgdZ3UN7f00YN93PtsMuZqPyg4XGNOMTN0oqDnb3iVVneMdxxnT1M7zvEzmNRsZjqY7cS3B995/MLc/NsSzgyEvGXB417F9sypWnSkqMH7ooYf4sz/7M6B1w9tJAajqKTM68J+MRx55hF/96lccffTRADz33HPcddddnHHGGRM+JTj99NMpl8t8+tOf5jWvec0Y44GdO3dOGPh3Izp4X2ZMlLmZVjCxxB4faZYHC1HaroIapQcWQozxyW5nosLb0dsE8H1/RACmalKmwhLghymOqY5biZTozHsXoYJmFcRPJRfoFFXD1F5MGsfxiKI7Fbwr16IwDAmCIKtZUk+GRmfWVWCvWb64lphVcepc8YpXvILjjz+ej33sY+zevZv+/n6+9a1vdWQokcvlOOyww/j2t7/Ny172Mvr7+zn88MMn7XR/+OGHc/rpp3PFFVfgui4333wzQNapdTzK5TJf/vKXefe7383RRx/NO9/5TlauXMkf//hH7rnnHk466ST+7u/+bvp//CKho7RlhnKeCcMw606ZpumC2CmqwEj5w0MrG5nL5UYUwmo0ni3I2QY1P2l1Gk1SHMvAs+c/Wm13VFKa49mgdJ3tTXlUoNcJMoUDeh0MA9IUXNsgiFJimWLq9HtX0N67QKGaHs02+67kOO32vUEQjGny1P5Up12iZVkWSZJk81C9rpMwmoXktttu433vex+f/exn6e3t5ZJLLuE1r3kNmzdvnvK9//RP/8Tll1/Ohz70IcIw5K//+q8nDd5PPfVUTjjhBK699lr++Mc/cthhh7F161aOOOKISfdz3nnnsW7dOj772c/yuc99jiAIWL9+PaeccgpbtmyZ9t+8mOije5mhClqr1WpWRJfP5xesaFRdcFTBqvJkr1arC7J/zdLAFAZrehx212L8RFJwTPoL5qJ2Gk1kSpikGLQaK4kOA+d2hxmFyqR2gmMaNAwoeq0saZSkCJFian1y16D81ZU711xmtduDcWidw9ttR9X+1Xrtspn2bSizAbWuGvNMrIQ1+x/XXHNN1tm0na1bt7J169Yxy0d3TT344IP50Y9+NGa90efB8bZ1wgkn8Itf/KLjMQGcf/75nH/++eO+BnDRRRdx0UUXjVl+2mmncdppp034vqWCDt6XIao7aXuDnIVCCEGhUKBQKGTLtN5dMx62abC6Z+EaM01GEEt21pKWXaMBRcdkVcnC6kC30q5/bpdUTIXKzpc8QT2SVJpJln1fWexs35qFY75kKCpYV+fpdgcaJe1SWf/211S/AnWOV97uyumoXe/eiXe8RqNZOuijeZmyXAuUwjDMHGym46Wt0UxEmqbsqsYECZRzLRlE1U+wTVhZmvrmQkkUVMGqanimOhePt78oijIp2f/P3t3HynaV9QP/rrXX3nvez5nel957W95bRGLB8mIUaqgWwX/KHyiR8GZKNURjQmICRFB5UwnEaExME/KjAUOaaIyoKFGSVkoEiYK2WGjBltJAX27vvefe8zIv+22t9ftjn7XvzJy3OefMzJk95/tJmt4zZ87MOnvWmXn22s96Hs/zcKbpo5/mDawqvhwqWUmLzfXtGGzU5JoruRNB11F7MHh3wbz7vvu3m4duxd0F+u7fRFR+DN5pR8aYYvVmEiXRdpNlGaIoApB/mG0XlPd6PaytrRX36ff7iOMY7Xabl4XpwLTNV95rYf52KESee99Lx7tiNJieME5KhWvo5FZCsyyDArBcYz+E42iwMoz7erv3Wneb28Pk9m0MBvGjey1coM+rn0SLhcE7bcsYg263W+Suu1z60fJKez3GOB8aaZpibW2tCHyiKEKtVitKSAF54L6ysoIoiooaxpVKBXEc79gOmWgcUgBSiKENopkBQjX+KuV2VWl2Sp9xKRJuFdRtOBzNY6bFMripdDQPfdwrpTtVuXGP5XLlsyxDtVqFlBJZlnHVnRbGYTeILwoG77Stfr+Pfr9flB9L0xQbGxtYXl4e60Om2+0WpfM8zyuCeLexKo7j4vJwv98HcLUroNYa/X4flUql+PDpdrvwPK/I3XQtxQH+MdPhSCFwsqFwYUMj1RrW5gF9uzadfPzRvPhJlR2k+eVquTtpmqJSqex70cGd9LmAvOgOvJmmZYwZKj2ZZVlRjpKIFgeD9wXmVr4Pkv8+ulrj+35RzWCvx4qiCL1eD0opSCkRx3GRpx7HcRGIW2uRJEkR4DsuYHfP5VJ3wjBEmqbF6tJgrWOiw2hWPPjKQz/WgMi7wE6r06tSqrhiBKAIuBi8Lyb3PjeYTqW1RpIkW8pB7sUteAzOH5eyNZjnPthjYPAqzzxyJyBuc+08j5VoXjDqWVBZlqHT6RSbl6rVanEZdRyuJJmzn7rVrkSl+6AKwxDGGGRZhn6/P1Qf2a3CD34AuVV1N9bBToLVarXY3OX7PhqNxlylGhhjivG5Kg/7STWio1MLJGrB9OeSKzc4mPLFtK/55zYau6B5sDb7OD87+BrvpyrRKJcj735+p+7AZZhT7u/AdY9175nz9J5ONI8YvC8gY0wRuAdBUOSvCyGG8sh3U61Wh9JbjDGo1WpjfViNfjC5lXMAxeqK1hq9Xg9JkgDIczbdc3meNxSUK6VQq9WK1fsgCNBsNtFoNPZ7aKau1+uh1+sVJydRFGFpaYkBPA0ZrQ3vriIxaJlfbqOxe41cGsxe74nuPU1rXdzXGHOo4NptRC07dzLkuhy79CJXbYeItsfgfQEZY4rA3X1wuNvG5WrFR1FUBMzj5k2GYYg4josaxK7bqyupF0URkiSB1rqo1OEuB7s0mNEgxv0Obiz1en2oNfg8cFcWBtuUu9KWDN4Pr5cYRKmBFAL1UBYNnTJtEWV5ikCoJPwZ1EfvJQaXuykyA1SVxIl91GV3+z5cwALkcyfLMuYmzymXPz5YdWvwKuFeXDlIdyWUeeg59xng/g7cSY4rXkBE22PwTjtSSh1odTsIArRaLfR6PRhjUK1Wiw+5ZrOJ1dVVxHEMpRTCMEStVitqHG/3gZYkCTqdTlHXPU1T9Ho9NJvNSfyaEzX6oXOYy+N01Vo/w+W+O57Aal/g3HJ+QnR+PUWcWgAWvidxdsmfWr46AESpwTNreQ6zksB6pJEag3NLwVhdWd0cGQ1OWM5vcUkpUa1WS5OHPivcvE10MAzeF5BSCpVKBVEUFRuXrLX73hx1GIMr9S6Nx42t1WoVl0rdqlWv1ytWtKrV6lAQP3p52gXwbtVmXrgrC0mSFOUstdaoVFi/+zC0sbjcNaiEqlht34gyXO6kMBBIMotWNU9B6CUGFzdSPOeacGrj6ScGxgLNMB+L71lsRAaxtqiOEby7wN3luw9WDKH55K5gupVzAEVH0/1yr/c8vXcdFd/3iz1CLpD3fZ/HhmgP/LRYUPV6vbis6zZ6zstlWpfD7t60u90ukiRBs9ksOk+2Wq09xztvb/CuFv7GxkZRmcdtFKaDMxbQ1mIzbkeapMiSGBuphLFAtXo1UA+UQJIaGGPHWgU/2HiGr6Tsdx66TXluox6AYhM3zS/3fjT4mo0bvLtKW4MLDgcpFbloPM9DpVIp+hy4kpdEtDsG7wtKSjmXGzqBfGzu5MLl1C8tLRV13pMkKVavAQwFOu6EJAiCoozkPPF9H8vLy8WH9EHKdNIwTwCBJ9BPLUIvQ5ImyLTAUsNDN9bY6EUIWrV8bmQWyhNTC9wBoBp4QE8jSg2UJ9BPDCq+QLCPXHsXtAym0MzbySgNE0IgDMPifcm9XuOkxWVZNrQxU2uNOI5RrVan8rpba4srrvNeeYbVloj2j8E7HQl3cuFSSgZX2UfbebvqMuvr60jTFL7vo16vz2XwDozfLZHGI6XA6abC+Q2DZzby1ctTzQDLNYVG6OHHlyOsdjMoJeEJ4GRj5ys2md6s8nKITa21IM+rf3o1wXrfIFAC19TDojvr+L8X50gZHSTYdj0r3M+6ilvTSJ9xJXgHN/P7vj83V16J6PAYvNORcvXgXUUalyder9eH7udW3d0KTafTQavVOooh0xGwNk9XkUIg35pqYWyeJnPdsg94+eX2QAmEamtQrI3FSifDeqQhBNAMPZxoKBw0bJJCwBOA70lIIXCpk8H3tn9uou02Zk7raovWuigQ4J7XpU9yhZtoMTB4pyM1micuhEC9Xh9aJRps7uQ2grqurS7VhhaXMRYXOxl85eHMcog4BjYijRWZYDm08JVCGEootXNgcrmb4Uo/QyPM73Oln8ETQLu+/2DGWotLnbwMaruSB+udWGOlo3F2iakvtJXv+0VQ7QL2wZKykzR6YrCf9B4iKgcG73TkXE15d2l5NJ3A1Xcf/DAa7QBLi0tbINUWzVDA29zsmWYx1rsRqkDR2GWnzcHWWnRig1rgFakttcDDemywXNv/SrnZHE84UI4y8AS6UYJ+kBaNyJimQI7riury0Ac7UE+aW213QTzLLxItHl7jpbngyixulwfsckVdW3KW1jtePAF4Mi8JCWw2coGA72GoOoXrKryToa6/1kLKgwU0cnMDrRsPAPTiFNJeTe1yjZh4glkOxpgiB31a3HvctCsLeZ5XNLBz/+303kpE5cToh+aeUgr1eh0bGxtI03xl06XWzOOGVZosKQVONRQudg02os0AyxpUpIXYvFLjNi9nWbalfJ8QAu2ah2c3Mmibz5ckszjTOtjbnxACJ5s+zq+lWO9nAASUANrVq903lVJFh2GaXy4f3J30uYoyZc4Nd7+DUmqo2gxX3okWB4N3KoXB8mye5yHLsqLFPC2+eigRBgqpzrutrkYCF/oGXa1xqgGEave83qWqByGAjTgP3k/WFRrhwVOvqr7E9e0AcbbZMdMIWHO1ugdX3MtBa128j8yihOOsCCH43ki0wPjXTaXQ6/WKZlNA/qHb7XbRbDaPeGQ0KxVfwliDfmqx1AgRygzr/QRPpRLXLSsESu2YZy6EwFJVYWkkJf4wQbbvCfibK7RaA1GUFfX9XffUMgeAx4F7vdzr5BYGjDGlXn0nosXG4P2AGo1GcVlykPt6GitvLs/b5XxP+rEH/z/pxz7suLMsG0pBcLXg3QawSZv3Y73XqtqZM2e2zM95f413e2z3/36iIYSFrzzIeg2e8rDWTZEYCSECbMQWodGo+uOlq0xq3K5rapqmMMbA930opY7l/DzI3JzE8+5mt+M1eNvov8d97P3cfz/m+XXe67Hnddy8IkGLgLP4gG6++Wa02+2hRhiD3ObKSWu320XQOg3zOm4hBOI4LirSuEvdrtnJNMzzsW6327t+/8477wSAbednmY+XNRpJqqG9/IPbVz6EAlZjCaQGHiIAAmeWVFEWchbjdv0JXFWkwUZj0zrey8vLQ52H3UbFSa32H3Tch5mbh3nevez0OhtjEMcxgPx1dGUd9zsfyvx3NQ3zOu695idRGTB4P6AHHngAN910E06dOjV0u/sQn8Ylc2MMVlZWcOLEiYlvhJv3cbv0mCRJijbjjUajKLk2j2PeySSO9cWLF3f9/t133403v/nNQ/Nz3l/jnQyOu1WT6KYpepmFkgKptvCUD18JtKr521mcGVzpA62qB7lH19NJjHuwo6UL2oUQRdOxaR3v8+fPo9lsFiucLkg67MriYefJQebmJJ53N7u9zq4yiyvhuN8ToEX4uzpO495rfhKVAYP3A+p0OsWH9Xam0T1PCFE857Ryaed13K4WvFutc0H7tI7HvB/rnVYtnfPnz+84P8t8vEJf4tyywFpfI9UW7ZrERpzB2KvPGyqJTmRgIOCNjCXTFnGWB9ehEhMZtysz6Pt+8Riuo6V73Gkck9GumVpraK0nVl/+oOM+zNw8zPPuZrfX+bCdR93rv12PisOa9/eh3R5zXse91/wkKgMG71Qao41vWNHjeAqUxKnm1SBJG4vLPY1Q5WXxotQi8AW8kc/1KDU4v54W9dmrvsCpxmQ2JbqSfI5rjjPtDavbPSfNTpqmReqSO4Fjcy4imjYG70RUass1hSgzWI8MJADlCZxq+EMpM9ZaXNxIoY1Fq7rZ1CnSuNI7fL7vYI676/zrUjCmxT2n28jtUgkYOM6Oa8Q12GBu9GoIEdE0MHgnolJTnsC5pQBRlgfNgZLwR5bdjQUSbVEZqEITKIEoMwgP+fyu0ozbUA3kfQk8z5vaZkAARbdO9xxBEGxpUEXT415r1yDMXQVhmUkimjYG70RUelIK1IKdU1SkyIP8RFtUN1fkU20RqsmsjruVV5cq4/49Ta6TpgsaWVN+ttzxHn2d+ToQ0bQxeCeihSdEnkrz9GqCjUzDIm+ydE3Nw2p/Ms+x3zQZV7e+mxhYK1ALJeqB3Hfwx2DxaAxumtdaF7XNuepORNPG4J2IjoVaIHF9O0CcWQgAFV9gQgvv+2KtRZqm2OjFeHotg5QewtDHlb7A6YZCu8635TJwVz48zyv6TgRBwJMpIpo6fkoQ0bFR8SUqA2nh+20gM1hPXcr9r5IDeYWSJEmwHuc14CvKwoNG4Pu43MvQqnrw9qhPT/NBCFHU1Z9kgywiot0weCciGoPrxOmCd8/zEATBvtNlXFUaYw08AXjSgzYaoVCITb65lokXRES0EwbvRERjSJJkqJKIa/ZSqVT2/Vhaa0iTYqOnYUMJpTx0E4Na4B1JKg+hKPE5zcZCRESTwOCdiGgX1lpsRBrrnRiBUmhW8uo2nufBGFNUG0nTtAjolVJFOsUoKSXiOEYzFEi1wOVOjMAPcaItcarpM3A8Aq5muyu76fv+UMdcIqJ5wuCdiGgHeXOnDJd7GdLEwpgEvdTHtU1VBO1CCCRJgiRJilX5JEl2bdTkAsPTTYMTjRAQQKuu4Jdg2d0Yi1jnv3vgidLn51trkSQJsiyDUqr4GgCbXhHRXGLwTkS0g35qsdrXaFU9mCBvxLTaS1FVFo1wszlTqtHtJ/CkhD8QrGdZtmPwN7gy77qjyhIEwam2eHY9QS/Jg/daIHC66SMowUnHTtzxdxtOhRBDG5PnhTEWG7FGklkoKdCseFDe/M8ZIpo8Bu9ERDsw1gKwkEJAbgZ3sUkhPYVKJUA3yYPZfpRBCuBU08dybfe3Vc/zkKYptNYQQhSB4343vh6FlU6GfmLRquZXGDqRxqWOxrnl+R97mVlrsdLVuNLXUBLQBtiINc4tBRMJ4OPMQBtASZT6RIzouGDwTkS0AyXzldhUW/ieAISEUj7q1QCpAS5spKgEHipegH6S4MJ6CiWB0LPwfX/bx/Q8D5VKpUitKUt9cGst+qlBJbga3IW+RJwZGGNLceVgO1JK+L6PJEmKEyj3usyLKLNYjTSaFQm5OU/W+3mDr6Xq4WoTXe6muNwzsAAkgFNNhaXq/PzuRLQV/0KJiHZQ8SVONRQudTJEeRo0TtQ8VH2BbmJgbB7UW6lQBRClMVJt0KyGUEoVGyBHeZ6HarU6u1/kgAbz+oUQ8CSQuRMZAJmx8CRKG7g77kTLXQ3ZbcPxUdi8AFQE7gAgBKCNwWEKi/YSg5WuQS30oGR+knphI0OoJCo+V+CJ5tX8vDsREc2h5ZpCNZDQBpACRVAjhYCFKMoL+oGPIBWoVX0EwdUNrWXkNm26kw9X0/5kw8fTqwk2ovx2AeD00vZXGMpECDHXm1OVBDyZp7eESiIzFsYC4UiKizYWl7sZeqmBkgLtmkIt2DkIT7UFbH5CdqWXwRggywySpmLwTjTHGLwT0bGjtS42JY4TZI8GSQBQ9QWWKh7W+hmUJ5AZi0ZFoh6Wv8VSlmVFLj6Ql8EEgFoY4rp2gH6iYS1QCz1UGeRNXaAkzrR8PLueYj3VEABO1r2hwNxai2fXM3RijYovEGcWT0qUbZcAACAASURBVK8muK4d7PgaeRLoZwaXe/nJmBTA5b7GyZ5Gi6kzRHOLf51EdKykaVrkmxtjkGXZgVbJ81KP+cpmkhkoL68AUvbSicBmEykpixxwIQSyLIPv+6j6kgH7EaiHHp5zTb7qLsXWE8o4s+jGeV68EAIBgI1IoxfpHV+vmi8hYLARZ2hWPCTa4kxDIckMksxw8yrRnGLwTkSlp7UuVofdBsTtNoC6ZjwuMNVawxiDNE2LGu37IaXYrLxS/tX2RTJ4VaUMVXzG5Xui2G+wHSswNO+FAHY7LRUCWKpKWKsQeALKk6iHEt3Y7PpzRHS0GLwTUalprRFFEYCrK8TA1gY7UWpwaSNBr5+iUfGxXBNFoDNvNb2Pmtts646LMaY05SzdCVqWZcXre5h8dncSIISY698/8ARqvsBGpFELJLSxMMaiukPOe5wZnF/NsBoZXO4anLvGR6Mi0U0MKr6AvwBXkIgWFYN3IppLg6uno2ktLqgUQhQr7i4/W0qJNE2Hgs04M3h6NUFmDLS1WOmkSLTFqboofoau8jwPnucVJ0K+7+9Y+nLeZFlWdEt1dfTjON53apS1FmmaIk3TIngPgmDujkOSGaQ6H9+JusJKN0OUGkghcKYVbLsHQxuLZ9dTRJnGiYYPITI8dTlB0vRxTd3DqaZf+gpCRIuMwTsRzR1jDKIoKgJ3ay08zysCcxewe54HY8xIqoDYEqh1Yw1tgVbVR6aAOEmw2ktQV16RZkNXuXKJQRAUgWtZGGMgpSzGLKUsTkL2w6VieZ4HIUSxou/m4TzoJQbn1xJom5eTrAUC124G3mlm0E/zE9WKP7yROtEWUWrRCD14nsS1SyFClWG56uF0i4E70bxj8E5Ec8etlCqliqApTVNIKZEkSbHKPpja4QIqrXURcDnW5vm9AKB8H0JKpDZDGCokfVWq4HTWynZsRk/eDnryMVjjHsjnlzGmODk4asZYXOykEFKgubkhdb2vsdbXaFY9PLOeIdUWUgKmq3G6aYe6/wqBoePkeQK+EgzciUrg6N+BiIgGuHQZt4HUNQhygbpbVRVCFEG67/vQWiPLMkgpEYbhUMBWDTwYm6cYGGsRZUC14qMabr+xlcrLbVZO0xRZlsEYs2U+jGP0/qPB/FHTFkhSi4q6Op5ACUTaYrWrkRmLVtVDI/RQDSRWuhkynf8OoSdQCyTWY4skM+glBlJgIcqcEh0HXHknornjVk9doLRb1ZDRBjsusB9UCySubSqsdDIkmUWoBE41fXhcvlg4UkpUKpWhajMHCbgH07TcfPR9/0hX3a21SLWFRb7ypjyBROfzGcibLdUDiURbqIGqNEoCkQGMtQDy1fVrmz6k1UgsECqBds1nYyaikmDwXgJZliGKIqRpin6/jyzL5robINFhuGA8juOhJkouLz2O46LzpzEGQRCMFVAtVRUaYb4CrySKPGZaPIM16oGDVRMSQqBSqRR9AKSUW9Kx9pJpi9Vehn5qoDyJds0bK0A2Jg/QB59JG4tLGxnWN7vbVgOB5ZqXn5CmGhZA6AssVT1sRDpv1qTyE9l+ahH6AmogJUZ5+Qms29hLROXB4H3OGWPQ6XSK2tRpmmJtbQ3tdrvI+yVaNIOVQtyK52Dg5DYgKqV23Gw6WPtdKQULiSizsDYPckLFgIV251KyDsIYiwsbGbqJRqAEeolGP9G4rh1s27EXyFfWL3czrPXzAL0WCGiTn7yudjOsRnkzJQGgExlIYXFu2Uem8xz2ii/hewLLNYFUA+uxBmyeTsMKMkSLg9HfnMuyDEmSIAxDAChye10pPKJF5coVWmuHqoUopfac+1mWIY5jAHkAttGLsNIDjMhPAASAc8sBKgf4E3IlBF0dcd/3+bdIW8TaojPQ8TRU+YbSXmx2DN5XexqXunmddiGAK70Mad/gOgDd1KDiS8jNE9haKNFPNa5VCrVgOCj3pMC1LYXlLL/SlDdgYuBOtCiY4FYSg5c1XdUDItqey1NWSsHzPKz3LfpJvmrZrHjwPIELGymM2X8fSVf5xuVBx3F8oFKEtNiszU/0tNZIk3RzjtjNvPPtrcc6b5Dk5Sku9VCil+Sr+FIKDL7tGwvIzRPR7QghUPElaoFk4E60YLhcNOdcnqUrk+eCdtalJtrZaHnARFsMLnaGSqAXG+w3do9TjW6UIBhoAOWq3HD1nQb5ErA6wTOXM4R+HmQL6aGyvPN+JYm8ikxh89+9xCDNLJ5ZS1ALBJoVBW2A0021JRWmbHX5iWj/juWnzX333Ye/+Iu/2PZ7f/VXf4V2uz3jEe1MKYVms4lOp1N0+ms0Gsdqw+poHW9aLJm2SLSFEHkJu0nk5SqlkCRJEcQoaZHoq1Vo4tTCV2Jf1WaudDNc6iTo9TMEyuLalo96yDlJ28vTGzXWYiDt5SePN5y0u6Zqtaoezq9nAAyEAPqJgfIszq9n8DyBdk3hSjdDqCyec02AejC8KTdN02IzdxAEMz2hHOekgSlnRJNxrP9q3va2t+Haa68duq1erx/RaHYWBAGWl5eL/PdKpXLUQ5oJYwz6/T6iKAKQH4d6vT53QbwxpqgvPlrlgnYXpQbPbqSIUgsBoBF6ON1Uh77M7/s+jDHFhtcTjQAiynOOAQslBU41Aoy7QNlLDC52MwTCouZbRHGMp1cNntMO4AnDK2G0xZVeBgPgxlMhtAXi1CDONLS+2sNgVKuS377Wz6vHnGoq9NYAKfMa7PUQaFQ8JJlB1b9aAtNaiyRJkGVZsU/E7fmYdnCstUaSJEUPhiAIdgziXXdkKeVMx0i0aI71X8wrX/lK3HjjjUc9jLFIKaEGLtUfB1EUodvtFk1X+v0+AKDZbB7xyK5KkgQbGxswxuSb0sJwLk8w5pG1Fhc3UmTaYqmaBxwbkUbgASebfnEffYC8dPdaDDbWqVWBODOwyDfwBWr8vSNxapAlKZTKAxTf01jv9xE1JNqNCoMP2iLO8iovAPISjQroRoDZMUs9n6dLVYWlaj6fjDF4wgoMXozypMunv3qb29Q9WPZxFulcxhhEUVQ0TDPGII7jba8Mu1X3wapRLL5AdDDH/i+m1+shDMMdV0Lo6MRxXGw4dEFYp9OB7/tzcfXBlfEEUASKURRBSjmXV3DmjTZAnFnUNlNPhBAIfYF+mgfUvcTgUidFmhlIGJxZlqgGV/9O92rCM9qsSXmAOuDfuRAW/SRBzQ8gPQnlKUQ2he95xyqFjcZXDRT6iYI2+dWfRANh6CNQ+5uDtQB5YzHfQgqgFxtUAzkXDcbc36ALvj3PK7raEtH0HOvg/fd///fR7/ehlMIrXvEKvPvd78a5c+eOelg0wlqLbreLJEmgtS5WeKrV6pGOyxhTNAkC8mBRSsnKI7sYXAmXIi9pl2lbrFCm2qIeeIhSg6dXE3ieQOBL9Poaz66nuL6dBy0uRcA91jRPwHuJwaWNDKs9jSv9BKcb+SbBpaqHis+NgceZtbZ4HxjN+V6ue4h0gH68marlS5xdDva9p6NZkQhqHtZjA2vzEpGnm/7Qc7nKSoNpM4NB9TSNuznWrc67qwHu2PHkl2j/jmXwHoYhbrvtNtx0002o1Wp47LHH8I//+I94//vfjz//8z/HqVOnjnqIhPx16nQ66Pf7iOMYQgjU63X4vl+k0xw19yE5mHvKlJmtBjeqAVebK51sKJxfSxFnGnaz82m75iHebKZU9fPc2Hoo0U0t4swgkKa41O4aOcVxjGq1OvEqG3Fm8MxaAikFzrVDrHQSdBON5yz7aFWYq3ucGWOKk0i32hyGYfH3HyqJc0sB+slmqpYSqI7RXXWUFAInmz7ajbw0qe+JLfPcdSV2fw9A/v457fnprnq5PT8ufXCn98AwDIv7uzHPw/s4UdmU/pPHbRYch8udvuWWW3DLLbcUt//sz/4sXvGKV+D3fu/38Ld/+7f47d/+7WkN98AGPyjcxqCjGoc73i4Pf1pcaszKygoAoFqtFgHaUR8HIA/cqtUqer1esQFLSnnkVwTm0eBGNSBfOQeAZiWAJwX6iYYUArVQIlQSSaaxXaa7C04GU2Xcat5O1S4GV/v3K04ttMmrgFT8CipKYL2vESgg8H0GHsfY4JVAl3MupSwa6gGA7wn41d2vCBlj0U0MtAF8D5sNmrbOVd8TwC758u65Z1kq0j1nmqYwJt+Iu9tKurtKNni1koj2r/TB+3e/+1186EMfGuu+d911F66//vptv/fSl74UL37xi/Hggw9u+/1nnnkGzzzzDADg4sWL6Ha7ALAlt2/wMupB3pjc5dfBFACtNTqdDuI4Rr/fx+rqKlqt1kQD53HG7XK8BysLtFqtPS97umN0kDzISqWCdruNjY2N4kPRlcx0j3nQY72bccdcqVSGUmXc17v93GHnyDhcUDk4jmk+727Hy1XCGL3MnyQJPM9D6AFS5XnBNhPIoBB4gCcsNvoZfA/oRRmqoQ9f5sG01nroaof7vUaf1500uGPiTuDHGTcAGGs2Hzv/mSAI4GfZZuCuiisv2zmq431Y056f283NaT/vpI+Xm1vupN2duA9eERpvXBbnNzJs9DWkBGDzK08nGvljHHTcO83J0ftM4ni7FfTBk4Zxxz3OOLf7mWm/fxLNu9IH79dffz3e+973jnXfveq3nzx5Ek899dS23/v0pz+Nj370o8XXb33rWwEA58+fH3Oku3Mr6y7QUEoVl2CjKCoCHaUUVlZWcOXKFVSr1ZmuPEdRVHxguYB1dXUVtVptrHFcuHDhQM/rKhqsra0BQFEfeBa55fsds9vAetTuuOMOAJObn+Pa7ni5QAfAUMAN5PNcaz30IV9UVtLAet8g1UCggLqVuHhBFFd/3Ie3y+3d2NgYet4sy7YE+VLKbVfLd3qdU22xtmFwZSVfFU10/v91K9Fbn03goLUuUiFc0zb3Ox30b+ooHdXcBCZ3vNycHkyTc/Nxt8WMTBtc6hqsxwa+FKgHAhsx0AzzVBhtLC6tWHRaHirq6vwaZ9yptkg1IATyk98J9Es4rDLOT6IyKH3w3m63cdttt03ksZ599lksLS1t+733vOc9eNOb3gQgX3m/9957AQBnzpwZut92JbvG0e120e12i9XlOI5RqVTQarWwurpafEhcvnwZJ0+ehNYa7XZ7Ypv0xhn32toasiwb+nCK4xjLy8u7XgUwxuDChQs4ffr0gU82XAMSdxzcSs9BjvW4z3fYMe9kEuPeK/D57Gc/izvuuGNofh7l8UqSpDgBBfKANAgCeJ5XbBp3Y8qyrMjXfd4O43YBvJsPo7+TtRb9fn8o/9Zd1RrMjR/ndT6VGqx0M6SZRehLnKh7CNTec2ISxzvLsmK/hxuva74zr/PzIHNzEs+7m51e58GNpvs9ju61cf/2PA+Vys5lQ7Wx+L9n+7iQpggCgb4FOqnBqSUfp5euvqeu9TI0Gz5qoYQvLC5durjn69xP8r0ZerOEZBBInGz5u/ZLOK7vn0dx0kg0aaUP3g9ibW1tS5D+rW99C4899hhuv/32bX/m7NmzOHv2LADg6aefxje+8Q0AW7t+umBip/J1O3FBsQtuqtXqUB7hYL4wkOf5ep43sTfGccbtVrsHVzLdh9444zhMA6Pt8usPeqz3+7zT+PCZ9rjdSvfg2I/ieLkrSi7Nyo2hUqnA9/0iZ3jwJHS02dV24x5nv4W7/3bHYPT33+11roUStXD/b5WTON6jx8c1nnJXD8o4P7ebm7N4Xvecg/suBq8I7bcjaRAExRVIl/u9289vRBnOr2ucbAUIlYCxwFNXElzqaJxZFpBCIEoMLvcMMmQII4mKB1htd32djbG41MvnSWOz4+p6X2MtMjjV3HlPhks9ceOfRhBfxvlJVAbHMnh///vfjxe+8IW44YYbUK/X8YMf/AD33nsvTp48iV/91V89kjEN5jcCV9MK3AbINE0Rx3HR/rrVas18s2alUkGSJEUtc2starXawlXcSJIE3W4XnU4H6+vraDQaC/c7zoJLdxrMhXWrk+7rwRXlwb0Ck/hQVkohSZKh/RG7dX+cR6ObD8s09nnmmgO5INA1F9pvsOn6ULgAeLfNopnZLOm4+fBSAPVQwpcCnThv3bSykaGiBE7W80B6vZei2zN4zm6/iwWS1KJRuTruQAnE2e77bpIkKXppAPkC0uDfJhHNr2MZkfz8z/88vvnNb+LBBx9EHMdot9t4wxvegLe+9a175sVPS6VSQafTQZqmRTUVl0seBAGWl5fR7/cRBAFardaBmxS5smZuU+x+auwqpdBqtRDHcV6yzPeHKissgizLsL6+XnwIuw6qS0tLLAG5T25lz60SuytI7mqSuy0MQ8RxXATug1egDsNtTnV7I8pYls6dgAymFE1jhXQRDW4kHeXmmvueC+APUsHKWovVXoZOkiect0KJdl1tqede8fMmZJ3YoFmRSDIgzSxuOBvgmkYAY/JuwvXw6p6GSiBxOctX13calicA5Qkk2iIc6JdQ3aUZlFtxd/uohBDFwhAXKojm37H8K33HO96Bd7zjHUc9jCEuGHcrlfV6fajkoFIK9XodGxsbB25qkWUZ1tbWik18Qgg0Go19nQgopRb6zd0Fl26zsAssR3P9aW/brUK6DaaDpPSKOXiQ3OOduI3NZQvYB7mxj25kP0iVjuNitMqQC1AHjc7D0X4N+7EeaVzsZKhXfEgpsNLLYIAtKSu1QOKGkyEeuxDjwkYGD8DzTwY4uxQWgX4jlEi13SwLCWQ6D9p3G5aUAqeaeb+EJM1LrIa+QLu+9wnw6FUddkYlKofFjcJKqFKpHHhFfRy9Xg/W2uI5tNbodrulSyWYNh6LyRitwjG62plkBpc6GlGqIaXAyYZCI5zd1Q23+uiq3UzipMFaWzzedicq+zXayGa0Wg9tlaZpsTl6sCfEIJce41JnjDF5haMDzIH1vkHgCQQqz8EWoYf1SOOauhqq+CKEwLVLAVpVD4kGPAk0wuEA+5q6j6dXE2xEGkIAWgPt6t653Y3Qw3VtgSSzEACqgSxOALYzWtJxt6sURDR/GLwfI6MBittsNZjGcNy5FTq3Ap8kyYE/1I87lxLjNqwKIQbq4Ftc2EgRpRaVQCLTFs+spbhuWaAWTP9Ya60RRRG01kXVkMNurrPWFldpXODuylge9oSQJ5Tjc0283GuplBrqDQGg2DTt3v9cx99ZHOdq4GGnNm61QOK6doBerAGbr6CvXx4uj+rKnY6OtepLVMe8yOSuKvZ6veIEZlLpakQ0fQzep2i0dvVRU0qh1+sNrUhNsmLNIvB9H0tLS9jY2ChOaprN5kKnCk2T29DnUhJcwBFri15q0arkwYKSApnR6Md66sG7C7JdWo1beU2S5FBXvlyA5YJ1twnSBZPTFKUGcZYHpxVfIByjlOWi2i4lZjsuYD2sVlXi6chCZQaelOgnGu2aOnCd9TwIv3rVam1zc6kL3F0QH4bhoU42lFKoVCrF5wEDd6LyYEQyJXEco9frzVUAWKlUiqo1LpBqNptFlQTKBUGApaUl9Pt9LC8v8+TmkAaD9uK2zf8P5hlbi926v09Ekhlc7mZY68So+j6WqsMbFg9j9ARlu997GnquxrfJD5+UwNmlYCZXMOaRUqo4aQJQbJqe1mvRqnhIGwqdBMisxYmaQrs+ufd6Vx7UnWi4AH4S+49Gm34RUTkweJ+CJEnQ7/eLy5tpmmJ9fR2tVutIA3ilFJaWloaqzRz1CcW8mkZ94uPK5YG7jdJKKQSeQD2Q6EQGvhLYiDS0AU5MMOgZlWmL8+sp4tQAkFiLMkSpgGfsUFWcgxote3mYTZD7camTQgqB+uaJSC8xuNxNUQsWqxLUuAZLH1prp54OIoTAck3hRNObyQnbrE4KiWh+MXKbAndZ062UBEGAKIrmYif/pC4VE43LbSAc7aB6bdPHBaT40eUYcWrRbihc6uQB14nG5CvERJlBPzFYqilonZcBXe2m8FMzkb8Lz/OKk3W36uv7/lQDR2MsMm3hD6TJ+J5Aqmdz4jCvRlelZ/HeO62geqdeCFxcIDq+GLwT0dQYY5Cm6dCmTddrIAxD1EMPyzUPy7U8WM+MxeWeRqPiTTxv21pADjSLCsMQfiqg4BelQQ/LdekcbAw1TVIKhL5ELzHwN08SotSgHjAVYlG4E8vBqjmTmq9EVE4M3qcgCAIkSVKUK8uyDL7vM0WFjqXtuoS64DbLDJR3NQhRUsAC0FOIeUMlICXQTw1CJRBrIPQ9+GayKVLusay1M1nxPdlQOL+eYr2fr/ZXfIGTDW4+XCSj/QoYuBMdb4wmp8B1Iu33+0VVANctlabLpSxIKVnicQ64pktug91oPenAl9A9DWMtpMjTPSRQtJC31iLLMiRJAq31odJQAiVxdinAxU6KXpzn2p9dCrB+efYr1FFqYGxe6/uwVxhCJXHdUoBE282vxYErndD8cH8rDt/LiMhh8D4lQRAgDI/nhrGj0u120e/3AaBoRlWv1/mhd4SEEENdagEUNbUBoB5ILFc8rG02pREATjcVgs2A1lVHMsYUG19debuDqAUSz20H0CYPnK21WJ/Ibzq+lU6Kyz29mcaTr5wv1w73Vqw8AbVLUx4qF9chVmtd9Jzg+xgROQzeaSGkaYp+v1+stltr0e/34fv+VLvW0t48z0O1Wi0aNQ1u7JNS4HRLoVnNa8Er72qNctfm3pWyU0oVwcxhNoEKIaA2f3zWJVJ7icFKV6MWSiiZX2m42MlQ8SUqPoMzQnGlyZVxdD0IWNKRiBwG7zR33Artfso1upVZd3+XruGqftDR2q0JjBACtWBrUOIC69F8+TJLdd6+Xm2mtfieQD+xyAz7LFDOdeh1lWVcQ73jXD2IiIYxeKcjkWVZ0Z7e8zxUKpWiA+xoc6txSvi51Vz3AefyRdk1sLxGT8BG8+XLyJOAwdVNvGazM5VkUEYD2DSPiHbD4J1mLssyrK+vF4F7HMdI0xTVahW9Xg+e5xWl0dbX17G8vLxnpZ4gCFCpVIZy3oMgYE37EnP58lEUIUmS4jU9bDOlo1TzJZqhh/V+BikFjAWWKx6qPoP3g9BaFydCUsqFWJn2fb9oauZOWAdLrRIRMXinmXP1it2GXhfAu1x1t1o+2OZ8nDKbtVoNvu8Xl5qDICj1Ki3lqVNug6rbz1DmIEZKgTMthUYokWqDQEnUg3L/TkclSRKkaVoE70opBEFQ+mPpehAMblQNw7D0vxcRTQ6Dd9oXt3kKOFy31sHLwm7VbPT2/baXdx9yNF+SzCBKLSzyMob73Zjp5kfZA3dHSoFW1QPAlK6DGty47NLk3Nfz3k/D7c8BsOOcdh1ijTFYX18fe95vt09kL1prGGOKVEWu8hPNv/l+l6O54j5IBoP3arWKer2+r8dxH1gubcZdHq5UKtBaI47jormV61hJ5RSlBs+spcVGTSGAc8sBagGviNDBjQapg3te5pl7f3PNu9wq+2GvELpFFfe4475vaq2LDbKDG2OZbkg03/gJSmPr9/tIkgRhGA5tMHXVYcYVBAEajQa01oiiCMYYtFothGGIVquFarUKz/NQq9XQarWY+lJil7sa2lq0qh6aVQ+eJ3Cxk859kEWzZa1FkiSIomgouN2JC9rdPNrvVbqjYK1FHMcAUHTcdlcQDvu4SZIMBeGDfRV24zaDK6WKVXeXrkNE84tLmjQ2l395tUa3LG7fr0qlgiAIisd0j6WUQqPRmNyg6UilxiAYaB4UeOJqd9H5jbNohlxQ6/LX3Z6YSqWy44m7lBK+7xc/A1wNQOfVaAUsVz71sIGya142mO7ijuNeq+/bNX/iiTXR/GPwTmMbzEt3aS+Dtx/k8biqvtgqnsRGrBFsvtPEmUXgCUgG7rTJGFMEn+7/WZZBa73j+4MQAr7vw/O8Itic9yZGo+VsARR55kfFnTwMvqfP+3EkIgbvtA/VarVoV+8+VOv1OnPSaUftuodEG6z38xO9QAmcavoMDmjIaMrLOPnruzX+mkeuApZLC3I9Cw6bX+6OQ5ZlxcmMKy+5F7cpdjDlhpVtiOYfoy4am5QSrVaruFTteV6pa27T9AVK4txygCg1xdc+82VowGAzLmvt0GbOReNSW7TWRdB92KuPgwG3uxoahuFYwbs7oXAnEC6AJ6L5xuCd9oXlGGm/PClQDxcvEKPJcO8pbvO6C0YXMXgH8pOSSf9u7pgdZNMuA3ai8mHwTkQLJ8kMks3ylBVfwmOS/VzzPK9Iy/N9n3thDohBONHxwOCdiBZKLzF4Zi2BNhYWAvVA4NpWwHSdOefSZxiAEhHtjsE7zSVjDHq9HpIkgRAC1WoVlUrlqIdFc84Yi4udFHIgVWejr7Hay3Cqyf0ZRERUfrw2SXOp2+2i3+8XVSc6nU7R4IRoJ9oCaWYRqoHa8r4oNswSERGVHVfeF0gcx+h2u0V762q1WsoyjlmWIYoiBEFQXEJP0xRRFHGzLO3KE/kG2SSzqPibcyezaHLDLBERLQiuvC+IJEmwsbEBIK/e0O/30e12D9S9zxgzd+2xx6n7TCSlwOmmQqYt1vsa6/0MvhJo1xm8ExHRYijfsixtK4oiAChW2qWUiOMY9Xp97MoNxhhsbGwUeeZhGKJWq8288oNrXBLHMcIwLJqINBqNmY6DyqmigFNVgyjNO3Qu1QMEiusURES0GBi8L7D9Bt29Xg9ZlsH3fVhr0ev1IIRAvV7f9eeiKEK/3y/SdQ4b8EspUa/XIYQoTiTq9To3rNK2rLXQBhACELCI4xhKWrSqm90j0xjKq7D8IC0k11GV9dqJjg8G7wsiDEMkSQKt89XGJEn2VS/ZGLNtjWW3er+TKIrQ6XSKEm8uiG82m4f6fZRSaLVaRfoOAy/aTqotLmyk6CcGgEVVWYQiRb0SQsq89GCWZTDGcA7RwsmyDEmSwFpbNLviPCdafAzeF4TrrtftdqG1nlnKSxRFEEJsSdeZ1GZZFRJjRwAAGSBJREFUfhDRTqy1eHY9QZRaBL7AxXWNx9ZjNH2Ns20Pp5uKtd1pYWmtEccxpJSQUkJrjSiKUK1WuQJPtOAYvB9Qo9GAUmrLJkr39TQ2V1pri+fc7vHDMITv57WsXdA77jiEEPB9H3EcIwgCAHmFl3q9vq/fZXBsg//fbdwHdZTH+rCPPfj/g9jrxOjMmTNb5ueiHa8kM+glBo1QYqWbIcoMlqoeoA02+ilgDa5t5htVd9rwPO+v826PPa/jPsjcnMTz7maej9dej73TuLMsK9JlgLxLbZZl0FrD8/beoH1cj3cZK7ARjeIsPqCbb74Z7XYbWZZt+32t9VSet91uj1UN5iDVYmq1GoQQSNMUAFCpVOD7/o6/I5AHRXEcF+k6aZoiDENorYfeXMcd90Ec9bE+qMOMu91u7/r9O++8EwC2fe0W5XhpbaG1RpYZdPspfCGQGouKrxAqg41+ghO1AGEQ7DqueX6ddzOv4z7M3DzM8+5lXo/XXnYadz73rx5Da21x234C2+N2vPean0RlwOD9gB544AHcdNNNOHXq1NDt7g3U87yJX7o0xmBlZQUnTpyYeDqJe7NvtVr7Gnej0YDneYiiCNZa1Go11Ov1oZWfaY27zMf6sOO+ePHirt+/++678eY3v3lofi7a8fI8ixMN4HJXwwiJRAO+krim6cPCIgiBRj3YdTzz/jrvZJ7HfZC5OYnn3c1RHS8XvLqc9HFWxEd/fqdxSylhjCk2qrp0ycH+GAcd92GVeX4SlQGD9wPqdDrIsmzHN49p7PwXQhTPOa2cxv0+tud5aDQaqNVqALbPUZ/2uI/LsR6029UQADh//vyO83NRjpcQAicbPjwpIARwqZOhGXrQAKwROLPk7xkszfvrvNtjzuu4DzM3D/O8uzmK42WMQRzHRYAN5KmN+0nb2G3cnuehWq0iTVNYa4vH3m+wvCjHe1x7zU+iMmDwTttyuZNuM+peHwjcWEpHQUqBEw0fJxo+npMY9OL8Unot9FALOCfp6LgqMG4fkjEGSZJMdKXb87x9r+YTUfkxeKct0jTF+vp6cbnX9300m01u9KG5VgskA3aaG4ObSYF8pdi9p7IaDBEdBj/paIgxBp1Op7gMW6lUkGUZer3eUQ+NiKg0PM8rgnUAQ/npRESHwaVU2kJrXVzqBfLSWswTJCIan1KqqP7iAvZKpcLgnYgOjcE7beEafrg0mcF/ExHR3qSUqFQqQ9VmuDeIiCaBERkNkVKiXq9jfX29qNXueR7q9fqhHtcYg263W2yADYLdS/gREZWdEIIbSolo4hi80xZhGGJ5ebm43KuUOtTKu8uZ932/yAOt1+uHPiEgIiIiOm4YvNO2fN8fyns/jCiKYIwp8j2ttej1evuueUxERER03DFvgabO1Yt3XABPRERERPvD4J2mzq2uG2MA5HXkD9IJkIiIiOi4Y84CTV21WoVSCmmaIssySCnRaDQYvBMRERHtE4N3mjopJcIwxNLSEoQQkFIy152IiIjoABhB0UxIKeH7PlfbiYiIiA6BkRQRERERUUlw5Z2I6JAGqycNVlYiIiKaNAbvRESHYIxBHMcwxkAIgSAIuKfjGLHWIsuy4vX3fZ8ncEQ0VfyEISI6IGMMoiiCtbboHhzHcbExmxabtRZJkiCO4+KETWtdNKQjIpoGfroQER2AMRbdWGMjymDgQQgBz/MA5AEcLT5jDLIsg+d5UErB931orfn6E9FUceWdiGiftLF4dj3Dei9BFGcIA4EzLYVawPWQ48TtdRjtIO0a0hERTQM/aYiI9mm1l6ETa7RqCss1H7AZnl1LECcpADDn/ZhwqVEuWHfBPFOmiGia+A5DRHMrSg0ubqQ4v55irZ8NVXU5SnFm4as8rz0IA9QCH6k2sEKiUqkweDsmXAM6t2lVaw3f94v0KSKiaeDyEC2k0eoPVD5RavD0aoLMWAhj0E0zaA2caB796xl4At3YAH4ewEk/QF0o1KshPI8bFY8TpRQqlQo8z8vnAk/ciGjKGLzTwun1euh2u7DWQsp8JbTRaBz1sGifNiINbYFmxYPOLCAlLvfyVBX/iAPkpZpCLzVY72sIAcACp1sKioH7sSSlhOd5rDBDRDPB4J0WSpqm6PV6UErB8zxYa9Hv9xEEAYIgOOrh0T5oAyh5NRjyZB4lG2sBbA2SXN7xLFY+fU/g3FKAXmJgN7/mZlUiIpoFBu+0UFwA53JO3UoYS7fNN2stjDGw1hYlF6uBwFpk4W+mD3djg9AX8KXY8rNxHBevsVIKQRBMfRVUeQKtKnObiYhothi800IRQsBaWwSB25Vyo/nigu8sy4rXKQgCtCoKWWZxuZchywxqFYnTTR9yJHhPkgRZlhUVXtzj8EoLEREtIgbvtFDc5rF+vw8pJYwxTJmZc66pjVKqqJGdJAk8z8OJpo9GRSLNMlQDH543nJriqnwM5htLKZFlGV9zIiJaSAzeaaFIKVGv1+H7frEaGwQBK0DMMZfqNBh8a62LqyaBkpCQW1bcndGrKvNSTpKIiGgaGLzTwnEVZqgctkt1EkKMleokhIBSCkmSFEG7tRZhGE572EREREeCwTsRHSmlVJE64/i+P/bVEt/3IYQY2rDKDqdERLSoFuoT7vLly/inf/on/N///R8ee+wx9Pt9/PEf/zFuuummbe//yCOP4HOf+xx+8IMfoFar4ZZbbsE73/lOVKvVGY+c6PgSQiAMwyJVxtXM3s/P+77PZlxERHQsLFQi8FNPPYW/+7u/w8rKCp73vOftet/HH38cf/AHf4A4jnHnnXfiDW94A7785S/jk5/85IxGS0SOS3/Zq7W826AaRRGiKGIJUCIiOnYWauX9RS96Ee655x40m018/etfx/e+970d7/v5z38ejUYDf/Inf4JarQYAOH36NP7yL/8SDzzwAG6++eZZDZuIxpSmKZIkgZQS1lporYvW9ERERMfBQq2812o1NJvNPe/X6/Xw4IMP4nWve10RuAPAL/zCL6BareJrX/vaNIdJRAdgrUWapvA8D57nFaUl0zQ96qERERHNzEIF7+N64oknoLXGjTfeOHS77/t4wQtegMcff/yIRkZEO9mu4dZgIy4iIqLj4FgG71euXAEAtNvtLd9rt9u4fPnyrIdERHsQQsDzvGJjq7UWxhimzBAR0bEytznvxhhkWTbWfV2puHElSVL83KggCIrvD3rmmWfwzDPPAAAuXryIbrdbjHOQCyiMMfsa0zjcc40+5ySUcdxlHDMw3XE7bm4Pjr/sx0tKCaVU0YHVbXL1PO/Az1vW17ms4wa2n5vTft6yHi+Oe6tZvH8Szbu5Dd6/+93v4kMf+tBY973rrrtw/fXXj/3Yrm36drmySZJs21b905/+ND760Y8WX7/1rW8FAJw/f37s552UCxcuzPw5J6GM4y7jmAHgjjvuADD7+TmL4zWaJjOJD/Cyvs5lHPdRzU2gnMcL4LiJaNjcBu/XX3893vve94513+3SX8a5v0ufGXTlyhVcc801W25/z3vegze96U0A8pX3e++9FwBw5syZofu5UnZuM90kGWNw4cIFnD59euwGNuMq47jLOGZgMuPeK/D57Gc/izvuuGNofh7n47UTjnurw477IHNzEs+7m3k+XrvhuLea9vwkKoO5Dd7b7TZuu+22qTz28573PHieh0cffRS33HJLcXuapvjhD3+I1772tVt+5uzZszh79iwA4Omnn8Y3vvENANjyxuSazEgpp3ZJzz3+JJVx3GUcMzCbcburSoNj5/HaGcd91bTHvd3cnMXzuucs2/ECOO5Bsxg30bw7lhtW6/U6Xv7yl+OrX/0qer1ecftXvvIV9Pv9bYN3IiIiIqKjNrcr7wf1N3/zNwCAH/3oRwDygPzhhx8GAPzar/1acb93vvOdeP/7348PfvCDeOMb34iVlRX8wz/8A26++Wa88pWvnP3AiYiIiIj2sHDB+z333DP0tctNB4aD9xe96EX4+Mc/js997nO4++67Ua1W8frXvx7vete7ZjZWIiIiIqL9WLjg/Ytf/OLY933pS1+KT33qU1McDRERERHR5BzLnHciIiIiojJi8E5EREREVBIM3omIiIiISoLBOxERERFRSTB4JyIiIiIqCQbvREREREQlsXClImfp0qVLW25TSqHdbuPixYvIsmwqz3v+/PmJP2YZx13GMQOTGfd2c2+v+xzn47UXjvuqw477IHNzEs87jnk8XuPguK+axfwkmncM3g+gVqvB93184QtfmOnzbmxs4L//+7/xyle+Es1mc6bPfRhlHHcZxuz7Pmq12pbbj2J+luF4bYfjno55mpvA/B+vnXDc07HT/CQqC2GttUc9iDJaXV1Fr9eb6XM+9NBD+OVf/mX867/+K2666aaZPvdhlHHcZRhzrVbD8vLytt+b9fwsw/HaDsc9HfM0N4H5P1474binY7f5SVQGXHk/oOXl5Zn/8btLkKdOncK5c+dm+tyHUcZxl3HMg2Y9P8t6vDju2eN75/g4biLaDjesEhERERGVhPeRj3zkI0c9CBpfo9HArbfeOpd5hLsp47jLOOajVNbjxXEfD2U9Xhw3EY1izjsRERERUUkwbYaIiIiIqCQYvBMRERERlQSDdyIiIiKikmCpyBL49re/jfvvvx+PPPIILl26hHa7jZe97GV4+9vfjmuuuWbL/R955BF87nOfww9+8APUajXccssteOc734lqtTqzMadpinvuuQf3338/Op0Onv/85+Ptb387br755pmNYTePPvoo7rvvPjz00EO4cOECms0mfuInfgLveMc7cN111w3d98c//jE+85nP4JFHHoFSCq961atw5513Ymlp6YhGP184PyeP83Myyjg3gfmen5ybREeP1WZK4FOf+hSefPJJvOY1r8Gtt96KEydO4L777sO9996LW2+9deiD5fHHH8cHP/hB1Ot1vOUtb8G5c+fwz//8z3j00Udx6623zmzMf/Znf4Z7770Xb3zjG/G6170OTzzxBP7+7/8eL3vZy3Dq1KmZjWMn/+///T888MADePWrX43bbrsN1113Hb7+9a/jS1/6En7mZ36mqEN96dIlvO9970Mcx3jLW96CG264Af/2b/+G//qv/8LrX/96eJ53xL/J0eP8nDzOz8ko49wE5nt+cm4SzQFLc++hhx6yWustt91+++3285///NDtH/nIR+yv//qv2263W9z25S9/2d5+++32f/7nf2Yy3u9///v29ttvt1/4wheK2+I4tr/5m79p3/e+981kDHt5+OGHbZIkQ7c99dRT9s1vfrP90z/90+K2u+66y/7Kr/yKvXDhQnHbAw88YG+//Xb7L//yLzMb7zzj/Jw8zs/JKNvctHb+5yfnJtHRY857CfzUT/0UpJRbbms2m/jxj39c3Nbr9fDggw/ida97HWq1WnH7L/zCL6BareJrX/vaTMb79a9/HVJKvPGNbyxuC4IAv/RLv4Tvfe97uHjx4kzGsZuf/MmfhO/7Q7edO3cOz33uc/Hkk08Wt/3Hf/wHXv3qVw+tdv30T/90sdpEnJ/TwPk5GWWbm8D8z0/OTaKjx+C9pPr9Pvr9PlqtVnHbE088Aa01brzxxqH7+r6PF7zgBXj88cdnMrbHH38c11133dCHIAC8+MUvBgD88Ic/nMk49stai9XV1eKYrqysYG1tDTfccMOW+954440zO55lxPk5eZyfkzHPcxMo5/zk3CSaLQbvJfXFL34RWZbhlltuKW67cuUKAKDdbm+5f7vdxuXLl2cytitXruw4BgAzG8d+3X///VhZWSmOqRvndhvb2u02NjY2kKbpTMdYFpyfk8f5ORnzPDfdWMo2Pzk3iWaL1WZmzBiDLMvGuq/v+xBCbLn9O9/5Dv76r/8at9xyC17+8pcXtydJUvzcqCAIiu9PW5IkO44BAOI4nsk49uPJJ5/Epz/9abzkJS/BL/7iLwLY+3gC+e+y3ffLivOT83NeHYe56cZSpvnJuUk0ewzeZ+y73/0uPvShD41137vuugvXX3/90G1PPvkkPvGJT+C5z30ufud3fmfoe+5NcbsVjSRJiu9PWxAEO44BAMIwnMk4xnXlyhV87GMfQ61Wwwc+8IGiCsJexxOYv9/lsDg/5+815fzMHYe56cZSlteUc5PoaDB4n7Hrr78e733ve8e67+il04sXL+IP//APUavV8OEPf3hLTqS7v7sEPOjKlSvbXsKchp0uM7txzWoc4+h2u/jIRz6CbreLT3ziEzhx4kTxPTfOnX6XZrO5cCtHnJ+cn/PqOMxNN5YyzE/OTaKjw+B9xtrtNm677bZ9/9z6+jo+/OEPI01T/NEf/dG2b+DPe97z4HkeHn300aF8zjRN8cMf/hCvfe1rDzX2cb3whS/EQw89hF6vN/Qh+f3vfx8A8IIXvGAm49hLkiT4+Mc/jqeffhof//jH8dznPnfo+ydOnMDS0hIee+yxLT/76KOPzs3vMUmcn5yf8+o4zE2gHPOTc5PoaHHDaglEUYSPfexjWFlZwYc//GGcO3du2/vV63W8/OUvx1e/+lX0er3i9q985Svo9/sz+wB6zWteA2MMvvzlLxe3pWmK++67Dy9+8YuPvMkIAGit8alPfQrf//738YEPfAAveclLtr3fz/3cz+Gb3/zmUHm2b3/723jqqadm+oE+zzg/J4/zczLKNjeB+Z+fnJtER48dVkvgk5/8JP73f/8Xt956KyqVCp544oniv2effXYot/M5z3kOvvSlL+Fb3/oWrLX4z//8T9xzzz142ctehre97W0zGe/Jkyfxox/9CF/60pfQ7/fx7LPP4u6778aPf/xj/O7v/i5Onz49k3Hs5u6778ZXvvIVvPrVr8a11147dEyfeOKJYmXo+c9/Pu699178+7//O4QQ+Pa3v43PfOYzOHv2LH7rt36LXQLB+TkNnJ+TUba5Ccz//OTcJDp6wlprj3oQtLvf+I3fwIULF7b93unTp/GZz3xm6LaHH34Yn/vc5/D444+jWq3ita99Ld71rndtyfOcpiRJcM899+D+++9Hp9PB85//fLz97W/HK17xipmNYTcf/OAH8Z3vfGfH73/xi18s/v2jH/0Id999Nx5++GEopfCqV70K7373u7ct53YccX5OHufnZJRxbgLzPT85N4mOHoN3IiIiIqKSYM47EREREVFJMHgnIiIiIioJBu9ERERERCXB4J2IiIiIqCQYvBMRERERlQSDdyIiIiKikmDwTkRERERUEgzeiYiIiIhKgsE7EREREf3/9u7nFbY/juP460xfP2oiYhpZifKr0C0/ikxSNmKjaIrxKwtk6Q+QtT/AYhhsTCxYWJEFxUxCtvI7NflZylIz57sQXV++7nDNnXv0fNQs5sw5c15nc+a1+Jz3wCIo7wD+aoZhvHjZbDalpaWptrZWXq9X7/1JdDAYVF9fn/Lz85WSkqLk5GTl5OSora1NCwsLikQiUWUIh8Oam5vT8PCwXC6X7Ha7DMNQd3f3F10lAADRMcz3fvkAIM4Mw5AkdXV1SXos0kdHRwoGgzJNU263W7Ozsy+OeXh40MDAgCYmJiRJBQUFKioqUmJiok5OTrSzs6NIJKL6+nqtrq7+MsPd3Z3S09Nfbe/q6tLU1NRvXiEAANH7J94BACAa/y3JKysramxslN/vV3t7u5qamp4/6+zslN/vV35+vnw+n6qrq18cGwqFNDo6quXl5ajOnZCQII/Ho/LyclVUVGh/f189PT2/fU0AAHwU5R2AJTU0NMjj8cjn82lxcfG5vM/Pz8vv98vpdGp9fV1Op/PVsdnZ2RofH9fGxkZU57Lb7ZqZmXl+f3Z29jUXAQDAB7HmHYBl/fjxQ5J0fn7+vG1sbEySNDIy8mZx/1lNTU3swgEAEAOUdwCWdX9/L0lKSkqSJN3c3Ghra0uGYcjtdsczGgAAMUF5B2BJpmlqaWlJklRaWipJ2tvbkyTl5uYqLS0tbtkAAIgVyjsASwmHwzo4OFBvb68CgYCSkpKeHx69vb2VJDkcjnhGBAAgZnhgFYAlPI2M/FlKSoqmp6eVl5cXh0QAAPx5lHcAlvA0591msyk1NVUlJSVqaWl5MX89IyNDknR9fR2XjAAAxBrlHYAlRPNnSGVlZZKk4+Nj3d3dse4dAPDtsOYdwLfhcDhUWVkp0zTl9/vjHQcAgC9HeQfwrQwPD0t6nPN+dXX17r6bm5t/IhIAAF+G8g7gW2ltbZXb7dbl5aVcLpcCgcCrfS4uLjQ0NKSOjo44JAQA4PMM0zTNeIcAgP/zNGXmI7eqh4cH9ff3a3JyUpJUWFio4uJiJSQk6PT0VNvb2wqHw2poaNDy8nJU3zk4OKjd3V1JjyMpDw8PlZmZ+WLSTTAYjDojAACfQXkH8Ff7THl/EggE5PV6tb6+rlAopHA4rKysLFVVVam9vV3Nzc1vjqB8S11dndbW1t7dh9spACDWKO8AAACARbDmHQAAALAIyjsAAABgEZR3AAAAwCIo7wAAAIBFUN4BAAAAi6C8AwAAABZBeQcAAAAsgvIOAAAAWATlHQAAALAIyjsAAABgEZR3AAAAwCIo7wAAAIBF/AsIIYtFb48p7AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_C = ggplot(all_corrected_data_df[all_corrected_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', \n", - " y='PC2')) \\\n", - " + geom_point(aes(color='No. of partitions'), \n", - " alpha=0.1) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of partition 1 vs multiple partitions\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#1976d2']) \\\n", - " + geom_point(data=all_corrected_data_df[all_corrected_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_C)\n", - "ggsave(plot=panel_C, filename=pca_corrected_file)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:simulate_expression_compendia] *", - "language": "python", - "name": "conda-env-simulate_expression_compendia-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Pseudomonas_tests/Pseudomonas_sample_combat.ipynb b/Pseudomonas_tests/Pseudomonas_sample_combat.ipynb deleted file mode 100644 index f7806e9..0000000 --- a/Pseudomonas_tests/Pseudomonas_sample_combat.ipynb +++ /dev/null @@ -1,1059 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pseudomonas sample level analysis\n", - "\n", - "Main notebook to run sample-level simulation experiment using *P. aeruginosa* gene expression data." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "import sys\n", - "import ast\n", - "import pandas as pd\n", - "import numpy as np\n", - "import random\n", - "from plotnine import (ggplot,\n", - " labs, \n", - " geom_line, \n", - " geom_point,\n", - " geom_errorbar,\n", - " aes, \n", - " ggsave, \n", - " theme_bw,\n", - " theme,\n", - " facet_wrap,\n", - " scale_color_manual,\n", - " guides, \n", - " guide_legend,\n", - " element_blank,\n", - " element_text,\n", - " element_rect,\n", - " element_line,\n", - " coords)\n", - "\n", - "from sklearn.decomposition import PCA\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(action='ignore')\n", - "\n", - "from ponyo import pipeline, utils\n", - "\n", - "from numpy.random import seed\n", - "randomState = 123\n", - "seed(randomState)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Read in config variables\n", - "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", - "config_file = os.path.abspath(os.path.join(base_dir,\n", - " \"configs\", \n", - " \"config_test_Pa_sample_combat.tsv\"))\n", - "params = utils.read_config(config_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load parameters\n", - "local_dir = params[\"local_dir\"]\n", - "dataset_name = params['dataset_name']\n", - "analysis_name = params[\"simulation_type\"]\n", - "correction_method = params[\"correction_method\"]\n", - "lst_num_experiments = params[\"lst_num_experiments\"]\n", - "train_architecture = params['NN_architecture']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Input files\n", - "normalized_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_test.tsv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "normalized_processed_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_processed.txt.xz\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup directories" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.setup_dir(config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Process data\n", - "This pipeline is expecting data to be of the form sample x gene. The downloaded data is gene x sample." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.transpose_data(normalized_data_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train VAE" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Directory containing log information from VAE training\n", - "vae_log_dir = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"logs\",\n", - " train_architecture)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dataset contains 11 samples and 5549 genes\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "tracking beta\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Train on 10 samples, validate on 1 samples\n", - "Epoch 1/5\n", - "10/10 [==============================] - 1s 90ms/step - loss: 3858.4126 - val_loss: 3735.3594\n", - "Epoch 2/5\n", - "10/10 [==============================] - 0s 47ms/step - loss: 3718.5757 - val_loss: 3637.9312\n", - "Epoch 3/5\n", - "10/10 [==============================] - 0s 47ms/step - loss: 3609.0437 - val_loss: 3538.1511\n", - "Epoch 4/5\n", - "10/10 [==============================] - 0s 47ms/step - loss: 3523.7488 - val_loss: 3493.7456\n", - "Epoch 5/5\n", - "10/10 [==============================] - 0s 47ms/step - loss: 3459.9624 - val_loss: 3830.6794\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAESCAYAAAArJ3joAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd4FOX2wPHvSSNAIAESaui9hRZCCRBCLypdEUQsWBDE8tMrer0qevWi14tIEREVRVGkCFJFFARCTyih9xZq6IQWkry/P2aDAWkJSWazez7Ps4/Ju7MzZ0H27Jk5875ijEEppZTKSh52B6CUUsr1abJRSimV5TTZKKWUynKabJRSSmU5TTZKKaWynCYbpZRSWU6TjVJKqSynyUYppVSW02SjlFIqy3nZHYAdAgMDTZkyZewOQymlcpSYmJgTxpigjLzWLZNNmTJliI6OtjsMpZTKUURkf0Zfq6fRlFJKZTlNNkoppbKcJhullFJZTpONUkqpLKfJRimlVJbTZKOUUirLabJRSimV5dwy2Rw+c4kLV5LsDkMppdyGWyabkxcS6TZmOXGnL9odilJKuQXbko2I+IrIahHZICKbRWSIY7yliKwVkfUiEiUiFRzjj4lIvGN8vYj0S7OvviKy0/Hoe6djly2Ul0NnLtFp1DKi953KujeplFIKsLeyuQK0MMbUAmoD7USkITAG6G2MqQ38ALyZ5jU/GWNqOx5fAohIQeBtoAEQBrwtIgVud2A/Xy9mDAgnf25vHh63kinRBzP/3SmllLrGtmRjLAmOX70dD+N45HeM+wOH77CrtsACY8wpY8xpYAHQ7k7HLx/kx/TnGhNWtiCvTo3l/TlbSE4xGXovSimlbs/WazYi4iki64HjWAljFdAPmCsicUAfYGial3QTkVgRmSoiJR1jJYC0pUmcY+zGYz0tItEiEh0fHw9AQB4fvnk8jL6NSjNu6V76fbuGc5evZv4bVUopN2drsjHGJDtOlwUDYSJSA3gJ6GCMCQbGA8Mcm88CyhhjQrCql2/TeawvjDGhxpjQoKC/Zsj29vRgSKca/LtzDZbuPEHXz5az/+SFTHh3SimlUjlFN5ox5gywCGgP1HJUOAA/AY0d25w0xlxxjH8J1HP8fAgomWZ3wY6xdHmkYWkmPBnGiYQrdBq9jBW7T2bgnSillLoZO7vRgkQkwPFzbqA1sBXwF5FKjs1SxxCRYmle/kDqODAfaCMiBRyNAW0cY+nWuHwgvwwIJ9AvF32+WsUPqw5kZDdKKaVuYOfiacWAb0XEEyvpTTbGzBaRp4BpIpICnAaecGw/SEQeAJKAU8BjAMaYUyLyHrDGsd27xpgM9zOXLpSXn59rzAs/ruON6RvZcew8b3asipenUxSBSimVI4kx7teBFRoaau60UmdyimHovK2MW7qXJhUCGd2rLv55vLMpQqWUcj4iEmOMCc3Ia/Xr+i14egj/7FiNj7qHsGrvSTp/tozd8Ql3fqFSSqm/0WRzBw+GluSHpxpy7tJVOo9expId8XaHpJRSOY4mm7tQv0xBZgwIp0RAbh4bv5rxy/bijqcflVJu7B4/8zTZ3KWSBfMwrX9jWlYtwpBZW3hj+kYSk1LsDksppbLH5p/v6eWabNIhby4vxj5SjwGR5flx9UH6fLWKUxcS7Q5LKaWyVkoyLP7onnahySadPDyEV9tW4dOetVl38AydRkex49h5u8NSSqmss3k6xG+7p11ossmgTrVLMPmZRly+mkLXz5bzx9ZjdoeklFKZL7WqCapyT7vRZHMPapcMYObAcMoE5qHfhGjGLt6tjQNKKdeyeTqc2A4Rr93TbjTZ3KNi/rmZ8kxjOtQoxn/mbeOVKbFcSUq2OyyllLp316qaqlCt8z3tSpNNJsjt48moXnV4qVUlpq2N4+EvVhJ//sqdX6iUUs4stapp/hp43Fu60GSTSUSEF1pV5LPeddly5BydRkWx+fBZu8NSSqmMSVvVVO10z7vTZJPJOtQsxtRnG2OA7mNW8OumI3aHpJRS6ZeJVQ1osskSNUr488uAcCoXzcez369l1MKd2jiglMo5UpJh8YeZVtWAJpssUzi/L5OebkiXOiX4+LcdDJq0nstXtXFAKZUDbJ4OJ3ZkWlUD9q5n4/J8vT0Z9mAtKhbx47/zt7P/5AXGPRpKkfy+doemlFI3l1rVFK6WaVUNaGWT5USE55pXYOwj9dh1PIEHRkWx4eAZu8NSSqmbS61qIjKvqgF7l4X2FZHVIrJBRDaLyBDHeEsRWSsi60UkSkQqOMZzichPIrJLRFaJSJk0+3rdMb5dRNra845ur031okzr3xgvDw8eHLuCmRsO2x2SUkpd77qq5oFM3bWdlc0VoIUxphZQG2gnIg2BMUBvY0xt4AfgTcf2TwKnjTEVgE+ADwFEpBrQE6gOtAM+cyw17XSqFsvPzIHhhAT7M+jHdfzvt+2kpGjjgFLKSWz6OUuqGrAx2RhL6tKX3o6HcTzyO8b9gdQSoBPwrePnqUBLERHH+CRjzBVjzF5gFxCWDW8hQwr55WJiv4Y8GBrMyIW7eG7iWi4mJtkdllLK3WVhVQM2X7MREU8RWQ8cBxYYY1YB/YC5IhIH9AGGOjYvARwEMMYkAWeBQmnHHeIcYzce62kRiRaR6Ph4e1fb9PHy4MNuIfzrvmr8tuUo3ces4NCZS7bGpJRyc5t+hpM7s6SqAZuTjTEm2XG6LBgIE5EawEtAB2NMMDAeGJZJx/rCGBNqjAkNCgrKjF3eExHhySZl+fqx+hw8dZFOo5YRs/+03WEppdzRtaqmepZUNeAk3WjGmDPAIqA9UMtR4QD8BDR2/HwIKAkgIl5Yp9hOph13CHaM5QjNKxdm+oDG5M3lycNfrGRaTJzdISml3M2maVZVk4n31dzIzm60IBEJcPycG2gNbAX8RaSSY7PUMYCZQF/Hz92Bhca6LX8m0NPRrVYWqAiszqa3kSkqFM7HjOfCCS1TgP+bsoH/zNtKsjYOKKWyQ9qqpsr9WXYYO2/qLAZ86+gc8wAmG2Nmi8hTwDQRSQFOA084tv8K+E5EdgGnsDrQMMZsFpHJwBYgCRhgjMlxt+oXyOvDt0+EMWTWZsYu3sOuYwkM71mbfL7edoemlHJlm6bByV3w4IQsq2oAxB3n7AoNDTXR0dF2h3FL363YxzuztlA+KC9fPlqfUoXy2B2SUsoVpSTD6DDw8oVnlt4x2YhIjDEmNCOHcoprNup6fRqVYcITYRw7d4VOo6NYueek3SEppVxRalWTRR1oaWmycVLhFQKZMSCcAnl9eOTLVUxafcDukJRSriT1Wk2RGlDlviw/nCYbJ1Y2MC/TnwuncYVABv+8kSGzNpOUnGJ3WEopV7BxarZVNaDJxun55/bm676hPBFelvHL9vH4N2s4e+mq3WEppXKy5CRY8lG2VTWgySZH8PL04K37qzG0a01W7jlJl8+WsSc+4c4vVEqpm8nGazWpNNnkID3DSvH9kw04c/EqnUcvI2rnCbtDUkrlNNeqmprZVtWAJpscp0G5QvwyIJxi/rnpO341E1bs0yWnlVJ3L7WqycLZAm5Gk00OVLJgHqY915jIykG89ctm3pyxiavaOKCUupPkJEcHWk2o3DFbD63JJofyy+XF2D6h9G9enomrDvDoV6s5fSHR7rCUUs5s01Q4tTvbqxrQZJOjeXoIr7WrwrAHaxGz/zSdP1vGruPn7Q5LKeWMkpNg8Ue2VDWgycYldK0bzKRnGnLhSjJdRi9n0fbjdoeklHI2NlY1oMnGZdQtVYCZA8MpWTAPT36zhi+X7tHGAaWUJbWqKZq9HWhpabJxIcUDcjO1fyPaVi/Kv+ds5R9TY7mSlOMmwFZKZbbUqiZiMIjYEoImGxeTx8eL0b3qMqhlRabExNF73CpOJFyxOyyllF1SO9CK1oQq2X+tJpUmGxfk4SG83LoSIx+uw8ZDZ+k0ahlbj5yzOyyllB02ToFTe2ytasDelTp9RWS1iGwQkc0iMsQxvlRE1jseh0VkhmO8uYicTfPcW2n21U5EtovILhEZbNd7cjb31yrOlGcbkZSSQrcxy/lt81G7Q1JKZafU2QJsrmrA3srmCtDCGFMLqA20E5GGxpimxpjaxpjawArg5zSvWZr6nDHmXQDHSp+jgfZANeBhEamWvW/FeYUEBzBzYBMqFvbjme9jGL1olzYOKOUuUqua5q/bWtWAjcnGWFJnk/R2PK59CopIfqAFMOMOuwoDdhlj9hhjEoFJQKcsCDnHKpLfl5+eacQDtYrz3/nbeemn9Vy+qo0DSrm0tFVN5Q52R2PvNRsR8RSR9cBxYIExZlWapzsDfxhj0l5saOQ47TZPRKo7xkoAB9NsE+cYU2n4ensy/KHavNq2MjPWH+ahL1Zy/Nxlu8NSSmWVjZOdpqoBm5ONMSbZcbosGAgTkRppnn4Y+DHN72uB0o7TbiO5c8VzHRF5WkSiRSQ6Pj7+XkPPkUSEAZEV+PyReuw8dp4HRi1jY9xZu8NSSmW2tPfVOEFVA07SjWaMOQMsAtoBiEgg1umxOWm2OZd62s0YMxfwdmx3CCiZZnfBjrEbj/GFMSbUGBMaFBSUZe8lJ2hXoyhTn22Mp4fQY+xy5sQesTskpVRm2jgZTu91mqoG7O1GCxKRAMfPuYHWwDbH092B2caYy2m2Lypi/amJSBhW7CeBNUBFESkrIj5AT2Bm9r2TnKla8fz8MjCcGsX9GfDDWj5ZsIOUFG0cUCrHu1bVhDhNVQP2VjbFgEUiEouVMBYYY2Y7nuvJ9afQwEpAm0RkAzAC6OloMkgCBgLzga3AZGPM5mx5BzlcoF8uJj7VgO71gvn0j50M/HEtlxK1cUCpHM0JqxoAccc22NDQUBMdHW13GE7DGMOXS/fywbytVC+en3GPhlLMP7fdYSml0is5CUaFQq588MySTE82IhJjjAnNyGud4pqNspeI8FSzcnzdtz77TlzkgVHLWHfgtN1hKaXSK/Ynp6xqwF2TzfkjcFm7sG4UWaUw059rTG5vTx76YiXT18XZHZJS6m4lJ8GS/0KxWlC5vd3R/I2bJptjMKIuxHwDKXqNIq2KRfIxY0A4dUoG8NJPG/jw123aOKBUTuDEVQ24a7IJqgSBFWHWC/BFBOxbZndETqVgXh++e7IBD4eVYsyfu3n6uxgSriTZHZZS6lbSVjWV2tkdzU25Z7LxzgOPz4PuX8PF0/BNB5jyGJw5YHdkTsPHy4MPutRgyAPVWbT9ON3HLOfgqYt2h6WUuhknr2rAXZMNWH8hNbrBwDXWX9D2X2FUfVj0ASResDs6pyAi9G1chm8er8/hM5foNHoZa/adsjsspVRayVetOdCcuKoBd042qXzyQPPBVtKp0tFaZGhkKMROATdsC7+ZphWDmDEgnIDc3vQat5LJaw7e+UVKqewR+xOc3ufUVQ1osvlLQEnrtNrjv4JfEPzcD75uC4fW2h2ZUygX5Mf058JpWK4Q/5gWy79nbyFZGweUslfyVce1mtpOXdWAJpu/K90InloED4yyZkwdFwkzBlgdbG7OP4834x+rz2ONy/Bl1F6e+GYN5y5ftTsspdxXDqlqQJPNzXl4Qt0+8PxaaDzI+gsdWReiPoGkK3ZHZysvTw/eeaA6H3SpybJdJ+gyehn7Tug1LqWy3XVVTVu7o7kjTTa345sf2rwHA1ZBmabw+zswugFsm+P213N6NSjFd0824OSFRO4bGcXEVfv1fhylstOGSTmmqgFNNnenUHnoNQke+Rk8fWBSL/iuMxzbYndktmpUvhCzBjahVkl//jl9E72+XKlVjlLZIYdVNaDJJn0qtIT+y6D9R3B4HXzeBOa+Chfdtx24ZME8fP9kAz7sVpPNh8/RdvgSvliym6TkFLtDU8p1bZgEZ/bnmKoGdNbnjLtwEv78AKK/hlz5IfKfEPoEeHplTpA50LFzl3lzxiYWbDlGSLA/H3YLoWqx/HaHpZRrSb4KI+tBnoJWM1M2Jhud9dkOeQtBx//Bs1FQLATmvWpVOrsX2R2ZbYrk9+WLPvUY1asOh05f4v6RUQxbsIMrSTr/nFKZJgdWNaDJ5t4VqQ6PzoSHJkLSJetazo+94ORuuyOzhYhwX0hxfn85ggdqFWfEHzu5b0QUa3XJAqXuXeq1muJ1oGIbu6NJFzuXhfYVkdUiskFENovIEMf4UhFZ73gcFpEZjnERkREisktEYkWkbpp99RWRnY5HXxveDFS9D55bBS3fhj1/wmcNYcFbcPlctofjDArk9WHYQ7UZ/3h9LlxJotuY5bw7awsXE3VCT6UybMOPObKqARuv2YiIAHmNMQki4g1EAS8YY1am2WYa8IsxZoKIdACeBzoADYBPjTENRKQgEA2EAgaIAeoZY275VTrLV+o8dwT+eBc2/AB5C0Ort6FWL/Bwz0Ly/OWrfPTrdr5buZ+SBXMztGsI4RUC7Q5LqZwl+ap1v1+eQHhqoS3JJkdeszGWBMev3o7HtcwnIvmBFsAMx1AnYILjdSuBABEpBrQFFhhjTjkSzALA3nkb8heDLmOg30IoUBp+GWDNRHBgla1h2SWfrzfvda7B5Gca4eXhQe8vV/Ha1FjOXtLZB5S6axt+tGamz4FVDdh8zUZEPEVkPXAcK2Gk/TTuDPxhjEk9D1UCSDsDZJxj7Fbj9guuB08ugK7jIOEYfN0Gpj4JZ91zBcywsgWZ90JT+jcvz9S1cbQetpj5m4/aHZZSzu/atZq6ULG13dFkiK3JxhiTbIypDQQDYSJSI83TDwM/ZtaxRORpEYkWkej4+PjM2u3dHBhCHoSB0dDsVdg6y5pV+s8PIdH91ofx9fbktXZV+GVAOIF+uXjmuxgGTFxL/Hn3ngZIqdvK4VUNOEk3mjHmDLAIx+kvEQkEwoA5aTY7BJRM83uwY+xW4zce4wtjTKgxJjQoKChz38DdyOUHLd60ljKo1Na6R2d0GGz62S2nvqlRwp9fBobzatvKLNhyjNafLObntXG4431fSt1WUmKOr2rA3m60IBEJcPycG2gNbHM83R2YbYy5nOYlM4FHHV1pDYGzxpgjwHygjYgUEJECQBvHmHMqUBoe/BYemwO+ATD1cRjfAY5ssDuybOft6cGAyArMfaEp5YP8eHnyBh4bv4ZDZy7ZHZpSzsMFqhqwt7IpBiwSkVhgDdY1m9mO53ry91Noc4E9wC5gHPAcgDHmFPCeYx9rgHcdY86tTBN4ZjHcNxxObIexETDzeUjIxlN8TqJCYT+mPNOIIQ9UZ82+U7QZtpgJK/bpxJ5KJSXC0o+hRL0cXdWATlfjHC6dgcUfweqx4J0HIv4BYc+Al4/dkWW7g6cu8sb0jSzdeYL6ZQowtFsI5YP87A5LKXvEfAuzBkHvqU6RbO6l9TlTko3jnpmWQAGsCuXMPe80Czldskl1YifMfwN2/gYFy0O7/1h3Cefg0jkjjDFMW3uI92Zv4dLVZF5sVZGnmpbD29MpLjEqlT2SEmFUPcgbBP3+cIrPgWy9z0ZEhojIwhuG52JdJ/kJ2CoiZTMSjNsLrAi9p0CvKSAe8MODMLE7xG+3O7JsJSJ0rxfMgpeb0bJKYT76dTudRy9j06GzdoemVPbZ8INLXKtJlZGvij2A9am/iMj9WDdWfgT0AjyBNzMlOndVqQ30Xw5tP4CDa+CzRjBvMFxyr/nFCufzZcwj9RjTuy7Hzl2h0+hl/Hf+Ni5f1Yk9lYtLSoQl/7Ou1VRoZXc0mSIjySYYSPtVuzOw2xjzujFmEvAZ1ik1dS+8fKDRABi0Fuo+Cqs+hxF1Yc1XkOJeH7btaxbjj5cj6FqnBKMX7abDiKVE73P+HhClMmzDD3DWdaoayFiyufGdt+L6VuMDQJEMR6SulzcQ7h8OzyyBwtVgzsswthnsXWJ3ZNnKP483/+1RiwlPhHHlago9xq7g7V82kXBFJ/ZULuZaVRPqMlUNZCzZ7Ma6lwXH/S4lgd/SPF8C0JPrma1YCDw2G3p8a80k/e398NMj1hrkbqRZpSB+e6kZfRuVYcLK/bT9ZAmLd7hfu7hyYS5Y1UAGutFE5BlgDLAZ65TaGaCKMeaK4/lfAS9jjNOmZKftRrtbVy/BilGwdJh1Sq3xQGjysjVLgRuJ2X+Kf0yNZXf8BbrWLcFb91UjII/7tYsrF5KUaK3C6VcY+v3udMkmW7vRjDFjgSeBncB0oG2aRFMQCCIT5zRTN+Gd25pn7fkYqN4Zlv7P+h90/Y+QkmJ3dNmmXumCzBnUlIGRFZi5/jCthi1m7sYjdoelVMatn+iSVQ3oTZ2u4eBqmPcaHF5rda+0/wiCM/TlI8fafPgsr02LZdOhc7StXoT3OtWgcH5fu8NS6u4lJVrr1fgVccqqBpxgPRvHfGWtRKRH6nxnKhuVDLNu+ur8ubV8wZct4ednrEXc3ET14v7MeC6cwe2r8Of2eFoNW8zk6IM6safKOdZPhLMHIdL1qhrI2DWbIUBTY0yLNGPzsJoGBDgGNDbG7M3MQDOTy1U2aV05b13LWTEKPLyh6cvQaCB4u8+3/D3xCQyetpHV+07RpEIg/+lak5IF89gdllK3llrV5CtqrYHlpMkmuysbvanTmeXKZy1DPWA1lI+Ehe/B6Pqw5Re3WcqgXJAfk55uyHuda7D+4BnafLKEr6P2kqwTeypnlVrVNB/stInmXulNna6qYFnoOREenQk+fjD5Uatd+ugmuyPLFh4eQp+GpfntpWY0KFeQd2dvocfny9l57LzdoSl1vaREq8knuD6Ud92PTr2p09WVi4BnlkLH/8GxTTC2Kcx+CS6ctDuybFE8IDfjH6vP8Idqs/fEBTqOiGLkHzu5muw+XXvKya3/3uWrGtCbOt2DpxfU7wfPr4Wwp61py0fWgZVjrLXNXZyI0LlOCRa8HEHbGkX534Id3D8yitg4p56cXLmD1NkCgsNcuqqBjCWbMUAXEdkIzAP2c31lEw64x7manCZPQWj/oTXJZ4l68OtgGNMYdv5ud2TZItAvFyMfrsO4R0M5fTGRzqOX8Z+5W3ViT2Wf9d/DuTiXr2rAxps6RcRXRFaLyAYR2ezocktto35fRHaIyFYRGeQYby4iZ0VkvePxVpp9tROR7SKyS0QGp/c9uZ3CVeCRn+HhnyAlCSZ2g4kPwolddkeWLVpXK8JvL0XwUP2SjF2yh3bDl7Byj3ucVlRO5LqqpsWdt8/hbLup07HgWl5jTIKIeANRwAtAVSASeMwYkyIihY0xx0WkOfCKMea+G/bjCewAWgNxWEtDP2yM2XKrY7t063N6JV2BVWOtlUKTLkODZ6yVQn397Y4sWyzfdYLBP2/kwKmL9G5QisHtq5DP19vusJQ7iP7aun76yM9QIWecQrPtpk4RKSoijRyPoul5rbEkOH71djwM0B941xiT4tju+B12FQbsMsbsMcYkApOATul6I+7MKxeED7KWMqjVE1aMtpYyiPnGLZYyaFwhkPkvNqNfk7L8uPoAbT5ZwsJtx+wOS7m6pCtuVdVABpONI7msBg5hVSRRwCERWeVoGrjb/XiKyHrgONZy0quA8sBDIhItIvNEpGKalzRynHabJyLVHWMlgINptolzjKn08CsMnUbB039aK4bOegG+iIB9y+yOLMvl9vHkzfuqMa1/Y/L5evHEN9G8OGkdpy4k2h2aclXrHNdqXHS2gJvJyLLQYcBCoAowDnjJ8RiHdQpsoYjUv5t9GWOSjTG1se7dCRORGkAu4LKjVBsHfO3YfC1Q2hhTCxgJzEhn3E87Elh0fLxOSX9LxWvD4/Og+9dw8TR80wGmPGYtT+vi6pQqwOznm/JCy4rM2XiEVsMWM3PDYZ3yRmWupCvWLB8lG0C5SLujyTYZma7mV6yk0tgYc+iG54oDK4Atxpj26dzvW8BFoB/Q3hiz13Fd54wx5m8XEERkHxAKVATeMca0dYy/DmCM+c+tjqXXbO5S4kVYPgKihgMGwl+wHj557Y4sy207eo7XpsayIe4sraoW5t+da1LU332m/FFZaM1X1iKIfabnuFNo2X3NphHw+Y2JBsAYcxgYCzS+005EJCh10k4RyY11gX8bVsWSmu4jsC7+p14fEsfPYY7YT2I1BFQUkbIi4gP0BGZm4H2pG/nksVoyB66BKh1h8Ycwqj7ETnH5qW+qFM3Pz8+F82bHqkTtOkHrYYv5cfUBrXLUvXHTqgYylmw8gdudzL7i2OZOigGLRCQWK2EsMMbMBoYC3Rz38fwHq9IB6A5sEpENwAigp6PJIAkYiHWvz1ZgsjFmcwbel7qVgJLWabXHf7WWqf65H3zdFg6ttTuyLOXpIfRrWo75LzajRgl/Xv95I73GrWLfiQt2h6ZyqnXfuc19NTfKyGm0ZUAA0NAYc/6G5/yAVcApY0zTTIsyk+lptHuQkmJNGvjHELgQD7UfgZZvQT7XnqHIGMOkNQf5YM5Wrqak8H+tK/NEk7J4erjXB4a6B0lXYEQd8A+GJ+bnyGST3afR/o3VHLBRRF4XkS6OxxtYMwdUBt7PSDAqB/DwgLp9rKlvGg+C2J+sVUKXj3TpqW9EhIfDSrHg5QiaVAjk/blb6frZMrYf1Yk91V1a9x2cO+SSq3DejQzd1CkiDwLDgaJY98aANUHnYeBFY8zUTIswC2hlk4lO7oZfX4ed8yGwkjUdTg676Jlexhhmxx7hnZmbOXf5Ks81r8CAyAr4eGXKWoTKFV2rakrCE7/m2GST7Td1GmMmY03A2QhrDZteQEOgNHBcRN7NyH5VDlSoPPSebE19k3wVvusCPz3i0q3SIsL9tYqz4OUIOtYsxqd/7OS+kUtZd+C03aEpZ3WtqnG/azWpMn26GhH5J9YMAHfTJGALrWyyyNXL1gqhS/8HJgWavGzNTuCd2+7IstTCbcf45/RNHD13mSfCy/J/bSqRx8fL7rCUs3CRqgZsnK5Gqet4+0KzV6xW6crt4c8PYHQYbJvj0q3SLaoU4beXmtG7QSm+itpLu+FLWb7rhN1hKWexdoLbVzWgyUZlBf9g6PEN9J0F3nlhUi/4vhuc2Gl3ZFkmn683/+5ck0lPN8TTQ+j15SoGT4vl7CXXbZpQdyH1vppSjaBcc7v/jqL0AAAgAElEQVSjsZUmG5V1yjaDZ5dC2/9A3Br4rBEseAuuuG4HV8NyhZj3QlOeiSjH5OiDtB62mN82H7U7LGWXtRPg/GG3r2pAk43Kap7e0Og5eD4GQh6CZZ+6/CwEvt6evN6+KjMGhFMwrw9PfxfDwB/WciLhit2hqeyUtqopG2F3NLa7qwYBEXkiHfu8D+ikDQLqpg6ugXmvwuF1UKoxdPgIita0O6osczU5hbGLdzPij13kyeXJ2/dXo3PtEoibf8t1C6vHwdxX4NFfXOYU2r00CNxtsknBup/mbv+FGE026pZSUqxW0D+GwKXTEPokRL5hLVvtonYdP88/psay9sAZmlcO4v0uNSkR4Npdem7t6mWrA61AaWsWdRf5cpEdySbdNaAxZnFGAsoOmmycxKXTsOgDWPMl+AZAq7ehTh/wcNrvKfckOcUwYcU+Pvp1Ox4CgztUpXdYKTx0yhvXc62qmQnlXOcUWpYnG1ejycbJHN0Ic/8BB5ZDsdrQ4WMoeVdLIuVIB09d5I3pG1m68wRhZQoytFtNygX52R2WyizXqpoy8Phcl6lqQO+zUTld0ZrWP8quX0LCMfiqFcx4DhLutCJ4zlSyYB4mPBHGf7uHsO3oOdp9upQxf+4mKTnF7tBUZlj3nXag3YRWNsq5XDkPSz6GFaOtmQeavw5hT1ldbS7o+LnL/OuXTczffIwaJfLzUbdaVCue3+6wVEa5cFUDWtkoV5IrH7QeAs+tgJJhMP91+Lwp7HHaS4D3pHB+X8b2CWVM77ocPXuFB0ZFMWTWZo6fv2x3aCoj9L6aW9LKRjkvY2D7PPh1MJzZD9U6Q5t/W4u5uaAzFxMZOm8bU2Li8PYU+jQszTMR5Qn0y2V3aOpuXL0MI2pDwXLw2ByXTDY5srIREV8RWS0iG0Rks4gMcYyLiLwvIjtEZKuIDEozPkJEdolIrIjUTbOvviKy0/Hoa9d7UplMBKp0gAGrIPKfsONX64bQJf+1/mG7mIA8PgztFsIfL0fQoWYxvoraS9MPF/GfeVs5deF2i+Mqp7B2Apw/olXNLdhW2Yh1V1teY0yCiHgDUcALQFUgEnjMGJMiIoWNMcdFpAPwPNABaAB8aoxpICIFgWggFOteoBignjHmlvO9a2WTQ505APP/CVtnWufE230IldvZHVWW2R2fwMg/dvLLhsPk8fakb+MyPNW0HAXy+tgdmrqRG1Q1kEMrG2NJcPzq7XgYoD/WEgUpju1SW5I6ARMcr1sJBIhIMaAtsMAYc8qRYBYArvsJ5M4CSsFD30GfGeDpAz8+BBN7WAu4uaDyQX4M71mHBS81o0XVIoxZvJumHy3if79t5+xFneDTqWhVc0e2NgiIiKeIrAeOYyWMVUB54CERiRaReSJS0bF5CeBgmpfHOcZuNX7jsZ527DM6Pj4+K96Oyi7lI+HZZdb1m/0r4LOG8PsQSLxgd2RZokLhfIx8uA7zX2xGRKUgRi7cRZMPF/LJgh06q7QzuHoZooZB6XAo09TuaJyWrcnGGJNsjKkNBANhIlIDyAVcdpRq44CvM+lYXxhjQo0xoUFBQZmxS2UnLx9o/Dw8Hw01uln/2EfVh03TXHaCz0pF8jG6d13mvdCU8AqBfPrHTpp+uJBPf9/JucuadGyz9lutau6CU7Q+G2POAIuwTn/FAT87npoOhDh+PoS1FHWqYMfYrcaVO8hXFLp8Dk/8BnkKwdQn4Nv74dhmuyPLMlWL5efzPvWYM6gJDcoV4pPfd9D0w0WMWriThCtJdofnXq5etmZ2Lt3EWlJD3ZKd3WhBIhLg+Dk30BrYBszAahAAiAB2OH6eCTzq6EprCJw1xhwB5gNtRKSAiBQA2jjGlDsp1QCe/hPu+wSObbLuzZn3Glw6Y3dkWaZ6cX/GPRrKrIFNCC1dgI9/20HTDxfy2Z+7uKBJJ3us/RYSjlpVjbotO7vRQoBvAU+spDfZGPOuIwFNBEoBCcCzxpgNju61UVjVz0XgcWNMtGNfTwBvOHb9vjFm/O2Ord1oLu7iKVj4b4gZD7kLQqt3oHZv8HCKQj7LbDh4huG/72DR9ngK5vXhmWbl6NOoNHl8vOwOzTVdvQyf1oJCFeDxOXZHky10Is500mTjJo5ssCb4PLgSStSDDv+1/uvi1h44zfDfd7JkRzyBfj48G1Ge3g1Kk9vHNWfTts2qsTDvH9B3NpR1j8YATTbppMnGjRgDsZNhwb+siT3rPGJVOnkD7Y4sy8XsP8UnC3YStesEQfly0T+iPL0alMLXW5POPbt6CT6t7VZVDWiySTdNNm7o8jlY8hGsHAM+ea0ZCUKfBE/XP8W0eu8pPlmwgxV7TlI4Xy4GRFbgofolNenci5Wfw6+vuVVVA5ps0k2TjRuL3241DuxZBIWrW8tSl2lid1TZYsXuk3zy+w5W7z1F0fy+DGhRgQdDg8nlpUknXVKrmsCK8Nhsu6PJVjlyBgGlbBFUGfpMh4e+t5Yz+Kaj1S591vW75RuVL8RPTzfkh34NCC6Qm3/N2ETkf//kh1UHSEzStXTuWoyjAy3iNbsjyVG0slHuK/EiLPsUlg0H8YRmr0CjAeDl+rMsG2OI2nWCYQt2sO7AGUoE5Ob5FhXoVi8Yb0/9DnpLblzVgFY2SmWMTx6IfN2aVbp8JPwxBD5rBDt+szuyLCciNK0YxM/9G/PN4/UJzJeLwT9vpMX//mRy9EFdNfRWYr7R+2oySCsbpVLt+t26nnNyF1RqD+0+sGbxdQPGGBZtP84nC3ay8dBZyhTKw/MtKtKpdnG8tNKxXL1k3VcTWMktqxrQykapzFGhFfRfAa3fhX1LYXRD6+bQxIt2R5blRIQWVYowc2A44x4NJY+PF/83ZQNtPlnCjHWHSE5xvy+lfxPzDSQc06omg7SyUepmzh2BBW/BxsmQPxjavg/VOrnNRIvGGOZvPsbw33ew7eh5ygfl5YVWlehYsxieHu7xZ3AdrWoArWyUynz5i0G3cfD4PMhdAKb0hQkPwPFtdkeWLUSEdjWKMndQU8b0rounhzDox3W0G76E2bGHSXG3SkermnumlY1Sd5KcZM2ztvDfkJgAYc9A89fA19/uyLJNSoph7qYjDP99J7uOJ1C5SD5ebFWRttWL4uHqlY5WNddoZaNUVvL0grCn4Pm11nQ3Kz+DkaGw/gdIcY+uLQ8P4b6Q4sx/sRmf9qzN1ZQU+k9cS8eRUczffBSX/tIaPd5R1bxudyQ5mlY2SqXX4XUw91WIWwPB9a0JPovXsTuqbJWcYpi54RAj/tjF3hMXqFEiPy+2rETLqoURV7qulVrVBFWGvrPsjsZ2WtkolZ2K17EWa+s8Bk7vgy8iYdYLcOGk3ZFlG08PoUudYBa81IyPe9Ti3KUk+k2IptPoZSzadtx1Kp3UqiZCr9XcK61slLoXl8/Cnx/Cqs8hVz5o8SaEPgEe7jXf2NXkFKavPcSIhTuJO32J2iUDeKl1JZpVDMy5lY5WNX+jlY1SdvH1t27+7L8MioXA3FdgbATsX2F3ZNnK29ODB+uXZNErzRnatSbx56/Q9+vVdBuznKU743NmpaNVTaayc1loXxFZLSIbRGSziAxxjH8jIntFZL3jUdsx3lxEzqYZfyvNvtqJyHYR2SUi+n+Gyn6Fq8KjM6HHt3DpNIxvB9Oesu7XcSPenh70DCvFolea836XGhw5e5k+X63mwbErWL77hN3h3b3EixD1CZRtBmXC7Y7GJdi5LLQAeY0xCSLiDUQBLwDPArONMVNv2L458Iox5r4bxj2BHUBrIA5YAzxsjNlyq2PraTSVpRIvWB9Uy0aApzdE/AMa9AcvH7sjy3ZXkpKZvOYgoxbt4ti5KzQoW5CXWleiYblCdod2eytGw/w3rPusSje2OxqnkSNPoxlLguNXb8cjI5kvDNhljNljjEkEJgGdMilMpdLPJ6917WbASijT1JqJYExj2PWH3ZFlu1xenvRpVIbFr0byzv3V2HPiAj2/WEmvcStZs++U3eHdXOJFiBoOZSM00WQiW6/ZiIiniKwHjgMLjDGrHE+9LyKxIvKJiKSd772R47TbPBGp7hgrARxMs02cY+zGYz0tItEiEh0fH58Vb0ep6xUsB70mQa8pYJLh+64wqbfVweZmfL09eSy8LEv/Ecm/7qvGjmMJ9Ph8BX2+WkXM/tN2h3e9mPFw4bjOFpDJnKIbTUQCgOnA88BJ4CjgA3wB7DbGvCsi+YEUx2m3DsCnxpiKItIdaGeM6efYVx+ggTFm4K2Op6fRVLZLumKdmlnyXzApEP4iNHkRvHPbHZktLiUm8/3K/Xy+eDcnLyQSUSmIl1pXonbJAHsDS7xodaAVrgp9Z9obixPKkafR0jLGnAEWYSWNI45TbFeA8VinyTDGnEs97WaMmQt4i0ggcAgomWZ3wY4xpZyHVy5o+jIMjIYqHWHxUBgVBltngRN84ctuuX08eapZOZa+Fsng9lWIjTtD59HLeHz8amLjztgXWPTXjqpGZwvIbHZ2owU5KhpEJDfWBf5tIlLMMSZAZ2CT4/eijjFEJAwr9pNYDQEVRaSsiPgAPQH9SqKck38J6P419J0Nufzgp0fguy4Qv8PuyGyRx8eLZyPKs/S1FrzatjLrDp7hgVHL6PftGjYdOpu9wSRetFZtLdccSjfK3mO7ATsrm2LAIhGJxUoYC4wxs4GJIrIR2AgEAv92bN8d2CQiG4ARQE9HBZQEDATmA1uBycaYzdn8XpRKn7JN4Zml0P4jOLQWxjSC396Ey+fsjswWfrm8GBBZgaX/iOSVNpVYvfcU942M4ukJ0Ww5nE1/JtFfw4V4va8mizjFNZvsptdslFNJiLeWpF73PfgVhvpPWctUF6ttTQLqhs5dvsr4qH18GbWH85eTaF+jKC+0qkiVovmz5oCJF+HTEChSHR79JWuO4QLu5ZqNJhulnEVcjFXdHFhu/Z4rv9U6XS7CasMNquw2i7elOnvpKl9F7WV81F7OX0miY0gxXmxZkYpF8mXugZaPgt/+CY//qqfQbkOTTTppslFO7cIJ2LsE9i6GPX/+1SrtV/SvxFMuAvyD7YwyW525mMiXS/cyftleLl5N5v6Q4gxqWZEKhf3ufeda1dw1TTbppMlG5Sin98GexY7ksxguOqZ9KVTBuphdNsK6BpS7gI1BZo9TFxIZt3QP3y7fx+WryXSqXYLnW1SgXNA9JJ3lI62K8on5UKph5gXrgjTZpJMmG5VjpaTA8S1/JZ79y6zVQxEoXttR9TS3PjRd+B6ekwlX+GLJHias2M+VpGQ61ynBoBYVKROYN307Srxg3VdTpAY8OiNrgnUhmmzSSZONchnJV+FQjJV49vxpLeiWchU8c0HJMCvxlGvuss0GJxKuMHbxbias2E9SiqFrnRI836IipQrlubsdaFWTLpps0kmTjXJZVxLgwAor8exdDEc3WuNpmw3KNYfASi7VbHD8/GU+/3MP36/aT0qKoXu9YAZEVqBkwdskHa1q0k2TTTppslFuI7XZIDX53NhsUK65derN/2/TCeZIx85dZsyfu/lh1QEMhu71SvJY4zJULnqT7rVrVc1vUKpB9gebA2mySSdNNsptuUmzwZGzl/hs0W5+WnOQxOQUQoL96VEvmPtrFScgj49V1QwPsRa86zPd7nBzDE026aTJRiluaDb4E/Ytg6sXcKVmg1MXEpmx7hBTYuLYeuQcPp4etK5ehJfz/Er59R9qVZNOmmzSSZONUjeRlGg1G6RWPXGrISXJajYo1eCv5JNDmw02Hz7LlOg45q/bzayUAezyKMeSBmPpXi/43lqn3Ygmm3TSZKPUXUjbbLBnMRxLbTbwhzJNcmyzQdLS4Xj98TbvF/2Urw8UJjnFUK90AXrUC6ZjSDHy+XrbHaLT0mSTTjdLNlevXiUuLo7Lly/bFJVKD19fX4KDg/H21g+GbOMKzQY3XKs5fu4y0x2n2XYdT8DX24P2NYrRo14wDcsVwsMj5yTR7KDJJp1ulmz27t1Lvnz5KFSoEJKDvqW5I2MMJ0+e5Pz585QtW9bucNzXLZsNKv41rY6zNRssGwEL/gVPLrDuQ3IwxrD+4BmmxMQxa8Nhzl9OIrhAbrrVDaZ7veDbt1C7EU026XSzZLN161aqVKmiiSaHMMawbds2qlatancoCv5qNkitelKbDcQDitVyjmaDa1VNLejz8y03u3w1mfmbjzI1Jo6oXScwBhqWK0iPeiVpX7MoeXxy3vWqzKLJJp1ulWz0gytn0b8zJ3Zds8GfjpkNbG42WPYpLHjrb1XN7Rw6c4npa+OYGhPHvpMX8cvlRceaxegeGkxo6QJu9+U0RyYbEfEFlgC5AC9gqjHmbRH5BogAUpfpe8wYs96xSuenQAfgomN8rWNffYE3Hdv/2xjz7e2O7YzJ5uTJk7Rs2RKAo0eP4unpSVBQEACrV6/Gx8fnjvt4/PHHGTx4MJUrV77lNqNHjyYgIIDevXvfc8xNmjRh1KhR1K5d+573lRF2/52pdLC72SDxAgyvaSW321Q1t2KMYc2+00yJPsicjUe4mJhM2cC8dK8XTNe6JSjmnzNbw9MrpyYbAfIaYxJExBuIAl4AngVmG2Om3rB9B+B5rGTTAPjUGNNARAoC0UAoYIAYoJ4x5vStju2MySatd955Bz8/P1555ZXrxo0xGGPw8LBzgdW/aLJRGZYQD/uW/DWn25n91ni+Yn8toZCZzQYZqGpu5cKVJOZtOsqU6IOs2nsKD4EmFYPoXi+YNtWK4OvtmTkxO6F7STa2fWo5lnROcPzq7XjcLvN1AiY4XrcSCBCRYkBbrCWlTzkSzAKgXVbGnp127dpFtWrV6N27N9WrV+fIkSM8/fTThIaGUr16dd59991r2zZp0oT169eTlJREQEAAgwcPplatWjRq1Ijjx48D8OabbzJ8+PBr2w8ePJiwsDAqV67M8uXWol0XLlygW7duVKtWje7duxMaGsr69etvG+f3339PzZo1qVGjBm+88QYASUlJ9OnT59r4iBEjAPjkk0+oVq0aISEhPPLII5n+Z6ZyAL8gqNENHhgBL8bCCxvg/hFQqhHs+h1m9IdPqsHIUJjzf7BlJly65ffH20u8YCWb8i3vOdEA5M3lRfd6wfz0TCMWv9qcgZEV2H08gUE/riPs/d95c8ZGNhw8gzteorgdW690iYgnViVSARhtjFklIv2B90XkLeAPYLAx5gpQAjiY5uVxjrFbjWfYkFmbM33d82rF8/P2/dUz9Npt27YxYcIEQkOtLxRDhw6lYMGCJCUlERkZSffu3alWrdp1rzl79iwREREMHTqUl19+ma+//prBg/++troxhtWrVzNz5kzeffddfv31V0aOHEnRokWZNm0aGzZsoG7dureNLy4ujjfffJPo6Gj8/f1p1aoVs2fPJigoiBMnTrBxo3XK5MyZMwB89NFH7N+/Hx8fn2tjys0VKAP1ykC9vn9vNlj/I6z58q9mg3LNrarnbpsNVo+Diyeh+euZHnbpQnl5uU1lXmxViRV7TjIl+iBTouP4fuUBKhXxo3u9YDrXKUHhfL6ZfuycxtbzMcaYZGNMbSAYCBORGsDrQBWgPlAQeC0zjiUiT4tItIhEx8fHZ8Yus0358uWvJRqAH3/8kbp161K3bl22bt3Kli1b/vaa3Llz0759ewDq1avHvn37brrvrl27/m2bqKgoevbsCUCtWrWoXv32SXLVqlW0aNGCwMBAvL296dWrF0uWLKFChQps376dQYMGMX/+fPz9/QGoXr06jzzyCBMnTtT7ZNTfeXhA0RrQeCD0ngKv7bOWa454Dbx8rQk0v+sMQ0vDt/fDko+tJbVTkv++rysJsHwEVGgFJetnYchCeIVAhvesw5o3W/FBl5r45fLig7nbaPSfhfT7dg2/bjpKYlJKlsXg7Jyih88Yc0ZEFgHtjDEfO4aviMh4IPXCxSGgZJqXBTvGDgHNbxj/8ybH+AL4AqxrNreLJ6MVSFbJm/evBaF27tzJp59+yurVqwkICOCRRx656Y2oaRsKPD09SUpKuum+c+XKdcdtMqpQoULExsYyb948Ro8ezbRp0/jiiy+YP38+ixcvZubMmXzwwQfExsbi6em657nVPfLygdKNrEfzwVYC2b/8r/t7Fr5nPa41GzS3rvkEVrIqoosnIeLvVX1Wye/rTa8GpejVoBS7jicwNSaOn9fG8fvW4xTM60On2sXpUa8k1Yrnz7aYnIFtyUZEgoCrjkSTG2gNfCgixYwxRxwNBJ2BTY6XzAQGisgkrAaBs47t5gMfiEjqnWNtsKojl3Tu3Dny5ctH/vz5OXLkCPPnz6ddu8y9RBUeHs7kyZNp2rQpGzduvGnllFaDBg145ZVXOHnyJP7+/kyaNIlXXnmF+Ph4fH196dGjBxUrVqRfv34kJycTFxdHixYtaNKkCSVLluTixYvky3eTKeCVuplcflCpjfWANM0Gf1rJZ/scazxfMSsxZXFVczsVCvsxuH0VXmlTiaU7TzA1Jo6JKw8wftk+qhfPT496wXSqXYICee/cbZrT2VnZFAO+dVy38QAmG2Nmi8hCRyISYD1WdxrAXKxOtF1Yrc+PAxhjTonIe8Aax3bvGmNOZeP7yFZ169alWrVqVKlShdKlSxMeHp7px3j++ed59NFHqVat2rVH6imwmwkODua9996jefPmGGO4//776dixI2vXruXJJ5/EGIOI8OGHH5KUlESvXr04f/48KSkpvPLKK5po1L1JbTao0c36/dTev6qeY5ug5Vv2xgd4eXoQWaUwkVUKc/pCIjM3HGZKzEHembWF9+dupVXVIvQIDaZZxSC8PJ2j2zSz6U2dDtpG+5ekpCSSkpLw9fVl586dtGnThp07d+Ll5RRnXa/RvzOV0209co6pMXHMWHeIkxcSCcqXi651StAjNJgKhZ3vS9i9tD4716eHcgoJCQm0bNmSpKQkjDGMHTvW6RKNUq6garH8/Ou+arzWrgqLth9nSnQcX0btZeySPdQuGUCP0GDuCymOf+6c30ijnyDqbwICAoiJibE7DKXcho+XB22rF6Vt9aLEn7/CL+sPMSU6jn9O38S7s7bQtnpReoQG07h8IJ45dCZqTTZKKeVEgvLlol/TcjzZpCwbD1kLvv2y/hAzNxymuL8v3eoF061uMGUC8955Z05Ek41SSjkhESEkOICQ4AD+2bEqv289xpToOEYv2sXIhbsIK1OQ7qHBdKxZjLy5nP+j3PkjVEopN+fr7cl9IcW5L6Q4R89eZtraOKbFxPGPqbG8M3OzteBbaDANyhZ02pmoNdkopVQOUtTflwGRFXiueXnWHjjNlOg4ZsceYdraOEoVzHNtJurgAs614JtrNnTnQJGRkcyfP/+6seHDh9O/f//bvs7Pzw+Aw4cP071795tu07x5c25s9b7R8OHDuXjx4rXfO3TokCnzlr3zzjt8/PHHd95QKZUuIkK90gUZ2i2E1f9sybAHaxFcIDfDFuyg6UeL6P3lSmasO8SlxJtM42MDTTZO4uGHH2bSpEnXjU2aNImHH374rl5fvHhxpk6deucNb+HGZDN37lwCAgIyvD+lVPbJ4+NF17rB/PBUQ5b+I5IXWlZk/8mLvPjTesLe/53Xf97I2gOnbZ2JWpONk+jevTtz5swhMTERgH379nH48GGaNm167b6XunXrUrNmTX755Ze/vX7fvn3UqFEDgEuXLtGzZ0+qVq1Kly5duHTp0rXt+vfvf215grfffhuAESNGcPjwYSIjI4mMjASgTJkynDhhrSk/bNgwatSoQY0aNa4tT7Bv3z6qVq3KU089RfXq1WnTps11x7mZ9evX07BhQ0JCQujSpQunT5++dvzUJQdSJwBdvHgxtWvXpnbt2tSpU4fz589n+M9WKXdSsmAeXmxViSWvRvLDUw1oXb0IM9Ydoutny2k1bDFj/tzNsXN/n08xq+k1m5uZNxiObszcfRatCe2H3vLpggULEhYWxrx58+jUqROTJk3iwQcfRETw9fVl+vTp5M+fnxMnTtCwYUMeeOCBW14IHDNmDHny5GHr1q3ExsZet0TA+++/T8GCBUlOTqZly5bExsYyaNAghg0bxqJFiwgMDLxuXzExMYwfP55Vq1ZhjKFBgwZERERQoEABdu7cyY8//si4ceN48MEHmTZt2m3Xp3n00UcZOXIkERERvPXWWwwZMoThw4czdOhQ9u7dS65cua6duvv4448ZPXo04eHhJCQk4OurU7QrlR4eHkLj8oE0Lh/IkAeuMnfjEaZEx/Hhr9v47/xtRFQKonu9krSqVphcXlk/Ea5WNk4k7am0tKfQjDG88cYbhISE0KpVKw4dOsSxY8duuZ8lS5Zc+9APCQkhJCTk2nOTJ0+mbt261KlTh82bN99xks2oqCi6dOlC3rx58fPzo2vXrixduhSAsmXLXlul83bLGIC1vs6ZM2eIiIgAoG/fvixZsuRajL179+b777+/NlNBeHg4L7/8MiNGjODMmTM6g4FS9yCfrzcP1S/F1P6NWfh/EfRvXp6tR84z4Ie1NPjgD97+ZRObDp3N0tNs+i/4Zm5TgWSlTp068dJLL7F27VouXrxIvXr1AJg4cSLx8fHExMTg7e1NmTJlbrqswJ3s3buXjz/+mDVr1lCgQAEee+yxDO0nVeryBGAtUXCn02i3MmfOHJYsWcKsWbN4//332bhxI4MHD6Zjx47MnTuX8PBw5s+fT5UqVTIcq1LKUi7Ij1fbVuHl1pWJ2nWCKdEH+XHNQb5dsZ8qRfPRvV4wXeqUoJBfrjvvLB20snEifn5+REZG8sQTT1zXGHD27FkKFy6Mt7c3ixYtYv/+/bfdT7Nmzfjhhx8A2LRpE7GxsYC1PEHevHnx9/fn2LFjzJs379pr8uXLd9PrIk2bNmXGjBlc/P/27j/IqrKO4/j7A65uRgFpk+IiP9ISCVWDccUAAAtLSURBVAVCoh+kmBWl+GPMSVMTikiM6OdkNZlmjjPojDZlMw2lhlT2w6LQsrLacqyRFMUyfhRkDagpLroKWyTw7Y/zLF0u97Jn13vvubt8XjNn9t7nPPfc7312zj73OefZ59vVxbZt21i2bBnTp0/v9WcbOnQow4cP3z0qWrp0KSeeeCK7du1i48aNzJgxg0WLFtHZ2cnWrVvZsGEDEyZM4NJLL+WEE05g7dq1vX5PM6tu8CBx4qtezg3vmcx9nz2FL575Gg46YBBX/XQNr7v618y75X7uWv0Ez++sTcI3j2yazHnnncdZZ521x8y0888/n1mzZjFhwgSmTJnS4zf8+fPnM2fOHMaNG8e4ceN2j5COP/54Jk2axDHHHMPIkSP3SE8wb948Zs6cyYgRI2hvb99dPnnyZGbPns3UqVnu9rlz5zJp0qR9XjKrZsmSJVx88cV0dXUxduxYbr75Znbu3MkFF1xAZ2c2hF+4cCHDhg3jsssuo729nUGDBjF+/PjdWUfNrPaGHtzChdNGceG0Uaz713PctnIjyx58lF+ufoJDhxzImROP4JwpI3s+0D44xUDi5er7H//OzOrn+Z27+N26zfxg5UZ+veZJduwK/rnoNKcYMDOz2mkZPIhTjn0Fpxz7Cjq2bufHqx5j7qK+H6+wezaSWiX9UdJDkv4i6Qtl+78saWvJ89mSNktalba5JfsukvS3tF3UyM9hZjbQHTLkIN7/pjEv6BhFjmy2AydHxFZJLcA9ku6MiHslTQGGV3jN9yJiQWmBpJcBlwNTgABWSloeEU/X+wOYmVk+hY1sItM9cmlJW0gaDFwLfCrnod4O3BURW1IHcxcws48x9eVlVgD/rsz6l0KnPksaLGkV8CRZh7ECWAAsj4jHK7zkbEl/knSbpO6pEUcAG0vqbEplvdLa2kpHR4f/iPUDEUFHR4dXFTDrRwqdIBARO4GJkoYByyS9GTgHOKlC9duBWyNiu6QPAkuAk/O+l6R5wDyAI488cq/9bW1tbNq0ic2bN/f6c1jjtba20tbWVnQYZpZTU8xGi4hnJLUDM4CjgPVp3a+DJa2PiKMioqPkJd8ArkmPH2XPzqkN+G2F91gMLIZs6nP5/paWFsaMeWE3wMzMrLIiZ6O9PI1okPQi4K3Ayog4LCJGR8RooCsijkp1Di95+enAmvT4F8DbJA2XNBx4WyozM7MmUeTI5nBgSZoQMAj4fkTcsY/6CyWdDuwAtgCzASJii6QvAveleldGxJb6hW1mZr3lFQTMzCwXSX1eQWC/7GwkPQesKzqOHA4Fnio6iBwcZ205ztrqD3H2hxgBXh0RL+nLC5tigkAB1vW1d24kSfc7ztpxnLXlOGunP8QIWZx9fa1TDJiZWd25szEzs7rbXzubxUUHkJPjrC3HWVuOs3b6Q4zwAuLcLycImJlZY+2vIxszM2ugAd3ZSJopaZ2k9ZI+XWH/QZK+l/avkDS68VHmirNqLp8GxniTpCclPVxlv1IOovVpsdTJjY4xxdFTnCdJ6ixpy883OsYUx0hJ7ZJWp3xOH6lQp9A2zRlj4e3ZU26sVKfwcz1nnIWf6yWxDJb0oKS9/tm+T+0ZEQNyAwYDG4CxwIHAQ8CxZXUuAb6WHp9Lli+nGeOcDdxQcHu+GZgMPFxl/zuBOwEB04AVTRrnScAdRbZliuNwYHJ6/BLgrxV+74W2ac4YC2/P1D5D0uMWYAUwraxOM5zreeIs/FwvieXjwHcq/X770p4DeWQzFVgfEX+PiP8C3wXOKKtzBtnq0QC3AW9RWgG0gfLEWbiIuJtsmaBqzgBuicy9wLCy9ewaIkecTSEiHo+IB9Lj58jW+itPjVFom+aMsXCpffbKjVVWrfBzPWecTUFSG3Aq2aLHlfS6PQdyZ5Mnz83uOhGxA+gEDmlIdBViSKrl46mUy6eZ1CSvUIO8Pl3KuFPS+KKDSZcgJpF90y3VNG26jxihCdpTlXNjlWqGcz1PnNAc5/qXyBJY7qqyv9ftOZA7m4HkdmB0RBxHlol0SQ/1rboHgFERcTzwFeDHRQYjaQjwQ+CjEfFskbFU00OMTdGeEbEzIiaSpRiZKuk1RcTRkxxxFn6uSzoNeDIiVtbyuAO5s3kUKP1W0JbKKtaRdAAwFOigsXqMMyI6ImJ7evoN4LUNiq038rR34SLi2e5LGRHxM6BF0qFFxCKpheyP+Lcj4kcVqhTepj3F2EztmWJ4Bmhn79TwzXCu71YtziY5198InC7pH2SX9U+W9K2yOr1uz4Hc2dwHHC1pjKQDyW5iLS+rsxy4KD1+F/CbSHe8GqjHOFU9l08zWQ68N82gmgZ0RuXU3oWSdFj3tWVJU8nOgYb/0Ukx3AisiYjrqlQrtE3zxNgM7anKubHWllUr/FzPE2cznOsR8ZmIaIssp9i5ZG11QVm1XrfngF2IMyJ2SFpAlkhtMHBTRPxF0pXA/RGxnOxEWippPdlN5XObNM6KuXwaSdKtZDOPDpW0Cbic7AYnEfE14Gdks6fWA13AnEbHmDPOdwHzJe0A/g2cW8AXDMi+PV4I/Dldwwf4LHBkSaxFt2meGJuhPSvmxmq2cz1nnIWf69W80Pb0CgJmZlZ3A/kympmZNQl3NmZmVnfubMzMrO7c2ZiZWd25szEzs7pzZ2PWzylbeTmKXCHYrCfubMz2oeQPebWt/D+rzayCAftPnWY1diPw2wrlf29wHGb9kjsbs3zujQiPYsz6yJfRzGpA0hXpstokSYslPSVpm6Q7JI2tUP8ISd+U9ISk7cqyYX6sUk4QScel5eY3S/qPsuyIN6S19MrrLpC0IR1zlaQZZfsHS/qMpLWSuiQ9k+p9qLYtYrYnj2zM8hlSZTXj50pW6QW4GXgWuJIs58eHgbslHRcRWwAkHQL8ATgM+CrZpbjTgOuAVwILug8maTrZunnbyFYBfgQYBZwNHAz8t+S9LwaGAItT+UeBn0gaFRFPpzqfT9s30/u1AscC01MsZvXR21Sh3rztTxvZop6xj212qndFev574ICS189K5YtKyq5JZWeXlAn4USqfkMoGkaVi7gBGVIhNZTFuJKUdTuUTU/klJWUPAj8tul297X+bL6OZ5XMd2ZLw5dsvyurdEFnmQgAi4nbgb2SdTrfTyVKB/7CkXgDXpqfddScCRwNfjYjHygNKrym1NP6fdpiIWEU2ynplSZ1ngPGSxu3z05rVmC+jmeWzJiJ+laPeuiplp5Q8H02WhbHc6vRzTPp5dPr55zwBAv+sUPY08LKS558DfgKslvRX4FfAbRHRnvM9zPrEIxuzgWNnlfLdkw4i4vdkI53zyS75nQn8RtKN9Q/P9mfubMxq69VVyh4pef4IcEyFeuNK9kN2+Q1gQm1Cy0REZ0R8JyLeRzbZ4NvA+yS9qpbvY1bKnY1ZbS1IOdkBkDSL7HLYHSV1bgeOknRWST0Bn0xPu9OCryLrcD4kaUT5G1WaJt2TNBNut3R/6eH0dHhvj2eWl+/ZmOUzTdJ/KpRvjojSSQIvJrss9QOyqc8LgcfJZqB1WwS8G7hVUvfU51OBd5BNBngYICJ2SfoA8HPgIUlfJxv1tAHnAG8gu+HfG2sk3QPcBzxBNupaQHZf6YFeHsssN3c2Zvm8P23lVrDnjLQ5wCVkU6FbyZa4WRgRT3VXiIgOSW8ArgbeC7yUrMP5BHB96cEj4neS3ghcDsxPx9wE3Al09eFzXE822+0TZP+T8xhwE3BVRDzfh+OZ5aK9Z0+aWW9JuoKsQzg6ItYXHI5Z0/E9GzMzqzt3NmZmVnfubMzMrO58z8bMzOrOIxszM6s7dzZmZlZ37mzMzKzu3NmYmVndubMxM7O6c2djZmZ19z/WjuowQFKJIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Train VAE\n", - "pipeline.train_vae(config_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation experiment without noise correction" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 13.4s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 13.7s remaining: 20.5s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 13.7s remaining: 9.1s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 13.9s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 13.9s finished\n", - " score\n", - "number of experiments \n", - "1 0.999973\n", - "5 0.717818\n", - "40 0.434442\n", - " score\n", - "number of experiments \n", - "1 0.000002\n", - "5 0.002665\n", - "40 0.009117\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999969 0.999976\n", - "5 0.712595 0.723040\n", - "40 0.416572 0.452312\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation with correction applied" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 9.1s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 9.2s remaining: 13.8s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 9.3s remaining: 6.2s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 9.5s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 9.5s finished\n", - " score\n", - "number of experiments \n", - "1 0.999972\n", - "5 0.922321\n", - "40 0.395008\n", - " score\n", - "number of experiments \n", - "1 0.000002\n", - "5 0.006683\n", - "40 0.009118\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999969 0.999976\n", - "5 0.909222 0.935419\n", - "40 0.377137 0.412879\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make figures" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ind = [0,1,2]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], - "source": [ - "# File directories\n", - "similarity_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "similarity_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "permuted_score_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_permuted.npy\")\n", - "\n", - "compendia_dir = os.path.join(\n", - " local_dir,\n", - " \"experiment_simulated\",\n", - " dataset_name + \"_\" + analysis_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "svcca_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".svg\")\n", - "\n", - "svcca_png_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".png\")\n", - "\n", - "pca_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_uncorrected_\"+correction_method+\".svg\")\n", - "\n", - "pca_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_corrected_\"+correction_method+\".svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "# Load pickled files\n", - "uncorrected_svcca = pd.read_pickle(similarity_uncorrected_file)\n", - "err_uncorrected_svcca = pd.read_pickle(ci_uncorrected_file)\n", - "corrected_svcca = pd.read_pickle(similarity_corrected_file)\n", - "err_corrected_svcca = pd.read_pickle(ci_corrected_file)\n", - "\n", - "permuted_score = np.load(permuted_score_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "# Concatenate error bars\n", - "uncorrected_svcca_err = pd.concat([uncorrected_svcca, err_uncorrected_svcca], axis=1)\n", - "corrected_svcca_err = pd.concat([corrected_svcca, err_corrected_svcca], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "# Add group label\n", - "uncorrected_svcca_err['Group'] = 'uncorrected'\n", - "corrected_svcca_err['Group'] = 'corrected'" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
scoreyminymaxGroup
number of experiments
10.9999730.9999690.999976uncorrected
50.7178180.7125950.723040uncorrected
400.4344420.4165720.452312uncorrected
10.9999720.9999690.999976corrected
50.9223210.9092220.935419corrected
400.3950080.3771370.412879corrected
\n", - "
" - ], - "text/plain": [ - " score ymin ymax Group\n", - "number of experiments \n", - "1 0.999973 0.999969 0.999976 uncorrected\n", - "5 0.717818 0.712595 0.723040 uncorrected\n", - "40 0.434442 0.416572 0.452312 uncorrected\n", - "1 0.999972 0.999969 0.999976 corrected\n", - "5 0.922321 0.909222 0.935419 corrected\n", - "40 0.395008 0.377137 0.412879 corrected" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Concatenate dataframes\n", - "all_svcca = pd.concat([uncorrected_svcca_err, corrected_svcca_err])\n", - "all_svcca" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SVCCA " - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAHVCAYAAABMlGVAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XdUVNfaBvBnaENHQKSDIJbYYu+Jig0VFcWCJRFLjMau0Wu+VE0xxVgSS4yxhqixETVqbNgLdo2xoaCAdClKb/v7Q2dkZIAZYGDA57dW1r3u094558zhPXt2kQghBIiIiIiISGvoVHYARERERESkiEk6EREREZGWYZJORERERKRlmKQTEREREWkZJulERERERFqGSToRERERkZZhkk5EREREpGWYpBMRERERaRkm6UREREREWoZJ+iuOHTsGX19fODo6wsDAAJaWlqhfvz6GDBmC5cuXIyUlRWH9Ll26QCKR4OHDhxqNy9/fHxKJBMePH6+U4wPAF198AYlEgg0bNmj8WPR62rBhAyQSCb744ovKDqXaePjwISQSCbp06VLZoVS6n376CY0aNYJUKq125+T48eOQSCTw9/evkO2ISPOYpBewYMECeHp6YteuXbCwsIC3tzd69uwJIyMj7Nq1C1OnTsXt27crO0ytU5EvCkREpbFr1y5Mnz4d0dHR6N+/P0aPHg0vL6/KDktlpa0kYeUKUdWlV9kBaIvLly/jiy++gL6+PrZt2wYfHx+F5TExMQgICECNGjUUyjdt2oT09HQ4OjpqNL6FCxdi3rx5cHFx0ehxijNlyhT4+fnB3t6+0mKg6m3gwIFo164datasWdmhUDXz119/AQB27NgBT0/PSo6m/LVp0wa3b9+GhYVFhWxHRJrHJP2FXbt2QQiBoUOHFkrQAcDOzg4ffvhhofKKSprt7e0rPTmuWbMmkyfSKAsLCyYLpBGRkZEAAHd390qORDOMjY3RoEGDCtuOiDSPzV1eiI+PBwDY2NiotV1RTT0kEglq166N3NxcfPnll/Dw8ICRkRHeeOMNrF+/Xr5eUFAQunbtCnNzc1haWuLdd9/FkydPCh2nqDbpRTl16hSmTJmCpk2bwtLSEkZGRmjQoAHmzZuH5OTkQusXbJcYExOD8ePHw8nJCXp6eli6dCmAwj+bytq6njhxAgDg5uYGiUQi/w8AvL29IZFIcOjQIaVxpqeno0aNGjAzM8OzZ89K/FzR0dH4/vvv0blzZ3m/ATs7OwwaNAgXL14scru0tDR89913aNWqFczNzWFiYoIGDRpg8uTJuHfvnny9gm2i7927Bz8/P9ja2kJHR0deEwcAT548wZw5c1C3bl0YGhrCysoKXl5eRX7OR48eYdKkSahXrx6MjY1hZWWFRo0a4f3338fdu3cV1r158yZGjRoFd3d3GBoawsbGBs2aNcOMGTMQHR1d4jnq378/JBIJDhw4oHR5Xl4ebG1tYWBgIL/XhBDYsmUL/Pz8UK9ePZiYmMDMzAxt2rTBypUrkZ+fX2g/Be+HCxcuwNvbG9bW1pBIJAgODkbNmjVhbGys9H4DgLNnz0IikaBz587ysqLapBe8/0+ePAlPT0+YmZnB3Nwcffv2xa1bt5QeIy0tDfPmzUPt2rVhaGgIDw8PfPnll8jJyUHt2rXl96kqShNDSd9b2XOioILn4MGDBxg6dChq1qwJc3Nz9O7dW36c3NxcfPPNN6hXr578s61YsaLYz/D06VNMnz4dzs7OMDQ0xBtvvIElS5Yovb7A8+/nwoUL0bx5c5iamsLU1BTt2rXDxo0bi/082dnZWLBgARo0aACpVKpQ8bF//3706NEDjo6OkEqlcHBwQKdOnTB//vxiY39VREQE3n//fbi6ukIqlaJWrVpKnwOy+/TYsWMAFJ9TJT1PC7bnV+fcXbt2DXPnzkXLli1hY2MDqVQKd3d3fPDBB4iKiirxOLNmzYKbmxv09fUxY8YM1K5dW35+xowZo/CclX0GZW3LS7udTG5uLn7++We0bNlSfv3btGmDVatWIS8vr9D6Bf8e/vXXX2jXrh1MTExgZWWF4cOHy1+UCsrOzsbKlSvRunVrWFtbw9jYGLVr14a3tze2bt1a7PUhqvYECSGEWLBggQAgnJ2dRWxsrMrbde7cWQAQYWFhCuUAhKurqxg4cKCwsLAQPj4+omfPnkIqlQoAYt26dWL79u1CT09PdOrUSQwePFg4OjoKAKJTp04iPz9fYX+jR48WAMSxY8dUOn7btm2FoaGhaNOmjfD19RV9+/YV9vb2AoBo1KiRePbsmcL6x44dEwBEnz59hJOTk7CzsxODBw8W3t7eYvXq1UIIIT7//HMBQKxfv14IIUR8fLwYPXq0sLW1FQCEr6+vGD16tPw/IYTYs2ePACAGDx6s9Pxt2LBBABDjx49X6XyvWrVKABD169cXXl5eYujQoaJ58+YCgNDX1xcHDx4stE1UVJRo1KiRACAsLS1Fv379xODBg0WLFi2Ejo6OWLJkiXzd9evXCwDCz89PmJubCzc3NzFs2DDRs2dP8ffffwshhIiMjBTu7u4CgHBxcRHDhg0Tnp6eQldXVwAQixcvVjh+eHi4sLKyEgBE3bp1ha+vr/Dx8RHNmzcXEolEfj6FEOLSpUvC0NBQABBNmzYVQ4cOFd7e3qJhw4ZKr78yW7duFQDEqFGjlC4/cOCAACD69esnL8vIyBAAhLW1tXjrrbfEsGHDRPfu3YWxsbEAIL+eBcnuhzFjxgh9fX3RqFEj4efnJ95++21x/fp1MWvWLAFALF++XGkc/v7+AoAICAgodP4///xzhXVl9/+sWbOErq6uaNu2rRg6dKioV6+ePO7o6GiFbTIzM0W7du0EAGFlZSV8fX2Ft7e3MDY2Fj4+PsLV1VWo8wgsTQxFfW9lZM+JgmTn4N133xVWVlbijTfeEMOGDRNNmjQRAISNjY2Ijo4WAwYMkD9bevXqJQwMDAQA8euvvyrsLywsTAAQ7dq1Ey1bthQ1atQQgwYNEt7e3sLIyKjI6xsbGyuaNm0qAAg7OzvRp08f0bt3b2FhYSEAiClTpij9PM7OzqJ3797CxMRE9OnTRwwZMkRMnDhRCCHE8uXLBQChq6sr3n77bTF8+HDRo0cP4eTkpNa1uHHjhqhZs6b8WeDn5yc6dOggAAg9PT2xbds2+bqBgYFFPqdu375d7HFKe+6GDRsm9PT0RIsWLYSPj4/w8fERtWvXFgCEvb29ePz4sdLjtGnTRjRr1kxYWloKHx8fMWjQIPHFF1+I2bNnizfffFMAEB07dlR4zso+g+wZXjCe0m4nhBC5ubmiT58+AoAwNzcXPj4+YsCAAcLMzEwAEAMHDhR5eXkK28j+Hs2ZM0fo6uqKLl26iMGDBwtnZ2f58y89PV1hm8GDBwsAwszMTPTp00f4+fmJt956S1hYWIjOnTsXe32Iqjsm6S88ePBA/tA1MzMTo0ePFmvWrBFXrlwRubm5RW5XXJIOQDRu3FjExcXJy4OCguQPamtra3niJ4QQKSkp8mQyKChIYX/qJun79+8XycnJCmWZmZliwoQJAoCYP3++wjLZg1r28M3IyCj0WV9N0kuKQYjnD3pnZ2ehr6+v9OWnY8eOAoAIDg4utEyZGzduiJs3bxYq/+eff4SBgYGoU6dOoRecbt26CQBi6NChhV5OwsLCxPXr1+X/liVIsiRE2bX39vYWAMSIESNEVlaWvPzUqVPC2NhY6OrqiqtXr8rLP/vssyKTmkePHon79+/L//3uu+8KAGLRokWF1r19+7aIiopSdloUpKenCzMzM2FqairS0tIKLR81apQAILZu3Sovy8nJEYGBgSI7O1th3bi4ONGqVSsBQJw4cUJhmex+ACC+++67Qse5e/eukEgk4s033yy0LCUlRRgbGwtLS0uFe62kJF1HR0cEBgbKy3Nzc4Wvr68AID799FOFbb788kt54pOUlCQvDwsLkycNpUnS1YmhLEk6ADFv3jz5/Zyfny9/sWnYsGGhZ8uRI0eU7k+WAMpe/OLj4+XL7t+/LxwcHAQAhc8khJAnaNOnTxeZmZny8piYGPk9ceDAgUKfB4Dw8PAQkZGRhT6vi4uLkEgk4uLFiwrl+fn5Kr2AytaVvbDMnTtX4fu+Y8cOoaOjI0xNTQt9V4p7ThWltOcuKChIxMTEKJTl5eWJ+fPny19sizpO+/btFe5XmaKevzJFJdul3W7RokXySp2CnyUqKkrUr19fABA///yzwjayc2xsbCzOnj0rL09LS5O/RK1du1ZeHhoaKr9nExISFPaVkZGhsA+i1xGT9AKOHDmi8Mdb9l+NGjXEpEmTlCZIJSXpR44cKbSNrOZXWU3nsmXLik1SVE3Si5Keni6v4SlI9qCWSqVK/7gKUbokXYiXv1J8//33CuW3b9+W//ErDyNHjhQAxI0bN+RlwcHBAoCoVauWePr0aYn7kCVINjY2ShPcBw8eCADC1NRUPHnypNByWe1xwV8GJk2aJACIv/76q8Tj9+7dWwAQ165dK3Hd4sjuly1btiiUp6WlCVNTU2FmZlaoRqsohw8fltcgFyS7H5o0aVLoxUjG09NTABAXLlxQKJf9IjJt2jSF8pKS9JEjRxY6xqVLlwSAQrVusl+mTp06VWibNWvWlDpJVyeGsiTp7u7uhV6arl+/rtKzpeB3sWACeOjQoULbyK5Ft27d5GVXr14VAETr1q0L1ZYKIcSVK1cEANG/f/9CnweA2L59u9LPa2RkJCwtLZUuU5WsosPFxaXQ+RFCiEGDBgkA4quvvlIoL2uSruq5K4mjo6OwtrYu8jivvsDIVHSS7uLiIgAo/XVS9guph4eHQrnsHH/88ceFttmxY0eh48iezz4+PkpjI3rdsU16Ad26dcP9+/exa9cuTJw4ES1atICenh6Sk5OxatUqNGvWrFD74eLo6+srHYdX1nGpZ8+eRS5Tpe1xSR4/foxffvkFM2bMwNixY+Hv749JkybBwMAAISEhSrdp0aJFuY9UM378eOjp6eG3335TKF+zZg0AYMKECWrtLysrC7t378bHH3+MCRMmwN/fH/7+/vj3338BQOGzHTlyBAAwfPhwmJmZqXyM7t27w9jYuFD56dOnAQBeXl6wsrIqtPydd94B8LxPgEzLli0BAP/3f/+Hv//+G5mZmUUeV7bu5MmTcfz4ceTm5qocc0EjR44EAGzevFmhfPfu3UhNTcWgQYNgZGRUaLtr167h+++/x+TJkzFmzBj4+/tj1apVAFDkPSPrd6DMxIkTAby81jKlvfbKvjP16tUDoPidefToER4/fgw7Ozt06tSp0DbDhg1T67iliaGsunTpAn19fYUy2fOhpGeLsjisrKzQo0ePQuXDhw8H8LyPgKx9taxvhY+PD3R0Cv+ZkLVRv3DhQqFlEokE/fr1U/qZWrZsiaSkJIwbNw7//fef0nVKIvtuDR06tND5AZR/B8tKnXMn8+TJE6xfvx6zZ8/GuHHj5M+pnJwcPHnyBImJiYX2Z29vj1atWpVb3KUVHh6O8PBw2NjYKL3fvb29UaNGDdy/fx8xMTGFlqv6HWnQoAFMTEywb98+/PDDD0rb6xO9zji6yysMDAwwcOBADBw4EACQnJyMrVu34v/+7/8QFxeHKVOm4PDhwyrty87ODrq6uoXKTU1NAUBpMixblpWVVdqPAABYvHgx5s2bh5ycHLW208RoNfb29ujfvz927dqFEydOoHPnzsjOzsamTZtgZGQkTyhV8e+//6J///7FjslesANqREQEAKBOnTpqxVzUeZD9EXm1s5+MrPzx48fyMn9/fxw6dAjbtm1Dv379YGhoiNatW8PLywtjx46FnZ2dfN05c+bg9OnTOH78OLp27QpTU1O0b98effv2hb+/v8ojn3h6esLe3h7//PMPEhMT5S8Uf/zxBwAUOufZ2dnw9/fHli1bitxnUR17i7tnfHx8YGdnhy1btmDx4sUwNTXFlStXcOXKFbRv3x6NGjVS6fPIODk5FSqTvXwV/M7IEgFnZ2el+zEzM0ONGjWK7NRaHjGUVXHPh5KeLcricHV1VXocCwsL+blISkqCtbW1/Pv18ccf4+OPPy4yRmUvnLVq1YJUKlW6/ooVK+Dj44N169Zh3bp1sLW1RefOnTFo0CAMHjxY6Wd6VWm+g2WlzrkDgC1btmDChAlITU0tcp/Pnj0r9KJfmUPsFiQ7x0V9bolEAldXVyQnJ8tfhgtS9Ttibm6ONWvWYMKECZg7dy7mzp2LevXqoWvXrnjnnXfQsWPH8vpIRFUSa9JLUKNGDUycOFE+osmxY8eQnp6u0rbKaqDUWV5a58+fx+zZs2FsbIwNGzbg4cOHyMzMhHjevKnYoRwNDQ01EtOrNap//fUXEhISMGTIkEJjzxdFvBgi8+HDh5g4cSKuXbuGp0+fIj8/H0IIfPTRR/L1yqq050FZjbKuri7+/PNPXLlyBZ9//jlat26N4OBgfPzxx6hXrx7Onj0rX9fc3BxBQUE4deoU5s6di4YNGyIoKAgzZsxA/fr1i6zNVnZMPz8/5OTkYPv27QCAhIQEHDx4EPb29oXGiV68eDG2bNmCJk2a4MCBA4iNjUV2djaEEPJfj4o6r8WdK319fYwdOxapqanykRpkv6i89957Kn2WgjT1namMGIoaUUWV42j6PMhi69SpE0aPHl3kf8pesIu7H5o2bYpbt24hMDAQ7733HszNzbFt2zb4+fnhrbfeQnZ2dpljV2fEHk149OgR/P39kZ2djaVLlyIkJATp6eny52/79u0BKP8+aer5qwnFnWd17s/hw4cjNDQUa9aswZAhQ5CcnIzVq1ejU6dOmD17dnmESlRlVf5fvCpCltTk5eWVqvatIgUGBgIAvv76a4wePVo+RBkAZGRkKP15UtO6d+8ODw8P7Ny5E0lJSaVq7nDnzh3cuXMHrVq1wqpVq/Dmm2/CzMxM/sciNDS00DaymtQHDx6Uw6cAHBwcADz/Q6yMrAZSWS1o8+bN8cUXX+DkyZOIj4/HzJkz8ezZM8yYMUNhPYlEgk6dOuG7775DcHAwoqKiMHz4cMTGxhZbq/kqWQIlqz3ftm0bcnNz4efnV6jGUnbPbNmyBV5eXqhVq5a8KYGy86qOCRMmQEdHB2vWrEF6ejo2b94Mc3PzMjU5KYnsRVT2S8qrnj17ViHfYwMDAwBQWqNaVGyaEh4errT86dOnSE5OhpGRkfyFWVYT6uPjgw0bNhT7n7oMDQ3h4+ODX3/9Fffu3cPNmzfRtGlTnDt3rlCTOGXK8h0sLXXO3f79+5GdnY1p06Zh+vTp8uF3Zcr6faoIJZ3jgsvK4zzb2Nhg/Pjx2LZtG2JiYnDgwAGYm5tj8eLFpW4WRVQdMEl/oaTa1/v37wN4/kdX2yf0SUpKAqD8J8ft27eXS01zQbJEpLj20xKJBBMmTEBmZiYWLFiAo0eP4o033lDr58ziPldSUpLSZkjdu3cH8Dz5LO6nZ1XJ2jf/888/SpO8gIAAAMBbb71V7H7Mzc2xcOFCSCQS3Lx5s9h1a9WqJR83vKR1C2rZsiUaNGiA06dPIzw8vMimLkDx53bbtm0qH1MZV1dXeHl54cKFC/jkk0+QkpKCkSNHKm3zX15cXV3h6OiImJgYhV8qZGS/Lmia7GWh4Fj8Mqo2mysvT548wdGjRwuVy37haN++vfzlTdb+WvbypkmNGjXC5MmTAah2f8u+W9u3b1c6Vreq30F1qHPuivsunTx5ErGxsaWKQZXnbHlt5+LiAhcXF8THxyv93Pv27UNSUhI8PDwKNXUpK4lEAi8vL/Tt2xcAmKTTa41J+guffvop5syZo7TG9fHjx3j//fcBPJ8oRvbQ01ayDjpr165VaJN+69Yt/O9//yv348lqXUrqVDtmzBhIpVIsXboUQgi1mzt4eHhAR0cHQUFBCs0+MjMzMXHiRKUdsdq0aYOuXbsiLi4OEyZMQFpamsLyhw8fyjucqsLd3R19+/bFs2fPMH36dIXze+7cOaxatQq6urrypAMAfv/9d6XJx4EDByCEUGg3/csvvyAsLKzQuvv37wdQdBvroowcORJCCCxcuBBnz55FgwYN5J1TC5LdM7/88otC+Y4dO7Bp0ya1jqmMrLnTkiVLAJSuqUtpjzl79mykpKTIyx89eoQFCxZo/PgA5BM1rVq1SmGSsmvXruGzzz6rkBgK+vDDDxXiCAsLk5+Lgvds27Zt0aNHD5w5cwaTJ0/G06dPC+3r+vXr+Oeff1Q+dnp6On766adCL7f5+fny/ahyf3fp0gVNmjTBw4cP8dlnnylUOgQGBmLXrl0wNTXF2LFjVY5NFaqeO9l3KSAgQOF58/jxY/k9WRqqPmfLa7upU6cCAGbNmiWf7A8AYmJiMGfOHADA9OnT1drnq65evYpdu3YVauaUmJiI4OBgAOo/84iqE3YcfSE1NRXLli3DokWLUK9ePTRs2BCGhoaIjIxEcHAwcnJy4OHhIZ99U5uNGTMGP/74I/bu3Yv69eujdevWSExMxIkTJ+Dj44MLFy4U+zOmuvr374+NGzdixIgR6Nmzp7xz46s/XdesWRO+vr7YvHkzpFIp3n33XbWOU6tWLYwbNw5r1qzBm2++CU9PTxgZGeHUqVPIy8uDv7+/0p/ff//9d3Tr1g1btmzBwYMH0alTJ0ilUjx48ADXrl3Djz/+iCZNmqgcx+rVq/HWW29h06ZNOHHiBNq3b4/4+HgcP34ceXl5+PHHH9GsWTP5+jt37sS7776LOnXqoEmTJjAyMkJYWBiCg4Oho6ODr776Sr7uL7/8gkmTJqFhw4Z44403oKenhzt37uD69eswNDRUO7EbMWIEPv30U3nyXVQn3blz5+Kff/7BvHnzsH37dtSrVw8hISG4dOkSPvzwQyxatEit476qT58+cHZ2RkREBFq1aoXmzZuXaX+qmDNnDvbt24fz58+jTp066Nq1K7KyshAUFIRu3bpBCFGuo7Eo07VrV3Tu3BknTpxAw4YN0bFjRyQkJCA4OBjTpk0r83lVR7t27ZCdnQ0PDw94enoiJycHR48eRXp6OkaNGoVBgwYprB8QEAAvLy+sXLkSmzdvRrNmzeDg4ICUlBTcuHEDERERmD59Ory8vFQ6fnZ2NqZPn44PP/wQLVu2lM9MevHiRURERKB27doqNX+TSCT4448/0LVrV3zzzTcIDAxEs2bNEB4ejjNnzkBPTw9r164ttu+NutQ5d/3790ejRo1w6dIleHh4oGPHjsjMzMSxY8fQrFkzdOjQQemvOyXp2bMnDA0NsWTJEty8eRMODg6QSCSYM2cO6tevX+7bzZw5E0FBQThw4ADq1q0LT09PCCFw9OhRPHv2DD4+Pvjggw/U/hwFPXr0CL6+vrCwsECrVq1gZ2eH5ORknDx5Es+ePUO/fv3kbfiJXkesSX/hk08+we+//45Ro0ZBKpXi1KlT2LFjB27duoU2bdrg+++/x7Vr18p9eEJNsLa2xsWLFzFixAhkZ2djz549ePz4Mb788stiR+8orUGDBmHJkiVwcnLC3r17sXbtWqxdu1bpurK2/YMGDZKPhKCOVatW4ccff4SbmxuOHj2KU6dOoXv37rh06VKRIxE4Ojri4sWLWLBgAZycnHD48GEcOHAA6enp+OCDD+Dt7a1WDLL9zZ49G3p6eti1axcuX76Mbt264eDBg5g1a5bC+rNmzcLkyZNhZmaGU6dOITAwEHFxcRg2bBiCg4MxZMgQ+bpffvklxo4dC4lEgqNHj2Lv3r3IyMjA+PHjce3aNbVHO3B3d1f4IzdixAil67399ts4ffo0PD09ERoair///hsGBgbYuXOnQi1haenq6sprlSuiFh0ApFIpDh8+jLlz58LExAR79uzBf//9h9mzZ+PPP/9EbGxsqe5BdUgkEuzevRsTJ06ERCLB/v37kZiYiGXLluGHH37Q6LFfJZVKERQUhBEjRuD8+fM4ePAgnJ2dsWjRIqUvt7Vq1cLZs2fx008/oWHDhrh69Sp27NiBGzduwN3dHT/88AM+/PBDlY9vamqKFStWoF+/foiPj8eePXsQFBQES0tLzJ8/H5cvX1b5ejRp0gRXrlzBe++9h9TUVOzYsQN3796Fj48Pzpw5g6FDh6oclyrUOXcGBgY4deoUJk2aBENDQ/z999+4ffs2pk6disOHDysdNlIVDg4O2L17N9q1a4fTp09j3bp1WLt2bYkvmqXdTldXF3v27MGyZcvg7u6OgwcP4tChQ6hfvz5WrFiBHTt2lLkDc7t27fDVV1+hZcuWuHv3LrZv345Lly6hadOmWLduHXbu3Fmm/RNVdRJR3g2UiYrRq1cvHDp0CMeOHVM6zjNVT+np6XB0dERubi6ioqLUGrNeE86fP4/27dvDy8sLBw4cqNRYSHs9fPgQbm5u6Ny5M44fP17Z4RDRa4Y16VRhLly4gMOHD6NRo0ZM0F8zK1asQHJyMkaPHl2hCfrVq1cLDXUYGhoq72MyatSoCouFiIhIHWyTTho3b948hIeHY9++fRBC4Ouvv67skKgCPHnyBP/73/8QGxuL/fv3w9TUFPPmzavQGIYPH46UlBQ0adIE1tbWCA8Px+XLl5GVlYX+/fsX2fyHiIiosjFJJ43bunUrIiIi4OrqioULF2LAgAGVHRJVgGfPnmHt2rUwMDBA8+bNsWjRIqXD0mnS1KlTsW3bNty4cQOJiYkwNDREs2bNMGrUKHk7cSIiIm3ENulERERERFqGbdKJiIiIiLQMk3QiIiIiIi3DJJ2IiIiISMswSSciIiIi0jJM0omIiIiItAyTdCIiIiIiLcMk/RU5OTmIjo5GTk5OZYdCRERERK8pJumvSEhIwK+//oqEhAS1tsvJyUFsbCyT+yqO17H64LWsHngdqwdeRyL1MUkvJ7m5uYiPj0dubm5lh0JlwOtYffBaVg+8jtUDryOR+pikExERERFpGSbpRERERERahkk6EREREZGWYZJORERERKRlmKQTEREREWkZJulERERERFqGSToRERERkZbRq+wANCUjIwOBgYG4e/cuQkJCkJqaiunTp6Nbt26VHRoRERERUbGqbU3606eclzipAAAgAElEQVRPsXXrVkRGRsLNza2ywyEiIiIiUlm1rUm3srLCxo0bYWlpiZCQEMyePbuyQyIiIiIiUkm1rUnX19eHpaVlZYdBRERERKS2apukExERERFVVUzSiYiIiIi0TLVtk67N7t+/j5CQENSwtEKb1q2gq6tb2SERERERkRZhkg4gISEBCQkJAIDExEQAQGZmJjIyMlTeR1ZWlsL/FiUiIgLXrl0DADx9+gw3w5Ph1b4Rata0Lk3oVM5UvY6k/Xgtqwdex+qhoq6jkZGRRvdPVJGYpAPYuXMn1qxZAwCwsLDA22+/jcjISKSlpam9r8jIyGKX37p1S/7/JRLAAik4ceYcGr3RAPq6ErWPR5pR0nWkqoPXsnrgdaweNH0dGzdurNH9E1UkJukAfH190blzZwDPa9IPHz4MJycn2NnZqbyPrKwsREZGwsnJCVKptMj1zM0tcP7iJSAvBwAg7OpjRVAGXJ4aYcVQe5hI2U2gMql6HUn78VpWD7yO1QOvI5H6mKQDqFmzJmrWrAkAiI6OBgAYGhqW6mczqVRa7HYuLs5INHNAeEo2oKcHHR0dSK89xKkH6fAPiMamMbVhZcLLUtlKuo5UdfBaVg+8jtUDryOR6qp1Nvj3338jLS1N3s78woUL8rbn3t7eMDExqZS47Ax1EJlhIP93Uzcz3HucjisRGRj4Syg2j6sNxxoGxeyBiIiIiKqzap2k//XXX4iLi5P/+9y5czh37hwAoEuXLpWWpNeUPh/7Mv/Fv5u6m2LH6VgAQEhcFgasDMWW8bVRt5ZhpcRHRERERJWrWifpv/32W2WHoJSejgTWUiD+RSd3O0spHKwMEJWYDQCISsmBz6pQ/DG2Npo5G1dipERERERUGdhLsZLYGiqO5PLVEGcY6r8sS0rPw+Bfw3AyJLWiQyMiIiKiSsYkvZK8mqRbmEuxdbwbLIxeXpL07Hy8s/4h9t5IqejwiIiIiKgSMUmvJEa6EpgXaGyUmA00czHGrvfrwNbs5YKcPIGJm8Ox6fyTSoiSiIiIiCoDk/RKVLA2XQCIzxR4w94Qez6oAzfrl6O7CAHMC4zCkiOxEEJUQqREREREVJGYpFeiWq80eYl90ZHU2coAuz+og8YOiqO7/HA4Dp/uiUZ+PhN1IiIiouqMSXolqqEPFJxgND5TIP9FTXlNUz3sfN8dHdwVh4lcd/YJpvwZgezcfBARERFR9cQkvRJJJBKF2vQcASRlv1xuZqiLgLG10buRucJ2f11Lgf/GR0jPZqJOREREVB0xSa9kttJXmrxkKjZlMdTXweqRLhje2lKh/Pi9VAxbE4qk9FyNx0hEREREFYtJeiWTzT4q82qSDgB6uhIs8nXElC42CuWXwzMwcFUoopJzNBwlEREREVUkJumVTDb7qExaHpCaWzhRl0gk+L/edvi8r51C+b24LAxY9QD3ZdOXEhEREVGVxyRdC7w6sVGcktp0mffftsGyoU7QLXDlHifnwGfVA1yPTNdUiERERERUgZika4FXk3RlTV4KGtLSEuvedYWh3svtEtPyMHh1GE7dT9VIjERERERUcZikawFls49mlzAWeo83zLFlvBssjF5ewrTsfLyz7iH+vpGiqVCJiIiIqAIwSdcSymYfLUlbNxPsfN8dtmYvM/zsPIH3N4cjIDhRE2ESERERUQVgkq4lipp9tCQN7Y2w+4M6qG1tIC8TApi76zGWBcVBCM5OSkRERFTVMEnXEsXNPloSFysD7J7kjkYOhgrl3x2Mxed7o5FfQtMZIiIiItIuTNK1REmzj5bExkwfOye4o727iUL5b2eeYPq2SOTkMVEnIiIiqiqYpGuRkmYfLYm5kS7+GFsbvRqaK5TvvJqMsZseIT07v8wxEhEREZHmMUnXIqrMPloSQ30drBnlAr9WlgrlR+88g99vYUhKzy1jlERERESkaUzStYiqs4+WuB9dCX4c7IgPOtdUKL/0KB2+q0MRnZJT1lCJiIiISIOYpGsZdWYfLY5EIsEnfezxaR87hfI7MVkYsOoBQhNUHD6GiIiIiCock3Qto+7soyWZ1NkGS4Y4QbfAlY5MysGAlQ9w43FGmfZNRERERJrBJF3LlGb20ZIMa2WJ395xhaHeyxeAJ2l5GLw6FGcepJZp30RERERU/pika6HSzD5akl4NzbFlvBvMDV9e8tSsfIxc+xD7b6aUef9EREREVH6YpGuh0s4+WpK2bibY+b47apm9rKrPzhOYEBCOP4ITy+cgRERERFRmTNK1UFlmHy1JIwcj7J5UB65WBvKyfAHM2fUYPx+Lgyin4xARERFR6TFJ10JlnX20JK7WBtj9gTsa2hsqlC/8Jxbz/45GfhnbwBMRERFR2TBJ11JlnX20JLXM9LHzfXe0dTNWKP/19BPM2B6JnDwm6kRERESVhUm6liqP2UdLYmGki83j3NCzoZlC+Y4ryRi36RHSs/MBANnZ2UhLSyv0X3Z2OVbvExEREZGcXsmrUGWQzT4a/6LTqGz2UVM9SfEbqslIXwe/jXLFhzsfY9vlJHn5kTvPMHxtGDaOro3I0Hu4detWoW0bNmyIxo0bl2s8RERERMQkXavZGkoQn/WyBj0uU8DUtHyTdADQ05VgyRBHWJno4peTCfLyiw/T4bs6FBvfdUdfNzdkZGQgKCgInp6eMDIygr6+frnHQkRERERs7qLVynv20eJIJBJ81tcen/SxUyi/HZMJ3zXhiMvQg5GREQDAyMgIJiYmMDAwULYrIiIiIiojJulaTBOzj5bkg842WDzYEToF3g8iknIwYFUo7sZmavTYRERERPQck3Qtp4nZR0vi19oKv73jCmmB9u8JqbmY+Ee4xo9NREREREzStZ6mZh8tiVcjc2wZ5wazF7Mq6UCgnWUcAODwZSbrRERERJpUqiQ9JiYGGzZswJgxY9C8eXM4OTnB1NQUTk5OaN68OcaMGYMNGzYgJiamvON97Why9tGStHM3wc6J7rAx1UNHmyS0q5kCAEiP+hcf7Xw5RCMRERERlS+1Rnc5ePAgVq1ahf379yMvL6/QFPLp6emIiorC9evXsWnTJujq6qJv376YNGkSevbsWa6Bvy5ks49GpD8/17LZR62lFXP8xg5G2P2BO5bsiJOX6ekAO68k4nRYFlYMd0ZTR6OKCYaIiIjoNaFSTfqlS5fQpUsX9OnTB3v37kX79u3xySefYO/evQgJCcGTJ0+Qk5ODhIQEhISEYM+ePfj444/Rtm1b7NmzB71790bXrl1x+fJlTX+eaknTs4+WpLa1FHN8WyIp93kyfijaCqm5engQn4V+Kx5g5Yl45Gu4QysRERHR60SlmvQ2bdrA1tYW33zzDUaOHAknJyel61lZWcHKygp16tSBt7c3ACAiIgIBAQH46aef0KZNG+Tl5ZVf9K8J2eyjssYlsZkCDS0qNganmqYYNcATBw/sw7kEK3l5Tp7AV/tjcPzuMywd6gyHGhw7nYiIiKisVKpJX7JkCcLCwvC///2vyAS9KM7Ozvjoo48QFhaGxYsXlyrI151s9lEZ2eyjFR/H8/9dPcIFjq8k46cfpKH70hDs+zelwuMiIiIiqm5UStKnT58OQ0PDMh3I0NAQ06dPL9M+XmevTmwUV8FNXgpq7mKEIzPqon9Txer85Iw8vBcQjtk7IpGWxV9MiIiIiEpLo0Mw5uXlYd++fZo8xGujImcfVYWFkS5WjXDGT8OcYCpVvI22XExCr5/u41pEeiVFR0RERFS1aSRJv3jxIqZPnw4HBwcMGDBAE4d47VTG7KMy2dnZSEtLQ0ZGBgAgIyMDaWlpyMnJweAWljg8vS5auhgrbBOakI3+Kx/g52NxyGOnUiIiIiK1qDUEY3EePXqEgIAABAQE4N69e/LhGRs1alReh3jt2RpK8DT1+XmVzT7qaCwpfqNycO/ePdy6dUv+76CgIABAw4YN0bhxY7haGyBwojuWBsVh6dE4yHLy3Hxg4T+xOHY3FT8Nc4KTpYHGYyUiIiKqDsqUpKekpGDbtm34/fffcfbsWQghIISAm5sb/Pz8MHz4cDRu3Li8Yn3t1TKUICT1Za10bBbgaFzMBuWkXr16cHNzK1Sur/+y86iergQf9rDF23VNMXVrBCKScuTLzoeloceyEHw30BH936yh+YCJiIiIqji1k/Tc3Fzs27cPAQEB2LdvH7KysiCEgJWVFfLz85GSkoIHDx5oItbXnmz20awXYzHKZh/VkWi2Nt3AwAAGBqrVgrepbYLD0+vi491R2Hk1WV6ekpGPiZsjEHT3Gb4a4ABTqa6mwiUiIiKq8lRuk37+/HlMnjwZ9vb2GDRoEHbu3AkhBAYOHIjAwEBER0ezaYuGyWYflZHNPqptzI108bOfM5b7OcPslU6l2y4no8fS+7j8iJ1KiYiIiIqiUk163bp1ERoaKv/3W2+9hVGjRmHIkCGwsKjgWXVec7ZSCSLSCzR5yRSwlmq+XXppDGpeA61djTH1zwhcePgyKX+UmA2fXx5gZrdamNa1FvR0tTN+IiIiosqiUk26rPmKvb09Dh8+jOPHj2P8+PFM0AswMDCAi4uLys1CSks2+6hMZQ/FWBJnKwPsmOCOuT1toVsg8Lx8YNHhOPj+GoqIRO35OaCiriNpHq9l9cDrWD3wOhKpT6UkvUGDBhBCICoqCj169EDHjh2xatUqJCYmajq+KiM7Oxvh4eHIztZswqkts4+qQ09XghndamH3pDqoba34gL74MB3dl4Zg19WkSopOUUVdR9I8XsvqgdexeuB1JFKfSkn6rVu3cOnSJUybNg02NjY4d+4cpkyZAnt7ewwYMAA7duxAVlaWpmOlF7Rp9lF1tHAxxqHpHhja0lKh/FlWPqZsjcSUrRF4msGZSomIiIhU7jjaokULLF26FFFRUdi/fz+GDRsGPT097N27F8OGDYOdnR1u3rypyVjpBW2bfVQdplJdLB3qhF9GOMPCSPH223U1Gd2XheDCw7RKio6IiIhIO6g946iOjg68vLywefNmxMbGYt26dejatSuePXuGlJQUAICDgwNmzpyJ4ODgcg+YKnf20fLS/80aODKjLtq7myiURyblYNAvofjhUCxy86rWZyIiIiIqL2on6QWZmprC398fR44cQXh4OL799ls0btwYMTExWLZsGTp06AAPD4/yipUKKFibLpt9tKpxrGGAbe+54SMvW+gVuBPzBbDkaBwG/vIAD5+wGRURERG9fsqUpBfk4OCAuXPn4vr167h27RpmzZoFW1tbhIWFldchqIBarzZ5qaK5rK6OBFO71sLeyXXgXlOxU+nl8Az0WHof2y8nQYiq9xJCREREVFrllqQX1LRpUyxatAiRkZH4559/NHGI155s9lEZ2eyjVdWbTsY4OM0DI1ordipNy87H9G2RmLQ5Asnp7FRKRERErweVk/Tbt2/j5MmTCA8PL3HdR48e4eTJk7h37x569OhRpgBJuaoy+6g6TKS6WDTYCb+94wJLY12FZXtupKD70hCcC02tpOiIiIiIKo5KSXpCQgLat28PPz8/6Ovrl7i+gYEB/Pz80KlTJyQnJ5c5SFLOVlp1R3kpTp/GFjgyoy46eSh2Ko1KycHgX8Pw7T8xyGGnUiIiIqrGVErS169fj6dPn+Kbb76Bvb19ievb29vj22+/RWJiItavX1/mIEm5qjb7qDrsLfSxdZwbPutrB33dAp1kBfDTsXj0X/kAoQlVtCE+ERERUQlUStL37dsHCwsLjBo1SuUdjxw5EjVq1MCePXtKHRwVryrOPqoOHR0JJr5tg78n14GHjVRh2fXIDPRcdh+bLySyUykRERFVOyol6f/99x/atWsHPT29kld+QVdXF23btsV///1X6uCoZFV19lF1NHE0wj/TPDC6nZVCeXp2Pj7c+RgTAsKRlJ5bSdERERERlT+VkvSUlBRYW1urvXNra2v5BEekGdW1XfqrjA10sHCgI9aPdoWViWKn0n03n6L7khCcvs9OpURERFQ9qJSk16hRA4mJiWrvPDExEebm5mpvR6oz0qv6s4+qo1dDcxydURed65oqlEc/zcWw38Lw5f5oZOfmV1J0REREROVDpSTdw8MDwcHByMtTfZzq3NxcnD9/HnXr1i11cKSa6jD7qDpszfXxx9jamO9tD4NXOpWuOpGAfisfICQusxIjJCIiIioblZJ0Ly8vJCcnY/ny5SrvePny5UhJSUHv3r1LHRypprrMPqoOHR0J3nurJvZPrYP6toqdSv99nIleP93H7+efsFMpERERVUkqJelTpkyBqakp5s6di4CAgBLX//333zF37lyYmZlh8uTJZQ6SilfdZh9VR0N7I+yf6oExHRT7TGTmCPwvMApjN4XjSRo7lRIREVHVolKSbmVlhY0bNyIvLw+jR49Gx44dsXz5cpw9exYhISEICQnB2bNnsXz5cnTs2BH+/v7Iz8/Hxo0bYWVlVfIBqEyq4+yj6jDS18HXAxzw+xhX1DRVHIHo4K2n6LYkBMfvPauk6IiIiIjUp/KYij4+Pti7dy9Gjx6Nc+fO4fz580rXE0LAxsYGGzZsYFOXCmQrlSAi/WXteWymgPUrI79Ud90amOPoDCPM2vEYR++8TMrjnuVixNqHmNDJGh/1toNUT6V3UyIiIqJKo1a20rt3bzx8+BArVqxAnz594ODgAKlUCqlUCgcHB/Tp0wcrV65EWFgYE/QKVp1nH1WHjZk+Nvm74usBDjDUU3xJ+fX0E/Rd/gB3Y9iplIiIiLSb6rMTvWBsbIxJkyZh0qRJmoiHSkk2+2j8i06jstlHTfVer9p04HnznzEdrNHB3QSTt0bgVvTLpPxWdCZ6/3wfn/a1h397K0gkr9/5ISIiIu3H3/2rkddh9lF11LczxN+T62BCp1c6leYKfLw7CqM3PEJCKjuVEhERkfZROUl/77334OnpibNnz5a47rlz5+Dp6cna9gr2usw+qg5DfR180c8Bm8fWRi0zxR+Ojtx5Bs8lIQi6w06lREREpF1UStKPHj2KtWvXwsbGBh06dChx/fbt26NWrVr49ddfcfLkyTIHSap53WYfVUeX+mY4OqMuejY0UyhPSM3FqPUP8cnuKGTkcKZSIiIi0g4qJem///47JBIJvv76a5V3/M0330AIgY0bN5Y6OFLf6zb7qDqsTfWw/l1XfDfQAYb6ir86rDv7BH2X38fd12EmKCIiItJ6KiXp586dQ5MmTeDh4aHyjt3d3fHmm2/izJkzpQ6O1Pc6zj6qDolEgnfaWePgVA80cjBUWHYnJgs+v0Yi8LZAPn+BICIiokqkUpIeGRmJevXqqb3zunXrIjIyUu3tqPRe59lH1VHX9nmn0kmdayqUZ+cJrLoEjP0jGrFPcyopOiIiInrdaXR0F4lEAsEEsUK97rOPqkOqp4NP+9jjz/fcYGeu2Kn01IN0dFsagkO3nlZSdERERPQ6UylJt7W1xf3799XeeUhICGxtbdXejsqGo7yo5y0PUxyZURe9G5krlCem5cF/4yN8FPgY6dnsVEpEREQVR6UkvX379rhx4wbu3Lmj8o5v376N69evqzQaDJUvzj6qPisTPfz2jgsW9q8Fqa7iso3nE9H75/u4GZVROcERERHRa0elJP2dd95Bfn4+xo0bh8zMkqdUz8zMxLhx4+TbUsWSzT4qI5t9lIonkUgwtIU5VnkDTRykCstC4rLQd/kD/HIynp1KiYiISONUStK9vLzQp08fnDt3Dm3btsXhw4eLXPfQoUNo06YNgoOD0adPH/Tq1avcgiXVcfbR0nMyl2DbWCdM7WoDSYHTmJMnsGBfDIavfYgYdiolIiIiDdIreZXntm7dit69e+PMmTPw8vKCtbU1mjVrBhsbGwBAfHw8rl27hidPnkAIgU6dOmHLli0aC5yKZyuV4CZeJuaxmQLuppUYUBVjoCfBR1526FLPFFO2RiI65WVSfup+KrotCcEiX0f0bmxRiVESERFRdaVykm5qaorjx49j8eLFWLp0KaKjo3HkyJFC69nb22PmzJmYOXMmdHV1leyJKoJs9tGnuc//LZt91EBHUvyGpKC9uymOzqiL/+16jL3/psjLk9LzMO73cIxsY4n5/RxgbKDRgZKIiIjoNaNykg4Aurq6mDNnDmbPno2rV6/Ka84ByGvWmzdvDh0dJizawNZQgqepz2vTZbOPOhozSVdXDWNd/DLSGd2umOHjv6KQVmCklz8uJOFcaBpWDndBUyejSoySiIiIqhOVkvSkpCRYWlrK/62jo4OWLVuiZcuWGguMyq6WoQQhqQWavGQBjsaVGFAVJpFIMLSlJVq7GmPq1ghciXg50ktoQja8V9zH3F52mPR2Tejy1woiIiIqI5WqvO3t7eHr64u//voLOTnsMFdVcPbR8udWU4rASXUwo1stFMzFc/OBbw7EYNiaMDxO5uxRREREVDYqJem5ubkIDAyEr68v7OzsMGnSJJw5c0bTsVEZcfZRzdDXlWBuT1vsfN8dTpb6CsvOhqahx9L72HsjpYitiYiIiEqmUpIeGRmJRYsW4c0330RSUhJWr16Nt99+G3Xq1MHnn3+OkJAQTcdJpcTZRzWnrZsJjkyvi4HNFEd4Sc7Iw/t/hGPm9kikZuVVUnRERERUlamUpNvZ2WHWrFm4cuUKbt26hY8++giurq4ICwvDV199hQYNGqB9+/ZYuXKlvCMpaQfOPqpZ5ka6WDHcBcv9nGAqVfw6/XkpCT2X3ceV8PRKio6IiIiqKrWHYWnQoAG+/vprhIaG4uTJkxg/fjxq1KiB4OBgTJ06FQ4ODhgwYAB27NiBrKwsTcRMauDsoxVjUHNLHJlRF61cFXvmPnySjQGrHmBZUBzyOFMpERERqahMYyV26tQJq1evRkxMDAIDAzFw4EDo6Ohg7969GDZsGOzs7PDee++VV6xUSpx9tGK4WBlg1/vu+LBHLegW+Gbl5QPfHYzF4F9DEclOAURERKSCchnQXF9fX157Hhsbi9WrV8Pa2hopKSlYt25deRyCyoDt0iuOnq4Es7rbInCiO1ysFDuVBoelo/vSEPx1LbmSoiMiIqKqolxnHbp69Srmz5+PL774Qt42nbOOVj7Z7KMystlHSXNauZrg8PS6GNKihkL508x8fLAlAtP+jMCzTHYqJSIiIuXKnKQ/evQICxcuROPGjdGqVSssWbIE0dHRaNq0KRYtWoTw8PDyiJPKqGCTF9nso6RZZoa6WDbMGSuHO8PcUPGrtuNKMnosC8HFh2mVFB0RERFpM5VmHH1VcnIytm3bhoCAAJw9exZCCAgh4OjoiJEjR2LUqFFo3LhxmQLLycnBH3/8gePHjyM1NRW1a9fGyJEj0bx58xK3vXbtGrZv346HDx8iPz8fDg4O8Pb2RteuXcsUU1XG2Ucrj0+zGmjlaoxpf0bifNjLpDw8MQcDfwnFjG61MMOzFvR0OVMpERERPadyTXp2djZ27tyJgQMHyic0On36NExMTPDuu+/iyJEjCA8Px7ffflvmBB0Ali5dit27d6Nz584YP348dHR0sGDBAty6davY7YKDg/H5558jJycHw4cPx6hRo2BgYIAlS5Zg9+7dZY6rquLso5XLydIA2ye4YV4vW+gVuA75Alh8JA4DfwnFoyfsVEpERETPqVST/t5772Hnzp1ISUmBEAK6urrw8vLCO++8Ax8fHxgaGpZrUPfu3cOpU6cwZswYDBw4EADg6emJKVOmYMOGDfj++++L3Hbfvn2wtLTE119/DX395x33vLy8MGnSJBw9ehQDBgwo11irCtnsoxHpzxNz2eyjBYdnJM3S1ZFgmmctvFXXFFO2RCCsQFJ+OTwdPZaF4BsfB/g2rwGJhLXqRERErzOVatLXrl2L5ORktGjRAkuXLkVUVBT27dsHPz+/ck/QAeDMmTPQ0dFBr1695GUGBgbo0aMH7ty5g/j4+CK3TU9Ph6mpqTxBB553XjU3N4eBgUG5x1qVcJQX7dDc2RiHpnvAr5WlQnlqVj6m/RmJyVsjkJLBTqVERESvM5WS9I8++gi3bt3CxYsXMW3aNNjY2Gg0qNDQUDg6OsLYWLHRdL169QAAYWFhRW7bpEkThIeHIyAgAFFRUYiOjsbWrVtx//59DBo0SKNxazvOPqo9TKS6WDzECb+OdEENI8URkP66loLuS0MQHMZOpURERK8rlZq7fP3115qOQ0FSUhIsLS0LlcvKEhMTi9x22LBhiI2Nxfbt27Ft2zYAgFQqxbx589CuXTvNBFxFyGYfjX8xEaxs9lFTPTatqCzeTS3QwsUY07dF4MyDl0n54+Qc+K4OxbSuNpjZ3Rb67FRKRET0WlGpJj03NxdxcXFISUlRujwhIQHvv/8+nJycYGhoiDp16mDevHlITU0tVVDZ2dkKzVVkZM1VsrKyitxWX18fDg4O6NChAz788EPMmjULHh4eWLJkCe7cuVOqeKoTzj6qfRxq6GPreDd83NtOIRnPF8DSoHj4rHqAsISi73kiIiKqflSqSd+4cSMmTJiATz75BPPnz1dY9vTpU3To0AEPHjyAeDFaSFhYGH744QecPHkSp06dUntCIwMDA+Tk5BQqz85+3tFOKi26t+Pq1atx9+5dLFmyBDo6z99BOnXqhClTpuC3337DokWLCm2TkJCAhIQEAC9r6TMzM5GRkaFyzLIXh+JeILSBBQDgZdv8qPQ82Otqd8wVqTKv49i2pmjtrIeZO2MR9uTl/X81IgM9lobg8z428G1mxk6lKqoq30kqHq9j9VBR19HIyEij+yeqSCol6SdOnAAAjBs3rtCyb7/9Fvfv34exsTEWLlwIT09PhISEYPbs2QgODsb69esxfvx4tYKytLRU2qQlKSkJAGBlZaV0u5ycHBw+fBiDBg2SJ+gAoKenh5YtW2Lfvn3IyckpVEu/c+dOrFmzBgBgYWGBt99+G5GRkUhLU1cvkCEAACAASURBVL9NcGRkpNrbVDR9czfk6D3v8JucI8G90DDoivxKjkq7VNZ1NAawtIfAr5eBfSEvy9NzBP63Ow77rsVhWlvAXMpEXVVV4TtJJeN1rB40fR3LYwhoIm2hUpJ+5coVNGjQAC4uLoWWrV+/HhKJBJ999hmmTp0KAGjUqBHeeOMNNGrUCNu2bVM7SXd3d8e///6L9PR0hc6jd+/eBQC4ubkp3e7Zs2fIy8tDfn7hhDM3Nxf5+flKl/n6+qJz584AntekHz58GE5OTrCzs1M55qysLERGRsLJyanYmn6tkKGLh5kv/r9EAnOnOrAzYJIOaM91/KkB0O9OKj7aHYekjJfX5uQj4F6SHn4cWAvt3DgbVXG05VpS2fA6Vg+8jkTqUylJj42NVTpb5+3btxEbGwsdHR2MGTNGYVn9+vXRunVr3LhxQ+2gOnTogMDAQBw8eFA+TnpOTg6OHj2KevXqyUeXiY+PR1ZWFpycnAA8rwU3MTHB+fPnMWLECHmNeUZGBi5evFjkw6FmzZqoWbMmACA6OhoAYGhoWKqfzaRSqdb/3OaoK/Aw82Xil5SvDzcjlee1ei1ow3Xs39wIberUwIxtkTgZ8rJ/R8zTXIzaFIUPOttgTo9aMNDjtSuONlxLKjtex+qB15FIdSol6SkpKUrbwV6+fBnA85pzZcMyurq64sqVK2oHVb9+fXTs2BGbNm1CcnIy7O3tERQUhLi4OHltPQAsWbIEN2/exJ49ewA8Hw994MCBCAgIwJw5c9C1a1fk5+fjyJEjSEhIwKxZs9SOpTqSzT6a9SJPl80+qsO2zlrHzlwfm8fWxm9nnuCbAzHIznve70MIYMXxeJwKScXy4c7wsGHNFBERUXWiUpJuaWmJBw8eFCo/e/YsAKB169ZKt8vLy4OpqWmpAps5cyb++OMPHD9+HKmpqahduzY+/fTTEtubDR06FLa2tti7dy+2bt2KnJwc1K5dG/PmzUOHDh1KFUt1w9lHqxYdHQkmvFUTHeqYYPKWCITEvex4deNxBnotC8GCfg4Y0caSnUqJiIiqCZWS9JYtW+LgwYMIDg5G27ZtAQBpaWnYuXMnJBIJunXrpnS7e/fuwcHBoVSBGRgYYMyYMYWa0RT0zTffKC3v3LmzvI05KWcrfZmkA88nNrJmZ0St1tjBCAemeuCr/dHYcO5lx+qMHIE5ux4j6O4z/ODrCCsTlb7WREREpMVUasw6fvx4CCHQu3dvfP755/j555/RpUsXxMfHw9raGj4+PoW2iY6Oxn///YeGDRuWe9BUdpx9tGoyNtDBNz6O2OjvCmsTxaFND/z3FN2Xhii0XyciIqKqSaUkfdCgQRgzZgySk5Px1VdfYcaMGbh8+TJ0dHTw888/K+0Esm7dOuTn56NXr17lHjSVnWz2URnZ7KNUNfR4wxxHZ9ZF13qKzclinubC77cwzP87Glm5HLGHiIioqlL5d/G1a9eib9++2LVrF+Lj4+Hs7IyxY8cW2c47LCwMAwYMQO/evcstWCpftoYSxGe9TMzjMgVMTdnkpaqoZaaPgLG1sfbsE3y9PwZZBV6yVp9KwOkHqVjp54y6toaVGCURERGVhlqNV/+fvTuPi6psHz/+OTPAMMMmu2yCIOJCLmXuqSlmpqXmkmaZaZpabn1bv99cWp4n66k0K0sefz2aWmqRpWmluOVu5pNLKSKCsskisg77nN8fxOgIuIwogtf79fKlnHOfOddwZLjmzH1d96OPPsqjjz56TWOXLFliVUDi1vHWKRzDcl56sHV1vqKOKIrCM9086BbsyHOrznLi3MWi0j9Tiui38BRzBvowprObFJUKIYQQ9Yg0WL6D6W0UnC95m5ZVAiUmmfJSH7X0sWfj8814ppu7xfaiMpXXvk9h7LIznM8vq6PohBBCCHG9rilJLy0trZWT1dbjiNrjbX/x7qpKRc90UT/Z22p48xFfVo4LwtPR8kOyzcfz6D0/lm0xeXUUnRBCCCGuxzUl6SEhISxevJiyMuvuxJWWlrJo0SJCQkKsOl7cPF72llMg0oprGCjqjfvDnNgyM5SIlk4W2zPyyxj9RQKz16VQVCpFpUIIIcTt7JqS9GbNmjF58mT8/f2ZMWMG+/btw2S68i95k8nE3r17mTp1Kv7+/jz//POEhobWStCi9lSuPlqpcvVRUb95ONqw7KlA3hnsi72N5RuxJbvPM+CTOE6cK6qj6IQQQghxNddUOLp161Y2bNjA//7v/7Jw4UJz28X27dsTFhaGq6srTk5O5OXlkZWVRUxMDH/88QeFhYWoqkq7du1YunSpdHq5Dcnqow2Xoig81cWdLsEOTPk6kb9SLyblx88V0f/jU7z+UGPGdXWXolIhhBDiNnPN3V0GDBjAgAED2L17N0uWLGHjxo3s3r2b3bt3Vzvey8uLESNGMGHCBLp06VJrAYvaJ6uPNmzNve3Z8HwI835OY/HOTPP24jKVWetS2RaTx/zh/ng62dZhlEIIIYS41HWvH96tWze6desGQExMDEeOHCE9PZ2cnBxcXFzw8vKibdu2NG/evNaDFTdH5eqjlROY0opUWrnUZUSitulsNMwZ6EOv5o7MWJNEWt7F+pKtMfn0nh/L/OH+RLR0rsMohRBCCFHpupP0S4WFhREWFlZbsYg6Urn6aMbfRaOVq4862sjd9IamZ3MnomeG8uK3yfzyV655+/mCcsYsPcPYLm7MGuCD3la6swohhBB1SX4TC8CyFSNUrD4qGiZ3Bxu+GNOEfz3qh97W8rov3ZtF/4Wn+DOlsI6iE0IIIQRIki7+5n3ZHPQ0SdIbNEVRGN3JjV+mh9LGT2+x72R6MQM+iSNyZyYmWdxKCCGEqBOSpAtAVh+9UzXz1LFuSjDP9fLk0gYvJeUqc39M5fEvEjiXK4uQCSGEELeaJOnCTFYfvTPZ2Wj4v/6NWTOhKT7OlmUqv8bm02d+LD//mVvD0UIIIYS4GSRJF2ay+uidrVuII9EzQxl4l2WHlwvGcsZ9eYZXvkvGWCIrlQohhBC3giTpwkxWHxWuBhsWj27Ch8P8MNhZvjws359Fv4WnOJIsRaVCCCHEzSZJujCrXH20UuXqo+LOoigKI+91Y/P0ZrTztywqjcso5uFP41i0I0OKSoUQQoibSJJ0YUG6vIhKTT10/DAlhOm9LYtKS8tV3t54jpFL4knJlqJSIYQQ4ma4oSR906ZNDBkyBD8/P3Q6HePHjzfv++WXX3jhhRdISUm54SDFrVO5+mglSdLvbLZahVf6NSZqYjB+jWwt9u2KKyBiQSwbjubUUXRCCCFEw2V1kj59+nT69+/PDz/8QF5eHqWlpaiXzF/28fFhwYIFrF69ulYCFbdG5eqjlSpXHxV3ts7BDkTPCOWRNi4W27MLy5mw4iz/820SBcXldRSdEELUPaPRyMKFC3nggQfw8fFBp9Ph5OREq1atGDt2LOvWraO8XF4nxbWzKkn/8ssv+fjjj7nnnns4dOgQublV27O1adOGgIAA1q9ff8NBiltLVh8V1XHRa/ns8QAWPuaPo87ypePr3y7wwEen+CPRWEfRCSFE3dm9ezfNmjVj+vTp7Ny5k9DQUIYMGUJERAQ2NjYsW7aMQYMG0aZNm7oOVdQjViXpn332GY0aNWLDhg20a9euxnFt2rTh9OnTVgcn6obMSxc1URSFYXe7snl6KPc0MVjsiz9fwiOL4vh4WzrlUlQqhLhDHDp0iD59+pCamspLL71EWloav/76K6tWrWLt2rUcOXKEs2fPMmPGDMmJxHWxKkk/duwYXbt2xdPT84rjXFxcSEtLsyowUXdk9VFxNYHudqydFMwLEV5oLnlPV2aCd35OY3hkPEnSGkgI0cCZTCaeeOIJiouLeeutt3jvvfdwdnauMi4gIID58+eza9euOohS1FdWz0lXFOWqY1JSUtDr9VcdJ24/svqouBobrcKLfb1ZOymYAFfLotJ98RVFpT8czq6j6IQQ4ubbuHEjx48fp0mTJrz22mtXHX/PPfdYfK0oCkFBQZSUlPDmm2/SokULdDodgwcPthi3fPlyunfvjrOzMwaDgTZt2vDOO+9QVFRU5Ry9evVCURQSEhKq7EtISEBRFHr16mWxfe7cuSiKwtKlS9m/fz/9+vWjUaNGODs707dvX/bt23f1b4aodVYl6aGhoRw6dIjS0prbr+Xl5fHHH3/QunVrq4MTdUdWHxXX6t4gBzZPD2XY3Y0stucWmZj8VSLTVyeSL0WlQogG6KeffgJg+PDhaLVaqx7DZDIxePBg3nvvPUJCQhg0aBA+Pj7m/c8++yxjxozh999/57777mPAgAGkpqbyv//7v/Tu3RujsfZqgfbs2UOPHj1ISkqif//+hIWFER0dTc+ePdm0aVOtnUdcG6uS9OHDh5Oamsqrr75a45jXXnuNnJwcRo4caXVwou7I6qPiejjrtSx8LIBPRwXgdFlR6TeHsum74BS/n5GiUiFEw3L48GEA2rdvb/VjJCYmEhsbS0xMDBs2bGDNmjV89tlnAERFRREZGYmvry9Hjhxhw4YNfPPNN5w6dYru3buzd+9eZs+eXSvPBeDf//43L730EseOHePrr7/mt99+Y9GiRZSUlDB27FgKC2XF6VvJqiR9xowZ3HXXXSxYsIAuXbowb948AOLi4pg/fz49evRg0aJFtG/fngkTJtRqwOLWkNVHhTWGtGtE9IxQOgZZFpWeySph8OdxfBidRlm5vNkTQjQM58+fB8DDw6Pa/ePHj2fs2LEWf6qbl/7OO+/g5+dXZfvChQsBmDNnDqGhoebtLi4ufPrppyiKwuLFi6ud9mKNwMBA89SXSpMnT6ZTp06kpqYSFRVVK+cR18bm6kOq0uv1REdHM3bsWH766ScOHDgAwM6dO9m5cycAffv2ZcWKFdjZ2dVetOKW8tYpJBovJlRpRSruuqvXIog7W4CbHVHPBvPxtgw+iE6j3FSxvdwE729OZ0dsPp88FkCAm7w2CCEatmXLllXpjd6rVy+6d+9u/lpRFB5++OEqx5aWlprngo8ePbrK/jZt2tCmTRsOHz7MH3/8QefOnW843qFDh2JjUzU1HDVqFPv372fnzp088cQTN3wecW2sStIBPD092bBhA4cPH2bTpk0kJCRgMpnw9/enb9++dOzYsTbjFHWgcvXRv3Ms0opUWrlc6QghKmg1CjP6eNEj1JHnVyWScP7ixzC/JRiJWBDLO0N8ebS9ax1GKYQQN8bd3R2AzMzMaveXlZWZ/z1p0iQWL15cZYyXlxc6na7K9vPnz1NSUoKHhwcODg7VPn5QUBCHDx8mOTnZmvCrCAwMrPE8gKwif4tZlaQfOXIEjUZDeHg4bdu2pW3btrUdl7gNVK4+mvF30Wjl6qOONnI3XVybu5sY2DS9GbPWpbL64AXz9rxiE8+vSmJrTD7/HOSLs966gishhKhLbdu2Zffu3fz3v/+t9m73tbC3t7f6/NfSae9SJpPp6oPEbcOqOent2rVj2rRptR2LuA3J6qPiRjnqtMwf7s/i0U1w0Vu+5Hz332wiPoplf3xBHUUnhBDW69+/PwDffPNNlWktN8rd3R07OzsyMzMpKKj+NbKyzeKl89krpxnn5+dXGZ+YmHjFc545c+aK2319fa8at6g9ViXpbm5uFu2BRMMlq4+K2vJwGxeiZ4TSJdjyY9ukC6UMXXya9zZJUakQon556KGHaNmyJWfPnuWdd96p1ce2tbU1zzNftWpVlf3Hjh3j8OHDODo6Wqz+XpmfnTx5ssoxmzdvvuI5v/vuu2rfbFSe/9K59OLmsypJ79y5M0ePHq3tWMRtSFYfFbXJr5EdayY05bUHvbG55NXHpMKCLekM+TyOhPPSlF8IUT9oNBqWL1+OTqdj1qxZvPzyy+Tk5FQZd/78eWJiYq778adOnQpULDZ0+vRp8/a8vDyef/55VFXl2WeftZgy07NnTwA++OADix7qW7duZcGCBVc8X0JCAm+88YbFtsjISPbu3Yu3tzdDhw697ucgrGdVkj5nzhxiYmL44IMPajsecRvy0JZhKjJiKjJSXmQk6UIBBQUFlJRIT0Zx/bQahan3e7H+uRCCPSw7vPx+tpC+C06x5vcLqNKXXwhRD9xzzz1ER0fTuHFj/vWvf+Ht7U3Pnj0ZNWoUQ4YM4d5778XHx4ft27fTokULOnTocM2PPWzYMCZOnEhSUhLh4eEMHDiQESNGEBISwo4dO+jcuTNvvvmmxTGjRo0iLCyMPXv20LJlS4YNG0bnzp3p27cvkydPvuL5JkyYwLx58wgPD+fxxx+nY8eOPPvss9ja2rJ06VIMBsMVjxe1y6rC0ePHj/PEE0/w8ssvs2LFCgYMGECTJk1qLH4YM2bMDQUp6pYxKZaimL/MXx/8++9WrVoRHh5eN0GJeq+tv4FN00OZvS6Fr367WFRaUGJixpoktp7IY94QPxoZpKhUCHF76969O3FxcSxZsoR169Zx7Ngx9u7di06nw8/PjxEjRjBs2DAGDhxYbYvDK1m8eDHdu3fn888/Z8eOHZSVlRESEsKMGTOYOXMmer3eYrxer2fLli289NJL/Pzzz2zcuJHWrVuzevVqOnTowPvvv1/jubp27crTTz/NrFmz+PHHH1FVlT59+vDmm2/StWtXq743wnpWJeljx45FURRUVeXw4cMcPny42gpjVVVRFEWS9HquTcvmnFMNGE/+nZ7b6vDr0AsXFz0mVUVzndXlQlQy2Gl4f5g/vVs48VJUMheMF+dCrjuSw8EzRj4e6U+XYMc6jFIIIa7OYDAwbdq062qsca2fGD755JM8+eST1/y4fn5+fPXVV1ads0uXLkRHR1/zucTNY1WSPnv27Otu+yPqLzs7O+xL8zDPbCst5nyZhgv5Wo4bTfjpFQIMCs628n9CWOehcBfaBxiYviaRXacudjFIySllWGQ8U3t58j99vbHVyv8xIYQQdwarkvS5c+fWchjidhcW6M/e+JOAiuLggmJX8fFaiQniC1TiC1RcbCHAoOCnV7DVSDIlro+Piy2rxjclclcm7/ycRunfnV5UFRZuy2BHbD6fjgog2KPqoh9CCCFEQ2NV4ai4s5SUlODmYE+HLhXz0ZxC2qIWF6KWlVqMyymFYzkqm8+ZOHTBRGaxKsV/4rpoNAqTenjy43MhNPO0TMYPJxXywEen+OpAlvy/EkII0eBZdSf9UsnJyezevdu8JK2fnx/dunWzaKwv6reTJ0/y118XC0dzj/wKgFtwS0r8WnF5R0YTkFKoklKooteC/9/TYQyyUqm4Rnf56fl5WjPe2pDKsn1Z5u3GEhMvRiWzNSaP9x71w83hhl/ChBDijjd37lyZJXEbsvo3XEZGBs899xxr166tssysoigMHTqUTz75BE9PzxsOUtSt5s2b07Rp0yrbbW1tUWw0pBSqJBpVskurHltYDrH5KrH5Kh52FdNhGusVtFLTIK7CYKfhnSF+3B/mxAvfJpFVcLGodOOxXP571shHjwXQvZkUlQohhGh4rErSc3Jy6NGjBzExMej1eh544AGCgoJQFIWEhAR++eUXvvnmG44cOcK+fftwcXGp7bjFLWRnZ2deZrg6gQ4KgQ6QV1qRrCcVqpSYqo7LLIHMEhWbHNVcbOpiixQhiyt6oJUzW2aEMmNNEjtiLy5znZpbxmNL4pnUw4NXHvDGzkZm7wkhhGg4rPqtNm/ePGJiYhg+fDgJCQmsXbuW+fPn8+GHH/Ldd99x5swZRowYQUxMDO+++25txyxuU062Cq1cNER4a+jgqsHbHqpLv8tUOGNU2ZVp4tcME6fzTRTLcvDiCrydbVk5Log3H/bB7pIOL6oKn+3IZOCnccSmF9VhhEIIIW4HS5cuNd80ru+sStLXrl1LQEAAK1asqHY6i4eHB8uXLycgIICoqKgbDlLULxqlYkrLvW5a+nhraOms4FjDZzZ5ZfBXrkp0momDWeWkFamYpChQVEOjUXimuwcbp4YQ5m1ZVHospYh+C0+xfN95KSoVQojbnNFoZO7cuWzfvr2uQ7mtWZWknzlzhm7dumFra1vjGFtbW7p168bZs2etDk7Uf/ZahRBHDT09NXTz0NDEoFBd/agKnCuC37JMbEkzcSLXRH6ZJFuiqlY+ejZObca4ru4W24tKVV5Zm8K4L89yvqCsjqITQghxNUajkTfeeEOS9KuwKknX6/VkZmZedVxmZmaV5WrFnUlRFFztFNo0qpgO066RglsN09yLTXAqX2V7uok9meUkGk2UXd5CRtzR9LYa3h7ky/KnA/G47GOaX/7Kpc/8WHaeMtZwtBBCiEsVFRVVaQJSqaCgoNrt4uazKkm/55572LFjBwcPHqxxzO+//8727dvp0KGD1cHVJ3Z2djRp0uSKBZaigo1Gwd+goauHlvu9NDRzVLCv4X9iVgkczlbZnGbicLaJrJvce12uY/3Sp4UzW2Y0o08LJ4vt6XlljF2RwsoYR1SNtGmsz+RnsmGQ61g7kpOTGT9+PL6+vuh0Opo2bcrkyZMpKSkB4PTp0wwfPhw3NzcMBgOdO3dmw4YNFo+xfft2FEVh1apVvP766/j5+WEwGMjNzTXP596xYwdTpkzBy8sLf39/i/OPGzcOb29vdDodrVu35osvvqgSZ1FREXPnzqV58+bY29vj4+PDo48+SlxcHAkJCeap0m+88QaKoqAoikULyBMnTjBs2DDc3Nywt7enQ4cOrFu3rsp5/vzzT3r37o1er8ff35+33367xjcb9ZFVv71mzpzJli1b6NOnD9OmTePxxx8nKCgIqJgK8/XXX7Nw4ULKy8uZOXNmbcZ72yopKeHs2bOEhITIpwfXwcFGoYWzQpiTSkYxJBpVzhWpXJ6Gl6sV+xKNKg7ailaO/gYF+1peJl6uY/3j6WTLl2MDWbo3i7c2pFJ0yTSpZQfy2H/mNJ89HkhYY/s6jFJYS34mGwa5jjcuJSWFjh07kp2dzcSJE2nRogXJycl8++23GI1GLly4QNeuXTEajUybNg13d3eWLVvGI488wrfffsuQIUMsHu+tt97Czs6OF198keLiYos3UFOmTMHT05PZs2eb76SnpaXRuXNnFEXh+eefx9PTk59++onx48eTm5vLjBkzACgvL2fgwIFs2bKFkSNHMn36dPLy8ti8eTPHjh0jIiKCzz77jMmTJzNkyBAeffRRANq0aQNUJN6V6+28+uqrODg4sGbNGgYPHkxUVJT5eZw7d47777+fsrIy87jIyMgG9f9LUa28LfnOO+8wa9asGu9qKorCW2+9xWuvvXZDAd5qqampREZGMnHiRHx8fK75uMLCQuLi4uQFqBaUlKskF6qcNarkXWFqsQJ46iDAUNFJRlMLrRzlOtZvMeeKeG5VIn+lWnZ6sbdRmDXAh7Fd3KTlZz0jP5MNQ0O8jn3mx3L8XO13lUp5965qtz/11FOsWLGC/fv3V5mloKoqL7zwAgsWLGDnzp10794dgPz8fNq0aYOqqsTFxaHRaNi+fTv3338/wcHBHDt2zOJ6LF26lKeffpru3buzfft2tFqted8zzzzDxo0bOXr0KO7uF2uCRo0axU8//URqaip6vZ7//Oc/jBs3jg8//LDKjVpVVVEUhczMTDw9PZkzZ06VRZQiIiJIT0/nt99+Q6fTmY/r3r07GRkZnDx5Eqi4YbxgwQL2799Px44dgYo1fEJDQ8nJySE+Pt58A7m+srqx8Guvvca+fft44oknCAoKMvfSDgoK4sknn2Tv3r31LkEXtwc7rUJTRw09PDXc56Eh0KBgW0OxaXox/H7BRHSaib9yTOSVytz1O1lYY3t+fC6Eid0vKyotU/m/H1IYs/QMmflSVCqEqF9MJhPff/89Dz/8cLXTiBVFYePGjXTs2NGcoAM4OjoyceJEEhISLFYOh4qkv6Y3TBMmTLBI0FVVJSoqiocffhhVVcnMzDT/6devHzk5ORw6dAiAqKgoPDw8mDp1arVxXklWVhZbt25lxIgR5OXlmc9x/vx5+vXrR2xsrHmF+40bN9K5c2dzgg7g6enJ6NGjr3iO+uSGJmt26NCBZcuW1VYsQlhQFAUXO7jLTqGVS8U0mESjSmZx1bElJjhdoHK6QKWRbcV0GF+9gq1G7preaextNcx92JeuQTpeiEohq/Divi0n8ug9P5YFw/3pfdk8diGEuF1lZGSQm5tLeHh4jWPOnDlDp06dqmxv2bKlef+lx1e3knhN+zIyMsjOziYyMpLIyMhqj0lPTwcgLi6OsLAwbGyuP8U8deoUqqoya9YsZs2aVeN5/Pz8any+YWFh133e25VUVIl6Qaso+OkV/PRQWKaSWFiRsBeWVx2bXQrZOSp/5qj4/L2yqbudrGx6p7mvmYHPB0LkEQeiYy52J8jML+OJ/yQwrqs7//dQY/S2slKpEOLOc6VpR5fvqyzGfOKJJ3jqqaeqPaZyTvmNqDzPiy++SL9+/aod06xZsxs+T31hVZJ+6NAhVqxYwahRo7j33nurHXPgwAFWrVrFmDFjaNeu3Q0FKcSl9DYKzZ0UQh1VzpdUFJSmFqpcXs9tApILK+a3G7Tgb1AI0Cvoq2vULhqkRvYKn49sTNSRQub8mErRJdOhvthznj2n8/l0ZBNa+khRqRDi+myZGXrLzuXp6YmzszPHjh2rcUxgYCAxMTFVtp84ccK8/0bO7+TkRHl5OREREVccGxISwv79+yktLa1xPZ2abpoFBwcDFWvtXO08gYGBxMbGVtle3fegvrLqFtInn3zCokWLrjghv2nTpixatIhPP/3U2tiEuCJFUfDQKbR31dC3sYa7XBQa1bC+lrEcTuapbEk3se98OcmFJsplZco7gqIoPNnZnV+mNSPc1zIZP3GumIc+OcWSXZmYpBe/EOI2pdFoGDx4MOvXr6+2/bWqqjz00EMcOHCAvXv3mrcXFBQQGRlJAuwhHgAAIABJREFUUFAQrVq1svr8Wq2WoUOHEhUVVe0bhYyMDPO/hw4dSmZmJp988km1cQIYDAYAsrOzLfZ7eXnRq1cvFi9eTGpq6hXP89BDD7Fv3z4OHDhgsX/lypXX+exuX1bdSd+5cyd33323uc9ldTw9Pbn77rvZsWOH1cEJca1sNQqBDgqBDpBbqpJkVEkqVCmppl1qZjFkFqvYKiq+eoUmBgVnW5kO09CFetmz/rkQ3tuUxmc7Li7GVlymMnt9Kltj8pg/3B9v55pXUhZCiLryz3/+k02bNtGzZ08mTpxIy5YtSU1N5ZtvvmHXrl28+uqrfP311/Tv359p06bh5ubGsmXLiI+PJyoqCo3mxqb2zZs3j23bttGpUycmTJhAq1atyMrK4tChQ0RHR5OVlQXAmDFj+PLLL3nhhRc4cOAA9913HwUFBURHRzNlyhQGDRqEXq+nVatWrF69mubNm+Pm5kZ4eDjh4eF8+umndO/enbvuuosJEyYQHBxMWloae/fuJSkpicOHDwPw8ssvs3z5ch588EGmT59ubsEYGBjIkSNHbvj7fTuwKklPTk6ucZrLpRrSN0rUH862Cq1cFFo4q6QVQaLRRHo1xaalKpwxqpwxqjjbVBSbukue3qDpbDTMesiHXs2dmL46kXO5Fzu9bD+ZT58FsXw4zJ8HWjnXYZRCCFGVn58f+/fvZ9asWaxcuZLc3Fz8/Pzo378/BoOBRo0asWfPHl555RU+/vhjioqKaNOmDevXr2fAgAE3fH5vb28OHDjAm2++yXfffceiRYtwd3endevWvPvuu+ZxWq2WjRs38o9//IOvvvqKqKgo3N3dzYl3pSVLljB16lRmzpxJSUkJc+bMITw8nFatWnHw4EHeeOMNli5dyvnz5/Hy8qJ9+/bMnj3bfLyPjw/btm1j6tSpzJs3D3d3dyZNmoSvry/jx4+/4ed7O7CqT7qrqytdunRh48aNVxw3YMAAdu3aRU5OjtUB3mrSJ71hKiqvuLueaFQpqKbYtJKCir44j+buevycdHJ3vR672s9kVkEZL0Ul89OfuVX2PdXZjVkDfDDYSVFpXZPX1oZBrqMQ18+q30CtW7dm165d5o82qpOVlcWvv/56Q3OghKgt9lqFZk4aenlp6OquIcCgUN1ipSoKRp0zf+TbsiXNxIlcEwVlMle5IXJzsGHJk014f6gf+ssa8S/bl8WDC09xNLmwhqOFEEKIm8uqJP2JJ54gPz+fYcOGkZSUVGV/cnIyI0aMwGg0Nqim8qL+UxQFN51C20Ya+npraNtIwc2u+rFFJjiVr7It3cSezHKSjCbKpLiwQVEUhcc7urFpeiht/S3v7p3KKGbgp3F8tiNDikqFEELcclbNSX/mmWf4+uuv2b59O82bN+fBBx8kJCQEqGhi/8svv1BYWEi3bt2YNGlSrQYsRG2x0VT0UA8wQH5ZxVSYxAITJWrVW+xZJZBVomLzd7FpgKGik4xMh2kYQjx1rJsSwvub0/hkewaVkwBLy1Xe2niObSfz+GhEAD4uUlQqhBDi1rAqSbexseGnn35i2rRpLFu2jO+//95iv1ar5emnn+ajjz6yasUpIW41RxuFls4KTWyK+TMxDdXNj8xSDZffPy1T4axR5axRxfHvYlN/vYKuurkzol6x1Sq89mBjejV3ZOqqJFJySs37dp0qIGJBLO8P9aN/uEsdRimEEOJOYXUGbTAYWLJkCW+99Rbbt28nMTERgICAAHr16nVdRZdC3C40ChhK8wlxLENjZ0/y3yub5pVVHZtfBsdzVU7kqnjZQ4Beg5c9aOTuer3WJdiR6BmhvLI2mfVHLha9XzCWM375WUZ3dOWNh32lqFQIIcRNdcO3uX18fBg1alRtxCLEbUWnVQh2VGjqoJJTWrGyaXKhyuV1pCqQVgRpRSbsNOD/93QYJ1tJ1uurRgYtnz8eQJ8WTvzf9ykUXNJwf+WBC+w9XcCnowJo62+owyiFEEI0ZLV+K+j48eN8++237N+/v7YfWog6oSgKjewU7mpUsbJp+0YKHjUUm5aY4HSByo4ME7syyjlTYKJUig7rJUVRGHGPK5tnNOPuAMui0tOZJTz8aRyfbM+gXK6vEEKIm8CqJH316tX07t27SiL+4osvEh4ezmOPPUbXrl0ZMmQI5eVXaEotRD2jVRT8DBo6e2jp7aUh1FFBr61+bHYpHM1R2Zxm4o8LJs4Xq1ixLIGoY0HuOtZODmFGHy80l3w4UmaCf/50jsf+HU9ydkndBSiEEKJBsipJX7FiBX/88Qft27c3b9uzZw8ffvghTk5OjBw5kqCgINatW8fKlStrLVghbicGG4UwZw29vTR0ctfgq1eq/YEyqZBUqLL3vIlt6SZi80wUlkuyXp/YahVefsCbqGeD8Xe17PCy53QBfRecspi/LoQQQtwoq5L0Y8eO0aZNG+zsLn7mv3z5chRFYc2aNaxcuZLffvsNR0dHlixZUmvBCnE7UhQFT53C3a4aIhprCHdRqKlTn7EcYvJUtqSZ2H++nJRClXK5u15vdGrqQPT0UIa0s+zwkl1YzrMrzzLzmyTyi+XTQyGEaEiWLl2KoigkJCTc0vNalaSnp6fj5+dnsW3btm14eXnxwAMPAODm5kaPHj04derUjUcpRD1hp1EIctBwn6eWHp4amjoo2NbwU5ZRDIcumIg+Z+JYjomcUknW6wNnvZZPRzXhk5H+OOksL+7qgxd44KNTHDprrKPohBDizmQ0Gpk7dy7bt2+v61BqjVVJul6vJzc31/x1amoqJ0+epGfPnhbjGjVqxIULF24sQiHqKWdbhdYuGiK8NdzjqsFLV/24UhUSClR2Zpj4NaOc+AITJVKMeNt7tL0rm2eE0iHQssNLwvkSBn0Wx4It6VJUKoQQt4jRaOSNN96QJD04OJidO3eSnZ0NwMqVK1EUxXwXvdK5c+fw8vK68SiFqMe0ioKPXqGju5Y+3hpaOCkYaig2zS2FP3NUos+ZOJRlIqNIik1vZ03c7Pju2WBe6uuF9pJX03ITvLcpjaGLT5N0QYpKhRB3nqKiIkwmU7X7CgoKbnE09ZNVSfrYsWPJzc3lnnvuYejQobz++us4OjoyaNAg85jS0lIOHjxI8+bNay1YIeo7vVahmZOG+700dHHX4K9XqG6xUhOQUqSyP8vElnQTMbkmCi5v0C5uCzZahZkR3qydFEwTN8tihAMJRiIWxLL2j+w6ik4I0VCMHTuWoKCgKtvnzp2Lcskieoqi8Pzzz/P9998THh6OTqejdevW/Pzzz1WOTU5OZvz48fj6+qLT6WjatCmTJ0+mpOTizYXTp08zfPhw3NzcMBgMdO7cmQ0bNlg8zvbt21EUhVWrVvH666/j5+eHwWAgNzfXPJ97x44dTJkyBS8vL/z9/S1iGDduHN7e3uZYv/jiiyqxFhUVMXfuXJo3b469vT0+Pj48+uijxMXFkZCQgKenJwBvvPEGiqKgKApz5841H3/ixAmGDRuGm5sb9vb2dOjQgXXr1lU5z59//knv3r3R6/X4+/vz9ttv1/hm42azajGjCRMmsG3bNqKiooiPj8fBwYHFixfj7u5uHvPjjz+Sk5ND7969ay1YIRoKRVFw14G7TiHcpJLy98qmF0qrji0qh9h8ldh8FXc7CDAo+NgraDWyWNLtpEOgA5unhzJrXQprfr+YlOcWmXju60S2nsjjn4N9cbKv4WMUIYSoJbt27eK7775jypQpODk5sXDhQoYOHcrZs2fNuVpKSgodO3YkOzubiRMn0qJFC5KTk/n2228xGo3Y2dmRlpZG165dMRqNTJs2DXd3d5YtW8YjjzzCt99+y5AhQyzO+9Zbb2FnZ8eLL75IcXGxRYORKVOm4OnpyezZs8130tPS0ujcubP5jYWnpyc//fQT48ePJzc3lxkzZgBQXl7OwIED2bJlCyNHjmT69Onk5eWxefNmjh07RkREBJ999hmTJ09myJAhPProowC0adMGqEi8u3Xrhp+fH6+++ioODg6sWbOGwYMHExUVZX4e586d4/7776esrMw8LjIyEr3ecq2MW0a9AfHx8eqBAwfU3NzcKvv++9//qt9//7167ty5GznFLZeSkqLOnTtXTUlJua7jjEajevToUdVoNN6kyMStUNfXMa/EpP6VU65uSi1T1yfX/OenlDL18IVyNavYpJpMpjqJ9XZXl9fy+z8uqGGzj6k+Lx+x+NNp3nH1QHz+LY+nPqvrn0lRO+Q63rinnnpKDQwMrLJ9zpw56qXpHKDa2dmpp06dMm87fPiwCqgff/yxeduYMWNUjUaj/vbbb1Ues/L3yowZM1RA3blzp3lfXl6e2rRpUzUoKEgtLy9XVVVVt23bpgJqcHBwlWv8n//8RwXU7t27q2VlZRb7xo8fr/r4+KiZmZkW20eOHKm6uLiYH+uLL75QAfXDDz+sMdaMjAwVUOfMmVNlTJ8+fdS77rpLLSoqsjiua9euamhoqHlb5fPdv3+/eVt6errq4uKiAmp8fHyVx76ZrLqTXikoKKjaj14A2rVrR7t27W7k4YW44zjaKrS0VQhzUskohrNGE+lFcPlElzIVzhpVzhpVnGwq7q776RV01c2dEbfcoLaNuKeJgWmrk9gXf3Hu5dmsUoZ8fpoZfbyY0dsLG7leQtRbO9LLySur/ccd6Hvjn7ZFREQQEhJi/rpNmzY4Oztz+vRpAEwmE99//z0PP/wwHTp0qHJ85fSZjRs30rFjR7p3727e5+joyMSJE3nttdf466+/CA8PN+976qmnarzrPGHCBLTai89NVVWioqIYMWIEqqqSmZlp3tevXz9WrVrFoUOH6NatG1FRUXh4eDB16tQaY61JVlYWW7du5c033yQvL4+8vDyL88yZM4fk5GT8/PzYuHEjnTt3pmPHjuYxnp6ejB49mkWLFl3xPDfDDSXpQoibQ6MoeNuDt72W4nKVpL+nw+RX8wshrwz+ylU5nqvibQ8BBg2euorHEHXH39WObyY25dPtGby/OY2yv6c0mlT4MDqdHSfz+WRkAIHudld+ICGEuE5NmjSpss3V1dXccS8jI4Pc3FyLBLs6Z86coVOnTlW2t2zZ0rz/0sdo2rRpjY91+b6MjAyys7OJjIwkMjKy2mPS09MBiIuLIywsDBub609bT506haqqzJo1i1mzZtV4Hj8/vxqfb1hY2HWftzZIki7EbU6nVQhxVAh2UMkuhURjxRz2y+tIVeBcEZwrMqHTgL9BIcCg4GgjyXpd0WoUpvX24r5QR57/OpH48xeLsX4/a6TvR7H8c7AvQ9s3uurdICHEna2m14jy8qoLqF16x/pS6k3uFnaluduX76ssxnziiSd46qmnqj2mck75jag8z4svvki/fv2qHdOsWbMbPs/NIEm6EPWEoii42oGrnUJrZ5XUooq76+er6fBXbIK4fJW4fBXXv4tNfe0VbKTYtE60DzCwaXozZq9P5evfLq4dkV9sYtrqJLacyGPeED9c9FJUKoSonqurq7n19aXOnDlz3Y/l6emJs7Mzx44du+K4wMBAYmJiqmw/ceKEeb+1PD09cXJyory8nIiIiCuODQkJYf/+/ZSWlmJrW/2S3jW9iQkODgbA1tb2qucJDAwkNja2yvbqvge3giTpQtRDWo2Cv0HB3wAFZSpJRpXEQpWialakv1ACF0pU/lRUfOwr7q672V19Hp+oXQ46LR8M86d3mBMvRSWTXXjxYv1wOIeDZ4x8MjKATk0d6jBKIcS16ul1a99Uh4SEkJOTw5EjR8x3mFNTU1m7du11P5ZGo2Hw4MGsWLGCgwcPVpmXrqoqiqLw0EMPsWDBAvbu3UuXLl2Aih7nkZGRBAUF0apVK6ufj1arZejQoXz11VccO3asytSbjIwMc1vFoUOHsmHDBj755BNmzpxZbawGQ8XCcpe/kfHy8qJXr14sXryYqVOn4uPjU+N5Kp/vgQMHzPPSMzIyWLlypdXP80ZIki5EPedgoxDmrNDcSSWzuGI6zLkilcu7uparkFRYMb/dQft3salBQS/Fi7fUgLtcaB9gYPqaRHbHXSwqTc4uZeji00y935MXIryxlesihLjEyJEjeeWVVxgyZAjTpk3DaDTy2Wef0bx5cw4dOnTdj/fPf/6TTZs20bNnTyZOnEjLli1JTU3lm2++YdeuXTRq1IhXX32Vr7/+mv79+zNt2jTc3NxYtmwZ8fHxREVFodFYtdyO2bx589i2bRudOnViwoQJtGrViqysLA4dOkR0dDRZWVkAjBkzhi+//JIXXniBAwcOcN9991FQUEB0dDRTpkxh0KBB6PV6WrVqxerVq2nevDlubm6Eh4cTHh7Op59+Svfu3bnrrruYMGECwcHBpKWlsXfvXpKSkjh8+DAAL7/8MsuXL+fBBx9k+vTp5haMgYGBHDly5IaeqzUkSReigVAUBU978LRXKDGpJP9dbJpbTe/1gnI4kadyIk/FS1dRbOptL8Wmt4pvI1tWP9OUz3dm8u4vaZSWV8wTNanw0dYMfo2tKCpt6qGr40iFELcLd3d31q5dywsvvMDLL79M06ZNeeedd4iNjbUqSffz82P//v3MmjWLlStXkpubi5+fH/379zfflfb29mbPnj288sorfPzxxxQVFdGmTRvWr1/PgAEDbvg5eXt7c+DAAd58802+++47Fi1ahLu7O61bt+bdd981j9NqtWzcuJF//OMffPXVV0RFReHu7m5OvCstWbKEqVOnMnPmTEpKSpgzZw7h4eG0atWKgwcP8sYbb7B06VLOnz+Pl5cX7du3Z/bs2ebjfXx82LZtG1OnTmXevHm4u7szadIkfH19GT9+/A0/3+ulqFZUERQUFODg0DA/kk1NTSUyMpKJEydW+UjkSgoLC4mLiyMkJKTumt6LG9YQr2NOaUWynmxUKb3CT7udBvz0FdNhnG3rf7JeX67lkaRCnluVSFxGscV2g52Gtx/x4bEOrnf01KT6ch3Flcl1FOL6WfU5ha+vL5MmTeLgwYO1HY8Qopa52CqEu2iIaKzhblcFzxpuzpaYIL5A5dcMEzszykkoMFFqurmdAAS08dfzy7RmPNnJzWK7scTEC98mM2llIheMN6EZsxBCiNuaVUm6oihERkbSqVMn7r77bj7//HNyc3NrOzYhRC3SKgq+eg2d3LX08dYQ5qRgqKHuKacUjuWobD5n4tAFE5nF6k1v3XUnM9hpePdRP74YE4jrZRdl/dEcIhacYk9cfh1FJ4QQoi5YlaSnpqbyn//8hy5duvDHH3/w3HPP4evry7hx49i7d29txyiEqGV6rUKok4b7vTR0cdfgr1eorjujCUgpVNl33sTWdBMxuSaMlzdoF7XmwdbObJkZSo9QR4vtqTmlDP93PP/46RwlZZeXBAshhGiIrErS9Xo9Tz31FLt27eL48ePMmDEDg8HA0qVL6d69O+Hh4SxcuNC8spUQ4vakKAruOoV2rhr6emu4y0WhUfUtaCksh9h8la3pJvZllpNsNFEud9drXWNnW74aF8TcgT7YXdLhRVXh0+0ZPLwojlOXzV8XQgjR8NxY7xwqlkr94IMPSE5OZtWqVfTu3Zvjx48zc+ZM/Pz8ePLJJ9m5c2dtxCqEuIlsNQqBDhq6e2rp6akh2EHBroZXiMwS+G92xXSYo9kmsktkOkxt0mgUJt7nwYbnQ2juZVlEcDS5iH4fxbJyf5Z8z4UQogG74SS9kq2tLSNGjOCbb75h+vTpqKpKUVERK1eupFevXrRt25Yff/yxtk4nhLiJnGwVWrloiPDW0MG1oj1jdf1FylQ4Y1TZlWni1wwTp/NNFJdL4lhbWvvq+WlaM8Z2sSwqLSxVeem7ZMYvP8v5AikqFUKIhqjWkvSdO3cyZswY/Pz8+Oijj9DpdDz++OMsWbKEiIgIjh07xqBBg1i8eHFtnVIIcZNpFIXGeoV73SqKTVs6KzjWsLpCXhn8lasSnWbiYFY5aUUqJrnTe8P0thr+OdiPZWMDcXewLCr9+c9cIubH8musFJUKIURDc0NJemZmJh988AEtW7akV69erFixAj8/P959912SkpJYsWIF48aN45dffmHv3r04OTnxr3/9q7ZiF0LcQvZahRBHDT09NXTz0BBgUKhuUUwVOFcEv2WZ2JJm4kSuiXwpNr1hfVs6s3VmKL3DLItK0/LKGLkknjd+TKVYikqFEKLBsGrF0ejoaP7973/zww8/UFpailarZciQIUyaNImIiIhqj+nYsSMDBgxgzZo1NxSwEKJuKYqCqx242im0dlZJLapYLCmrpOrYYhOcylc5la/iZgcBBgUfewWb6lrJiKvydLJl+dNBfLHnPG9vPEfxJW9+Fu/MZFdcPotGBhDqbV9nMQohhKgdViXpDzzwAAABAQFMmDCBZ555hsaNG1/1uICAAPz9/a05pRDiNmSjqVihNMAA+WUqScaKhL24mhu6WSWQVaJyTFHx/XtlU1db7ujVNK2hKArju3nQLcSRKV+f5cS5i51e/kwpot/CU8wZ6MOYzm7yvRVCiHrMqukuDz30EOvWrSM+Pp7XX3/9mhJ0gHnz5hEfH2/NKYUQtzlHG4UWzhXFph3dNPjYK9UWm5arkGhU2ZNpYnuGiVN5Joqk2PS6tWhsz8bnm/FMN3eL7UVlKq99n8LYZWc4ny9FpUIIUV9ZdSf9VnRpKS0tZeXKlWzfvp38/HyCgoIYPXo07du3v6bjd+7cybp160hISMDGxoaAgABGjx5N27Ztb3LkQtzZFEXByx687BVKylWSC1XOGlXyqskXC8rgRJ5KTJ6Klw4CDBq87CsKVsXV2dtqePMRX+4Pc2LGmiQyLknKNx/Po/f8WBaM8Of+MKc6jFIIIYQ1rLqTrtVqGT9+/FXHTZgwARsbq94HsGDBAn744Qd69uzJM888g0aj4c033+Svv/666rFfffUV77//Ph4eHowfP57Ro0cTFBREVlaWVbEIIaxjp1Vo6qihh6eG+zw0BBoUbGsoNk0rhoMXTESnmfgrx0Reqdxdv1b3hzmxZWYoES0tk/GM/DJGf5HA7HUpFJVKUakQQtQnVmXQqnrtC5dYs9jGyZMn2blzJ08//TRDhgwBoHfv3jz//PMsXbqU9957r8ZjT5w4werVqxk3bhyDBg267nMLIWqfoii42MFddgqtXFTO/V1smlnNwpklJjhdoHK6QKWRbUWxqa9ewVaKTa/Iw9GGZU8F8uW+LN74MZWiS4pKl+w+X1FUOqoJLRpLUakQQtQHtdYnvTo5OTnodLqrD7zM7t270Wg09OvXz7zNzs6Ovn37cuLECTIyMmo8dv369bi6uvLwww+jqiqFhYVWxS6EuDm0ioKfXkNndy29vTQ0d1LQa6sfm10KR3MqVjb97wUTmcWysumVKIrCU13c+WVaM1r5WCbjJ84V0//jU/y/3ZnyPRRCiHrgmu+knz171uLr/Pz8KtsqlZWVERMTw6ZNmwgJCbnuoE6fPo2fnx8Gg8Fie/PmzQGIj4/H09Oz2mMPHz5MixYtWL9+PWvWrCEvLw9XV1eGDx/OwIEDrzsWIcTNY7BRaO6kEOqocr6koqA0tVDl8okZJiC5sGJ+u0EL/gaFAL2C3kburlcn1NueDc+HMO/nNBbvzDRvLy5TmbUula0n8lgwwh9PJ9s6jFIIIcSVXHOSHhQUZNHOKyoqiqioqCseo6oqEyZMuO6gLly4gKura5Xtldtqmluen59Pbm4ux48f5+jRo4wcORJPT0+io6OJjIzExsaGBx988LrjEULcXIqi4KEDD51CuItKyt/FpjmlVccay+FknsrJPBVPXcV0GG97Ba0Um1rQ2WiYM9CH+8OcmL46kbRLKne3ncyn9/xY5g/3J6Klcx1GKYQQoibXnKT36NHDnKTv2LEDLy8vWrRoUe1YOzs7fH19eeSRR8xzyq9HSUkJtrZV7/DY2dkBUFxczURWME9tycvL46WXXuK+++4DoGvXrkydOpU1a9ZIki7Ebc5WoxDooBDoALmlFb3XkwpVSqqpe8wohoxiFVtFxc9Q0XvdpbrK1DtYj1BHomeG8lJUMj//mWvefr6gnDFLzzC2ixuzBvigt72psx+FEEJcp2tO0rdv327+t0ajoX///nzxxRc3Iybs7OwoLa16C62kpGJJw5rmuVdut7GxoWvXrubtGo2G++67j6+++oqMjIwqU2UyMzPJzKz4SLjyLn1RUdF1zWevfONQ0xsIUT/Idby92AJN7SDQFjJLFVJLtGSWKnBZB/ZSFRIKVBIKVBy1JnztTLgi17KSQQOfDPNkdbCOt3/OpPCSzjlL92ax+1Q+84d607Lx9dcQ3WzyM9kw3KrrqNfrb+rjC3ErWdXdJT4+HkdHx9qOxczV1bXaKS0XLlwAwM3NrdrjHB0dsbOzw8HBAa3WshLNxcUFqJgSc3mSHhUVxb///W/zuB49epCUlERBQcF1x56UlHTdx4jbj1zH25MjYK/YUKBzIU/nQpm2alKZX67hZKEGVAcMDn4Y0y6gLy2odmGlO829jeCT/irzdkHsJS+xsRklDIlMZFx7GNLy9uxTLz+TDcPNvo7h4eE39fGFuJWsStIDAwNrOw4LwcHBHD16FKPRaFE8GhMTA0DTpk2rPU6j0dC0aVNiY2MpLS21mDJTmfQ7O1edfzl06FB69uxpHrd582b8/f2veSVVqLg7kJSUhL+/v1UdbcTtQa5j/aGqkFNeSkqxhvQSDeWXp+GKBqPOGaPOGZ2i4qMz4WNXjqGGTjJ3ihCgaxuVBdvOE7k7m8p76qUmWPw7/HlBz3uDvfF2tm6Ni9omP5MNg1xHIa7fNb0Kf/nllwAMGTIEJycn89fXasyYMdc1vmvXrqxdu5ZffvnFPKe9tLSULVu20Lx5c/Od8IyMDIqLi/H39zcf2717d2JiYti6dau5hWNJSQk7duwgICAAd3e4simqAAAgAElEQVT3Kufz8PDAw8MDgNTUVADs7e2t+thMp9PJx20NgFzH+sEA+DhBmUkl9e/e61klVccVqwoJRVoSirS42UETg0JjewWbO7T3uh6Y84iBiNauTFuVSGruxaLSXacLGfB5Ih8M8+fB1rdPUan8TDYMch2FuHbXlKSPHTsWRVHo3LkzTk5O5q+vRlVVFEW57iQ9LCyMbt268eWXX5KdnY2Pjw9bt24lPT2dqVOnmsfNnz+fY8eOsW7dOvO2Bx98kM2bN7N48WJSUlLw9PRk27ZtpKenM2vWrOuKQwhRP9hoKopGAwyQX1aRrCcWmChRq75OZZVAVomKjaLiq684rpEt1/Sa1tB0C6koKn3lu2R+PHqxqPSCsZxxX57hyU5uzBnog8FOikqFEOJWu6Ykffbs2RUt0v6+21z59c00c+ZMVq5cyfbt28nPzycoKIhZs2Zddb6ZTqfj7bffZunSpURHR1NUVETTpk2ZPXs2d999902NWQhR9xxtFFo6KzSxKebPxDRUNz8ySzVcvnxPmQpnjRWtHh1tKlo5+usVdNo7K1l3NdiweHQTVh+8wOvrUjFe0kZn+f4s9pwu4NNRAbTxk7ufQghxKymqLD1nITU1lcjISCZOnIiPj881H1dYWEhcXBwhISHyUV49Jtex4bj0Wmrs7EkurLjDfkm78CoUwMseAgwavHS3ZwHlzRSfWczzqxL5b6JlZytbrcLLD3gzuYcHmls8RUh+JhsGuY5CXD+rPsNcuHAhS5Ysqe1YhBDiptBpFYIdNfTw1NDdQ0OgQaG6xUpVIK0IDmaZ2JJm4q8cE3mld859jKYeOr6fHML03p5c+v6ktFzlHz+dY+SSeFKyq1lhSgghRK2zKkn/n//5H9avX1/bsQghxE2lKAqN7BTuaqShb2MN7RspeNhVP7bYBKcLVHZkmNiVUc6ZAhOlpoafsNtqFV7p15ioicH4NbJcVG5XXAERC2LZcDSnjqITQog7h1VJeuPGjbG3t6/tWIQQ4pbRKgp+Bg2dPbT09tIQ6qigr6E9Y3YpHM1R2Zxm4o8LJs4XqzT0mYKdgx2InhHKoLYuFtuzC8uZsOIs//NtEgXF5XUUnRBCNHxWJen9+vVj165d5hVAhRCiPjPYKIQ5a+jtpaGTuwZfvVLti6NJhaRClb3nTWxLNxGbZ6KwvOEm6y56LYtGBbDwMX8cdZbfka9/u8ADH53ij0RjHUUnhBANm1VJ+j/+8Q+0Wi2jR4829xUXQoj6TlEUPHUKd7tqiGisIdxFwcW2+rHGcojJU9mSZmL/+XJSClXKG+DddUVRGHa3K5unh3JPE4PFvvjzJTyyKI6Pt6VTfgdMBRJCiFvJqiXlXnvtNdq2bct3333Hhg0buPvuu2nSpEm1U2AUReH//b//d8OBCiHErWSnUQhyUAhygNzSis4wSYUqpaaqYzOKIaPYhK0CfgaFJgYFZ9uG1Rkm0N2OtZOCWbA1nQVb0qnMyctM8M7PaWyLyWfhY/74u9YwyV8IIcR1sSpJX7p0qfnfRUVF7Nmzhz179lQ7VpJ0IUR952yr0NpFoYWzSloRJBpNZBRXHVeqQkKBSkKBiottRe91X72CXQNZ2dRGq/BiX296hjry/KpEEi9c7PSyL76iqPTdR/0Y1LZRHUYphBANg1VJ+rZt22o7DiGEuO1pFQVfPfjqtRSWqyQZK+6wG6upn8wphZwclb9yVBrrFQL0Ch66hrGy6b1BFUWl//dDCt8eyjZvzy0yMfmrRLaeyOPtQb442ddQiSuEEOKqrErSe/bsWdtxCCFEvaLXKoQ6KTRzVMkqgUSjSmqRyuV1pCYgpVAlpVBFrwV/vUKAQcFQXaP2esTJXsvCxwK4P8yJ19Ymk1t0cR7QN4eyOZBg5JORAdwTaLjCowghhKiJVYWjQgghKiiKgrtOoZ2rhr7eGtq4KLjWUGxaWA6x+Spb003szSwnyWiq9wWXQ9o1InpGKB2DLJPxM1klDP48jg+j0yhrwB1whBDiZpEkXQghaomNRqGJg4Zunlp6eWoIcVTQ1fAqe74E/siu6L1+JNvEhZL623vd39WOqGeDeaWfN9pLnm+5Cd7fnM7QyNMkZknLXiGEuB5WJ+lGo5G3336be++9l0aNGqHVaqv9Y2Nj1YwaIYSo1xxtFVo6a+jjreFeNw3e9lDdBJcyFc4aVXZnmvg1w8TpfBPF9fDOs1ajML23Fz9MDiHI3bLDy28JRiIWxPLd/2/vvsOjqvI+gH/vncxkJr2R3hsYOtIDhB5UQIqwCkqxIIpYX3VfXF138RVl11URxEVB7K4iAXRdVAgBCSCChRIggRAgpPdJpmbmvn/MZmDIpJCEZJJ8P8+zz3rPuefekxxy5zfnnvJreQfVjoio82lRBF1ZWYnRo0fj5MmTkMlkUCgUkCQJQUFBKCgosPYGRUREtGlliYg6G1EQEKAEApQy6E2WZRwvaSRU19Y/V10LZFRJOFUlIUAJhLmI6OFsuUZnMSjcBd8/Fovnd+TjX0euBOVqvRmPfJ6L3afVWDUjBB4Nbe9KREQAWtiT/sorr+DEiRNYsmQJqqqqcMcdd0AQBFy+fBk1NTXYvHkzAgMDMWzYMGRnZ7d1nYmIOiVnmYAYNxFJPUQk+okIdxFgb/6oBKBAB/xcZsbuQjNOVZlRXdt5etfdnGV4fU4o/jk/HJ4q24+ZlN8qMfHNLPx0vqaDakdE1Dm0KEjftm0bgoODsWbNGiiVSpslxZRKJRYsWIBdu3YhJSUFr732WptVloioKxAEAd4KAf28LJNNB3gJ8G1gDyC9GThXLSGtyIz0EhMuasyo7SSTTaf188Sux+MwItrVJj233IjZ/8zG6u85qZSIqCEtCtIvXLiAQYMGQS63LGEgipbLGI1XNrZISEhAUlKSzcZHRERkSyYKCHURMcJPhnH+IuLcBCgbeDKXG4Bj/51s+nu5GaV6x59sGuKlwBcPRGHFLYFwuurnMkvAG7uLMPOdc8gptbMzFBFRN9eiIF2pVEKpVFqPPTw8AAAFBQU25/n4+OD8+fOtqB4RUffh6iSg538nmw7zERGsFOw+pE0ScEkr4WCpGWlFZpxVm6F14B5pmSjgkbE98M2yWET72b4yOHpRi0lvnMUXR8sd/gsHEVF7alGQHhYWhkuXLlmPe/XqBQDYu3evNa22thY///wzfH19W1lFIqLuRRAE9FAKGOQjYmKgiN6eAjwaWHu9xgScVkvYXWjG4VIT8rUSzA4a7PYLVeH7x+Iwf6i3TXqNwYzHv8jF0k8vocLe9q1ERN1Qi4L00aNH49ixY1Cr1QCAadOmwcnJCY8++ijeeecdfP3117jjjjuQk5PD3UmJiFpBIQqIchUxpocMo3uIiHQVIG9gsZciPXC03IxdhWacrDSjyuh4wbqLQsTfZodi4z3h8HaxXeHl62OVmPhGFg5mV3dQ7YiIHEeLgvQ777wT/fr1w4EDBwAAwcHBWLVqFSoqKrBs2TLMmDEDO3bsQEBAAF599dU2rTARUXflKRfQx9PSuz7IW0APZ/vnGczA+RoJ+4rN+LHYhJwaM4wONtn0lj6WSaWjYm0nleZVGnHHhvNYtbMARgcewkNEdKO1aJ30UaNG4eDBgzZpTz75JBITE5GSkoLy8nLEx8dj8eLF8PHxaZOKEhGRhUwQEKwSEKwCtCYJuRrL2uv2RopUGoHKSgkZlRICVQLCXSwryQgOsPZ6kKccn98XhQ37S7BqZ6E1KJck4K09xdiXVY3XZvbo4FoSEXWMNt0OdNiwYRg2bFhbXpKIiBqhkgmIcxcQ6yah1ABc0kjI10m4tuPcDCBPKyFPK0ElA8JcBISqBLjYW6i9HYmigKVjeiAxxg3LPruEs8VXVnr5PVeLae9cwtKbJSyLZq86EXUvLRruQkREjkUQBPg5CxjobVl7va+nAK8GJptqTUCmWkJqkRmHSky4rDHD1MGTTfuGqLDz0VgsHG779lVrlPD6IWDZFwUoq7GzTSsRURfVrJ70ixcvtuom4eHhrSpPRETNJxcFRLgKiHAF1EbLUJhcrQSDuf65JQagxCBBXikhWCUgzEWAp7xjhsO4KESsmhmCcT3d8eSWXJTVXBm/892pGhx7Iwtv/iEMo2Ld2r1uRETtrVlBemRkZIsf2IIgoLaWvR9ERB3BXS4gwVNALw8JRTrgktaMIh1wbb+5UQIuaCRc0Ehwd7oyHEYha/9gfXKCB1KfiMPjX+QiLfPKSi/5VbX4w3vnsXSMH56dHACFE18GE1HX1awgfcyYMQ4xyYiIiFpGFAQEqoBAlQw6k4TLWgkXNRLsjSBR1wIZVRJOVUkIUAJhLiJ6OFuu0V783eX4eHEk3tlbgFe/L4Hxv28BJAlYv7cEP2ZVY91dYYjzVzZ6HSKizqpZQXpaWtoNrgYREbUXpUxAjJuAaFcJFUbgosYyofTaFQ8lAAU6oEBnhrP43951FwFu7TTZVBQFLB7uhVCnErz2kwJZxQZr3ok8HZLXnMVfpgbh7mE+7Egioi6H7wqJiLopQRDgrRDQ38sy2bS/lwAfhf1z9WbgbLWEtCIzDpSYcEljRm07rb0e7S1g25JQ3DvSdgdrnVHCsyl5WPzhBZRWc1glEXUtDNKJiAhOooAwFxEj/WQY6y8i1k2AcwOfEGUG4PcKCT8UmvF7hRllBgnSDV4dRikX8dLtwfhocQT83GxfAn+focaEN7KQlqm+oXUgImpPzRrusm/fPgDA0KFDoVQqrcfNNWbMmOuvGRERdQg3JwG9PAT0dJdQrAcuacwosDPZ1CRZ1mW/pJHg6gSEqSzDYZQ3cLLphF4eSH3CBU98mYvdp68E5UXqWszbmIMlo3zxxymBUMrZB0VEnVuzgvSxY8dCEAScOnUK8fHx1uPmMpnsbINHREQOTRAE+CsBf6UMhqsmm6rtjCypqQVOqyWcUUvwd7ZMNvVX3pjJpn5uTvhwUQQ2HyzDyn/nQ1d75evDhv2l2H+uBuvuDEPPQE4qJaLOq1lB+oIFCyAIAjw9PW2OiYioe1DIBES5CYh0lVB11WRTo53JpoV6oFBvhkIEQv+79rq7vG0/MwRBwOKRvhgZ7Ypln19CRr7OmpeRr8Mtb53F87cFYdEITiolos6pWUH65s2bGz0mIqLuQRAEeCqAvgoBCZ4SCnSW4S4l+vrnGsxAdo2E7BoJXnLL6jDBKgFyse2C5p6BSnyzLAav7CzAhv2l1nRdrYTntuch9Ywar88JrTeOnYjI0XHQHhERtYhMEBCiEjHcV4bx/iLi3QWoZPbPrTACxystk01/LTejRN92k02VchEvTgvGp/dFwt/dNhjffVqN8a9nIfU0J5USUefCIJ2IiFrNxUlAvLuI8f4ihvuKCFEJdj9gzBJwWSvhUKkZe4rMyFSboa1tm2B9bLw7dj8eh8kJ7jbpJdW1uPv9HPxpex60dbsiERE5uFa9/9u7dy/27t2L/Px86PV23nXC8mp048aNrbkNERF1EoIgwM8Z8HMW0MfTMm79okZCpbH+uRoTkKmWkKmW0MPZMhwmQClA1oox5L5uTnh/QQQ+/qkMf/4mH7qrBs1vOlCK9HOWnUoTglQtvgcRUXtoUZBeVlaGmTNnYv/+/U2+rmSQTkTUPclFARGuAiJcgSqjZez6Za0Eg53O7GI9UKyXIBckhLhYJpt6tnCyqSAIuGe4L4ZHu2LZZ5dwIu/KpNIzhXrctvYcnrslEPeO9IXYhuPjiYjaUouC9CeeeAI//vgjevfujSVLliA6Ohpubm5tXTciIuoiPOQCensKuMlDQqHOsvZ6kZ0XsEYJyKmRkFMjwcMJCJSLMAkNDHRvQpy/ZVLp6u8LsX5fCer6lPS1El74Ot86qTTAQ96Kn4yI6MZoUZD+9ddfIzQ0FAcPHmRwTkREzSYKAoJUQJBKBp1JQu5/N0OqsbOdRlUtUFXrBHjFQl8tIVKwDIu5niUVFU4i/nRrEMbGu+PRf11CQdWVRd7TMqsx4Y0svHZHKJITPNrixyMiajMtmjhqMpkwYsQIBuhERNRiSpmAWHcRY/1FjPQVEeYiwO5mpYKIIqMMh8vM2F1oxpkqM2quc7LpqFg37Ho8Drf2sQ3Gy2pMWPzBBfwx5TI09sbhEBF1kBYF6TfffDMKCgraui5ERNQNCYIAH2cB/b1ETAoQ0d9LgI/C/rk6M5BVLWFPkRkHS0zI1ZhRa25ewO7j6oR37w7H32eHQHXNePcPD5VhypqzOH5Z29ofh4ioTbQoSP/Tn/6EgwcPYufOnW1dHyIi6sacRAFhLiJG+skw1l9EhNIEmdnO0jAASg3AbxUSdhWacazCjHJD02uvC4KAeUN98P1jcegfarvCy9liPaauO4f1e4thbmbgT0R0o7RoTPr48ePx6aefYsGCBbj11lsxadIkhISEQBTtx/xjxoxpVSWJiKj7cXMSEKsyAXnn4BUei8JaOQp1wLXhc60EXNRYlnp0c7Is5RiqEuBsd+yMRUwPZ+x4OAZ//6EQa9OKrZNKjSYJK78twJ5MNd6cG4YgT04qJaKO0eJ10qurqyGXy/HRRx/ho48+avRck8nOjCAiIqJmEAD4ySWEecigN1mWcbykkaCurX9udS1wqkrC6SoJ/kogzEWEv7Nlwuq15DIB/zslEGPj3bD881zkXbWY+/6zNZj4Rhb+PjsEt/TxvIE/HRGRfS0K0jdv3oz77rsPkiRh4MCBXIKRiIjahbNMQLSbgChXywZJdWuvXzuPVAJQqAMKdWY4i0CIyrL2urudtddHRFsmlT6bchlfH6u0ppdrTLjvo4uYN8Qbf50eDBcFN+kmovbToiB99erVcHZ2xrfffouxY8e2cZWIiIgaJwgCvBSAl0JAgoeEfJ2ld73UUP9cvRnIrpGQXSPBW24ZDhOkEiC/aiMjLxcZ3pkXhgm93PHctjzUXLXSy6c/l+PQ+RqsuysM/UNd2uPHIyJq2cTRnJwcJCUlMUAnIqIOJxMFhLqIGOEnw3h/EXFuAlQN7H9UbgSOVVomm/5Wbkap/spkU0EQMPdmb/zweCwGhdlOKs0uMWDaunN4a08RTJxUSkTtoEVBekhICFxc2JtARESOxcVJQE8PEeP9RQzzFRGsEux+0JkkIFcr4WCpGXuKzMhSm6E1WYLvSF9npDwUg8cn+OOqznbUmoFVOwvxh3fP43KFnS57IqI21KIgfcGCBdizZw/Kysrauj6dlkKhQHh4OBSKBhb3pU6B7dh1sC27hpa2oyAI6OEsYJC3iImBIvp4CmhooRaNCTijlrC70IyfSk3I00oQReCZyQH46sFohHrbFjyQbZlUevX4dWoc/x6Jrl+LgvQVK1Zg3LhxGDduHNLS0ppcl7Y7MBgMuHjxIgwG9q50ZmzHroNt2TW0RTsqRAGRriJG95BhTA8RUa4C5A18+hXrgV/KzdhVYMaJSjNuCnXBrsfiMHOA7QovlVozHvzkIp74MhfVeq5g1hT+PRJdvxZNHI2LiwMAXLhwARMmTIBcLkdgYKDdddIFQcC5c+daV0siIqI24CEX0NtTQC8PCYU64JLGjGJ9/fOMEpBTIyGnRoKnHHh6eigm3OSO/92aB7X+yqTSfx0px0/na7D2zjAMCucwUCJqOy0K0nNycmyO674hExERdQYyQUCwCghWyaA1ScjVWFaH0djpFK80ApWVEpT+HnjvYTd8+mMRdhwps26qlFNqwO3rz+GpiQFYPq4HZGLDmygRETVXi4J0s9nc9ElERESdgEomIM5dQKybhDKDZe31fJ0E0zUjOc0AKs0ibksMxOQhPfD9b2XYf7ICpVVGmMzA6u8LkZapxto7wxDqzbHXRNQ63JmBiIgIluGZvs4CBniLmBggop+nAO8GJpvKFTLcNrQHVi2OwxOzIjC0pwfkMgGHczSY8HoWUn6raN/KE1GX06KedCIioq5MLgoIdxUQ7gpUGyVc0lqGxOjtvEi+KcwVN4W5QqM34fCZSqRnVGDZZ5eQelqN/7s9GB4NLdpORNSIZgXpdePNQ0JCIJPJrnv8eXh4+PXXjIiIyAG4yQXcJBfQ011CsR64qDGjSAdcu66Zi7MMY/v5YGw/H1wu0SE9owK3v5ON1TODMSTStUPqTkSdV7OC9MjISIiiiIyMDMTHxyMyMhKC0LyJMYIgoLa2tlWVJCIi6miiICBACQQoZdCbJORqLZNNq+18xIX4KTF3TCBMJgk7z6txJF+P+4Z4QeHEUaZE1DzNCtLHjBkDQRCsu4zWHRMREXVHzjIBMW4Col0lVBgtk03ztBJqr+lel8kEDIz1AACkXDQi0lVEb18nuDnxM5SIGtesID0tLa3RYyIiou5IEAR4KwBvhYDeHpZVYS5pJJTa2bPHVemEYhOQVmSGtxwIcxUQrBTgxCUbicgOThwlIiJqAzJRQKiLgFAXoKZWQrbajDMVJiid608cLTcC5RUSTgoSgpUCwlwswT7fUhNRnTYdHKfT6VBQUMAx6ERE1K25Ogno6y3D7Eg5UKXF7+eqYKytvzSMSQIuaSUcKDUjrciMs2ozdNcu0E5E3VKzgnS1Wo3Dhw8jMzPTbn5WVhaSk5Ph4eGBkJAQuLu7484770R+fn6bVpaIiKgzEQQBU3u5YXFfN3y1+zI+S8vHxSKt3XNrTMBptYRdhWYcLjUhXyvBLDFgJ+qumhWkf/jhhxgxYgS++eabenkFBQUYPXo0du3ahdraWkiSBL1ejy+//BLjxo2DVmv/YURERNRdBHvJ8eHCCCSGOOPVL3Kw8tNs7P6tFDU6k93zi/TA0XIzdhWacbLSjCojg3Wi7qZZQfrevXshiiLuvvvuenkrV65EUVERvL29sX37dqjVavzyyy8YPHgwsrKysH79+javNBERUWcjigIeTuqBr5fFQAEJ/9pbiKffy8Q/v83FiZxqu73mBjNwvkbCvmIzfiw2IafGDKOZATtRd9CsIP3YsWPo27cv/P39bdLNZjM+++wzCIKAl19+GdOmTYOrqysGDBiArVu3wsnJCdu2bbshFSciIuqM+oWo8N2jsbhnmA9qTRKOZlVhzfaLWPF+FrYdKEKN1v68rkojcKJSwg8FZvxSbkaJXoLE4TBEXVazgvSioiL07NmzXvqxY8dQUVEBJycn3HnnnTZ5ISEhGDZsGE6dOtU2NSUiIuoiXBQiXp0Vgk0LIuDtYln9pUxdi29/LsGTGzLx/s5cKGprYW91RjOAPK2EQ6VmpBaZkak2Q3PtAu1E1Ok1K0ivqamB0Wisl3706FEAQL9+/eDh4VEvPzQ0FFVVVa2sIhERUdc0pbcHdj8RhzFxbtY0CcDBM1VY/HYmfj9WggR3wEtuv7zWBGSqJaQWmXGoxITLGjNM7F0n6hKaFaT36NEDp0+frpe+f/9+CIKAoUOH2i2n0+ng6enZuhoSERF1YYEecnx6byRenBoEhexK17kkAW+lFuGh97MRiFok9RAR7SpA0cAnd4kB+LVCwq4CM45XmFFh4HAYos6sWUF63bCVr7/+2ppWXFyMrVu3AgAmT55st1xGRgaCg4PboJpERERdlygKWDLaD/9+JAbx/s42eccv65D8ZhZ2/FKOmzwETAwQMdhbRIASsLf1kVECLmgk7C8xY1+xGdnVZhi49jpRp9OsIP2RRx6BJEmYM2cOFixYgKeeegpDhgyBWq1GWFgYbrvttnplsrOzkZmZif79+7d5pYmIiLqi3sEq/OfRWCwa4WOTrjVKeHrrZdz30UWUa0wIVAkY4iPDhAARN3kIcG1g/3B1LZBRJeGHQjOOlplQqOPa60SdRbOC9HHjxuHFF1+E0WjExx9/jDfeeAMXL16ESqXC+++/Dyen+k+Hd955BwCQnJzctjUmIiLqwlRyES/PCMEHiyLg6yqzydt5sgoTX8/CvqxqAIBSJiDGTcTYHiIS/USEuQiQ2elelwDk64Cfy8zYXWjG6SozqjnZlMihNfDdu74XXngBU6dOxdatW1FcXIywsDDMnz8fUVFRds93dnbGY489hilTprRZZYmIiLqLSTd5IPWJODzxZS5Sz1Rb0wvVtbjzvfN4cLQf/jglAM5OIgRBgLcC8FYI6O0hIV8n4ZJGQpmh/nX1ZuBstYSz1RJ8FECYi4AgpQAne0vJEFGHaXaQDgCDBg3CoEGDmnXuypUrW1QhIiIisujhLsdHiyOx6UApXvq2APqrer//+WMJfjxbjbfvCkN8gNKa7iQKCHMREOYCVNdKyNVYAna9uf71ywxAmUHCCUFCsMpSzlsOCAIDdqKO1qzhLkRERNQxBEHAfYl++M/yWNwUqLTJy8jXYcqas9h8sNTuSi5uTgJ6eYiYGCBiqI+IoAYmm5ok4JJGwoESM9KKzTirNkPXBpNNDQYDampqoNFoYDQaodFoUFNTA4PBThc/Edm4rp50IiIi6hi9ApX49yMxePk/BXgvvdSarquVsGJbHlLPqPGPO0Lh51b/o10QBPgrAX+lDAaThFytpXddbWdz05pa4LRawhm1BH9nIMxFhL8SEFvQu56ZmYmMjAzrcVZWFgAgISEBffr0ue7rEXUnDNKJiIg6CaVcxF+nB2NcT3c8/kUuiquvRNm7Tqkx4fUsvDE3FON6ujd4DYVMQLSbgChXCZVGSw96nlaC8ZqOcwlAoR4o1JuhEIHQ/w6HcZc3P1iPj49HVFQUKioqkJ6ejsTERHh5eUEub2B3JiKy4nAXIiKiTmZcT3ekPhGHiTfZBuPF1bWYvykHL+zIg85oZxD6VQRBgJdCQF8vERMDRQz0EuCnsH+uwQxk10jYW2zG/mITLtSYYTQ3PRxGoVDA1dUVSqVlmI5SqYSrqysUigZuRERWDNKJiIg6IV83J3ywMAKrZgRD6WTbu/1eeiluXXsWpwt0zbqWTBAQ4iJiuJ8M4/1FxLsLUMnsn1thBI5XWtZe/7XcjBI9d9DVJzQAACAASURBVDYluhEYpBMREXVSgiBg4QhffPdoLBKCbCeVni7Q45a3zmJjesl1BdEuTgLi3UWM9xcx3FdEiEqwGyyYJeCyVsKhUjP2FJmRqTZDy7XXidoMg3QiIqJOLi7AMqn0wdF+Nun6WgnP78jH3ZtyUKw2Xtc1BUGAn7OAgd4iJgWK6OspwLOBoeQaE5CplrC7yIyfSk3I05phYu86UaswSCciIuoCnJ1E/HlqED6/PwoB7rbrQuzJrMb417Ow61RVi64tFwVEuIoY3UOGMT1ERLkKUDQQQRTrgV/KJewqMONEpRmV185IJaJmYZBORETUhYyJc8PuJ+IwpbeHTXppjQkLNl/Aim2XoW1iUmljPOQCenta1l6/2VuEv7P984wSkFMjYd9lDQ6czmnx/Yi6KwbpREREXYyPqxM23hOOv80KgeqaJRM3HyzDlDVncTJP26p7iIKAIJWAob4yTAwQ0ctdgKudyaa6Ez9CezkbAJCTk9OqexJ1JwzSiYiIuiBBEDB/mA++eywO/UJUNnlZRXrctvYc/rmvGOZmLKXYFKVMQKy7iLH+Ikb6ighTCZAJgCRJkLRqWFZdB9RqdavvRdRdMEgnIiLqwmJ7OGPHw9F4ZGwPXL1pqMEk4S//LsC8TTkoqLq+SaUNEQQBPs4C+nuLmBQgYoC3CPfweGt+WFhYm9yHqDtgkE5ERNTFKZxErLglEF88EIUgD9tJpfuyqjHh9Sz852Rlm97TSRQQ5iLilmH9MWrUKACAl5dXm96DqCtjkE5ERNRNJMa4YdcTcZja13ZSabnGhPs+vIhnvroMjaHlk0ob4uzcwOxSImoQg3QiIqJuxNvFCf+cH45/3BECl2vWUfz4cBmS15zFscutm1RKRK3HIJ2IiKibEQQBdw7xwQ+PxWJgmO2k0nPFekxbdw7r0tpmUikRtQyDdCIiom4qys8Z2x6KwePje0C8alKp0STh//5TgDvfO4+8iraZVEpE14dBOhERUTcmlwl4JjkQXz0YjRAvuU3e/nM1mPhGFv59vG0nlRJR0xikExEREYZFuWLX43G4vb+nTXqF1oQHPr6IJ7/MRY3e1EG1I+p+nJo+hW6UkpKSJs/x9vaGTHZlC7fmlPHy8oKT05WmLS0thSQ1Pq7Q09MTcvmVHpSysjKYzY3P8Pfw8IBCobAel5eXw2Rq/AHu7u5uM8u/oqICtbW1jZZxc3ODUqm0HldWVsJobPz1q6urK1SqK+Msq6qqYDAYmixzNbVaDb1e32gZFxcXuLi4WI+rq6uh0+kaLaNSqWzuVVNTA6228UlaSqUSbm5u1mONRgONRtNoGWdnZ7i7u1uPtVotampqGi2jUCjg4XFl1QedTofq6upGy8jlcnh6XvlQb04ZJycnm6XY9Hp9k5ucyGQyeHt7W48NBgOqqqoaPF+v19f7vRqNRlRWNt4jKAgCfH19rce1tbWoqKhotAwA+Pn5Wf/bZDKhvLy8yTK+vr4Q/rtwtdlsRllZWZNlfHx8IIqW/hVJklBaWtpkmc78HNHr9dBoNCgrK7M+O1ryHLm2THOeI9c+e5r7HLn62dMZnyN/naTChAgT3vmxBEUaESV6S/t8fqQcJy5W4C9TvBAXoKxXrs7VzxGDwQC1Wo2ioiIAludDTU0N5HK5TbsTUX0M0jtQampqk+dMnTrV5uG9b9++Jj+MpkyZYhNopaenN/nAnzhxInx8fKzHhw4dajLQGjt2LPz9/a3HP//8c5PBzKhRoxAcHGw9/uWXX5oMGIYPH47w8HDr8e+//46CgoJGywwePBjR0dHW4xMnTiA3N7fRMgMGDLDZaOPUqVNNbmHdp08fJCQkWI8zMzNx9uzZRsv07NkT/fv3tx6fO3cOp0+fbrRMTEwMbr75ZutxTk4OTpw40WiZiIgIDBs2zHp86dIl/Pbbb42WCQkJQWJiovU4Ly8PR44cabRMQEAAkpKSrMdFRUU4dOhQo2V8fX0xYcIE63FpaSn279/faBlPT08kJydbjysqKpCWltZoGblcjj59+liPq6urm/y7c3Z2xu2332491mq1TZaRyWSYPXu29dhgMDTr73vOnDnW/zaZTM0qM3PmTGuQDjTvOTJt2jSbwHHv3r1NfqG+5ZZbbL7k7d+/v8lgc9KkSTZfpA4ePNjkF8Nx48ahR48e1uPDhw/b/SJ19d/i6NGjERQUZD0+evRok19WRowYYfP3/dtvv6GwsLDRMtc+R44fP47Lly83WmbAgAGIj7+yeU9GRgYuXLjQaJlrnyNnzpzBuXPnGi3Tq1cv9OvXz3p89uxZnDlzptEysbGxGDRokPX4/PnzOHnyZIPnL4kGzup8sfbklee8L0pw6WQGLjVcDKGhoRg5ciQAyzMxIyPDmpeeng4ASEhIsPnbJKL6HDZINxqN+OSTT5CWlobq6mpERkZi/vz5GDhw4HVd5/nnn8fvv/+OW2+9FUuXLr1BtSUiIup6xvd0h3OQP17fXYSWLPQSFRUFk8mEM2fOIDIyEiEhIXB2drb50khE9glSU+8vO8jf/vY3HDhwANOnT0dQUBBSU1ORlZWF//u//7PpcWjMgQMH8MYbb0Cn0zU7SM/Pz8eGDRuwZMkSm56apmi1Wpw7dw4xMTHNfvhwuItjDnepa8fa2tpO95r6ahzuokdeXh769Olj/bfA4S4Wnek5otfrcfnyZWtwB3C4C9D+z5Gfc2rwyOeXUFWtgY/iyu/NVSHioSQ/jI678qy5+jly4sQJm570OuxJJ2qaQwbpmZmZ+J//+R8sXrwYM2fOBGD5QH7kkUfg5eWF1atXN3kNg8GAhx9+GBMnTsSnn37qkEE6OR62Y9fBtuwa2I6OQ60z4bntedjyS/0vrXMGeeGl24PhrpTZpBsMBhiNRlRUVCA9PR2JiYnw8vLimHSiZnDI1V3S09MhiqLN+FOFQoFJkybh9OnTKC4ubvIaW7duhSRJ1iCfiIiIWs5dKcOaP4Rh3V1h8FDahg9f/lKByW+exdELtj3zCoUCrq6u1jcSSqUSrq6uDNCJmsEhg/Ts7GyEhITYvP4DYJ2Mc/78+UbLFxcXY8uWLVi4cKHN600iIiJqnZkDvLDr8TgMi7L9jL5QZsCMd87hH7sKUWtyuJf0RJ2OQwbp5eXlNmNP69SlNTVuc+PGjYiOjsaYMWNuSP2IiIi6s1BvBbYsicazyQGQXRVJmMzA338owqx/ZuNiWePj94mocQ4ZpBsMBpvJR3XqXo81Ngnn2LFjOHjwIB544IEbVj8iIqLuTiYKeGy8P7Y/FINIX9vhK0cuaDDpjSxs/bXpCdREZJ9DLsGoUCjszrqvm1Xf0BAWk8mEd999F2PHjkVcXFyz71dSUmJd7aCul16n0zU5U/5qdV8cmprFT46N7dh1sC27Braj47uph4DtS0Kx8j/F2PLblVWa1HozHvk8F9+frMD/jLJ8bhsMhuv6bL1enFxMXYlDBune3t52h7TULWl29aY7V0tNTcXly5fx8MMP19ukQqvVorCwEF5eXvWC/K+++grvvvsuAMsSYmPGjEFubm6Ty9XZ09SGOdQ5sB27DrZl18B2dHxL+gK9PIA3DgHVV410+fq4GuWFeZgdBhQUFDRr2dCW4rKO1JU4ZJAeHR2N48ePQ6PR2EwerdtNLSoqym654uJi1NbW4tlnn62Xt2fPHuzZswcrVqzA8OHDbfJmz55t3TGxrKwMP/zwA0JDQxEYGNjsOuv1euTm5iI0NJSTVTsxtmPXwbbsGtiOnUtMDJB8sxH/k1KEn3IsPebzIvMwxNeyp4FcLkdMTExHVpGo03DIIH3kyJFISUnBd999Z11C0Wg0Yvfu3YiPj7duIV1cXAy9Xo/Q0FAAwJgxY2y2cK7z8ssvY/DgwZg8ebLNds11/Pz8rBuR5OfnA7AsE9WS12bcSa1rYDt2HWzLroHt2HnEqFTY8qA71u8rwerv8nGzz5VNx0pKStjbTdRMDhmk9+zZE4mJifjwww9RUVFh3XG0qKgIy5cvt573+uuv48SJE9ixYwcAIDQ01BqwX8vf379eDzoRERG1PZko4JGxPTAm1g27Uy8hRGkZPtrQcFUiqs8hg3QAeOKJJ/DJJ58gLS0N1dXViIyMxPPPP89v4ERERJ1Ev1AVet05GZmZZ5CRkYGQkJCOrhJRp+GwQbpCocDixYuxePHiBs95+eWXm3Wtup52IiIial8KhRxBQUHIyMjo6KoQdSoOuU46EREREVF3xiCdiIiIiMjBMEgnIiIiInIwDNKJiIiIiBwMg3QiIiIiIgfjsKu7EBERUedmMBhgNBqh0+kAADqdDjU1NZDL5VAoFB1cOyLHxiCdiIiIbojMzEybpRfT09MBAAkJCdz3hKgJDNKJiIjohoiPj0dUVBR0Oh0uXryI8PBwKJVKyOXyjq4akcNjkE5EREQ3hEKhgEKhgCiKkMvlcHFxgUql6uhqEXUKnDhKRERERORgGKQTERERETkYBulERERERA6GQToRERERkYNhkE5ERERE5GAYpBMRERERORgG6UREREREDoZBOhERERGRg2GQTkRERETkYBikExERERE5GAbpREREREQOhkE6EREREZGDYZBORERERORgnDq6Ao6mtrYWAFBSUnJd5XQ6HcrLy1FQUAClUnkjqkbtgO3YdbAtuwa2Y9fQnu3o5+cHuVx+Q+9B1B4YpF+joqICALB169YOrgkRERFdryVLliAoKKijq0HUaoIkSVJHV8KRaDQanDt3Dl5eXnByav53mPPnz+P555/HypUrERUVdQNrSDcS27HrYFt2DWzHrqE925E96dRVsCf9Gi4uLujbt+91l6usrERlZSV8fHz4Db4TYzt2HWzLroHt2DWwHYmuHyeOEhERERE5GNmLL774YkdXoqtQqVQYPHgwXFxcOroq1Apsx66Dbdk1sB27BrYj0fXhmHQiIiIiIgfD4S5ERERERA6GQToRERERkYPh6i6tZDQa8cknnyAtLQ3V1dWIjIzE/PnzMXDgwI6uGjVAq9UiJSUFZ86cQVZWFqqrq/HYY49hwoQJ9c69dOkS3nvvPZw6dQpOTk4YPHgw7rvvPnh6enZAzalOVlYWdu/ejePHj6OoqAju7u7o2bMn7r77boSEhNicyzZ0XBcvXsSnn36Kc+fOoby8HM7OzggLC8OsWbMwdOhQm3PZjp3LF198gY8//hjh4eFYu3atTd6pU6ewefNmnDt3Di4uLhg1ahTuueceqFSqDqotkWPixNFW+sc//oFdu3YhOTkZSUlJyMnJQUpKCvr164cePXp0dPXIjrKyMqxatQomkwlhYWEoKirC8OHDER0dbXNeSUkJnn76aej1esyZMwexsbFITU3F4cOHMXHiRMhksg76Cejdd9/Fr7/+iiFDhmDChAkICQlBeno6/v3vf2Po0KHw8vICwDZ0dFlZWTh58iSGDBmCUaNGoVevXrh06RK++uoreHt7IzY2FgDbsbMpKSnB6tWrIZfL4erqiltvvdWal52djRUrVsDV1RVz5sxBcHAwvvnmG2RlZWHs2LEdV2kiB8Se9FbIzMzEjz/+iMWLF2PmzJkAgPHjx+ORRx7B5s2bsXr16g6uIdnj4+ODDz74AN7e3sjKysJTTz1l97wvv/wSOp0Or7/+uvULV3x8PF544QXs3r0bU6ZMac9q01Vuv/12PPXUUzYblowePRrLly/Hli1brG3KNnRsgwcPxuDBg23SbrvtNjz55JPYvn27tX3Yjp3L+++/j549e8JsNqOqqsom76OPPoKbmxtefvll6yov/v7+WLt2LX799Ve+hSa6Csekt0J6ejpEUURycrI1TaFQYNKkSTh9+jSKi4s7sHbUELlcDm9v7ybPO3DgAIYMGWLzRmTAgAHWXlvqODfddFO9HQWDg4MRHh6O3NxcaxrbsPORyWTw8/NDTU2NNY3t2HmcOHEC6enpuP/+++vlaTQa/Pbbb0hKSrJZhnHcuHFQqVTYv39/e1aVyOExSG+F7OxshISE1FvzNT4+HoBlG2TqnEpLS1FZWWl93X61uLg4ZGdnd0CtqDGSJKGiogIeHh4A2IadiU6nQ1VVFfLz87F9+3YcPXoU/fv3B8B27ExMJhM2bNiAyZMnIzIysl5+Tk4OTCYT4uLibNLlcjmioqLYlkTX4HCXVigvL7fbI1uXVlZW1t5VojZS13Y+Pj718ry9vaFWq2E0Guv15lLHSUtLQ2lpKebNmweAbdiZbNq0CTt37gQAiKKI4cOH48EHHwTAduxMdu7cieLiYqxcudJufnl5OQA0+LmZkZFxQ+tH1NkwSG8Fg8Fg94NBoVAAAPR6fXtXidqIwWAAgCbbl4GBY8jNzcU///lP9OrVC+PHjwfANuxMpk+fjpEjR6KsrAz79++H2WyG0WgEwHbsLKqqqvDpp59i7ty5Da6401Rb1uUTkQWHu7SCQqGwfpBcre5B4+zs3N5VojZS9+HP9nV85eXl+Otf/woXFxc8++yz1pU+2IadR2hoKAYMGIDx48fjhRdegE6nw0svvQRJktiOncTHH38MNzc3TJ06tcFzmmrLunwismCQ3gre3t7W13dXq0uz93qWOoe6trM3ZKm8vBzu7u7suXMANTU1ePHFF63/7+vra81jG3ZeI0eORFZWFi5fvsx27ATy8vLw/fffY9q0aSgrK0NhYSEKCwthMBhgMplQWFgItVptHebS0OcmPzOJbHG4SytER0fj+PHj0Gg0NpNHz5w5AwCIiorqqKpRK/n6+sLT0xNnz56tl5eVlcW2dQAGgwErV65EXl4eVq5cifDwcJt8tmHnVddDrtFoEBoaynZ0cKWlpTCbzdiwYQM2bNhQL/+BBx7AtGnTMG/ePMhkMmRlZWHUqFHWfKPRiPPnzyMxMbE9q03k8Bikt8LIkSORkpKC7777zrpOutFoxO7duxEfH8/NjDq5ESNGIDU1FcXFxda2/P3333H58mVMnz69g2vXvZlMJqxevRpnzpzBc889h169etk9j23o2CoqKqwbT9Wpra3Fnj17oFAoEBYWBoDt6OgiIiKwYsWKeukff/wxtFotHnjgAQQGBsLV1RX9+/fH3r178Yc//MHaubVnzx5otVoG6UTXYJDeCj179kRiYiI+/PBDVFRUICgoCKmpqSgqKsLy5cs7unrUiG+++QY1NTXWV+iHDx9GSUkJAGDq1KnW3fDS09Px3HPPYfr06dBqtUhJSUFERAQmTpzYkdXv9jZt2oTDhw9j6NChUKvV2LNnj03+uHHjAIBt6ODefvttaDQa9O7dG76+vigvL8fevXuRm5uLe++917pNPNvRsXl4eGD48OH10nfs2AEANnn33HMPnnnmGaxYsQLJyckoLS3Ftm3bMHDgQNx8883tVmeizkCQJEnq6Ep0ZgaDAZ988gnS0tJQXV2NyMhIzJ8/H4MGDeroqlEj7r//fhQVFdnNe/fddxEQEAAAuHjxIjZu3IiMjAw4OTlh8ODBuPfee5u1GRLdOCtWrMCJEycazK8LDgC2oSPbt28ffvjhB1y4cAFqtRoqlQoxMTGYOnUqhg0bZnMu27HzWbFiBaqqqrB27Vqb9IyMDGzevBnZ2dlQqVRITEzEggUL6u05QtTdMUgnIiIiInIwXN2FiIiIiMjBMEgnIiIiInIwDNKJiIiIiBwMg3QiIiIiIgfDIJ2IiIiIyMEwSCciIiIicjAM0omIiIiIHAyDdCIiIiIiB8MgnYiIiIjIwTBIJ2omQRAgCAK8vLxQUVFh95xXXnkFgiDgxRdfbN/KNUNaWhoEQcCiRYs6uio3xJo1a9C7d284OztDEASMHTu2yTJ1bVr3P1EU4eXlhdGjR+O9996Do2zILAgCIiMj260cERF1PAbpRNepsrIS//jHPzq6GnSVrVu34rHHHkN+fj6mT5+OhQsXYsqUKc0uv3DhQixcuBDz589HQkIC0tPT8cADD2DevHk3sNYWLf3y1NW/dBERdXdOHV0Bos5EEAQ4OzvjzTffxBNPPAFvb++OrhIB2LZtGwBgy5YtGD9+/HWX37x5s83xDz/8gFtvvRWff/455s+fj6lTp7ZFNVvs1KlTkMvl7VaOiIg6HnvSia6DKIpYsmQJqqqq8Pe//72jq0P/lZubCwCIjo5uk+tNmjQJ99xzD4ArXwA6Uq9evRATE9Nu5YiIqOMxSCe6Tn/84x+hUqnw1ltvobS0tFllxo4dC0EQkJOTUy8vJyfH7hjqF198EYIgYPPmzTh69ChuueUWeHl5wcfHB3PnzrUGpjU1NXjmmWcQGRkJpVKJPn36YMuWLY3WJz8/H4sWLUJAQABUKhUGDRqEDz/8sMHzy8rK8L//+79ISEiASqWCp6cnxo8fj2+++abRn6eqqgpPPvkkoqKiIJfL8fjjjzf9ywJw6dIlPPjgg4iIiICzszP8/f0xa9Ys/Pzzz3Z/R3v27AEAREVFWceXp6WlNeteDRk4cKC1LnXy8/OxevVqJCUlISQkBAqFAoGBgXbrVicyMhKCIECSJLz11lvo378/XFxcMGDAACxatAjjxo0DAHzwwQc24+Ovntdw7djylpa72rfffotJkybB29sbSqUSPXv2xB//+Ee78y2u/rd4/PhxTJ8+Hd7e3nB1dUVSUhIOHDjQ6D1CQkLg7OyM4OBgjBo1Cn/5y1/snk9ERFcwSCe6TkFBQVi6dCnUajX+9re/3fD7/fTTT0hMTERxcTGSk5Ph6+uLL7/8EhMmTEBlZSXGjRuHDz74AEOGDMGIESOQkZGBuXPn4rvvvrN7vbKyMgwfPhw7d+7E2LFjMXr0aBw/fhwLFy60O+E1MzMTAwYMwCuvvAKtVovk5GQMHjwYP/30E6ZNm9bgGwWtVoukpCRs3rwZAwYMsAZ2TTl+/DgGDRqEDRs2QKVSYdasWYiLi0NKSgpGjhyJL7/80nrugAEDsHDhQgQEBAAAZs+ebR1fHhgY2IzfbsPUajUAwNnZ2Zq2fft2PPvssygsLES/fv0wc+ZMBAcHIyUlBYmJifj+++8bvN7SpUvx1FNPwd/fH9OnT0d0dDRGjRqF5ORkAEBMTIy17gsXLsSAAQMavFZLy9VZtWoVbrvtNqSlpeHmm2/GjBkzoNFo8Oqrr2LYsGEoLCy0W+7IkSMYPnw4cnJykJycjLi4OOzbtw8TJkzAiRMnbM5dt24dbrvtNuzZswexsbGYPXs2+vTpgwsXLjjkxGoiIocjEVGzAJBkMpkkSZJUUFAgubi4SK6urlJRUZH1nFWrVkkApD//+c82ZZOSkiQA0vnz5+td9/z58xIAKSkpySb9z3/+swRAAiCtX7/emm4wGKSJEydKAKSEhARp/PjxUnV1tTX/vffekwBIY8aMsbnenj17rNebNGmSTZnDhw9Lbm5ukiiK0tGjR63ptbW1Ut++fSUA0urVqyWTyWTNy8rKkqKioiSZTCYdP3683s8DQBoxYoRUXl7eyG/Vltlstt7vmWeekcxmszVvy5YtkiiKkpubm5SXl2dTrrHfb2Pq6mmvHiNGjJAASM8995w1/dixY9KJEyfqnb9z505JoVBIMTExNnWWJEmKiIiQAEh+fn52y9a1y8KFCxutZ0RERJuUO3z4sPX3eOjQIWu6TqeT5syZIwGQZs+ebVPm6n+Lb775pk3e448/LgGQ7rnnHpv08PBwSRAE6eeff7ZJN5vN0p49exqsMxERWbAnnagFAgIC8NBDD6GmpgavvvrqDb3XqFGjsHTpUuuxXC7H8uXLAQCnT5/G+vXr4erqas1ftGgR/Pz8cPDgQRiNxnrXE0URb731lk2ZIUOGYNmyZTCbzXj77bet6V9//TWOHz+O2bNn4+mnn4YoXnlkxMbG4rXXXoPJZMK7775rt+5r1qyBl5dXs3/WtLQ0HD9+HOHh4XjppZcgCII1b/bs2ZgxYwaqq6uxadOmZl/zephMJmRlZeHee+/FwYMH4ezsjMWLF1vz+/bti969e9crl5ycjDlz5uDcuXP1epTrPPvss3bLtre1a9fCbDZj+fLlGDZsmDXd2dkZa9euhUqlQkpKis0wnzqJiYl49NFHbdL+9Kc/AQD27dtnk15cXAwvLy8MHjzYJr25y2MSEXV3DNKJWujZZ5+Fq6sr1q9f3+DwgLYwefLkeml1EyQjIyMRHx9vkyeTyRAREQGj0YiSkpJ6ZQcMGICePXvWS7/rrrsAAD/++KM1rW74xqxZs+zWbfTo0QCAw4cP18sLCgqqF6A1pe7ec+fOtbsqSd1kzqvr2BbqxnM7OTkhPj4emzdvhru7Oz777LN6Ey/1ej22b9+O5557DkuWLMGiRYuwaNEiHD9+HACQlZVl9x7Tp09v0zq3VN3vbv78+fXy/P39MXnyZJjNZqSnp9fLt/dv0dfXFz4+PsjPz7dJv/nmm1FeXo777rsPJ0+ebKPaExF1H1yCkaiFevTogWXLlmH16tV45ZVX8Prrr9+Q+4SEhNRLc3NzazDv6ny9Xl8vLyIiwm6ZugmGeXl51rS6ia7z58+3G9TVsfdlIDw8vMHzG1J374YmO9alX758+bqv3ZiFCxcCsLxl8PDwQN++fTFr1qx6Y+jrJk3amwBcp24s+7Va8vu4EVrzOw4NDbVbxt3dHWVlZTZp69atw4wZM7Bp0yZs2rQJAQEBSEpKwqxZs3DHHXdAJpO1/IcgIuoGGKQTtcLTTz+Nt99+G++88w6eeeaZFl3DbDY3mn/1EJPryWsLdXWbMmWKdXKmPX5+fvXSlEplm9fn6uEvbenaddLtkSQJc+fORU5ODpYuXYqlS5ciOjoabm5uEAQBK1aswKpVqxrcpfRG/D5uhMZ+x9fz761fv37IyMjAzp078e233yItLQ1ffPEFvvjiC4wYMQJpaWlQKBRtUWUioi6JQTpRK/j5+WH58uVYtWoVVq1aheDgYLvn1QUj1dXVWVfYVgAABMRJREFU9fLsjf29kS5cuNBo+tU/Q13P6f3334/Zs2ff8LrV3buhOtb1YDf0BuFGOn36NE6fPo3Bgwdj/fr19fKzs7PbvU4tERwcjPPnz+PChQtISEiol9+Wv2OlUokZM2ZgxowZAICTJ09i3rx5OHjwIN577z08/PDDrb4HEVFXxTHpRK301FNPwd3dHRs2bGhwGEZQUBAAy3KG1/rhhx9uaP2u9dtvv9kdN/35558DsExUrTNp0iQAQEpKSrvUrW6M+5dffgmTyVQv/+OPP7Y5rz2Vl5cDsD/ko7y8vMXtWPcFrra2tl3K1f3uPvvss3p5xcXF+O677yAIAhITE6/rus3Ru3dvLFu2DAAanGBLREQWDNKJWsnX1xePPvoo9Ho9Nm7caPecpKQkAMBrr70GjUZjTU9NTcUbb7zRLvWsU7eyx9X1OHr0KNauXQtBEPDQQw9Z02fPno2EhAR88sknWLlyZb0x7pIkIT093e4kw5YYO3Ys+vbti5ycHLzwwgs2Q0dSUlKwdetWuLm54d57722T+12P2NhYiKKI1NRUmy85Op0OS5curTcmu7nq3h6cOXOmXcotW7YMoihizZo1OHLkiDXdYDBg+fLl0Gq1mDVrFsLCwq7rulfTaDRYs2ZNvY2RzGYzdu7cCQCtuj4RUXfAIJ2oDTz11FPw8PCAVqu1m3/XXXehZ8+eOHDgAG666SbccccdGD58OCZNmmQTFLeHqVOnIiMjAzExMfjDH/6AKVOmYMSIEVCr1XjuuedsVmRxcnLCtm3bEBUVhRdeeAHh4eGYNGkS5s+fj+TkZAQGBmLUqFEN7rZ5vQRBwCeffAJfX1+8/PLL6N27N+bNm4dRo0Zh1qxZEEURGzdutL6ZaE/+/v647777UFVVhf79+2Pq1KmYM2cOIiMjkZqaikWLFrXoupGRkejXrx+OHDmCoUOHYvHixbj//vuxY8eOG1Ju6NChWLlyJaqqqjBixAhMmjQJd911F2JjY/Gvf/0LcXFxWLduXYt+ljoGgwGPPfYY/P39MWLECNx1112YPXs2IiMjkZKSgsjISCxZsqRV9yAi6uoYpBO1AW9v70a3vFepVNi9ezfuuusuqNVqfPvttzCZTPjXv/5lff3fXnx9fXHo0CFMnDgRe/bsQVpaGhISEvD+++9j5cqV9c6Pi4vDr7/+ipdeegmhoaE4dOgQtm7diszMTAwcOBDr1q3D3Xff3Wb169u3L3755Rc88MADqK6uxpYtW3DmzBnMmDED6enpmDt3bpvd63qtX78er732GqKiorB79278+OOPmDhxIo4cOdLgqjnN8dVXX2HGjBnIzs7Ghx9+iI0bN+KXX365YeVWrFiBb775BklJSfj555+xdetWODs745lnnsFPP/3U6CTh5nBzc8O6deswbdo0FBcXY8eOHUhNTYW3tzf+8pe/4OjRo/D19W3VPYiIujpBamgpAiIiIiIi6hDsSSciIiIicjAM0omIiIiIHAyDdCIiIiIiB8MgnYiIiIjIwTBIJyIiIiJyMAzSiYiIiIgcDIN0IiIiIiIHwyCdiIiIiMjBMEgnIiIiInIwDNKJiIiIiBwMg3QiIiIiIgfDIJ2IiIiIyMEwSCciIiIicjD/D9StdUe9ixscAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot\n", - "lst_num_partitions = list(all_svcca.index)\n", - "\n", - "threshold = pd.DataFrame(\n", - " pd.np.tile(\n", - " permuted_score,\n", - " (len(lst_num_partitions), 1)),\n", - " index=lst_num_partitions,\n", - " columns=['score'])\n", - "\n", - "panel_A = ggplot(all_svcca) \\\n", - " + geom_line(all_svcca,\n", - " aes(x=lst_num_partitions, y='score', color='Group'),\n", - " size=1.5) \\\n", - " + geom_point(aes(x=lst_num_partitions, y='score'), \n", - " color ='darkgrey',\n", - " size=0.5) \\\n", - " + geom_errorbar(all_svcca,\n", - " aes(x=lst_num_partitions, ymin='ymin', ymax='ymax'),\n", - " color='darkgrey') \\\n", - " + geom_line(threshold, \n", - " aes(x=lst_num_partitions, y='score'), \n", - " linetype='dashed',\n", - " size=1,\n", - " color=\"darkgrey\",\n", - " show_legend=False) \\\n", - " + labs(x = \"Number of Partitions\", \n", - " y = \"Similarity score (SVCCA)\", \n", - " title = \"Similarity across varying numbers of partitions\") \\\n", - " + theme(\n", - " plot_background=element_rect(fill=\"white\"),\n", - " panel_background=element_rect(fill=\"white\"),\n", - " panel_grid_major_x=element_line(color=\"lightgrey\"),\n", - " panel_grid_major_y=element_line(color=\"lightgrey\"),\n", - " axis_line=element_line(color=\"grey\"),\n", - " legend_key=element_rect(fill='white', colour='white'),\n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + scale_color_manual(['#1976d2', '#b3e5fc']) \\\n", - "\n", - "\n", - "print(panel_A)\n", - "ggsave(plot=panel_A, filename=svcca_file, device=\"svg\", dpi=300)\n", - "ggsave(plot=panel_A, filename=svcca_png_file, device=\"svg\", dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncorrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50, 5549)\n", - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "(50, 5549)\n", - "[0.51984538 0.10192906]\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "(50, 5549)\n", - "[0.21325085 0.21000224]\n", - "Plotting PCA of 1 experiment vs 40 experiments...\n", - "(50, 5549)\n", - "[0.04986153 0.040133 ]\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(experiment_1.shape)\n", - "\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " print(experiment_other.shape)\n", - " # Simulated data with i batch effects\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - "\n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space\n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1)\n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - "\n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Variance explained\n", - " print(pca.explained_variance_ratio_) \n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_data_df = pd.concat([all_data_df, combined_data_PCAencoded_df]) " - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_data_df = all_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_data_df = all_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "all_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHoCAYAAACW+gpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd4FNX6B/Dv7G56Y00ISWihioAQmqEEAalCKNKbhA5KsaCiF6+AeC8iXrFQRIGIgCJcRQUVpHdBEMQLCPiT3kMLKZDszvv7I+6YZTfJJtmwu8n38zw8IWdmzrxz5sxk351yFBEREBEREREReQCdqwMgIiIiIiJyFBMYIiIiIiLyGExgiIiIiIjIYzCBISIiIiIij8EEhoiIiIiIPAYTGCIiIiIi8hhMYIiIiIiIyGMwgSEiIiIiIo/BBIaIiIiIiDwGE5g8KIpi9U+n06FUqVJo3rw5FixYABHJcdmffvoJw4cPR/Xq1REUFARfX19ER0ejd+/eWLVqFVRVzXHZvXv3aut8/fXXi2LTcnT16lUMGjQIkZGR0Ov1UBQFn3zyyX2Nwd198sknUBQFU6ZMcXUoLpeamoolS5Zg3LhxiI2NhY+PD9umgArar5zZH7ds2QJFUTB48OBC10V/i46OhqIorg6DiKhYYALjoISEBCQkJGDAgAGoWbMmdu7ciREjRqB///4282ZmZmL48OFo0qQJFi5cCJ1OhzZt2qBr164IDw/Hl19+ie7du6Nt27Y5rm/JkiXa/5ctW1Yk25STYcOGYcmSJQgPD0e/fv2QkJCAqlWr3tcY6P4qzAfgEydOYNCgQZg9ezb27t2LjIwM5wdYwg0ePBiKomDLli2uDoUIABMyInItg6sD8BT3XoFYv349OnbsiOXLl2PAgAGIj4/Xpg0aNAjLly9H9erVkZiYiKZNm1ote+HCBbz++uv48ccf7a4rMzMTy5cvBwBERETg+PHj2LNnD2JjY527UXZkZGTg+++/R3R0NA4cOACdjjmuPU888QQaN26MsLAwV4fickFBQRg2bBgaNWqERo0a4bvvvsNrr73m6rBKFPZH97dx40ZkZma6OgwiomKBn04LqG3btnjyyScBAF9//bVWvnLlSixfvhxlypTBtm3bbJIXAIiKisKHH35odZUlu7Vr1yIpKQnNmjXD008/DQA5zutsly5dgtlsRsWKFZm85CIkJAQ1atTgB0YAVapUwYIFCzBq1CjUr18fXl5erg6pxGF/dH9VqlRBjRo1XB0GEVGxwE+ohVCvXj0AwNmzZ7Wyt99+GwAwZcoUlClTJtflmzVrZrd86dKlAICBAwdi4MCBAIAvvviiwN/eff/992jbti2MRiN8fX3x4IMP4uWXX8bNmzet5ouOjkbFihUBAFu3btWewYmOjnZ4XWvXrkWnTp1QunRp+Pj4oHLlynj++edx7do1q/kOHjwIHx8fPPDAAzh37pxNPSNGjICiKBg1apRWlv3e/IsXL2Lw4MEoU6YM/Pz8UL9+fXz66ac5xnX9+nW88sorqFmzJvz8/BASEoLHHnsMa9assZn31KlTUBQFLVu2RHJyMp5//nlUqlQJXl5eePbZZwHkfMtV9lt9NmzYgEcffRRBQUEIDw/HiBEjcOvWLQDAlStXMGrUKJQtWxa+vr545JFHcr09aM+ePejVqxciIyPh7e2NcuXKYfjw4Thz5ozNvFOmTNGeW/rtt9/QpUsXGI1GBAQEoEWLFti1a5fV/C1btsSQIUMAAFOnTrV65ut+P/tUp04dKIqC33//3e70a9euwdvbG2XKlIHJZNLKLX28bNmy8PHxQVRUFOLi4jB16lSH1539lpg5c+agdu3a8PPzQ6VKlfDWW29pz7v98ssv6Ny5Mx544AEEBgaia9euOH36tE19LVu2hKIoOHXqlM207H0sL4qiYPHixQCAVq1aWe0fS92O9McffvgBcXFxCAwMhNFoRPfu3XNs59w4eow7Ij/HZZ8+faAoCl566SWbacePH0dgYCACAwNx4sQJrTz7Pli6dCkaNGgAf39/hIeHIyEhAefPn3fKdmZv53Xr1qFVq1YoVaoUFEXRzrP2brnK3g9SU1Px/PPPo3z58to5bfXq1dq8K1euRGxsLAICAlCmTBmMHz8e6enpdmNPS0vD9OnTUa9ePa1dGjdurPWje1nO82azGTNmzED16tXh4+OD8uXLY+LEibh79642r+U8bOnz2ftj9r8VKSkpmD59OurWrYuQkBAEBgaiSpUq6NWrF9atW5djuxMROUQoVwAkp2b617/+JQCkc+fOIiJy9epVASCKosiNGzcKtL6bN2+Kr6+veHt7y7Vr10REpGnTpgJAvv3223zX9+9//1sAiMFgkNatW0ufPn2kXLlyAkCqV68uly5d0uadMGGC9OjRQwBImTJlJCEhQRISEmTChAkOrWvixIkCQLy9vaVZs2bSs2dPqVatmgCQKlWqWK1LRGTmzJkCQB577DFRVVUrX7VqlRZfSkqKVr5582atvStUqCBlypSR3r17S9u2bcVgMAgAmTx5sk1cx44dk/LlywsAiY6Olq5du8pjjz0m/v7+AkBmzpxpNf/JkycFgDzyyCMSExMjRqNRunXrJt27d5cpU6aIiEhiYqLd9SUkJAgAGT9+vOj1eomLi5OePXtqbd6iRQu5evWqVK5cWSpWrCh9+vSR2NhYASA+Pj5y6NAhm/jnzJkjOp1OdDqdxMbGSq9evaROnToCQEqXLi1Hjhyxmn/y5MkCQMaMGSP+/v7y8MMPS58+faRu3boCQHx9feW3337T5p8+fbo0a9ZMAEjdunW1/Z6QkCDbt2/PfafbMX369Bz3RV7efPNNASCvvvqq3enz5s0TADJu3DitbPbs2QJA9Hq9PProo9KvXz9p27at1uaOqlixogCQZ599Vvz8/KRjx44SHx8vQUFBAkBee+012bFjh/j7+0v9+vWld+/eUrVqVa1/p6WlWdXXokULASAnT560WZelj7Vo0cKq3F6/SkhIkCpVqggAad++vdX+uXr1ao7LWZYFIE8//bQoiiKNGjWSvn37Ss2aNQWAhISEyMGDB62WsRxnCQkJNnHn9xjPTX6Py+vXr0u5cuVEp9PJpk2btPKMjAxp2LChAJCPP/7YahnLPhgzZowoiiKPPvqo9O3bV6KjowWAlCtXTs6ePVvo7bS084gRI6zauVGjRnLz5k0R+bt/ZWfpB02aNJHY2FgJDw+Xnj17SsuWLUWn04ler5f169fLO++8o53Dn3jiCQkNDRUA0r9/f5vYL1++rJ0fIiIipGPHjvL4449LSEiIAJCxY8faLANAKlasKL1795bAwECJj4+X+Ph4bZkBAwZo8x49elQSEhIkICBA6yf3/q0wmUzaeS0sLEy6dOkivXv3lqZNm4q/v7/dvkVElB9MYPKQUwKjqqo0adJEAMikSZNERGT9+vXaH7iCWrBggQCQrl27amVz584VANKrV6981bV3717R6XQSGBgoP/30k1Z+584d6dWrlwCQHj16WC2T0wervKxYsUIASO3ateXEiRNauaqq8tprrwkA6dOnj9UyqqrKY489ZvVh5cKFCxIWFiZeXl7y888/W81v+WAFQNq2bWuV3Ozdu1cCAwNFp9PJ/v37tXKTySQPP/ywAJC33npLzGazNu3EiRNSqVIl0ev1Vh/oLW1g+WBhLxnN6wOjTqeTNWvWaOXJyclSu3ZtASA1a9aUgQMHSkZGhjb91VdfFQAyaNAgq/p2794ter1eypYtK/v27bOaZukrsbGxVuWWBAaAvPfee1bTnn32WQEgTz75pEPbUxCFSWDOnDkjiqLkeAzFxcUJAKv+XKFCBVEUxaa/qKoqmzdvdnjdlg+YUVFR8scff2jlR48eFR8fH/H395fo6GiZN2+eNu3u3btaH160aJFVfc5KYET+7lc5bU9eywGQjz76SCtXVVX7kB4TE2O1TE4JTEGO8ZwU5LgUEdm0aZPodDopV66cXL9+XURE/vGPfwgA6datm816LPvAYDDId999p5VnZGTIgAEDbM61Bd3O7O28fPlyu9ucWwJj+SIn+znNsk+rVq0qRqPRqn+fP39ewsPDBYD83//9n1WdHTt2FADyzDPPyJ07d7TyS5cuaYneDz/8YLWMJYaHHnpILl68qJX/+eefUqpUKQFgdUzktD0WmzZtEgDSqFEjSU9Pt5p269Ytm3MZEVF+MYHJw70JjMlkkuPHj8vgwYO1b80tJ/bly5cLAGncuHGB12f5g7ty5UqtLCkpSby8vMTX11f7Ns8RgwYNEgDyyiuv2Ey7fPmy+Pn5iU6nkzNnzmjlBU1gLN/u3/uBQyTrD39MTIzo9XrtG2OLs2fPitFoFG9vb/nll1+kXbt2AkDeeOMNm3osH6x0Op38/vvvNtMtH8iGDRumlVmu5tybqFl89dVX2hUTi+wfKu79UGyR1wfGgQMH2izz3nvvCQAJDg7WPnxZ3Lx5UxRFkYoVK1qVd+3aVQDI6tWr7cbRpUsXASC//PKLVmZJYJo1a2Yzf1JSkvZtqyPbUxCFSWBE/j4Gdu/ebVV+6tQpURRFqlatalXu5+cnRqOxoOFqLB/IFixYYDPtiSeeEAASFxdnM+2bb76x+4HfnRKYpk2b2iyTkZGhXaXKfqUtpwSmoMe4PQU5Li1efPFFASC9e/eWbdu2iU6nk8jISLvrtewDe1cqkpKSxN/fXxRFsToHFmQ7Le3cqVOnHLc5twRGp9PJsWPHrKaZzWYJCwsTwP4Vyeeee04ASGJiolZ24MABLXHInhRa/PLLLwJAunTpYlVuOd+tX7/eZpmxY8farCen7bH44osvBMi6mklEVBT4DIyDLPf4GgwGVK9eHZ988gmCgoLw+eefo0qVKk5Zx5kzZ7Bt2zaUKlUKnTt31spDQ0PRsWNH3LlzBytXrnS4vu3btwMABgwYYDMtPDwc7dq1g6qq2LlzZ6HivnLlCn799VdUq1YNtWvXtpmuKAqaNWsGs9mM/fv3W00rV64c5s+fj4yMDLRs2RI//vgj4uLi8PLLL+e4vpiYGDz44IM25f369QPw93YD0N701r17d7t1NW/eHEDWuDv3ioyMRMOGDXOMIzft2rWzKatcuTIAoGHDhjAajVbTQkJC8MADD+DixYtamaqq2LhxI/z9/dG+fft8x28vhtDQUJv1uBtLf/3ss8+syj/77DOIiE1/btCgAW7cuIFhw4bh8OHDhV5/bvsut2nu3KZ9+/a1KfPy8kLPnj0BWB8z9hTmGLenMMflG2+8gZiYGKxYsQLx8fEQESQmJub6AgN72x8aGop27dpBRLBjxw6nbGeXLl1yjCE30dHRqF69ulWZTqfTnkl0tN9Z2rVbt252X8JieSbGXrt6eXmhVatWNuWWuPLTv2NiYqDT6ZCYmIiPP/64QM9HERHlhgmMgyzjwAwZMgTPPPMMFixYgNOnT+OJJ57Q5gkNDQWQNRBkQSxbtgwigp49e8LHx8dqmuVhfssD/o64cOECAOT4EL6lPLcHWR1heZD4xIkTNgN/Wv7NmTMHAJCUlGSzfK9evfDEE08gOTkZ/v7+WLJkCfR6fY7rs/xRz2l7LNudPbYBAwbYjat06dI5xlWhQoU8tz0nZcuWtSkLDAzMcZplevYxVJKSkpCSkoK0tDR4e3vbjf/FF1/MMf5y5crZXU9QUJBbj9Vi6f9ffPEFzGazVm4ZD+neBGbOnDmoVKkSFi1ahNq1ayMiIgJ9+vSxWd5R+d13lmnZH3R2N/k5Zuwp7DGeU30FOS69vb21h9GTk5MxevToHBN8C0e3v7DbWdBzRm7nhJym2+t3lvgnTZqUY/wpKSl2Y4+IiLB73g0KCrJZT16qV6+Ot956C2lpaRg5ciTCw8NRt25dPP/88zh06JDD9RAR5YTjwDjIkbcx1a1bFwDw559/4ubNmyhVqlS+1mF5VfKWLVsQFxdnNc3ygXPbtm04ffp0jn+Q88NZg5Cpqgog6w9gQT5IXLx4UfsGOC0tDUeOHMnXm88cia1Dhw65vhXO3re3vr6+BV5vbq+gdvT11JbYAwMD0aNHj1znrVWrVoHX426MRiM6duyIVatWYcOGDWjfvj1+/fVXHD58GI0aNUK1atWs5q9Tpw6OHDmCtWvX4vvvv8eWLVuwYsUKrFixAk2aNMGWLVvg7e3t8Pqdse/yYtm3nqKwx3hO9RXkuASy3spocfDgQZjN5ly/9HBUYbezoOeMvPpVfs8ZcXFx+b4zwNnniwkTJqB37974+uuvsX79emzfvh2zZs3Cu+++i1mzZuGZZ55x6vqIqGRhAuNEpUuXxiOPPIK9e/di+fLlGD16tMPL7t+/H0ePHgUA/PHHH/jjjz/sziciWLZsGf7xj3/kWWdUVBROnjyJ06dPo2bNmjbTLd/W5fTtn6Ms3/SHhYXl+7W7IoIhQ4YgKSkJ/fr1w4oVKzB06FD89ttv2rew97L3ytrs5VFRUTaxDR8+PM8kwN2EhYXB19dXuxWjJI16PWDAAKxatQrLli1D+/bttasvliuR9/L19UW3bt3QrVs3AMDhw4fRv39/7N69GwsWLNDGU7qfLElTSkqKzbTsr16/H/JzzNhTmGM8t/oKclzu2LEDM2bMQEREBGrXro0NGzbgX//6V66Dp54+fRp16tSxWw78vf3O3s77zRJ/t27dMGHCBBdHA5QvXx7jxo3DuHHjYDKZsHz5cgwZMgQvvfQSBg0aZHMrLRGRozzzK1o39sILLwDIGovjypUruc6bfTwOy61hL7zwAiTr5Qo2/yzjhDh6G5nlPvLPP//cZtrVq1exbt067Z7uwihXrhxq1KiBI0eO4Pjx4/la9oMPPsC6devQrFkzLFmyBJMmTcLly5cxbNiwHJc5ePCg1VgPFsuXLwcAq6tXbdu2BQCsWrUqX3G5A4PBoI1Fs3HjxiJdl+XDdvaxVVwpPj4eISEh+Prrr5GamorPP/8cer0effr0cWj5WrVqYcyYMQCA//3vf0UZao4iIyMBwO4xsX79+nzVVdj9s2LFCpsyk8mEL7/8EgBsrvjeqzDHuD0FPS6Tk5Px5JNPwmw2IzExEUuXLkXp0qUxbdo07NmzJ8fl7G3/9evX8eOPP1qdA529nffb/Tzf5bdPGgwGDBw4EI0aNUJGRobdczgRkaOYwDhZr1690LdvX1y+fBmPPvoodu/ebTPPpUuXMHbsWO3bZLPZrCUZlgfR7WnevDnKli2Lo0ePOvSg7JgxY6DT6fD+++9j3759WnlGRgbGjRuH9PR0dO/eHeXLl8/vZtr45z//CVVV0aNHDxw8eNBm+rVr1/Dxxx9blR05cgQTJ05EUFCQ9tzLP//5TzzyyCNYvXo1PvzwQ7vrUlUV48aNQ1pamla2f/9+zJ49G4qi4KmnntLKe/TogZo1a2LZsmWYNm2azX3cIoKdO3cW+kUGRWXSpEnQ6XQYMmSI3YEuU1JSsGjRohwHtHOU5RvoY8eOFaoeZ/Hx8UHPnj1x+/ZtvPDCCzh37hzatGljc7tRWloa3n//fZtBWVVVxdq1awHAKf27IFq0aAEA+M9//mPVVzdt2oR33303X3UVdv/s2LEDixYtsiqbPHkyzpw5gzp16mhfduSmIMd4Tgp6XI4dOxanTp3C2LFjtdvPFixYAJPJhIEDByI1NdXu+r744gurwRNNJhOee+45pKamIj4+3urZFWdu5/0WGxuLtm3bYufOnRgzZgySk5Nt5vn111+1Y6MwcuuTmzdvxoYNG2xulTx58iSOHj0KRVFyfEaPiMghrnj1mSdBDuPA5CYjI0OGDh2qLVujRg3p3r27NmihXq/XxjIREfn+++8FyBq4MS/PP/+89o5/R1gG2zQYDNKmTRvp27evNnhctWrVbAZkK+hrlEX+Ho9Bp9NJ/fr1pVevXtKzZ0+pV6+e6PV6CQkJ0ea9e/euxMTECABZvHixVT3Hjx+XgIAA8ff3t3pdsuX1rvHx8VK+fHmJiIiQ3r17S/v27cXLyyvH140eP35cKlWqJAAkPDxc2rRpI/3795d27dppYynMmjUrX21QkNfd5jZAoEjOryWdN2+e1mdq165t1Zd8fHwEgNVYNZbXKN/72tPc1pOenq61RYsWLWTIkCEybNgw2blzZ45tkF23bt0kNjZWYmNjtf5VtmxZrczeGB15sYwlYfm3ZMkSm3lu3LghAMTLy0saN24sffv2le7du1sNkJiUlOTQ+nJ7LWxubZpTf0lLS5MHH3xQAEiFChWkR48eEhsbKzqdTl544YV8vUZ53759oiiK+Pr6SteuXWXYsGEybNgwbdvy6o9PPfWUKIoijzzyiPTr109q1aqlvdI7+yu4RXLvp/k5xvOS3+PSMj5LzZo1bQYNHTFihM0r1EVsB7Js0aKF9O3bV1tvVFSUnD59utDbmddrrkVyf41yTuea3F7FndM+v3z5stSrV08ASKlSpaRly5bSv39/6dSpk3Zc3Pv3A3ZerZ7Xev7zn/8IkDXocd++fWXYsGEyceJEERGZNWuWAFkD7Xbo0EEGDBgg7dq1085X2QeiJSIqCCYweShIAmOxa9cuGTp0qFStWlX8/f3Fx8dHG+34m2++0Uaf79evn8PjZvz888/aH/zMzEyH4lizZo20bt1aQkJCxNvbW6pWrSovvfSSzVgkIoVLYEREtm7dKr169ZKoqCjx8vKS0NBQqVOnjowdO1a2bt2qzWcZyyGnwTnnz58vAKRBgwbagI/ZP1idP39eBg4cKKVLlxYfHx+pW7dujh/YRbLGWXnjjTekfv36EhgYKL6+vhIdHS3t27eXOXPmWI3p4G4JjEjW+A4JCQlSsWJF8fb2llKlSkmtWrVk6NChsmbNGq0viRQsgRHJ6ltt27aVkJAQURQl1zpyqjOnfzl9OMqN2WzWxinx9/eX27dv28yTmZkpc+bMke7du0uVKlXE399fSpUqJXXq1JGpU6fKtWvXHF6fsxMYEZFz585Jv379xGg0ip+fnzRs2FBWrlyZ73FgRESWLVsm9evXFz8/P61dLR9sHemPq1evliZNmoi/v7+EhIRI165d5fDhwzbryaufOnqMO8LR4/LcuXPaeFEHDhywqSclJUWqVasmAOSrr77SyrMnAImJiRITEyO+vr4SGhoqTz75pJw9ezbH2PKzne6UwIhkfSHx/vvvS9OmTbXzfvny5aVFixYyc+ZMm+0uSAKTmZkpr776qlSpUkX7AslSx4kTJ+TVV1+VZs2aSWRkpHh7e0vZsmWldevW8uWXX1qdr4iICkIREcnp6gyRO9myZQtatWqFhIQEj3zAluh+Gzx4MBYvXozNmzejZcuWrg7nvmvZsiW2bt2KkydPOu3NhkRE5Hp8BoaIiIiIiDwGExgiIiIiIvIYTGCIiIiIiMhj8BkYIiIiIiLyGLwCQ0REREREHoMJDBEREREReQwmMERERERE5DGYwBARERERkcdgAkNERERERB6DCQwREREREXkMg6sDcCc3b95EWlqaq8OgEszf3x+lSpWyO439k1yN/ZPcVW59k4iKHyYwf7l58yZmz54Nk8nk6lCoBDMYDBg7dqzNH2L2T3IH7J/krnLqm0RUPDGB+UtaWhpMJhPq1auHwMBAV4dDJVBKSgoOHDiAtLQ0mz/C7J/kauyf5K5y65tEVDwxgblHYGAgT4Dkttg/yZ2xfxIR0f3Ah/iJiIiIiMhjMIEhIiIiIiKPwVvIqNDWrFmDTZs24dSpU2jSpAlefPFFV4dEBAB49913sW3bNhgMf5/q5syZg9KlS7swKiIgOTkZTz31FCIjI/H2228DAE6fPo0PPvgAp06dQpkyZTBy5EjUrVvXxZESEbkfJjBUaA888AB69+6NgwcP4vbt264Oh8hK165dkZCQ4OowiKwkJiaifPny2pvbTCYTpk2bhnbt2mH69On46aefMH36dHz44Yd8roiI6B68hYwKrWnTpmjcuDGCg4NdHQoRkdv73//+hwsXLqBNmzZa2W+//Ya7d++iZ8+e8PLyQvPmzVGhQgXs3LnThZESEbknJjBEVKytW7cO/fv3x/jx47F+/XpXh0MlXGZmJubPn4/Ro0dDURSt/MyZM4iOjoZO9/ef5cqVK+P06dOuCJOIyK3xFjIiKrY6d+6MoUOHIiAgAIcPH8aMGTMQEBCApk2bujo0KqG+/PJL1K1bF5UqVcKff/6plaenpyMgIMBq3oCAAFy5cuV+h0hE5PZ4BYaIiq0qVaogODgYer0ederUQadOnXhLDrnMhQsXsHHjRvTv399mmp+fH1JTU63KUlNT4efnd7/CIyLyGLwCQ0QlhqIoEBFXh0El1NGjR3Hjxg2MHj0aAJCRkYGMjAwMGjQITz/9NE6fPg1VVbXbyE6ePIlHH33UlSETEbklJjBUaGazGWazGaqqQlVVZGRkQKfTWb26lsgVduzYgfr168PX1xe///47vvvuO4wcOdLVYVEJFRcXh/r162u/b9++HZs3b8Zrr72GoKAgeHt746uvvkLXrl2xZ88enD59Gs2aNXNhxERE7omfMKnQvvjiCyxfvlz7fefOnXjsscfw7LPPujAqoqwxiubMmQNVVREWFoaBAwfyG21yGR8fH/j4+Gi/BwQEQK/Xw2g0AgBeffVVzJ49G8uXL0d4eDheeeUVvkKZiMgOJjBUaP3797d7TzeRq7355puuDoEoR61bt0br1q2136Ojo7VBLYmIKGd8iJ+IiIiIiDwGExgiIiIiIvIYTGCIiIiIiMhj8BmYe6SkpLg6BCqhHOl77J/kKuyf5K7Y74hKHiYwfzGZTACAAwcOuDgSKuksfdFeGfsnuRr7J7kre32TiIonJjB/sYxZ0qpVK4SFhSEoKAi3b9+G2Wx2cWT26fV6xlhI7hbfjRs3sHnzZrvj57B/Ope7xwe4X4yO9M8OHTogKirKbWK2x93a1R7GmD+59U0iKp54tN+jWrVqiIyMhMlkQvny5aEoilPqVVUVly5dQkREhDbKcmGIiFNjdHZ8gPvH6Oz4gMLFeOHCBWzevDnXeYqif3Lfu37f2+NubehI/6xcuTKMRmOJalfA/WMs7se4I33p47gmAAAgAElEQVSTiIoXPsRPREREREQegwkMERERERF5DCYwRERERETkMZjAEBERERGRx2ACQ0REREREHoMJDBEREREReQwmMERERERE5DGYwBARERERkcdgAkNERERERB7D4OoA3ElgYCAMBgNEBAC0n84gIlrdzqjX2TE6Oz5Lndl/OqM+d25DS10FjdFgyP1wjIiIKJL+yX3vHO4eY2Hjc6R/6vV6bV3O4u7taqnLnWMs7sd4Xn2TiIofHvXZ1KtXD0ajEWazGQC0n85iNBqhqipUVXVanc6MsSjiA9w/RnfZz0ajMdfpw4YNA4Ai6Z/c987h7jEWJj5H+ydQ8toVcP8Yi/MxnlffJKLihwlMNgcOHMDDDz+MsLAwmM1m6PV6KIrilLpVVcW1a9cQGhoKna7wd+6JiFNjdHZ8gPvH6Oz4gMLFePXq1VynL1y4EN27d3d6/+S+d+6+DywVioy/ynx0Cnx0KNA63K0NHemfvXr1QnBwsNscU/a423Fvj7vte3vcKca8+iYRFT9MYLJJSUmByWTSTsaKojjtD5yiKFrdzqrTUq8z6iuq+Cx1u3OM7rKfTSZTrtMvXbpUJP2T+955+z7FpOL2HUAUQK8A3jqB0VuBv6Hg63CXNnSkf1q+jXeXYyqvektKjMX9GM+rbxJR8cOH+ImInEAVwS344K4KKAKYVeCOCtw2Oe+5AyIiIuIVGCIip0g3AWnQQ6cCKgCDAihmIJNfExERETkV/7QSERWSiOB6BpAJHe6aAbMZyBQgTQW8C/gMDBEREdnHKzBERIWUblJx2wQYoEIA3DEDOgG89UAgz7JEREROxT+tRESFdDszK2kxQYEigB6AAiDUG/DT80I3ERGRM/EvKxFRIaiqiuuZgCDrGyGDAqh/vYXsAR/nv/WJiIiopGMCQ0RUCCYBTGpW4qKHwEeflch46wE/PZMXIiIiZ+MtZEREhZBhFqSZgLtmIAN66MyArx4I9uLD+0REREWBV2CIiApIRHAxLev5l0wVMENBmjnrqkyIl6ujIyIiKp6YwBARFVCaKev5Fx894G8AvKACkvUGskADr74QEREVBd5CRkRUQCYVMAvgY8h68xhMKlQdYNDz9jEiIqKiwiswREQFpNMp8PMCMv+6bcwEBQIg2MAEhoiIqKgwgSEiKiB/PWA0AD46QLLuHkMpLyDcz9WRERERFV+8hYyIqID0Oh2i/FX4GgR3MoHbmXdROcgffga9q0MjIiIqtpjAEBEVgrdehwg/wOxtxuWUDPhy7BciIqIixVvIiIicgM+8EBER3R9MYIiIiIiIyGMwgSEiIiIiIo/BBIaIiIiIiDwGExgiIiIiIvIYTGCIiIiIiMhjMIEhIiIiIiKPwQSGiIiIiIg8BhMYIiIiIiLyGExgiIiIiIjIYzCBISIiIiIij8EEhoiIiIiIPAYTGCIiIiIi8hhMYIiIiIiIyGMwgSEiIiIiIo/BBIaIiIiIiDyGwdUBOCI9PR2rVq3CsWPHcOLECaSkpOCZZ55B69atbeY9e/YsFixYgKNHj8JgMKBhw4YYNmwYQkJCXBA5ERERERE5k0dcgUlOTsby5ctx7tw5VKpUKcf5kpKS8Morr+DixYt48skn0a1bN+zbtw+vvfYaMjMz72PERERERERUFDziCswDDzyAxYsXw2g04sSJE5gwYYLd+VauXIk7d+5g1qxZKF26NACgevXqeO2117Bx40Z06NDhfoZNRERERERO5hFXYLy8vGA0GvOcb9euXWjUqJGWvABATEwMypYti507dxZliEREREREdB94RALjiGvXruHWrVuoWrWqzbRq1arhzz//dEFURERERETkTMUmgbl+/TqArNvN7mU0GnH79m0+B0NERERE5OE84hkYR2RkZADIut3sXt7e3gCAu3fvWk2/ePEiLl68CAC4evUqUlNTAQCqqmr/FEVxSnyqqlr9LCwRcWqMzo4PcP8YnR0fUDTtaGHpu87un9z37rnv3b0N7+Xl5VUi2xVw/xhL4jFORMVbsUlgLEmKvassluTGx8fHqnz+/PmYOnWq9nvfvn0BAJcvXy6qMHHlypUiq9sZ3D0+oOTGOGTIEABF1z9Lars6m7vHWFTxDRkyBGazGdeuXSuS+t29XQH3j9Hd4wM8I0Yicr1ik8BYbh2z3EqW3Y0bNxAUFGRzdWbUqFHo0qULgKwrMBs2bAAAlClTBiaTCQaDwanf0F25cgXh4eHQ6Qp/556IODVGZ8cHuH+Mzo4PKFyMly5dynV6YmIihgwZ4vT+yX3v+n1vj7u1oSP9c/jw4ShVqlSJalfA/WMs7sd4Xn2TiIqfYpPAhIaGIiQkBH/88YfNtBMnTtgdPyYyMhKRkZEAgAsXLmD37t0AAJ1Op/1z1h84C0u9hSUiRRKjs+ID3D/GoooPcG47WliuLhZV/+S+dw53j7Eo+iaQ1T8VRSmx7Qq4f4wl6RgnouKtWJ0lmjRpgp9//hlXr17Vyn799VecP38ezZo1c2FkRERERETkDB5zBWbNmjVITU3VbhHbu3cvkpKSAADx8fEICAhAr169sHPnTkyaNAldunRBeno6Vq1ahYoVK6JNmzauDJ+IiIiIiJzAYxKYr7/+2urhvt27d2u3fLVs2RIBAQEoXbo0pk+fjoULF2Lx4sUwGAxo2LAhhg4davftZERERERE5Fk8JoFZsGCBQ/NVqFDB6s1iRERERERUfBSrZ2CIiIiIiKh4YwJDREREREQegwkMERERERF5DCYwRERERETkMZjAEBERERGRx2ACQ0REREREHoMJDBEREREReQwmMERERERE5DGYwBARERERkcdgAkNERERERB6DCQwREREREXkMJjBEREREROQxmMAQEREREZHHYAJDREREREQegwkMERERERF5DCYwRERERETkMZjAEBERERGRx2ACQ0REREREHoMJDBEREREReQwmMERERERE5DGYwBARERERkcdgAkNERERERB6DCQwREREREXkMJjBEREREROQxmMAQEREREZHHYAJDREREREQegwkMERERERF5DCYwRERERETkMQyuDoCIiKgoZaoCk2T930sR1wZDRESFxgSGiIiKrbtmwc3MrKRFBDAoggAd//gREXky3kJGRETFkojgtkmgA+CjU+CrV2ASICUTUIVXYoiIPBW/hCIiomJJBWAWwFvJ+l0guGMGMkyAqhP4GVQEGhToFMWlcRIRUf4wgckmMDAQBoMBIpbbDZz3DZ2IaHU7o15nx+js+Cx1Zv/pjPrcuQ0tdRU0RoMh98MxIiKiSPon971zuHuMhY3Pkf6p1+u1dTlLYeJWRKBD1vMvXgqQahKkmQA/BdArQGqmQBFBoFfhbkYo7vs+pzqz/3RGfUV17iSi4odHfTb16tWD0WiE2WwGAO2nsxiNRqiqClVVnVanM2MsivgA94/RXfaz0WjMdfqwYcMAoEj6J/e9c7h7jIWJz9H+CbhXu/orQHImcEeAFHPW1Rh/AwBVhSJAaibgqxR+fxXnfZ8bd4gxr75JRMUPE5hsDhw4gIcffhhhYWEwm83Q6/VQnHRrgaqquHbtGkJDQ6HTFf7RIxFxaozOjg9w/xidHR9QuBivXr2a6/SFCxeie/fuTu+f3Peu3/f2uFsbOtI/e/XqheDgYLdqVwMAb4MgUxUoGYC3DtCJCr1eB/z1Rb/BULj9Vdz3vT3uFGNefZOIih8mMNmkpKTAZDJpJ2NFUZz2R1hRFK1uZ9VpqdcZ9RVVfJa63TlGd9nPJpMp1+mXLl0qkv7Jfe/6fZ9Xve7Qho70T8u38e7Wrl56BV56QKAiOVOgqoDoADMUBBtQ6FiL+77Pq25Xx5hX3ySi4ocJDBERlQj+BgUigtTMrFdwBhgAPz0f4Cci8jRMYIiIqERQFAUBXjr4KCoMBp3Tr0YQEdH9wXFgiIiIiIjIYzCBISIiIiIij8EEhoiIiIiIPAYTGCIiIiIi8hhMYIiIiIiIyGMwgSEiIiIiIo/B1ygTEVGJlDUmjIp0NevbvEAvHXw4LgwRkdtjAkNERCXSjQwV1+4CUABFgFSzijK+TGKIiNwdbyEjIqISJ1NVcf0uoADw1QEGHZBuAm5lqq4OjYiI8sAEhoiIShyTACYAPnpAURQYdAoUBcgwuzoyIiLKCxMYIiIqcfQADApwV816FkYVgVkAH/5VJCJyezxVExFRieOlU2D0zvr/XTOQbgb89UCIN59/ISJyd3yIn4iIShxFUWD0VuClqLirAnol6y1k3jomMERE7o4JDBERlUg6RUGwt97VYRARUT7xFjIiIiIiIvIYTGCIiIiIiMhjMIEhIiIiIiKPwQSGiIiIiIg8BhMYIiIiIiLyGExgiIiIiIjIYzCBISIiIiIij8EEhoiIiIiIPAYTGCIiIiIi8hhMYIiIiIiIyGMwgSEiIiIiIo/BBIaIiIiIiDwGExgiIiIiIvIYTGCIiIiIiMhjMIEhIiIiIiKPYXB1AM7022+/YdKkSXanvfXWW6hRo8Z9joiIiIiIiJypWCUwFp07d0bVqlWtyqKiolwUDREReQqTKlCRdXuCQae4OhwiIrKjWCYwNWvWRLNmzVwdBhEReZDUTBUpZkAAKACCDAJ/A++0JiJyN8UygQGAtLQ0+Pj4QK/XuzoUIiJycxmqIMUEGHSAXlFgFsHtTMCgE3jfcyVGRJBmEmSoWb/76sQFERMRlVzFMoF5//33kZ6eDp1Oh1q1amHw4MGoVq2aq8MiIiI3ZRZAlKzkBcj6aVIEZju5SYpJkGoC9ErW1Zq7mUAmeLsZEdH9UqwSGIPBgKZNm6JBgwYIDg7G2bNnsWrVKrzyyiuYMWMGqlSp4uoQiYjIDSkAIFlXVxRFgYhAxPZVnWYRpJsBL93fyc5dEdzlSz2JiO6bYpXAPPTQQ3jooYe032NjY9G0aVOMHz8en376KaZOnWo1/8WLF3Hx4kUAwNWrV5GamgoAUFVV+6cozvlWTVVVq5+FJSJOjdHZ8QHuH6Oz4wOKph0tvLy8tLrduV0B7ntncPc2vJeXl5dHt6sBAm8FSDcDOkWgCuCrA/QQqOrf86kiUNWsW80EWZdnRM16aqYk7XtPiJGIiq9ilcDYExUVhdjYWOzevRtms9nqmZj58+dbJTV9+/YFAFy+fLnI4rly5UqR1e0M7h4fUHJjHDJkCICi658ltV2dzd1jLKr4hgwZArPZjGvXrhVJ/fejXQVABnRQoUAHgUDFHTvzpMGATOjgBRUCwAQdfKGW2H3vTJ4QIxG5XrFPYAAgLCwMJpMJd+/ehb+/v1Y+atQodOnSBUDWFZgNGzYAAMqUKQOTyQSDweDUbxGvXLmC8PBw6HSFv9VARJwao7PjA9w/RmfHBxQuxkuXLuU6PTExEUOGDHF6/+S+d/2+t8fd2tCR/jl8+HCUKlWq2LerWQTJmUDmXxcLfBRB2g33ijG74n6M59U3iaj4KREJzOXLl+Ht7Q1fX1+r8sjISERGRgIALly4gN27dwMAdDqd9s9Zf4QtLPUWlogUSYzOig9w/xiLKj7Aue1okZmZaVW3u7YrwH3vzjEWRd8Esvqnoiglol11AB7QZd1mBgVQRJDuZjHaU5KOcSIq3orVWeLWrVs2ZSdPnsTevXsRExPDkyIRETmFoijQ6xTtQX4iIrp/itUVmLfeegs+Pj6oUaMGQkJCcPbsWaxbtw4+Pj5ISEhwdXhERERERFRIxSqBady4MbZu3YpvvvkGaWlpCAkJQZMmTdC3b19ERUW5OjwiIiIiIiqkYpXAdO7cGZ07d3Z1GEREREREVET4UAgREREREXkMJjBEREREROQxmMAQEREREZHHYAJDREREREQegwkMERERERF5DCYwRERERETkMZjAEBERERGRx2ACQ0REREREHoMJDBEREREReQwmMERERERE5DGYwBARERERkcdgAkNERESUT4qiQFEUlCpVCjdv3rQ7z5tvvglFUTBlypT7G1whrV+/HnFxcQgKCtK2k6y1bNkSiqLg1KlTrg6lRGICQ0RERFRAt27dwjvvvOPqMJzmzJkzeOKJJ7B37140b94cCQkJSEhIcHVYVMQ8LSEzuDoAIiIiIk+kKAp8fHzw3nvv4bnnnoPRaHR1SIW2YcMGpKam4p///Cdef/11V4fjtj799FOkpaWhbNmyrg6lROIVGCIiIqIC0Ol0GDlyJJKTk/H222+7OhynOHfuHACgcuXKLo7EvVWoUAE1atSAl5eXq0MpkZjAEBERERXQyy+/DD8/P3zwwQe4du2aw8ulpaVh2rRpqF27Nvz8/BASEoJHH30Uy5cvd2p8jq5ny5YtUBQFkydPBgAMGTJEe/7F0Wd40tLSMH36dNSrVw+BgYEIDAxE48aNsXjxYpt5J06cCEVR0Lt3b5tpSUlJiIqKgl6vx44dO7TywYMHQ1EUbNmyBT/88APi4uIQGBgIo9GI7t274/fff88xtj179qBXr16IjIyEt7c3ypUrh+HDh+PMmTM2806ZMgWKouCTTz7B3r17ER8fj9DQUCiKgoMHDwLI+ZYrRVEQHR0Nk8mEadOmoWrVqvDz88NDDz2ExMREbb5NmzahVatWCA4OhtFoxKBBg3LsPyaTCfPmzUOTJk0QHBwMPz8/xMTE4N1334XJZLKZPzo6WntuacGCBahTpw78/PwQERGBUaNGWT2zderUKSiKgq1btwIAKlWqpO337M8+ZWRkYO7cuWjUqBFCQ0Ph7++P6OhoxMfHO73POoK3kBEREREVUGRkJEaPHo1Zs2Zh5syZePPNN/Nc5vbt22jVqhX279+P0qVLIz4+Hqmpqdi0aRO2b9+O3bt347333it0bPlZT0REBBISEnDw4EH8+uuvaNasGapWrQoAiImJyXNdV65cQdu2bXHo0CFERESgRYsWEBHs2rULgwcPxr59+/DBBx9o80+bNg3r16/HypUrsXjxYqvnbEaMGIGLFy9i0qRJiIuLs1nXypUrMW/ePDRs2BCdO3fGoUOHsGrVKmzatAlbt25F3bp1reafO3cuxo0bBwBo1KgRmjdvjmPHjmHhwoX49ttvsXXrVjz00EM269m2bRtGjhyJ6tWro127drhw4QJ0Ose+++/du7eWpFSpUgVbt27F0KFDAQBBQUHo168fGjdujPbt22P37t1YsmQJTp48iW3btlklDunp6ejUqRM2b96MBx54AI0bN4avry/27NmD5557Dps3b8aqVavsxvXSSy/hvffeQ8uWLVG1alXs3LkTH330EY4ePYqtW7dCURQEBgYiISEBa9euxeXLl9GjRw8EBgba1DVgwAD897//RVBQEJo3b47g4GCcP38eO3bsQEpKCvr27etQuziNkIiInD9/XiZPniznz58XVVUlIyNDVFV1Wv1ms1nOnz8vZrPZKfU5O0Znxyfi/jG6237O3gdzm+bu7SrCfe8M7taGjvTPy5cvl7h2FXH/GIv7MZ5b3yxKAESv14uIyKVLl8Tf318CAgLkypUr2jzTp08XADJ58mSrZceOHSsApFWrVpKcnKyVHz16VMLDwwWArF69utAxFmQ9kydPFgCSmJiYr3V17NhRAMgzzzwjd+7c0covXbokDRs2FADyww8/WC1z5MgR8fPzk6CgIPnzzz9FROSjjz4SANKoUSPJzMy0mj8hIUEACAD56KOPtHJVVWXixIkCQGJiYqyW2b17t+j1eilbtqzs27fPatqCBQsEgMTGxtptAwAyY8YMu9vbokULASAnT560KrcsV7t2bau+sGnTJgEgkZGREhoaKmvWrNGm3bp1S2rVqiUAZNOmTVb1Pf300wJA+vTpIzdv3tTKk5OTtTafN2+e1TIVK1YUABIRESG///67Vn716lWpWrWqAJCNGzc6tD0iIn/++acAkIoVK0pSUpLVtPT0dNm1a5fdNipKvIWMiIiIqBDKlCmDp556CqmpqZgxY0au86ampmLhwoXQ6XSYO3cugoKCtGk1atTAq6++CgCFvgJzv9YDAAcPHsT333+PRo0a4Z133oGPj482rUyZMvjoo48AAPPmzbNa7qGHHsLbb7+N27dvY8CAATh69Ciee+45+Pv7Y+nSpTAY7N8o1LRpU4wYMUL7XVEUTJs2DeXKlcPBgwetbjt78803YTab8eGHH6JBgwZW9QwbNgxdunTBnj17cODAAZv1PPzww3jxxRfz3yAA3n33XZQuXVr7vVWrVqhXrx4uXryIxx9/HJ06ddKmBQcHY+TIkQCg3coFZF3V+vjjj1G+fHkkJiYiJCREmxYUFISFCxfC29vbpl0tpk2bhgcffFD7PSwsDKNHjwaQdXXJUVevXgUA1KtXD6GhoVbTfH190aRJE4frchYmMERERESFNHHiRAQEBGDevHm4fPlyjvPt378f6enpqF+/PmrUqGEz/cknnwQA7Ny5E6qqFjie+7UeAPjxxx8BAN26dbN7K5PlmZi9e/faTHv66afRqVMn7N69G40bN0ZqaipmzZqF6tWr57g+e7creXl5oWfPngCA7du3AwBUVcXGjRvh7++P9u3b262refPmAGA3tvj4+AKNgePl5YWWLVvalFtejNCuXbscp128eFEr27JlCzIzM9GhQwf4+fnZLBMREYFq1arht99+Q3p6us10e+uxtGv29eSlRo0aCAgIwHfffYeZM2fiwoULDi9bVJjAEBERERVS6dKlMWbMGKSlpeX6HIzlw190dLTd6aVKlUJISAjS09Nx48aNAsdzv9YDQHuQfdKkSVYPgGf/l5KSgqSkJLvLL1y4EL6+vkhOTsbjjz+uXY3IScWKFe2WW7bVsu1JSUlISUlBWloavL297cZlucJiL7YKFSo4svk2IiIioNfrbcotz5bYe/WyZdrdu3e1Mku7fvzxxzm26+HDhyEiuH79uk2d5cqVsymzXInLvp68BAcH4+OPP4aPjw9eeukllC1bFg8++CBGjx6NnTt3OlyPM+XrIf4NGzbg888/x4ULFxAREYFu3bqha9euOc4/Y8YMrFu3Dps2bSp0oERERETu7MUXX8TcuXPx4Ycf4qWXXipwPQX51t+V67FcwYmLi0OVKlXyvfy3336LO3fuAACOHTuGlJQUuw+SFzSuwMBA9OjRI9d5a9WqZVPm6+tboPXm9aC/oy8CsMQfExNj82KCe2W/bS+/63FEv3790KZNG3zzzTf48ccfsXXrVsyfPx/z58/H888/j//85z9OW5cjHE5gXnjhBcyaNQsAICIAsgbxadKkCZYtW2Y3G/7999+t7uUjIiIiKq7CwsIwbtw4TJ8+HdOnT0dUVJTNPJay06dP263j1q1buHnzJvz8/Ao1MOb9Wg/w9zf93bp1w4QJE/K17IkTJ7TnXjp06ICvvvoK48ePx6JFi3JcJqdtspRbtj0sLAy+vr7Q6XRITEy8b4mhs1jaNS4uzuoNbq5SunRpDB8+HMOHD4eIYN26dejTpw/eeecdDB061G4SWFQcSs1Wr16Nd955B3q9HiNGjMCcOXMwYcIEhIWFYdeuXWjUqBF+/vnnoo6ViIiIyK1NmDABQUFB+Oijj3D+/Hmb6Q0aNICfnx/279+PEydO2ExfunQpAKBZs2aF+gb9fq0HANq2bQsAWLVqVb6WM5lMGDhwIFJTU/HOO+9g6dKlqFGjBhITE/Hll1/muNyKFSvs1mVZxvLqZYPBgJYtWyI5ORkbN27MV2zuoFWrVtDr9VizZg0yMzOLdF3e3t4AYHdcGXsURUGHDh20lxEcPny4yGKzx6EeO3fuXCiKgm+++QYffvghnnrqKcycORPHjx9H7969kZSUhNatW3tk5yAiIiJyltDQUIwfPx53797FwoULbaYHBARg6NChUFUVY8aMQWpqqjbt+PHjeOONNwAA48ePt1pu9uzZqFGjBl555RWH4ijoegoiNjYWbdu2xc6dOzFmzBgkJyfbzPPrr79i7dq1VmWvv/469u7di86dO2PUqFHw8/PD0qVL4eXlhZEjR+b4sPiOHTtsrtBMnjwZZ86cQZ06dbQH84Gs53J0Oh2GDBmCLVu22NSVkpKCRYsW2X0I3tXKli2LoUOH4tSpU+jXr5/dl0P88ccfuSZ7jrJctTp27JjNtAMHDuCrr75CRkaGVfn169exZ88eAED58uULHUN+OHQL2b59+9CoUSM8/vjjVuUhISFYvnw56tWrh3/84x+Ij4/H559/jm7duhVJsERERETubsKECfjggw/sfpAHgOnTp+Onn37C+vXrUblyZbRo0UIbYPLOnTsYP348OnfubLVMUlISjh07lq+3RxVkPQW1dOlSdOjQAXPnzsVnn32GmJgYREVF4datWzh06BDOnj2LZ555Bh06dAAA7N69G//+979RpkwZq0SvQYMGmDJlCiZNmoTBgwdj3bp1Nrd+PfXUUxg+fDjmz5+PKlWq4NChQzh8+DCCg4PxySefWM0bFxeHOXPmYOzYsWjVqhVq166N6tWrw8vLC6dOncLBgwdx9+5ddO/e3e6bvlztvffew6lTp/Dll19i7dq1iImJQYUKFZCamoojR47gjz/+QNeuXfN8xicvXbp0weLFi9G/f3+0a9dOe2XzggULcPr0afTo0QMhISFo2LAhIiIicPPmTWzbtg23b99G586d7/urlB26AnPr1i3t9W72TJw4EYsXL4bZbEbv3r2xZMkSpwVIRERE5EmMRiOeffbZHKcHBQVh69atmDp1KsLCwvDtt99i+/btaNiwIT777DOnjM1yP9cDAOHh4di1axfef/991KxZEwcOHMB///tfHDp0CJUrV8bMmTPxwgsvAMi66jFw4ECYzWYsWrTIarwUAHj55ZcRFxeH9evX491337VZV+/evfHtt99Cr9fjm2++wblz59C1a1fs3r0b9erVs5l/9OjR2LdvHxISEnD79m2sWbMG69atQ0pKCgYMGEh0B7YAACAASURBVIA1a9ZYjbHiTvz8/PDDDz9g8eLFiI2NxdGjR/Hf//4X+/btQ+nSpTF16lS89dZbhV5P9+7dMWvWLJQrVw6rV6/GwoULtcSycePGeOONN9CgQQMcO3YMK1euxL59+1CnTh0sWrTIKVeA8s2R0S4jIiKkVatWec63evVq8fX1Fb1eL7Nnz5bBgweLTqcr3FCb90lRjnQuwpGancHd21Ck6EaTLsr+yX3vHO4eY2Hjc6R/Xr58ucS1q4j7x1jcj/Hc+iYVLwkJCQJANm/e7OpQyMUcugJTt25d/PTTT1b3T9oTHx+PtWvXIiAgAOPHj8cPP/zgjByLiIiIiIgIgIO3kHXq1Al37tzBp59+mue8LVq0wObNmxEaGoorV64UOkAiIiIiIiILhxKYrl27omnTpti+fbtDldavXx/bt29H3bp1CzyKKRERERER0b0cegtZhQoVsGPHjnxV/OCDD+LAgQMFCoqIiIjuL7MqUAHoFUDnYQP+UcnwySef2LxljEomhxKYkiIwMBAGgwEiAgDaT2cQEa1uZ9Tr7BidHZ+lzuw/nVGfO7ehpa6Cxmgw5H44RkREFEn/5L53DnePsbDxOdI/9Xq9ti5ncfd2tdTlzjHmFZ+IIM0kSDUDIoBOAYK9FPjoc05i3Kl/5tU3iaj44VGfTb169WA0GmE2mwFA++ksRqMRqqpCVVWn1enMGIsiPsD9Y3SX/Ww0GnOdPmzYMAAokv7Jfe8c7h5jYeJztH8CJa9dAfePMbf47qrAzQzAW5d19SXTDNxQAaNX1u/uEGNeyxFRycIEJpsDBw7g4YcfRlhYGMxmM/R6vc3gSQWlqiquXbuG0NBQ6HQOPXqUKxFxaozOjg9w/xidHR9QuBivXr2a6/SFCxeie/fuTu+f3Peu3/f2uFsbOtI/e/XqheDg4BLVroD7x5hXfHczVXgZAO+/shUDgDvmrEsxhhwyGHfqn3n1TXI/KSkpmDlzJvbs2YO9e/fixo0bSExMxODBg10dGnkIJjDZpKSkwGQyaSdjRVGc9gdOURStbmfVaanXGfUVVXyWut05RnfZzyaTKdfply5dKpL+yX3v+n2fV73u0IaO9E/Lt/ElqV0tdblzjHnFpygKRAGArGkiAgUKdLq812+p06wKMv6688tLAQy6/MVdlOdOcj9JSUl4/fXXUaFCBfw/e3cfJNtd13n8/TtP/TQ9D/chuTfJWiGGZA0ENgmaBIKbNRuIZW0sKCgjCcol2WW1BNfSYisKmFDqAsuWuGWpuKKBVBYsqoIU6zPBqAXRFVa2ogghC8RAcpP7ODM93X2efr/948w5mbl35t6emZ6Z7p7Pq2rq3jnTffo7p8909/d8f7/v7+UvfzmPPvrobockY0YJjIiIyB5W9w0964hzhzFgHdT9IhEZRGod84kjc0UK5BmYiSDaYBIje8fhw4d59tlnOXToEF/84hf53u/93t0OScaMEhhZU5Ik5HmOMYYgCDRJUkRkQvmeYTaEXu7IXZG4NILBKyFLaXG/+vJws8Q6FlPHvoihV3VlMtRqNQ4dOrTbYcgY06dSOUu/36fT6VTdYHzfZ2ZmRkmMiMiECjxDexMVE+ccGRCsmLYSGMgcOMpBaTIJrLU888wz9Ho9Go0GF1100dDmTYpslD6RTqAsy6rEY6MvLtZalpaW8H2/aomaJAndbpfp6entCFdERMaUMYYAR2xh+S2DzBXdy5S8TA5rLV/60pfodDrVtqNHj3LttdcqiZFdMdBZ55zj1ltv5fLLL+exxx477+0fe+wxLr/8cn7wB39wywHK4Ky1dDodTp48yfz8PKdOnSJJkg3vw1q76gXJ87yht9cVEZHJ0AoNvld0LuvnDgO0w+E3BZHd88wzz6wameGcY3FxkWeeeWa3Q5M9aqAE5tOf/jSPPPIIr3nNa7jxxhvPe/sbb7yR2267jT/7sz/jD//wD7ccpAymrJTUajWiKAJgcXFxQ8mH53n4vl91dXHOkWWZho+JiMiaQs8wFxlml7/mIqMJ/BOm1+ttaLvIdhsogfn4xz+O7/u85z3vGXjH7373u/E8j4ceemjTwcnGJEmC53nVVa8wDKte/YPyPI+pqSkA4jgmjmPCMKRer29LzCIiMv58Y6j7xddGWyjL6Gs0GhvaLrLdBrqs/r//9//muuuu21DHiAsvvJBXvOIV/M3f/M2mg5ON8TwP51z1ffn/jZTxy+Fj7Xa7WAtguQuZxrjuHdY54hxy5wg8Q81TJyERkb3soosu4tlnn101B6bdbnPRRRftYlSylw2UwBw9epQbbrhhwzu/9NJL+b//9/9u+H6yOfV6vaqaeJ5Hnuc0Go2Bhn9Za+n3+5w8ebJKWtrttoaO7TGptRztOXp50Uko8h3ToaEdKIkREdmrPM/juuuuUxcyGRkDfToNw3DDk8EB0jStOlnJ9guCgJmZGfr9PtZaGo3GwEO/kiSpnq8gCEjTlMXFRWZmZtZ9gbLWVnNlPM9TsjPmrHMcj2EpKxaxs0CSwyKOum+IlL+IiOxZnudxySWXDG1/v/7rv87p06erRgCf+cxn+Pa3vw3A29/+dmZmZob2WDJ5BvrEefjwYf7pn/5pwzv/yle+ovLiDguCoJrDshFpmlb3N8YQRVG1mOVaCUzZbjmO42rY2dTUlObKjLHUQmyLRezKMezx8sJ2K0YmioiIbNkHP/hBnnrqqer7hx9+mIcffhiAu+66SwmMnNNAtb9Xv/rVfO1rX+Nv//ZvB97x3/zN3/DVr36V7//+7990cLJzjDEbmj+TJAm9Xq+a4O/7Pp1Op6rIyPixDvo5nE7hRN/Rzxxl/zpf1RcRERmib33rW6vaMq/8uvTSS3c7PBlxAyUw//7f/3uccxw5coTjx4+f9/bHjx/nyJEjGGO45557thykbL8oijDGkCQJWZaRpilRFK07fCzLslUdz3zfxzmn9WLGlAPmU1hMIc2hm8LzMfQzmAlRVyEREREZGQMlMNdffz1vfetb+epXv8rLX/5y/sf/+B8sLCycdbuFhQV++7d/m5e97GU88cQTvPWtb+X6668fetAyfFEUVRP+jTHU63WmpqbWTWCMMauSlbJjmSb0jacUeLZXJC8p4LxiEn/Ng5lI89hERERkdAw86/q3fuu3WFpa4vd///f5j//xP/ITP/ETXHbZZRw8eBCAY8eO8Y1vfKMq/91xxx381m/91rYFLhtTdhmL4xh4IWFZmXCUTQAGSUJqtRpJktDv9/E8D2stzWZTE/nHVIeQvoVGAMZB6op/fe+F5FRERERkFAz8aTMIAj7+8Y/z+te/ng9+8IP83d/9HU8++SRPPvnkqtt93/d9Hz/3cz/HG97whqEHK5vX7/fpdDpVhWVpaQmAVqu1qf2VbZbTNCXPc4IgIIqiYYYsO8Q5R4ZHYCB2RdUlcNDLITJqnywiIiKjZcOXy9/4xjfyxje+kRMnTvDlL3+ZEydOALB//35e/vKXc+DAgaEHKYPJsgxrLcYYfN9fVUnp9/sEQbCqQtLv98+qwmzEmfuT8eQc5HgYA7iijbLnIPJgf223oxPZHrlz4MAz4ClJFxEZK5v+9Ll//35uueWWYcYiW5AkCQsLC1VL41qtRqvVWpWcrLySfmbXMdm7Ugc5xfwXTFF1wcChJjQCzWmS0ZPZor23MUXb741UCZ1zLGUQZw4HBB5MhxCpUYWIyNjYUALzR3/0R/zBH/wBTz/9NLVajZe97GUcOXKEF73oRdsVnwwgyzIWFxeBoipSrtHi+z7NZhMo5rz0ej2MMVW3sa1UX2RynEigQ0QI5BYyA7MB7K8ZDR+TkdPLLAtZUTk0QM0vOuUNeq7GFjoZNKKii03qYCF1zEXg63wXERkLAycwd955J5/4xCeAF9YI+cxnPsMHP/hBPvGJT3D77bdvT4RyXs45siwjz/NqQUrnHLVarUpgyn/7/T4AjUZj0/NfZHJk1nG8Dx6Odlhs6y93IhMZNbl1LGbgA4FfVJF7OUSeoxkMlnyk1uGZMlkxRAb6yxUdrXckIjIeBkpgPvKRj/Dxj3+cIAh485vfzDXXXMPi4iL/63/9Lx577DF+7Md+jKeeekqrpu4SYwz9fh/nXLWey9LSEr1ej7m5OQA8z2NqaqpKZFR5ESgSGAf4WDKKuS+GogNZgIYYymjJAcsLw72MMXg4sg2cqh5F9abklufCKHcRERkfAyUwH/3oR/E8jz/+4z9eNe/l3nvv5ciRI3zsYx/j4Ycf5siRI9sWqKzP8zyCIKgWoYRiyJjv+9WcmJW3FSl5nqHmOZaAugE8yCxMhRD6OldktHgUybV1rpp4XyTgg6v5Bt+DOC8qMbmDul+seyQiIuNhoE8ojz/+ODfccMOak/Z//ud/Huccjz/++NCDk8GUk/YbjQZRFFX/D8Nw0wlLlmWrEiKZTKGBg7Wi2hJb6GXFWjD/oqn2yTJ6As/QCiCx0M8d/dwRelDfQPYReIaZoJg7ExhoBzAdar6XyCR6y1vewqWXXjrQbe+7775Nvw488MADGGP41re+tan7y8YNVIFZWFjgu7/7u9f8Wbl9YWFheFHJeZWLSPq+T71ep9Vqcfr06arisnIC/0bFccypU6eI4xhrLa1Wi9nZWa3zMoGMMeyrwTw9phpT+AbaEdT9jVzTFtk5rcAQesXwR88zRN7gk++tcyR5MeSsGRii81QZrXOktvh/YMA/R6eyHMPp1GGxBAamAkOgzmYiI6Xb7fKBD3yAm2++mZtvvnm3w5EtGOjyvHMOf50PNOUVfmvt8KKSc+r3+ywsLNDtdul2u5w8eZJOpwMUz0OaplVis1FZllXJS7mezPz8fJUcyeQxxtDEckHdcLDhK3mRkWaMoeYbWqFHwzcbSl4WEsepxLGQwanE0cvWf03LnWN++fanEsfJxJHYtSfb5M6xRECSAw7iHOZTV6w1IyIjo9vtcv/99/Poo4+e9bN3vetd9Hq9nQ9KNkWrEI4Zay3dbrcaNhYEAQsLC6Rpyv79+4Ei4UzTlCRJqvsA1aKTnuetO7TMWkuWZTjnqv3kec78/DzT09ObSopERHZbL3P0bTHfJQcwsJhB5Ls1k6ClzBE7qHlF0pRax0Lq2B+dPbwysWAx1PziZwHFELfUgq4HiIwHLc49XgaeIPHRj34U3/fX/DLGrPtznQzDZ61dVRE7883UGFOtBTM/P8/i4iKnTp3imWee4ejRoxw9epT5+fl1KyrlOjFlFaZMZLrd7rb+XiIi2yUDvBWLXgaewTpYp6hCZosrfNXtlyf8r3d7ERlcOd/kiSee4K677mJmZoaDBw/y7ne/G+ccTz/9ND/8wz/M9PQ0hw4d4r/9t/9W3Xe9+SaPPvooxpg1qysA3/rWtzh48CAA999/f7Uu3n333bcqppWMMfzUT/0UDz30EFdeeSX1ep3rrruOv/qrvxro9/zjP/5jXv3qV9NqtWi32/zQD/0Q//iP/zjYQZJzGjiBKa/Ib/RLw46Gq5zfUq73Yq2t/gjL9XnyPMdaSxzHRFFEFEXEccz8/Dz9fp84jjl27Fg17GylIAio1Wr0ej3SNK0m8TebTdI01fMpuybPc5577jm++c1v8vTTT695/oqsJ6BIPqrXSVd0ISvaKp+dlfjLCUspto5u6jiRWBZSu2p4WGCKNsypXZ5nYx2+Wb+zmV1+fxQZJ7lzfGvJ8pV5y7eW7FCGSP7Ij/wI1lre9773cf311/NLv/RLfOhDH+LWW2/l4osv5v3vfz+XX345P/dzPzdw0rCegwcP8pu/+ZsAvO51r+PBBx/kwQcf5PWvf/057/eXf/mX/Kf/9J+46667eO9738uJEye47bbb+Id/+Idz3u/BBx/kh37oh5iamuL9738/7373u/nKV77CTTfdpMn+QzBQeUQfWkdLu91mfn6eOI6ruS6NRoMkSaqrB/V6nSzLMMaQ53l12zAMiaKIfr/P/Pw8U1NTq4aTpWmKc44wDEnTlDAMaTabNBoNdemRXZNlGcePH6+aVARBQL/f5/Dhw0xNTe12eDIG6oEhto5+DjYvEpfIc5xIHLmF0IfpFRP7W4EhdUWns9w5Ohm0AvAwdPNiUc2ZCDxjCD1DkxQDZMsLYrbDsyfx59axmDoSV1SDmr6jGahduYy+3Dm+cNyysGKV4293HTce8Aaeh7aW7/u+7+PDH/4wAP/hP/wHLr30Un72Z3+W//Jf/gv/+T//ZwB+9Ed/lIsuuojf/d3f5fu///s3/VitVos3vOEN/MRP/AQve9nLuOuuuwa63z/8wz/wxS9+keuuuw6AO+64gyuvvJL3vOc9PPzww2vep9Pp8I53vIN77rmH3/7t3662//iP/zhXXnklv/Irv7Jqu2ycxneNoSAImJ2dpd/vEwQBYVgsoV7OXfF9H+cc8/Pz1VW+spJSJitlxWblOjFZlrG4uEgQBMzNzbGwsFDNiTl9+jTtdvusdWVEdsKJEydYWlqi0WhUQxqdc3Q6HSUwMhDfGGajYoJ9mgEenE5hMYXUgbMwHTkuaVpqvodvYNp3JAZiC5lx1HF4eNSMKbY5iJY/u4U49kXAcjXGOyN5sc4xnxbzYkKvqAYtpOAbR83f/AfAlWvirMc5p2VpZUue7joWUladR/Npsf3S1ubP33vuuaf6v+/7vOIVr+Db3/42d999d7V9dnaWK6+8km984xubfpytuPHGG6vkBeC7vuu7+OEf/mE+85nPkOf5mk2u/vzP/5zTp0/zoz/6oxw/frza7vs+119/PX/xF3+xI7FPMiUwY8rzPKIoIgiCqjJyZpvjRqNBr9fDWltVVPI8J89zsixjdnZ2VTJircU5RxAE+L5PHMcsLCxUf5yLi4tYa5mZmaHRaCiRkR1RJuNZlhHHMUEQ4JwjyzLyPN/t8GSMeMYUi1Y6mM9hMVlOQjywBk71UkyacyB05FnxeumcYz7O6FmP2HNEUbHOFuHq11sH9HLou+Kbmm9pBaZKLnJXTPYvmwJ4BvLcEdvNJTDJcjXHuiIJaodFJWhVTM7RzRxLGSwS0k4d7cipmi4b1l1nSbj1tg/qu77ru1Z9PzMzQ71e58CBA2dtP3HixNYebJNe/OIXn7XtiiuuoNvtcuzYMQ4dOnTWz7/+9a8D8AM/8ANr7nN6enq4Qe5BE5fApGnKQw89xKOPPkqn0+HSSy/lzjvv5Jprrtnt0HZcq9UiDEOstdTrdZ5//vlq3kC9XqfZbJ6VhKwcl+15Hs1ms0qSjDFkWUa32910m+bNstZWC2tmWaY1afaQJEk4depUdQ6svOJVq9V2OToZZWWVuZzPV1aee70eJzOfJWrUQh/PC0izmDRz9GzG8YV5fFNcFFpYWGCh28ef3ocXBOS9Hp1+wvRUC/w6eMXbaILHQlYkQ8bAUgYOx3RYJjDLbZgdBB5bWiMms0WLZ0cxXC1zMJ845qLVa9V0M8diBj5gKIbBeZ5jKlQCIxvTXOfT4nrbB7VW9WK9ZTvKzyfrJeCjdEGrnHrx4IMPrpngqMHV1k3cEfzQhz7EF77wBW6//XYOHz7M5z73Od773vfyy7/8y1x11VW7HV6l7OpVVkfWSiaGYeUH/ampKaanp/E8jzzP6ff71Ov16nHLFoLlXJokSarhaVEUkWVZ1YK53+8TRdGOVGHKoW1xHNPr9Zifn2dmZkZJzB5QdqMpe/Nba7HWkuc5rVZLw8dkXXme0+l0WFpaot/vU6vVqm3GGDouoFOfJU1D0sBg8Qg9n8ALcDZnqd+n0+kUXR9dDr1F0voU/TjB2Qy3eBK70ODQoUNEUUSKT8usSEy8Yr7NVFBUSRZTR5JDF/BxtIKifXN9E9WXdLkbWlm58c1y22ZXJCtQ/O307PICnKbYHvlFlagVqAojG/MvmqYaRlaaCYvtO21ubg6A06dPr9r+1FNPnfe+mznvy2rKSk888QTNZrPqanamcpH3Cy64gH/7b//thh9Tzm+ixgA98cQT/PVf/zU/9mM/xpEjR7jtttv4pV/6JQ4ePMgDDzyw2+FVsixjfn6+Gsff7Xar+SbbpUxG6vU6URTRaDSqD4Ll2jL9fh/nXFVtabVaOOeI45g4jquOZ4uLiywsLHD69Gn6/f62xVzqdrtkWUaj0aiuWpQfLGSy9Xo9nn766bO2W2s5cOCAklhZk3OOxcVF+v0+aZoSRRF5ntPtdqshtNORR9Mm5HlG7CDNMkIPanmfpU6nWiy41+sVwxV7S/RPPItdOE6YLOGbYg7Wc889V7yOLs/N6vW6JEkMK6rZnczhnGFf3dAOigpNLy8+AEZbqMSI7BTfGF55wOMlM4YXtQwvmTFbnsC/WWVysLIrWZ7nA02KbzabwNnJz7k89thj/J//83+q759++mk+/elP85rXvGbdatFrX/tapqen+ZVf+ZWqa+xKx44dG/jxZW0TVYH5/Oc/j+d5vPa1r622RVHErbfeyoMPPsixY8fWzZZ3UhzHOOeq4S9lW+TtHBrled6qD/zl0ApjDN1ul06nU5VfnXPVZOkkSUjTlDiOabfbVZJTXvnudDrVfJyNKq+mn2thTSgSvpXl1iAIyLJMDQX2gO985zvrtpudm5vT8y9ryvO86qJYdmAsh5KVFejQM8zZmMU0o1abopclhHGPpc78qgs2cRzjeV4xjzBJitcdA/lyBbrf7xcXWbodjmcWk6VkeY4f1Tgw3SI1NTIX4BmDh6EVGJq+JXGGcJOT90NTdDGLc0fgLa9Z4xXNAUrGGBpeMYTMARZIcmivsRCnyCB8Y7Y0YX9YXvKSl3DDDTdw7733cvLkSfbt28cnPvGJqlnRuTQaDa666ip+//d/nyuuuIJ9+/bx0pe+lJe+9KXr3uelL30pr33ta3nHO95BrVbjN37jN4BiLZn1TE9P85u/+Zu8+c1v5tprr+WOO+7g4MGD/PM//zN/+Id/yKte9Sp+/dd/feO/vFQmKoH5xje+wcUXX1xl2KUrrrgCgG9+85sjkcCUVY7SyjVchiXLMk6ePFm9+ZbtksvhYXmeV0lKr9ejVqsRBEExFCJNmZ+fr7qRTU9Ps7i4SJqmGGOYnZ2thpaVCc5GE5gkSaqkyfd9Wq3WuvMZygSv/LBa3kcfXiffepM2jTG02+0djkbGRVlFLtfNKj/Y+L5fvX5kWYazlqYfkmHI/ZDTmcXSwHdL1WtMefGnrFaXX/1+H2stzWaTU6dO0Z0/iQ2WyExYXGCJnyc+ZkgPHiRo7yNotggoXvdTZwjM5odABF7RUa2TuqoJwVRozroa3gwMDkc3A4thKoCp9RanERkjDz30EG9729t43/vex+zsLHfffTf/5t/8G2699dbz3vd3fud3ePvb387P/MzPkCQJv/iLv3jOBOZf/+t/zY033sj999/PP//zP3PVVVfxwAMP8LKXveycj/OmN72Jiy66iPe973381//6X4njmIsvvphXv/rVHDlyZMO/s6w2UQnMqVOnqrGRK5XbTp48udMhralchyXPczzPI01TfN8f2qSuLMuqtrOe51VraBw4cKB6My7XjllrGFZ5n3KSvu/7zMzM0Ov1MMasinMjiVf5xl/OaSkrN3mes7CwsCoxWqnVajE/P18N5bDW0m63lcBMuHKe2Foajca6pXsRz/Oo1WrVXL2lpSXyPGdqaqpKPJIkwXge+dQ0CR7TNQ+c4bSDPJ+lkS/hLTcuMcZUF3zK7nfl65kxhrBWZ8n65KnD5j1Ie/hpn27iccwY6nFGY/+FLIUNElckELM16OdQ9zdXEQk9w1zNnHVBbCVjDFOhoeHlpKRMhUbVFxkJ9913H/fdd99Z2x944IE1h/w/+uijq76/7LLL+PM///OzbnfmZ5K19nXjjTfyxS9+ceCYAO68807uvPPONX8G8Ja3vIW3vOUtZ22/+eabufnmm9e9n2zeRCUwKyedr1RWB+I4XrX92Wef5dlnnwWK8YhLS0sAq66yDevFvkwUrLUEQUC9XqfX61XrtrRarVW3i+O4SmzCMDwruSmHgK0VY3958mkURdWHvF6vR6/X44ILLlj1OEDVMrl8Uy+HuMVxXLQLhar6Ui4gGARB1Xa57HR25u9qjFl1LJeWlqqKTZIkzM7OVo9fblvrQ6nnebTbbZIkod/vMz09fdZjbsa5juFmrXyeh608t4d9fm5HzMM4ts8888y6P7vwwgu3FO84PPfDjnE7z00ozs9ROq7la1eSJLTbbaIoolarkWUZS0tLGGPww4jnbUSQZhiX4wc+jcxjMYhIk0XqYUCtVsM5V1VjykWDoXjtCmp1TmQBca0NWYJnc4haWOcgT1jIfRZi4MQiWZASGmj60A895j2YIqHdqNFsNqsKUfm1cojtuY7n+S4kOecwmziG59vnOJ2fIjJZJiqBKYc/nal8szlziNKHP/zhVWMY77jjDgCee+65bYvx+eefr/6/8oV6ZXJVTjwt35TKdsaDVhzK9VvCMKzuUyYm/X6/Oh6e51VVln6/T5ZlPPPMM9WbUZ7nhGFYfXBuNBrVfJiyehRFUbVIk7W2+hlQDUnzPI9er1clZOVk2m63Wz1+Mfm1VyWb5RtjqUzgoigamUrauax8noelLDlv1/m5HTFvxbkWLfN9n6NHj+5gNIMbteN4pu2K78iRI+R5vm1rNWw17jiOWVxcXLXNJgk96mSpxWUxnvFIMWAtNsvIDNVws5UfsMukIreWJesT42GyHjiwYQMv7UMQkRuDDRu4LAeT4PDIHZAu0fN8OoHPqaxPPV2ivjyMt6zOlxeHyq9arbblRGHUz00YjxhFZPdNVAIzNze35ofbU6dOAbBv375V29/2trdx++23A0UF5rOf/SxQXN0tJ44P8yri888/zwUXXHDeCeunT59eNSygHGe9smVsOZRhrRjLdsdJklCv18nznCiKmJqawvf96t80TQmCgOnpaay1PPXUU7Tb7erKXzlf6ExxNwAAIABJREFU5uDBgzSbzTWrWyt1Op2qOgNF0hRFEe12m9OnT+P7fjWZdmFhgTRNmZ6erq5uTk9PV5WdsitaqdFo0Gg0BjqGgzrXMdysQZ/ntZzvA/nv/d7vceTIkaGfn1uJeT3DOLZf/epX19xujOGSSy7ZSngj99yvZdgxbjW+Qc7Pe+65h9nZ2ZE9rtY5ehnEWUYUBDQCaKbwXB/yrKh6R85waKrGzOGZVUlLeWGorCIHQUBYb5I1psm7MRgPyMkdOC/AZAn4Ic74BMaRBeHy6xtYanh+gPUCau0WjayFn3RJ4phWq0We5/R6PXzfr1rft1qts+Z37sYxLI3S+TmqFzNEZPtMVAJz2WWX8fjjj9Ptdle90H/ta18D4EUvetGq2x8+fJjDhw8DxXCVxx57DKC6una+sv1mnK/jljFmVTtj5xzOuVXrtQCrhjScGWMURVxwwQUcP368SkLm5uaqjjxllWPl0LFydfM8zzHGVO2W07RYjXqtCfZZllWVm5Vrw5S/Q7/frxoElHEaY/B9n0ajUU2wLYfQlYlPmqbVug3lMYjjuEqgzncMB3WuY7hVw4pxpbK6uF3n5zBj3uqxPXO450oHDx7ccpzj8NxvV4zbcW7CC8NMR/W4Olcs5NjLHc55pBbSzDATQejDQlrD2RotH2Zqxe+x8nU4jmNqtVq1oG4cx4T1Bv0goplldFyEsRbnIE8tXhZD1MAFAc7zwfOxeDjfI6VGYFOi0FHDkZqAnGJ+Yq1WY2lpqbr4VG4rj29ZndlMI5NR+htfz3adnyKbMewGSzI8E5XAvPKVr+RTn/oUf/qnf8rrXvc6oHhTfeSRR7jiiitGogPZ+ZST3IMgIAzDarjVWkPjzqXRaHDxxRevWnyyXAxwPWV70ZXDuMpJ/2e2LLbWVp3JgiCohqeVlZ3yA6hzjqWlJcIwXDUMw/M8Dh48WA0hO/MYlMkOvDDBVWOj946yarqWyy67bAcjkUmROoiXJ83nQOAbejmk1tAODe01CswrX4Pq9TpBENKNY3Jr8ZZfjzrWo16rw8mTZMbHZCnNdImoWccLQxbDgNiL8PNi8j8+OD/AyxMaLiWwRTJlvBcSkpUXr8pEyvM8lpaWqtdxY0w1RDeKIsIw1AR9EdkzJiqBufLKK3nVq17Fxz72MU6fPs3hw4f53Oc+x/PPP8/b3/723Q5vIGW3mzRNq3kwZTVko85cnyWKoioZKjuNBUGwan6Jc45+v1+9GZbjr8+8IlbGVyYgQRCQJMmquS4A9Xod3/ertrdlYlOv19dtm7zyzfvMN3KZfM455ufnq/lSK11wwQWbHkYje5tzxXooq1rYUwwrg/N/8M+do5Mb+l4dvKJ18XRomDKwkFjifo19c/to+g7fXlC9Fp7IDSe7KRaDc31ManG1JgemI/w0Jc8yTFgj8iOMqxPHMcaYak7gykpQt9utXqfn5+erNbl6vd6WhpiJiIybiUpgAH7mZ36Ghx56iEcffZROp8Oll17Ku9/97nP2+B4l5YJpZQJRdnoZRovlMAyZmZlhaWmpGpZQNgcoH2N2dpaFhYVqrYQwDFfNvSmtVVYtu56V1aIyeSlvX6/X16y4rLWfer1Ov9+vjkGj0Rham2kZbWWXKKAaX192vLvooot2OToZV/7y4o+ZLV67ysQl8AarWixljr6D2vJ1lMQW67DM1jxmQkPXZByol8OfQhqNBnmeU08dMzNg0pQ8T7GeB36dMDS43JJmGQGW/Y0Q7Czz8/MkSUIQBNX6WOXrYTlsrNvtVhd0ytfFcriu2ouLyF4wcZ8IoyjiyJEjY7tIUBAENJtNut1ulbxEUVS1BN2qKIqIomjdVezLak955bt8Mywn3fu+T7PZrD5YlolO2ZVsZmamWucmiiKSJME5t6FFB8uFN1fGuZkKlIynTqdTVQdXVt+CINDilbJpgWeYDmE+cWQ5BAamgqKScj7OORJbvGGWFZzQcySuTITWruH4vk/bc7jU0fdqeKZGYKAdgMOQW4NXD4h8qkUo6/V6NR9x5QT58rUUVg+nLYfbZlmm8foismdMXAIzCcqOX2VSEATB0IdPnWt/K4eVWWuZn5+vPlBmWVYtOjk9PU2n06kSm3a7TRiG1ZCxsotYq9UaqPJyZnxn3kdzYCafc45Op1MNWywnMRtjmJ6e1tVl2ZK6bwhqhsSDMDCE/mCvq8YYDI6Vr0DWFRUdQzE0bT2eMcyE0AqK2/nmhWQF/+y0Z715LPV6nSRJqkQmSRKmpqaqxZC3431CRGRUKYEZAdbaqrNMmbCsXH9lN2VZtmqui+d5zM/PY62l0WhU3cNWdo4pF55sNptkWVZ1JhM5n7JhRDn8xlpbfThbayijyEb5xhB6DDx0rDQVGE4njjgv0hUHzAQvzNk7F2MM4RoP51yRFBmKROdcypb3ZXW7rEonSVJVrZXAiMheoQRml5Ur1JftjMv1UEZ1yFSv16vGZ8dxTBzH1fotZ1I7TNmMcpJyuRp5OTRR55LspppvmKtBnDscUPMMtTUqKIPKrGMxLYaheUDDs9QD80J1Zg0rE/lyHRagakkvIrJXKIHZZb1eb9X6KVmWsbi4yNzc3Eh8YCsrQkmS4Ps+3W6XIAiWW4oW28v4B1FeUS+rTaOaqMnuKK8kA1UFptVqsW/fvnO2VhbZCZFniDZYuVmLdY6F1JHaYg5OYh3P9KHhOxp+Mdxs5Ztzah1uechaWTkqu0SKiOxFSmB2WXmFuRxiVSYF5fbdVk6c7nQ6VQvkchI/ULX4HIS1lk6nU82NKVtGa2iQlIwxtFotjDHVwn2NRkMf1GSi5I4qebFAL1/dBGAhdbQ98J2jmxULcLrl+TbtwNEMtve9oRzaBpyzIiQisluUwOyysoVxaeX6J8NQLjAJUKvVqnUFzqWck1Ouqh2GIXNzc9UE/jLecgjDeuu5nKms1tRqtWrc+JnjuUVWVmFKauAgk2TlxP/cFV++AbNcYcnyojrjWVjMikTHM4bcORbTogNaOIRK0Fpy51hMHPFygA3f0Q6M5jGKyEhRArPLys4y/X6/SmZWVjgGkSQJS0tLOOeIoqha26Xf79PpdKo3njiOabVatFqtdfdVrsFRtlGOoqiaHFpOIl1cXKw64TQajYFbPJdJ0crVrcuETURkr/AN1H3o58sXglzR1rm+PKemWHCzqM4Y88IEf98YUhy5g+2oSboVyUtkiji6Gfg4Wmt1IRAR2SVKYHZZmRTEcYxzbsPdx5IkYXFxsaqWdLtdrLXV6sxl4gFUSU2j0VizClMO8SrXnikrJCuviAdBwMzMTHVFfCOJlu/7qypM5b+jMFRORGSnGFOsSeMbRz8vFsf0l8sysXUEBsLll0XnWPWaiVl7zZlhsFAlL0Xr6CLG2ML6l71ERHaeEpgRsHLdlY0q56WUSU+ZpDSbzbOGopXrapzLyiFh5STRNE1X3Waz3cXKBTl7vV61n3q9rvkNIrLneMbQDg3tEPY5x1JWDBuredD0DcaC5xXfx5ZqHZqGP9jim5tlKBKZsqeZY/sSJhGRzVICMwHOHJtcJhdRFNHtdqvv4zimXq8PNAembMm58v9b5XkerVaLWq1WtYzW3BcR2et8Y5heMUTLOUdmlxfBjKCfF8PGAs9Q89Zf7HIYcTT9ommANUW7aOegqeFjIjJilMCMuTAMieO46lpWrtHieV5VhSkn8ZeVnn6/v2bVp7xPr9erKjXOOdrt9tDiVdIiIjI4zxiawc4lEK3AYHAky30zmuHW1rsREdkOSmDGXL1exzlXJR1hGK5akbnVatFoNMiyjE6nU82RWW/BzLKBQLm6szqEiYjsHcYYWqHRnBcRGWlKYCZAs9mkXq8DnDU8rJyv0u12AapkpExoZmdnz7pPvV6v9iciIiIiMkqUwEyI881rybJs1VwW3/dJkqSqxmxUuVZMuS91Eht/qXVYW3Q5igz427TOhIiIiMhWKIHZI8phYWUSk+f5phOPLMtYXFysEpggCJiamtp0JzXZfTEe3+lCbiwe0Apgf83btsXyRERERDZLnzjHVJqmLC0tVa2O11vbpdRsNsmyrFpvptxWznXZSPLR6XTIsqwajhbHMb1eb6iT/WXnWOs4SYRLwDPFV5JDYCwH6sPpQCciIiIyLEpgxlCWZczPz1eT9tM0Jc/zVZP3z1QumJllGdZa4jiuupMB1dov52OtrZKXspVnGIYkSbL1X0x2xVIGi0QEebF4njPFCuFNHw5oKpSIiIiMGCUwIy7LMvr9frUeS6PRoN/v45wjiiKCIMA5N9B8lrJ1chzHpGlKrVarVnfu9XpkWTZQTOWCmGXVZrPzaGQ0zCcQ4xer1wG+B2kOqdvduERERETWogRmhGVZxsLCQrXGSxzHWGtxzq1KGMpKiLV2oP1aazHGVPcr/y2Hlp1LuVZMp9NZVXVpNpsD/14yOnLn6OTgcKQOcgvYYhhZU6PHREREZAQpgRlhcRyTZVnV0tg5RxzH1Ot18jyvEpksyzY0j6Wsujjnqv+X2wdRr9erRTMBrRUzxrLcspAW/zdQrbwdeTAd7mZkIiIiImtTAjPC1qq0WGsJgoBWq8XS0hJJkhAEAe12e+BhXFEUUa/X6ff7VQJTr9c3NI9FSctk6GbFyLE6Fs8H64qhY+0AGju4+reIiIjIoJTAjLAgCKohY8aYai2XIAio1WqEYYjneRtuh+x5HlNTU0RRVCVJvu/T6XTOum2WZSwtLVWP3Wq1CENdmp8UqS0qLymGuoOagdCHmRp4A1bkRERERHaSEpgRFkURzWaTXq9XzVlpt9vVxP1y2NigQ79W8jyvGpoGa8+fKefglA0Eyu9nZma05ssEsM6xkEHuwMOQAxhoenCgNviQQhEREZGdpE+hI6yslNTrdZxzO77ifZ7n5HletVj2fZ9+v0+WZUpgJkAvdyQWpgOYzzNCr0YOzEbQDjWDX0REREaTPoWOgd1KFsqhazKZcgvGKxKYLM6ZqhXzX6Y0QlBERERGmBbvkHWVw9OSJME5R5qmG+p2JqMt8sEHMgcRltAD30BdxRcRABLr6OeOxLqB2syLiMjOUAIj6wqCgOnpaXzfJ01TjDFMT08rgZkQdd/jYK2oxPTw6ecwF0E71MuC7G3OOTqp5VTsmE8cJ2NHJ1MSIyIyKvRJVM4pDEPm5uaqSf47OQdHtt9czafu5Ty71OdQq00j8DRsUPa81EEnK9ZD8ozBOkd3+fvaigqlc45e7uhljg4B/dzRMBp6KyKy3ZTAyECUuEyumm+oY6n7Rh+8RCg68xnzQitxzxiccZzZq7GbORZz8BxYDPMpGOO0hpKIyDbTp1IREZEVPMBBNWTMOQdu9Rumc45uXlwFDD0IcPgGuvn2xGSdI3caxiYiAqrAiIiIrBJ5UPegn0ORyhTNLaIVGUyZRqwsWhrzQuIzrGqmc45uViRLFggNTIcQeKryiMjepQRGRERkBWMMM2GRtOTW4XuGmrd6cVfPGELP0c8hWk5cUgvtcLiLwMYWFrMXqjyxhdOJY1/Nq4a4iYjsNUpgVpiamqpWuQeGWqp3zlX7HsZ+hx3jsOMr97ny32Hsb5SPYbmvzcZ4vu5uhw4d2pbzU8/9cIx6jFuNb5Dz0/f96rGGZTePa80DVlQ6zrzPVFBs6+fgvJCGB01/67//yhj7uatC6GRFkpRa8LHMRIPNW5v0v3F1xhTZe/RXv8I111zD3NwceV4MYi7/HZaym1fZ0WsYhhnjdsQHox/jqDzPc3Nz5/z53XffDbAt56ee++EY9Ri3Et+g5yfsrePaMtAIYG7fFB4WuzzUaxjyPMfmkObQLRMXA87BQgK+Kx57EJP8N36+c1NEJo8SmBX+/u//nquvvpoDBw6Q5zm+7w9tKIC1lhMnTrB///6hdPRyzg01xmHHB6Mf47Djg63FeOzYsXP+/CMf+Qivf/3rh35+6rnf/ed+LaN2DAc5P9/4xjdWa0dtJmbnHA4wvDAMa9SPK2xvjFMexHFR5akFYB1MecV8nNyDIDj/40363/j5zk0RmTxKYFbodDpkWVa9GBszvLayxphq38McHz2s/W1XfOW+RznGUXmesyw758+PHj26Leennvvdf+7Pt99ROIaDnJ/l1fhNnf/WsZBC5opRW1MBVWvvUT6u5b62K8bIM8zWLF3rMA4afnFcsuVWz4M83qT/jZ/v3BSRyaM2yiIisqusc8ynjsxCYAAH84kjsWoZDFD3DAdrhnpQJDS5K4aRNXxN4heRvUkVGBER2VWZg9QVlQUoKjB57khyR+DvcnAjwBjDVABmuQuZD7RDQ00JjIjsUUpgRERk97nV66eUc2E2I7WOpcyRu6L9cCsw+GPectgzhnZoaO92ICIiI0AJjIiI7KrAFC2LYweBc1iKKkzkL48n24DMOk4nDuuKjl3dvFjLZSZC66aIiEwIzYERmUDOOXJbfA1zTQ6R7eAZw3RkaHiAKVabn40M4SZWm4/zovJS8w2BZ6iZIjHK9GcgIjIxVIERmTDWORbSYqw8FFe22yFjP4RGJptvDDPR8M9RY0zRe1gJjIjIxFAFRmTCdLJizYjIFF/9HJZSfXqTvSH0DIZiKJlzRSezwANf73YiIhNDL+kiE8Q5R5w5DMUwGigmMccWDSWTPSHyDdNhUXBJlufBzITjP4lfREReoCFkIhMkzS1He9Cz4BtHO4DpEAK1W5U9pBF41HyHo7hKN+zFG0VEZHcpgRGZEM45nurCfPrCtn4GqYVLpxzGqOAqe4c6jomITC4lMCITopdbjveLITPGQA6w3H2prgqMiIiITAglMCIToptC3xbJiweY5ZUAPaOr0SIiIjI5lMCITIhOCix3jPWA3BbVl6m65gDI7siso2yAFxoINrGui4iIyJmUwIhMiJSibXLuiiQGA3UP9td2OzLZixLrmE9ccS5SVAJnIoiUxIiIyBYpgRGZAIl1pDkEBsKgqL74BpoB1EN9YJSd10mLLmC15flXiXV0Use+ms5HERHZGiUwIhNgKbV4ZnmxPgehX0zi3x9BqOFjssOcK9YhWtk7wl+uDjrnNKRRRES2RH1VRcZc7hwnE0hdMc+A5c+GMyHsrxt9WJQdZ4zBN5DZF7ZltqgQDno+Wufo5Y5u5kgxWohVREQqqsCIjLmlzNHNiopL6IG3/DmvHWrStOyedmiYTx39vDghAw+mBhzOaF0xfya24BwsEbKUwbS/nRGLiMi4UAIjMua6mSM00PAgXk5eMgtNX+2TZfeEnmEuKhZSLb4Hf8DzsZcVyUtteYxAgKWbQ8M6QiXlIiJ7nhIYkTFnKOa+BF7RhSzJITcvTJ4W2S2+MfibqJpYivPamGLo2PLULjSKTEREQHNgRMZeMzCEXtE6ObPFB71ZtauVMRZ4BgvVvBdL8WalU1pEREAVGJGx1woMuSuGkgFEHsxGnibvy9iqe9DwoW/BWcjxaAWa0yUiIgUlMCJjzjOGmbBIZKBoV6u5LzLOzPI53bSQW0dGSjPQOS0iIgUlMCITwBiD1quUSWKMIfLBGoOPJr+IiMgLNAdGRERERETGhhIYEREREREZG0pgRERERERkbCiBERERERGRsaEERkRERERExoYSGBERERERGRtKYEREREREZGxM1DowjzzyCL/2a7+25s8++tGPMjc3t8MRiYiIiIjIME1UAlN605vexIUXXrhqW6vV2qVoRERERERkWCYygbnuuut48YtfvNthiIiIiIjIkE3sHJhut0ue57sdhoiIiIiIDNFEVmDe9a530ev1CIKAa6+9lre+9a1cdNFFux2WiIiIiIhs0UQlMLVajVtuuYWrr76aZrPJk08+yac//Wne+c538qu/+qscPHhwt0MUEREREZEtGNkExlpLlmUD3TYMQ4wx3HTTTdx0003V9htuuIFrr72We++9l09+8pP85E/+5Kr7Pfvsszz77LMAHDt2jKWlpeqxyy9jzNB+n5X/bpVzbqgxDjs+GP0Yhx0fbM9xLIVhWO17lI8r6LkfhlE/hmcKw3BPHlcY/Rj34t+4iEy2kU1g/vEf/5Ff+IVfGOi2v/Ebv8Ell1yy5s+uuuoqrrjiCr785S+f9bMPf/jD3H///dX3d9xxBwDPPffcJiIezPPPP79t+x6GUY8P9m6MR44cAbbv/Nyrx3XYRj3G7YrvyJEj5HnOiRMntmX/o35cYfRjHPX4YDxiFJHdN7IJzCWXXMJP//RPD3Tb863vcuDAAb7zne+ctf1tb3sbt99+O1BUYD772c8CcOGFF5JlGUEQDPUK3fPPP88FF1yA5229d4JzbqgxDjs+GP0Yhx0fbC3Go0ePnvPnv/d7v8eRI0eGfn7qud/9534to3YMBzk/77nnHmZnZ/fUcYXRj3HS/8bPd26KyOQZ2QRmbm6OW265ZSj7eu6555iZmTlr++HDhzl8+DAAzzzzDI899hgAnudVX8N6gyuV+90q59y2xDis+GD0Y9yu+GC4x7GUpumqfY/qcQU996Mc43acm1Ccn8aYPXtcYfRj3Et/4yIy2SbqVWJ+fv6sbV/84hd58sknufbaa3chIhER2U3WOTLrsM7tdigiIjIkI1uB2Yx3vvOdXHbZZVx++eW0Wi3+3//7f3z2s5/lwIEDvOENb9jt8EREZAcl1rGQOjILnoGpwNHwh1t1ERGRnTdRCcyrX/1q/u7v/o4vf/nLxHHM3Nwcr3nNa7jjjjvOO09GRETGi3MOB3hrDGHKnWM+KaouNQ9yBwsp+MZN1tADEZE9aKISmLvuuou77rprt8MQEZFt5Jyjlzu6GVgg8hzt0OCvSGQyWyQt9eWKS2Agyx1p7qipCCMiMtZ0IUpERMZKP3csFD0tCAz0LSwmDrdinosxgGHVNgxDn7gvIiI7TwmMiIiMlXh5TkvgGTxjqC0nMfmKXCU0UDfFbVPriHNHYKDm717cIiIyHBM1hExERCbfWjWUM7cZY5iOwM+KSfy+D03f4BvIdiJIERHZNkpgRERkrNR9Qy93pNZhgMxB3YczG4x5xtAOV290aqcsIjL2NIRMRETGSs03zEYGb3meSzOA6dBofouIyB6hCoyIiIydum+qDmO7zTpHgkc3c4S+I/K2r1mAdY7MAQ58j1Wd10RE9golMCIiIptknWM+gS4hixmY3DEVwFQ4/MQid46FxBEvj4ILDMyEEHpKYkRkb9EQMhERkU3qZUVCEZJT9yHyYCkrOp8NW2f5sWoG6p4ht7CYOs3rEZE9RwmMiIjIJlmKN9KyBuIZgzOwHSlFaothE+XwtNArGhjYbXgsEZFRpgRGRERkk3wD1r2QsOSu6Iy2HW+uPquTFeuK9XD0Ri4ie41e90RERDap4RsaAaR49POiItIOikU2h621PK8mzh393JE7mArUfU1E9h5N4hcREdkkYwzTASySMhtC4Jttm1QfeYa5CJK8qPeEviHSBH4R2YOUwIiIiGyBMYYAR803eNucUITe9iVIIiLjQkPIRERERERkbCiBERERERGRsaEERkRERERExoYSGBERERERGRtKYEREREREZGwogRERERERkbGhBEZERERERMaGEhgRERERERkbSmBERERERGRsKIEREREREZGxoQRGRERERETGhhIYEREREREZG0pgRERERERkbCiBERERERGRsaEERkRERERExoYSGBERERERGRtKYEREREREZGwogRERERERkbGhBEZERERERMZGsNsBjJKpqSmCIMA5B1D9OwzOuWrfw9jvsGMcdnzlPlf+O4z9jfIxLPe12RiD4Nx/jocOHdqW81PP/XCMeoxbjW+Q89P3/eqxhmXUj2u5r1GOcdL/xs93borI5NFf/QrXXHMNc3Nz5HkOUP07LHNzc1hrsdYObZ/DjHE74oPRj3FUnue5ublz/vzuu+8G2JbzU8/9cIx6jOvF5xykrvjXMxCuUZsf9PyEvXdcYfRjnOS/8fOdmyIyeZTArPD3f//3XH311Rw4cIA8z/F9H2PMUPZtreXEiRPs378fz9v6yD3n3FBjHHZ8MPoxDjs+2FqMx44dO+fPP/KRj/D6179+6Oennvvdf+7XslPH0DnHYuboWWD5wnfbg2aw+ncY5Px84xvfyPT09J46rjD6MU763/j5zk0RmTxKYFbodDpkWVa9GBtjhvYGZ4yp9j2sfZb7Hcb+tiu+ct+jHOOoPM9Zlp3z50ePHt2W81PP/e4/9+fb73Yew9hCL4eaV9wmd45OBpEPoffC7QY5P8ur8XvpuJb7GuUYJ/1v/HznpohMHk3iFxHZw5LckllH7sDh8I3BAXZ4U0RERESGShUYEZE9KrWOkwmcTiDyHI0A2qEDDEO+UC8iIjI0SmBERPYg5xxHu5bne5BaWASitPj/4QaESmBERGREaQiZiMge1M8tT3ehnwPLyUpuIc9hKhj+XAkREZFhUQIjIrIHzSerkxffFK2UM1DyIiIiI01DyERE9qCFpJio38/BmBeuZjV0WUtEREacEhgRkT0ms47YQuABZnkhSwuBgQON3Y5ORETk3JTAiIjsMdY5fAPtCOIMrAHPQDuAdqDhYyIiMtqUwIiI7DGeAd+HhoVaVFRgcmB/CP6QVmoXERHZLnqnEhHZQ5xz9HIIgZ6FOC+2z4RwsKHqi4iIjD5VYERE9pA4h5OJI/BhzivaJvsGDtWg7uualoiIjD69W4mI7CELKfRyyB3giqFkkQ+eho6JiMiYUAVGRGSPsBRrvfgGQq8YLpbkRUcyLf0iIiLjQgmMiMgeEhpwBuLc4ZmifXIzKLaLiIiMAyUwIiJ7hAFqXlFtKTuPGR/mQjAqwYiIyJhQAiMiskcYoB1CJzekFnygEUBTa7+IiMgYUQIjIrKHBJ5hzjfFJH6K+TCqvoiIyDhRAiMisscYY1DRRURExpX6ZoqIiIiIyNhQAiMiIiIiImNDCYyIiIiIiIwNJTAiIiLemtwfAAAMY0lEQVQiIjI2lMCIiIiIiMjYUAIjIiIiIiJjQwmMiIiIiIiMDSUwIiIiIiIyNpTAiIiIiIjI2FACIyIiIiIiY0MJjIiIiIiIjI1gtwMYNcePHycIAubm5jh27BhZlg11/0ePHh3KfrYrxmHFB6Mf46g9z8ePHx/oNqN+XEHP/TCM2jEc5Pw8ffr0nj2uMPoxTurf+CDnpohMFiUwy5rNJmEY8vDDD2/L/hcXF/nSl77EddddR7vd3pbH2IpRjw/2RoxhGNJsNs/avp3n5144rjth1GMcRnznOz//5//8n1sN8yyjflxh9GMc9fhg+147RWQyGeec2+0gRsXp06fpdrvbsu/HH3+c2267jT/5kz/h6quv3pbH2IpRjw/2RozNZpPZ2dk1f7Zd5+deOK47YdRjHEZ8Oj/XNuoxjnp8sL2vnSIyeVSBWWF2dnbbXgDLsvjBgwe56KKLtuUxtmLU4wPFuF3n514/rsMy6jFud3w6P0c3xlGPD8YjRhEZHZrELyIiIiIiY8O/77777tvtIPaKqakpbr755pEdgzzq8YFi3C7jELNi3LpRj2894xD3qMc46vHBeMQoIqNBc2BERERERGRsaAiZiIiIiIiMDSUwIiIiIiIyNpTAiIiIiIjI2FAb5V3wyCOP8Gu/9mtr/uyjH/0oc3NzOxZLmqY89NBDPProo3Q6HS699FLuvPNOrrnmmh2L4Vwef/xxfuEXfmHNn33gAx/gX/7Lf7mj8fR6PT71qU/xta99ja9//et0Oh1++qd/mltuueWs2z799NP8zu/8Dv/0T/9EEAS84hWv4O6772ZmZmZHY94onZ+D0/m5s3RuDk7npohMMiUwu+hNb3oTF1544aptrVZrR2P40Ic+xBe+8AVuv/12Dh8+zOc+9zne+9738su//MtcddVVOxrLufy7f/fvuPzyy1dt2421AhYWFvjEJz7BwYMHedGLXsTjjz++5u2OHz/OvffeS7PZ5M1vfjO9Xo8/+IM/4KmnnuKDH/wgYRjucOQbp/NzcDo/d5bOzcHp3BSRSaQEZhddd911vPjFL961x3/iiSf467/+a44cOcLrXvc6AH7gB36An/qpn+KBBx7gAx/4wK7FdqarrrqKV73qVbsdBvv27auu9H7961/nZ3/2Z9e83Sc/+Un6/T6/+qu/ysGDBwG44ooreM973sMjjzzCbbfdtpNhb4rOz8Hp/NxZOjcHp3NTRCaR5sDssm63S57nu/LYn//85/E8j9e+9rXVtiiKuPXWW/nqV7/KsWPHdiWu9ezmsSqFYTjQMJUvfOELfO/3fm/1Bgzwr/7Vv+Liiy/m85///HaGOFQ6Pwen83Nn6dwcnM5NEZk0qsDsone96130ej2CIODaa6/lrW99646W9r/xjW9w8cUX02w2V22/4oorAPjmN7+56k1kN/33//7f6fV6eJ7HS17yEt7ylrfs6hXYczlx4gTz8/NnDdsAePGLX8yXvvSlXYhq43R+Dk7n587SuTk4nZsiMomUwOyCWq3GLbfcwtVXX02z2eTJJ5/k05/+NO985ztXlc2326lTp9a8IlZuO3ny5I7EcS5BEPDKV76S6667junpaZ5++mk+9alPce+99/L+97+f7/7u797tEM9SHrd9+/ad9bO5uTkWFxdJ03Rkx3Lr/Byczs+dpXNzcDo3RWSSKYHZImstWZYNdNswDDHGcNNNN3HTTTdV22+44QauvfZa7r33Xj75yU/ykz/5k9sV7ipJkqz5RhBFEQBxHO9IHOfyPd/zPXzP93xP9f3111/PK1/5St7xjnfwsY99jPvvv38Xo1tbkiQA5z22O/EmrPNze+n83Lz/3979hTT1x2Ecf2bphGE6nBgiZBbThOwPlqQkEXkT1kVkDMws8aKi6Ea66Sa6jK4jSLOkaNSFQd5oCSnYRC2MKBA1K9FyGRmVYWue30UomWbrp+7s2PsFXnj+uM85ftj2bOd8v/Tm4qI3ASxlBJh5evbs2W+HqvzVxYsXlZqaOuu6rKwsud1udXV1LWR5c4qJiVEgEJixfPJFxG63h62Wv5GSkqLc3Fz5fD4Fg0EtW7bM7JKmmXyhjYRzS3+GH/0ZGnoz/OhNAEsFAWaeUlNTderUqZC2/dMNjC6XS4ODgwtRVkicTueslzp8+PBB0uxf40cKl8ul79+/a3x8fMZ16GabPG+/O7dxcXFh+wSR/jQH/fln9KY56E0ASwEBZp6cTuesE3H9H8PDw2GdqCs9PV1Pnz7V2NjYtBey7u5uSdLq1avDVsvfGh4eVkxMjGJjY80uZYbExETFx8ert7d3xrqenp6wnlf60xz055/Rm+agNwEsBQyjbIKPHz/OWNbZ2ane3l5t3rw5bHXk5eVpYmJCDQ0NU8sCgYCamprkdrsjYhSd2c5Vf3+/2tvbtXHjRkVFRWYLb9u2TR0dHdOGU33y5IkGBwcjYk6GudCfoaM/w4veDB29CWAp4xsYE5w+fVrp6elau3atHA6H+vr6dP/+fblcLu3fvz9sdWRkZCg/P1+1tbUaHR2dmk3a7/fr5MmTYatjLufPn5fdbldmZqbi4+M1MDCghoYG2e12lZWVmVJTfX29vnz5MnWZQ3t7u0ZGRiRJRUVFcjgcKi4uVmtrq86cOaO9e/fq69evqqur06pVq7Rr1y5T6g4V/Rk6+jO86M3Q0ZsAljKbYRiG2UX8a65fv66Ojg75/X6Nj4/L6XQqJydHHo8npIm+FtK3b99048YNPXjwQJ8/f1ZaWppKSkrC+mnmXO7evavm5ma9efNGY2Njio+PV3Z2tjweT1jnffhZRUWF/H7/rOsuX76s5ORkSdLr169VXV2t58+fa/ny5crJyVF5eXnY/8d/i/4MHf0ZXvRm6OhNAEsZAQYAAACAZUTmRbAAAAAAMAsCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDICws9ls036ioqKUkJCg7du3q6qqSoZh/HbftrY2VVRUyO12Ky4uTrGxsUpLS9OBAwdUV1eniYmJkGoIBoO6deuWKisrVVBQIIfDIZvNpsOHDy/QUQIAgMVgM+Z6pwAAi8Bms0mSysrKJP0IE319fWpra5NhGPJ4PLp58+a0fQKBgI4dO6bq6mpJUkZGhtatW6eYmBj19/fr0aNHmpiY0M6dO9XU1PTHGkZHR+V0OmcsLysr09WrV+d5hAAAYLEsN7sAAP+uX4PCvXv3tHv3bnm9XpWUlKioqGhq3aFDh+T1euV2u1VTU6O8vLxp+w4NDencuXNqbGwM6bGjo6NVWlqqnJwcbdmyRd3d3Tpy5Mi8jwkAACwuAgyAiFFYWKjS0lLV1NTozp07UwHm9u3b8nq9Sk5OVktLi5KTk2fsm5KSokuXLqm1tTWkx3I4HKqtrZ36/dWrVwtzEAAAYFFxDwyAiLJp0yZJ0sDAwNSyCxcuSJLOnj07a3j5WX5+/uIVBwAATEeAARBRPn36JEmy2+2SpJGREbW3t8tms8nj8ZhZGgAAiAAEGAARwzAM1dfXS5Kys7MlSV1dXZKk9PR0JSQkmFYbAACIDAQYAKYLBoPq6elReXm5fD6f7Hb71A3179+/lyQlJSWZWSIAAIgQ3MQPwDSTwyn/LC4uTteuXdOaNWtMqAgAAEQ6AgwA00zOAxMVFaUVK1Zo/fr12rdv37T5WRITEyVJ7969M6VGAAAQWQgwAEwTyoSRGzZskCS9ePFCo6Oj3AcDAMA/jntgAES0pKQkbd26VYZhyOv1ml0OAAAwGQEGQMSrrKyU9GMeGL/fP+e2Dx8+DEdJAADAJAQYABGvuLhYHo9Hw8PDKigokM/nm7HN27dvdeLECR08eNCECgEAQLjYDMMwzC4CwL9lcvSxv3n6CQQCOnr0qK5cuSJJyszMVFZWlqKjo/Xy5Ut1dnYqGAyqsLBQjY2NIf3N48eP6/Hjx5J+DNfc29srl8s1bQS0tra2kGsEAACLjwADIOz+T4CZ5PP5VFVVpZaWFg0NDSkYDGrlypXKzc1VSUmJ9uzZM+vwzLPZsWOHmpub59yGp0gAACILAQYAAACAZXAPDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsAwCDAAAAADLIMAAAAAAsIz/AGBUlfCkZCJYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_B = ggplot(all_data_df[all_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#b3e5fc']) \\\n", - " + geom_point(data=all_data_df[all_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_B)\n", - "ggsave(plot=panel_B, filename=pca_uncorrected_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 40 experiments...\n", - "(5549, 50)\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_corrected_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(experiment_1.shape)\n", - "\n", - "# Transpose data to df: sample x gene\n", - "experiment_1 = experiment_1.T\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Match format of column names in before and after df\n", - " original_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added and corrected\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " print(experiment_other.shape)\n", - " \n", - " # Transpose data to df: sample x gene\n", - " experiment_other = experiment_other.T\n", - " \n", - " # Simulated data with i batch effects that are corrected\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Match format of column names in before and after df\n", - " experiment_data_df.columns = experiment_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - " \n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space \n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1) \n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - " \n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_corrected_data_df = pd.concat([all_corrected_data_df, combined_data_PCAencoded_df])" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_corrected_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_corrected_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_corrected_data_df = all_corrected_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_corrected_data_df = all_corrected_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [], - "source": [ - "all_corrected_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAHoCAYAAABgs4/oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XecFPX9P/DXlO27d7fH3dHhkCIi0iwgoGAB81UQRUAE9ERsscUWjdFYkxA1idHIN/GrkagxQf0a49cSDSjYYiQWjLEbqdLh2vbdmffvj/vNuMv1u+V2uX09Hw8feLM7M++Z/ezsvOfTFBEREBERERERFQA11wEQERERERF1FSZARERERERUMJgAERERERFRwWACREREREREBYMJEBERERERFQwmQEREREREVDCYABERERERUcFgAkRERERERAWDCRARERERERUMJkD7maIoGf+pqoqSkhIcc8wxeOihhyAiza77j3/8A+effz6GDRuGQCAAt9uNyspKzJs3D8888wxM02x23bVr19r7vP322/fHoTVr165dOOecc9C7d29omgZFUfD73/++S2PId7///e+hKApuvfXWXIeSc+FwGI899hguv/xyjB8/Hi6Xi+emgzparrJZHtesWQNFUXDuued2elv0rcrKSiiKkuswiIi6BSZAXaSqqgpVVVVYuHAhRowYgbfeegsXXHABFixY0Oi9yWQS559/Po4++mj87ne/g6qqOPHEEzFr1ixUVFTg6aefxuzZszFt2rRm9/fYY4/Z///444/vl2NqzpIlS/DYY4+hoqICZ511FqqqqjBkyJAujYG6VmduoL/88kucc845uP/++7F27VokEonsB1jgzj33XCiKgjVr1uQ6FCIATOiIKLf0XAdQKPatAVm5ciVOPvlkrFixAgsXLsSMGTPs18455xysWLECw4YNw/LlyzFx4sSMdbdu3Yrbb78df/vb35rcVzKZxIoVKwAAvXr1whdffIF33nkH48ePz+5BNSGRSODFF19EZWUlPvjgA6gqc+ymnH766ZgwYQLKyspyHUrOBQIBLFmyBEceeSSOPPJIvPDCC7j55ptzHVZBYXnMf6+88gqSyWSuwyAi6hZ4d5oj06ZNw9lnnw0A+Mtf/mIvf+qpp7BixQr07NkTr7/+eqPkBwD69OmD3/72txm1POleeukl7N69G5MmTcIll1wCAM2+N9u2b98OwzAwcOBAJj8tKC4uxvDhw3nDCWDw4MF46KGHcNFFF2HcuHFwOBy5DqngsDzmv8GDB2P48OG5DoOIqFvgHWoOjR07FgCwefNme9nPf/5zAMCtt96Knj17trj+pEmTmlz+hz/8AQCwaNEiLFq0CADwxBNPdPjp4Ysvvohp06YhGAzC7Xbj4IMPxg9+8APU1NRkvK+yshIDBw4EALz22mt2H6TKyso27+ull17CKaecgvLycrhcLhx00EG4+uqrsWfPnoz3rVu3Di6XC6WlpdiyZUuj7VxwwQVQFAUXXXSRvSy9b8K2bdtw7rnnomfPnvB4PBg3bhweffTRZuPau3cvbrjhBowYMQIejwfFxcU4/vjj8fzzzzd674YNG6AoCqZOnYq6ujpcffXVGDRoEBwOB6688koAzTcZS2+qtGrVKhx77LEIBAKoqKjABRdcgNraWgDAzp07cdFFF6Fv375wu9046qijWmze9M4772Du3Lno3bs3nE4n+vXrh/PPPx+bNm1q9N5bb73V7rf10Ucf4dRTT0UwGITP58OUKVPw97//PeP9U6dOxeLFiwEAt912W0aft67u+zVq1CgoioLPPvusydf37NkDp9OJnj17IpVK2cutMt63b1+4XC706dMHkydPxm233dbmfac36Vm2bBlGjhwJj8eDQYMG4a677rL7+73//vuYOXMmSktL4ff7MWvWLGzcuLHR9qZOnQpFUbBhw4ZGr6WXsdYoioJHHnkEAHDcccdlfD7WtttSHv/6179i8uTJ8Pv9CAaDmD17drPnuSVt/Y63RXu+l2eeeSYURcF1113X6LUvvvgCfr8ffr8fX375pb08/TP4wx/+gMMPPxxerxcVFRWoqqrCN998k5XjTD/PL7/8Mo477jiUlJRAURT7OttUk7H0chAOh3H11Vejf//+9jXtueees9/71FNPYfz48fD5fOjZsyeuuOIKRKPRJmOPRCJYunQpxo4da5+XCRMm2OVoX9Z13jAM3HnnnRg2bBhcLhf69++P66+/HvF43H6vdR22ynx6eUz/rQiFQli6dClGjx6N4uJi+P1+DB48GHPnzsXLL7/c7HknImoTof0KgDR3mn/yk58IAJk5c6aIiOzatUsAiKIoUl1d3aH91dTUiNvtFqfTKXv27BERkYkTJwoA+b//+792b++nP/2pABBd1+WEE06QM888U/r16ycAZNiwYbJ9+3b7vddcc42cccYZAkB69uwpVVVVUlVVJddcc02b9nX99dcLAHE6nTJp0iSZM2eODB06VADI4MGDM/YlInL33XcLADn++OPFNE17+TPPPGPHFwqF7OWrV6+2z/eAAQOkZ8+eMm/ePJk2bZroui4A5JZbbmkU1+effy79+/cXAFJZWSmzZs2S448/XrxerwCQu+++O+P969evFwBy1FFHyZgxYyQYDMppp50ms2fPlltvvVVERJYvX97k/qqqqgSAXHHFFaJpmkyePFnmzJljn/MpU6bIrl275KCDDpKBAwfKmWeeKePHjxcA4nK55F//+lej+JctWyaqqoqqqjJ+/HiZO3eujBo1SgBIeXm5fPLJJxnvv+WWWwSAXHrppeL1euWwww6TM888U0aPHi0AxO12y0cffWS/f+nSpTJp0iQBIKNHj7Y/96qqKnnjjTda/tCbsHTp0mY/i9b87Gc/EwBy0003Nfn6b37zGwEgl19+ub3s/vvvFwCiaZoce+yxctZZZ8m0adPsc95WAwcOFABy5ZVXisfjkZNPPllmzJghgUBAAMjNN98sb775pni9Xhk3bpzMmzdPhgwZYpfvSCSSsb0pU6YIAFm/fn2jfVllbMqUKRnLmypXVVVVMnjwYAEgJ510Usbns2vXrmbXs9YFIJdccokoiiJHHnmkzJ8/X0aMGCEApLi4WNatW5exjvU9q6qqahR3e7/jLWnv93Lv3r3Sr18/UVVVXn31VXt5IpGQI444QgDIgw8+mLGO9RlceumloiiKHHvssTJ//nyprKwUANKvXz/ZvHlzp4/TOs8XXHBBxnk+8sgjpaamRkS+LV/prHJw9NFHy/jx46WiokLmzJkjU6dOFVVVRdM0Wblypfzyl7+0r+Gnn3669OjRQwDIggULGsW+Y8cO+/rQq1cvOfnkk+W//uu/pLi4WADIZZdd1mgdADJw4ECZN2+e+P1+mTFjhsyYMcNeZ+HChfZ7P/30U6mqqhKfz2eXk31/K1KplH1dKysrk1NPPVXmzZsnEydOFK/X22TZIiJqDyZA+1lzCZBpmnL00UcLALnxxhtFRGTlypX2D2RHPfTQQwJAZs2aZS/77//+bwEgc+fObde21q5dK6qqit/vl3/84x/28lgsJnPnzhUAcsYZZ2Ss09yNWWuefPJJASAjR46UL7/80l5umqbcfPPNAkDOPPPMjHVM05Tjjz8+42Zn69atUlZWJg6HQ/75z39mvN+6MQMg06ZNy0iO1q5dK36/X1RVlffee89enkql5LDDDhMActddd4lhGPZrX375pQwaNEg0TctICKxzYN2YNJXMtnbDqaqqPP/88/byuro6GTlypACQESNGyKJFiySRSNiv33TTTQJAzjnnnIztvf3226JpmvTt21fefffdjNessjJ+/PiM5VYCBEDuvffejNeuvPJKASBnn312m46nIzqTAG3atEkURWn2OzR58mQBkFGeBwwYIIqiNCovpmnK6tWr27xv6wa1T58+8tVXX9nLP/30U3G5XOL1eqWyslJ+85vf2K/F43G7DD/88MMZ28tWAiTybblq7nhaWw+A/M///I+93DRN+yZ/zJgxGes0lwB15DvenI58L0VEXn31VVFVVfr16yd79+4VEZEf/vCHAkBOO+20RvuxPgNd1+WFF16wlycSCVm4cGGja21HjzP9PK9YsaLJY24pAbIeBKVf06zPdMiQIRIMBjPK9zfffCMVFRUCQP7zn/9kbPPkk08WAPK9731PYrGYvXz79u12ovjXv/41Yx0rhkMOOUS2bdtmL//666+lpKREAGR8J5o7Hsurr74qAOTII4+UaDSa8VptbW2jaxkRUXsxAdrP9k2AUqmUfPHFF3LuuefaT+2tH4YVK1YIAJkwYUKH92f9YD/11FP2st27d4vD4RC3220/TWyLc845RwDIDTfc0Oi1HTt2iMfjEVVVZdOmTfbyjiZAVu3CvjcsIg03DmPGjBFN0+wn1pbNmzdLMBgUp9Mp77//vkyfPl0AyI9//ONG27FuzFRVlc8++6zR69YN3ZIlS+xlVm3Svome5c9//rNdY2NJvynZ96ba0toN56JFixqtc++99woAKSoqsm/eLDU1NaIoigwcODBj+axZswSAPPfcc03GceqppwoAef/99+1lVgI0adKkRu/fvXu3/bS3LcfTEZ1JgES+/Q68/fbbGcs3bNggiqLIkCFDMpZ7PB4JBoMdDddm3dA99NBDjV47/fTTBYBMnjy50WvPPvtskwlDPiVAEydObLROIpGwa8nSa/qaS4A6+h1vSke+l5bvf//7AkDmzZsnr7/+uqiqKr17925yv9Zn0FRNye7du8Xr9YqiKBnXwI4cp3WeTznllGaPuaUESFVV+fzzzzNeMwxDysrKBGi6RvSqq64SALJ8+XJ72QcffGAnHulJpeX9998XAHLqqadmLLeudytXrmy0zmWXXdZoP80dj+WJJ54QoKE2lYhof2AfoC5itXHWdR3Dhg3D73//ewQCAfzpT3/C4MGDs7KPTZs24fXXX0dJSQlmzpxpL+/RowdOPvlkxGIxPPXUU23e3htvvAEAWLhwYaPXKioqMH36dJimibfeeqtTce/cuRMffvghhg4dipEjRzZ6XVEUTJo0CYZh4L333st4rV+/fnjggQeQSCQwdepU/O1vf8PkyZPxgx/8oNn9jRkzBgcffHCj5WeddRaAb48bgD3S3uzZs5vc1jHHHAOgYd6lffXu3RtHHHFEs3G0ZPr06Y2WHXTQQQCAI444AsFgMOO14uJilJaWYtu2bfYy0zTxyiuvwOv14qSTTmp3/E3F0KNHj0b7yTdWef3jH/+YsfyPf/wjRKRReT788MNRXV2NJUuW4OOPP+70/lv67Fp6LZ/P6fz58xstczgcmDNnDoDM70xTOvMdb0pnvpc//vGPMWbMGDz55JOYMWMGRATLly9vcQCIpo6/R48emD59OkQEb775ZlaO89RTT202hpZUVlZi2LBhGctUVbX7ZLa13Fnn9bTTTmtyEBurT1BT59XhcOC4445rtNyKqz3le8yYMVBVFcuXL8eDDz7Yof5hREQtYQLURax5gBYvXozvfe97eOihh7Bx40acfvrp9nt69OgBoGEi0Y54/PHHISKYM2cOXC5XxmvWYAjWAAltsXXrVgBodhADa3lLHYHbwuqI/eWXXzaaONb6b9myZQCA3bt3N1p/7ty5OP3001FXVwev14vHHnsMmqY1uz/rpqC547GOOz22hQsXNhlXeXl5s3ENGDCg1WNvTt++fRst8/v9zb5mvZ4+h87u3bsRCoUQiUTgdDqbjP/73/9+s/H369evyf0EAoG8nqvHKv9PPPEEDMOwl1vzYe2bAC1btgyDBg3Cww8/jJEjR6JXr14488wzG63fVu397KzX0juK55v2fGea0tnveHPb68j30ul02p356+rqcPHFFzf7gMDS1uPv7HF29JrR0jWhudebKndW/DfeeGOz8YdCoSZj79WrV5PX3UAg0Gg/rRk2bBjuuusuRCIRXHjhhaioqMDo0aNx9dVX41//+lebt0NE1BzOA9RF2jIa1ujRowEAX3/9NWpqalBSUtKufVhDXa9ZswaTJ0/OeM26YX399dexcePGZn/Q2yNbk9iZpgmg4Qe0Izci27Zts59ARyIRfPLJJ+0aea4tsX3nO99pcVS+pp4eu93uDu+3pSHE2zq8uBW73+/HGWec0eJ7Dz300A7vJ98Eg0GcfPLJeOaZZ7Bq1SqcdNJJ+PDDD/Hxxx/jyCOPxNChQzPeP2rUKHzyySd46aWX8OKLL2LNmjV48skn8eSTT+Loo4/GmjVr4HQ627z/bHx2rbE+2wNFZ7/jzW2vI99LoGFUTMu6detgGEaLD03aqrPH2dFrRmvlqr3XjMmTJ7e7ZUK2rxfXXHMN5s2bh7/85S9YuXIl3njjDdxzzz341a9+hXvuuQff+973sro/IiosTIDySHl5OY466iisXbsWK1aswMUXX9zmdd977z18+umnAICvvvoKX331VZPvExE8/vjj+OEPf9jqNvv06YP169dj48aNGDFiRKPXraeFzT19bCurpqGsrKzdwyaLCBYvXozdu3fjrLPOwpNPPonzzjsPH330kf0UeF9NDTmcvrxPnz6NYjv//PNbTSLyTVlZGdxut92UpJBmXV+4cCGeeeYZPP744zjppJPs2h+rJnRfbrcbp512Gk477TQAwMcff4wFCxbg7bffxkMPPWTPp9WVrKQrFAo1ei196Pyu0J7vTFM68x1vaXsd+V6++eabuPPOO9GrVy+MHDkSq1atwk9+8pMWJ9/duHEjRo0a1eRy4Nvjz/ZxdjUr/tNOOw3XXHNNjqMB+vfvj8svvxyXX345UqkUVqxYgcWLF+O6667DOeec06gpMBFRWx2Yj3i7sWuvvRZAw1wsO3fubPG96fOxWE3brr32WkjD4BaN/rPmiWlrMzirHf2f/vSnRq/t2rULL7/8st2mvTP69euH4cOH45NPPsEXX3zRrnV//etf4+WXX8akSZPw2GOP4cYbb8SOHTuwZMmSZtdZt25dxlwflhUrVgBARu3ZtGnTAADPPPNMu+LKB7qu23MRvfLKK/t1X9bNevrcOrk0Y8YMFBcX4y9/+QvC4TD+9Kc/QdM0nHnmmW1a/9BDD8Wll14KAPj3v/+9P0NtVu/evQGgye/EypUr27Wtzn4+Tz75ZKNlqVQKTz/9NAA0qnHeV2e+403p6Peyrq4OZ599NgzDwPLly/GHP/wB5eXluOOOO/DOO+80u15Tx79371787W9/y7gGZvs4u1pXXu/aWyZ1XceiRYtw5JFHIpFINHkNJyJqKyZAeWbu3LmYP38+duzYgWOPPRZvv/12o/ds374dl112mf002zAMO0mxOvI35ZhjjkHfvn3x6aeftqmj8aWXXgpVVXHffffh3XfftZcnEglcfvnliEajmD17Nvr379/ew2zkRz/6EUzTxBlnnIF169Y1en3Pnj148MEHM5Z98sknuP766xEIBOx+Pz/60Y9w1FFH4bnnnsNvf/vbJvdlmiYuv/xyRCIRe9l7772H+++/H4qi4Lvf/a69/IwzzsCIESPw+OOP44477mjUjl1E8NZbb3V6IIj95cYbb4Sqqli8eHGTE6WGQiE8/PDDzU6I2FbWE/DPP/+8U9vJFpfLhTlz5qC+vh7XXnsttmzZghNPPLFRc6lIJIL77ruv0aS+pmnipZdeAoCslO+OmDJlCgDgF7/4RUZZffXVV/GrX/2qXdvq7Ofz5ptv4uGHH85Ydsstt2DTpk0YNWqU/bCkJR35jjeno9/Lyy67DBs2bMBll11mN5976KGHkEqlsGjRIoTD4Sb398QTT2RMvplKpXDVVVchHA5jxowZGX13snmcXW38+PGYNm0a3nrrLVx66aWoq6tr9J4PP/zQ/m50RktlcvXq1Vi1alWjpp7r16/Hp59+CkVRmu2jSETUJrkYeq6QoJl5gFqSSCTkvPPOs9cdPny4zJ492570UtM0ey4bEZEXX3xRgIaJP1tz9dVX23M8tIU1Wauu63LiiSfK/Pnz7ckHhw4d2mhCv44Ogy3y7XwcqqrKuHHjZO7cuTJnzhwZO3asaJomxcXF9nvj8biMGTNGAMgjjzySsZ0vvvhCfD6feL3ejOGureF5Z8yYIf3795devXrJvHnz5KSTThKHw9HscLFffPGFDBo0SABIRUWFnHjiibJgwQKZPn26PZfGPffc065z0JHhiluaYFKk+WFlf/Ob39hlZuTIkRllyeVyCYCMuYqsYbD3Hba2pf1Eo1H7XEyZMkUWL14sS5YskbfeeqvZc5DutNNOk/Hjx8v48ePt8tW3b197WVNztLTGmkvE+u+xxx5r9J7q6moBIA6HQyZMmCDz58+X2bNnZ0ywuXv37jbtr6VhfVs6p82Vl0gkIgcffLAAkAEDBsgZZ5wh48ePF1VV5dprr23XMNjvvvuuKIoibrdbZs2aJUuWLJElS5bYx9Zaefzud78riqLIUUcdJWeddZYceuih9pDs6UOoi7RcTtvzHW9Ne7+X1vw8I0aMaDTp7AUXXNBoCHyRxhOhTpkyRebPn2/vt0+fPrJx48ZOH2drw5SLtDwMdnPXmpaGUm/uM9+xY4eMHTtWAEhJSYlMnTpVFixYIKeccor9vdj39wNNDI3f2n5+8YtfCNAwafb8+fNlyZIlcv3114uIyD333CNAw0TN3/nOd2ThwoUyffp0+3qVPpExEVFHMAHazzqSAFn+/ve/y3nnnSdDhgwRr9crLpfLnm372WefFdM0RUTkrLPOavO8Kf/85z/tG4ZkMtmmOJ5//nk54YQTpLi4WJxOpwwZMkSuu+66RnPRiHQuARIRee2112Tu3LnSp08fcTgc0qNHDxk1apRcdtll8tprr9nvs+byaG5y1wceeEAAyOGHH25PGJp+Y/bNN9/IokWLpLy8XFwul4wePbrZG36Rhnl2fvzjH8u4cePE7/eL2+2WyspKOemkk2TZsmUZc3rkWwIk0jC/R1VVlQwcOFCcTqeUlJTIoYceKuedd548//zzdlkS6VgCJNJQtqZNmybFxcWiKEqL22hum83919zNVUsMw7DnqfF6vVJfX9/oPclkUpYtWyazZ8+WwYMHi9frlZKSEhk1apTcdtttsmfPnjbvL9sJkIjIli1b5KyzzpJgMCgej0eOOOIIeeqpp9o9D5CIyOOPPy7jxo0Tj8djn1frxrgt5fG5556To48+WrxerxQXF8usWbPk448/brSf1sppW7/jbdHW7+WWLVvs+cI++OCDRtsJhUIydOhQASB//vOf7eXpCcTy5ctlzJgx4na7pUePHnL22WfL5s2bm42tPceZTwmQSMMDjfvuu08mTpxoX/f79+8vU6ZMkbvvvrvRcXckAUomk3LTTTfJ4MGD7QdQ1ja+/PJLuemmm2TSpEnSu3dvcTqd0rdvXznhhBPk6aefzrheERF1hCIi0lztEFF3smbNGhx33HGoqqo6IDsoE3W1c889F4888ghWr16NqVOn5jqcLjd16lS89tprWL9+fdZGliQiotxjHyAiIiIiIioYTICIiIiIiKhgMAEiIiIiIqKCwT5ARERERERUMFgDREREREREBYMJEBERERERFQwmQEREREREVDCYABERERERUcFgAkRERERERAWDCRARERERERUMPdcBdCc1NTWIRCK5DoMKmNfrRUlJSZOvsXxSrrF8Ur5qqWwSUffDBChLampqcP/99yOVSuU6FCpguq7jsssua/RDzvJJ+YDlk/JVc2WTiLonJkBZEolEkEqlMHbsWPj9/lyHQwUoFArhgw8+QCQSafQjzvJJucbySfmqpbJJRN0TE6As8/v9vIBS3mL5pHzG8klERF2BgyAQEREREVHBYAJEREREREQFg03gKOeef/55vPrqq9iwYQOOPvpofP/73891SEQAgF/96ld4/fXXoevfXiqXLVuG8vLyHEZFBNTV1eG73/0uevfujZ///OcAgI0bN+LXv/41NmzYgJ49e+LCCy/E6NGjcxwpEVH+YQJEOVdaWop58+Zh3bp1qK+vz3U4RBlmzZqFqqqqXIdBlGH58uXo37+/PXJeKpXCHXfcgenTp2Pp0qX4xz/+gaVLl+K3v/0t+1UREe2DTeAo5yZOnIgJEyagqKgo16EQEeW9f//739i6dStOPPFEe9lHH32EeDyOOXPmwOFw4JhjjsGAAQPw1ltv5TBSIqL8xASIiKgFL7/8MhYsWIArrrgCK1euzHU4VOCSySQeeOABXHzxxVAUxV6+adMmVFZWQlW//Vk/6KCDsHHjxlyESUSU19gEjoioGTNnzsR5550Hn8+Hjz/+GHfeeSd8Ph8mTpyY69CoQD399NMYPXo0Bg0ahK+//tpeHo1G4fP5Mt7r8/mwc+fOrg6RiCjvsQaIiKgZgwcPRlFRETRNw6hRo3DKKaewSRHlzNatW/HKK69gwYIFjV7zeDwIh8MZy8LhMDweT1eFR0R0wGANEBFRGymKAhHJdRhUoD799FNUV1fj4osvBgAkEgkkEgmcc845uOSSS7Bx40aYpmk3g1u/fj2OPfbYXIZMRJSXmABRzhmGAcMwYJomTNNEIpGAqqoZQw8T5cKbb76JcePGwe1247PPPsMLL7yACy+8MNdhUYGaPHkyxo0bZ//9xhtvYPXq1bj55psRCATgdDrx5z//GbNmzcI777yDjRs3YtKkSTmMmIgoP/EOk3LuiSeewIoVK+y/33rrLRx//PG48sorcxgVUcMcVcuWLYNpmigrK8OiRYv4RJ1yxuVyweVy2X/7fD5omoZgMAgAuOmmm3D//fdjxYoVqKiowA033MAhsImImsAEiHJuwYIFTbZpJ8q1n/3sZ7kOgahZJ5xwAk444QT778rKSntSVCIiah4HQSAiIiIiooLBBIiIiIiIiAoGEyAiIiIiIioY7AOUZaFQKNchUIFqS9lj+aRcYfmkfMVyR1R4mABlSSqVAgB88MEHOY6ECp1VFptaxvJJucbySfmqqbJJRN0TE6AsseasOe644+whSTtC0zQEAgHU19fDMIxshZcV+RpbvsYFdG1s1dXVWL16dZPzJ3X38pmvcQGMzbK/yyfPc8dNUyb8AAAgAElEQVTka2z5UjaJqHvitz3Lhg4dij59+nR4fRFBKpVC//79oShKp2IxTRPbt29Hr1697JnBOyNfY8tmXPkcW2txbd26FatXr25xG921fLIM5H9s+7t8sgx0r9i68vNsS9kkou6FgyAQEREREVHBYAJEREREREQFgwkQEREREREVDCZARERERERUMJgAERERERFRwWACREREREREBYPDYKf56KOPcOONNzb52l133YXhw4d3cURERERERJRNTICaMHPmTAwZMiRjWWfmTiEiIiIiovzABKgJI0aMwKRJk3IdBhERERERZRn7ADUjEonAMIxch0FERERERFnEGqAm3HfffYhGo1BVFYceeijOPfdcDB06NNdhERERERFRJzEBSqPrOiZOnIjDDz8cRUVF2Lx5M5555hnccMMNuPPOOzF48OBch0hE1G7JZBKxWAwiAofDAbfbDUVRch0WERFRTjABSnPIIYfgkEMOsf8eP348Jk6ciCuuuAKPPvoobrvttoz3b9u2Ddu2bQMA7Nq1C+FwGABgmmaHYxARmKYJ0zQ7fYNixdGZeNLla2zZjCs9pnyLrbNxORyOTq0P5Nfx7K+40mPKt9g6ElcymURdXR0AQFEURKNRpFIp+Hy+nMeWrrPlk2WgY/I1tnz+PInowMcEqBV9+vTB+PHj8fbbb8MwDGiaZr/2wAMPZCRF8+fPBwBs3769y+Nsyc6dO3MdQrMYW/t1NK7FixcDYPlsj3yNrT1xRaNRGIYBXW+43JumidraWni9Xqhq9ruBsnx2jXyNC2BsRJT/mAC1QVlZGVKpFOLxOLxer738oosuwqmnngqgoQZo1apVAIBevXp1eF8iglQqBV3Xs/I0bufOnaioqMjKjU6+xpbNuPI5ttbiau3Gcfny5Vi8eHG3LJ8sA82rra2FaZp2AiQiSCQSCAaDUFW125RPloHuFVtXfp75lnQT0f7HBKgNduzYAafTCbfbnbG8d+/e6N27NwBg69atePvttwGgUxd+EYGqqlBVNWtt9K3tdVa+xrY/4gLyN7aOxpVMJu31Oyqfjmd/xwXkb2zticvlciEUCkHTNCiKglQqBafTaSdE+fJ5drZ8sgx0TL7Gls+fJxEd+HgVSFNbW9to2fr167F27VqMGTOGF00iOuB4PB54vV6kUikkEgnoug6/389BEIiIqGCxBijNXXfdBZfLheHDh6O4uBibN2/Gyy+/DJfLhaqqqlyHR0TUboqiwOfzwePxZDxVJyIiKlRMgNJMmDABr732Gp599llEIhEUFxfj6KOPxvz589GnT59ch0dE1CGKomQM4EJERFTImAClmTlzJmbOnJnrMIiIiIiIaD9hOwgiIiIiIioYTICIiIiIiKhgMAEiIiIiIqKCwQSIiIiIiIgKBhMgIiIiIiIqGEyAiIiIiIioYDABIiIiIiKigsF5gIiIujERQSKRQDQaBQA4nU54PB4oipLjyIiIiHKDCRARUTeWSCRQV1cHVVWhKArC4TAAwOv15jgyIiKi3GATOCKibiwajUJVVTgcDui6Dl3XEY1GYZpmrkMjIiLKCSZARETdmIhkNHdj0zciIip0TICIiLoxl8sFwzBgmiZM00QymYTD4WAiREREBYt9gIiIujGPxwPTNBGPxwE0JER+vx+KokBEchwdERFR12MCRETUjSmKAr/fbw96oCgKa3+IiKigMQEiIioAqsoWz0RERAD7ABERERERUQFhAkRERERERAWDCRARERERERUMJkBERERERFQwmAAREREREVHBYAJEREREREQFgwkQEREREREVDCZARERERERUMJgAERERERFRwWACREREREREBYMJEBERERERFQwmQEREREREVDCYABERERERUcFgAkRERERERAWDCRARERERERUMJkBERERERFQwmAAREREREVHBYAJEREREREQFgwkQEREREREVDCZARERERERUMJgAERERERFRwWACREREREREBUPPdQDdid/vh67rEJEOb8NatzPbSN+WFU+2tpf+b2e3la3YshmXtZ18jK21uHS95a9zr169um35ZBno+PbS/+3stnJZPlkGOr699H87u618PGfWdpqLrbWySUTdD7/1WTR27FgEg0GkUqlOb8swjCxEBASDQZimCdM0s7I9IH9jy1ZcQP7G1lJcwWCwxXWXLFkCAN26fBZ6Geio7lQ+WQY6Jl9j64rPs7WySUTdDxOgLPrggw9w2GGHoby8vMPbEBEYhgFN06AoSqfiMU0Te/bsQY8ePaCqnW/tmK+xZTOufI6ttbh27drV4vq/+93vMHv27G5ZPlkG8j+2/V0+WQa6V2xd+Xm2VjaJqPthApRFoVAIqVQqKxdrRVE6vR1FUex4shFT+nbzMbZsbStfY2strtaenG/fvr3bl89CLwOd2W53KZ8sAx3fbj7G1hWfZzZqxYnowMJBEIiIiIiIqGCwBoiIqBtLJpNIJpMwTRNOpxNOpzPXIREREeUUEyAiom4qkUigrq4OIgJFURCLxRAIBOByuXIdGhERUc6wCRwRUTcViUSgKApcLhecTidUVUUkEsna0MJEREQHIiZARETdkIjANM2MEa9UVYVpmkyAiIiooDEBIiLqhhRFgcPhQCqVsid/TKVS0HU9K8MnExERHajYB4iIqJvyer0wDAOJRAIA4HA44PP5chwVERFRbjEBIqKsME3Btrok9oYN6CrQu9iJEq+W67AKmqZpKCoqgmEY9t+s/SEiokLHBIiIsmL9nji+3BmHx6EiZQLb61IY09+DoJeXmVxSVZVJDxERURr+KhJRp8WSJjbuTaKHT0fQq6PcrwMCbKlO5jo0IiIiogx8NEtEnWYKYJgCh6bYyxyagoRh5jAqAmAPfmCNCKfrOhRFaX1FIiKibooJEBF1mktXUOzWsCdsoMynwTCBUMJA36A716EVNBFBNBq15/5RFAVutxs+n49JEBERFSw2gSOiTtNUBSP6uOF3qthRn8KeSAoDSp3oH3TmOrSClkqlEA6Hoes6XC4XdF1HNBpFMsmmiUREVLhYA0REWeF3aTh8oBfRpAlVAbxOlbUMOWaN/mYNgmD9a5psmkhERIWLCRARZY2uKQhoHPo6X1gJj9X8TUQylhMRERUiJkBERN2Uw+GA2+1GLBazl7ndbjgcjhxGRURElFtMgIiIuilFUeDxeOzaH4fDAZfLxaaJRERU0JgAERF1U4lEAvX19XafH9M04XQ6mQAREVFBYwJERFkhItgTNlAfM6CrQFnAAY+DfU1yxTRNhEIhKIoCl8sFEUE8HofD4YDX6811eERERDnDBIiIsmLjngQ+3xmHpgApU1BUncSY/l54nUyCcsE0TRiGAZfLBaChOZymaUilUjmOjIiIKLd4Z0JEnRZJmPjPrjg0pWGUMY9DRX3MwDfViRxHVrgURYGqqvZQ2EBDLR1HgCMiokLHGiAi6rSUYWJzdQJxQ6AAMAXwOBT0DHC0sVzRNA1erxehUMiu9dF1HR6PJ8eRERER5RYTICLqtGhKUB1Jodito9irIWkI1u+O49A+nHAzlzwej93sTVVVOBwOaJyniYiIChwTICLqPAH6l7oQihnYE2qobejh11HmYw1QrjmdTjidzlyHQURElDeYABFRpzl1BcVuDb2LHDAEgAhCMQNeF/ubEBERUX7h3QkRdVqJR8OgMifCCROxpIFoSlBZ5kKZj89YiIiIKL/w7oSIOk1RFAwudyHo0xFPCpy6glKvBlXlhJtERESUX5gAEVFWKIqCHqzxISIiojzHJnBERERERFQwmAAREREREVHBYAJEREREREQFgwkQEREREREVDCZARERERERUMDhkExFlhYhgT9hANGFC1xSU+XU4NA6DTURERPmFCRARdZqI4D+74vjP7gQUBTBNQUXAgcP6epgEERERUV7pVgnQl19+iVdeeQUfffQRdu7ciUAggIMPPhiLFi1C3759W1z3lVdewb333tvka4888giCweD+CJmoW6iLGnh3QxixlEBTGyZB3VabQEVAR7+gM9fhEREREdm6VQL09NNP49NPP8WkSZNQWVmJ6upqvPDCC7jqqqtw9913Y+DAga1uY8GCBejZs2fGMp/Pt79CJuoWNu9NYMPeBPqWOKEowOaaJLxOFfGUmevQiIiIiDJ0qwRo1qxZuOaaa+BwOOxlxxxzDC6//HL87//+L6655ppWt3H44Ydj6NCh+zNMom5nVzgFr1OFpipw6QogwPa6JBwax1khIiKi/NKtEqBDDjmk0bI+ffpgwIAB2LJlS5u3E4lE4HK5oGlaNsMj6rY8Dg39S53YU59CKA4kDUFZQENFoFtdYg44IgLTNCEiUFUVqsqElIiIqNvfnYgIampqMGDAgDa9/6abbkI0GoWu6xg3bhzOO+889OnTZz9HSXRg612soyaawqByF5KGoD5mYEQvN9wO3nDnioggFAohHo9DROBwOOD3+6Hr3f6yT0RE1KJu/0u4Zs0a7NmzBwsWLGjxfS6XCyeccAIOO+wweL1efPXVV3j22Wdx3XXX4Z577kF5eXkXRUx04OkfdMIQYEt1ArqqoLKHC4PLXbkOq6BFo1HEYjE4HA4oioJkMolQKITi4mIoCkfmIyKiwtWtE6AtW7bggQcewPDhw3H88ce3+N7Jkydj8uTJ9t8TJkzAuHHjcMMNN+Cpp57CJZdcsr/DJTpgqaqCg8pcGFjaMOKbpvIGO9eSySQ0TbObvTkcDiSTSZimyea9RERU0LptAlRdXY3bb78dXq8X119/fYd+8EeMGIFhw4Zh3bp1Tb6+bds2bNu2DQCwa9cuhMNhAIBpdnzkK6vNvmmanX5Ka8XRmXjS5Wts2YwrPaZ8i62zcVmDg+zP8mktMU1pdVv5ep7TY8q32NoTl4jAMAz72mf1BUqPozuVT5aBjsnX2PL58ySiA1+3TIDC4TBuvfVWhMNhLF26FD169OjwtsrKyvDNN980+doDDzyA2267zf57/vz5AIDt27d3eH/7w86dO3MdQrMYW/t1NK7FixcDYPlsj3yNrS1xGYaBaDQKAFAUBaZpwul0IplM5jy2prB8tk++xgUwNiLKf90uAUokErjjjjuwdetW3HHHHW0e/KA5O3bsQHFxcZOvXXTRRTj11FMBNNQArVq1CgDQq1evDu9PRJBKpaDrelaexu3cuRMVFRVZGf0pX2PLZlz5HFtrcbV247h8+XIsXrx4v5bPaNJE0hA4NaXVARDy9Tznc2ztjSuZTCIej8M0TTgcDrjd7owYulP5ZBnoXrF15eeZb0k3Ee1/3SoBMgwDd911Fz7//HPceOONGD58eJPv27t3LyKRCHr16mWPiFRbW9so0Xn33Xfx1VdfYebMmU1up3fv3ujduzcAYOvWrXj77bcBoFMX/vTharPVUTlbw9/ma2z7Iy4gf2PraFzWk//9VT437Ynjq90JpAyBS1dwSG83KgKOZrb0rXw9z0D+xtbWuFwuF1yu5gej6E7lk2WgY/I1tnz+PInowNetEqCHH34Ya9euxVFHHYX6+nqsXr064/XjjjsOAPDoo4/i1VdfxYMPPoiePXsCAK677jocdNBBGDJkCHw+H/7zn/9g1apVKCsrw5w5c7r8WIgOJHtCSfxjQxjJlMCpq3DrCv79TRRHDVLhd7HDPREREeWPbpUArV+/HgCwdu1arF27ttHrVgLUlGOOOQb//Oc/sW7dOsTjcQSDQUyfPh3z589HMBjcbzETdQdf705g/e44egYcSBoG9kYEAZeKSMJkApRjhmFARKAoCkd/IyIiQjdLgH7605+26X1XXnklrrzyyoxlixYtwqJFi/ZHWETdmohgW20CTk1FwN1wg63EDeysT4ENTXIrFoshHA7DNE2oqgqv1wuPx5PrsIiIiHKqWyVARNT1RACfS0OJR8PukAGnDoTiBoo9Koo8rHHIFWviU03T4HA4YBgGQqEQdF23h5wmIiIqREyAiKhTVFVBn2IHInEDgIJ4yoSmAGP6eeHUWQeUK9a8P1azN03TkEqlYBgGEyAiIipovDshok4bXO5CqU/Hjvok9kYM9C7WMbRn86OPUdcRkYx/szmiFhER0YGINUBE1Gn1cRPRpIl+JU5omoKUYeKbmiSGVLAJXK44HA44nU4kEgmoqmrPBcTaHyIiKnRMgIio07ZUJ6CpKioCDZeURMrEpuok+gWdrU6ISvuHqqoIBAKIxWL2hJJut5tzoBARUcFjAkREnZYyBQ7126ZVuqbANAWm5DAoskd+IyIiom/xUSDlpVQqhVgshng8DtM0cx0OtaLMpyMUN5A0BKYIdoVSKPFqcOvsb0JERET5hTVAlHfi8Tjq6uqgKIrdbyEQCEDXWVzzVb+gE7GUYMveJEwIgl4NI3p7oKpMgIiIiCi/8I6S8oppmvZcJdbwvbFYDLFYDH6/P8fRUXM0VcHAUif8LhUiQLlfh4t9f4iIiCgPMQGivGKaZqN5SnRdh2EYOYyKWlMXNfDRN1GEEg1zAZX5NBzax8MBEIiIiCjv8O6E8oqqqtA0LSPhMQzDrg2i/GOags+2x5BICXoXOdEroGN3yMDXu+O5Do2IiIioEdYAUSOpVAqmaUJV1S7vd6OqKnw+H0KhEJLJJBRFsYfvpfyUMAShuIkST0OSqigKitwqaiKstSMiIqL8wwSIMoTDYUQiEQANN7Jer7fLh9F1u90ZtUBOp5Nzl+Qxh6ZA14BYyoTf6reVFAR9rLUjIiKi/MMEiGyJRALRaBQOhwOqqsIwDEQikZzMHs8Z6w8cmqpgWE83/v1NFOG4CROAW1cwqMyV69CIiIiIGmECRDbTNCEidm2LVQuz76AERPuq8OsYUOrEnnAKbk3B4AoXijysASIiIqL8wwSImiUidl8gouaYpuCzHTFsrk5CAVArApdDxXCXxnmAiIiIKO8wASKb0+mEruuIxWJQVRUiApfLxQlIqUXVEQObq5Oo8OvQVAWGKdhck0R5QEd5gDWHRERElF94Z0s2VVVRXFyMaDRq1/x4PB7WAFGLEoYAIqiOpLCrPglAhapKw3IiIiKiPMMEiDJYw1ATtZVTV7CjNomvdsURS5lIpgQmgCHlbvQtceY6PEJDc1ZFYXNEIiIigBOhElEn+Z0KaqIGqqMpuB0air06/C4VH30TRoq1QDllGAbq6+tRXV2NmpoaJBKJXIdERESUc6wBorxgmiYAsLndAcgQBS6HgoN7eeB1qNBUQEwgFDMz5gairiUiCIVCSCQS0HUdhmGgrq4OxcXFHNWRiIgKGu82KadM07SfUFdXVyMcDtvJEB0Y3LqCoFdHPGGi2KPB41ARShgo9mjQOApczhiGgWQyCafTCU3T7KQnHo/nODIiIqLcYgJEORUOhxGNRqFpGlRVtf+mA4eqKpg82I+AR8N/dsWxuToBh67iiEovPA5eYnLFNE3E43FEo1HE43GIsDkiERERwCZwlEPWDZrL5bI7aIsIEokEB2I4wPQJOjFnXBCb9saRMoFeRToHQMghEUE0GkUymUQsFoOmaYjFYnC5XHA6+bkQEVFhYwJE3R77F3WNUp+OUh8vKfkgmUwikUjYw9onEgn7byZARERU6Hi3Qjmjqircbjfi8bg92WoqlYLf78/K9lOpFEKhEFKpFBRFgdvtZs3SfhRNGNhVb0DTgDK/DpfOhDNXrGGvRQQiAlVV2beOiIjo/2MCRDnl9Xqhqiri8TgURYHf74fb7e70dq3BFVKpFJxOJ0zTRCQSgaZpWdk+Zdpem8BfP67FznoDCoBBPZw48ZAiBFkjlBNWwhOJRAAAmqbBMAxEIhF4PB6OAkdERAWNj2gpp1RVhd/vR48ePVBaWmonRJ1lmiYMw4DT6YSiKPYgCxwBK/viKROrv6hHdcTEQWVODCh1YcPeBN5eH4ZpsuN9LjgcDrjdbiSTSQANI8L5fD5ommYvIyIiKlR8PEvd1r5NfqxmQZRdkYSJPSED5X4dqqJA1YCgR8Ou+iTihsDDobBzwmry6XA4oKoqNE3jAwAiIiIwAaJuyupfFIvF4HA47GSIzd+yT1MUuHQFe0IpVCuACSAUT2FwuQs6k5+c0XXdrgVSFAWJRAKapnEQBCIiKnhMgKhbsprWqapq3/h5vV7e/O0HAbeKgaUO/OVfdVAhEACKKDhmsBMOjQlQrqiqikAgYA+H7XQ64fF47AFHiIiIChV/CanbspIg2r8URUGJV8fEg7wIxU04FAXlAR2KqiBlCHQmQTlhDYIQDochIvB6vdA0LddhERER5RwTICLqtJQJDC5zw+dquMFOGoLamAFTBAAToK4mIqirq0NNTQ1EGgaiiEQiSKVSCAaDnBOLiIgKGn8FiajTyv066mIGDLNh3pk94RSCHo1N4HLEMAxEo1EoigKXywW32w1d1+0kiNrHSiL3h1QqhUQigWQyuV/3Y80JRURErAGiLDFNE6ZpQlVVPl0uQJVlLsQNE9tqU4A0TIR6cC83R93LIetm1/oMrH95E9x2yWQS1dXVUFUVDoej3cP0W3MvpVIpmKZpD8dvDVARj8cRDocBNFxDHQ4HfD4fdF3P2nVURBCLxRCNRgHA3oe1fet1Kz6Xy9Vl80SJCEzThKIoUBQFyWTSnriac1UR0f7EBIg6LRwOIxqNQkSg6zoCgQA7WhcYh6bg0N4eDOphQgB4HCo0jgCXM6qqwul0IhqN2v1+DMOA2+0u+H5AhmHYo0Lqut5skh6PxxGLxex+hJFIBCICv9+fsY718EdRFKiqar+WPhmz1STR6pcYj8cRj8eRSqXsZCccDqOurg7RaBQej8cexMXarkVEkEgkUF9fb0/srOs6kskkotEoYrGYPeiLNRJmKBSCpmlQFMVOhKzjsPqJWTWENTU1CAQC8Hq9bUpC0hNtK6FpS5JtmibC4TASiYT9d/pUBbqut2vQjvRkig/hiKg1vEulTonH44hEIvaPeDKZRF1dHUpKSvgjVGAURbH7AFFuqaqKkpIS+yZTROB2u1FSUlJQDycMw4BhGAAabqhTqRRCoZCdALlcrozakHTxeNyurbFuquPxuF0LZG0rFArZky77/X57e8lkEslkEi6XC7FYzK4dt2o3IpEIFEWBrut2IuBwOKDrOhKJBLZv3w632w1VVeHxeODxeAA0PHCKx+P29uPxOBwOB2praxGLxQA0fP7RaBTFxcVIpVL2cQANiUI4HLb3FYvFoOs6TNNEIpGAYRiora1FNBqFrut2rZAVS/q5DYfDdo2NdZxWEuX3++FyuTLOqYggGo0iHo/bD818Ph8Mw0BdXR18Ph+8Xi8A2Ods32009zmHQiG7ead1vqykLJVKIZVKwTAM1oASEQAmQNRJ1hwj1lNlp9NpP9nkkNNEuaPrOsrLyxEMBiEi0DStW9X+WDUhhmFA07RGtRXJZBL19fX2Ta/D4YBhGFAUBU6n0276ZdU0NLcPq2mvxTRNhEIh1NbW2smly+VCfX09QqEQPB4PfD6fvW48HreTE6fTCbfbbV8bY7GY3QzO2o7H47H7BFm1T+Fw2P78rJit462trUUoFMq47jqdTvv4NU2DrusIBoOIx+Ooq6uzE0Ov12sng5FIJCNRsmqFfD6fneRZtUbptVuapsE0TezcuRMul8suY9aDsPTPJRqNIhwO29MTWJ+TdWzp/dOs7balHIRCISSTSei6bid4iqLA7XZntFCIRCKIRCKNavGIqPAwAcoiv99vX4A7ylo3G0+prCZp2er82lRs1o+8Jf3/W9pnNmPL5jmztpOPsbUWV2tP9nv16tVtyyfLQPPSy8W+6xwo5dMaIMC6QbduemOxmP2U3+l0wuv12vu3kg7rb2tQiJKSEgCwa3WSyWSjCZKtWoN4PI6amho4nU5omgaPx2M3M7Piicfj9nXPau7m8/mQSCQQiUTs/jVWrY3D4YCqqhARJJNJRCIRxONxe32fz4dUKgWHw2HHaBgGEokE3G53xnlOJpN2EmU1H0skEgiFQvY5cbvdSCQSqKursx9WOZ1OpFIpu/+RNVeUlehZtWXp/XGspnlWomLNLWUlRFZyadUaWTVK1udumqZdq6SqKjRNs5NYq9bHqq2zzr/H42m1bFrnxorF2pdVgxeJROyE0+VyIRqN2kliW8smEXU//NZn0dixYxEMBrMyypL1Q9BZwWDQbqOeLemxWT8c1tNDwzDgcrnsH7CujC1b5wzI39haiisYDLa47pIlSwCgW5fPQi8DHZWv5dNKXKx+KwDs+YzC4bB902vV5lhJgzX4gJVwALCThPSBDKxag32/E1ZCUFpaavet8Xg8cDqdqK+vtxOY9CZ2FsMw7AQmkUjYgwt4PB67SaLL5bL731jJj5Uw1NTU2M3OrHNpHYdVG+V2u+2malYzNKupm/X/1nutJnJWk7JAIGDHYk0SbSUOVm1aJBIBAPh8PgAN13eHw2EneFZzMitBss6DYRgIBAJ2QmS9xzo+qzbOqpGMRCJ27V36bwkAu9lda2XT6tOVnsBZcSWTyYzyWFRUZNeupdfqtVY2iaj7YQKURR988AEOO+wwlJeXd3gb1o9q+o9SR5mmiT179qBHjx6t9sdJ/8Fs7mlYU7FZT/OsJgYej6dNIyW1J7bWZPOc5XNsrcW1a9euFtf/3e9+h9mzZx+Q5bMr48rn2LIZV1fH1pHymUgkEI/H7f4nhmEgHo/bnePTm1dZN9fWsRiGAYfDYb/HugG3boZN04TT6YTP52vUNNAakS0cDqO4uNjevq7rdu2LVZtg1VCYpmnHZPX10XUdLpfLTmasWpuioiLU1tbCNE37WJLJJBKJhN1/Kz0Wq3bLGmRm69atdjM3j8djrxuPxzNqYqyHUVbzP5fLZde+WOfT2p+VbCYSCcRiMTtuK6nSdd1OOK2+OemDOFg1KrW1tXZriH0HMbBGvrP6NVnn1Ol02sUaGlEAACAASURBVIPnWAMZWLVIrZVNXdfh9XoRjUbtxFRVVTt5s5rXiQhqamrg8XgyEq62lM39xTqu4uJibNiwIeNzt/zsZz/DDTfcgFtuuQW33nprF0fYcStXrsRtt92GDz/8EKFQCABHoNzX1KlT8dprr2H9+vWorKzMdTgFhwlQFlmdMLNxA2YNC9rZbVjxtLQtaxQgi9frtX882hKb9UO5P2Jr7zazde7zMbbW4mqtZmf79u0HZPns6ris7eRjbPsjLmu7+Vg+9x1aP72fiNX0SlVVO6mx9p3eXM266bJuigOBgF1bkt5nZd9jAWAnCFbzMmu7oVAIDofD7q9jJT5W8zRrXet1qxbDGizB4XDYN+bpNRRWH6DS0lK7psJKJKxEzul0wuVywe/32+vX19fbtRpWQpFe82IlSpqmwTAMewAFt9sNt9sN0zThdrvtmiJFUeD1eu3aJKsvUPrnUFRUZNc+6bqOnj17IplMYseOHfZQ2/v2y7L63lj9f4LBIHw+X5PlZd8hsltinYtEIgFFUezaOmvwD6vJYjweR2lpaUZzOSA7teKdUVtbi1/+8pe4/fbbcxpHtmzatAmnn346EokETjzxRFRUVOQ6JOoCB1pCxwSowFlt0NPbbUejUTgcDg5iQEQ5ZSU3VgJiJTNWLYs1NLV1w27dcCuKgqKioowhmhVFgc/na9TfpylWTYXVhMuqqbGan1lNy4LBIIqKiuwbaKtDv/W+kpIS1NXVoa6uzu7TUlpaaiceHo/H7kNkJU9W7UlL/VKsfjnW+1wuF+rq6uzBAKwmbrFYzK75KS0tzRh5zuPx2DU/1dXVdlM8XddRWlpqN+Ozkkyrn47FSoLSh652uVwIhUIoKipqshbQaoJnJXzZGinU+vz3jVFRFPj9fjidThiGgVgs1mzClSvWCHr33nsvrrrqqm7RHG/VqlUIh8P40Y9+1G2Suv3h0UcfRSQSQd++fXMdSkFiAlTgrCYhVrJj3XBks38BEeVOW5+i5yOHwwGXy2U/2bcSEesJvlXrYtXOpPcXsUZ2s27srdqVtnC5XAgEAqirqwPQ0BfGWte6YU2v9d63CXF6UlBaWmr3PbHm7AG+7Y9SV1dnN/UqKipqshlUU6wmcFaTskAggLKyMnv0N+tcud1uuylbWVkZ3G63fb6spDI9kUkfHtuqVWppctSOlKuunCLB+rysJor59j1QVRUXXngh7rvvPvz85z/HT37yk1yH1GlbtmwBABx00EE5jiS/DRgwINchFDRO1FLgrB+DbI+iRUS5Zc0ls3nzZnzzzTcZzVwPFNaNvTUxZ3FxccYQxlZNtTX4QTqrViAYDCIYDMLr9bbr5tflctnrt7au1ezMSm7S36uqqp3IpTe30zQN5eXl6NevH/r27Yt+/fqhrKyszcmBdW6sc1JcXIxAIIDS0lL06dMHffv2xYABA9C3b1/06NEDwWAQgUDATnDSY3Q4HHYNinUuPR4PioqK4Pf72zQhKnXcD37wA3g8Hvz617/Gnj172rxeJBLBHXfcgZEjR8Lj8aC4uBjHHnssVqxYkdX42rqfNWvWQFEU3HLLLQCAxYsX2w9f2tp/KRKJYOnSpRg7diz8fj/8fj8mTJiARx55pNF7r7/++v/H3p2HSVGd+wP/nlq7epmeFWYAWZQAKoIIBHG5ShIVr2tMNBpNFMUtUROvSfxlMW55osbE5SZxQVFwT0zMdUnUGBXcUINxiwpoEFmGZYZZequu7ZzfH0OV08zWM9Mz3TPzfp6HR6e6q+p0dXV3vXXOeV8wxnDKKad0eKyxsRFjxoyBLMt45ZVXguVnnXUWGGNYsWIFnn76aRxyyCGIRqOoqKjASSedhDVr1nTZtjfeeAMnn3wy6urqoGkaxo0bh8WLF2Pjxo0dnnvVVVeBMYZly5bhzTffxLHHHouqqiowxvDOO+8AaBsyxhjDhg0bctZljGHixIlwXRfXXnstJk+eDMMwsPfee+Pee+8NnvfCCy9gwYIFKCsrQ0VFBb797W93ef64rovbb78d8+fPR1lZGQzDwP77749bbrml0yGgEydODL4j7r77bsyYMQOGYaC2thbnn38+Wlpagudu2LABjDGsXLkSADBp0qTgfW//PWPbNm677TbMnTsXVVVVCIfDmDhxIo499tiCn7P5oB6gEc6/gEin00FvUDgcpuFvhAxhruuioaEhyIzmOA527NiB0aNHdxgmVOr84WTDkZ8MoD/rdzb/cvfv71Lr9SC56urqcMEFF+Dmm2/GjTfeiOuvv77HdZLJJBYsWIC33noLNTU1OPbYY5FOp/HCCy/g5ZdfxqpVq3Drrbf2u2292U9tbS3OPPNMvPPOO3j33Xdx8MEHY/LkyQCA/fffv8d97dixA0cccQTee+891NbW4rDDDoMQAq+99hrOOussrF69Gr/97W+D51977bV47rnn8Oijj2L58uU488wzg8fOPfdcbN26FT/96U9xyCGHdNjXo48+ittvvx1z5szBcccdh/feew9/+ctf8MILL2DlypWYOXNmzvNvu+02XHzxxQCAuXPn4tBDD8XatWuxdOlSPPHEE1i5ciX23nvvDvt56aWXcN5552HKlCk48sgjUV9fn/dNjlNOOSUIcvbaay+sXLkSZ599NgAgFovhtNNOw4EHHoijjjoKq1atwv33349PP/0UL730Us5n3jRNHHPMMXjxxRdRWVmJAw88EKFQCG+88QYuvfRSvPjii/jLX/7Sabt+9KMf4dZbb8Xhhx+OyZMn49VXX8WSJUvw0UcfYeXKlcEw0zPPPBPPPPMMtm/fjq997WtBDbP2Tj/9dPzpT39CLBbDoYceirKyMmzZsgWvvPIKUqkUTj311LyOS8EIUhBbtmwRV155pdiyZUu/tsM5F7ZtC855v9vkeZ7YsmWL8Dyv2+dlMhmxceNGsXHjRrFp0yaxbds2kUqlSqJt+Shku4Qo3bb11K7uzsGhfH4OdruEKN229eYz/fHHH4vNmzeL+vp6UV9fL/7zn/+IhoaGorVtoM9POgf6plTbNpjvZ6G+H3sLgJBlWQghxLZt20Q4HBaRSETs2LEjeM51110nAIgrr7wyZ92LLrpIABALFiwQiUQiWP7RRx+JUaNGCQDiySef7Hcb+7KfK6+8UgAQ9957b6/29d///d8CgPje974nstlssHzbtm1izpw5AoB4+umnc9b58MMPhWEYIhaLifXr1wshhFiyZIkAIObOnSscx8l5/plnnikACABiyZIlwXLOubj88ssFALH//vvnrLNq1Sohy7IYO3asWL16dc5jd999twAg5s2b1+kxACBuuOGGTl/vYYcdJgCITz/9NGe5v9706dNzzoUXXnhBABB1dXWiqqpKPPXUU8Fjra2tYt999xUAxAsvvJCzve985zsCgPjGN74hWlpaguWJRCI45rfffnvOOhMmTBAARG1trVizZk2wvKGhQUyePFkAEM8//3xer0cIIdavXy8AiAkTJojGxsacx0zTFK+99lqnx2gg0RA4gmw2GwwvKSsrg6ZpQfE+QsjQI9pN/he7FSsmhJSe0aNH48ILL0Q6ncYNN9zQ7XPT6TSWLl0KSZJw2223IRaLBY9NmzYNP/vZzwCg3z1Ag7UfAHjnnXfwt7/9DXPnzsVNN92U07M5evRoLFmyBABw++2356y3995749e//jWSySROP/10fPTRR7j00ksRDofxwAMPdJlM5KCDDsK5554b/M0Yw7XXXotx48bhnXfeyRk2d/3118PzPNxxxx2YPXt2znbOOeccHH/88XjjjTfw9ttvd9jPfvvthx/+8Ie9PyAAbrnllpyyAAsWLMCsWbOwdetWHH300TjmmGOCx8rKynDeeecBQDAUDWjrVbvrrruwxx574N577w3S+gNtvUhLly6Fpmkdjqvv2muvxdSpU4O/q6urccEFFwBo693Kl59qftasWaiqqsp5LBQKYf78+Xlvq1AoACJB3QSfn/aVEDI0+amSk8kkEokEWlpaYJpmpymfCSGl4fLLL0ckEsHtt9+O7du3d/m8t956C6Zp4oADDsC0adM6PP6tb30LAPDqq6/26+bHYO0HAP7+978DAE488cROh2L5c4LefPPNDo995zvfwTHHHINVq1bhwAMPRDqdxs0334wpU6Z0ub/Ohlupqoqvf/3rAICXX34ZQFsSmeeffx7hcBhHHXVUp9s69NBDAaDTth177LF9GoKqqioOP/zwDsv9xBJHHnlkl49t3bo1WLZixQo4joOFCxd2Oty2trYWX/jCF/D+++/nFJz2dbYf/7i2309Ppk2bhkgkgr/+9a+48cYbUV9fn/e6A4UCIBJkExK7KnT7dS0GM1MPIaRw/FTGwOcFOuPxODjnRa95QgjpXE1NDb773e8ik8l0Ow/Iv3jsqtZKeXk54vE4TNNEc3Nzn9szWPsBECQC+OlPf5ozgb79v1QqhcbGxk7XX7p0KUKhEBKJBI4++uigN6QrEyZM6HS5/1r9197Y2IhUKoVMJhNkn9z9n9/D01nb+prprba2ttMbVv7cms5SZ/uP+Zkvgc+P61133dXlcf3ggw8ghEBTU1OHbY4bN67DMr8nsP1+elJWVoa77roLuq7jRz/6EcaOHYupU6figgsuwKuvvpr3dgqpV0kQ/vGPf+Dhhx9GfX09amtrceKJJ+KEE07o8vk33HADnn32Wbzwwgv9bigZOOFwOKgZAbQFRJ1NYCOEDB2yLKOysjK4mcEYC2rbdFdjhhBSPD/84Q9x22234Y477sCPfvSjPm9nsBJfFGo/fg/SIYccgr322qvX6z/xxBPBNczatWuRSqUKch3jtysajeJrX/tat8/dd999OyzrawKXnm5A53uD2m///vvv3yGxw+46S6hSyBvhp512Gr7yla/g8ccfx9///nesXLkSd955J+688078z//8D37zm98UbF/5yPtX8Ac/+AFuvvlmAJ+PL7/vvvswf/58PPjgg51G02vWrMkZi0hKkyRJiEajQXao9pXXCSFDm38Xsf28IEJIaaqursbFF1+M6667Dtdddx3GjBnT4Tn+ss8++6zTbbS2tqKlpQWGYfSrsOpg7Qf4vKfhxBNPxGWXXdardT/++ONg3s/ChQvx2GOP4ZJLLsE999zT5TpdvSZ/uf/a/dpZkiTh3nvvHXLfn/5xPeSQQ3Iy6BVLTU0NFi9ejMWLF0MIgWeffRbf+MY3cNNNN+Hss8/uNIgcKHld5T755JO46aabIMsyzj33XPz+97/HZZddhurqarz22muYO3cu/vnPfw50W8kA8gv40dA3QoYHv3ZLMplEJpOBZVk5tWoIIaXpsssuQywWw5IlS7Bly5YOj8+ePRuGYeCtt97Cxx9/3OHxBx54AABw8MEH9+v3fLD2AwBHHHEEAOAvf/lLr9ZzXRdnnHEG0uk0brrpJjzwwAOYNm0a7r33Xvz5z3/ucr0//vGPnW7LX8dPna0oCg4//HAkEgk8//zzvWpbKViwYAFkWcZTTz0Fx3EGdF9++v18h1kzxrBw4cIgmcMHH3wwYG3rTF5n7G233QbGGB5//HHccccduPDCC3HjjTdi3bp1OOWUU9DY2Igvf/nLQ/LkIISQ4UYIAdM0wTkH5xy2bQf1GugGByGlraqqCpdccgksy8LSpUs7PB6JRHD22WeDc47vfve7OUWO161bh1/84hcAgEsuuSRnvd/97neYNm0afvzjH+fVjr7upy/mzZuHI444Aq+++iq++93vIpFIdHjOu+++i2eeeSZn2TXXXIM333wTxx13HM4//3wYhoEHHngAqqrivPPO63Ky/SuvvNKhh+jKK6/Exo0bMWPGjCCxAdA2L0mSJCxatAgrVqzosK1UKoV77rmn0yQCxTZ27FicffbZ2LBhA0477bROk2t88skn3QaL+fJ7zdauXdvhsbfffhuPPfYYbNvOWd7U1IQ33ngDALDHHnv0uw29kdetwNWrV2Pu3Lk4+uijc5bH43E88sgjmDVrFn7yk5/g2GOPxcMPP4wTTzxxQBpLRgbXdWGaZjBXIRQK0V1rQnrBcRyYpgld12EYRpDcxPM8ygRHyBBw2WWX4be//W2ngQAAXHfddXj99dfx3HPPYc8998Rhhx0WFCjNZrO45JJLcNxxx+Ws09jYiLVr1/Yqe1df9tNXDzzwABYuXIjbbrsNDz30EPbff3+MGTMGra2teO+997Bp0yZ873vfw8KFCwEAq1atwi9/+UuMHj06J1CcPXs2rrrqKvz0pz/FWWedhWeffbbD0LULL7wQixcvxp133om99toL7733Hj744AOUlZVh2bJlOc895JBD8Pvf/x4XXXQRFixYgOnTp2PKlClQVRUbNmzAO++8A8uycNJJJ/WrsPFAufXWW7Fhwwb8+c9/xjPPPIP9998f48ePRzqdxocffohPPvkEJ5xwQo9znHpy/PHHY/ny5fjmN7+JI488Mki5fffdd+Ozzz7D1772NcTjccyZMwe1tbVoaWnBSy+9hGQyieOOO27QU2HndSuwtbU1SK/XmcsvvxzLly+H53k45ZRTcP/99xesgaR//Lu/tm132S3pZ4YqhexQruuitbUVpmkinU5j+/btqK+vRyaTKXbTCBky/Pk+fm+P/+NP9YAIGRoqKirw/e9/v8vHY7EYVq5ciauvvhrV1dV44okn8PLLL2POnDl46KGHClKbZzD3AwCjRo3Ca6+9hv/93//FPvvsg7fffht/+tOf8N5772HPPffEjTfeiB/84AcA2npdzjjjDHieh3vuuSenXg4A/L//9/9wyCGH4LnnnsMtt9zSYV+nnHIKnnjiCciyjMcffxybN2/GCSecgFWrVmHWrFkdnn/BBRdg9erVOPPMM5FMJvHUU0/h2WefRSqVwumnn46nnnoqp8ZOKTEMA08//TSWL1+OefPm4aOPPsKf/vQnrF69GjU1Nbj66qvxq1/9qt/7Oemkk3DzzTdj3LhxePLJJ7F06dIgMD3wwAPxi1/8ArNnz8batWvx6KOPYvXq1ZgxYwbuueeegvRA9RYTeRR8qaurw957791jNrennnoKJ598MhzHwa233orVq1fjvvvug+d5BWtwqaqvr8eSJUtw3nnndTppMV9CCLiuC0VR+j3ZznVdbNy4EdFoNEh3GA6Hg2QHQNud4mQyCc45hBAwDAPhcLjTYTKFbBvnHNu2bUNtbW3OvkzTDNpjWRYYY3BdF6FQCJWVlZ1mVClku7prW18MxjHzdXcOluL5WarHuZTblm+7bNtGS0sLOOfwPA9CCDDGUF1dnZPpZzidn3QODK+2Deb7WajvR1L6zjrrLCxfvhwvvvhip3V2yMiR1zfUzJkz8frrr+eM/+zMsccei2eeeQaRSASXXHIJnn766YI0kvSN4ziwbRuqqkLXdciyjEwmE/T0cM6DYEPTNGiahkwmE6SSLAY/EPNrEamqClmWIUlSUdtFepYwPTSmXCTM4X/Do9SpqgrGGJLJJEzThGmacF13RNyMIoQQQnqSVwB0zDHHIJvN4r777uvxuYcddhhefPFFVFVVYceOHf1uIOk7f7iLf7fLH/vvXwR5nhcEP0DbMBlZlos6FM6/cPMDIdd1g7TceXRWkiJZ32jhnxvSeHtjGm9uSGN9o0XvVxEJIYICqP7nmnNOQ0kJIYQQ5BkAnXDCCTjooIPw8ssv57XRAw44AC+//DJmzpzZ5yq4pP/8YW9+ILR7HRDGGIQQOReqQoiiZonSNA1lZWVBj4/neUEBx6GWf3+kaEq7+M8OC3FDxugyDeWGjE92ZNGcod6GYrIsC5IkIRwOwzAMMMZgmiYFpoQQQka8vFJrjR8/Hq+88kqvNjx16lS8/fbbfWoUKQxN0yDLMhzHCXp7DMMIMqr5GdZM04Qsy8E8gc7m2fhzcizLGvDMbKFQCGPGjEFzczOSyWRQv8S2bWSz2T5XViYDI+sICAhkHI6GlAtZAmy3bTkpDv/mhz/0zb95oGla8DknhJCRZtmyZR2yvJGRiXILD2OSJCEUCiEajUIIAVmWoWlaTg9PJBIJgiRZlrsMbDKZDNLpdHDxZNt20FPjX2RJkpQTYPWHoijQdR1CCOi6DsYYPM9DOp3u8BpIcaky0JhysbXVgeW2Db2SJIb9xlKgWkySJAUZHv2eXU3TKPghhBAy4lEANMz5QVBXAYM/RKY7fl0eXdeDeQWWZSGTyYAxFiTH8OcYVFVVFSQI8jwvmBPkt9V13V0X2BQAlYqILqEh6WLDTguGIsHlAorEsKnZxoQqvecNkILzs2dFo1FwzoNsihQAEUIIIXnOASIjm9/r0z7okCQJnuchk8kEw+Mcx0EqlUJTU1NB9qsoChzHCeYsuK4bZIQjpYPztiFwX6gJYVKNjn3GGNijUsOnjXbPK5MB4c/t0zQNqqoGPcFUBJUQMhykUilceeWVWLhwISorK8EYo6FtpFfoSpL0yJ9P4DgOAAS1RfwgyL/brGkaFEVBNpsNntsfhmFAVVVYlhWkwI5GoxQAlRhZkqDKEgxdwqiYirjRdpGtyaAJ90XiOE5QUyudTgfDV1VVLXbTCCGk3xobG3HNNdfgo48+wsyZM4vdHDIE0RA40iNFURCLxdDa2hoEO4ZhwDAMpNNpuK4LVVWDi11FUfpccd5PwS1JEhRFQTwe77CMlBZDkzB9jIG3N2YguAsBAV1hmDwqRMOtisDzPGSzWSiKgkQiEfSiVlRUoLq6utjNI4SQfqurq8PWrVtRW1uL1atXY+7cucVuEhli6GqS5EXTNJSXlweFVRVFgSRJiMViME0zSLnrZ57r7YUv5xzpdDro6VFVFdFoNOhZIqVt7sQIZAnYmnAhAxhboWLvOqPYzRqRhBDBcFR/zp5f9DiZTKK8vLzYTSSEkH7RdR21tbXFbgYZwigAInlrnz7bD3AikQgqKyuRzWaDgouGYfQ6aMlkMshms8F6tm0jlUoFmeZIaQtrEuZNiiJleWBgiOoSFJl6f4rB/7yYphnckPA8D57nobm5mQIgQkhRcM5RX18P0zRhGAbGjBlDv++kaCgAIv0iSRLi8TgMwwhS7fZlnoHjODmBlV/3xx9KZ9t2MBRuIGsQkb5TZYaKML0vxeano/d7gvxeIL/wMSGEDDbOOd566y2kUqlg2bZt23DAAQdQEESKIq+zTgiBI444ApMnT8aqVat6fP6qVaswefJkHH300f1uICl9fqptwzCg63qfvswYYznzhvzUvZIkIZPJIJFIIJvNwjTNYC4SKR2tGRebm200p126yC4B/mfRv3Fg2zaEEIhEIsVuGiFkBKqvr0cqlQoyVAohkEwmUV9fX+ymkREqryvVxx9/HM8//zyOPPJIzJ8/v8fnz58/HwsXLsTf//53/PWvf+13I8nw1/6Otf/PMAxwzoMaRJqmBRd1TU1NQVDU14QLpDDe3ZzG8teb8NA/d+L+N3Zi9YY0BUFFJIRAJpNBNBoNanc5joNQKISqqqpiN48QMgKZptmr5YQMtLwCoIcffhiyLOPnP/953hu+4oorIEkSHnzwwT43jowcuq6jrKwMiqIEBRz9oMhPww20ZbiyLAumacJxHCQSCWQymSK3fuSqb7Hx/JokwqqESZU6IpqMlZ+ksLGJagAVixAiSCZSVVWF6upqVFRUQFVVGmpCCCkKw+g8KU5XywkZaHn9Gr755puYPXt2rzJujB49GnPmzMHrr7/e58aRoYFzjmw2i0QigVQq1efhaZqmIR6PIx6PIxwOQ5KkIKOcX1fINE14nhfUCNJ1HdlslobEFcnOlAvXAyoiMiSJoTwsg3OgIUnvR7H4w0mFEFAUJeg9BdpuIBBCyGAbM2YMotFocEOTMYZYLIYxY8YUu2lkhMprxvK2bdtw4IEH9nrjEydOxLvvvtvr9cjQkslkkMlkIMsyOOewLAvxeLwgiQr8VNvJZBKWZcG27WAoHIARV2em1Ib7KTIDF4DHAVkChABcIaAp1NNQLIwxGIYR9JL6/M8MIYQMNkmSMHv2bMoCR0pGXleoqqrCtns/pMVxHMiy3Ov1yNDhum4wR8cPRizLQjabRTQaLcg+/J4hzjl0Xc8Z8uY4DiRJGvZfoq7rIplMIpPJoKWlBdFotCTqI02o1DChUsWnjRbCmoSU7WF8hYa9aorftpEsHA4jkUjAsqygFygcDlP2REJI0UiShHHjxhVse7/73e/Q0tISJFJ48sknsXnzZgDAxRdfjHg8XrB9keEnr1/Duro6fPTRR73e+Icffkjdm7v4w8Rc14UkSdB1vU/pokvN7nN0gLYvuUL3VOxeg8g0zSDw8bvVhyvOORKJBFzXBWMMnuchkUigvLy86Be0YV3GsTPK8a+NGTSlHVREDMwaZyCi042PYvETh2iaBkmSguGhhmEM688JIWRk+fWvf43PPvss+Puxxx7DY489BgA444wzKAAi3crrtvmhhx6KtWvX4o033sh7w6+//jrWrFmD//qv/+pz44aTTCaDVCoFx3GQzWbR2tqaMzxlqNp9jo4QAp7nDdiFuSRJQfHVeDyO8vLyYRFIdsd1XbiuG6QY1zQtyJhXCmIhGfMmRXDQXjFMqw1RAdQic10XjuMgHA4jHo+jqqoKqqrSPDlCyLCyYcOGnLTa7f9NnDix2M0jJS6vq9Rzzz0X99xzDxYtWoSXXnoJ1dXV3T6/sbERixYtAmMMixcvLkhDB4vjOHjwwQexYsUKpFIpTJw4EaeffjpmzZrV5212NkzMtm1ks9khf/Hefo6OX7jUMAyEQqFu1+OcB/VJ/Mxvvdln+yFvQghwzpFMJoMetnA4XBJDxEaCtOXh3c0mklkOxgBdYdhvrIHKCA23Kqbde3soNTkhhBDSJq8eoHnz5uHss8/GmjVrMHPmTNx1111IJBIdnpdIJLBkyRLMmDED69atw9lnn4158+YVbZhg2AAAIABJREFUvNED6ZZbbsHjjz+Oww47DIsXL4YkSbjmmmvw4Ycf9mu7/lAx3+6FP4cyTdNQUVGBeDyOyspKxGKxbufk+MGKaZpoaWlBa2trl3PMXNdFNptFNpvtssfD3142mw2GiHW3zaFGkiQoigLLssA5h23bYIwVffibb32jhYzDURdXUVumggFYuz0LzumCuxhkWYYsy3AcB0KIYOjkUL/ZQgghhBRK3ldQd9xxB9LpNP7whz/gggsuwIUXXog999wTNTU1AICGhgasX78+6H489dRTcccddwxYwwfCunXr8PLLL2PRokX46le/CgD40pe+hIsuugjLli3Dr371qz5t17+A9TOY+cPEeuolGUp6k4ggk8nAtm1IkgTDMOC6LlKpFMrLy3O24bouEokEPM+DECKY77P7cfM8Lyic6qfOtm07ON5DnaIoKCsrQzKZDI5DLBYrmQvaZJYjpEhoTLlwPQ5JZnAsAYcL6BINhxtssiwjFoshlUrBsizIsoxoNFoy5wshhBBSbHmnzlIUBQ8//DD+8Ic/YM6cOeCc45NPPsGqVauwatUqfPLJJ+CcY+7cufjjH/+Ihx56aMhlgHv11VchSRKOOuqoYJmmaTjiiCOwZs0aNDQ09Gm7/gWrJEnBhblhGCO2AJjrupBlOQh2FEWB53kdesSy2Sw8z4Ou6wiFQpBlGalUqsues+GcCU5RlKA+UkVFRUkFdobK8O6mDF5bn8Qbn2bwyrokticdKBT7FI1/Q8LvdfZvTBFCCCGkFz1AvpNPPhknn3wydu7ciXfeeQc7d+4E0FZxfObMmT3ODypl69evx9ixYxEOh3OWT5kyBQDw6aefBj1evaWqKsrLy4OL91IZvpQPznlBh+v5PTTtt88Y6xDAeJ6XE0T7w3o45znPlWUZqqrCsixomha0tVhBgj8XCkDB77qXYpAnSwxrtpsAAF2RwblAU9pFa9ZDZaT02jvcCSGQSqVg2zZUVQ3+ZowNq15nQgghpK/6fBVeVVWFL3/5y4VsS9E1NzejoqKiw3J/WVNTU7+2PxTr1di2jUQiAdM0g96Y6urqfl3YG4YBy7LgOA4sywqSFux+bGRZDuqYAB17jnx+Zjh/nhBjrGh1cvyisH5QpyhKh4B6OBFC4IP6DGyHo8xQoMnAHjU6klmORJajMlLsFo48nucFwz/9HiB/7hgFQIQQQkgvA6C//e1v+L//+z9s2rQJuq5jxowZWLRoESZNmjRQ7RtU/h3T3fkX0pZl5SzfunUrtm7dCqBtDlQ6nQaAfvWW+BnN/Avo/vDb0df2+MkEUqkUgLbEDYlEAowxVFZW9rkXy5/Lk0qloOs6dF3P6bnx6boO27aRyWSCoCcWi3V4Te3nB/nHrD+1iPp63Py5TLIsQ9d1AG3D+IDP6xf1R3/fT//cLuT5ubXVxpYWF2FNQk1MQdYR2JF0oEoSJIhu99Xf19Ndu/qrVNuWT7vap4Ldfdnu65XS901/z086B/qmVNtWyu8nIWToy/sK9vTTT8cjjzwC4PN0qk8++SR+/etf45FHHsHxxx8/MC0cRJqmdZppzB+u5V/U+u68805cffXVwd+nnnoqAGDbtm0D2Mre27FjR5/Wc103SC3t97x4noeGhgZks9l+97BomoZ0Oh0Ejp3xfwD9LHqDWcukt8fNT3fePjB0XReKosA0zaK1y7do0SIAhT0/P2lwEYMNVXBs25mFxCQ0mx5mjVUgMhzbrJ4vXPr6egZDqbatu3YJIYKiy7IsBxeShmF0+1kbjLZ1ZyDOz0IYiudAsVHbCCGlLq8AaOnSpXj44YehKAq+9a1vYdasWUgmk3jqqaewatUqfPvb38Znn3025KvuVlRUdDrMrbm5GQBQWVmZs/z8888PAr+Ghgb84x//AADU1tb2uQ1+2tpC9Rjs2LEDo0aN6tPQOz9Tm+M40HUdQgiYpglVVVFdXd2vJA79bVt7hTxm+baNcw7P8wAgCA5d10VLSwtkWYaiKMGwI03TUFZWNuDvZ08Xjvfeey8WLVpU0PMzJVnISFlUV3Gs3W7BcjliUeC4OdXYo6L7AHmonwPFaFu+7eKcI5PJBENCDcPocANnsNs20OcnnQPDq22D+X6WWtBNCBl4eQVAy5cvhyRJePrpp3Pm/fz4xz/GokWLcN999+Gxxx4L7uANVXvuuSfef/99ZDKZnHkba9euBYAOQ/3q6upQV1cHAKivr8eqVasA9G+iuj+cq30GJ+Dzbvu+bLuvc480TUM4HEZTU1PQC8YYg6ZpUFW1ID++hZgX1dUx66+u2ub3jPkBkJ+m2g90UqlUkKxB1/UgPXeh2tbXY+b3bhby/Kwr17Cl1cHmFnfXMqAu3lYLKN/9DMVzoDcGom09tUuSJJSVlZVk27rS3/OTzoG+KdW2lfL7SQgZ+vL6Fnj//fdx4IEHdpr04Cc/+QmEEHj//fcL3rjBdtBBB4FzjmeffTZY5jgOnn/+eUyZMqXPGeD6wy/y2dzcjObmZqTT6UEbwyxJEsrLy1FVVQVZloM7yeXl5QVPMMA5h2VZyGazJV3A1H8/PM8LAkF/nhIAhEIhxONxRKNRxOPxHovCDnWxkIy6MhUCwKRqDfP3jGD6WAOfNDhIW16xm0cIIYT02VlnnYWJEyfm9dyrrrqqz8H6smXLwBjDhg0b+rQ+6b28eoASiQT22muvTh/zlycSicK1qkimTp2Kgw8+GPfddx9aWlpQV1eHF154ATt27MDFF19clDal0+lg2Jn/N2Ns0DKLSZKEiooKxOPxoFZPd8GPn93NT02dT6IEzjlSqVSQMMAvkBqJDHwKMc55kOHOT17QU8DieV7wfjDGgiDIp6pq8HhnE8+HGw4gHpKgKwxCAJrCkLI4LFcg0nHUFSGEEDIkZTIZ/OpXv8Lhhx+Oww8/vNjNIf2Q161pIUSXRU39i8XhcpF36aWX4vjjj8eKFStw1113wfM8XHHFFZg+ffqgt8V1XWSzWei6DlmWg7klxeghkSQJiqJ0Gxyk02kkEglks1kkk0kkEom8khbYth28Tl3XwTlHS0tL0KsyUPzAy58rkU6nc4a2dYUxlnO+716XqD9c14Vt24Oa7KE/PC6wucnCfxod7Ey52NBk48OtWXDBoVElVEIIIcNIJpPB1VdfjRUrVnR47Gc/+1lBEx6RgTV0qnEOEk3TsGjRopKZz1TIsc8DyXVdZDKZnLlB/pC2aDTa47qSJEEIgXQ6Ddd14ThOsGygeoJc1w2Kp/o9OX4toa74vVOZTCYIlIQQQXru/vBrLvkZ70KhUKf1kUpJi+nBEQx7VmtoMT0wAFtbHEwZpSOqd37ThBBCCBluFEUZUkXuR7q8r6yWL18e9ELs/o8x1uXjdDL0naIo0HUd2WwW2WwWlmWVdDFDxljOxbqfNrsniqIEGeb8rD/+/JpMJjNgvSF+Ovf2QSZjrMc2h8NhxGIxhEKhYM5Pf+dEua6LRCIBSZKg63rw2kt5PhTQ1gOkSgxTRoUwdVQIe9XomDxax5h43wvlEkIIId3x59usW7cOZ5xxBuLxOGpqanDFFVdACIFNmzbhhBNOQFlZGWpra/Gb3/wmWLer+TYrVqwAY6zT3h0A2LBhQzAX/OqrrwZjDIwxXHXVVTltao8xhosuuggPPvggpk6dilAohNmzZ+Oll17K63U+/fTTOPTQQxGJRBCLxXDMMcfggw8+yO8gkW7lHQC1L67Xm3/DZWhcsaiqCsdxkEqlkEwmg6FopcbP1OMHK/77n09bNU0Lip56ngfXdYPiqLsPNyskf1hn+54coO2Y97RPXdcRjUYRjUYLkhDCr3fkHy8/mCz1oXCGKkGWANsTqIoqiBsyopqECPX+lAz/3CKEkGKyXI57X9uJq5/aintf2wnL7f/30je+8Q1wznH99ddj3rx5+MUvfoFbbrkFRxxxBMaOHYsbbrgBkydPxg9+8IO8g46u1NTU4PbbbwcAfPWrX8X999+P+++/HyeddFK3661cuRLf//73ccYZZ+Caa67Bzp07sXDhQvz73//udr37778fxxxzDKLRKG644QZcccUV+PDDD3HIIYdQsoQCyOtKmn48i8Ov5WEYRjDEyrZtWJZVckGQJEmIxWLBHCBJkqBpWl61giRJQjQahed5yGQyQfDjByb9GQLmz6MC2gKb9rVQ/PTV/rwff65bOp1GJpNBIpFANBodlGPtBzz+8DcABauAPpBiIRl714awZruFRNaDLAFTR4dQGaEAqNj87w/btiGEgK7rJT+kkhAyPFkux1dvX48PtmYBCAAMj/6rGX+5YE/oSt+/k774xS/izjvvBACcd955mDhxIi677DJcd911uPzyywEAp512GsaMGYN77rkH//Vf/9XnfUUiEXz961/HhRdeiBkzZuCMM87Ia71///vfWL16NWbPng0AOPXUUzF16lT8/Oc/x2OPPdbpOqlUCpdccgkWL16MJUuWBMvPPPNMTJ06Fb/85S9zlpPeK62raJKDcw7XdXOGvJVyr4CmaSgvLw8C5p6SJrQnSRLi8ThkWQ5SYftza/oagDiOg9bW1iCoyGaz8DwvJ4Oen2BCCAHbtoMJjP7zAaCsrGzALxr9DHSmaUKSpKA3qLPilaVmTLmG8rACy+XQZEa9PyXCNE2Yphl8Dv1zu6c5eYQQUmgPvdmMD7Zm4Xhi1xKBD+qzePifzThrflWft7t48eLg/2VZxpw5c7B582acc845wfLy8nJMnToV69ev7/N++mP+/PlB8AMA48ePxwknnIAnn3wyyEC7u+eeew4tLS047bTT0NjYGCyXZRnz5s3Diy++OChtH84oACpxjLGcXgG/OFyp6k9vid8TFAqFgt6Y/mzPv+Dzgwi/hykUCuUcQ38f/vP9RA66rsN13YJmeeuKJEmIRCLBkEd//6XW09eVsCYhrJXueTnS+AG9oijBj6ufQbL99wkhhAyGjU022np+2hP4bGf/5rmOHz8+5+94PI5QKITq6uoOy3fu3NmvffXVF77whQ7LpkyZgkwmg4aGBtTW1nZ4/OOPPwYAfOlLX+p0m/kUuibdGxpXVyOUoihBxjF/eJSfhWy48ofOFYLneR2SMvQ2oBnM4Z+SJAWJFYYSxxOob7GRtjnCqoQx5Sq0fgxpIP3X/oYJIYQU2/hKDQBDbhDEMKGqf7/3nfWedFW2pbPER+3lk7RpsPjXHvfff3+nAdJQuTlayugIlrhwOAxFUYJhb6FQiE78PPmZ1PxMhX6B1q6Cn1AoBNu24TgOOOewLKtDbxHJ5XoC/95iYnvSga5IsF2OxrSLmePCUGXqZSimUCiEVCoV/O15HiKRCPX+EEIG3Te/WIFH32rOmQO075gQTptbMehtqaho22dLS0vO8s8++6zHdfvy/en35rS3bt06hMPhIKvc7vbaay8AwKhRo/CVr3yl1/skPaMruxLn9wr4Gcco+MlfOByGrutwHAeWZQWJGroKaDRNQzQaDYYd+sedAqCuNWdc7Eg6qC1TURVRUFumojHlYme6NOepjST++eunao1EIsO695gQUrp0RcJfLtwTVx9Xh7MPqsbVx9X1OwFCX/nBRfuscJ7n5ZVUwJ9DvHvw1J1Vq1bhX//6V/D3pk2b8Pjjj+PII4/ssrfqqKOOQllZGX75y192WpuwoaEh7/2TztHVNBm2/IDHz/CWT1KGUCgETdNgmuagJD8Y6jwB2K7AxmYbtisQ1SQItNUHIsXFGINhGBT0EEJKgq5I/Up4UCj77rsvDjzwQPz4xz9GU1MTKisr8cgjj+SVYMowDOyzzz74wx/+gClTpqCyshLTp0/H9OnTu1xn+vTpOOqoo3DJJZdA13XcdtttANpqCXWlrKwMt99+O771rW/hgAMOwKmnnoqamhps3LgRf/3rX3HwwQfjd7/7Xe9fPAlQAESGNUmS+hTEUOCTJwF8utMCY0BEk7ClRSCiMXxxQrjndQkhhJAiePDBB3H++efj+uuvR3l5Oc455xwsWLAARxxxRI/r3n333bj44otx6aWXwrZtXHnlld0GQIcddhjmz5+Pq6++Ghs3bsQ+++yDZcuWYcaMGd3u55vf/CbGjBmD66+/HjfeeCMsy8LYsWNx6KGHYtGiRb1+zSQXBUBkSPInCFKgUlxZh6MyLKO+1cHmZgeMCVRHVAiaZ0IIIWSAXHXVVbjqqqs6LF+2bBmWLVvWYfmKFSty/t5zzz3x3HPPdXje7oljOtvW/PnzsXr16rzbBACnn346Tj/99E4fA4CzzjoLZ511Voflhx9+OA4//PAu1yN9RwEQGVL84o6WZQHAkMyaNpy4XECWGAxVxuQaFYoMbE84+GSHheoofb0QQgghpPTQ7XMypKTT6aBYqCRJwd+kOMoMGQ1JF2FNQmVEBgNQHVGQyLrtCt4RQgghhJQOukVLhgw/NbVfqNRnWVZQ7JQMrpqogrEVKj7cmsVnOwVCqoS9x4SoDhAhhBBCShYFQISQPmOMYXSZgrc3CqgKA0dbXaAj9ymjOkBFJIRANptFNpsFAOi6DsMwqAYQIYQMIipGXbooACJDhl8TyTTNoB6S4zhBXn7OefBl09fsb6R3LJdjZ8qDxIDNzTYEgDJdQipbOhW1R6JsNotUKhXUmEin0+CcIxqNFrllhBBCSPHRFWIJcF0XrusGmc1I18LhMAzDAOccnPOguCPnHKlUCk1NTWhqakIikcgrpz/pHy6ANduyMF0P4ys0TKzU4AngvS00L6uYLMuCLMtQFAWKokBVVViWRd8xhBBCCKgHqOjS6TQymQyEEJBlGdFolHouuiFJEqLRKMLhcHCchBDIZDJwHCeYC2RZFjKZDMrKyorZ3GFPYUDa5hCCIaJL8ASgyQzJLIfjcqg0F6gohBDBnDkhBBhj9L1CCCGE7EK/iEXkX6Srqhqkck4mk3SXNg+7X8w5jgNFUcAYA2MMuq7Dtm06lgNMVSTsUa5BlSQksxymLRDTJdSWKaCRz8WjKAoSiQQSiQRSqRSam5vBOacgiBBCCAH1ABWV4zg5d2ZVVYVpmnBdF5qmFbl1Q4skSTmTDTnnNOF7kMydFEHK8iBLDIwBHBL2GxemJAhF5PcA+TcBVFWFbdvwPC+YF0QIIYSMVBQAFRFjLKeHQghBk/f7yE+OYNt2cFwjkcigHEt/PtJIfe/2HWOAC4ENO20IAexRoWK/cWEKQIvINE1kMhkAbd8zrusinU7DdV0KgAghhIx4FAAVka7ryGazsCwLkiSBcw5N00bkRXR/6boeTPQWQkDX9WBY4UByHAfJZBKe50GSJEQikUHZbylRZYZZe4QxrdaAEAKGKkGSKPgpplQqhWw2C1VVwRiDZVnwPI+GhBJCCCGgAKioFEVBPB5HNpuF53lQFAWhUIguUvpI07RBLYjqui4SiQSEENA0LchEJ0nSiBvCyBhDWKOgpxQIIeA4TvD//j/KikgIIYS0oQCoyBRFyanN4Y/dJ6WPcw7P84IeH1mW4XkeHMcZcQGQ43KYDockMYSpB6jo/CDc70325xr69bMIIYSQkYx+DUmv+BOr/RojIx1jLEgzDIy8qs+cC6zdnsWr/0khZXmoCCuYOS6MfccYlAShSBhjiEQiwXw4//ykFPuEEEJIG7qCJXmzLAuJRAJA20WWYRg59XgKxe8BK/WLtfYFJlVVDeYBDeYwvGLb1GTh+TVt50R1REXC8vD2xgyiuoTJo0bWXKhSEo/Hg6xvQgioqory8vKS/0wRQgghg4ECoBHMdd0gXbQsy91eHLmui2QyCaAt45pffFRV1YJd8HPOkU6nYVlWsJ+BCLAKxS/Kms1m4TgOVFVFOBweUT1jn+60ATCMiimQJQZJYmgxXWxPuJg8qtitG7kikQiEEMhmswDa5sdFo1HKzEcIIYSAAqARy7KsoOiq32vRXdpoP9WzqqoAPp9T4DhOwQKgTCYTZK4C2lL5AsiZI1Vqdp/DNdJIEoPEGFxPQN4178f1BHSFLrSLiTGGWCwWBEKSJFHwQwghhOxCAdAI5Pfm+BOlhRAwTROqqnabwtlP1e3jnBespgjnHJZlQVGUIAhTFAWWZZV0L9BIN6FSw4adFra12nA5kLQ4JlVrmFQzcoYBljL63BBCCCEd0a/jCMQ5hxAiGKrVvjenK4qiQNd1OI4D27aRzWaDOTADyW8bKU17VGiYOiqETS0O3tucwY6UA0Vi0KjWJiGEEEJKFPUAjUD+cJj22cv8oXDdreMPp/GDklAoVLD5Lv720uk0AAR1SyKRSEG2TwZG1hVYs82EpjBMHxeGocrYlnDx+qdpfHlqGaXDLiLXdYPaP6qqFqy3lhBCCBnqKAAagfyCq5lMJhjW5vfwdEeSpGCS/0DMJzAMAwCCJAiRSCRYRkpTY8rBi+uSaEh6EAAUmWHyKA07EiosT8CgAKgoHMdBIpEIhqzKsoxYLDbgPbaEEELIUEAB0AjlBzKu64IxBl3Xi569zO9lol6foePdzRl8ttOGywUkSHAFR0PSwZ5VGqgMUHEIIYKeVP+mhm3byGQyiMfjxWwaIYQQUhIoABqh/CFnhPRHU8qBwwWyjoCucnAOpLIeTIdDU2juVjEIIeB5Xs6QN1mWg5pAlA1u6EpZHra12Ni20wULO6iNa/R+AsjYHFwIhBQJCt15IYTkgQIgQkifqbIMcIG6MgUOFwAHZJlBlyn4KRa/rpfrutA0DQDgeR40jS6WB1tzxkVTyoXLOaoMhqqyvv3kOp7A2m0m/rkhhQdWbcemZmBceStuPWU89ptQ+r16psOxtdVB1uEoC0moi2tB2vz+4FxgfaOFz3Y64EIgGpKwT52BuEHz3Qgh3aMAiBDSZ18YrUNVJOxMe9AUBlViGF+uoi6uFbtpIxZjDJFIBM3NzUgmk2CMBUWFycBKWR6SWQ7GANvleOPTDLa0WHA9AUMFjtmvEhOrdWRsjvoWG/UtNhhjGBNXMbZCQ0jNvXGQsTnWbTfx3uYMPqo3sfzN1uCxNY3AUbdtxB/PqcMXauPQFQnl4Y4X/q4nUN/qYMNOC6bNMbpMxYQqDRXhtp9/jwsksh4UhSGkSNjS6mBHwoUsAXtUahgd69+cz6zD8c6mDBImh6YwbGziaDU59q4N9TtJytaEg092WKiOqVAloCnj4YN6E3MnRqBSTxAhpBsUAJF+45zDdd2g4CJNtB4ZHE8g6wrM2zOCtVtNCLRdcEyo1jFrPF1sF5Of/a39hetQTCeftjykrLaAotyQCzasUgiB7UkXCdODJjOMKlMR1vq37Z0pF+9uMeG4HFwA67aZcDlQE1OhKwz1LVm8sDaBE40KfLjVxIdbLbRkXDAA1TEF+9SGsP/4MPRdr9HxBP69xcTmVhstpsBj/2rtdL+nLd2K331TRkST8YVROiZUfZ7MxvUE3t+SweoNGTRlXKhyW4DTlHZxwPgIQirwyidJrG+woMgSdEVCVJdQE1PhOMB7mzOYOS6M0WV9/05vSDpImF5wU8TjAltabIwt1zoN2HqjJeMhpErQdgU7VREF2xIOTJtDpV4gQkg3KAAi/cI5RzqdDjK3AW3Z3CiRwfBn2hxZW+C4/SowoULHzowH2+X44oQw9qJCqEXjeV6QBMEf9ua6LrLZ7JDqBdqZdvH+FhO2IwAmUG4omD7W6HegIoTAJzss/KfRgiZLcHb1kOy/R7jP2+ZcYO32LFSJoTquwfEEVq1PAQKYWK1DiLaL82bTw/qGLLa3uoAQmFSlgQuGRNZFfcLBuJSLseVtgUIi66Ep46IqrKAx4SLpdr5vD0BT2kW5IePjHRYqIwpiobaL/8a0i407bQgGTKrWATA0my5asx7qW9t6oP65IYOqsATT4Xh7k4mZYw1MrNLbSiUA2Nxi9ysAsj0BpV1Pjz/0zeOiz9v0qTKD2247ricgMYBG4BJCekIBUAFFo1EoigIh+v7F7q/bn22035bfnkJtr/1/gbaU1ZlMBrquQ5IkeJ6HTCYDVVW77QkqZNsKecz87ZRi23pqV09Z/Gprawt6fjLW1g5DZZg3KQLb49iZ9oLgp6f9lOpx9rdTim3Lp12u6wYBkN8D5Bc63n2dUj0/PS7w0VYTEoDRu+bN7Eg42NCYxd51nafGz/e1pC0PnzVZqIooQc/B9oSD+hY7J3DvzTlguRymzVFuyBBCQGYC5SEZG5ptCAFwwZGyOAxVgu0KyBIgsGu+FgN4W4wHx+Wfvw4uIAEIKQyqDMhoC3Y643hAyuJQZYaswxHVd/UiuXzXawEYAMba/gsBZCwPH23LYlRMRUxncAWgSQxbWhzM8gQUGZAgwL38z4/OjllUl+BwAcvl0GSGZNaDIjEYKut2u/m8n6PLFGxtcbAj4UBVGDI2x4QqrdNtd/d+FjsDKiFk8NGnvoBmzZqFioqKYPhJf3heVz91vVNRUQHOeVAPpBDat8227WD7/j5c14XjOD2OGy902wp1zIDSbVt37aqoqOh23XPOOQcACnZ+akxgVJRhc0sWtgu0mC5kxrDPaDXvfZTqcQZKt209tcu2bViWlTPkzfM8GIbR5ftSaudn1uHIZF1UhOWgbboi0JJx4Lrd90b09FqytgfH9SBDgv9UCRwZy4Hr5g6byvcckISAKnEkTB5MwK+Ly2jOMHyyw4SuMMgSsE+dilFRhq0tHgT3kLYEOAcE5wAkaLII3iNd5ggpAq0ZB+PKFRw8keGlDR2DgSmVAARHxnIR1SUw4cF/mxXGITEOTRJoSjsIqQyW7cFxGaKaAiHaMjcCMmQIhHWBhOnAdl1YDtBieth7tN6r74zdj1lFCJhYIeOzJhtcCGgKw961IagSh+v2/Nnq7v0MK8D0MSq2tDhwPIFxcQVjy+Uu1+nq/ezp3CSEDD8UABXQ22+/jf322w81NTV93kb7FLb9zdjEOcfOnTtRVVVVkPH/nbVN07TgYqt9UVX/32C0rZDHrJQtPNeMAAAgAElEQVTb1lO7Ghoaul1/6dKlOOmkkwp2fioKwz5jFew0U9jQZMJQJcQMGRubOSpjDGWh7sfgl+pxLuW25dMuWZYhSRJsu22CPeccjDFomtbhM1mq52eICYR0BZYHxNS288jmHJVRtcvvlXxfSyQkIaKryDhALCTD4wKOYKiM5B6f3p4D+46N4L0tJhrSHALAhCoDB+0VxYamtjkpNREJ08a0zfGxhQxvi4lNzTYYGCZV6dhvnJGT1jqqADPHy1i3PYtkluPbB4+DwCa8vOHzfY4rAw6eWoGmNEfcUDB5lIHK6OfbGB2XMa0O+HBbFpubbexIeRhXoeGACRGMr1AxtZnj31tMCOFBgEFXFEwbpcJ0GSTGMK1Wx8QqLe9kBV0ds6l1KsZVenA8IKSyDskeOpPv+1kZVVAZ7XnIbXfvZ0/nJiFk+KEAqIBSqVRQWLS/GGP93o4/9r8Q29p9u/72dF2HZVlwHAdA24+WYRhQVbXbfQ5E2wq1rVJtW0/t6uku7bZt2wp+fnpCgIFh3qRoMHm7IelgS4uDeF33Xy+lepz97ZRi23rTrmg0Gvy/ZVnd1gAqtfNT3dVL8P6WLLYn2xKsxEIyJlXrPbazp9diaDL2HWPgg3oT25MuGAMmVOmoK89NE97bc6AqquKLEyUkshwSA+KGjJAqYUK1ASHaenYUpe1ifu/aEMaVa0hZHiSJIaZLiOgdbxjEDQVzJkTgeAJCAOWRSbjA9ZBobkKTF8XWhIPqqIL9xoQxeZSO6qjS4TVMHhXCqDINWYfv2qYcBCAH7RUFILCpyYLEGBZMjeGLEyMQACTGel1Tp7tjFg317XJjMD7ThegVJ4QMLRQAkX6RJAllZWXBUDhZlqGq6pDMOEV6j3MBl4tgLgUAaIoEyynckEvSO7IsQ9f1nHkOhmEMuc9kTUzFnAkSkpYHiTGUh2UYefQc5KMqqmDupAhMm0OWGMpCUkEusiO63GkgszvGGMoMGWV5ZCpjjEFT2tq2T52B9zenYbpAbVzB/nuEMWV0qNt9MsYQN+ROa+PEQjIWTC1DImND1xRE9cL0oBJCSKmjAIj0myRJCIVCxW5GDv+Onj80jwwMXZEQC0loynioiijwuEDa5tijgrLAFYuiKAiHw8HwISEEOOdDMj19vkFCXxiqVLCAarCUh2XMnRjGKDWButooYqH+1egB2jKpxQ056J0ihJCRgAIgMqz4abmz2SwYY0EPFWX5GRiKzLBPXdtwoq2tNiTGML5CxbgKKoRaLLIsIxaLIZVKBZO9o9EoNI3ek+FAUyTEdIl6awghpB/oqpAMK6ZpwjRN6HrbXAHbtpFIJFBeXk49QQMkbsiYMyEM02mrwRHVCzOciPSdpmkoLy8PEiDIMhWFJIQQQnwUAJFhxXXdDlnqstksOOcUAA0gTZGg0bdJSaHhn4QQQkjn6JJlmOOcI5PJwLZtAG0BQTgcHrQLo/b1FgZjn5Ik5Uz+7i7zFSGEEEIIGXkoABrmbNtGKpWCprWleDVNE0BuityB4rpuTmpwwzAQDocHdJ+hUAiWZQU1UDzPQzgcpjlAhBBCCCEEAEDjI4a5ttoTbUVJ/RTV/pCwgcQ5RzKZhOM4QVrsdDoNy7IGdL+qqiIej0PXdSiKgmg0OuBBFyGEEEIIGTrotvgIsHthvMHgeR48z4Out6VDlmUZnufBsqxg2UBRVXVIpvwlhBBCCCEDjwKgIcp13ZwMT13Nr1EUBY7jQJKkICvaYBRF9AOt3efg0KRsQgaWEALZbBaWZYExhlAoNOA3HQghhJChhAKgIci2bSSTySAA0nUdkUik0+DCT3rgOA6EEDAMA5FIZMDbKElSkIFNVdVgyB3VIiFkYGUyGWQymaAIajKZBAAKggghhJBdKAAaYjjnSKVSANouaPy7vZIkdRrYSJKUk/BgsHpg/P1KkgTbtiHLMsLhMAVAhAwgznlw08H/rDuOg2w2SwEQIYQQsgsFQEMM5xyc8yCQYIxBkiS4rtvtesUYerZ78EUIGVjtU8D7GGOdLieEEEJGKpqQMQQJIXIuaDjnVOmdEAJJkqCqajDklXMO13Wp55UQQghph3qAhhhFURAOh5FOp4Oin5IkIRQKFbtphJAiY4wFQ2H9dPeGYcAwjCK3jBBCCCkdFAANQYZhQJbloMCoX/OGEEIkSYIkSfA8D0DbHCDTNKkeFiGEELILXTUPQdTjQwjpimmaaGhoCOYHAkA6nab6WIQQQsguFAARQsgwwTlHIpGAbdtBL5A/LM5PRU8IIYSMdBQAkSHBT+/rOA6AtmGANLGbkFye58GyrGB4rBACjuOAc46amppiN48QQggpCZQFjgwJpmkilUrBdV24rotEIgHLsordLEJKih/0cM5h2zY8z8sJggghhBBCARAZAjjnME0zmMOgqioYYzBNs9hNI7s4nkDG5nA9qjdTTLIsBwlR/OQooVAIhmHAtu0it44QQggpDTQEjgwZ7Yu5SpJEd7RLxLaEg3Xbs7BdAUNjmFZroCpCXy3FwBhDRUUFUqkUGGOQZTkIiopRDJkQQggpRfSLSEqeJElQFAW2bQdFYKm4Y2loyXj49xYTCgPKDRmOB3ywxUTGpuC0WAzDQFVVFXRd7/CPEEIIIdQDRIaIaDSKVCoVDOMJhUJU16QEpCwPps3RlBZIWR4UiUFXgLQVQlij+yvFIEkSKisroWlakAwhHA7TDQNCCCFkFwqAyJCgKArKysqCYW9U+LU0eELgs50WdFVCLCTDdgU+bXLQnPFQE6OaM8UiyzLi8Tg452CMgTFW7CYRQgghJYOuIsmQ4Ve4J6VDlyV4EBAQsF2BrMtRbsiwXRoCVwro80IIIYR0RAEQIaTPwpqESVUhuJzDcoHyiApFYtAUuvAmhBBCSGmiAIgQ0mcRXcIeFRp2pByMiSuwXQ6HC9TE6KuFEEIIIaWJrlIIIX0mSwx714WgNzI0pV0YuoR9q3RUhOmrhRBCCCH/v717D46qvP84/jlnb9lNNrBCBCI/btoYKWjBViyI0qKtUxunQ7VlRKtitbVjx3HGy7S2QtHWkXqpnanTThWLHW2mjjemaLVgo1ZwUFsoN7kotkGISbiEXDbZy3l+f2BSYi6E3U325Oz7NcMwOdnznM+yXzb7zXnOc9yJTykAslIUsDV1XDjfMQAAAAaEifoAAAAACgZngABkrCme1ocHOtSRNBoZ8WniqKBCLIAAAABcjE8qADLS3J7Wpto2HWhJK5k22tPYoW372pV2TL6jAQAA9IkzQAAy0tiSUnvKaGzp0RueFods1Ten1NzuaGTEl+d0hc0Yo0QioY6ODklSKBRSKBTKcyoAANyBBghARtKOkc/639e2dfQLx3AGKN/a29vV0tLSdSPUjo4ORaNRFRUV5TkZAAD556kGaNOmTaqpqdH27dvV2NioWCymM888U4sWLdJJJ5103P2feuopVVdX99geCAT0zDPPDEZkYNiKRfz6oLFDrQlHRX5Lh9vSKgnZKg4xszafjDFqbW1VOp2WZVny+/2yLEvxeJwGCAAAeawBWrlypZqbmzVnzhyVl5errq5Oq1ev1ttvv62HH35YsVhsQOPceOON3T4odP4WFcD/jCrxa+q4In3QmFBbhxQtslU5tohFEPIskUioublZ0tH3Lp/Pp3D46DLlxhhZltXf7gAAeJ6nGqDFixdr6tSp3RqWmTNn6sc//rFWr16tK6+8ckDjzJkzR6WlpYMVE/CM8bGQxpQGlXKMQj5Lts2H63xyHEetra0KBoNKp9Py+/1KJpNqbW1VLBaj+QEAQB5bBW7atGk9ztZMmzZN0WhUtbW1Ax7HGKO2tjYZrmUAjivgsxQO2DQ/LmCMkeM4Ki4uViAQUCqVkuM48vv9Ki4uznc8AABcwVNngHoTj8cVj8dP6IzODTfc0DVfftasWVq8ePGAp88BQL5YliXbtruaIMdx1NHRoUgkwlReAAA+4fkGaNWqVUqlUjrvvPOO+9iSkhJdcsklqqysVCAQ0NatW/Xiiy9q165devDBBxWJRIYgMQBkxrZtlZSUqLm5WYlEQsYYhUIh3rsAADiGaxsgx3GUSqUG9NhAINDr3PYtW7aourpa5513ns4666zjjnPppZd2+3r27NmqqKjQAw88oBdffFGXXXZZt+/v379f+/fvlyQ1NDSotbW1K3umOqewOI6T9Xz9zhzZ5DmWW7PlMtexmdyWLdtcgUAgq/0ldz2fwcp1bCa3ZRtILr/fr2g0qnQ6Lel/74+97eOm1zPb+qQGMuPWbG5+PQEMf65tgLZu3ao777xzQI995JFHNH78+G7b9u7dq3vvvVcTJkzQTTfdlHGOCy64QCtWrNCmTZt6NEC/+93v9LOf/azr64ULF0qS6urqMj7eYKivr893hD6R7cRlmuvaa6+VRH2eCLdmc2suifocKm7NJZENgPu5tgEaP368br755gE99tPX5zQ0NOiuu+5SJBLRkiVLsp7+MXr06K5lZY/1ve99r+usUUNDg9asWSNJGjt2bMbHMsYolUp13bsjG47jqL6+XieffHJO5v+7NVsuc7k52/FyHe+D4+OPP65rr73Wk/VJDbg/22DXJzXgrWxD+Xq6rekGMPhc2wDFYjHNnz//hPc7cuSIlixZomQyqXvuuWdAN0DtjzFG9fX1mjJlSo/vjRs3TuPGjZMk7du3T+vXr5eU3X2DjDGybVu2bedsydrO8bLl1myDkUtyb7ZMcyWTya79M+Wm5zPYuST3ZvPi/+ls65MayIxbs7n59QQw/HnqXaC9vV3Lli3TgQMHtGTJEpWXl/f52IaGBu3du7fbtqamph6Pe+mll9TU1KSZM2fmPC8AAACAoeXaM0CZeOCBB7Rz505deOGFqq2t7Xbvn3A4rHPPPbfr64ceekhbtmzRqlWrurZdd911mjt3riZOnKhgMKht27bpjTfe0OTJk3XxxRcP6XMBAAAAkHueaoD27NkjSVqzZk3X9TidTj755G4NUG/mzZun7du3a926dUomkyorK9OCBQt0+eWXKxQKDVpuAAAAAEPDUw3Qo48+OuDH/uIXv+ixLZvV4gAAAAC4n6euAQIAAACA/tAAAQAAACgYnpoCB2DoNTSndKQ9rXDA0pjSgHx27pasBQAAyDUaIAAZ2/jfVtXsalEi5chnW5oxIaLzT4vK76MJAgAA7sQUOAAZqWtK6NWdLYqGfJoyOqTRJQG982GbdjfE8x0NAACgTzRAADJysC2tZNpoZMQny7JUErJlW5YaW9L5jgYAANAnGiAAGQkHLFmWUSJtJEnGSIm0o+IgbysAAMC9uAYIQEbKRwZVOaZI7+3vUDBgqT3paMJJQVWMKcp3NAAAgD7RAAHISMhv6/zPRJVISfuPJDU+FtT8yqiKQ758RwMAAOgTDRCAjCTTRu83dCgatjVuRETxlKP3Gzo0IuxXhGlweZdKpeQ4jizLkt/vl2WxMh8AABINEIAMHYmn1dia1thoQJZlKSqf9jUldLA1pUgwmO94BS0ej6u1tVXGGFmWpaKiIhUXF9MEAQAgFkEAkCHHGNlStw/Vtm3JcUz+QkHJZFKtra3y+XwKhULy+/2Kx+NKJpP5jgYAgCvQAAHISHHIp1DA0uG2lNKOUWtHWrakaJhrgPLJcRwZY+TzHX0dbNuWZVlKp1meHAAAiQYIQIYiQVvTysPy+ywdaE0p6RhNHVekWISZtfnUeUbOGNP1tzFGts3bPQAAEtcAAcjCScV+zZpcrI6UUcBnKeDjGpN8CwQCKioqUnt7uyzLkjFGwWBQgUAg39EAAHAFGiAAWfHZliJBGh+3sCxLJSUlCgaDSqfTsm1bwWCQM0AAAHyCBggAPMayLIVCoXzHAADAlWiAAGSlPeko5RiF/DZT4AAAgOvRAAHIiDFG/z2Y0PuNCaXTRuGgpanjwjqpmLcVAADgXkwKB5CRxpaU3qtrV0nQ1pjSgBxjacu+uOJJJ9/RAAAA+kQDBCAjR9rT8tuWigJH30ZGhn1qTxq1JWiAAACAe9EAAchIwLZ07MmetHP0vjM+i+uAAACAezFZH0BGRkcDKjmU0MfNSYX8ttoSaZWPCChaxO9V8skYo2QyqVQq1bUaHEtgAwDwPzRAADISCdqa8X8R1R5KqD1pND4W0P/FgvLZnAHKp3g8rqamJnV0dMhxHBUVFamsrIwboQIA8AkaIAAZKw75VDk2nO8Y+EQqldKRI0eUSCTk8/nk9/sVj8d18OBBlZWVcSYIAADRAAGAZ3ROf7MsS37/0bd3v9+vRCKhdDpNAwQAgFgEAQA8w7Zt2bYtxzm6OoUxRpZl0fgAAHAMfioCgEf4fD6VlpbKcRy1t7crkUhIksLhsHw+X57TAQDgDkyBAwAPiUaj8vl8amlpkTFGRUVFKi4u5iwQAACfoAECAI+JRCIKh8MyxtD4AADwKTRAAOBBlmXJ4qa0AAD0wK8GAQAAABQMGiAAAAAABYMGCAAAAEDBoAECAAAAUDBogAAAAAAUDBogAAAAAAWDZbBzqKSkRH6/X8aYjMfo3DebMY4dqzNPrsY79u9sx8pVtlzm6hzHjdmOl8vv7/+/89ixYz1bn9RA5uMd+3e2Y+WzPqmBzMc79u9sx3Ljv1nnOH1lO15tAvAe/tfn0IwZMxSLxZRKpbIeK51O5yCRFIvF5DiOHMfJyXiSe7PlKpfk3mz95YrFYv3ue91110mSp+uz0GsgU16qT2ogM27NNhSv5/FqE4D30ADl0L/+9S9Nnz5dZWVlGY9hjFE6nZbP58v6JoaO4+jAgQMaNWpUTu4G79Zsuczl5mzHy9XQ0NDv/o899pgWLFjgyfqkBtyfbbDrkxrwVrahfD2PV5sAvIcGKIdaWlqUSqVy8madi7u4W5bVlSeXd4R3a7ZcjeXWbMfLdbzfnNfV1Xm+Pgu9BrIZ1yv1SQ1kPq4bsw3F65mLs+IAhhcaIADwGGNM1zQfn8+X5zQAALgLDRAAeEgqlep2NjocDiscDuf0bAEAAMMZy2ADgEc4jtPV/AQCAfl8PrW2tqq9vT3f0QAAcA0aIADwCMdxlEwmFQgEZFmWbNuWbdtKJpP5jgYAgGvQAAGAh1iW1e0+J8aYnKwWBgCAV3ANEAB4hM/nUygUUnt7u3w+nxzHkWVZCoVC+Y4GAIBr0AABgEdYlqXi4mL5fD4lk0n5/X6Fw2EFAoF8RwMAwDVogADAQ2zbViQSyXcMAABci4nhAAAAAAoGDRAAAACAgkEDBAAAAKBg0AABAAAAKBg0QAAAAAAKBg0QAAAAgILBMtgA4CGJRELt7e2SpGAwqFAoJMuy8pwKAAD3oAECAI9IJBI6cuSIpKM3Re3o6JAxRuFwOM/JAABwD6bAAYBHtLW1ybIsBYNBBQIB+f1+xeNxGWPyHQ0AANegAQIAjzDGdJvuZlmWjDE0QAAAHIMGCAA8IhAIKJ1OdzU9qVRKfr+fa4AAADgG1wABgEdEIhEZY7qu/QkGgyopKaEBAgDgGDRAAOARtm2rpKSkqxHy+Xw0PwAAfAoNEAB4iGVZ8vl8+Y4BAIBrcQ0QAAAAgIJBAwQAAACgYNAAAQAAACgYNEAAAAAACgYNEAAAAICCQQMEAAAAoGDQAAEAAAAoGDRAAAAAAAoGDRAAAACAgkEDBAAAAKBg0AABAAAAKBj+fAfwmsbGxqz29/v9isViamhoUCqVykmmurq6nIzj1myDkUtyb7a+cg2k9rxan9RAZrxUn9RAZtyabShfz2zfFwEMPzRAORKJRBQIBPTss8/mO0qX5uZmvfvuuzr77LMVjUbzHacbsp24geQKBAKKRCI9tlOfJ8at2dyaS6I+h4pbc0nDO1tftQnAmyxjjMl3CK84fPiw2tra8h2jy+bNm3XxxRfrr3/9q6ZPn57vON2Q7cQNJFckEtHIkSN7/R71OXBuzebWXBL1OVTcmksa3tn6q00A3sMZoBwaOXKkq95AO0/1l5WVqby8PM9puiPbics2F/U5cG7N5tZcEvU5VNyaSyIbgOGDRRAAAAAAFAzf0qVLl+Y7BAZPSUmJ5s2b57r52BLZMuHWXJly8/Nxaza35pLcnS0Tbn0+bs0lkQ3A8MA1QAAAAAAKBlPgAAAAABQMGiAAAAAABYMGCAAAAEDBYBlsD9m0aZNqamq0fft2NTY2KhaL6cwzz9SiRYt00kknHXf/p556StXV1T22BwIBPfPMMznJmEwm9eSTT6qmpkYtLS2aNGmSFi1apBkzZuRk/L7s2rVLa9eu1ebNm1VfX69oNKrTTz9dV155pU455ZR+9127dq0efvjhXr+3cuVKxWKxwYgs6ei9K+68885ev7d8+XJVVlYO2rFzjfrs3XCtTck79Ult9o36BOBFNEAesnLlSjU3N2vOnDkqLy9XXV2dVq9erbffflsPP/zwgH/Y3HjjjSoqKur62rZzd6LwV7/6ldatW6dLL71U48aN06uvvqply5bp5z//uaZOnZqz43zaM888o+3bt2vOnDmaNGmSDh06pNWrV+uWW27RL3/5S02cOPG4Y1xxxRUaM2ZMt23FxcWDFbmbqqoqnXbaad22Dbd7WVCfvRvutSkN//qkNvtGfQLwJAPP2Lx5s0mn0z22VVVVmT/+8Y/H3f/JJ580VVVVpqmpaVDy7dixw1RVVZlnn322a1tHR4e5/vrrzW233TYox+y0bds2k0gkum376KOPzIIFC8z999/f775r1qwxVVVVZufOnYMZsVf//ve/TVVVlfnHP/4x5MfONeqzd8O1No3xTn1Sm32jPgF4EdcAeci0adN6/MZx2rRpikajqq2tHfA4xhi1tbXJ5HiF9DfffFO2beurX/1q17ZgMKiLLrpI7733nhoaGnJ6vGOdccYZCgQC3baVl5drwoQJ2rt374DHaWtrUzqdznU81x87F6jP3nmhNt1w/GxQm32jPgF4EVPgPC4ejysej6u0tHTA+9xwww2Kx+MqKirSrFmztHjx4pzM1f7ggw90yimnKBKJdNteUVEhSdqzZ4/KysqyPs5AGWN0+PBhTZgwYUCP/8lPfqJ4PC6/36+ZM2dq8eLFQzaN4te//rXi8bhs29ZnP/tZXXPNNfrMZz4zJMceTNRn74ZTbUrerE9qs2/UJ4DhjgbI41atWqVUKqXzzjvvuI8tKSnRJZdcosrKSgUCAW3dulUvvviidu3apQcffLDHD98TdejQoV4/DHRuO3jwYFbjn6iamhodOHBAV1xxRb+PC4VCmj9/vqZPn65IJKLdu3frhRde0O23366HHnpoUD94+P1+zZ49W2effbZKS0tVW1ur5557Tj/60Y9033336dRTTx20Yw8F6rN3w6E2JW/XJ7XZN+oTwLCXt8l36Fc6nTYdHR0D+uM4Tq9jbN682XzjG98w9913X8Y5ampqTFVVlXn66aczHqPT9ddfb5YuXdpj+/79+01VVZV5/vnnsz7GQNXW1ppvf/vb5rbbbjOpVOqE99+6dau59NJLzW9+85tBSNe/jz76yHzzm980d91115AfuxP1OXiGc20ak//6pDYHF/UJwAs4A+RSW7du7XP5zk975JFHNH78+G7b9u7dq3vvvVcTJkzQTTfdlHGOCy64QCtWrNCmTZt02WWXZTyOdHTOejKZ7LE9kUhIOvrbwqFw6NAhLVu2TJFIRHfccYd8Pt8JjzF16lRVVFRo48aNg5Cwf+Xl5Zo1a5bWr1+vdDqdUf5sUZ+DY7jXppT/+qQ2Bw/1CcAraIBcavz48br55psH9NhPT41oaGjQXXfdpUgkoiVLlmQ9/WL06NFqbm7OagzpaM7epmocOnRIkgZ0v41stba2aunSpWptbdW9996rUaNGZTzW6NGj9dFHH+Uw3YkdO5VKqaOjI+vXNxPUZ+55pTY7j5+v+qQ2Bwf1CcBLaIBcKhaLaf78+Se835EjR7RkyRIlk0ndc889Wf9gNMaovr5eU6ZMyWocSZoyZYo2b96stra2bj90duzYIUmaPHly1sfoTyKR0N133619+/bp7rvvHvAFvH35+OOPNWLEiBylO/FjB4PBbvccGUrUZ255qTY7j5+v+qQ2c4/6BOA1LIPtIe3t7Vq2bJkOHDigJUuW9LvKTkNDQ48lTJuamno87qWXXlJTU5NmzpyZdb7Zs2fLcRy9/PLLXduSyaTWrl2rioqKQb0gNp1Oa/ny5dqxY4fuuOOOPu8AfvDgQe3du1epVKprW2//Lu+88452796dk3+X/vR27D179mjDhg363Oc+l9MbLQ426rN3w7U2+zr+cKxParNv1CcAL+IMkIc88MAD2rlzpy688ELV1tZ2u39FOBzWueee2/X1Qw89pC1btmjVqlVd26677jrNnTtXEydOVDAY1LZt2/TGG29o8uTJuvjii7POd/rpp2vOnDl64okndPjw4a67mdfX1+uHP/xh1uP3Z8WKFdqwYYPOOeccNTc36+9//3u373/pS1+SJD3xxBN69dVX9fvf/77rzuW33367pkyZotNOO03FxcV6//33tWbNGo0ePTrruf3Hs3z5coVCIVVWVmrEiBGqra3Vyy+/rFAopKuvvnpQj51r1GfvhmttSt6pT2qzb9QnAC+iAfKQPXv2SJLWrFmjNWvWdPveySef3O2HeG/mzZun7du3a926dUomkyorK9OCBQt0+eWX5+wi21tuuUVPPvmkampq1NLSokmTJumnP/2ppk2blpPx+9L5b7NhwwZt2LChx/c7f4j3Zu7cuXr77be1ceNGdXR0KBaL6Stf+YoWLlyYk3t89Ofcc8/Va6+9phdeeEFtbW0aMWKEvvjFL2rhwoVDeh+NXKA+ezdca1PyTn1Sm32jPgF4kWVMjm9ZDQAAAAAuxQRYAAAAAAWDBggAAABAwaABAgAAAFAwaIAAAAAAFAwaIAAAAAAFgwYIAAAAQMGgAQIAAABQMKv5iBwAAAPuSURBVGiAAAAAABQMGiAAAAAABYMGCMCwY1lWtz+2bWvkyJGaO3euHn30URlj+tz3rbfe0ne/+11VVFQoGo2qqKhIkyZN0re+9S0999xzchxnQBnS6bT+/Oc/69Zbb9X555+v4uJiWZala665JkfPEgAADAbL9PdJAQBcyLIsSdLVV18t6Wgz8v777+utt96SMUYLFy7Un/70p277JJNJ3XjjjXrsscckSaeffrrOOOMMBYNB7dmzR++++64cx9GXv/xlrV279rgZDh8+rFgs1mP71VdfrT/84Q9ZPkMAADBY/PkOAACZ+nSj8be//U1f+9rXVF1drUWLFunrX/961/e+853vqLq6WhUVFXr88cc1e/bsbvvu27dPy5Yt0yuvvDKgYwcCAV111VX6/Oc/ry984QvasWOHrr322qyfEwAAGFw0QAA846KLLtJVV12lxx9/XM8//3xXA/T000+rurpaY8aM0euvv64xY8b02Le8vFy//e1v9eabbw7oWMXFxXriiSe6vv7Pf/6TmycBAAAGFdcAAfCUGTNmSJJqa2u7tt1///2SpKVLl/ba/Bxrzpw5gxcOAADkHQ0QAE9pbm6WJIVCIUlSY2OjNmzYIMuytHDhwnxGAwAALkADBMAzjDH6y1/+Ikk688wzJUkbN26UJE2ZMkUjR47MWzYAAOAONEAAhr10Oq1du3Zp8eLFWr9+vUKhUNeCBAcOHJAklZWV5TMiAABwCRZBADBsdS6HfaxoNKqVK1fq1FNPzUMiAADgdjRAAIatzvsA2bat0tJSTZ8+XQsWLOh2f55Ro0ZJkhoaGvKSEQAAuAsNEIBhayA3HD3rrLMkSR988IEOHz7MdUAAABQ4rgEC4GllZWU655xzZIxRdXV1vuMAAIA8owEC4Hm33nqrpKP3Aaqvr+/3sevWrRuKSAAAIE9ogAB43uWXX66FCxfq448/1vnnn6/169f3eExdXZ1uuukmXXnllXlICAAAhopljDH5DgEAJ6Jz9bcTeftKJpP6/ve/rxUrVkiSKisrNXXqVAUCAX344Yd65513lE6nddFFF+mVV14Z0Jg/+MEP9M9//lPS0eW2d+/erdGjR3dbge6tt94acEYAADD4aIAADDuZNECd1q9fr0cffVSvv/669u3bp3Q6rbFjx2rWrFlatGiRqqqqel1euzfz5s3Ta6+91u9jeIsFAMBdaIAAAAAAFAyuAQIAAABQMGiAAAAAABQMGiAAAAAABYMGCAAAAEDBoAECAAAAUDBogAAAAAAUDBogAAAAAAWDBggAAABAwaABAgAAAFAwaIAAAAAAFAwaIAAAAAAFgwYIAAAAQMH4f5bHuNFdBEbrAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_C = ggplot(all_corrected_data_df[all_corrected_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\",\n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " )\\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#1976d2']) \\\n", - " + geom_point(data=all_corrected_data_df[all_corrected_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_C)\n", - "ggsave(plot=panel_C, filename=pca_corrected_file)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:simulate_expression_compendia] *", - "language": "python", - "name": "conda-env-simulate_expression_compendia-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Pseudomonas_tests/Pseudomonas_sample_limma.ipynb b/Pseudomonas_tests/Pseudomonas_sample_limma.ipynb deleted file mode 100644 index f883eee..0000000 --- a/Pseudomonas_tests/Pseudomonas_sample_limma.ipynb +++ /dev/null @@ -1,1059 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pseudomonas sample level analysis\n", - "\n", - "Main notebook to run sample-level simulation experiment using *P. aeruginosa* gene expression data." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Using TensorFlow backend.\n" - ] - } - ], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "\n", - "import os\n", - "import sys\n", - "import ast\n", - "import pandas as pd\n", - "import numpy as np\n", - "import random\n", - "from plotnine import (ggplot,\n", - " labs, \n", - " geom_line, \n", - " geom_point,\n", - " geom_errorbar,\n", - " aes, \n", - " ggsave, \n", - " theme_bw,\n", - " theme,\n", - " facet_wrap,\n", - " scale_color_manual,\n", - " guides, \n", - " guide_legend,\n", - " element_blank,\n", - " element_text,\n", - " element_rect,\n", - " element_line,\n", - " coords)\n", - "\n", - "from sklearn.decomposition import PCA\n", - "\n", - "import warnings\n", - "warnings.filterwarnings(action='ignore')\n", - "\n", - "from ponyo import pipeline, utils\n", - "\n", - "from numpy.random import seed\n", - "randomState = 123\n", - "seed(randomState)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Read in config variables\n", - "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", - "config_file = os.path.abspath(os.path.join(base_dir,\n", - " \"configs\", \n", - " \"config_test_Pa_sample_limma.tsv\"))\n", - "params = utils.read_config(config_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load parameters\n", - "local_dir = params[\"local_dir\"]\n", - "dataset_name = params['dataset_name']\n", - "analysis_name = params[\"simulation_type\"]\n", - "correction_method = params[\"correction_method\"]\n", - "lst_num_experiments = params[\"lst_num_experiments\"]\n", - "train_architecture = params['NN_architecture']" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Input files\n", - "normalized_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_test.tsv\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "normalized_processed_data_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"data\",\n", - " \"input\",\n", - " \"train_set_normalized_processed.txt.xz\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup directories" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.setup_dir(config_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Process data\n", - "This pipeline is expecting data to be of the form sample x gene. The downloaded data is gene x sample." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "pipeline.transpose_data(normalized_data_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train VAE" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Directory containing log information from VAE training\n", - "vae_log_dir = os.path.join(\n", - " base_dir, \n", - " dataset_name,\n", - " \"logs\",\n", - " train_architecture)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "input dataset contains 11 samples and 5549 genes\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Colocations handled automatically by placer.\n", - "tracking beta\n", - "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", - "Instructions for updating:\n", - "Use tf.cast instead.\n", - "Train on 10 samples, validate on 1 samples\n", - "Epoch 1/5\n", - "10/10 [==============================] - 1s 96ms/step - loss: 3858.4126 - val_loss: 3735.3594\n", - "Epoch 2/5\n", - "10/10 [==============================] - 0s 49ms/step - loss: 3718.5757 - val_loss: 3637.9312\n", - "Epoch 3/5\n", - "10/10 [==============================] - 0s 49ms/step - loss: 3609.0437 - val_loss: 3538.1511\n", - "Epoch 4/5\n", - "10/10 [==============================] - 0s 49ms/step - loss: 3523.7488 - val_loss: 3493.7456\n", - "Epoch 5/5\n", - "10/10 [==============================] - 0s 48ms/step - loss: 3459.9624 - val_loss: 3830.6794\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAESCAYAAAArJ3joAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd4FOX2wPHvSSNAIAESaui9hRZCCRBCLypdEUQsWBDE8tMrer0qevWi14tIEREVRVGkCFJFFARCTyih9xZq6IQWkry/P2aDAWkJSWazez7Ps4/Ju7MzZ0H27Jk5875ijEEppZTKSh52B6CUUsr1abJRSimV5TTZKKWUynKabJRSSmU5TTZKKaWynCYbpZRSWU6TjVJKqSynyUYppVSW02SjlFIqy3nZHYAdAgMDTZkyZewOQymlcpSYmJgTxpigjLzWLZNNmTJliI6OtjsMpZTKUURkf0Zfq6fRlFJKZTlNNkoppbKcJhullFJZTpONUkqpLKfJRimlVJbTZKOUUirLabJRSimV5dwy2Rw+c4kLV5LsDkMppdyGWyabkxcS6TZmOXGnL9odilJKuQXbko2I+IrIahHZICKbRWSIY7yliKwVkfUiEiUiFRzjj4lIvGN8vYj0S7OvviKy0/Hoe6djly2Ul0NnLtFp1DKi953KujeplFIKsLeyuQK0MMbUAmoD7USkITAG6G2MqQ38ALyZ5jU/GWNqOx5fAohIQeBtoAEQBrwtIgVud2A/Xy9mDAgnf25vHh63kinRBzP/3SmllLrGtmRjLAmOX70dD+N45HeM+wOH77CrtsACY8wpY8xpYAHQ7k7HLx/kx/TnGhNWtiCvTo3l/TlbSE4xGXovSimlbs/WazYi4iki64HjWAljFdAPmCsicUAfYGial3QTkVgRmSoiJR1jJYC0pUmcY+zGYz0tItEiEh0fHw9AQB4fvnk8jL6NSjNu6V76fbuGc5evZv4bVUopN2drsjHGJDtOlwUDYSJSA3gJ6GCMCQbGA8Mcm88CyhhjQrCql2/TeawvjDGhxpjQoKC/Zsj29vRgSKca/LtzDZbuPEHXz5az/+SFTHh3SimlUjlFN5ox5gywCGgP1HJUOAA/AY0d25w0xlxxjH8J1HP8fAgomWZ3wY6xdHmkYWkmPBnGiYQrdBq9jBW7T2bgnSillLoZO7vRgkQkwPFzbqA1sBXwF5FKjs1SxxCRYmle/kDqODAfaCMiBRyNAW0cY+nWuHwgvwwIJ9AvF32+WsUPqw5kZDdKKaVuYOfiacWAb0XEEyvpTTbGzBaRp4BpIpICnAaecGw/SEQeAJKAU8BjAMaYUyLyHrDGsd27xpgM9zOXLpSXn59rzAs/ruON6RvZcew8b3asipenUxSBSimVI4kx7teBFRoaau60UmdyimHovK2MW7qXJhUCGd2rLv55vLMpQqWUcj4iEmOMCc3Ia/Xr+i14egj/7FiNj7qHsGrvSTp/tozd8Ql3fqFSSqm/0WRzBw+GluSHpxpy7tJVOo9expId8XaHpJRSOY4mm7tQv0xBZgwIp0RAbh4bv5rxy/bijqcflVJu7B4/8zTZ3KWSBfMwrX9jWlYtwpBZW3hj+kYSk1LsDksppbLH5p/v6eWabNIhby4vxj5SjwGR5flx9UH6fLWKUxcS7Q5LKaWyVkoyLP7onnahySadPDyEV9tW4dOetVl38AydRkex49h5u8NSSqmss3k6xG+7p11ossmgTrVLMPmZRly+mkLXz5bzx9ZjdoeklFKZL7WqCapyT7vRZHMPapcMYObAcMoE5qHfhGjGLt6tjQNKKdeyeTqc2A4Rr93TbjTZ3KNi/rmZ8kxjOtQoxn/mbeOVKbFcSUq2OyyllLp316qaqlCt8z3tSpNNJsjt48moXnV4qVUlpq2N4+EvVhJ//sqdX6iUUs4stapp/hp43Fu60GSTSUSEF1pV5LPeddly5BydRkWx+fBZu8NSSqmMSVvVVO10z7vTZJPJOtQsxtRnG2OA7mNW8OumI3aHpJRS6ZeJVQ1osskSNUr488uAcCoXzcez369l1MKd2jiglMo5UpJh8YeZVtWAJpssUzi/L5OebkiXOiX4+LcdDJq0nstXtXFAKZUDbJ4OJ3ZkWlUD9q5n4/J8vT0Z9mAtKhbx47/zt7P/5AXGPRpKkfy+doemlFI3l1rVFK6WaVUNaGWT5USE55pXYOwj9dh1PIEHRkWx4eAZu8NSSqmbS61qIjKvqgF7l4X2FZHVIrJBRDaLyBDHeEsRWSsi60UkSkQqOMZzichPIrJLRFaJSJk0+3rdMb5dRNra845ur031okzr3xgvDw8eHLuCmRsO2x2SUkpd77qq5oFM3bWdlc0VoIUxphZQG2gnIg2BMUBvY0xt4AfgTcf2TwKnjTEVgE+ADwFEpBrQE6gOtAM+cyw17XSqFsvPzIHhhAT7M+jHdfzvt+2kpGjjgFLKSWz6OUuqGrAx2RhL6tKX3o6HcTzyO8b9gdQSoBPwrePnqUBLERHH+CRjzBVjzF5gFxCWDW8hQwr55WJiv4Y8GBrMyIW7eG7iWi4mJtkdllLK3WVhVQM2X7MREU8RWQ8cBxYYY1YB/YC5IhIH9AGGOjYvARwEMMYkAWeBQmnHHeIcYzce62kRiRaR6Ph4e1fb9PHy4MNuIfzrvmr8tuUo3ces4NCZS7bGpJRyc5t+hpM7s6SqAZuTjTEm2XG6LBgIE5EawEtAB2NMMDAeGJZJx/rCGBNqjAkNCgrKjF3eExHhySZl+fqx+hw8dZFOo5YRs/+03WEppdzRtaqmepZUNeAk3WjGmDPAIqA9UMtR4QD8BDR2/HwIKAkgIl5Yp9hOph13CHaM5QjNKxdm+oDG5M3lycNfrGRaTJzdISml3M2maVZVk4n31dzIzm60IBEJcPycG2gNbAX8RaSSY7PUMYCZQF/Hz92Bhca6LX8m0NPRrVYWqAiszqa3kSkqFM7HjOfCCS1TgP+bsoH/zNtKsjYOKKWyQ9qqpsr9WXYYO2/qLAZ86+gc8wAmG2Nmi8hTwDQRSQFOA084tv8K+E5EdgGnsDrQMMZsFpHJwBYgCRhgjMlxt+oXyOvDt0+EMWTWZsYu3sOuYwkM71mbfL7edoemlHJlm6bByV3w4IQsq2oAxB3n7AoNDTXR0dF2h3FL363YxzuztlA+KC9fPlqfUoXy2B2SUsoVpSTD6DDw8oVnlt4x2YhIjDEmNCOHcoprNup6fRqVYcITYRw7d4VOo6NYueek3SEppVxRalWTRR1oaWmycVLhFQKZMSCcAnl9eOTLVUxafcDukJRSriT1Wk2RGlDlviw/nCYbJ1Y2MC/TnwuncYVABv+8kSGzNpOUnGJ3WEopV7BxarZVNaDJxun55/bm676hPBFelvHL9vH4N2s4e+mq3WEppXKy5CRY8lG2VTWgySZH8PL04K37qzG0a01W7jlJl8+WsSc+4c4vVEqpm8nGazWpNNnkID3DSvH9kw04c/EqnUcvI2rnCbtDUkrlNNeqmprZVtWAJpscp0G5QvwyIJxi/rnpO341E1bs0yWnlVJ3L7WqycLZAm5Gk00OVLJgHqY915jIykG89ctm3pyxiavaOKCUupPkJEcHWk2o3DFbD63JJofyy+XF2D6h9G9enomrDvDoV6s5fSHR7rCUUs5s01Q4tTvbqxrQZJOjeXoIr7WrwrAHaxGz/zSdP1vGruPn7Q5LKeWMkpNg8Ue2VDWgycYldK0bzKRnGnLhSjJdRi9n0fbjdoeklHI2NlY1oMnGZdQtVYCZA8MpWTAPT36zhi+X7tHGAaWUJbWqKZq9HWhpabJxIcUDcjO1fyPaVi/Kv+ds5R9TY7mSlOMmwFZKZbbUqiZiMIjYEoImGxeTx8eL0b3qMqhlRabExNF73CpOJFyxOyyllF1SO9CK1oQq2X+tJpUmGxfk4SG83LoSIx+uw8ZDZ+k0ahlbj5yzOyyllB02ToFTe2ytasDelTp9RWS1iGwQkc0iMsQxvlRE1jseh0VkhmO8uYicTfPcW2n21U5EtovILhEZbNd7cjb31yrOlGcbkZSSQrcxy/lt81G7Q1JKZafU2QJsrmrA3srmCtDCGFMLqA20E5GGxpimxpjaxpjawArg5zSvWZr6nDHmXQDHSp+jgfZANeBhEamWvW/FeYUEBzBzYBMqFvbjme9jGL1olzYOKOUuUqua5q/bWtWAjcnGWFJnk/R2PK59CopIfqAFMOMOuwoDdhlj9hhjEoFJQKcsCDnHKpLfl5+eacQDtYrz3/nbeemn9Vy+qo0DSrm0tFVN5Q52R2PvNRsR8RSR9cBxYIExZlWapzsDfxhj0l5saOQ47TZPRKo7xkoAB9NsE+cYU2n4ensy/KHavNq2MjPWH+ahL1Zy/Nxlu8NSSmWVjZOdpqoBm5ONMSbZcbosGAgTkRppnn4Y+DHN72uB0o7TbiO5c8VzHRF5WkSiRSQ6Pj7+XkPPkUSEAZEV+PyReuw8dp4HRi1jY9xZu8NSSmW2tPfVOEFVA07SjWaMOQMsAtoBiEgg1umxOWm2OZd62s0YMxfwdmx3CCiZZnfBjrEbj/GFMSbUGBMaFBSUZe8lJ2hXoyhTn22Mp4fQY+xy5sQesTskpVRm2jgZTu91mqoG7O1GCxKRAMfPuYHWwDbH092B2caYy2m2Lypi/amJSBhW7CeBNUBFESkrIj5AT2Bm9r2TnKla8fz8MjCcGsX9GfDDWj5ZsIOUFG0cUCrHu1bVhDhNVQP2VjbFgEUiEouVMBYYY2Y7nuvJ9afQwEpAm0RkAzAC6OloMkgCBgLzga3AZGPM5mx5BzlcoF8uJj7VgO71gvn0j50M/HEtlxK1cUCpHM0JqxoAccc22NDQUBMdHW13GE7DGMOXS/fywbytVC+en3GPhlLMP7fdYSml0is5CUaFQq588MySTE82IhJjjAnNyGud4pqNspeI8FSzcnzdtz77TlzkgVHLWHfgtN1hKaXSK/Ynp6xqwF2TzfkjcFm7sG4UWaUw059rTG5vTx76YiXT18XZHZJS6m4lJ8GS/0KxWlC5vd3R/I2bJptjMKIuxHwDKXqNIq2KRfIxY0A4dUoG8NJPG/jw123aOKBUTuDEVQ24a7IJqgSBFWHWC/BFBOxbZndETqVgXh++e7IBD4eVYsyfu3n6uxgSriTZHZZS6lbSVjWV2tkdzU25Z7LxzgOPz4PuX8PF0/BNB5jyGJw5YHdkTsPHy4MPutRgyAPVWbT9ON3HLOfgqYt2h6WUuhknr2rAXZMNWH8hNbrBwDXWX9D2X2FUfVj0ASResDs6pyAi9G1chm8er8/hM5foNHoZa/adsjsspVRayVetOdCcuKoBd042qXzyQPPBVtKp0tFaZGhkKMROATdsC7+ZphWDmDEgnIDc3vQat5LJaw7e+UVKqewR+xOc3ufUVQ1osvlLQEnrtNrjv4JfEPzcD75uC4fW2h2ZUygX5Mf058JpWK4Q/5gWy79nbyFZGweUslfyVce1mtpOXdWAJpu/K90InloED4yyZkwdFwkzBlgdbG7OP4834x+rz2ONy/Bl1F6e+GYN5y5ftTsspdxXDqlqQJPNzXl4Qt0+8PxaaDzI+gsdWReiPoGkK3ZHZysvTw/eeaA6H3SpybJdJ+gyehn7Tug1LqWy3XVVTVu7o7kjTTa345sf2rwHA1ZBmabw+zswugFsm+P213N6NSjFd0824OSFRO4bGcXEVfv1fhylstOGSTmmqgFNNnenUHnoNQke+Rk8fWBSL/iuMxzbYndktmpUvhCzBjahVkl//jl9E72+XKlVjlLZIYdVNaDJJn0qtIT+y6D9R3B4HXzeBOa+Chfdtx24ZME8fP9kAz7sVpPNh8/RdvgSvliym6TkFLtDU8p1bZgEZ/bnmKoGdNbnjLtwEv78AKK/hlz5IfKfEPoEeHplTpA50LFzl3lzxiYWbDlGSLA/H3YLoWqx/HaHpZRrSb4KI+tBnoJWM1M2Jhud9dkOeQtBx//Bs1FQLATmvWpVOrsX2R2ZbYrk9+WLPvUY1asOh05f4v6RUQxbsIMrSTr/nFKZJgdWNaDJ5t4VqQ6PzoSHJkLSJetazo+94ORuuyOzhYhwX0hxfn85ggdqFWfEHzu5b0QUa3XJAqXuXeq1muJ1oGIbu6NJFzuXhfYVkdUiskFENovIEMf4UhFZ73gcFpEZjnERkREisktEYkWkbpp99RWRnY5HXxveDFS9D55bBS3fhj1/wmcNYcFbcPlctofjDArk9WHYQ7UZ/3h9LlxJotuY5bw7awsXE3VCT6UybMOPObKqARuv2YiIAHmNMQki4g1EAS8YY1am2WYa8IsxZoKIdACeBzoADYBPjTENRKQgEA2EAgaIAeoZY275VTrLV+o8dwT+eBc2/AB5C0Ort6FWL/Bwz0Ly/OWrfPTrdr5buZ+SBXMztGsI4RUC7Q5LqZwl+ap1v1+eQHhqoS3JJkdeszGWBMev3o7HtcwnIvmBFsAMx1AnYILjdSuBABEpBrQFFhhjTjkSzALA3nkb8heDLmOg30IoUBp+GWDNRHBgla1h2SWfrzfvda7B5Gca4eXhQe8vV/Ha1FjOXtLZB5S6axt+tGamz4FVDdh8zUZEPEVkPXAcK2Gk/TTuDPxhjEk9D1UCSDsDZJxj7Fbj9guuB08ugK7jIOEYfN0Gpj4JZ91zBcywsgWZ90JT+jcvz9S1cbQetpj5m4/aHZZSzu/atZq6ULG13dFkiK3JxhiTbIypDQQDYSJSI83TDwM/ZtaxRORpEYkWkej4+PjM2u3dHBhCHoSB0dDsVdg6y5pV+s8PIdH91ofx9fbktXZV+GVAOIF+uXjmuxgGTFxL/Hn3ngZIqdvK4VUNOEk3mjHmDLAIx+kvEQkEwoA5aTY7BJRM83uwY+xW4zce4wtjTKgxJjQoKChz38DdyOUHLd60ljKo1Na6R2d0GGz62S2nvqlRwp9fBobzatvKLNhyjNafLObntXG4431fSt1WUmKOr2rA3m60IBEJcPycG2gNbHM83R2YbYy5nOYlM4FHHV1pDYGzxpgjwHygjYgUEJECQBvHmHMqUBoe/BYemwO+ATD1cRjfAY5ssDuybOft6cGAyArMfaEp5YP8eHnyBh4bv4ZDZy7ZHZpSzsMFqhqwt7IpBiwSkVhgDdY1m9mO53ry91Noc4E9wC5gHPAcgDHmFPCeYx9rgHcdY86tTBN4ZjHcNxxObIexETDzeUjIxlN8TqJCYT+mPNOIIQ9UZ82+U7QZtpgJK/bpxJ5KJSXC0o+hRL0cXdWATlfjHC6dgcUfweqx4J0HIv4BYc+Al4/dkWW7g6cu8sb0jSzdeYL6ZQowtFsI5YP87A5LKXvEfAuzBkHvqU6RbO6l9TlTko3jnpmWQAGsCuXMPe80Czldskl1YifMfwN2/gYFy0O7/1h3Cefg0jkjjDFMW3uI92Zv4dLVZF5sVZGnmpbD29MpLjEqlT2SEmFUPcgbBP3+cIrPgWy9z0ZEhojIwhuG52JdJ/kJ2CoiZTMSjNsLrAi9p0CvKSAe8MODMLE7xG+3O7JsJSJ0rxfMgpeb0bJKYT76dTudRy9j06GzdoemVPbZ8INLXKtJlZGvij2A9am/iMj9WDdWfgT0AjyBNzMlOndVqQ30Xw5tP4CDa+CzRjBvMFxyr/nFCufzZcwj9RjTuy7Hzl2h0+hl/Hf+Ni5f1Yk9lYtLSoQl/7Ou1VRoZXc0mSIjySYYSPtVuzOw2xjzujFmEvAZ1ik1dS+8fKDRABi0Fuo+Cqs+hxF1Yc1XkOJeH7btaxbjj5cj6FqnBKMX7abDiKVE73P+HhClMmzDD3DWdaoayFiyufGdt+L6VuMDQJEMR6SulzcQ7h8OzyyBwtVgzsswthnsXWJ3ZNnKP483/+1RiwlPhHHlago9xq7g7V82kXBFJ/ZULuZaVRPqMlUNZCzZ7Ma6lwXH/S4lgd/SPF8C0JPrma1YCDw2G3p8a80k/e398NMj1hrkbqRZpSB+e6kZfRuVYcLK/bT9ZAmLd7hfu7hyYS5Y1UAGutFE5BlgDLAZ65TaGaCKMeaK4/lfAS9jjNOmZKftRrtbVy/BilGwdJh1Sq3xQGjysjVLgRuJ2X+Kf0yNZXf8BbrWLcFb91UjII/7tYsrF5KUaK3C6VcY+v3udMkmW7vRjDFjgSeBncB0oG2aRFMQCCIT5zRTN+Gd25pn7fkYqN4Zlv7P+h90/Y+QkmJ3dNmmXumCzBnUlIGRFZi5/jCthi1m7sYjdoelVMatn+iSVQ3oTZ2u4eBqmPcaHF5rda+0/wiCM/TlI8fafPgsr02LZdOhc7StXoT3OtWgcH5fu8NS6u4lJVrr1fgVccqqBpxgPRvHfGWtRKRH6nxnKhuVDLNu+ur8ubV8wZct4ednrEXc3ET14v7MeC6cwe2r8Of2eFoNW8zk6IM6safKOdZPhLMHIdL1qhrI2DWbIUBTY0yLNGPzsJoGBDgGNDbG7M3MQDOTy1U2aV05b13LWTEKPLyh6cvQaCB4u8+3/D3xCQyetpHV+07RpEIg/+lak5IF89gdllK3llrV5CtqrYHlpMkmuysbvanTmeXKZy1DPWA1lI+Ehe/B6Pqw5Re3WcqgXJAfk55uyHuda7D+4BnafLKEr6P2kqwTeypnlVrVNB/stInmXulNna6qYFnoOREenQk+fjD5Uatd+ugmuyPLFh4eQp+GpfntpWY0KFeQd2dvocfny9l57LzdoSl1vaREq8knuD6Ud92PTr2p09WVi4BnlkLH/8GxTTC2Kcx+CS6ctDuybFE8IDfjH6vP8Idqs/fEBTqOiGLkHzu5muw+XXvKya3/3uWrGtCbOt2DpxfU7wfPr4Wwp61py0fWgZVjrLXNXZyI0LlOCRa8HEHbGkX534Id3D8yitg4p56cXLmD1NkCgsNcuqqBjCWbMUAXEdkIzAP2c31lEw64x7manCZPQWj/oTXJZ4l68OtgGNMYdv5ud2TZItAvFyMfrsO4R0M5fTGRzqOX8Z+5W3ViT2Wf9d/DuTiXr2rAxps6RcRXRFaLyAYR2ezocktto35fRHaIyFYRGeQYby4iZ0VkvePxVpp9tROR7SKyS0QGp/c9uZ3CVeCRn+HhnyAlCSZ2g4kPwolddkeWLVpXK8JvL0XwUP2SjF2yh3bDl7Byj3ucVlRO5LqqpsWdt8/hbLup07HgWl5jTIKIeANRwAtAVSASeMwYkyIihY0xx0WkOfCKMea+G/bjCewAWgNxWEtDP2yM2XKrY7t063N6JV2BVWOtlUKTLkODZ6yVQn397Y4sWyzfdYLBP2/kwKmL9G5QisHtq5DP19vusJQ7iP7aun76yM9QIWecQrPtpk4RKSoijRyPoul5rbEkOH71djwM0B941xiT4tju+B12FQbsMsbsMcYkApOATul6I+7MKxeED7KWMqjVE1aMtpYyiPnGLZYyaFwhkPkvNqNfk7L8uPoAbT5ZwsJtx+wOS7m6pCtuVdVABpONI7msBg5hVSRRwCERWeVoGrjb/XiKyHrgONZy0quA8sBDIhItIvNEpGKalzRynHabJyLVHWMlgINptolzjKn08CsMnUbB039aK4bOegG+iIB9y+yOLMvl9vHkzfuqMa1/Y/L5evHEN9G8OGkdpy4k2h2aclXrHNdqXHS2gJvJyLLQYcBCoAowDnjJ8RiHdQpsoYjUv5t9GWOSjTG1se7dCRORGkAu4LKjVBsHfO3YfC1Q2hhTCxgJzEhn3E87Elh0fLxOSX9LxWvD4/Og+9dw8TR80wGmPGYtT+vi6pQqwOznm/JCy4rM2XiEVsMWM3PDYZ3yRmWupCvWLB8lG0C5SLujyTYZma7mV6yk0tgYc+iG54oDK4Atxpj26dzvW8BFoB/Q3hiz13Fd54wx5m8XEERkHxAKVATeMca0dYy/DmCM+c+tjqXXbO5S4kVYPgKihgMGwl+wHj557Y4sy207eo7XpsayIe4sraoW5t+da1LU332m/FFZaM1X1iKIfabnuFNo2X3NphHw+Y2JBsAYcxgYCzS+005EJCh10k4RyY11gX8bVsWSmu4jsC7+p14fEsfPYY7YT2I1BFQUkbIi4gP0BGZm4H2pG/nksVoyB66BKh1h8Ycwqj7ETnH5qW+qFM3Pz8+F82bHqkTtOkHrYYv5cfUBrXLUvXHTqgYylmw8gdudzL7i2OZOigGLRCQWK2EsMMbMBoYC3Rz38fwHq9IB6A5sEpENwAigp6PJIAkYiHWvz1ZgsjFmcwbel7qVgJLWabXHf7WWqf65H3zdFg6ttTuyLOXpIfRrWo75LzajRgl/Xv95I73GrWLfiQt2h6ZyqnXfuc19NTfKyGm0ZUAA0NAYc/6G5/yAVcApY0zTTIsyk+lptHuQkmJNGvjHELgQD7UfgZZvQT7XnqHIGMOkNQf5YM5Wrqak8H+tK/NEk7J4erjXB4a6B0lXYEQd8A+GJ+bnyGST3afR/o3VHLBRRF4XkS6OxxtYMwdUBt7PSDAqB/DwgLp9rKlvGg+C2J+sVUKXj3TpqW9EhIfDSrHg5QiaVAjk/blb6frZMrYf1Yk91V1a9x2cO+SSq3DejQzd1CkiDwLDgaJY98aANUHnYeBFY8zUTIswC2hlk4lO7oZfX4ed8yGwkjUdTg676Jlexhhmxx7hnZmbOXf5Ks81r8CAyAr4eGXKWoTKFV2rakrCE7/m2GST7Td1GmMmY03A2QhrDZteQEOgNHBcRN7NyH5VDlSoPPSebE19k3wVvusCPz3i0q3SIsL9tYqz4OUIOtYsxqd/7OS+kUtZd+C03aEpZ3WtqnG/azWpMn26GhH5J9YMAHfTJGALrWyyyNXL1gqhS/8HJgWavGzNTuCd2+7IstTCbcf45/RNHD13mSfCy/J/bSqRx8fL7rCUs3CRqgZsnK5Gqet4+0KzV6xW6crt4c8PYHQYbJvj0q3SLaoU4beXmtG7QSm+itpLu+FLWb7rhN1hKWexdoLbVzWgyUZlBf9g6PEN9J0F3nlhUi/4vhuc2Gl3ZFkmn683/+5ck0lPN8TTQ+j15SoGT4vl7CXXbZpQdyH1vppSjaBcc7v/jqL0AAAgAElEQVSjsZUmG5V1yjaDZ5dC2/9A3Br4rBEseAuuuG4HV8NyhZj3QlOeiSjH5OiDtB62mN82H7U7LGWXtRPg/GG3r2pAk43Kap7e0Og5eD4GQh6CZZ+6/CwEvt6evN6+KjMGhFMwrw9PfxfDwB/WciLhit2hqeyUtqopG2F3NLa7qwYBEXkiHfu8D+ikDQLqpg6ugXmvwuF1UKoxdPgIita0O6osczU5hbGLdzPij13kyeXJ2/dXo3PtEoibf8t1C6vHwdxX4NFfXOYU2r00CNxtsknBup/mbv+FGE026pZSUqxW0D+GwKXTEPokRL5hLVvtonYdP88/psay9sAZmlcO4v0uNSkR4Npdem7t6mWrA61AaWsWdRf5cpEdySbdNaAxZnFGAsoOmmycxKXTsOgDWPMl+AZAq7ehTh/wcNrvKfckOcUwYcU+Pvp1Ox4CgztUpXdYKTx0yhvXc62qmQnlXOcUWpYnG1ejycbJHN0Ic/8BB5ZDsdrQ4WMoeVdLIuVIB09d5I3pG1m68wRhZQoytFtNygX52R2WyizXqpoy8Phcl6lqQO+zUTld0ZrWP8quX0LCMfiqFcx4DhLutCJ4zlSyYB4mPBHGf7uHsO3oOdp9upQxf+4mKTnF7tBUZlj3nXag3YRWNsq5XDkPSz6GFaOtmQeavw5hT1ldbS7o+LnL/OuXTczffIwaJfLzUbdaVCue3+6wVEa5cFUDWtkoV5IrH7QeAs+tgJJhMP91+Lwp7HHaS4D3pHB+X8b2CWVM77ocPXuFB0ZFMWTWZo6fv2x3aCoj9L6aW9LKRjkvY2D7PPh1MJzZD9U6Q5t/W4u5uaAzFxMZOm8bU2Li8PYU+jQszTMR5Qn0y2V3aOpuXL0MI2pDwXLw2ByXTDY5srIREV8RWS0iG0Rks4gMcYyLiLwvIjtEZKuIDEozPkJEdolIrIjUTbOvviKy0/Hoa9d7UplMBKp0gAGrIPKfsONX64bQJf+1/mG7mIA8PgztFsIfL0fQoWYxvoraS9MPF/GfeVs5deF2i+Mqp7B2Apw/olXNLdhW2Yh1V1teY0yCiHgDUcALQFUgEnjMGJMiIoWNMcdFpAPwPNABaAB8aoxpICIFgWggFOteoBignjHmlvO9a2WTQ505APP/CVtnWufE230IldvZHVWW2R2fwMg/dvLLhsPk8fakb+MyPNW0HAXy+tgdmrqRG1Q1kEMrG2NJcPzq7XgYoD/WEgUpju1SW5I6ARMcr1sJBIhIMaAtsMAYc8qRYBYArvsJ5M4CSsFD30GfGeDpAz8+BBN7WAu4uaDyQX4M71mHBS81o0XVIoxZvJumHy3if79t5+xFneDTqWhVc0e2NgiIiKeIrAeOYyWMVUB54CERiRaReSJS0bF5CeBgmpfHOcZuNX7jsZ527DM6Pj4+K96Oyi7lI+HZZdb1m/0r4LOG8PsQSLxgd2RZokLhfIx8uA7zX2xGRKUgRi7cRZMPF/LJgh06q7QzuHoZooZB6XAo09TuaJyWrcnGGJNsjKkNBANhIlIDyAVcdpRq44CvM+lYXxhjQo0xoUFBQZmxS2UnLx9o/Dw8Hw01uln/2EfVh03TXHaCz0pF8jG6d13mvdCU8AqBfPrHTpp+uJBPf9/JucuadGyz9lutau6CU7Q+G2POAIuwTn/FAT87npoOhDh+PoS1FHWqYMfYrcaVO8hXFLp8Dk/8BnkKwdQn4Nv74dhmuyPLMlWL5efzPvWYM6gJDcoV4pPfd9D0w0WMWriThCtJdofnXq5etmZ2Lt3EWlJD3ZKd3WhBIhLg+Dk30BrYBszAahAAiAB2OH6eCTzq6EprCJw1xhwB5gNtRKSAiBQA2jjGlDsp1QCe/hPu+wSObbLuzZn3Glw6Y3dkWaZ6cX/GPRrKrIFNCC1dgI9/20HTDxfy2Z+7uKBJJ3us/RYSjlpVjbotO7vRQoBvAU+spDfZGPOuIwFNBEoBCcCzxpgNju61UVjVz0XgcWNMtGNfTwBvOHb9vjFm/O2Ord1oLu7iKVj4b4gZD7kLQqt3oHZv8HCKQj7LbDh4huG/72DR9ngK5vXhmWbl6NOoNHl8vOwOzTVdvQyf1oJCFeDxOXZHky10Is500mTjJo5ssCb4PLgSStSDDv+1/uvi1h44zfDfd7JkRzyBfj48G1Ge3g1Kk9vHNWfTts2qsTDvH9B3NpR1j8YATTbppMnGjRgDsZNhwb+siT3rPGJVOnkD7Y4sy8XsP8UnC3YStesEQfly0T+iPL0alMLXW5POPbt6CT6t7VZVDWiySTdNNm7o8jlY8hGsHAM+ea0ZCUKfBE/XP8W0eu8pPlmwgxV7TlI4Xy4GRFbgofolNenci5Wfw6+vuVVVA5ps0k2TjRuL3241DuxZBIWrW8tSl2lid1TZYsXuk3zy+w5W7z1F0fy+DGhRgQdDg8nlpUknXVKrmsCK8Nhsu6PJVjlyBgGlbBFUGfpMh4e+t5Yz+Kaj1S591vW75RuVL8RPTzfkh34NCC6Qm3/N2ETkf//kh1UHSEzStXTuWoyjAy3iNbsjyVG0slHuK/EiLPsUlg0H8YRmr0CjAeDl+rMsG2OI2nWCYQt2sO7AGUoE5Ob5FhXoVi8Yb0/9DnpLblzVgFY2SmWMTx6IfN2aVbp8JPwxBD5rBDt+szuyLCciNK0YxM/9G/PN4/UJzJeLwT9vpMX//mRy9EFdNfRWYr7R+2oySCsbpVLt+t26nnNyF1RqD+0+sGbxdQPGGBZtP84nC3ay8dBZyhTKw/MtKtKpdnG8tNKxXL1k3VcTWMktqxrQykapzFGhFfRfAa3fhX1LYXRD6+bQxIt2R5blRIQWVYowc2A44x4NJY+PF/83ZQNtPlnCjHWHSE5xvy+lfxPzDSQc06omg7SyUepmzh2BBW/BxsmQPxjavg/VOrnNRIvGGOZvPsbw33ew7eh5ygfl5YVWlehYsxieHu7xZ3AdrWoArWyUynz5i0G3cfD4PMhdAKb0hQkPwPFtdkeWLUSEdjWKMndQU8b0rounhzDox3W0G76E2bGHSXG3SkermnumlY1Sd5KcZM2ztvDfkJgAYc9A89fA19/uyLJNSoph7qYjDP99J7uOJ1C5SD5ebFWRttWL4uHqlY5WNddoZaNUVvL0grCn4Pm11nQ3Kz+DkaGw/gdIcY+uLQ8P4b6Q4sx/sRmf9qzN1ZQU+k9cS8eRUczffBSX/tIaPd5R1bxudyQ5mlY2SqXX4XUw91WIWwPB9a0JPovXsTuqbJWcYpi54RAj/tjF3hMXqFEiPy+2rETLqoURV7qulVrVBFWGvrPsjsZ2WtkolZ2K17EWa+s8Bk7vgy8iYdYLcOGk3ZFlG08PoUudYBa81IyPe9Ti3KUk+k2IptPoZSzadtx1Kp3UqiZCr9XcK61slLoXl8/Cnx/Cqs8hVz5o8SaEPgEe7jXf2NXkFKavPcSIhTuJO32J2iUDeKl1JZpVDMy5lY5WNX+jlY1SdvH1t27+7L8MioXA3FdgbATsX2F3ZNnK29ODB+uXZNErzRnatSbx56/Q9+vVdBuznKU743NmpaNVTaayc1loXxFZLSIbRGSziAxxjH8jIntFZL3jUdsx3lxEzqYZfyvNvtqJyHYR2SUi+n+Gyn6Fq8KjM6HHt3DpNIxvB9Oesu7XcSPenh70DCvFolea836XGhw5e5k+X63mwbErWL77hN3h3b3EixD1CZRtBmXC7Y7GJdi5LLQAeY0xCSLiDUQBLwDPArONMVNv2L458Iox5r4bxj2BHUBrIA5YAzxsjNlyq2PraTSVpRIvWB9Uy0aApzdE/AMa9AcvH7sjy3ZXkpKZvOYgoxbt4ti5KzQoW5CXWleiYblCdod2eytGw/w3rPusSje2OxqnkSNPoxlLguNXb8cjI5kvDNhljNljjEkEJgGdMilMpdLPJ6917WbASijT1JqJYExj2PWH3ZFlu1xenvRpVIbFr0byzv3V2HPiAj2/WEmvcStZs++U3eHdXOJFiBoOZSM00WQiW6/ZiIiniKwHjgMLjDGrHE+9LyKxIvKJiKSd772R47TbPBGp7hgrARxMs02cY+zGYz0tItEiEh0fH58Vb0ep6xUsB70mQa8pYJLh+64wqbfVweZmfL09eSy8LEv/Ecm/7qvGjmMJ9Ph8BX2+WkXM/tN2h3e9mPFw4bjOFpDJnKIbTUQCgOnA88BJ4CjgA3wB7DbGvCsi+YEUx2m3DsCnxpiKItIdaGeM6efYVx+ggTFm4K2Op6fRVLZLumKdmlnyXzApEP4iNHkRvHPbHZktLiUm8/3K/Xy+eDcnLyQSUSmIl1pXonbJAHsDS7xodaAVrgp9Z9obixPKkafR0jLGnAEWYSWNI45TbFeA8VinyTDGnEs97WaMmQt4i0ggcAgomWZ3wY4xpZyHVy5o+jIMjIYqHWHxUBgVBltngRN84ctuuX08eapZOZa+Fsng9lWIjTtD59HLeHz8amLjztgXWPTXjqpGZwvIbHZ2owU5KhpEJDfWBf5tIlLMMSZAZ2CT4/eijjFEJAwr9pNYDQEVRaSsiPgAPQH9SqKck38J6P419J0Nufzgp0fguy4Qv8PuyGyRx8eLZyPKs/S1FrzatjLrDp7hgVHL6PftGjYdOpu9wSRetFZtLdccSjfK3mO7ATsrm2LAIhGJxUoYC4wxs4GJIrIR2AgEAv92bN8d2CQiG4ARQE9HBZQEDATmA1uBycaYzdn8XpRKn7JN4Zml0P4jOLQWxjSC396Ey+fsjswWfrm8GBBZgaX/iOSVNpVYvfcU942M4ukJ0Ww5nE1/JtFfw4V4va8mizjFNZvsptdslFNJiLeWpF73PfgVhvpPWctUF6ttTQLqhs5dvsr4qH18GbWH85eTaF+jKC+0qkiVovmz5oCJF+HTEChSHR79JWuO4QLu5ZqNJhulnEVcjFXdHFhu/Z4rv9U6XS7CasMNquw2i7elOnvpKl9F7WV81F7OX0miY0gxXmxZkYpF8mXugZaPgt/+CY//qqfQbkOTTTppslFO7cIJ2LsE9i6GPX/+1SrtV/SvxFMuAvyD7YwyW525mMiXS/cyftleLl5N5v6Q4gxqWZEKhf3ufeda1dw1TTbppMlG5Sin98GexY7ksxguOqZ9KVTBuphdNsK6BpS7gI1BZo9TFxIZt3QP3y7fx+WryXSqXYLnW1SgXNA9JJ3lI62K8on5UKph5gXrgjTZpJMmG5VjpaTA8S1/JZ79y6zVQxEoXttR9TS3PjRd+B6ekwlX+GLJHias2M+VpGQ61ynBoBYVKROYN307Srxg3VdTpAY8OiNrgnUhmmzSSZONchnJV+FQjJV49vxpLeiWchU8c0HJMCvxlGvuss0GJxKuMHbxbias2E9SiqFrnRI836IipQrlubsdaFWTLpps0kmTjXJZVxLgwAor8exdDEc3WuNpmw3KNYfASi7VbHD8/GU+/3MP36/aT0qKoXu9YAZEVqBkwdskHa1q0k2TTTppslFuI7XZIDX53NhsUK65derN/2/TCeZIx85dZsyfu/lh1QEMhu71SvJY4zJULnqT7rVrVc1vUKpB9gebA2mySSdNNsptuUmzwZGzl/hs0W5+WnOQxOQUQoL96VEvmPtrFScgj49V1QwPsRa86zPd7nBzDE026aTJRiluaDb4E/Ytg6sXcKVmg1MXEpmx7hBTYuLYeuQcPp4etK5ehJfz/Er59R9qVZNOmmzSSZONUjeRlGg1G6RWPXGrISXJajYo1eCv5JNDmw02Hz7LlOg45q/bzayUAezyKMeSBmPpXi/43lqn3Ygmm3TSZKPUXUjbbLBnMRxLbTbwhzJNcmyzQdLS4Xj98TbvF/2Urw8UJjnFUK90AXrUC6ZjSDHy+XrbHaLT0mSTTjdLNlevXiUuLo7Lly/bFJVKD19fX4KDg/H21g+GbOMKzQY3XKs5fu4y0x2n2XYdT8DX24P2NYrRo14wDcsVwsMj5yTR7KDJJp1ulmz27t1Lvnz5KFSoEJKDvqW5I2MMJ0+e5Pz585QtW9bucNzXLZsNKv41rY6zNRssGwEL/gVPLrDuQ3IwxrD+4BmmxMQxa8Nhzl9OIrhAbrrVDaZ7veDbt1C7EU026XSzZLN161aqVKmiiSaHMMawbds2qlatancoCv5qNkitelKbDcQDitVyjmaDa1VNLejz8y03u3w1mfmbjzI1Jo6oXScwBhqWK0iPeiVpX7MoeXxy3vWqzKLJJp1ulWz0gytn0b8zJ3Zds8GfjpkNbG42WPYpLHjrb1XN7Rw6c4npa+OYGhPHvpMX8cvlRceaxegeGkxo6QJu9+U0RyYbEfEFlgC5AC9gqjHmbRH5BogAUpfpe8wYs96xSuenQAfgomN8rWNffYE3Hdv/2xjz7e2O7YzJ5uTJk7Rs2RKAo0eP4unpSVBQEACrV6/Gx8fnjvt4/PHHGTx4MJUrV77lNqNHjyYgIIDevXvfc8xNmjRh1KhR1K5d+573lRF2/52pdLC72SDxAgyvaSW321Q1t2KMYc2+00yJPsicjUe4mJhM2cC8dK8XTNe6JSjmnzNbw9MrpyYbAfIaYxJExBuIAl4AngVmG2Om3rB9B+B5rGTTAPjUGNNARAoC0UAoYIAYoJ4x5vStju2MySatd955Bz8/P1555ZXrxo0xGGPw8LBzgdW/aLJRGZYQD/uW/DWn25n91ni+Yn8toZCZzQYZqGpu5cKVJOZtOsqU6IOs2nsKD4EmFYPoXi+YNtWK4OvtmTkxO6F7STa2fWo5lnROcPzq7XjcLvN1AiY4XrcSCBCRYkBbrCWlTzkSzAKgXVbGnp127dpFtWrV6N27N9WrV+fIkSM8/fTThIaGUr16dd59991r2zZp0oT169eTlJREQEAAgwcPplatWjRq1Ijjx48D8OabbzJ8+PBr2w8ePJiwsDAqV67M8uXWol0XLlygW7duVKtWje7duxMaGsr69etvG+f3339PzZo1qVGjBm+88QYASUlJ9OnT59r4iBEjAPjkk0+oVq0aISEhPPLII5n+Z6ZyAL8gqNENHhgBL8bCCxvg/hFQqhHs+h1m9IdPqsHIUJjzf7BlJly65ffH20u8YCWb8i3vOdEA5M3lRfd6wfz0TCMWv9qcgZEV2H08gUE/riPs/d95c8ZGNhw8gzteorgdW690iYgnViVSARhtjFklIv2B90XkLeAPYLAx5gpQAjiY5uVxjrFbjWfYkFmbM33d82rF8/P2/dUz9Npt27YxYcIEQkOtLxRDhw6lYMGCJCUlERkZSffu3alWrdp1rzl79iwREREMHTqUl19+ma+//prBg/++troxhtWrVzNz5kzeffddfv31V0aOHEnRokWZNm0aGzZsoG7dureNLy4ujjfffJPo6Gj8/f1p1aoVs2fPJigoiBMnTrBxo3XK5MyZMwB89NFH7N+/Hx8fn2tjys0VKAP1ykC9vn9vNlj/I6z58q9mg3LNrarnbpsNVo+Diyeh+euZHnbpQnl5uU1lXmxViRV7TjIl+iBTouP4fuUBKhXxo3u9YDrXKUHhfL6ZfuycxtbzMcaYZGNMbSAYCBORGsDrQBWgPlAQeC0zjiUiT4tItIhEx8fHZ8Yus0358uWvJRqAH3/8kbp161K3bl22bt3Kli1b/vaa3Llz0759ewDq1avHvn37brrvrl27/m2bqKgoevbsCUCtWrWoXv32SXLVqlW0aNGCwMBAvL296dWrF0uWLKFChQps376dQYMGMX/+fPz9/QGoXr06jzzyCBMnTtT7ZNTfeXhA0RrQeCD0ngKv7bOWa454Dbx8rQk0v+sMQ0vDt/fDko+tJbVTkv++rysJsHwEVGgFJetnYchCeIVAhvesw5o3W/FBl5r45fLig7nbaPSfhfT7dg2/bjpKYlJKlsXg7Jyih88Yc0ZEFgHtjDEfO4aviMh4IPXCxSGgZJqXBTvGDgHNbxj/8ybH+AL4AqxrNreLJ6MVSFbJm/evBaF27tzJp59+yurVqwkICOCRRx656Y2oaRsKPD09SUpKuum+c+XKdcdtMqpQoULExsYyb948Ro8ezbRp0/jiiy+YP38+ixcvZubMmXzwwQfExsbi6em657nVPfLygdKNrEfzwVYC2b/8r/t7Fr5nPa41GzS3rvkEVrIqoosnIeLvVX1Wye/rTa8GpejVoBS7jicwNSaOn9fG8fvW4xTM60On2sXpUa8k1Yrnz7aYnIFtyUZEgoCrjkSTG2gNfCgixYwxRxwNBJ2BTY6XzAQGisgkrAaBs47t5gMfiEjqnWNtsKojl3Tu3Dny5ctH/vz5OXLkCPPnz6ddu8y9RBUeHs7kyZNp2rQpGzduvGnllFaDBg145ZVXOHnyJP7+/kyaNIlXXnmF+Ph4fH196dGjBxUrVqRfv34kJycTFxdHixYtaNKkCSVLluTixYvky3eTKeCVuplcflCpjfWANM0Gf1rJZ/scazxfMSsxZXFVczsVCvsxuH0VXmlTiaU7TzA1Jo6JKw8wftk+qhfPT496wXSqXYICee/cbZrT2VnZFAO+dVy38QAmG2Nmi8hCRyISYD1WdxrAXKxOtF1Yrc+PAxhjTonIe8Aax3bvGmNOZeP7yFZ169alWrVqVKlShdKlSxMeHp7px3j++ed59NFHqVat2rVH6imwmwkODua9996jefPmGGO4//776dixI2vXruXJJ5/EGIOI8OGHH5KUlESvXr04f/48KSkpvPLKK5po1L1JbTao0c36/dTev6qeY5ug5Vv2xgd4eXoQWaUwkVUKc/pCIjM3HGZKzEHembWF9+dupVXVIvQIDaZZxSC8PJ2j2zSz6U2dDtpG+5ekpCSSkpLw9fVl586dtGnThp07d+Ll5RRnXa/RvzOV0209co6pMXHMWHeIkxcSCcqXi651StAjNJgKhZ3vS9i9tD4716eHcgoJCQm0bNmSpKQkjDGMHTvW6RKNUq6garH8/Ou+arzWrgqLth9nSnQcX0btZeySPdQuGUCP0GDuCymOf+6c30ijnyDqbwICAoiJibE7DKXcho+XB22rF6Vt9aLEn7/CL+sPMSU6jn9O38S7s7bQtnpReoQG07h8IJ45dCZqTTZKKeVEgvLlol/TcjzZpCwbD1kLvv2y/hAzNxymuL8v3eoF061uMGUC8955Z05Ek41SSjkhESEkOICQ4AD+2bEqv289xpToOEYv2sXIhbsIK1OQ7qHBdKxZjLy5nP+j3PkjVEopN+fr7cl9IcW5L6Q4R89eZtraOKbFxPGPqbG8M3OzteBbaDANyhZ02pmoNdkopVQOUtTflwGRFXiueXnWHjjNlOg4ZsceYdraOEoVzHNtJurgAs614JtrNnTnQJGRkcyfP/+6seHDh9O/f//bvs7Pzw+Aw4cP071795tu07x5c25s9b7R8OHDuXjx4rXfO3TokCnzlr3zzjt8/PHHd95QKZUuIkK90gUZ2i2E1f9sybAHaxFcIDfDFuyg6UeL6P3lSmasO8SlxJtM42MDTTZO4uGHH2bSpEnXjU2aNImHH374rl5fvHhxpk6deucNb+HGZDN37lwCAgIyvD+lVPbJ4+NF17rB/PBUQ5b+I5IXWlZk/8mLvPjTesLe/53Xf97I2gOnbZ2JWpONk+jevTtz5swhMTERgH379nH48GGaNm167b6XunXrUrNmTX755Ze/vX7fvn3UqFEDgEuXLtGzZ0+qVq1Kly5duHTp0rXt+vfvf215grfffhuAESNGcPjwYSIjI4mMjASgTJkynDhhrSk/bNgwatSoQY0aNa4tT7Bv3z6qVq3KU089RfXq1WnTps11x7mZ9evX07BhQ0JCQujSpQunT5++dvzUJQdSJwBdvHgxtWvXpnbt2tSpU4fz589n+M9WKXdSsmAeXmxViSWvRvLDUw1oXb0IM9Ydoutny2k1bDFj/tzNsXN/n08xq+k1m5uZNxiObszcfRatCe2H3vLpggULEhYWxrx58+jUqROTJk3iwQcfRETw9fVl+vTp5M+fnxMnTtCwYUMeeOCBW14IHDNmDHny5GHr1q3ExsZet0TA+++/T8GCBUlOTqZly5bExsYyaNAghg0bxqJFiwgMDLxuXzExMYwfP55Vq1ZhjKFBgwZERERQoEABdu7cyY8//si4ceN48MEHmTZt2m3Xp3n00UcZOXIkERERvPXWWwwZMoThw4czdOhQ9u7dS65cua6duvv4448ZPXo04eHhJCQk4OurU7QrlR4eHkLj8oE0Lh/IkAeuMnfjEaZEx/Hhr9v47/xtRFQKonu9krSqVphcXlk/Ea5WNk4k7am0tKfQjDG88cYbhISE0KpVKw4dOsSxY8duuZ8lS5Zc+9APCQkhJCTk2nOTJ0+mbt261KlTh82bN99xks2oqCi6dOlC3rx58fPzo2vXrixduhSAsmXLXlul83bLGIC1vs6ZM2eIiIgAoG/fvixZsuRajL179+b777+/NlNBeHg4L7/8MiNGjODMmTM6g4FS9yCfrzcP1S/F1P6NWfh/EfRvXp6tR84z4Ie1NPjgD97+ZRObDp3N0tNs+i/4Zm5TgWSlTp068dJLL7F27VouXrxIvXr1AJg4cSLx8fHExMTg7e1NmTJlbrqswJ3s3buXjz/+mDVr1lCgQAEee+yxDO0nVeryBGAtUXCn02i3MmfOHJYsWcKsWbN4//332bhxI4MHD6Zjx47MnTuX8PBw5s+fT5UqVTIcq1LKUi7Ij1fbVuHl1pWJ2nWCKdEH+XHNQb5dsZ8qRfPRvV4wXeqUoJBfrjvvLB20snEifn5+REZG8sQTT1zXGHD27FkKFy6Mt7c3ixYtYv/+/bfdT7Nmzfjhhx8A2LRpE7GxsYC1PEHevHnx9/fn2LFjzJs379pr8uXLd9PrIk2bNmXGjBlc/P/27j/IqrKO4/j7A65uRgFpk+IiP9ISCVWDccUAAAtLSURBVAVCoh+kmBWl+GPMSVMTikiM6OdkNZlmjjPojDZlMw2lhlT2w6LQsrLacqyRFMUyfhRkDagpLroKWyTw7Y/zLF0u97Jn13vvubt8XjNn9t7nPPfc7312zj73OefZ59vVxbZt21i2bBnTp0/v9WcbOnQow4cP3z0qWrp0KSeeeCK7du1i48aNzJgxg0WLFtHZ2cnWrVvZsGEDEyZM4NJLL+WEE05g7dq1vX5PM6tu8CBx4qtezg3vmcx9nz2FL575Gg46YBBX/XQNr7v618y75X7uWv0Ez++sTcI3j2yazHnnncdZZ521x8y0888/n1mzZjFhwgSmTJnS4zf8+fPnM2fOHMaNG8e4ceN2j5COP/54Jk2axDHHHMPIkSP3SE8wb948Zs6cyYgRI2hvb99dPnnyZGbPns3UqVnu9rlz5zJp0qR9XjKrZsmSJVx88cV0dXUxduxYbr75Znbu3MkFF1xAZ2c2hF+4cCHDhg3jsssuo729nUGDBjF+/PjdWUfNrPaGHtzChdNGceG0Uaz713PctnIjyx58lF+ufoJDhxzImROP4JwpI3s+0D44xUDi5er7H//OzOrn+Z27+N26zfxg5UZ+veZJduwK/rnoNKcYMDOz2mkZPIhTjn0Fpxz7Cjq2bufHqx5j7qK+H6+wezaSWiX9UdJDkv4i6Qtl+78saWvJ89mSNktalba5JfsukvS3tF3UyM9hZjbQHTLkIN7/pjEv6BhFjmy2AydHxFZJLcA9ku6MiHslTQGGV3jN9yJiQWmBpJcBlwNTgABWSloeEU/X+wOYmVk+hY1sItM9cmlJW0gaDFwLfCrnod4O3BURW1IHcxcws48x9eVlVgD/rsz6l0KnPksaLGkV8CRZh7ECWAAsj4jHK7zkbEl/knSbpO6pEUcAG0vqbEplvdLa2kpHR4f/iPUDEUFHR4dXFTDrRwqdIBARO4GJkoYByyS9GTgHOKlC9duBWyNiu6QPAkuAk/O+l6R5wDyAI488cq/9bW1tbNq0ic2bN/f6c1jjtba20tbWVnQYZpZTU8xGi4hnJLUDM4CjgPVp3a+DJa2PiKMioqPkJd8ArkmPH2XPzqkN+G2F91gMLIZs6nP5/paWFsaMeWE3wMzMrLIiZ6O9PI1okPQi4K3Ayog4LCJGR8RooCsijkp1Di95+enAmvT4F8DbJA2XNBx4WyozM7MmUeTI5nBgSZoQMAj4fkTcsY/6CyWdDuwAtgCzASJii6QvAveleldGxJb6hW1mZr3lFQTMzCwXSX1eQWC/7GwkPQesKzqOHA4Fnio6iBwcZ205ztrqD3H2hxgBXh0RL+nLC5tigkAB1vW1d24kSfc7ztpxnLXlOGunP8QIWZx9fa1TDJiZWd25szEzs7rbXzubxUUHkJPjrC3HWVuOs3b6Q4zwAuLcLycImJlZY+2vIxszM2ugAd3ZSJopaZ2k9ZI+XWH/QZK+l/avkDS68VHmirNqLp8GxniTpCclPVxlv1IOovVpsdTJjY4xxdFTnCdJ6ixpy883OsYUx0hJ7ZJWp3xOH6lQp9A2zRlj4e3ZU26sVKfwcz1nnIWf6yWxDJb0oKS9/tm+T+0ZEQNyAwYDG4CxwIHAQ8CxZXUuAb6WHp9Lli+nGeOcDdxQcHu+GZgMPFxl/zuBOwEB04AVTRrnScAdRbZliuNwYHJ6/BLgrxV+74W2ac4YC2/P1D5D0uMWYAUwraxOM5zreeIs/FwvieXjwHcq/X770p4DeWQzFVgfEX+PiP8C3wXOKKtzBtnq0QC3AW9RWgG0gfLEWbiIuJtsmaBqzgBuicy9wLCy9ewaIkecTSEiHo+IB9Lj58jW+itPjVFom+aMsXCpffbKjVVWrfBzPWecTUFSG3Aq2aLHlfS6PQdyZ5Mnz83uOhGxA+gEDmlIdBViSKrl46mUy6eZ1CSvUIO8Pl3KuFPS+KKDSZcgJpF90y3VNG26jxihCdpTlXNjlWqGcz1PnNAc5/qXyBJY7qqyv9ftOZA7m4HkdmB0RBxHlol0SQ/1rboHgFERcTzwFeDHRQYjaQjwQ+CjEfFskbFU00OMTdGeEbEzIiaSpRiZKuk1RcTRkxxxFn6uSzoNeDIiVtbyuAO5s3kUKP1W0JbKKtaRdAAwFOigsXqMMyI6ImJ7evoN4LUNiq038rR34SLi2e5LGRHxM6BF0qFFxCKpheyP+Lcj4kcVqhTepj3F2EztmWJ4Bmhn79TwzXCu71YtziY5198InC7pH2SX9U+W9K2yOr1uz4Hc2dwHHC1pjKQDyW5iLS+rsxy4KD1+F/CbSHe8GqjHOFU9l08zWQ68N82gmgZ0RuXU3oWSdFj3tWVJU8nOgYb/0Ukx3AisiYjrqlQrtE3zxNgM7anKubHWllUr/FzPE2cznOsR8ZmIaIssp9i5ZG11QVm1XrfngF2IMyJ2SFpAlkhtMHBTRPxF0pXA/RGxnOxEWippPdlN5XObNM6KuXwaSdKtZDOPDpW0Cbic7AYnEfE14Gdks6fWA13AnEbHmDPOdwHzJe0A/g2cW8AXDMi+PV4I/Dldwwf4LHBkSaxFt2meGJuhPSvmxmq2cz1nnIWf69W80Pb0CgJmZlZ3A/kympmZNQl3NmZmVnfubMzMrO7c2ZiZWd25szEzs7pzZ2PWzylbeTmKXCHYrCfubMz2oeQPebWt/D+rzayCAftPnWY1diPw2wrlf29wHGb9kjsbs3zujQiPYsz6yJfRzGpA0hXpstokSYslPSVpm6Q7JI2tUP8ISd+U9ISk7cqyYX6sUk4QScel5eY3S/qPsuyIN6S19MrrLpC0IR1zlaQZZfsHS/qMpLWSuiQ9k+p9qLYtYrYnj2zM8hlSZTXj50pW6QW4GXgWuJIs58eHgbslHRcRWwAkHQL8ATgM+CrZpbjTgOuAVwILug8maTrZunnbyFYBfgQYBZwNHAz8t+S9LwaGAItT+UeBn0gaFRFPpzqfT9s30/u1AscC01MsZvXR21Sh3rztTxvZop6xj212qndFev574ICS189K5YtKyq5JZWeXlAn4USqfkMoGkaVi7gBGVIhNZTFuJKUdTuUTU/klJWUPAj8tul297X+bL6OZ5XMd2ZLw5dsvyurdEFnmQgAi4nbgb2SdTrfTyVKB/7CkXgDXpqfddScCRwNfjYjHygNKrym1NP6fdpiIWEU2ynplSZ1ngPGSxu3z05rVmC+jmeWzJiJ+laPeuiplp5Q8H02WhbHc6vRzTPp5dPr55zwBAv+sUPY08LKS558DfgKslvRX4FfAbRHRnvM9zPrEIxuzgWNnlfLdkw4i4vdkI53zyS75nQn8RtKN9Q/P9mfubMxq69VVyh4pef4IcEyFeuNK9kN2+Q1gQm1Cy0REZ0R8JyLeRzbZ4NvA+yS9qpbvY1bKnY1ZbS1IOdkBkDSL7HLYHSV1bgeOknRWST0Bn0xPu9OCryLrcD4kaUT5G1WaJt2TNBNut3R/6eH0dHhvj2eWl+/ZmOUzTdJ/KpRvjojSSQIvJrss9QOyqc8LgcfJZqB1WwS8G7hVUvfU51OBd5BNBngYICJ2SfoA8HPgIUlfJxv1tAHnAG8gu+HfG2sk3QPcBzxBNupaQHZf6YFeHsssN3c2Zvm8P23lVrDnjLQ5wCVkU6FbyZa4WRgRT3VXiIgOSW8ArgbeC7yUrMP5BHB96cEj4neS3ghcDsxPx9wE3Al09eFzXE822+0TZP+T8xhwE3BVRDzfh+OZ5aK9Z0+aWW9JuoKsQzg6ItYXHI5Z0/E9GzMzqzt3NmZmVnfubMzMrO58z8bMzOrOIxszM6s7dzZmZlZ37mzMzKzu3NmYmVndubMxM7O6c2djZmZ19z/WjuowQFKJIAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Train VAE\n", - "pipeline.train_vae(config_file,\n", - " normalized_processed_data_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation experiment without noise correction" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 17.8s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 18.6s remaining: 27.8s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 18.8s remaining: 12.5s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 20.5s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 20.5s finished\n", - " score\n", - "number of experiments \n", - "1 0.999973\n", - "5 0.709038\n", - "50 0.562674\n", - " score\n", - "number of experiments \n", - "1 0.000002\n", - "5 0.004112\n", - "50 0.007102\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999969 0.999977\n", - "5 0.700978 0.717098\n", - "50 0.548753 0.576595\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Run simulation with correction applied" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[Parallel(n_jobs=5)]: Using backend LokyBackend with 5 concurrent workers.\n", - "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 13.4s\n", - "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 14.0s remaining: 20.9s\n", - "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 15.9s remaining: 10.6s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 16.8s remaining: 0.0s\n", - "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 16.8s finished\n", - " score\n", - "number of experiments \n", - "1 0.999970\n", - "5 0.947964\n", - "50 0.391582\n", - " score\n", - "number of experiments \n", - "1 0.000004\n", - "5 0.003015\n", - "50 0.008496\n", - " ymin ymax\n", - "number of experiments \n", - "1 0.999963 0.999978\n", - "5 0.942055 0.953872\n", - "50 0.374930 0.408235\n" - ] - } - ], - "source": [ - "# Run simulation without correction \n", - "pipeline.run_simulation(config_file,\n", - " normalized_processed_data_file,\n", - " corrected=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Make figures" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "pca_ind = [0,1,2]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "# File directories\n", - "similarity_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_uncorrected_\" + correction_method + \".pickle\")\n", - "\n", - "similarity_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_svcca_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "ci_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_ci_corrected_\" + correction_method + \".pickle\")\n", - "\n", - "permuted_score_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " \"saved_variables\",\n", - " dataset_name + \"_\" + analysis_name + \"_permuted.npy\")\n", - "\n", - "compendia_dir = os.path.join(\n", - " local_dir,\n", - " \"experiment_simulated\",\n", - " dataset_name + \"_\" + analysis_name)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# Output files\n", - "svcca_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".svg\")\n", - "\n", - "svcca_png_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_svcca_\"+correction_method+\".png\")\n", - "\n", - "pca_uncorrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_uncorrected_\"+correction_method+\".svg\")\n", - "\n", - "pca_corrected_file = os.path.join(\n", - " base_dir,\n", - " dataset_name,\n", - " \"results\",\n", - " dataset_name +\"_\"+analysis_name+\"_pca_corrected_\"+correction_method+\".svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "# Load pickled files\n", - "uncorrected_svcca = pd.read_pickle(similarity_uncorrected_file)\n", - "err_uncorrected_svcca = pd.read_pickle(ci_uncorrected_file)\n", - "corrected_svcca = pd.read_pickle(similarity_corrected_file)\n", - "err_corrected_svcca = pd.read_pickle(ci_corrected_file)\n", - "\n", - "permuted_score = np.load(permuted_score_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Concatenate error bars\n", - "uncorrected_svcca_err = pd.concat([uncorrected_svcca, err_uncorrected_svcca], axis=1)\n", - "corrected_svcca_err = pd.concat([corrected_svcca, err_corrected_svcca], axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "# Add group label\n", - "uncorrected_svcca_err['Group'] = 'uncorrected'\n", - "corrected_svcca_err['Group'] = 'corrected'" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
scoreyminymaxGroup
number of experiments
10.9999730.9999690.999977uncorrected
50.7090380.7009780.717098uncorrected
500.5626740.5487530.576595uncorrected
10.9999700.9999630.999978corrected
50.9479640.9420550.953872corrected
500.3915820.3749300.408235corrected
\n", - "
" - ], - "text/plain": [ - " score ymin ymax Group\n", - "number of experiments \n", - "1 0.999973 0.999969 0.999977 uncorrected\n", - "5 0.709038 0.700978 0.717098 uncorrected\n", - "50 0.562674 0.548753 0.576595 uncorrected\n", - "1 0.999970 0.999963 0.999978 corrected\n", - "5 0.947964 0.942055 0.953872 corrected\n", - "50 0.391582 0.374930 0.408235 corrected" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Concatenate dataframes\n", - "all_svcca = pd.concat([uncorrected_svcca_err, corrected_svcca_err])\n", - "all_svcca" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SVCCA " - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAukAAAHVCAYAAABMlGVAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XdUFNfbB/DvLL13pSmK2EvsPbErKlHEhiWxRI3Ggj3mNdXEmGJs0RhjbJGosSb2XmPBrr/EBoogUgQpIm0p9/3D7MqyCywI7Arfzzkez95pz9ydHZ65c+eOJIQQICIiIiIivSHTdQBERERERKSKSToRERERkZ5hkk5EREREpGeYpBMRERER6Rkm6UREREREeoZJOhERERGRnmGSTkRERESkZ5ikExERERHpGSbpRERERER6hkl6HidOnED//v3h5uYGY2Nj2NnZoXbt2hg4cCCWL1+OpKQklfk7duwISZLw8OHDUo1r5MiRkCQJJ0+e1Mn2AeDzzz+HJElYv359qW+LKqb169dDkiR8/vnnug6l3Hj48CEkSULHjh11HYrOLVu2DPXr14eJiUm5q5OTJ09CkiSMHDmyTJYjotLHJD2XefPmoXPnzti5cydsbGzg4+OD7t27w8zMDDt37sTkyZNx+/ZtXYepd8ryQoGIqDh27tyJgIAAREVFoU+fPhgxYgS8vb11HZbWittIwsYVoteXoa4D0BdXrlzB559/DiMjI2zduhW+vr4q06OjoxEYGAhbW1uV8t9++w2pqalwc3Mr1fgWLFiAOXPmoGrVqqW6nYJMmjQJ/v7+cHFx0VkMVL7169cPrVu3hqOjo65DoXLmzz//BABs374dnTt31nE0Ja9ly5a4ffs2bGxsymQ5Iip9TNL/s3PnTgghMGjQILUEHQCcnZ0xc+ZMtfKySppdXFx0nhw7OjoyeaJSZWNjw2SBSkVERAQAwNPTU8eRlA5zc3PUqVOnzJYjotLH7i7/iY2NBQA4OTkVabn8unpIkoRq1aohKysLX375Jby8vGBmZoa6deti3bp1yvmOHz+OTp06wdraGnZ2dnj33Xfx9OlTte3k1yc9P2fOnMGkSZPQqFEj2NnZwczMDHXq1MGcOXOQmJioNn/ufonR0dEYM2YM3N3dYWhoiCVLlgBQv22q6Ot66tQpAED16tUhSZLyHwD4+PhAkiQcPnxYY5ypqamwtbWFlZUVkpOTC92vqKgofPfdd+jQoYPyuQFnZ2f4+fnh0qVL+S6XkpKCb7/9Fs2bN4e1tTUsLCxQp04dTJw4Effu3VPOl7tP9L179+Dv74/KlStDJpMpW+IA4OnTp5g1axZq1qwJU1NT2Nvbw9vbO9/9DAsLw4QJE1CrVi2Ym5vD3t4e9evXx/vvv4+7d++qzPvPP/9g+PDh8PT0hKmpKZycnNC4cWNMnToVUVFRhdZRnz59IEkSDhw4oHF6dnY2KleuDGNjY+WxJoTA5s2b4e/vj1q1asHCwgJWVlZo2bIlfvrpJ+Tk5KitJ/fxcPHiRfj4+MDBwQGSJCEoKAiOjo4wNzfXeLwBwLlz5yBJEjp06KAsy69Peu7j//Tp0+jcuTOsrKxgbW2N3r1749atWxq3kZKSgjlz5qBatWowNTWFl5cXvvzyS2RmZqJatWrK41QbxYmhsN+t4jyRW+46uH//PgYNGgRHR0dYW1ujZ8+eyu1kZWXh66+/Rq1atZT7tmLFigL34dmzZwgICECVKlVgamqKunXrYvHixRq/X+DF73PBggVo0qQJLC0tYWlpidatW2PDhg0F7o9cLse8efNQp04dmJiYqDR87N+/H926dYObmxtMTEzg6uqK9u3b44svvigw9rwePXqE999/Hx4eHjAxMUGlSpU0ngcUx+mJEycAqJ6nCjuf5u7PX5S6u379OmbPno1mzZrByckJJiYm8PT0xAcffIDIyMhCtzN9+nRUr14dRkZGmDp1KqpVq6asn1GjRqmcZxX7oKlveXGXU8jKysKPP/6IZs2aKb//li1bYuXKlcjOzlabP/ffwz///BOtW7eGhYUF7O3tMWTIEOWFUm5yuRw//fQTWrRoAQcHB5ibm6NatWrw8fHBli1bCvx+iMo9QUIIIebNmycAiCpVqoiYmBitl+vQoYMAIEJDQ1XKAQgPDw/Rr18/YWNjI3x9fUX37t2FiYmJACDWrl0rtm3bJgwNDUX79u3FgAEDhJubmwAg2rdvL3JyclTWN2LECAFAnDhxQqvtt2rVSpiamoqWLVuK/v37i969ewsXFxcBQNSvX18kJyerzH/ixAkBQPTq1Uu4u7sLZ2dnMWDAAOHj4yNWrVolhBDis88+EwDEunXrhBBCxMbGihEjRojKlSsLAKJ///5ixIgRyn9CCLF7924BQAwYMEBj/a1fv14AEGPGjNGqvleuXCkAiNq1awtvb28xaNAg0aRJEwFAGBkZiUOHDqktExkZKerXry8ACDs7O/H222+LAQMGiKZNmwqZTCYWL16snHfdunUCgPD39xfW1taievXqYvDgwaJ79+5i7969QgghIiIihKenpwAgqlatKgYPHiw6d+4sDAwMBACxaNEile2Hh4cLe3t7AUDUrFlT9O/fX/j6+oomTZoISZKU9SmEEJcvXxampqYCgGjUqJEYNGiQ8PHxEfXq1dP4/WuyZcsWAUAMHz5c4/QDBw4IAOLtt99WlqWlpQkAwsHBQbz55pti8ODBomvXrsLc3FwAUH6fuSmOh1GjRgkjIyNRv3594e/vL9566y1x48YNMX36dAFALF++XGMcI0eOFABEYGCgWv1/9tlnKvMqjv/p06cLAwMD0apVKzFo0CBRq1YtZdxRUVEqy6Snp4vWrVsLAMLe3l70799f+Pj4CHNzc+Hr6ys8PDxEUU6BxYkhv9+tguI8kZuiDt59911hb28v6tatKwYPHiwaNmwoAAgnJycRFRUl+vbtqzy39OjRQxgbGwsA4pdfflFZX2hoqAAgWrduLZo1ayZsbW2Fn5+f8PHxEWZmZvl+vzExMaJRo0YCgHB2dha9evUSPXv2FDY2NgKAmDRpksb9qVKliujZs6ewsLAQvXr1EgMHDhTjx48XQgixfPlyAUAYGBiIt956SwwZMkR069ZNuLu7F+m7uHnzpnB0dFSeC/z9/UXbtm0FAGFoaCi2bt2qnHfXrl35nqdu375d4HaKW3eDBw8WhoaGomnTpsLX11f4+vqKatWqCQDCxcVFPH78WON2WrZsKRo3bizs7OyEr6+v8PPzE59//rmYMWOGeOONNwQA0a5dO5XzrGIfFOfw3PEUdzkhhMjKyhK9evUSAIS1tbXw9fUVffv2FVZWVgKA6Nevn8jOzlZZRvH3aNasWcLAwEB07NhRDBgwQFSpUkV5/ktNTVVZZsCAAQKAsLKyEr169RL+/v7izTffFDY2NqJDhw4Ffj9E5R2T9P/cv39fedK1srISI0aMEKtXrxZXr14VWVlZ+S5XUJIOQDRo0EA8efJEWX78+HHlidrBwUGZ+AkhRFJSkjKZPH78uMr6ipqk79+/XyQmJqqUpaeni3HjxgkA4osvvlCZpjhRK06+aWlpavuaN0kvLAYhXpzoq1SpIoyMjDRe/LRr104AEEFBQWrTNLl586b4559/1MoPHjwojI2NRY0aNdQucLp06SIAiEGDBqldnISGhoobN24oPysSJEUSoum79/HxEQDE0KFDRUZGhrL8zJkzwtzcXBgYGIhr164pyz/99NN8k5qwsDAREhKi/Pzuu+8KAGLhwoVq896+fVtERkZqqhYVqampwsrKSlhaWoqUlBS16cOHDxcAxJYtW5RlmZmZYteuXUIul6vM++TJE9G8eXMBQJw6dUplmuJ4ACC+/fZbte3cvXtXSJIk3njjDbVpSUlJwtzcXNjZ2akca4Ul6TKZTOzatUtZnpWVJfr37y8AiE8++URlmS+//FKZ+CQkJCjLQ0NDlUlDcZL0osTwKkk6ADFnzhzl8ZyTk6O8sKlXr57aueXo0aMa16dIABUXfrGxscppISEhwtXVVQBQ2SchhDJBCwgIEOnp6cry6Oho5TFx4MABtf0BILy8vERERITa/latWlVIkiQuXbqkUp6Tk6PVBahiXsUFy+zZs1V+79u3bxcymUxYWlqq/VYKOk/lp7h1d/z4cREdHa1Slp2dLb744gvlhW1+22nTpo3K8aqQ3/lXIb9ku7jLLVy4UNmok3tfIiMjRe3atQUA8eOPP6oso6hjc3Nzce7cOWV5SkqK8iJqzZo1yvIHDx4oj9m4uDiVdaWlpamsg6giYpKey9GjR1X+eCv+2draigkTJmhMkApL0o8ePaq2jKLlV1NL59KlSwtMUrRN0vOTmpqqbOHJTXGiNjEx0fjHVYjiJelCvLxL8d1336mU3759W/nHryQMGzZMABA3b95UlgUFBQkAolKlSuLZs2eFrkORIDk5OWlMcO/fvy8ACEtLS/H06VO16YrW49x3BiZMmCAAiD///LPQ7ffs2VMAENevXy903oIojpfNmzerlKekpAhLS0thZWWl1qKVnyNHjihbkHNTHA8NGzZUuzBS6Ny5swAgLl68qFKuuCMyZcoUlfLCkvRhw4apbePy5csCgFqrm+LO1JkzZ9SWWb16dbGT9KLE8CpJuqenp9pF040bN7Q6t+T+LeZOAA8fPqy2jOK76NKli7Ls2rVrAoBo0aKFWmupEEJcvXpVABB9+vRR2x8AYtu2bRr318zMTNjZ2Wmcpi1FQ0fVqlXV6kcIIfz8/AQA8dVXX6mUv2qSrm3dFcbNzU04ODjku528FzAKZZ2kV61aVQDQeHdScYfUy8tLpVxRx3PnzlVbZvv27WrbUZyffX19NcZGVNGxT3ouXbp0QUhICHbu3Inx48ejadOmMDQ0RGJiIlauXInGjRur9R8uiJGRkcZxeBUPLnXv3j3fadr0PS7M48eP8fPPP2Pq1KkYPXo0Ro4ciQkTJsDY2BjBwcEal2natGmJj1QzZswYGBoa4tdff1UpX716NQBg3LhxRVpfRkYG/vrrL8ydOxfjxo3DyJEjMXLkSPzvf/8DAJV9O3r0KABgyJAhsLKy0nobXbt2hbm5uVr533//DQDw9vaGvb292vR33nkHwItnAhSaNWsGAPi///s/7N27F+np6fluVzHvxIkTcfLkSWRlZWkdc27Dhg0DAGzatEml/K+//sLz58/h5+cHMzMzteWuX7+O7777DhMnTsSoUaMwcuRIrFy5EgDyPWYUzx1oMn78eAAvv2uF4n73mn4ztWrVAqD6mwkLC8Pjx4/h7OyM9u3bqy0zePDgIm23ODG8qo4dO8LIyEilTHF+KOzcoikOe3t7dOvWTa18yJAhAF48I6DoX614tsLX1xcymfqfCUUf9YsXL6pNkyQJb7/9tsZ9atasGRISEvDee+/h33//1ThPYRS/rUGDBqnVD6D5N/iqilJ3Ck+fPsW6deswY8YMvPfee8rzVGZmJp4+fYr4+Hi19bm4uKB58+YlFndxhYeHIzw8HE5OThqPdx8fH9ja2iIkJATR0dFq07X9jdSpUwcWFhbYt28fvv/+e4399YkqMo7ukoexsTH69euHfv36AQASExOxZcsW/N///R+ePHmCSZMm4ciRI1qty9nZGQYGBmrllpaWAKAxGVZMy8jIKO4uAAAWLVqEOXPmIDMzs0jLlcZoNS4uLujTpw927tyJU6dOoUOHDpDL5fjtt99gZmamTCi18b///Q99+vQpcEz23A+gPnr0CABQo0aNIsWcXz0o/ojkfdhPQVH++PFjZdnIkSNx+PBhbN26FW+//TZMTU3RokULeHt7Y/To0XB2dlbOO2vWLPz99984efIkOnXqBEtLS7Rp0wa9e/fGyJEjtR75pHPnznBxccHBgwcRHx+vvKD4/fffAUCtzuVyOUaOHInNmzfnu878Huwt6Jjx9fWFs7MzNm/ejEWLFsHS0hJXr17F1atX0aZNG9SvX1+r/VFwd3dXK1NcfOX+zSgSgSpVqmhcj5WVFWxtbfN9qLUkYnhVBZ0fCju3aIrDw8ND43ZsbGyUdZGQkAAHBwfl72vu3LmYO3duvjFquuCsVKkSTExMNM6/YsUK+Pr6Yu3atVi7di0qV66MDh06wM/PDwMGDNC4T3kV5zf4qopSdwCwefNmjBs3Ds+fP893ncnJyWoX+rocYjc3RR3nt9+SJMHDwwOJiYnKi+HctP2NWFtbY/Xq1Rg3bhxmz56N2bNno1atWujUqRPeeecdtGvXrqR2iei1xJb0Qtja2mL8+PHKEU1OnDiB1NRUrZbV1AJVlOnFdeHCBcyYMQPm5uZYv349Hj58iPT0dIgX3ZsKHMrR1NS0VGLK26L6559/Ii4uDgMHDlQbez4/4r8hMh8+fIjx48fj+vXrePbsGXJyciCEwEcffaSc71UVtx40tSgbGBjgjz/+wNWrV/HZZ5+hRYsWCAoKwty5c1GrVi2cO3dOOa+1tTWOHz+OM2fOYPbs2ahXrx6OHz+OqVOnonbt2vm2Zmvapr+/PzIzM7Ft2zYAQFxcHA4dOgQXFxe1caIXLVqEzZs3o2HDhjhw4ABiYmIgl8shhFDePcqvXguqKyMjI4wePRrPnz9XjtSguKMyduxYrfYlt9L6zegihvxGVNFmO6VdD4rY2rdvjxEjRuT7T9MFdkHHQ6NGjXDr1i3s2rULY8eOhbW1NbZu3Qp/f3+8+eabkMvlrxx7UUbsKQ1hYWEYOXIk5HI5lixZguDgYKSmpirPv23atAGg+fdUWuff0lBQPRfl+BwyZAgePHiA1atXY+DAgUhMTMSqVavQvn17zJgxoyRCJXpt6f4v3mtCkdRkZ2cXq/WtLO3atQsAMH/+fIwYMUI5RBkApKWlabw9Wdq6du0KLy8v7NixAwkJCcXq7nDnzh3cuXMHzZs3x8qVK/HGG2/AyspK+cfiwYMHassoWlLv379fAnsBuLq6Anjxh1gTRQukplbQJk2a4PPPP8fp06cRGxuLadOmITk5GVOnTlWZT5IktG/fHt9++y2CgoIQGRmJIUOGICYmpsBWzbwUCZSi9Xzr1q3IysqCv7+/Woul4pjZvHkzvL29UalSJWVXAk31WhTjxo2DTCbD6tWrkZqaik2bNsHa2vqVupwURnEhqriTkldycnKZ/I6NjY0BQGOLan6xlZbw8HCN5c+ePUNiYiLMzMyUF8yKllBfX1+sX7++wH9FZWpqCl9fX/zyyy+4d+8e/vnnHzRq1Ajnz59X6xKnyav8BourKHW3f/9+yOVyTJkyBQEBAcrhdxVe9fdUFgqr49zTSqKenZycMGbMGGzduhXR0dE4cOAArK2tsWjRomJ3iyIqD5ik/6ew1teQkBAAL/7o6vsLfRISEgBovuW4bdu2Emlpzk2RiBTUf1qSJIwbNw7p6emYN28ejh07hrp16xbpdmZB+5WQkKCxG1LXrl0BvEg+C7r1rC1F/+aDBw9qTPICAwMBAG+++WaB67G2tsaCBQsgSRL++eefAuetVKmSctzwwubNrVmzZqhTpw7+/vtvhIeH59vVBSi4brdu3ar1NjXx8PCAt7c3Ll68iI8//hhJSUkYNmyYxj7/JcXDwwNubm6Ijo5WuVOhoLi7UNoUFwu5x+JX0LbbXEl5+vQpjh07plauuMPRpk0b5cWbov+14uKtNNWvXx8TJ04EoN3xrfhtbdu2TeNY3dr+BouiKHVX0G/p9OnTiImJKVYM2pxnS2q5qlWromrVqoiNjdW43/v27UNCQgK8vLzUurq8KkmS4O3tjd69ewMAk3Sq0Jik/+eTTz7BrFmzNLa4Pn78GO+//z6AFy+KUZz09JXiAZ01a9ao9Em/desWPvzwwxLfnqLVpbCHakeNGgUTExMsWbIEQogid3fw8vKCTCbD8ePHVbp9pKenY/z48RofxGrZsiU6deqEJ0+eYNy4cUhJSVGZ/vDhQ+UDp9rw9PRE7969kZycjICAAJX6PX/+PFauXAkDAwNl0gEAGzdu1Jh8HDhwAEIIlX7TP//8M0JDQ9Xm3b9/P4D8+1jnZ9iwYRBCYMGCBTh37hzq1KmjfDg1N8Ux8/PPP6uUb9++Hb/99luRtqmJorvT4sWLARSvq0txtzljxgwkJSUpy8PCwjBv3rxS3z4A5YuaVq5cqfKSsuvXr+PTTz8tkxhymzlzpkocoaGhyrrIfcy2atUK3bp1w9mzZzFx4kQ8e/ZMbV03btzAwYMHtd52amoqli1bpnZxm5OTo1yPNsd3x44d0bBhQzx8+BCffvqpSqPDrl27sHPnTlhaWmL06NFax6YNbetO8VsKDAxUOd88fvxYeUwWh7bn2ZJabvLkyQCA6dOnK1/2BwDR0dGYNWsWACAgIKBI68zr2rVr2Llzp1o3p/j4eAQFBQEo+jmPqDzhg6P/ef78OZYuXYqFCxeiVq1aqFevHkxNTREREYGgoCBkZmbCy8tL+fZNfTZq1Cj88MMP2LNnD2rXro0WLVogPj4ep06dgq+vLy5evFjgbcyi6tOnDzZs2IChQ4eie/fuyocb8966dnR0RP/+/bFp0yaYmJjg3XffLdJ2KlWqhPfeew+rV6/GG2+8gc6dO8PMzAxnzpxBdnY2Ro4cqfH2+8aNG9GlSxds3rwZhw4dQvv27WFiYoL79+/j+vXr+OGHH9CwYUOt41i1ahXefPNN/Pbbbzh16hTatGmD2NhYnDx5EtnZ2fjhhx/QuHFj5fw7duzAu+++ixo1aqBhw4YwMzNDaGgogoKCIJPJ8NVXXynn/fnnnzFhwgTUq1cPdevWhaGhIe7cuYMbN27A1NS0yInd0KFD8cknnyiT7/we0p09ezYOHjyIOXPmYNu2bahVqxaCg4Nx+fJlzJw5EwsXLizSdvPq1asXqlSpgkePHqF58+Zo0qTJK61PG7NmzcK+fftw4cIF1KhRA506dUJGRgaOHz+OLl26QAhRoqOxaNKpUyd06NABp06dQr169dCuXTvExcUhKCgIU6ZMeeV6LYrWrVtDLpfDy8sLnTt3RmZmJo4dO4bU1FQMHz4cfn5+KvMHBgbC29sbP/30EzZt2oTGjRvD1dUVSUlJuHnzJh49eoSAgAB4e3trtX25XI6AgADMnDkTzZo1U76Z9NKlS3j06BGqVaumVfc3SZLw+++/o1OnTvj666+xa9cuNG7cGOHh4Th79iwMDQ2xZs2aAp+9Kaqi1F2fPn1Qv359XL58GV5eXmjXrh3S09Nx4sQJNG7cGG3bttV4d6cw3bt3h6mpKRYvXox//vkHrq6ukCQJs2bNQu3atUt8uWnTpuH48eM4cOAAatasic6dO0MIgWPHjiE5ORm+vr744IMPirwfuYWFhaF///6wsbFB8+bN4ezsjMTERJw+fRrJycl4++23lX34iSoitqT/5+OPP8bGjRsxfPhwmJiY4MyZM9i+fTtu3bqFli1b4rvvvsP169dLfHjC0uDg4IBLly5h6NChkMvl2L17Nx4/fowvv/yywNE7isvPzw+LFy+Gu7s79uzZgzVr1mDNmjUa51X07ffz81OOhFAUK1euxA8//IDq1avj2LFjOHPmDLp27YrLly/nOxKBm5sbLl26hHnz5sHd3R1HjhzBgQMHkJqaig8++AA+Pj5FikGxvhkzZsDQ0BA7d+7ElStX0KVLFxw6dAjTp09XmX/69OmYOHEirKyscObMGezatQtPnjzB4MGDERQUhIEDByrn/fLLLzF69GhIkoRjx45hz549SEtLw5gxY3D9+vUij3bg6emp8kdu6NChGud766238Pfff6Nz58548OAB9u7dC2NjY+zYsUOllbC4DAwMlK3KZdGKDgAmJiY4cuQIZs+eDQsLC+zevRv//vsvZsyYgT/++AMxMTHFOgaLQpIk/PXXXxg/fjwkScL+/fsRHx+PpUuX4vvvvy/VbedlYmKC48ePY+jQobhw4QIOHTqEKlWqYOHChRovbitVqoRz585h2bJlqFevHq5du4bt27fj5s2b8PT0xPfff4+ZM2dqvX1LS0usWLECb7/9NmJjY7F7924cP34cdnZ2+OKLL3DlyhWtv4+GDRvi6tWrGDt2LJ4/f47t27fj7t278PX1xdmzZzFo0CCt49JGUerO2NgYZ86cwYQJE2Bqaoq9e/fi9u3bmDx5Mo4cOaJx2EhtuLq64q+//kLr1q3x999/Y+3atVizZk2hF5rFXc7AwAC7d+/G0qVL4enpiUOHDuHw4cOoXbs2VqxYge3bt7/yA8ytW7fGV199hWbNmuHu3bvYtm0bLl++jEaNGmHt2rXYsWPHK62f6HUniZLuoExUgB49euDw4cM4ceKExnGeqXxKTU2Fm5sbsrKyEBkZWaQx60vDhQsX0KZNG3h7e+PAgQM6jYX018OHD1G9enV06NABJ0+e1HU4RFTBsCWdyszFixdx5MgR1K9fnwl6BbNixQokJiZixIgRZZqgX7t2TW2owwcPHiifMRk+fHiZxUJERFQU7JNOpW7OnDkIDw/Hvn37IITA/PnzdR0SlYGnT5/iww8/RExMDPbv3w9LS0vMmTOnTGMYMmQIkpKS0LBhQzg4OCA8PBxXrlxBRkYG+vTpk2/3HyIiIl1jkk6lbsuWLXj06BE8PDywYMEC9O3bV9chURlITk7GmjVrYGxsjCZNmmDhwoUah6UrTZMnT8bWrVtx8+ZNxMfHw9TUFI0bN8bw4cOV/cSJiIj0EfukExERERHpGfZJJyIiIiLSM0zSiYiIiIj0DJN0IiIiIiI9wySdiIiIiEjPMEknIiIiItIzTNKJiIiIiPQMk/Q8MjMzERUVhczMTF2HQkREREQVFJP0POLi4vDLL78gLi6uWMtnZmYiJiaGSX4ZYF2XHdZ12WFdlx3WddlhXRMVHZP0EpaVlYXY2FhkZWXpOpRyj3VddljXZYd1XXZY12WHdU1UdEzSiYiIiIj0DJN0IiIiIiI9wySdiIiIiEjPMEknIiIiItIzTNKJiIiIiPQMk3QiIiIiIj3DJJ2IiIiISM8Y6jqA0pKWloZdu3bh7t27CA4OxvPnzxEQEIAuXbroOjQiIiIiogKV25b0Z88+mmoJAAAgAElEQVSeYcuWLYiIiED16tV1HQ4RERERkdbKbUu6vb09NmzYADs7OwQHB2PGjBm6DomIiIiISCvltiXdyMgIdnZ2ug6DiIiIiKjIym2STkRERET0umKSTkRERESkZ8ptn3R9lZqaivPnzyM7Oxt1GzVHFWd7XYdERERERHqGSTqAuLg4xMXFAQDi4+MBAOnp6UhLSyvyujIyMlT+z+vQoUPIzMyEAHDyxFFUqtEMbzV0LV7gFVxhdU0lh3VddljXZYd1XXbKqq7NzMxKdf1EZYlJOoAdO3Zg9erVAAAbGxu89dZbiIiIQEpKSrHXGRERobE8MzMTACABMDEAou9fxfwHqRhUH5BJUrG3V5HlV9dU8ljXZYd1XXZY12WntOu6QYMGpbp+orLEJB1A//790aFDBwAvWtKPHDkCd3d3ODs7F3ldGRkZiIiIgLu7O0xMTNSmRySm4Flk2IsPVg7YG+qIs2HAwxRzLOxXGTZmBq+0LxVJYXVNJYd1XXZY12WHdV12WNdERcckHYCjoyMcHR0BAFFRUQAAU1PTV7ptZmJionH5xs1a4mK1xkAOIDM0hE3KEyAsDsfvpaLvLxFYPdwDjdx5u64o8qtrKnms67LDui47rOuyw7om0l65TtL37t2LlJQUZT/zixcvKvue+/j4wMLCosxjsjMGZDJD5bg6Xq7mymmPEjLR56f7+LKPC4a3sofE7i9EREREFVK5TtL//PNPPHnyRPn5/PnzOH/+PACgY8eOOknSTQwkWBoCz7NefK5X1QLGhhLkWQIAIM8W+HBXJC6FpeKbfm4wN+YomUREREQVTblO0n/99Vddh6CRnbGE5/8l5TKZhD/er4GJgWGITMpUzrP9aiL+9zgNq9/xgJcT++8RERERVSRsptUBe2PVz5UdTHA4wAudalmqlN+NyUDPZSHYfSOxDKMjIiIiIl1jkq4D9saqfc3j5YC9hSE2jqqGWd0qIXdX9BR5DsZveoRPdkdCnpVTpnESERERkW4wSdcBcwMgd1fzePnLri/TulbGptHVYG+hOhTjmrNP0X/VAzxOlJdlqERERESkA0zSdUCSJJUuL+nZQNp/fdQBoEMtKxyeUhPNqpqrLHclPA09loXg5L3ksgqViIiIiHSASbqOqHd5ESqfXW2NsHO8J8a2d1CdLyUbw9Y+xA9HYpCdo7oMEREREZUPTNJ1xE5Dv/S8jAwkfPG2K34ZVhWWJi+/KiGAH44+wfC1D/E0Jau0QyUiIiKiMsYkXUdsjABZrjw9QZ5/q7hPIxscmOyFus6mKuWngp+j+9IQXAlLLa0wiYiIiEgHmKTriEySYGf08vOzLCCzgO4rNZxMsGdiDQxsaqtSHpWUCb9VD7DmbByEYPcXIiIiovKASboO5e2XnlDIwC3mxjIsGeSO7/3cYGL4ctnMbIFPdkdh/KZHeJ6RXRqhEhEREVEZYpKuQ3n7pRfU5UVBkiQMa2WPvz6ogar2RirT9txMQs8f7+NudHqJxklEREREZYtJug7Z5XnzaN4RXgrSyM0MByfXRPd6Virl92Mz0Gt5CHZcTSiJEImIiIhIB5ik65CRTIK14cvPCZlAThH6lduaG2DtOx6Y29NZ5SHUtEyByX9E4MOdj5GeybeUEhEREb1umKTrWO4uLzkCSMos2vIymYSJHZ2wbVx1OFkaqkzbGBQP35UP8EjT+I5EREREpLeYpOuYfZ4uL9r0S9ekjaclDgd4oY2nhUr5zccv3lJ65Paz4oZIRERERGWMSbqO2ZsU/ObRoqhsbYQ/xlTHxI5OKuWJadkYsT4MCw5GIyubwzQSERER6Tsm6TpmZiDBzODl53g5Xmm8c0MDCXN7OmPdCA9Ym6p+vT+eiMWQNaGITS5inxoiIiIiKlNM0vVA7n7p8hwgpQSGOu9RzxqHptREQzfVt5SevZ+C7ktDEBSa8uobISIiIqJSwSRdD5RUv/S8PByM8deEGhjW0k6lPCY5CwN+eYCVp2L5llIiIiIiPcQkXQ/kffNoSQ7GYmokw/f93bFkkDtMjV5uJzsH+HJ/NN7f+ADRT5ORkpKi/CeXczQYIiIiIl0yLHwWKm1WhoChBGT916j9Kg+P5mdQMzs0dDXD2MAwPIh7mYRnxYfh9LErKvPWq1cPDRo0KPEYiIiIiEg7bEnXA5Ikqbx9NCULyCiFUVjqupjiwGQv+DS0VpadjLHH/ggHAEC2TXX07t0btWrVKvFtExEREZH2mKTribxdXhJKqceJlakBVg2rii98XGAoA5xM5ejp9hQAIEsMxRe7w5GebVDIWoiIiIioNDFJ1xN2av3SS++BTkmSMPZNR+x43xMeNgKKLQkAVx8koPuyYFx7lFpq2yciIiKigjFJ1xN2RkDuNL2kRngpSItqFlgxugnisqwAACHPzHA32RLh8Zno+9N9rDgZi5wcjv5CREREVNaYpOsJA5kEG6OXnxMzgewyGB7RxhQY3L0FAOBgdCVYGWbBVJaNrBxg/oFoDF37EE/48iMiIiKiMsUkXY/k7pcuACSWwUiI9+7dw4kTxwEAU2qH4fNGIehYOV45/XTwc3RdEoKTd5NLPxgiIiIiAsAhGPWKnbEEpLxsPU+QCziYSAUs8epq1aqF6tWrKz8/T8/B6UOxQNTLN5LGPc/C0LUPMf4tR8zpURnGhry2IyIiIipNzLb0SN43j5bmw6MKxsbGsLCwUP6r7GCFH4dUxw8D3GBmpHqB8PPpOPRd+QChcRmlHhcRERFRRcYkXY+YGEiwyDX6YYIcEGXQLz0vSZIwpIU9Dk7xQj0XU5VpNyLS0GNZCHZeSyjzuIiIiIgqCibpeiZ3v/RMASRn6S6WmpVMsXdiDYxu66BS/jwjB5O2RGDq1kdIycjWUXRERERE5ReTdD1jl6fLS1kMxVgQUyMZvurrivUjPGBnrvqSo61XEtFjWQj+9zhNR9ERERERlU9M0vWMvUnelxrpKJA8utezxtGpNdHG00Kl/EGcHG+vuI/VZ+J00jWHiIiIqDxikq5nLAwA41zfSlk8PKotFxsjbB1bHbO6VYIs17WEPFvgs71RGLE+DE+f67B/DhEREVE5wSRdz0iSpNLlJS0bSMvWn0TdQCZhWtfK2PG+J1xzv30JwNE7yei6JBh/hzzXUXRERERE5QOTdD2U++FRQPf90jVpVd0CR6Z6oWd9a5XymOQsDP41FN8cjEaWHl1cEBEREb1OivUyo+joaBw8eBCnTp3C9evXERsbi8TERNja2sLJyQmNGzdGhw4d4O3tDWdn55KOudx7kaS/THDj5YCrme7iyY+duSF+facqNgbF4/M9UUjPehGzEMCyE7E4ez8FPw2pgip5B4AnIiIiogIVKUk/dOgQVq5cif379yM7O1vtQcHU1FRERkbixo0b+O2332BgYIDevXtjwoQJ6N69e4kGXp7ZGL24xZHz32d96peelyRJeLe1A1pWs8D438Nx78nLFx1dCU9Ft6XBWNjfHT6NbHQYJREREdHrRavuLpcvX0bHjh3Rq1cv7NmzB23atMHHH3+MPXv2IDg4GE+fPkVmZibi4uIQHByM3bt3Y+7cuWjVqhV2796Nnj17olOnTrhy5Upp70+5IJMk2OZqfH6WCWTl6G+iDgB1nE2xf7IX3mllr1L+LD0H434Px+wdj5Eqz8lnaSIiIiLKTauW9JYtW6Jy5cr4+uuvMWzYMLi7u2ucz97eHvb29qhRowZ8fHwAAI8ePUJgYCCWLVuGli1bIjubL7/Rhr2xpNKCniAHnEwLWEAPmBvL8K2fG970ssTMHRF4lv4yKQ+8GI+LD1OwcmhV1HXR8x0hIiIi0jGtWtIXL16M0NBQfPjhh/km6PmpUqUKPvroI4SGhmLRokXFCrIisjPOO166frek5+bTyAZHp9ZEcw9zlfJ7TzLQe3kINpx/yjHViYiIiAqgVZIeEBAAU9NXa/00NTVFQEDAK62jItG3N48WlbudMXa+74mAzk6Qcl1vpGcJfPRnJMZsDEdCKsdUJyIiItKkVIdgzM7Oxr59+0pzE+WWsUyCVa7OSAmZQM5r1vpsaCDhwx7O+GNMdVS2Uu1ZdeDfZ+i2JARBoSk6io6IiIhIf5VKkn7p0iUEBATA1dUVffv2LY1NVAi5x0vPFi8eIH0dtfeyxNFpNdG1rpVKeWRSJvqveoBFR2OQrecPxhIRERGVpWKNk65JWFgYAgMDERgYiHv37in7HNevX7+kNlHh2BkDYakvP8fLBWzz9FV/XThYGGLDCA+sOfsUX+2Phvy/Fx3lCGDhkSc4ez8FPw6uAldbo0LWRERERFT+vVKSnpSUhK1bt2Ljxo04d+4chBAQQqB69erw9/fHkCFD0KBBg5KKtcLJ+1Kj161fel6SJGFMe0e0qm6BCZvC8SBOrpx2/kEKui0NxqKB7uhRz7qAtRARERGVf0VO0rOysrBv3z4EBgZi3759yMjIgBAC9vb2yMnJQVJSEu7fv18asVY4ZgaAqQxQjGQYLweEEJCk17M1XaGhmxkOTfHC3L+isPVKgrI8ITUbozaEYVRbB3zSyxmmRqX6yAQRERGR3tI6C7pw4QImTpwIFxcX+Pn5YceOHRBCoF+/fti1axeioqLYtaWESZKk0i89IwdILSfDzFuYGGDJIHcs93eHpYnqYbju3FP4rLiP4CfpOoqOiIiISLe0akmvWbMmHjx4oPz85ptvYvjw4Rg4cCBsbPi699JkZwxE5spVE+QCFoavd0t6bn5N7NC0qjkmbHqEGxFpyvJbUenwXhaCL/u4YkgLu9f+7gERERFRUWjVkq7ovuLi4oIjR47g5MmTGDNmDBN0DYyNjVG1alUYGxsXPrMW7E3yvtSoRFarV6o5mOCvCZ6Y0MFRpTwtU2DmjseYsOkRnqWp30Io6bqm/LGuyw7ruuywrssO65qo6LRK0uvUqQMhBCIjI9GtWze0a9cOK1euRHx8fGnH99qRy+UIDw+HXF4y2bSVIZC74fx1evNoURgbyvBJLxdsGl0NjpaqN3h230xC92XBuBqeqlJe0nVN+WNdlx3WddlhXZcd1jVR0WmVpN+6dQuXL1/GlClT4OTkhPPnz2PSpElwcXFB3759sX37dmRkZJR2rBWSTJJgm6vh4XkWIC/HY4p3rG2Fo1O98FZNS5Xy8PhM+K68j+UnY5FTjvefiIiICCjCg6NNmzbFkiVLEBkZif3792Pw4MEwNDTEnj17MHjwYDg7O+Off/4pzVgrLPs8Y6MnlPOGiEpWRtg0uho+7uUMw1xHaFYO8PWBaAxZ8xBPkl/TNzsRERERaaHIY9zJZDJ4e3tj06ZNiImJwdq1a9GpUyckJycjKSkJAODq6opp06YhKCioxAOuiPIm6eW1y0tuMpmEDzo44a8PasDDXrUP45mQ5+iyOBinglN0FB0RERFR6XqlgagtLS0xcuRIHD16FOHh4fjmm2/QoEEDREdHY+nSpWjbti28vLxKKtYKy9YIyJ2mV4QkXaFJFXMcmuIF38aqDyk/TcnG6N+j8MsVAXlWxakPIiIiqhhK7G0xrq6umD17Nm7cuIHr169j+vTpqFy5MkJDQ0tqExWWoUyCtdHLz0lyIFtUnMTU2swAK/yrYNEAN5gZqd5V2H4LGLgmAqFxfCaCiIiIyo9SeaVjo0aNsHDhQkRERODgwYOlsYkKJ3eXlxy8SNQrEkmS4N/CHgeneKGei6nKtH+iMtB9aQh2XE3IZ2kiIiKi14vWSfrt27dx+vRphIeHFzpvWFgYTp8+jXv37qFbt26vFCC9YFcB+6VrUrOSKfZOrIH32jmolKfIczD5jwgE/PEIKRnl5LWsREREVGFplaTHxcWhTZs28Pf3h5GRUaHzGxsbw9/fH+3bt0diYuIrB0lAnmcnkVBBk3QAMDWS4cs+rvhliAusTVSnbbuaiB7LQnDzcZrmhYmIiIheA1ol6evWrcOzZ8/w9ddfw8XFpdD5XVxc8M033yA+Ph7r1q175SAJMDWQYG7w8nO8HBAVqF+6Jl1qW+BnH6BVNTOV8gdxcry94j5Wn4mr8HVEREREryetkvR9+/bBxsYGw4cP13rFw4YNg62tLXbv3l3s4EhV7n7pmeLFi40qOkdzCRvfdcXs7pUhy9UjKDNb4LO9UXh3fRiesqKIiIjoNaNVkv7vv/+idevWMDQ0LHzm/xgYGKBVq1b4999/ix0cqbLL0+WlovZLz8tAJmFql0rYOd4Tbraq3bGO3UlG1yXB+DvkuY6iIyIiIio6rZL0pKQkODg4FD5jHg4ODsoXHNGrq2hvHi2qltUscCSgJno1sFYpj0nOwuBfQ7HgYDQys3lhQ0RERPpPqyTd1tYW8fHxRV55fHw8rK2tC5+RtGJpCOQeJpwt6epszQ2wenhVfNvPFaaGLytLCODHE7Hw+/k+HsXz6oaIiIj0m1ZJupeXF4KCgpCdrf3QdllZWbhw4QJq1qxZ7OBIlSRJKqO8pGYD6WwZViNJEt5p7YD9k71Qu7Lq8C9XwtPQbWkw9tzkHR4iIiLSX1ol6d7e3khMTMTy5cu1XvHy5cuRlJSEnj17Fjs4Uqc+XrqOAnkN1HE2xb5JXninlb1K+bP0HLz/ezhm7YhAqjxHR9ERERER5U+rJH3SpEmwtLTE7NmzERgYWOj8GzduxOzZs2FlZYWJEye+cpD0knq/dLakF8TcWIZv/dywenhV2JipHu6/X0xAzx9DcDsqXUfREREREWmmVZJub2+PDRs2IDs7GyNGjEC7du2wfPlynDt3DsHBwQgODsa5c+ewfPlytGvXDiNHjkROTg42bNgAe3v7wjdAWrMxVv3S2C9dO70b2uBIQE009zBXKQ9+koFey0Ow/vxTjqlOREREekPrMRV9fX2xZ88ejBgxAufPn8eFCxc0zieEgJOTE9avX8+uLqXAQJJgY/xyZJdnmUBWjoChTCp4QYK7nTF2vu+JRUdjsPRELBQ5eUaWwP/9GYkzwc+xcIAb7My1H2qUiIiIqDRo1ZKu0LNnTzx8+BArVqxAr1694OrqChMTE5iYmMDV1RW9evXCTz/9hNDQUCbopSh3lxcBIDFTd7G8bgwNJMzu4YytY6vD2Vo1GT/w7zN0XRKCoNAUHUVHRERE9EKRmwzNzc0xYcIETJgwoTTiIS3YG0u4j5ddM+LlAo4mbEkvinY1LHFkak1M2xaBo7eTleVRSZnov+oBpnWphKldKsGAdyiIiIhIB4rUkk76gW8eLRkOFobYMMID8/q4wNjgZTKeI4Afjj7BwF9C8TiRw+cQERFR2dM6SR87diw6d+6Mc+fOFTrv+fPn0blzZ7a2lxJjmQTLXPdAEuRADh96LBZJkjCmnSP2TKwBT0fVq58LoSnovjQEB/99pqPoiIiIqKLSKkk/duwY1qxZAycnJ7Rt27bQ+du0aYNKlSrhl19+wenTp185SFKXu196tgCSs3QYTDnQ0M0Mh6Z4YXBzO5XyhNRsjP4tDHP/ikR6JsdUJyIiorKhVZK+ceNGSJKE+fPna73ir7/+GkIIbNiwodjBUf7s83Z5yWBL+quyMDHA4oHuWDGkCixNVH8a6849hc+K+wiO4ZjqREREVPq0StLPnz+Phg0bwsvLS+sVe3p64o033sDZs2eLHRzlL++bRxPYdbrE9Gtsi8MBXmjsbqZSfisqHd4/hmDTxXiOqU5ERESlSqskPSIiArVq1SryymvWrImIiIgiL0eFMzcAcjf2PpULJo4lqJqDCf6c4IkJHRxVytMyBWbueIwJmx7hWVq2jqIjIiKi8q5UR3eRJImJYymRJEmly0tGDsCcsWQZG8rwSS8XbHqvGhwtVUcr3X0zCd2WBuNKWKqOoiMiIqLyTKskvXLlyggJCSnyyoODg1G5cuUiL0faydvlhUMxlo6OtaxwbKoXOtS0VCl/lJAJ35/v48cTT5CTw7onIiKikqNVkt6mTRvcvHkTd+7c0XrFt2/fxo0bN7QaDYaKx5790suMk5URfh9dDR/3coZhrl9Ndg6w4GAM/NeEIuYZX/1KREREJUOrJP2dd95BTk4O3nvvPaSnFz66RXp6Ot577z3lslQ6rI2AXO/gYUt6KZPJJHzQwQm7P6gBjzzD6/wdkoKuS4Jx/E5yPksTERERaU+rJN3b2xu9evXC+fPn0apVKxw5ciTfeQ8fPoyWLVsiKCgIvXr1Qo8ePUosWFIlkyTYGb38nJwFyNntotQ1rmKOwwFe6NfYRqX8aUo2hq97iC/2RkGexTHViYiIqPgMC5/lhS1btqBnz544e/YsvL294eDggMaNG8PJyQkAEBsbi+vXr+Pp06cQQqB9+/bYvHlzqQVOL9gZS4jL1YKeIAcqm+owoArCytQAy/2r4K2aVvi/Px8jLfPld7DqTBzOP0jBT0OrwNPRRIdREhER0etK6yTd0tISJ0+exKJFi7BkyRJERUXh6NGjavO5uLhg2rRpmDZtGgwMDEo0WFL3ol967iRdoLKplP8CVGIkScLg5nZo5mGOCZvC8W/ky65gNx+nocfSECzo54oBTe0KWAsRERGROq2TdAAwMDDArFmzMGPGDFy7dk3Zcg5A2bLepEkTyGSlOrIj5WKX982j7Jde5rycTLB3Yg3M3x+NX88+VZanyHMw5Y8InA5+jq99XWFpwotWIiIi0o5WSXpCQgLs7F62BspkMjRr1gzNmjUrtcBIO4YyCdZGgGJgkUQ5kC0EDCS2ppclE0MZ5vVxxZs1LTF1awQSUl8OWr/9aiKuhKVi5dCqaJTnLaZEREREmmjV5O3i4oL+/fvjzz//RGYmh5nTN7mHYszBy4Sdyl63utY4OrUm2npaqJSHPpXj7Z/uY9XpWI6pTkRERIXSKknPysrCrl270L9/fzg7O2PChAk4e/ZsacdGWrJnlxe94mJjhD/GVseHPSrDINcvLDNb4It90RixIQxxz7N0FyARERHpPa2S9IiICCxcuBBvvPEGEhISsGrVKrz11luoUaMGPvvsMwQHB5d2nFQAvnlU/xjIJAR0roSd73vCzdZIZdqxO8nouiQYZ0Ke6yg6IiIi0ndaJenOzs6YPn06rl69ilu3buGjjz6Ch4cHQkND8dVXX6FOnTpo06YNfvrpJ+WDpFR2zAwkmOV6JjFBDgjBRF0ftKhmgSMBNdG7gbVK+ZPkLPj/GooFB6ORmc3vioiIiFQVeRiWOnXqYP78+Xjw4AFOnz6NMWPGwNbWFkFBQZg8eTJcXV3Rt29fbN++HRkZGaURM2mQu1+6PAdIyS5gZipTtuYG+GV4VXzbzxWmhi+/JyGAH0/Ewu/n+wiPl+swQiIiItI3rzRWYvv27bFq1SpER0dj165d6NevH2QyGfbs2YPBgwfD2dkZY8eOLalYqQBq/dIz2DqrTyRJwjutHXBgshdqV1Z9wdGV8DR0WxKM3TcSdRQdERER6ZsSGdDcyMhI2XoeExODVatWwcHBAUlJSVi7dm1JbIIKod4vXUeBUIFqO5ti/2QvvNvaXqU8OSMH4zc9wsztEUiV5+goOiIiItIXRXqZUWGuXbuGwMBAbNmyRdk3nW8dLRtWhoCRBCjeTp/Ah0f1lpmRDN/0c8ObXpaYuSMCSWkvk/JNlxJw8WEqfh5WBfVcOKY6ERFRRfXKLelhYWFYsGABGjRogObNm2Px4sWIiopCo0aNsHDhQoSHh5dEnFQISZJU3j6akg1k8IFEvda7oQ2OBNREi2rmKuUhsRnovfw+1p17ygeAiYiIKqhitaQnJiZi69atCAwMxLlz5yCEgBACbm5uGDZsGIYPH44GDRq8UmCZmZn4/fffcfLkSTx//hzVqlXDsGHD0KRJk0KXvX79OrZt24aHDx8iJycHrq6u8PHxQadOnV4pJn1nbyzhSa6+6PFygI2x+s3dzhg7xnli0bEnWHr8CRQ5eUaWwNy/InEm5Dl+GOAGO/MSvelFREREek7rv/xyuRx79uxBYGAgDhw4gMzMTAghYGVlBT8/P7zzzjvo1KkTpBJ6Hf2SJUtw7tw59OnTBy4uLjh+/DjmzZuH+fPno169evkuFxQUhK+//hq1a9fGkCFDIEkS/v77byxevBjPnj1D3759SyQ+ffSiX/rLJD1BLuBiVjLfB5UeQwMJs7tXRvsaFpi05RGin7180dHBf5/hRkQaVvhXQes8bzElIiKi8kurJH3s2LHYsWMHkpKSIISAgYEBvL298c4778DX1xempqYlGtS9e/dw5swZjBo1Cv369QMAdO7cGZMmTcL69evx3Xff5bvsvn37YGdnh/nz58PI6MVLZLy9vTFhwgQcO3asXCfptsZA7jSdLzV6vbStYYkjU2ti+rYIHLmdrCyPSsrEgF8eYGqXSpjauRIMDXjhRUREVN5p1Sd9zZo1SExMRNOmTbFkyRJERkZi37598Pf3L/EEHQDOnj0LmUyGHj16KMuMjY3RrVs33LlzB7Gxsfkum5qaCktLS2WCDrx4eNXa2hrGxsb5LlceGEgScr/cMikTyM5hov46cbAwxPoRHviyjwuMcyXjOQJYdPQJBq5+gMeJHLqHiIiovNMqSf/oo49w69YtXLp0CVOmTIGTk1OpBvXgwQO4ubnB3Fz1gbpatWoBAEJDQ/NdtmHDhggPD0dgYCAiIyMRFRWFLVu2ICQkBH5+fqUatz7IPRSjAJCQqbtYqHgkScJ77Ryxd1IN1HBSHVM9KDQV3ZaE4MC/STqKjoiIiMqCVt1d5s+fX9pxqEhISICdnZ1auaIsPj4+32UHDx6MmJgYbNu2DVu3bgUAmJiYYM6cOWjdunXpBKxH7I0lPEhR7ZfuaMLuEa+jBq5mODTFCx//FYktlxOU5Ylp2Xjvt3CMaGOPT3u7wMyoRF53QERERHpEq7/uWVlZePLkCZKSNLfexcXF4f3334e7uztMTU1Ro0YNzJkzB8+fPy9WUHK5XKW7iqw800MAACAASURBVIKiu0pGRka+yxoZGcHV1RVt27bFzJkzMX36dHh5eWHx4sW4c+dOseJ5ndjlffMo+6W/1syNZVg00B0rhlSBpYnqz3XD+Xj4LL+P4Jh0HUVHREREpUWrlvQNGzZg3Lhx+Pjjj/HFF1+oTHv27Bnatm2L+/fvK8d0Dg0Nxffff4/Tp0/jzJkzRX6hkbGxMTIz1ftpyOUv+uKamJioTVNYtWoV7t69i8WLF0Mme5HUtG/fHpMmTcKvv/6KhQsXqi0TFxeHuLg4AC9b6dPT05GWllakuIGXFxAFXUiUNnOZEVJzXrSex2cIpKamoYQG3dEr+lDXZcW7tgnqvV8FU3dE48bjl/t7OzodPZaF4NOejhjU1LrERlfKqyLVta6xrssO67rslFVdm5lx3GEqP7RK0k+dOgUAeO+999SmffPNNwgJCYG5uTkWLFiAzp07Izg4GDNmzEBQUBDWrVuHMWPGFCkoOzs7jV1aEhJe3PK3t7dXmwa8GFv9yJEj8PPzUyboAGBoaIhmzZph3759yMzMVGul37FjB1avXg0AsLGxwVtvvYWIiAikpKQUKe7cIiIiir3sq5KZuwCmtgCAbEi4ExYB4+zy+0dIl3Vd1hZ0FFh/Hdj678uy9CyB/9sTi0M3YxHQGrA0Lr0rsopU17rGui47rOuyU9p1/arvaCHSJ1ol6VevXkWdOnVQtWpVtWnr1q2DJEn49NNPMXnyZABA/fr1UbduXdSvXx9bt24tcpLu6emJ//3vf0hNTVV5ePTu3bsAgOrVq2tcLjk5GdnZ2cjJyVGblpWVhZycHI3T+vfvjw4dOgB40ZJ+5MgRuLu7w9nZuUhxAy9aCSIiIuDu7l5gi39pMsuQ4Xbqy89WzlXhbqq+3687fahrXVhQE+jVJBUzd8UgLiVbWX4qDLifZIjF/SujaZWSbU2qqHWtC6zrssO6Ljusa6Ki0ypJj4mJ0fi2ztu3byMmJgYymQyjRo1SmVa7dm20aNECN2/eLHJQbdu2xa5du3Do0CHlOOmZmZk4duwYatWqpRxdJjY2FhkZGXB3dwfwohXcwsICFy5cwNChQ5Ut5mlpabh06VK+JwdHR0c4OjoCAKKiogAApqamr3TbzMTERGe33SobCdxOfZmUJ8MIZmbl9+FCXda1rnRvaIZj1awRsDUCJ++9fPYjIjEL/useY3b3ypjYwQkyWcm2qlfEutYV1nXZYV2XHdY1kfa0StKTkpI09nW9cuUKgBct55qGZfTw8MDVq1eLHFTt2rXRrl07/Pbbb0hMTFS+cfTJkyfK1noAWLx4Mf755x/s3r0bwIvx0Pv164fAwEDMmjULnTp1Qk5ODo4ePYq4uDhMnz69yLG8jiwMAGMZIP8vT+fDo+WTk5URAkdVw6ozcVhwMBpZ/33f2TnAgoMxOBPyHMsGV4GztfpD2ERERKTftErS7ezscP/+fbXyc+fOAQBatGihcbns7GxYWloWK7Bp06bh999/x8mT/8/efYdHVWYPHP/eqekhCUlIg0DoIIgiIF0EaSogZUFRQAQBpbnqyv6k2tDdVWywIOuCdDDggoBUQUCKiIIoQugQQkghvU1m7u+PIZMZEmAyCQmB83mePDHv3Dv3nUtMzrw557w7yMjIIDIyksmTJ98y32zAgAEEBwezbt06li9fjslkIjIykjfeeIPWrVu7NJfKRlEU/A1w+VrTjxwzZOeruOvuwurRe5xGozC6QyAP1/JkzLILnE0q3Oho98lMOs+K4eMB4Txa36cCZymEEEKIknIqSH/wwQfZtGkT+/fvp2XLlgBkZmYSHR2Noig8+uijxZ534sQJQkNDXZqYwWBg2LBhRdJo7L377rvFjnfo0MGWY36v8jcoXM4pXEFPzlMJkyD9rnV/hAebxtVm0jeXWP1Lim08OdPMs/89x8i2AUzqXg2j7u5NexJCCCHuJk79xn7hhRdQVZXu3bszdepUPv30Uzp27EhCQgIBAQH07t27yDlxcXH8/vvvNGzYsMwnLW7N77oOH8myk/xdz9tNy6d/CWfWgHA8DI7/a8/bncSTs09xOvHu7fIjhBBC3E2cCtKfeuophg0bRkpKCm+//TYTJkzg559/RqPR8OmnnxZbBPLll19isVjo2rVrmU9a3JqvHuxrBq9KXvo9QVEUBjzox6ZxtWkc6ubw2G+xOXT9+CRfH7p6g7OFEEIIcadwKt0F4D//+Q89e/Zk9erVJCQkEBERwfPPP3/DPO8zZ87Qq1cvunfvXmaTFc7TKAp+eihIUU7LB5NFRV/G3T7EnSkq0Mi6l6J4d+NlvtidZBvPzLMwbsVFdp7I4L0+oXgZS7bRmBBCCCHKh9NBOlhX1J966imnjp0/f75LExJlx9+gkGS3gn41D4LcbnKCuKsYdRqmPxFK29peTFx1kWS7nurRv6Rw6HwWc56uTpNwaYcmhBBC3Gmkiuwudn1euqS83Ju6NPBh64Q6tInydBg/k5THE7NP8e8fErBY5HtDCCGEuJM4FaSbTKYyuVhZPY9wjp/B8Wvpl37vquajZ/kLNXmjazBau//rTWaVGesv8+x/z5KYkV9xExRCCCGEA6eC9KioKObOnUt+vmu/xE0mE7NnzyYqKsql84Vr9BoFb7uEpqsmsKgSqN+rtBqFcZ2CWP1iLcL9HDc4+v5EBp1nxfBDTMYNzhZCCCFEeXIqSK9duzajR48mPDycCRMmsG/fPiwWy03PsVgs7N27l7FjxxIeHs7LL79MnTp1ymTSwnn+dikvFhVS5Y8Z97yHIj3ZMr4Oj9/nuMHRlfR8Bv3nDO9uvIzJLG/mhBBCiIrkVOHo9u3bWb9+PX//+9/55JNPbG0XmzVrRr169fDz88Pb25v09HSSk5M5fvw4v/76K9nZ2aiqyv3338+CBQuk00sF8DfAuazCr6/mqUVy1cW9x9ddy9xnqrP0wFUmr7tEjskalKsqfLYjgR9PZTD76epU9zfc4pmEEEIIcTs43d2lZ8+e9OzZkz179jB//nw2bNjAnj172LNnT7HHBwUFMWDAAEaMGMHDDz9cZhMWJWNdSXfcebRWxU1H3EEUReGZlv48FOnBqKXn+fNy4UZHhy5k02VWDB/0DaNX0yoVOEshhBDi3lSiFowAbdq0oU2bNgAcP36cI0eOcOXKFVJTU/H19SUoKIimTZtSt27dMp+sKDl3nYKbFnKudd9LzgNVVVEUWU0XVnWD3Vj/cm1mfBvHwn3JtvH0XAujl17gh5gM/t7FrwJnKIQQQtx7Shyk26tXrx716tUrq7mI28TfoHAp27qanmeBTDN4lepfXtxt3PUa3usTRrs6Xvz164ukZhfWnCz76SoHzmTwaksVqf0WQgghyof0Sb8HXJ9WLP3SxY30aOzLlvF1aBHp4TB+KtHEuI3w1f4UVOkQJIQQQtx2EqTfA/yvKxRNzqugiYhKIdzPwNcjazHx0SA0dt86JgtM35jIsK/OkZwpPdWFEEKI20mC9HuAtw50dsGWbGokbkWnVXjtsWBWjaxJiI9jbtTmP9LpMiuGvaelp7oQQghxu0iQfg9QFMVh99HMfMiVPtjCCQ/X8mLLhDp0rufpMB6Xlk//eWf455Z48uV7SQghhChzEqTfI65PebkqKS/CSf6eOv49sBovPQQGbeG4RYUPt16h/xeniU2RbyghhBCiLEmQfo+4fgMjSXkRJaEoCr3qK6weEUFUoNHhsf1nsugy6yQbj6ZW0OyEEEKIu48E6fcIPz3Yh+nS4UW4okE1I5vG1WZgc8e+6SnZZoYvOs+kNbFkmyw3OFsIIYQQzpIg/R6h1Sj46gu/TjGBWVrpCRd4GDR82D+c2YMi8DY6/ghZuC+Zxz87xYn4nAqanRBCCHF3KFWQvnnzZvr06UNYWBhGo5Hhw4fbHtu0aROvvPIKly5dKvUkRdmwT3lRAUkjFqXR+/4qbB5fhwci3B3Gj13OodunJ1m8P1l6qgshhBAucjlIHz9+PN27d+d///sf6enpmEwmh1/IISEhzJo1ixUrVpTJREXpFS0elQBKlE6NAANrRkfxUsdAh/Eck8rrq2MZteQCqdnmCpqdEEKUn6ysLD755BMee+wxQkJCMBqNeHt707BhQ4YOHcratWsxm+XnoXCeS0H6V199xaeffsqDDz7IoUOHSEtLK3JMkyZNiIiIYN26daWepCgb1+88KsWjoizotQr/170ay4ZHEuTt2FN93W+pdPk4hoPnMitodkIIcfvt2bOH2rVrM378eHbt2kWdOnXo06cPnTt3RqfTsXDhQnr16kWTJk0qeqqiEnEpSJ8zZw5VqlRh/fr13H///Tc8rkmTJpw+fdrlyYmyZdQqeNi10Luah6QjiDLToa43WyfU4ZG6Xg7jF6+a6PPv03yy/Qpmi3y/CSHuLocOHeLRRx8lLi6O1157jfj4eH744QeWL1/OmjVrOHLkCOfPn2fChAkSE4kScSlIP3r0KK1btyYwMPCmx/n6+hIfH+/SxMTtYZ/yYlIhXXZ3F2WoqpeORcMimdKzGnpt4fea2QIzN8UzaP4ZLqeZKmx+QghRliwWC4MHDyY3N5e33nqLDz74AB8fnyLHRURE8NFHH7F79+4KmKWorFzOSVcU5ZbHXLp0CXd391seJ8rP9SkvkpcuyppGozCqfSBrx9QiMsDxG273qUw6z4ph67GiKXJCCFHZbNiwgWPHjlG9enUmTZp0y+MffPBBh68VRSEyMpK8vDxmzJhB/fr1MRqN9O7d2+G4RYsW0bZtW3x8fPDw8KBJkya899575OQU7aTVsWNHFEXh7NmzRR47e/YsiqLQsWNHh/Fp06ahKAoLFixg//79dO3alSpVquDj40OXLl3Yt2/frW+GKHMuBel16tTh0KFDmEw3XhFLT0/n119/pVGjRi5PTpS964tHk6XDi7hNmoZ7sGlcbZ5qVsVhPDnTzHMLzjF13SVy86WnuhCi8tq4cSMA/fv3R6vV3uLo4lksFnr37s0HH3xAVFQUvXr1IiQkxPb4iy++yHPPPcfPP/9Mu3bt6NmzJ3Fxcfz973+nU6dOZGVllclrAfjxxx9p3749Fy9epHv37tSrV4+tW7fSoUMHNm/eXGbXEc5xKUjv378/cXFxvPHGGzc8ZtKkSaSmpjJw4ECXJyfKnqcO9Hb/6lI8Km4nbzctnw2M4OMB4XgYHH/cfLE7iSc+P8WphNwKmp0QQpTO4cOHAWjWrJnLz3HhwgViYmI4fvw469evZ+XKlcyZMweA6Oho5s2bR2hoKEeOHGH9+vWsWrWKkydP0rZtW/bu3cuUKVPK5LUAfPHFF7z22mscPXqUZcuW8dNPPzF79mzy8vIYOnQo2dnZZXYtcWsuBekTJkzgvvvuY9asWTz88MPMnDkTgFOnTvHRRx/Rvn17Zs+eTbNmzRgxYkSZTliUjqIoDikv2WbINkugLm6v/g/6sWlcbRqHujmMH72UQ9dPTrLq56sVNDMhhHBdUlISAFWrVi328eHDhzN06FCHj+Ly0t977z3CwsKKjH/yyScATJ06lTp16tjGfX19+fzzz1EUhblz5xab9uKKGjVq2FJfCowePZqWLVsSFxdHdHR0mVxHOEd360OKcnd3Z+vWrQwdOpSNGzdy4MABAHbt2sWuXbsA6NKlC4sXL8ZgMNzsqUQF8DcoxOcUBuZX81Tc3W9dYyBEaUQFGln3UhTvbbzMvN1JtvGsPAvjV17kh5gM3usTipfRtT8ZCyHEnWbhwoVFeqN37NiRtm3b2r5WFIUnnniiyLkmk8mWC/7MM88UebxJkyY0adKEw4cP8+uvv9KqVatSz7dv377odEVDw0GDBrF//3527drF4MGDS30d4RyXgnSAwMBA1q9fz+HDh9m8eTNnz57FYrEQHh5Oly5daNGiRVnOU5Qha156YZCenAehUt8ryoFRp2HaE6G0q+PF+JUXSc4s/OUV/UsKP5/PYs7TETQN96jAWQohhHMCAgIASExMLPbx/PzCFmqjRo1i7ty5RY4JCgrCaDQWGU9KSiIvL4+qVavi6elZ7PNHRkZy+PBhYmNjXZl+ETVq1LjhdQDZRb6cuRSkHzlyBI1GQ+PGjWnatClNmzYt63mJ28hHb81zKijZk7x0Ud4ere/D1gl1GLf8ArtPFW50dDYpjydnn2ZSt2BGtq2KRiN/4RFC3LmaNm3Knj17+OWXX4pd7XaGm5vbrQ+6AWc67dmzWKRYvzJxKSf9/vvvZ9y4cWU9F1FOtIpCFbsspDQT5MsmM6KcVfPRs+yFmrzRNRit3U8ik1llxvrLPPvfsySkS091IcSdq3v37gCsWrWqSFpLaQUEBGAwGEhMTCQzs/hdmwvaLNrnsxekGWdkZBQ5/sKFCze95rlz5246Hhoaest5i7LjUpDu7+/v0B5IVD7Xt2K8Kq0YRQXQahTGdQpizahahPvpHR77/kQGnWedZOeJ9AqanRBC3FyPHj1o0KAB58+f57333ivT59br9bY88+XLlxd5/OjRoxw+fBgvLy+H3d8L4rMTJ04UOWfLli03vebq1auLfbNRcH37XHpx+7kUpLdq1YrffvutrOciypFfkX7pspIuKk7zGp5sGV+HJ+7zdRhPyMhn0H/O8vaGOEzShUgIcYfRaDQsWrQIo9HI5MmTef3110lNTS1yXFJSEsePHy/x848dOxawbjZ0+vRp23h6ejovv/wyqqry4osvOqTMdOjQAYB//etfDj3Ut2/fzqxZs256vbNnzzJ9+nSHsXnz5rF3716Cg4Pp27dviV+DcJ1LQfrUqVM5fvw4//rXv8p6PqKc+MnOo+IO4+uu5d/PRPCPp8Jw0zu+iZy9M5Hec05xLkn+5COEuLM8+OCDbN26lWrVqvGPf/yD4OBgOnTowKBBg+jTpw8PPfQQISEh7Nixg/r169O8eXOnn7tfv36MHDmSixcv0rhxYx5//HEGDBhAVFQUO3fupFWrVsyYMcPhnEGDBlGvXj1+/PFHGjRoQL9+/WjVqhVdunRh9OjRN73eiBEjmDlzJo0bN+bpp5+mRYsWvPjii+j1ehYsWICHhxT1lyeXCkePHTvG4MGDef3111m8eDE9e/akevXqNyx+eO6550o1SVH2DBoFbx2kXys8v2oCi6qiKWERihBlSVEUnmnpz0ORHoxeeoFjlwt7//5yIZvHPo7h/afC6H1/lZs8ixBClK+2bdty6tQp5s+fz9q1azl69Ch79+7FaDQSFhbGgAED6NevH48//nixLQ5vZu7cubRt25Z///vf7Ny5k/z8fKKiopgwYQITJ07E3d2xPZu7uzvbtm3jtdde47vvvmPDhg00atSIFStW0Lx5c/75z3/e8FqtW7dm2LBhTJ48mW+//RZVVXn00UeZMWMGrVu3duneCNe5FKQPHToURVFQVZXDhw9z+PDhYiuMVVVFURQJ0u9QfgaFtJw81HwTFiA+VYOP3poHJ/3tRUWqG+zGty9HMWN9HAv3JtvG03MtjFl2gR9iMni7V2iRXUyFEKKieHh4MG7cuBI11lBV5/6K/eyzz/Lss886/bxhYWEsXbrUpWs+/PDDbN261elridvHpSB9ypQpJW77I+48/gY4GRtD/oVjAOy6Nt6wYUMaN25ccRMTAnDXa3ivdxjta3vx169jSckuLGZafvAqP52z9lRvLE3+hRBC3IVcCtKnTZtWxtMQFcHfoKAPq4O2SjC5v+0gtHlHmgV7otfrb32yEOWke2Nf7gtz5+XlFzhwtrAI6lRCLo9/dorJPavxfOsAWTgQQghxV5G/Fd/D3LXgZtDDtaA8Az0eHh6S6iLuOOF+Br4eWYtXOgdhv79Rnlll8to4hn11juTM/Bs/gRBCCFHJuLSSbi82NpY9e/bYtqQNCwujTZs2Do31xZ1JURR8FRNXf/sBgLTDP7BF/xh+HgZ89Aq+egUfvTWYl1VKUdF0WoVXuwTTJsqTl5ddIC6tMCjf/Ec6XWbF8OnACFpHeVXgLIUQovKZNm2aZEncgVwO0hMSEnjppZdYs2ZNkW1mFUWhb9++fPbZZwQGBpZ6kuL20aYngCnX+oUpl6yUBPK0YcTnqoC1uESvgI8efPUKvnrw0St46SRwFxXj4VpebJlQh79+HcumP9Js43Fp+fT/4gzjOwXxyqNB6LTy/SmEEKLycilIT01NpX379hw/fhx3d3cee+wxIiMjURSFs2fPsmnTJlatWsWRI0fYt28fvr6+t35SUSFqBlbhFArWgFxB41m0tZ1JhaQ8SLL1UlfRKuCtw7ba7qtX8NaDVgJ3UQ78PXV8+Vx1FuxNZsb6OHLzrd+bqgqztl3hx1MZfDYwgvDrNwQQQgghKgmXctJnzpzJ8ePH6d+/P2fPnmXNmjV89NFHfPjhh6xevZpz584xYMAAjh8/zvvvv1/WcxZlyN/Xm5bXtvkNbtYGT09Pp84zq5BignNZKr+lquxOtPBdnIWdV8z8etXC6QwLSbkqJotskiRuD0VRGNY6gG9fiqJ2oNHhsQNns3js45NsPFp05z8hhBB3rwULFtgWjSs7l4L0NWvWEBERweLFi4tNZ6latSqLFi0iIiKC6OjoUk9S3F5VfX0AaB7qy6PBWh6rpqFVgIYGPgqh7tbUFmeoWDdHupit8keayt4kC5suW9geb+bnZAsn0y1cyVHJle3dRRlqFOrOd+NqM+ghP4fxlGwzwxedZ9KaWLJNlhucLYQQorxlZWUxbdo0duzYUdFTuaO5lO5y7tw5+vTpc9NWfXq9njZt2rBmzRqXJyduv7y8PLKzswFsn/V6PVWNBqoaC1NX8i0q6fmQalJJNUGaSSXdBM6EPllmyDKrxOVAQZ67UYMtv70g110KVIWrPAwa/tUvnPZ1vHg9Opb03MLvzIX7ktl/NpM5g6pTr1rxuyILIYQoP1lZWUyfPh2Ajh07Vuxk7mAuBenu7u4kJibe8rjExMQi29Xe7QwGA9WrV680bQxPnDjBH3/8AcD27duB4jcz0mkU/AzWXUoLWFSVjGuBe5qp8HO+EwvluRa4kgtXiilQ9bmuQFVzg8C9st3ryqyy3OteTavQLMKDMUvPc+hCtm38z8u5dP/sJDOeCOWZFn539JvBynKv7wZyr8uP3Os7W05ODgaDAY2maIJFZmam06mwomy5lO7y4IMPsnPnTg4ePHjDY37++Wd27NhB8+bNXZ5cZZSXl8f58+fJy8ur6Kk4pW7duvTs2dPho27duk6dq1EUfPQKER4aGvlqaF1VS9dqGh4J0vCAn4baXgqBRnB25/aCAtUzmSq/pqj8kGDNc9+dYOZIioVzmRau5qmYr21pXNnudWVWme51dX8Da0ZH8XLHQOxj8RyTyuurY3lxyXlSssw3foIKVpnudWUn97r8yL0uG7GxsQwfPpzQ0FCMRiM1a9Zk9OjRtvt6+vRp+vfvj7+/Px4eHrRq1Yr169c7PMeOHTtQFIXly5fz5ptvEhYWhoeHB2lpabZ87p07dzJmzBiCgoIIDw93uP7zzz9PcHAwRqORRo0a8eWXXxaZZ05ODtOmTaNu3bq4ubkREhLCU089xalTpzh79qwtVXr69OkoioKiKA4tIP/880/69euHv78/bm5uNG/enLVr1xa5zu+//06nTp1wd3cnPDyct99+u0jHwcrMpZX0iRMnsm3bNh599FHGjRvH008/TWRkJGBNhVm2bBmffPIJZrOZiRMnluV8RRkzGAxlurKhKAqeOvDUQai7NUJSVZVcC7Y0mYIVd2fiJAvWAtUUU2FnGQXw0oGnRkuu0Z+rJgWdUUWvuXNXR0X50msV/t69Gm1rezFuxQWupBf2VP/2tzR+uRDD7EERPBQpq0NCiMrh0qVLtGjRgpSUFEaOHEn9+vWJjY3l66+/Jisri6tXr9K6dWuysrIYN24cAQEBLFy4kCeffJKvv/6aPn36ODzfW2+9hcFg4NVXXyU3N9chFhgzZgyBgYFMmTKFzMxMAOLj42nVqhWKovDyyy8TGBjIxo0bGT58OGlpaUyYMAEAs9nM448/zrZt2xg4cCDjx48nPT2dLVu2cPToUTp37sycOXMYPXo0ffr04amnngKgSZMmgDXwLthv54033sDT05OVK1fSu3dvoqOjba/j8uXLPPLII+Tn59uOmzdv3l2VwaGoqupSFd97773H5MmTudHpiqLw1ltvMWnSpFJNsLzFxcUxb948Ro4cSUhISInPz87O5tSpU0RFRd1V3yi3g8mi2gXu1/LcS7FppIe2sJ97QcqMm/TKLhOV+fs6MSOfCSsvsP14hsO4VgOvdgnm5Y6BaO+gN3iV+V5XNnKvy8/deK8f/SiGY5dzyvx5L71/X7HjQ4YMYfHixezfv79IloKqqrzyyivMmjWLXbt20fZa17aMjAyaNGmCqqqcOnUKjUbDjh07eOSRR6hVqxZHjx51+PdYsGABw4YNo23btuzYsQOtVmt77IUXXmDDhg389ttvBAQE2MYHDRrExo0biYuLw93dnf/+9788//zzfPjhh0UWalVVRVEUEhMTCQwMZOrUqUU2UercuTNXrlzhp59+wmg02s5r27YtCQkJnDhxArAuGM+aNYv9+/fTokULwLqHT506dUhNTeXMmTO2BeTKyqV0F4BJkyaxb98+Bg8eTGRkpG1FNjIykmeffZa9e/dWugBdlC+9RqGqUaGWl4Zmfho6BGnpHqKhTVUN9/kqVPdQqKJ3/ps0ywyXc+B4uspPyRa2xlvYctnM/iQzf6ZZuJStkpmv3vCNpbg7VfXS8dXQSKb2rIbe7k2b2QLvb4pn4PwzXE4zVeAMhRDi5iwWC9988w1PPPFEsWnEiqKwYcMGWrRoYQvQAby8vBg5ciRnz5611Z8VGDJkyA3fMI0YMcIhQFdVlejoaJ544glUVSUxMdH20bVrV1JTUzl06BAA0dHRVK1albFjxxY7z5tJo0YIsgAAIABJREFUTk5m+/btDBgwgPT0dNs1kpKS6Nq1KzExMbYd7jds2ECrVq1sATpAYGAgzzzzzE2vUZm4vOMoQPPmzVm4cGFZzUUItMqNC1TtV9xTS1CgmpALCXYFqjrFfsXd+vlmBaqi8tNoFF5sH8jDtbwYvfQ8Z5IK82L3nMrk0Y9imDUgnC4NfCpwlkIIUbyEhATS0tKKNHWwd+7cOVq2bFlkvEGDBrbH7c+vWbPmDZ/r+scSEhJISUlh3rx5zJs3r9hzrly5AsCpU6eoV68eOl3JQ8yTJ0+iqiqTJ09m8uTJN7xOWFjYDV9vvXr1SnzdO1WpgnQhyoO1QNXa7aWgfEVVVa5m5hATewXPwBCyVC2pJmtQfiv5KiTnQbLdDqoawNuus4yvXsFHxx2VBiFKr0m4O5vG12bSmktE/5JiG7+aZWbIgnO80CaA/+tRDaPO5T8yCiFEpXCztKPrHysoxhw8eDBDhgwp9pyCnPLSKLjOq6++SteuXYs9pnbt2qW+TmXhUpB+6NAhFi9ezKBBg3jooYeKPebAgQMsX76c5557jvvvv79UkxTieoqi4K4FT1M6Ue5BuLtbC15yzapDgWpqCQpUU6+1kbwAFKy6e+muC9z1YJDAvVLzMmr5dGAEHep68caaS2TlFb6zm78niX1nMpnzdHWirtvFVAgh7G2bWKfcrhUYGIiPjw9Hjx694TE1atTg+PHjRcb//PNP2+Olub63tzdms5nOnTvf9NioqCj279+PyWS64X46N0p7qVWrFmDdr+VW16lRowYxMTFFxou7B5WVS8tFn332GbNnz75pQn7NmjWZPXs2n3/+uatzE6LEjFqFIDeF2t4aHvTX0inY2hby4QANDX0Uwt0VvHXgbJidkQ+XslWOpansS7Kw+bKFbfFmfko2cyLdQnyOSrZZ8twro34P+LF5fG3uC3Pc4OjopRy6fnKSFQevyr+rEOKOoNFo6N27N+vWrSu2/bWqqvTo0YMDBw6wd+9e23hmZibz5s0jMjKShg0bunx9rVZL3759iY6OLvaNQkJCgu2/+/btS2JiIp999lmx8wTw8PAAICUlxeHxoKAgOnbsyNy5c4mLi7vpdXr06MG+ffs4cOCAw+NLliwp4au7c7m0kr5r1y4eeOABW5/L4gQGBvLAAw+wc+dOlycnRFnQaxQCjBBgt4OqWbXumOqwEVM+WJyIybLN1o/4nMI8d4OmMM+9YCMmT9lB9Y5Xq6qRtWOimPldPHN3FW7QlpVnYeKqi/wQk87MPmF4u2lv8ixCCHH7vfvuu2zevJkOHTowcuRIGjRoQFxcHKtWrWL37t288cYbLFu2jO7duzNu3Dj8/f1ZuHAhZ86cITo6utiNikpi5syZfP/997Rs2ZIRI0bQsGFDkpOTOXToEFu3biU5ORmA5557jq+++opXXnmFAwcO0K5dOzIzM9m6dStjxoyhV69euLu707BhQ1asWEHdunXx9/encePGNG7cmM8//5y2bdty3333MWLECGrVqkV8fDx79+7l4sWLHD58GIDXX3+dRYsW0a1bN8aPH29rwVijRg2OHDlS6vt9J3ApSI+Njb1hmou9u+lGibuLVlGoYoAqdgWq6g12UDU5EbjnWSAxFxJzC/PctcUUqHpLgeodx6jTMPXxENrW9mTCyoskZRbmR635NZVD57OZ83QE90d4VOAshRD3urCwMPbv38/kyZNZsmQJaWlphIWF0b17dzw8PKhSpQo//vgjf/vb3/j000/JycmhSZMmrFu3jp49e5b6+sHBwRw4cIAZM2awevVqZs+eTUBAAI0aNeL999+3HafVatmwYQPvvPMOS5cuJTo6moCAAFvgXWD+/PmMHTuWiRMnkpeXx9SpU2ncuDENGzbk4MGDTJ8+nQULFpCUlERQUBDNmjVjypQptvNDQkL4/vvvGTt2LDNnziQgIIBRo0YRGhrK8OHDS/167wQu9Un38/Pj4YcfZsOGDTc9rmfPnuzevZvU1FSXJ1jepE965VEe91pVVbLN2AXt1jz3HBc3NFOwFqjaAned9bPuDs9zv1e+r+PTTIxdcYHdJzMdxnUamNStGi+2q4rmNv9b3Sv3+k4g97r8yL0WouRcWklv1KgRu3fvJjk5GX9//2KPSU5O5ocffrhpuyAh7nSKouChAw8dVHMvDM5yzY6r7akmlUwnClRVrAF/mt0OqgCeWscVd189GGQjpnIX7KNn+fCafL4zgQ82x2O+9mYs3wJvbbjMrpMZfDwgnEDv4ouhhBBCiLLiUoLS4MGDycjIoF+/fly8eLHI47GxsQwYMICsrKy7qqm8EAWMWoXAawWqD/hreCRYS7dqGloHaGjkoxDhbm3h6GyYnWmGSzkqf6ar7E+2sDnewtbLZn5KMnM8zcLlbJVs2YipXGg0CmMfCWLNqFqE+zkG4ztOZNB51kl2nEivoNkJIYS4V7i0kv7CCy+wbNkyduzYQd26denWrRtRUVGAtYn9pk2byM7Opk2bNowaNapMJyzEnUqnUfA3gv91BaoFee6pedYV9LR8MDsRa+dYICcX4u02YtIr2ApTCz576aRA9XZoXsOTLePr8PrqWNYdKUzZS8jI5+n/nGVMh6q8/lgwBumpLoQQ4jZwKUjX6XRs3LiRcePGsXDhQr755huHx7VaLcOGDePjjz92accpIe4WWqWwxzrX6g5V1Zoac32Bap4Tee4mFRLzIDHvugJVnWPg7q23XluUjq+7ln8/HUH7Ol5MXnuJHLsq4tk7E9l7OpPZg6pTI8BQgbMUQghxN3I5gvbw8GD+/Pm89dZb7NixgwsXrFvARERE0LFjR5eKLoW4FyiKdfXbS6cQdq1+SlVVciw4bMSUZrK2erwVswpXTXDVLs9dwboRk32eu4/e2o5SlIyiKDzTwp8WNTwYvewCf8Tl2B775UI2XT6O4f2nwuhzf5UKnKUQQoi7TamXuUNCQhg0aFBZzEWIe1bBDqruWqjmVhhI51kKV9sLAviM/Fs/nwqk50N6vgrZBSPgoXXs5e6rt+bXi1urE+zGty9FMWN9HAv2JtvGM3ItvLTsAj/EZPD2kyF4GqWnuhBCiNIr81yUY8eO8fvvvxMREUHLli3L+umFuKcYNApVjVDVLs8936KSnu8YuKebwJmukFlmyDKrWBeDrYG7UYMtJacgcHeXjZiK5abX8G7vMNrV8eKvq2JJsftTx4qDVzl4Los5T0fQOFRazAkhhCgdlyqeVqxYQadOndi/f7/D+Kuvvkrjxo35y1/+QuvWrenTpw9msxN/rxdCOE2nUfAzKER6amhaRUO7QC3dQjS0D9TQtIpCpKeCvwF0TsbYuRa4kgsxGSo/X7Ww/YqFzZct7E0080eqhYtZFjLMCtJXplD3Rr5smVCbljUdNzg6lZDL45+dYv6eROnEI4QQolRcWklfvHgxv/76K82aNbON/fjjj3z44Yf4+PjQs2dP9u3bx9q1a1myZAnPPfdcmU1YCFGURrHmnPvoFSKujamqSpbZccU9tQQFqkl5kGQrUNWj+NXjahpUybXY0mV87uEC1bAqBlaNqMXH26/w0bYrWK7dqjyzypS1ceyKyeDD/uEEeErxvBBCiJJzaSX96NGjNGnSBIOhsKPBokWLUBSFlStXsmTJEn766Se8vLyYP39+mU1WCOE8RVHw1CmEumto4KOhZYCWLsEaOgdreMhfQz1vhWpu1tQWZ6iKhjSzhvNZKr+lquxJtPBdnIWdV8z8ctXC6QwLibkqJsu9s4Ks0yr8tUswX4+sRYivY0/1LcfS6TIrhh9PZVTQ7IQQQpSFBQsWoCgKZ8+eLdfrurTEc+XKFVq3bu0w9v333xMUFMRjjz0GgL+/P+3bt+fnn38u/SyFEGVCURTctOCmheBiClTT7PPcS1igGntdgarPdXnubndxgWqrWp5sGV+bv34dy6Y/0mzjl9Py6f/FGcY/EsgrnYPR3cX3QAghKlJWVhYffPABHTt2pGPHjhU9nTLhUpDu7u5OWlrhL6K4uDhOnDjBgAEDHI6rUqUKV69eLd0MhRC3XXEFqmaLdeOlNJNKUnY+iVl55OvcsDixj6q1QBUu5xRuxGTUFA3cPe6iAlV/Tx1fPledhfuSmf5tHLn51tetqjBrewJ7Tmfy+cAIwv2kp7oQQpS1rKwspk+fDnBvB+m1atVi165dpKSkUKVKFZYsWYKiKLZV9AKXL18mKCioTCYqhChfWo2CnwH8DApBGjOnLp+lZq0ozHo324p7QT/3fCcyXHItkJALCXY7qOoUHPq4+17bQVVTSQN3RVEY+nAALSI9GL30AjFXcm2P/XQ2iy4fx/DPvuH0vM+3AmcphBC3X05ODgaDAY2maGZ1ZmYmnp6eFTCrysWlnPShQ4eSlpbGgw8+SN++fXnzzTfx8vKiV69etmNMJhMHDx6kbt26ZTZZIUTF0ijWgtFwDw2NfDW0rqqlazUNjwRpeNBPQ20vhSCjddXcGfkqJOfBmUyVwykqPyRY89x3JZg5kmLhbKaFq3kq5kqW594wxJ2NY2vzTAs/h/HUbAsjFp/nb6tjyTY50zRTCCGshg4dSmRkZJHxadOmOfxFUlEUXn75Zb755hsaN26M0WikUaNGfPfdd0XOjY2NZfjw4YSGhmI0GqlZsyajR48mLy/Pdszp06fp378//v7+eHh40KpVK9avX+/wPDt27EBRFJYvX86bb75JWFgYHh4epKWl2fK5d+7cyZgxYwgKCiI8PNxhDs8//zzBwcG2uX755ZdF5pqTk8O0adOoW7cubm5uhISE8NRTT3Hq1CnOnj1LYGAgANOnT0dRFBRFYdq0abbz//zzT/r164e/vz9ubm40b96ctWvXFrnO77//TqdOnXB3dyc8PJy3334bi6Vifl67tJI+YsQIvv/+e6Kjozlz5gyenp7MnTuXgIAA2zHffvstqampdOrUqcwmK4S481gLVMFTByHuhb8ocsyFGzEVrLxnOdGR1QK2VXor6+fidlA13ME7qHoYNPyjbzjtanvxWnQs6bmFP+QX7U/mwNlM/v10depVc6vAWQoh7ka7d+9m9erVjBkzBm9vbz755BP69u3L+fPnbbHapUuXaNGiBSkpKYwcOZL69esTGxvL119/TVZWFgaDgfj4eFq3bk1WVhbjxo0jICCAhQsX8uSTT/L111/Tp08fh+u+9dZbGAwGXn31VXJzcx0ajIwZM4bAwECmTJlCZmYmAPHx8bRq1cr2xiIwMJCNGzcyfPhw0tLSmDBhAgBms5nHH3+cbdu2MXDgQMaPH096ejpbtmzh6NGjdO7cmTlz5jB69Gj69OnDU089BUCTJk0Aa+Ddpk0bwsLCeOONN/D09GTlypX07t2b6Oho2+u4fPkyjzzyCPn5+bbj5s2bh7t7xex94VKQrtfrWbVqFWfPniUhIYH69evj7e3tcEzNmjVZs2YNrVq1KpOJCiEqFzettUg1yK5A1WSxD9ytnzPycaoHe0Y+ZFxXoOpuV6BaELi7ae6sPPcnm1bh/ggPXlp2np/PZ9vGj8fn0v3Tk0x/IoTBLf3vqDkLISq3Y8eO8ccffxAVFQXAI488QtOmTVm2bBkvv/wyAJMmTeLy5cvs37+f5s2b286dMWOGbZ+HmTNnEh8fz65du2jbti1gXaht0qQJr7zyCr169XJIZ8nJyeHgwYPFBrX+/v5s27YNrbawpdj//d//YTab+e2332xvHkaNGsWgQYOYNm0aL774Iu7u7nz11Vds27aNDz/8kIkTJ9rOf+ONN1BVFUVR6NevH6NHj6ZJkyYMHjzY4drjx4+nevXq/PTTTxiNRsD6pqFt27b87W9/swXp77//PgkJCezfv58WLVoAMGTIEOrUqePKP0OplaqBb2RkZLF/egG4//77uf/++0vz9EKIu4xeoxBghAD7AlXVumOqfeCelg/OZLhkm60f8XYFqoZrO6gWFKf66BU8K7hAtbq/gdWjovjnlng+25FAwT5HOfkqf1tziR9iMvhH33CqeDjZD1MIUeF2XjE71QWrpB4PLf3Pgc6dO9sCdLCuKPv4+HD69GkALBYL33zzDU888YRDgF6g4Oflhg0baNGihS1AB/Dy8mLkyJFMmjSJP/74g8aNG9seGzJkyA1XnUeMGOEQoKuqSnR0NAMGDEBVVRITE22Pde3aleXLl3Po0CHatGlDdHQ0VatWZezYsTec640kJyezfft2ZsyYQXp6Ounp6Q7XmTp1KrGxsYSFhbFhwwZatWplC9ABAgMDeeaZZ5g9e/ZNr3M7yC4bQogKpVUUqhigiqHwB62qWlfYHQJ3k3WTpVvJcyhQBVDRKkUDd+9yLlDVaxUmdatG29pejF1+gSt2v93XH03j14sxfD4ogvuCXSoVEkIIm+rVqxcZ8/Pzs3XcS0hIIC0tzSHALs65c+do2bJlkfEGDRrYHrd/jpo1a97wua5/LCEhgZSUFObNm8e8efOKPefKlSsAnDp1inr16qHTlTxsPXnyJKqqMnnyZCZPnnzD64SFhd3w9darV6/E1y0LEqQLIe44iqLgrQdvvWPgnm3GbvdUa+Ce40Q9j/lagWpyXmHgrgG8bKky13ZQ1YHuNue5t6vtxbYJdZiw6iLb/ixc0YlNMdF37mnGdfDnsdDKVSgrhLj9brRibDYXLfaxX7G2V5DGcrvcLHf7+scKijEHDx7MkCFDij2nIKe8NAqu8+qrr9K1a9dij6ldu3apr3M7SJAuhKgUFEXBQwce1xWo5toVqBYE8JlOFqgWbOB0AShIl/EsKFDVFQbwhjLehCjAS8fCITWYvyeJdzZexmS2XttsgY++T2Z7MMwOzqdmxdQqCSHuQH5+fqSkpBQZP3fuXImfKzAwEB8fH44ePXrT42rUqMHx48eLjP/555+2x10VGBiIt7c3ZrOZzp073/TYqKgo9u/fj8lkQq/XF3vMjd7E1KpVC7DWU97qOjVq1CAmJqbIeHH3oDxIkC6EqNSMWoVALQTaFajmF1Ogmu5kgWpmPmTmq1wCCs5w015Ll9EptsDdrZR57hqNwsh2VWlV05PRS89zJqmw5dnheHh8znlm/SWCLg18XL6GEOL26RBUvjUkUVFRpKamcuTIEdsKc1xcHGvWrCnxc2k0Gnr37s3ixYs5ePBgkbz0gmLMHj16MGvWLPbu3cvDDz8MWHucz5s3j8jISBo2bOjy69FqtfTt25elS5dy9OjRIqk3CQkJtraKffv2Zf369Xz22WcOhaP2c/Xw8AAo8kYmKCiIjh07MnfuXMaOHUtISMgNr1Pweg8cOGDLS09ISGDJkiUuv87SkCBdCHHX0WkU/I3gf12BasZ1K+5p+dZUmFvJMVs/4iksUNVrwFdXmOfuq7e2oixp4N4k3J1N42vzf99cYtWhwl8uV7MtDFlwjuFtAnizRzWMOslVF+JeNnDgQFsnknHjxpGVlcWcOXOoW7cuhw4dKvHzvfvuu2zevJkOHTowcuRIGjRoQFxcHKtWrWL37t1UqVKFN954g2XLltG9e3fGjRuHv78/Cxcu5MyZM0RHRxe7UVFJzJw5k++//56WLVsyYsQIGjZsSHJyMocOHWLr1q0kJycD8Nxzz/HVV1/xyiuvcODAAdq1a0dmZiZbt25lzJgx9OrVC3d3dxo2bMiKFSuoW7cu/v7+NG7cmMaNG/P555/Ttm1b7rvvPkaMGEGtWrWIj49n7969XLx4kcOHDwPw+uuvs2jRIrp168b48eNtLRhr1KjBkSNHSvVaXSFBuhDinqBVFHwN4HtdgWqmGVLzCgP31HxwZp8hkwUS8yAxz7FA1ee6wN1Lb732zXgZtXz8lwja1/HijTWxZOYVvnP4z54k9p3JZM7T1akdaHTlpQsh7gIBAQGsWbOGV155hddff52aNWvy3nvvERMT41KQHhYWxv79+5k8eTJLliwhLS2NsLAwunfvbluVDg4O5scff+Rvf/sbn376KTk5OTRp0oR169bRs2fPUr+m4OBgDhw4wIwZM1i9ejWzZ88mICCARo0a8f7779uO02q1bNiwgXfeeYelS5cSHR1NQECALfAuMH/+fMaOHcvEiRPJy8tj6tSpNG7cmIYNG3Lw4EGmT5/OggULSEpKIigoiGbNmjFlyhTb+SEhIXz//feMHTuWmTNnEhAQwKhRowgNDWX48OGlfr0lpaguVBHczdu5xsXFMW/ePEaOHFnkTyLOyM7O5tSpU0RFRVVY8/t7hdzr8nMv3WtVVcmxOBaoppqsK+muUABvnWNnGV/9jQtU/7iYyugl54lJdhz3MGh4p1coAx6sIj3Vy8i99H1d0eReC1FyLq2kh4aGMmjQIF544YVi+2sKIURlpSgK7lrrRknV7PLc8yx2q+3XPmc40SNZBdLyIS1f5aLdRkweWsfOMr56a359zQADs7rB6jNV+M/ewvSXrDwLE1ddZGdMOu/3CcPbTXqqCyHE3cylIF1RFObNm8cXX3xB06ZNGTlyJE8//TQ+PlLgJIS4Oxk0CoFGCDReV6Ca7xi4p5usnWNuJcsMWWaVuBwoCNyNGvDS6sj3CuKFR3zp0MCPiSvOk2TXruabX1P55Xw2s5+OoFmER9m+SCGEEHcMlzL+4+Li+O9//8vDDz/Mr7/+yksvvURoaCjPP/88e/fuLes5CiHEHUmnUfA3KER6amhaRUO7QC3dQjS0D9TQtIpCpKeCvwGc7eCYa4Ekk4ZU96r8lqknx9udD16oy4xnatGvXTAt6/kS4m/kwtU8es0+xec7ErA4szWrEEKISsellXR3d3eGDBnCkCFDOH78OPPmzWPRokUsWLCAhQsX0qBBA0aOHMmzzz6Ln59fWc9ZCCHuWBpFwedaCkvEtbGCAlX7FfdUk3V31Fsxo1CtqhvVqrrZxvJMFi4m5nAmIYepWxIY1tKPGr66WxaoCiGEqDxK3dOrXr16/Otf/yI2Npbly5fTqVMnjh07xsSJEwkLC+PZZ59l165dZTFXIYSolBRFwUunEOquoYGPhpYBWroEa3g0WMND/hrqeitUc7PmwTvDoNdQK8SDjk38aXlfAH9kadh4yczOK2Z+uWrhdIaFpFwVk6yyCyFEpVVmjXf1ej0DBgxg1apVjB8/3tohISeHJUuW0LFjR5o2bcq3335bVpcTQohKzVqgqhDsplDXW0Nzfy2PBmtp75tHcNo5arvnE+au4OXs3zsVhfR8iM1W+SNNZW+ShU2XLWyPN3Mw2UxMuoX4HJUcZxrDCyGEqHBl1id9165dfPHFF0RHR5OTk4PRaKRv37506tSJFStWsHXrVnr16sXs2bN58cUXy+qyQghxV9FrwD0/ixpuFtzdreso5usKVFNNKil5qlOtGK0FqnA5p3AjJqMGfK71cS/oLONRyh1UhRBClK1SBemJiYksXLiQ+fPnc+LECVRVpXbt2owcOZJhw4YREBAAwPPPP8+BAwd47LHH+Mc//iFBuhBClIBWo+BnAD+7jZgsqsof8bnM3XsVrUFLRKAb1QPdcDfeOmcm1wIJuZCQWxi465TCwL2gLaSXzppjL4QQovy5FKRv3bqVL774gv/973+YTCa0Wi19+vRh1KhRdO7cudhzWrRoQc+ePVm5cmWpJiyEEMIaPDeu5sY/Hg/mrQ2X+Vf0OQCq+uipHmQN2FvU9iY0wI08JzJc8lVIzoNkux1UNYC3bcX92med9U2DEEKI28ulIP2xxx4DICIighEjRvDCCy9QrVq1W54XERFBeHi4K5cUQghRDDe9dSfSdrW9+OvXF0lMM5GYZuLQyXS+2ZtAraoGPnu6OqEBbtd2T1VJM1lTYG7FArb0GivrZy/ddYG73tpHXgghRNlxKUjv0aMHo0aNokePHmg0zteezpw5k5kzZzp1rMlkYsmSJezYsYOMjAwiIyN55plnaNasmVPn79q1i7Vr13L27Fl0Oh0RERE888wzNG3a1On5CiFEZdGtkQ9Nwurw8vIL7DuTaRs/nZhH789P8WaPagxvE4CiWH9mmyzWYL0gaE+9toOqM2WlGfmQka8Sa7eDqrsWu91TrYG7m0by3IUQwlUuBenl0aVl1qxZ/Pjjjzz55JOEhISwfft2ZsyYwTvvvEPDhg1veu7SpUtZsWIFrVu35tFHHyU/P5/z58+TnJx82+cthBAVJbSKnlUja/Lx9it8uPUKBR0Y88wqU9bF8cPJDD7qH06Apw69RiHACAF2O6iaVeuOqfaBe1o+ONPJMdts/bAvUDVo7AN362dPKVAVQginuBSka7Vahg4dyn/+85+bHjdixAj++9//kp+fX6LnP3HiBLt27WLYsGH06dMHgE6dOvHyyy+zYMECPvjggxue++eff7JixQqef/55evXqVaLrCiFEZafVKLzSOZg2UV6MWXaBuFST7bGtx9LpMiuGTwdG0CbKq+i5ikIVA1S5rkA1M/+6wN0EJicC9zyHAlUA1Vagah+4e0uBqhBCFOFSkK6qKqrqXK9dZ4+zt2fPHjQaDV27drWNGQwGunTpwqJFi0hISCAwMLDYc9etW4efnx9PPPGErVe7u7t7iecghBCVWcuanmydUJu/fh3Ld7+n2cYvp+Uz4IszjH8kkFc6B6PT3jw41igK3nrw1hcep6oq2Wbsdk+1tobMdWIH1ZsVqNoH7j460EmeuxDiHlZmfdKLk5qaitFoLPF5p0+fJiwsDA8PD4fxunXrAnDmzJkbBumHDx+mfv36rFu3jpUrV5Keno6fnx/9+/fn8ccfL/mLEEKISsrPQ8d/nq3Own3JTP82jtx8a2CsqjBrewK7T2Uye1AE4X6GEj2voih46MBDByHuhYF0rlm1C9ytnzNLWKB6wTpDwFqgah+4+0qBqhDiHuJ0kH7+/HmHrzMyMoqMFcjPz+f48eNs3ryZqKioEk/q6tWr+Pn5FRkvGLtRbnlGRgZpaWkcO3b/52jPAAAgAElEQVSM3377jYEDBxIYGMjWrVuZN28eOp2Obt26lXg+QghRWSmKwtCHA2gZ6cmopeeJuZJre+zguSy6fBzDP/uG0/M+31Jfy6hVCNJCkFthIF1QoGofuKeXsED1kl2BqltBgapOwddgDdylQFUIcTdyOkiPjIx0+CEYHR1NdHT0Tc9RVZURI0aUeFJ5eXno9foi4waDdbUnNze3yGMA2dnZAKSnp/Paa6/Rrl07AFq3bs3YsWNZuXKlBOlCiHtSgxA3No6tzdR1l1hy4KptPDXbwojF5xncwp9pT4TgYXC+Y5czblSgmnFt5bwgcE/LB7MTkXuO2foRT2GBql4Dvnar7r56BU+dBO5CiMrN6SC9ffv2th94O3fuJCgoiPr16xd7rMFgIDQ0lCeffNJW+FkSBoMBk8lUZDwvLw/ghik0BeM6nY7WrVvbxjUaDe3atWPp0qXF5rMnJiaSmJgIFK7S5+Tk2IL+kih4A3GjNxKi7Mi9Lj9yr8vP7bzXCjCjRwCtahj5+9orpNslkS8+kMz+Mxl83C+YesElT1MsKQMQqIFAI2C0puBkWSDdrCE9XyHDrJBmVshXbx1omyyQmAeJdnnuWlS8tCreOhVvrfW/vbQq9tky8n1dfsrrXksNmribOB2k79ixw/bfGo2G7t278+WXX96OOeHn51dsSsvVq9bVH39//2LP8/LywmAw4OnpiVbruDW2r6/1T7kZGRlFgvTo6Gi++OIL23Ht27fn4sWLZGZm4qqLFy+6fK4oGbnX5Ufudfm5nfe6nht83kNl5m74I6FwPCYhj97zLjCqOfSsU3Er0RrAB/AGzBodeVo3cnVu5GmtH2Zt0b+0Xs+MQqpZIdU+J15V0ZtzMZpzMOTnYDDnYEAj39fl6Hbf68aNG9/W5xeiPLlUOHrmzBm8vIq27yortWrV4rfffiMrK8uhePT48eMA1KxZs9jzNBoNNWvWJCYmBpPJ5JAyUxD0+/j4FDmvb9++dOjQwXbcli1bCA8Pd2oX1evl5uZy8eJFwsPDXSqaFc6Te11+5F6Xn/K611HA6sYqH+9I5t+7rtpyxPPM8Ml+OJHmybtPBuHrrr3Z01QAlTxLHhlmhXSzQnq+QrpZQ5YFrH8ruAlFwaRzw6Rzg4Jbq6q4aVR8dIWr7t5alTLO+rnnyc8QIUrOpSC9Ro0aZT0PB61bt2bNmjVs2rTJli5jMpnYtm0bdevWta2EJyQkkJubS3h4uO3ctm3bcvz4cbZv325r4ZiXl8fOnTuJiIggICCgyPWqVq1K1apVAYiLiwPAzc2tVH82MxqN8me3ciL3uvzIvS4/5XGv3YHJj3vQsX4Vxi2/QHx64Z4W3x3L5Mili3w+KIKWNT1v6zxKyh24vsw132LNa7cvUE0zOVGgqijkqAo5Jrhil2XpprH2c7funmrNdXeXjZhKTX6GCOE8p4L0r776CoA+ffrg7e1t+9pZzz33XImOr1evHm3atOGrr74iJSXFtuPolStXGDt2rO24jz76iKNHj7J27VrbWLdu3diyZQtz587l0qVLBAYG8v3333PlyhUmT55conkIIcS9oF1tL7ZOqMOEVRfZ9me6bfxSqom+c0/z185BjOsUhPYObn+o0yj4G8D/uo2Y0q8L3FNNThaoWiAnF67k2hWoKvaBu/WzlxSoCiFuE6eC9KFDh6IoCq1atcLb29v29a2oqoqiKCUO0gEmTpzIkiVL2LFjBxkZGURGRjJ58uRb5psZjUbefvttFixYwNatW8nJyaFmzZpMmTKFBx54oMTzEEKIe0GAl46vhtZg/u4k3t54GdO1SNaiwj+2XGHPqUw+HRhBiO+t88HvFBqlsNtLxLUxVbX2bk8zqSRl5ROfkY3Z4InJmQJVFZLyIMl+IyYFfHSOgbu33rp7qxBClIZTQfqUKVNQFMWWElLw9e1kMBgYNmwYw4YNu+Ex7777brHjVapUYcKECbdrakIIcVdSFIUR7arSspYnY5ae53Rinu2xH09n0nlWDB/2D6drw6K1PZWFolhXv710Cn6YUeIuUKtWFIrRjTRbW0hrqky2MxsxqZBighRTYeCuYN2IyT5w99Fb21EKIYSznArSp02bdtOvhRBC3D2ahLnz3bjavPm/S6z8OcU2fjXLzLCF53i+dQBv9qiGm/7uqK5UFHDXKrhrIdhuI6a8axsxFQTtqSaVjPybPNE1KpCeD+n5KthtxORRsBGTXrEF7m5aCdyFEMVzqXD0k08+wcPDgxdeeKGs5yOEEOIO4GXUMmtABO3rePG31ZfIzCvsqf7lj0nsO5PJnKcjqBPkVoGzvL0MGoWqRqhqvxHTtQJV+8A93QSWmzxPgSyz9SMupzDP3WhXoFoQuHtIgaoQAheD9L/+9a/06NFDgnQhhLjLPdXMj2YRHoxeeoEjsYUbvP0Rl0O3T07yTq9Q/tLc754JKrUaBT8D+F1XoJpxXeCeZoJ8JwpUcy2QkAsJdgWqOsU+cLeuvHvprDn2Qoh7h0tBerVq1XBzu3tXT4QQQhSqWdXI2jG1eO+7eObuSrSNZ5tUXvk6lh9OZjCzdxg+d1xP9fKhUawr4D76wiBaVVWyzNh1lbEG7rlOLLnnq5CcB8n2BaqA93WBu48UqApxV3MpSO/atSsbN24kLy8Pg8FQ1nMSQvx/e/cd1uS5/gH8+yYQ9h6yN2hxK05UXIit4ziqdbSOaq2tdbT+jp5qtx6tntPWOlutltpqh1ZctVqr4ECto0MsKggooIAsWQECSX5/eAhEVsBAAn4/19Wrvs/7PsnNLSZ33jyDSM9IDER4d6Qz+vuZY+EPKcguqpxVuf/PPPyeLMWWKR7o6m5ax6M8OQRBgJkBYGYAuJhUFtIlcmW1wl2qyQRVPCz486pMUAUqJ6hWLdwlnKBK1Co0atbPv//9b4jFYkydOlW1+Q8REbV+g9tZ4MTr/ujvp77rdHJOGf6xOQGbojKhUGgwzuMJZSwW0MZYgL+FCEG2YgxuI0aYkwh97EQItBTgaiLAwqDevVNVCsuBu8VKxOYrcSFbgV/SFTiRIcflHDniChTIKFGiRK6EUsm/E6KWplF30t9880107twZ+/btw08//YRu3brBw8OjxiEwgiBg+/btjx0oERHpB0cLQ3w7ywubT2dh7bF0lP9vCEe5Avj3z+k4c6sQ659zg6NFy1lTXZcMRQLsjAC7qhNUlQ8npOY9soOqJhNUi+UP/0uvMkFVIqq6sszD/5s10wRVmUwGqVSKsrIySKVSKBQKGBoa8pt4ono0qkgPDw9X/bmkpATnzp3DuXPnaryWRToRUesjEgl4baAD+vqY4dVvk5GcU6Y6dzq+EEPX3cL6iW4Y2NZCh1G2XGJBgLUEsH5kgmpRDRNUyzS4SS5Tm6AKAErVBNWKwt2qiSaoxsXFITY2FgAQHx8PAAgMDKx3c0KiJ12jivTIyEhtx0FERC1QNw9T/LLAH0sj7uLAX3mq9qzCckzZcRtzB9jjX2FtIDFoHWuq65JIeLibqcUjE1SLH5mgmqeFCapVC3cLA8DgMca5BwQEwMbGBtHR0QgODoa1tTUMDfktC1F9GlWkh4SEaDsOIiJqoSxNxNg8+eGa6m8duIfiKrd2PzudhfOJRdg82R3e9kY6jLJ1EgQBpgaAqQHgXGWCaqnaBNWHd90bOkE1BUDVCapVh8pYNWCCqkQiUQ2HNTY2hpmZWcN+SKInVKOKdCIioqoEQcDkHrYI8jDFK9+mIDatRHXur9RihK2/hQ/HumBcVxsdRvnkMBILcBQDjlV2UC373w6qVQv3wvKKMrxuheVAYbkS96rsoGoirlzPvaJwNxZxIyYibWGRTkREWuPfxhiH5/li5ZF07DiXrWovLFXgte9ScTq+EP/+hwvMjJ7MNdV1qa4JqvlVJ6iWA3INKveKCaoZj0xQtTQArCSCqoA34181UaM0ukiXSqX4+OOPceDAAcTHx6OgoKDG6wRBQHl5eaMDJCKilsXYUISV/3BBf39zvLEnFblVxln8cOUBLt95uKZ6R1cTHUZJQM0TVJVVJqhWHTKj6QTVLBmQVWWcu1gARBm5AID8/HzY2dk1wU9C1Po0qkjPy8tD//798ffff0MsFkMikUCpVMLZ2Rnp6emq9Vg9PT21GiwREbUcYYGWOL7QH/O/T8H5xCJVe2KWDKM2JWD5006Y3c+OwyP0jCAIMDcEzA0FuP6vTalUokReOV69onAv0WCCquxBFkrjfgcAXL58GU5OTjAx4Qc0ovo0arr9hx9+iGvXrmHOnDnIz8/Hs88+C0EQcPfuXRQVFSE8PBxOTk7o1asXEhMTtR0zERG1EC7WhvjhJW/8M9QRVecZyuRKvHs4DdPD7yC7kN+26jtBEGBiIMDJREBbSxF62Ikx1EmMYW1E6GUrQjsLAS4mD3dZfZSyOL/yz0olioqKql9ERNU0qkjfv38/XFxcsH79ehgbG6vdBTE2Nsa0adPw66+/IiIiAh999JHWgiUiopZHLBLw+tA2+PFlH7hYqS+99+uNAgxdF4+ztwp1FB09DolYgIOxAD8LEbrZiDDIUYzhTiL0tROhvZUAd1MB1m1cAcnD1V2srKxga2ur46iJWoZGFel37txBt27dVOucikQPH6asrHIzi8DAQISEhKhtfERERE+uXt5mOL7ID0+3t1Rrzygox3NfJOHDo+ko12TGIuk1A5EAWyMB3mYidLYWYaCrKQYG9wUABAUFqWoGIqpbo/6lGBsbq9Y8BQBLy4cvuOnp6WrX2draIikp6THCIyKi1sTG1ABfvOCBD8e6wMig6mRFYH1kJsZ+loiUHJkOI6SmIH6MzZCInlSNKtLd3d2RkpKiOm7Xrh0A4NSpU6q28vJyXLp0ibO4iYhIjSAImNbbDkde80OAo/oGR1eSpQj9NB6Hr+bV0puI6MnQqCK9f//+uHr1qmrZxVGjRsHAwAALFizAZ599hkOHDuHZZ5/F7du3uTspERHV6ClnYxyZ74fne6qPUc4vUWDOrmQs+fEupDINlg8hImqFGlWkT5o0CZ06dcK5c+cAAC4uLli9ejUePHiAefPmYcyYMTh48CDatGmDNWvWaDVgIiJqPUwlIqwd74rPp3rA0lj9Lembizl4ZsMtXK+yeykR0ZOiUeuk9+vXD+fPn1dre+ONNxAcHIyIiAjk5uYiICAAM2fO5CxuIiKq16hOVujqboJXv03B5TtSVXvc/VKM2HgL7450xrTetlxTvQWSyWQoKXn4QaukpARFRUUwNDSERCLRcWRE+q3RO47WpFevXujVq5c2H5KIiJ4QbjYS7HvZBx/9moH1kZn43754KClX4s3993A6vhD/fdYVNqZafeuiJhYXF4fY2FgAQHR0NICHK8B16NBBl2ER6T2+0hERkd4wEAtYGuaEYF9zzP8uBRkFlRsd/fx3Pv5KLcamye7o5W2mwyipIQICAuDs7Izk5GR4eHjA2NhYtYQzEdVOoyI9OTn5sZ7Ew8PjsfoTEdGTpZ+fOX5d5I/X96Ti1xsFqvZ7eWUY/3ki3hjqiIWDHbm0XwsgkUhgamoKQ0NDmJqawsTERNchEbUIGhXpXl5ejR4HKAgCysu55TMRETWMnbkBvprhie3R2Vh5JB2y/210pFAC/z1+H9EJRdjwnDtcrHlXlohaH42K9AEDBnCyDhERNTtBEDC7nz16epvh1d3JSMyq3OjofGIRQj+Nx8cT3BAWaFnHoxARtTwaFelRUVFNHAYREVHtOrma4NgCPyw/cA8/XHmgas+VyjHzqzuY2dcObz/jBGNDbjlPRK0DX82IiKhFMDMSY91Ed2yc5AZzI/W3ry/PZWPkpgTE3+ea6kTUOrBIJyKiFmVcVxv8stAPnd3UJyDGppVg+Ppb2H0xB8qK9RuJiFoojYa7nD59GgDQs2dPGBsbq441NWDAgIZHRkREVAsvOyMceMUHa37JwJZTWar24jIl/u/HuzgdX4i141xhaSLWYZRERI2nUZE+cOBACIKA69evIyAgQHWsKblc3ugAiYiIaiIxEOHtZ5zR39ccC35IRVZh5UpiB6/m4c9UKTZP9kA3D1MdRklE1DgaFenTpk2DIAiwsrJSOyYiItK1gW0t8OsiPyz4PhWn4wtV7ck5ZRizJQFLwpzw6gB7iLimOhG1IBoV6eHh4XUeExER6ZKjhSF2v+iFLaezsOZYOsoVD9vLFcCqn9NxJr4QGya5wdGCa6oTUcvAiaNERNQqiEQC5g10wP5XfOFhq16Mn7lViCGfxCPyZkEtvYmI9AuLdCIialW6eZjilwX+GNPFSq09u0iOqTtu4/3DaZBV3GonItJTGg13qc2pU6dw6tQppKWlobS0tMZrBEHA9u3bH+dpiIiIGsTSRIxNk9wxwM8cyw/cQ3FZ5ZKMn5/JwvnEInwyzkGHERIR1a1RRXpOTg7Gjh2Ls2fP1rsWLYt0IiLSBUEQMKmHLbp7muKV3SmITavc6Ojq3WKM/jwF83oo4eurwyCJiGrRqCL99ddfx5kzZ9C+fXvMmTMHPj4+MDc313ZsREREj83f0RiH5/ni3z+nY3t0tqq9SKbE2mggvjADa8e7w8yIa6oTkf5oVJF+6NAhuLm54fz58yzOiYhI7xkbirBitAv6+5nj9T2pyJVW7t8R8VcB/rp7C5uneKCTq0kdj0JE1HwaNXFULpejT58+LNCJiKhFGRZoiV8X+aOPj5lae2KWDKM2JWDbmax6h3ESETWHRhXp3bt3R3p6urZjISIianLOVob44SVvLBpki6r7G5XJlXj3cBqmhd9BdpXdS4mIdKFRRfpbb72F8+fP4+jRo9qOh4iIqMmJRQLmh9jio2GAi5X6yM8TNwowdF08zt4qrKU3EVHTa9SY9MGDB2P37t2YNm0annnmGYSGhsLV1RUiUc01/4ABAx4rSCIioqbQ3lHA4bnueOunbBy5lq9qzygox3NfJOG1gQ74v9A2MBQLdTwKEZH2NXqd9MLCQhgaGuLrr7/G119/Xee1crm8zvNERES6YmUixrbnPfDNbzl491AaSsofjklXKoENkZk4l1CIzZM94G4r0XGkRPQkaVSRHh4ejlmzZkGpVKJr165cgpGIiFo0QRDwQm879PAyw9xdyYi7X7lB35XkYoR+Go//jHfDqE5WdTwKEZH2NKpIX7t2LYyMjHDkyBEMHDhQyyERERHpRjsnYxyZ74f3D6fh699yVO35JQq8vCsZp+Nt8P4oF5hKGjWli4hIY416lbl9+zZCQkJYoBMRUatjKhFhzThXbJ3qASsT9bfJXRdz8fSGW7heZfdSIqKm0Kgi3dXVFaamptqOpVWQSCTw8PCARMKxi02NuW4+zHXzYa6bT325HtnJCscX+iPIU/39Lv5+KZ7ZeAvh57O5prqG+HtN1HCNKtKnTZuGyMhI5OTk1H/xE0YmkyE5ORkymUzXobR6zHXzYa6bD3PdfDTJtZuNBPte9sGiwQ4QqizwUlquxLL99zD762TkSrmmen34e03UcI0q0pctW4ZBgwZh0KBBiIqK4p0EIiJqtQzEApaEOeGHl7zhZKk+levnv/MxdN0t/JZUpKPoiKi1atTEUX9/fwDAnTt3MGTIEBgaGsLJyanGddIFQUBCQsLjRUlERKRjwb7mOL7IH6/vScWv1wtU7Wl5ZRj/eSJeH+KIRUMcIRZxTXUienyNKtJv376tdlzxNRYREVFrZmdmgK+me2L7uWys/CkdMvnDb5IVSuCjX+8jOqEIGya5wdWaY6+J6PE0ariLQqFo0H9ERESthSAImB1sj0PzfOFjr16MX0gqwrBPb+Ho3/m19CYi0gwXeiUiImqEjq4mOLbADxO726i150rleHHnHSw/cA8lZbxRRUSNwyKdiIiokcyMxFg30Q0bJ7nD3Ej9LfXLc9kYuSkB8RlcU52IGk6jMekV481dXV0hFosbPP7cw8Oj4ZERERG1EOO6WqObhwle3Z2CP1OLVe2xaSUYvuEWVox2weQeNhAETiolIs1oVKR7eXlBJBIhNjYWAQEB8PLy0viFRhAElJdzDVkiImrdvOyMsP8VH6z5JQNbTmWp2ovLlPi/H+/idHwh1o5zhaWJWIdRElFLoVGRPmDAAAiCoNpltOKYiIiIKkkMRHj7GWf09zPHgu9TkVVYeZPq4NU8/JEixebJHujuyV27iahuGhXpUVFRdR4TERFRpYEBFjixyA8Lvk/FqfhCVXtKbhnGfJaAJcPaYF6IA0RcU52IasGJo0RERE3AwcIQu170wlvPOMGgyrutXAGsPpqBSduTkJFfprsAiUivabVILykpQXp6OsegExERARCJBLwa4oADr/rC01Z9TfWzt4owdF08Tt4oqKU3ET3JNCrSCwoKcPHiRcTFxdV4Pj4+HmFhYbC0tISrqyssLCwwadIkpKWlaTVYIiKilqiruyl+WeiHMV2s1Nqzi+R4/svbeP9wGmTlXFOdiCppVKTv3LkTffr0weHDh6udS09PR//+/fHrr7+ivLwcSqUSpaWl2LNnDwYNGoTi4uIaHpGIiOjJYmEsxqZJ7vhkghtMDNXHon9+JgujNyciMatUR9ERkb7RqEg/deoURCIRnn/++WrnVqxYgfv378PGxgYHDhxAQUEBfv/9dwQFBSE+Ph5btmzRetBEREQtkSAIeC7IBscW+qO9i7Hauat3ixH26S3s/T1XR9ERkT7RqEi/evUqOnbsCEdHR7V2hUKBb7/9FoIgYNWqVRg1ahTMzMzQpUsX7Nu3DwYGBti/f3+TBE5ERNRS+TkY4fA8X8wOtlNrL5IpsOD7VCz4PgWFpXIdRUdE+kCjIv3+/fto27ZttfarV6/iwYMHMDAwwKRJk9TOubq6olevXrh+/bp2IiUiImpFjAxE+GC0C76a4QkbU/UNjvb+/gBhn97C1VQOGSV6UmlUpBcVFaGsrPoyUVeuXAEAdOrUCZaWltXOu7m5IT8//zFDJCIiar1Cn7LEr4v80dfHTK09KVuGUZsT8PnpTCgUSh1FR0S6olGR7uDggBs3blRrP3v2LARBQM+ePWvsV1JSAisrqxrPERER0UPOVob4/iVvLBnWBuIq78xlciXe/ykd07+6o7Z7KRG1fhoV6RXDVg4dOqRqy8zMxL59+wAAw4YNq7FfbGwsXFxctBAmERFR6yYWCVg0xBE/vuwDV2tDtXMnbhRg6Lp4nLlVWEtvImptNCrSX3vtNSiVSkyYMAHTpk3D4sWL0aNHDxQUFMDd3R0jRoyo1icxMRFxcXHo3Lmz1oMmIiJqrXp6meH4Qn+M6KA+jPR+QTkmfZGE1UfTUSbn8Bei1k6jIn3QoEF47733UFZWhm+++Qbr1q1DcnIyTExM8OWXX8LAwKBan88++wwAEBYWpt2IiYiIWjlrUzG2Pu+BNWNdYGxQuaa6UglsiMzEuM8SkJwj02GERNTUqlfXtXjnnXcwcuRI7Nu3D5mZmXB3d8fUqVPh7e1d4/VGRkZYuHAhhg8frrVgiYiInhSCIOCF3nbo6WWGubuTcTOjcqOjK8nFCF0Xj/+Md8XoztY6jJKImorGRToAdOvWDd26ddPo2hUrVjQqICIiIqrU1skYR+b74f3Dadh5IUfVXlCqwNzdKTgdX4gPRrvAVKLRl+NE1ELwXzQREZGeMzEU4cOxrtj2vAesTNTfundfysXw9bcQm8Y11YlaExbpRERELcSIjlY4vtAfPbxM1dpvZZZixMYEfHkuG0olJ5UStQYs0omIiFoQNxsJfpzjg0VDHCFUzilFabkSyw/cw6yvk5Er5ZrqRC0di3QiIqIWxkAsYMmwNtjzkjecLNWnlx39Ox9D193ChcQiHUVHRNrAIp2IiKiF6utrjuOL/BH6lIVae1peGZ7dmoj/Hs9AOddUJ2qRWKQTERG1YHZmBgif7okVo50hEVeOf1EogY9/vY8J2xJx9wHXVCdqaVikExERtXCCIGBWsD0Ov+YLXwcjtXO/JUkRuu4Wfv47T0fREVFjsEgnIiJqJTq4mODYAj88F2Sj1v6gWI5ZO5Px5v67KC5T6Cg6ImoIFulEREStiKlEhE8muGHTZHeYG6m/zX91PgcjNyYgPqNER9ERkaZYpBMREbVCY7tY45eFfujiZqLWfj29BGEbbmHXxRyuqU6kx1ikExERtVJedkbY/4oPXg2xV2svKVPinz/exdzdKcgrlusoOiKqC4t0IiKiVkxiIMJbzzhj9ywvOJirr6l+6Goehn0aj8t3uKY6kb5hkU5ERPQEGBhggV8X+WFggLlae0puGcZ+logNkfehUHD4C5G+YJFORET0hHCwMMQ3M73w9jNOMKhSAcgVwOqjGZi0PQnp+WU6i4+IKrFIJyIieoKIRAJeCXHAwVd94WkrUTt39lYRhq6Lx4kb+TqKjogqGNR/CTWFrKyseq+xsbGBWCxuUB9ra2sYGFT+tWZnZ9c7e9/KygqGhoaq45ycHCgUda+ja2lpCYmk8sU9NzcXcnndk48sLCxgZFS5ycaDBw9QXl5eZx9zc3MYGxurjvPy8lBW9vAuT2lpKaRSKXJyctQe18zMDCYmlasZ5OfnQyare7e9R/sUFBSgtLS0zj6mpqYwNTVVHRcWFqKkpO5lzUxMTGBmZqY6LioqQnFxcZ19jI2NYW5e+fW0VCqFVCqts4+RkREsLCq3CS8uLkZRUd1jTiUSCSwtLVXHJSUlKCwsBFB7rg0NDWFlZVVjn9oYGBjA2tpadVxaWoqCgoI6+4jFYtjYVK77LJPJkJ9fdxEhEolga2urOi4rK0NeXt2buQiCADs7O9VxeXk5Hjx4UGcfALC3r5yUJ5fLkZubW28fOzs7CMLD3SEVCgVycnIA1J5rALC1tYVI9PDeilKpRHZ2dr3Pw9eR6n0qXkfqyvWjrz2t8XXEzUSK75+3xpbTWTgdr/7v9p0fruO3zvZYPCGR6LIAACAASURBVMIbRv+75a7Ja8+jryMVrz315YGIqmORriMnT56s95qRI0eqvXifPn263jej4cOHq71ARkdH1/uCP3ToULVi5sKFC/UWWgMHDoSjo6Pq+NKlS/UWM/369YOLi4vq+Pfff6+3YOjduzc8PDxUx3/99RfS09PVrrl9+7bacVBQEHx8fFTH165dQ2pqap3P06VLFwQEBKiOr1+/Xu1xH9WhQwcEBgaqjuPi4nDr1q06+7Rt2xadO3dWHSckJODGjRt19vH19UX37t1Vx7dv38a1a9fq7OPp6YlevXqpjlNSUvDnn3/W2cfV1RXBwcGq43v37uHy5ctq1zyakzZt2iAkJER1fP/+fVy4cKHO57Gzs8OQIUNUx9nZ2Th79mydfaysrBAWFqY6fvDgAaKioursY2ZmhhEjRqiOCwsL6/13Z2RkhH/84x+q4+Li4nr7iMVijB8/XnUsk8k0+vc9YcIE1Z/lcnm1PjX9/o0dO1ZVpAOavY6MGjVKrXA8depUvYXw008/rfYh7+zZs/UWWaGhoWofpM6fP1/vB8NBgwbBwcFBdXzx4sV6P0j1798fzs7OquMrV67U+2GlT58+cHd3Vx3/+eefyMjIUB3XlOtHX0diYmJw9+7dOp/n0deR2NhY3Llzp84+j76O3Lx5EwkJCXX2adeuHTp16qQ6vnXrFm7evFlnHz8/P3Tr1k11nJSUhL///hsA0FUMdG1Xvc9vdx9g9GYFtkzxgI+9EVJSUvDXX3/V+Txubm7o27ev6vjevXu4cuUKAKj9nERUPw53ISIiohrF3C1B2Ke3sPf3+r8dIiLtEpTcyUBNWloatm7dijlz5qjdrdFUcXExEhIS4Ovrq3b36lEc7qKd4S53796Fq6srh7s8oimGu9SUaw53eUjbw11qyjXA4S6A9oe71JbrJ2G4S02vIzK5AjvP5+DQ1TwUlBsgq7Ty72dyVxMsHGABU4m4Wr8KdQ13yc3Nrfe9kYgqsUh/RHMV6fT4mOvmw1w3H+a6+TDXtTt+PR+v70lFTpH6hyZvOwm2TPFAJ7eG5Yu5Jmo4vR3uUlZWhvDwcMyYMQPPPvss/u///g9//PFHgx/n7bffxujRo/HZZ581QZREREStT+hTlvh1kT+Cfc3U2pOyZRi1OQGfnc7kmupETUxvi/R169bhwIEDCAkJwezZsyESifDBBx8gNjZW48c4d+5cvZNpiIiIqDonS0N8N9sb/wprA3GVaqFMrsQHP6XjhS9vI6uw7qFGRNR4elmkx8XF4cyZM5g2bRpmzpyJ4cOHY+XKlXBwcEB4eLhGjyGTybBjxw6MGzeuaYMlIiJqpcQiAQsGO2Lfyz5wtTZUOxcZV4ih6+KrLd/4KJlMBqlUirKyMkilUhQVFdU7vp+I9LRIj46OhkgkUltyTSKRIDQ0FDdu3EBmZma9j7Fv3z4olUqMHTu2KUMlIiJq9Xp4meH4Qn+M6GCp1n6/oByTtydh1c/pKJPXPPwlLi4OJ06cQHx8PE6cOIGffvoJcXFxzRE2UYuml0V6YmIiXF1d1Wa8A1CtP5uUlFRn/8zMTOzduxfTp0+vNmOfiIiIGs7aVIytz3tg7ThXGBsIqnalEtgYlYmxWxKQnFP9DnlAQIBqD4bg4GCMGDFCbT15IqqZXhbpubm5asutVahoq1iqrDbbt2+Hj48PBgwY0CTxERERPYkEQcDzvWzx83w/tHNSvwn2e0oxQtfF48Bf6suWSiQS1XKWxsbGMDMzU1t6k4hqppdFukwmU1tvt0LFP+q61p29evUqzp8/j5deeqnJ4iMiInqStXUyxk+v+WF6b1u19oJSBV7ZnYLFe1MhldW9Tj4R1c2g/kuan0QiUW1YU1XFRJPahrDI5XJs27YNAwcOhL+/v8bPl5WVpdrgo+IufUlJSb2bQ9Sk4gNEfRtY0ONjrpsPc918mOvmw1w/vneG26KXhwT/Ongf+SWVRfm3l3JxMakQnz7rhKecjFTv3zKZrFHvrZriGuzUmuhlkW5jY1PjkJaKXfyq7iJY1cmTJ3H37l28+uqryMjIUDtXXFyMjIwMWFtbVyvyf/zxR2zbtg3Aw13zBgwYgNTU1Hp3aKxLampqo/tSwzDXzYe5bj7MdfNhrh+PnxGw+RklPjwLXLtf2Z6QVYaxW1MwpzvwtM/DG2/p6eka7ZTbWB06dGiyxyZqbnpZpPv4+CAmJgZSqVRt8mjFmufe3t419svMzER5eTmWLl1a7VxkZCQiIyOxbNky9O7dW+3c+PHjERISAuDhnfTjx4/Dzc0NTk5ODY69tLQUqampcHNz46TVJsZcNx/muvkw182HudYeXwA/tldi4+kcbDyVi4p1XsoUwKZLQFKeEYZZAE5OTrC2ttZlqEQthl4W6X379kVERASOHTumWkKxrKwMJ06cQEBAABwcHAA8LMpLS0vh5uYGABgwYAB8fHyqPd6qVasQFBSEYcOG1Tij3N7eHvb29gCAtLQ0AA8ntzzO12ZGRkb82q2ZMNfNh7luPsx182GutefNZ0wR0tYa879LQVp+5UZHOTlZgAUQdy8fIc7OOoyQqOXQyyK9bdu2CA4Oxs6dO/HgwQM4Ozvj5MmTuH//PubPn6+67pNPPsG1a9dw8OBBAICbm5uqYH+Uo6NjtTvoREREpF19fc3xyyJ/vLEnFcevF8DXvAjPeTwcgpqR8BekT7lXW2KZiKrTyyIdAF5//XXs2rULUVFRKCwshJeXF95++22ONyMiItJzdmYGCJ/uiR3nsnHs/HXIlUDF0urFxcUs0ok0oLdFukQiwcyZMzFz5sxar1m1apVGj1Vxp52IiIiahyAImBVsjyC3Toi9lAMoSmFjY1PjPihEVJ1erpNORERErUNnTysMG9QPANCtWzeIRCw9iDTBfylERERERHqGRToRERERkZ5hkU5EREREpGdYpBMRERER6RkW6UREREREeoZFOhERETUZmUyGkpISAEBJSQmKioogk8l0HBWR/tPbddKJiIio5YuLi0NsbCwAIDo6GgAQGBjIzQmJ6sEinYiIiJpMQEAAnJ2dkZycDA8PDxgbG8PQ0FDXYRHpPRbpRERE1GQkEglMTU1haGgIU1NTmJiY6DokohaBY9KJiIiIiPQMi3QiIiIiIj3DIp2IiIiISM+wSCciIiIi0jMs0omIiIiI9AyLdCIiIiIiPcMinYiIiIhIz7BIJyIiIiLSMyzSiYiIiIj0DIt0IiIiIiI9wyKdiIiIiEjPsEgnIiIiItIzLNKJiIiIiPSMga4D0Dfl5eUAgKysrEb1LykpQW5uLtLT02FsbKzN0OgRzHXzYa6bD3PdfJjr5tOcuba3t4ehoWGTPgdRc2CR/ogHDx4AAPbt26fjSIiIiKih5syZA2dnZ12HQfTYBKVSqdR1EPpEKpUiISEB1tbWMDBo+GeYpKQkvP3221ixYgW8vb2bIEKqwFw3H+a6+TDXzYe5bj7NmWveSafWgnfSH2FqaoqOHTs2un9eXh7y8vJga2vLT/JNjLluPsx182Gumw9z3XyYa6KG48RRIiIiIiI9I37vvffe03UQrY2JiQmCgoJgamqq61BaPea6+TDXzYe5bj7MdfNhrokahmPSiYiIiIj0DIe7EBERERHpGRbpRERERER6hqu7aElZWRl27dqFqKgoFBYWwsvLC1OnTkXXrl11HVqLVVxcjIiICNy8eRPx8fEoLCzEwoULMWTIkGrXpqSk4IsvvsD169dhYGCAoKAgzJo1C1ZWVjqIvOWJj4/HiRMnEBMTg/v378PCwgJt27bF888/D1dXV7VrmevHk5ycjN27dyMhIQG5ubkwMjKCu7s7xo0bh549e6pdy1xr3w8//IBvvvkGHh4e2Lhxo9q569evIzw8HAkJCTA1NUW/fv3wwgsvwMTEREfRthwxMTFYvnx5jefWrl2Ldu3aqY6ZZyLNsEjXknXr1uHcuXMYPXo0nJ2dcfLkSXzwwQf497//jcDAQF2H1yLl5+fju+++g4ODA7y9vRETE1PjdVlZWXjzzTdhamqKF154AcXFxdi/fz/u3LmD//73v1wvVwM//vgjrl+/juDgYHh5eSE3Nxc//fQTXn/9dfznP/+Bp6cnAOZaG+7fv4/i4mIMHjwYtra2KC0txblz57By5Uq8+uqrGD58OADmuilkZWVhz549Ne54mZiYiLfffhtubm6YNWsWsrOzERERgXv37oHrK2hu1KhR8PPzU2tzcXFR/Zl5JtIci3QtiIuLw5kzZzBz5kyMHTsWADB48GC89tprCA8Px9q1a3UcYctka2uLr776CjY2NoiPj8fixYtrvG7Pnj0oKSnBJ598AgcHBwBAQEAA3nnnHZw4cUJV9FDt/vGPf2Dx4sVqhV///v0xf/587N27V5V75vrxBQUFISgoSK1txIgReOONN3DgwAFVDplr7fvyyy/Rtm1bKBQK5Ofnq537+uuvYW5ujlWrVqlWH3F0dMTGjRvxxx9/8FtRDQUGBiI4OLjW88wzkeY4Jl0LoqOjIRKJEBYWpmqTSCQIDQ3FjRs3kJmZqcPoWi5DQ0PY2NjUe925c+fQo0cPVSEDAF26dIGrqyuio6ObMsRW46mnnqp2Z9bFxQUeHh5ITU1VtTHXTUMsFsPe3h5FRUWqNuZau65du4bo6GjMnj272jmpVIo///wTISEhassDDho0CCYmJjh79mxzhtriSaVSyOXyGtuZZyLN8U66FiQmJsLV1bXa2q8BAQEAHm6HXPWNlrQnOzsbeXl51b5eBQB/f39cuXJFB1G1DkqlEg8ePICHhwcA5lrbSkpKIJPJUFRUhIsXL+LKlSvo378/AOZa2+RyObZu3Yphw4bBy8ur2vnbt29DLpfD399frd3Q0BDe3t5ITExspkhbvvXr16O4uBgikQjt27fHjBkzVHllnokahkW6FuTm5tZ4x7eiLScnp7lDemJU5NbW1rbaORsbGxQUFKCsrIzjdxshKioK2dnZmDJlCgDmWtt27NiBo0ePAgBEIhF69+6Nl19+GQBzrW1Hjx5FZmYmVqxYUeP53NxcAKj1dTw2NrZJ42sNDAwM0LdvX3Tv3h2WlpZISUlBREQE3nzzTaxZswa+vr7MM1EDsUjXAplMVuObpUQiAQCUlpY2d0hPDJlMBgD15p/FTMOkpqbi888/R7t27TB48GAAzLW2jR49Gn379kVOTg7Onj0LhUKBsrIyAMy1NuXn52P37t2YOHFiravi1JfvivNUu6eeegpPPfWU6rhXr17o27cvFixYgJ07d+L9999nnokaiGPStUAikajeXKuqeMExMjJq7pCeGBUFC/OvPbm5ufjggw9gamqKpUuXQiwWA2Cutc3NzQ1dunTB4MGD8c4776CkpAQrV66EUqlkrrXom2++gbm5OUaOHFnrNfXlu+I8NYyLiwt69eqFmJgYyOVy5pmogVika4GNjY3qa7yqKtpq+sqatKMitzUNKcrNzYWFhQXvNjZAUVER3nvvPdX/7ezsVOeY66bVt29fxMfH4+7du8y1lty7dw+//PILRo0ahZycHGRkZCAjIwMymQxyuRwZGRkoKChQDb+o7XWcr+GNZ29vj/LycpSWljLPRA3E4S5a4OPjg5iYGEilUrXJozdv3gQAeHt76yq0Vs/Ozg5WVla4detWtXPx8fHMfQPIZDKsWLEC9+7dw4oVK1QTRisw102r4g65VCqFm5sbc60F2dnZUCgU2Lp1K7Zu3Vrt/EsvvYRRo0ZhypQpEIvFiI+PR79+/VTny8rKkJSUVOeSglS3jIwMSCQSGBsbw9PTk3kmagDeSdeCvn37QqFQ4NixY6q2srIynDhxAgEBAVzZpYn16dMHly5dUlvq8q+//sLdu3f5oq8huVyOtWvX4ubNm1i6dKna7oBVMdeP78GDB9XaysvLERkZCYlEAnd3dwDMtTZ4enpi2bJl1f7z8PCAg4MDli1bhtDQUJiZmaFz5844deoUpFKpqn9kZCSKi4uZbw3k5eVVa0tKSsLFixfRpUsXiEQi5pmogQSlUqnUdRCtwZo1a3DhwgW1HUfj4+OxYsUKdOjQQdfhtViHDx9GUVERcnJy8PPPP6NPnz7w8fEBAIwcORJmZmbIzMzEokWLYGZmhtGjR6O4uBgRERGws7PDxx9/zGEBGti2bRsOHTqEnj171vhGOWjQIABgrrVg1apVkEqlaN++Pezs7JCbm4tTp04hNTUVL774IsaMGQOAuW5Ky5YtQ35+PjZu3KhqS0hIwJIlS+Du7o6wsDBkZ2dj//79aN++Pd5//30dRtsyLF++HEZGRmjXrh2srKyQkpKCY8eOwcDAAGvXrlV9+GSeiTTHIl1LZDIZdu3ahaioKBQWFsLLywtTp05Ft27ddB1aizZ79mzcv3+/xnPbtm1DmzZtAADJycnYvn07YmNjYWBggKCgILz44osabYZED4uWa9eu1Xr+4MGDqj8z14/n9OnTOH78OO7cuYOCggKYmJjA19cXI0eORK9evdSuZa6bRk1FOgDExsYiPDwciYmJMDExQXBwMKZNm1ZtDwyq7tChQzh16hTS0tIglUphZWWFTp06YdKkSXBxcVG7lnkm0gyLdCIiIiIiPcMx6UREREREeoZFOhERERGRnmGRTkRERESkZ1ikExERERHpGRbpRERERER6hkU6EREREZGeYZFORERERKRnWKQTEREREekZFulERERERHqGRTqRhgRBgCAIsLa2xoMHD2q85sMPP4QgCHjvvfeaNzgNREVFQRAEzJgxQ9ehNIn169ejffv2MDIygiAIGDhwYL19Kv5OK/4TiUSwtrZG//798cUXX0BfNmQWBAFeXl7N1o+IiHSPRTpRA+Xl5eHjjz/WdRhUxb59+7Bw4UKkpaVh9OjRmD59OoYPH65x/+nTp2P69OmYOnUqAgMDER0djZdeeglTpkxpwqgfauyHp9b+oYuI6ElnoOsAiFoSQRBgZGSETz/9FK+//jpsbGx0HRIB2L9/PwBg7969GDx4cIP7h4eHqx0fP34czzzzDL777jtMnToVI0eO1EaYjXb9+nUYGho2Wz8iItI93kknagCRSIQ5c+YgPz8f//3vf3UdDv1PamoqAMDHx0crjxcaGooXXngBQOUHAF1q164dfH19m60fERHpHot0ogb617/+BRMTE2zYsAHZ2dka9Rk4cCAEQcDt27ernbt9+3aNY6jfe+89CIKA8PBwXLlyBU8//TSsra1ha2uLiRMnqgrToqIiLFmyBF5eXjA2NkaHDh2wd+/eOuNJS0vDjBkz0KZNG5iYmKBbt27YuXNnrdfn5OTgzTffRGBgIExMTGBlZYXBgwfj8OHDdf48+fn5eOONN+Dt7Q1DQ0MsWrSo/mQBSElJwcsvvwxPT08YGRnB0dER48aNw6VLl2rMUWRkJADA29tbNb48KipKo+eqTdeuXVWxVEhLS8PatWsREhICV1dXSCQSODk51RhbBS8vLwiCAKVSiQ0bNqBz584wNTVFly5dMGPGDAwaNAgA8NVXX6mNj686r+HRseWN7VfVkSNHEBoaChsbGxgbG6Nt27b417/+VeN8i6q/izExMRg9ejRsbGxgZmaGkJAQnDt3rs7ncHV1hZGREVxcXNCvXz+8//77NV5PRESVWKQTNZCzszPmzp2LgoIC/Oc//2ny5/vtt98QHByMzMxMhIWFwc7ODnv27MGQIUOQl5eHQYMG4auvvkKPHj3Qp08fxMbGYuLEiTh27FiNj5eTk4PevXvj6NGjGDhwIPr374+YmBhMnz69xgmvcXFx6NKlCz788EMUFxcjLCwMQUFB+O233zBq1Khav1EoLi5GSEgIwsPD0aVLF1VhV5+YmBh069YNW7duhYmJCcaNGwd/f39ERESgb9++2LNnj+raLl26YPr06WjTpg0AYPz48arx5U5OThpkt3YFBQUAACMjI1XbgQMHsHTpUmRkZKBTp04YO3YsXFxcEBERgeDgYPzyyy+1Pt7cuXOxePFiODo6YvTo0fDx8UG/fv0QFhYGAPD19VXFPn36dHTp0qXWx2psvwqrV6/GiBEjEBUVhe7du2PMmDGQSqVYs2YNevXqhYyMjBr7Xb58Gb1798bt27cRFhYGf39/nD59GkOGDMG1a9fUrt20aRNGjBiByMhI+Pn5Yfz48ejQoQPu3LmjlxOriYj0jpKINAJAKRaLlUqlUpmenq40NTVVmpmZKe/fv6+6ZvXq1UoAynfffVetb0hIiBKAMikpqdrjJiUlKQEoQ0JC1NrfffddJQAlAOWWLVtU7TKZTDl06FAlAGVgYKBy8ODBysLCQtX5L774QglAOWDAALXHi4yMVD1eaGioWp+LFy8qzc3NlSKRSHnlyhVVe3l5ubJjx45KAMq1a9cq5XK56lx8fLzS29tbKRaLlTExMdV+HgDKPn36KHNzc+vIqjqFQqF6viVLligVCoXq3N69e5UikUhpbm6uvHfvnlq/uvJbl4o4a4qjT58+SgDK5cuXq9qvXr2qvHbtWrXrjx49qpRIJEpfX1+1mJVKpdLT01MJQGlvb19j34q/l+nTp9cZp6enp1b6Xbx4UZXHCxcuqNpLSkqUEyZMUAJQjh8/Xq1P1d/FTz/9VO3cokWLlACUL7zwglq7h4eHUhAE5aVLl9TaFQqFMjIystaYiYjoId5JJ2qENm3a4JVXXkFRURHWrFnTpM/Vr18/zJ07V3VsaGiI+fPnAwBu3LiBLVu2wMzMTHV+xowZsLe3x/nz51FWVlbt8UQiETZs2KDWp0ePHpg3bx4UCgU2b96saj906BBiYmIwfvx4/POf/4RIVPmS4efnh48++ghyuRzbtm2rMfb169fD2tpa4581KioKMTEx8PDwwMqVKyEIgurc+PHjMWbMGBQWFmLHjh0aP2ZDyOVyxMfH48UXX8T58+dhZGSEmTNnqs537NgR7du3r9YvLCwMEyZMQEJCQrU7yhWWLl1aY9/mtnHjRigUCsyfPx+9evVStRsZGWHjxo0wMTFBRESE2jCfCsHBwViwYIFa21tvvQUAOH36tFp7ZmYmrK2tERQUpNau6fKYRERPOhbpRI20dOlSmJmZYcuWLbUOD9CGYcOGVWurmCDp5eWFgIAAtXNisRienp4oKytDVlZWtb5dunRB27Ztq7VPnjwZAHDmzBlVW8XwjXHjxtUYW//+/QEAFy9erHbO2dm5WoFWn4rnnjhxYo2rklRM5qwaozZUjOc2MDBAQEAAwsPDYWFhgW+//bbaxMvS0lIcOHAAy5cvx5w5czBjxgzMmDEDMTExAID4+Pgan2P06NFajbmxKnI3derUauccHR0xbNgwKBQKREdHVztf0++inZ0dbG1tkZaWptbevXt35ObmYtasWfj777+1FD0R0ZODSzASNZKDgwPmzZuHtWvX4sMPP8Qnn3zSJM/j6uparc3c3LzWc1XPl5aWVjvn6elZY5+KCYb37t1TtVVMdJ06dWqNRV2Fmj4MeHh41Hp9bSqeu7bJjhXtd+/ebfBj12X69OkAHn7LYGlpiY4dO2LcuHHVxtBXTJqsaQJwhYqx7I9qTD6awuPk2M3NrcY+FhYWyMnJUWvbtGkTxowZgx07dmDHjh1o06YNQkJCMG7cODz77LMQi8WN/yGIiJ4ALNKJHsM///lPbN68GZ999hmWLFnSqMdQKBR1nq86xKQh57ShIrbhw4erJmfWxN7evlqbsbGx1uOpOvxFmx5dJ70mSqUSEydOxO3btzF37lzMnTsXPj4+MDc3hyAIWLZsGVavXl3rLqVNkY+mUFeOG/L71qlTJ8TGxuLo0aM4cuQIoqKi8MMPP+CHH35Anz59EBUVBYlEoo2QiYhaJRbpRI/B3t4e8+fPx+rVq7F69Wq4uLjUeF1FMVJYWFjtXE1jf5vSnTt36myv+jNU3DmdPXs2xo8f3+SxVTx3bTFW3MGu7RuEpnTjxg3cuHEDQUFB2LJlS7XziYmJzR5TY7i4uCApKQl37txBYGBgtfPazLGxsTHGjBmDMWPGAAD+/vtvTJkyBefPn8cXX3yBV1999bGfg4ioteKYdKLHtHjxYlhYWGDr1q21DsNwdnYG8HA5w0cdP368SeN71J9//lnjuOnvvvsOwMOJqhVCQ0MBABEREc0SW8UY9z179kAul1c7/80336hd15xyc3MB1DzkIzc3t9F/jxUf4MrLy5ulX0Xuvv3222rnMjMzcezYMQiCgODg4AY9ribat2+PefPmAUCtE2yJiOghFulEj8nOzg4LFixAaWkptm/fXuM1ISEhAICPPvoIUqlU1X7y5EmsW7euWeKsULGyR9U4rly5go0bN0IQBLzyyiuq9vHjxyMwMBC7du3CihUrqo1xVyqViI6OrnGSYWMMHDgQHTt2xO3bt/HOO++oDR2JiIjAvn37YG5ujhdffFErz9cQfn5+EIlEOHnypNqHnJKSEsydO7famGxNVXx7cPPmzWbpN2/ePIhEIqxfvx6XL19WtctkMsyfPx/FxcUYN24c3N3dG/S4VUmlUqxfv77axkgKhQJHjx4FgMd6fCKiJwGLdCItWLx4MSwtLVFcXFzj+cmTJ6Nt27Y4d+4cnnrqKTz77LPo3bs3QkND1Yri5jBy5EjExsbC19cXzz33HIYPH44+ffqgoKAAy5cvV1uRxcDAAPv374e3tzfeeecdeHh4IDQ0FFOnTkVYWBicnJzQr1+/WnfbbChBELBr1y7Y2dlh1apVaN++PaZMmYJ+/fph3LhxEIlE2L59u+qbiebk6OiIWbNmIT8/H507d8bIkSMxYcIEeHl54eTJk5gxY0ajHtfLywudOnXC5cuX0bNnT8ycOROzZ8/GwYMHm6Rfz549sWLFCuTn56NPnz4IDQ3F5MmT4efnh++//x7+/v7YtGlTo36WCjKZDAsXLoSjoyP69OmDfngmngAAAblJREFUyZMnY/z48fDy8kJERAS8vLwwZ86cx3oOIqLWjkU6kRbY2NjUueW9iYkJTpw4gcmTJ6OgoABHjhyBXC7H999/r/r6v7nY2dnhwoULGDp0KCIjIxEVFYXAwEB8+eWXWLFiRbXr/f398ccff2DlypVwc3PDhQsXsG/fPsTFxaFr167YtGkTnn/+ea3F17FjR/z+++946aWXUFhYiL179+LmzZsYM2YMoqOjMXHiRK09V0Nt2bIFH330Eby9vXHixAmcOXMGQ4cOxeXLl2tdNUcTP/74I8aMGYPExETs3LkT27dvx++//95k/ZYtW4bDhw8jJCQEly5dwr59+2BkZIQlS5bgt99+q3OSsCbMzc2xadMmjBo1CpmZmTh48CBOnjwJGxsbvP/++7hy5Qrs7Owe6zmIiFo7QVnbUgRERERERKQTvJNORERERKRnWKQTEREREekZFulERERERHqGRToRERERkZ5hkU5EREREpGdYpBMRERER6RkW6UREREREeoZFOhERERGRnmGRTkRERESkZ1ikExERERHpGRbpRERERER6hkU6EREREZGeYZFORERERKRn/h+/ilyxadHn8gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot\n", - "lst_num_partitions = list(all_svcca.index)\n", - "\n", - "threshold = pd.DataFrame(\n", - " pd.np.tile(\n", - " permuted_score,\n", - " (len(lst_num_partitions), 1)),\n", - " index=lst_num_partitions,\n", - " columns=['score'])\n", - "\n", - "panel_A = ggplot(all_svcca) \\\n", - " + geom_line(all_svcca,\n", - " aes(x=lst_num_partitions, y='score', color='Group'),\n", - " size=1.5) \\\n", - " + geom_point(aes(x=lst_num_partitions, y='score'), \n", - " color ='darkgrey',\n", - " size=0.5) \\\n", - " + geom_errorbar(all_svcca,\n", - " aes(x=lst_num_partitions, ymin='ymin', ymax='ymax'),\n", - " color='darkgrey') \\\n", - " + geom_line(threshold, \n", - " aes(x=lst_num_partitions, y='score'), \n", - " linetype='dashed',\n", - " size=1,\n", - " color=\"darkgrey\",\n", - " show_legend=False) \\\n", - " + labs(x = \"Number of Partitions\", \n", - " y = \"Similarity score (SVCCA)\", \n", - " title = \"Similarity across varying numbers of partitions\") \\\n", - " + theme(\n", - " plot_background=element_rect(fill=\"white\"),\n", - " panel_background=element_rect(fill=\"white\"),\n", - " panel_grid_major_x=element_line(color=\"lightgrey\"),\n", - " panel_grid_major_y=element_line(color=\"lightgrey\"),\n", - " axis_line=element_line(color=\"grey\"),\n", - " legend_key=element_rect(fill='white', colour='white'),\n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + scale_color_manual(['#1976d2', '#b3e5fc']) \\\n", - "\n", - "\n", - "print(panel_A)\n", - "ggsave(plot=panel_A, filename=svcca_file, device=\"svg\", dpi=300)\n", - "ggsave(plot=panel_A, filename=svcca_png_file, device=\"svg\", dpi=300)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncorrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(50, 5549)\n", - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "(50, 5549)\n", - "[0.59082602 0.10040417]\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "(50, 5549)\n", - "[0.21191965 0.20670454]\n", - "Plotting PCA of 1 experiment vs 50 experiments...\n", - "(50, 5549)\n", - "[0.05665387 0.02453082]\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(experiment_1.shape)\n", - "\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " print(experiment_other.shape)\n", - " # Simulated data with i batch effects\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - "\n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space\n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1)\n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - "\n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Variance explained\n", - " print(pca.explained_variance_ratio_) \n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_data_df = pd.concat([all_data_df, combined_data_PCAencoded_df]) " - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_data_df = all_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_data_df = all_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "all_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHoCAYAAACW+gpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8FHXeB/DPb7ZmkxBiCIQmUYqIiKBiaAqogAUE6QgSitgAezkP71DxHmxnRywgFjxRH+U8K6IUBTk5FdRTFHykKL0YUjbJZme+zx+bHbPsbrJJFjaTfN6vV16Bqd+Z/c1kvju/okREQEREREREZAFaogMgIiIiIiKKFRMYIiIiIiKyDCYwRERERERkGUxgiIiIiIjIMpjAEBERERGRZTCBISIiIiIiy2ACQ0RERERElsEEhoiIiIiILIMJDBERERERWQYTmCoopUJ+NE1D48aNcfbZZ2PBggUQkajr/vvf/8YVV1yBDh06IDU1FW63G9nZ2Rg9ejSWLl0KwzCirrt+/Xpzn/fcc8/ROLSo9u/fj4kTJ6J58+aw2WxQSuGFF144pjHUdS+88AKUUrjrrrsSHUrCFRUV4eWXX8bMmTORk5MDl8vFc1NDNS1X8SyPq1atglIKkyZNqvW26A/Z2dlQSiU6DCKieoEJTIxyc3ORm5uL8ePHo1OnTli7di2mTZuGyy67LGzZsrIyXHHFFejZsycWLlwITdNw/vnnY+jQoWjatCnefPNNDB8+HAMGDIi6v5dfftn89yuvvHJUjimaqVOn4uWXX0bTpk0xbtw45Obmol27dsc0Bjq2avMAvGXLFkycOBFPPvkk1q9fD5/PF/8AG7hJkyZBKYVVq1YlOhQiAEzIiCix7IkOwCqOfAOxfPlyXHTRRViyZAnGjx+PwYMHm/MmTpyIJUuWoEOHDli0aBF69eoVsu6uXbtwzz334KOPPoq4r7KyMixZsgQAkJWVhc2bN+OLL75ATk5OfA8qAp/Ph/fffx/Z2dnYsGEDNI05biSXXnopevTogSZNmiQ6lIRLTU3F1KlT0b17d3Tv3h3vvfce/vrXvyY6rAaF5bHu++STT1BWVpboMIiI6gU+ndbQgAEDcPnllwMA/vnPf5rT33jjDSxZsgTNmjXDp59+Gpa8AECLFi3w9NNPh7xlqejDDz/EgQMH0Lt3b1x77bUAEHXZeNuzZw90XUebNm2YvFQiLS0NHTt25AMjgLZt22LBggW46qqrcPrpp8PhcCQ6pAaH5bHua9u2LTp27JjoMIiI6gU+odZCt27dAAC//vqrOe2hhx4CANx1111o1qxZpev37t074vTFixcDACZMmIAJEyYAAF577bUaf3v3/vvvY8CAAUhPT4fb7cZJJ52EP/3pT8jLywtZLjs7G23atAEArF692myDk52dHfO+PvzwQ1x88cXIzMyEy+XCiSeeiJtuugkHDx4MWW7jxo1wuVw47rjj8Ntvv4VtZ9q0aVBK4aqrrjKnVaybv3v3bkyaNAnNmjVDUlISTj/9dLz00ktR4zp06BDuuOMOdOrUCUlJSUhLS8O5556Ld999N2zZbdu2QSmFfv36IT8/HzfddBNOOOEEOBwO3HDDDQCiV7mqWNXn448/xjnnnIPU1FQ0bdoU06ZNw+HDhwEA+/btw1VXXYWWLVvC7XbjrLPOqrR60BdffIFRo0ahefPmcDqdaNWqFa644grs2LEjbNm77rrLbLf03Xff4ZJLLkF6ejqSk5PRt29ffP755yHL9+vXD5MnTwYA3H333SFtvo5126cuXbpAKYUff/wx4vyDBw/C6XSiWbNm8Pv95vRgGW/ZsiVcLhdatGiBPn364O6774553xWrxMybNw+dO3dGUlISTjjhBDzwwANme7evv/4aQ4YMwXHHHYeUlBQMHToU27dvD9tev379oJTCtm3bwuZVLGNVUUrhxRdfBAD0798/5PMJbjuW8vjBBx+gT58+SElJQXp6OoYPHx71PFcm1ms8FtW5LseMGQOlFG677baweZs3b0ZKSgpSUlKwZcsWc3rFz2Dx4sU444wz4PF40LRpU+Tm5mLnzp1xOc6K53nZsmXo378/GjduDKWUeZ+NVOWqYjkoKirCTTfdhNatW5v3tHfeecdc9o033kBOTg6Sk5PRrFkzXHfddSguLo4Yu9frxdy5c9GtWzfzvPTo0cMsR0cK3ud1Xcf999+PDh06wOVyoXXr1rj99ttRWlpqLhu8DwfLfMXyWPFvRWFhIebOnYvTTjsNaWlpSElJQdu2bTFq1CgsW7Ys6nknIoqJUKUASLTT9Le//U0AyJAhQ0REZP/+/QJAlFLy+++/12h/eXl54na7xel0ysGDB0VEpFevXgJA/vWvf1V7e//zP/8jAMRut8t5550nY8aMkVatWgkA6dChg+zZs8dc9uabb5YRI0YIAGnWrJnk5uZKbm6u3HzzzTHt6/bbbxcA4nQ6pXfv3jJy5Ehp3769AJC2bduG7EtE5MEHHxQAcu6554phGOb0pUuXmvEVFhaa01euXGme7+OPP16aNWsmo0ePlgEDBojdbhcAMnv27LC4fvrpJ2ndurUAkOzsbBk6dKice+654vF4BIA8+OCDIctv3bpVAMhZZ50lXbt2lfT0dBk2bJgMHz5c7rrrLhERWbRoUcT95ebmCgC57rrrxGazSZ8+fWTkyJHmOe/bt6/s379fTjzxRGnTpo2MGTNGcnJyBIC4XC759ttvw+KfN2+eaJommqZJTk6OjBo1Srp06SIAJDMzU3744YeQ5WfPni0AZPr06eLxeOTUU0+VMWPGyGmnnSYAxO12y3fffWcuP3fuXOndu7cAkNNOO8383HNzc+Wzzz6r/EOPYO7cuVE/i6rcd999AkDuvPPOiPPnz58vAGTmzJnmtCeffFIAiM1mk3POOUfGjRsnAwYMMM95rNq0aSMA5IYbbpCkpCS56KKLZPDgwZKamioA5K9//ausWbNGPB6PnH766TJ69Ghp166dWb69Xm/I9vr27SsAZOvWrWH7Cpaxvn37hkyPVK5yc3Olbdu2AkAGDRoU8vns378/6nrBdQHItddeK0op6d69u4wdO1Y6deokACQtLU02btwYsk7wOsvNzQ2Lu7rXeGWqe10eOnRIWrVqJZqmyYoVK8zpPp9PzjzzTAEgzz33XMg6wc9g+vTpopSSc845R8aOHSvZ2dkCQFq1aiW//vprrY8zeJ6nTZsWcp67d+8ueXl5IvJH+aooWA569uwpOTk50rRpUxk5cqT069dPNE0Tm80my5cvl4cffti8h1966aWSkZEhAOSyyy4Li33v3r3m/SErK0suuugiufDCCyUtLU0AyIwZM8LWASBt2rSR0aNHS0pKigwePFgGDx5srjN+/Hhz2U2bNklubq4kJyeb5eTIvxV+v9+8rzVp0kQuueQSGT16tPTq1Us8Hk/EskVEVB1MYKoQLYExDEN69uwpAGTWrFkiIrJ8+XLzD1xNLViwQADI0KFDzWlPPfWUAJBRo0ZVa1vr168XTdMkJSVF/v3vf5vTS0pKZNSoUQJARowYEbJOtAerqrz++usCQDp37ixbtmwxpxuGIX/9618FgIwZMyZkHcMw5Nxzzw15WNm1a5c0adJEHA6H/Oc//wlZPvhgBUAGDBgQktysX79eUlJSRNM0+eqrr8zpfr9fTj31VAEgDzzwgOi6bs7bsmWLnHDCCWKz2UIe6IPnIPhgESkZreqBUdM0effdd83p+fn50rlzZwEgnTp1kgkTJojP5zPn33nnnQJAJk6cGLK9devWic1mk5YtW8qXX34ZMi9YVnJyckKmBxMYAPLYY4+FzLvhhhsEgFx++eUxHU9N1CaB2bFjhyilol5Dffr0EQAh5fn4448XpVRYeTEMQ1auXBnzvoMPmC1atJCff/7ZnL5p0yZxuVzi8XgkOztb5s+fb84rLS01y/Dzzz8fsr14JTAif5SraMdT1XoA5NlnnzWnG4ZhPqR37do1ZJ1oCUxNrvFoanJdioisWLFCNE2TVq1ayaFDh0RE5M9//rMAkGHDhoXtJ/gZ2O12ee+998zpPp9Pxo8fH3avrelxVjzPS5YsiXjMlSUwwS9yKt7Tgp9pu3btJD09PaR879y5U5o2bSoA5P/+7/9CtnnRRRcJALn++uulpKTEnL5nzx4z0fvggw9C1gnGcPLJJ8vu3bvN6b/88os0btxYAIRcE9GOJ2jFihUCQLp37y7FxcUh8w4fPhx2LyMiqi4mMFU4MoHx+/2yefNmmTRpkvmtefDGvmTJEgEgPXr0qPH+gn9w33jjDXPagQMHxOFwiNvtNr/Ni8XEiRMFgNxxxx1h8/bu3StJSUmiaZrs2LHDnF7TBCb47f6RDxwigT/8Xbt2FZvNZn5jHPTrr79Kenq6OJ1O+frrr2XgwIECQO69996w7QQfrDRNkx9//DFsfvCBbOrUqea04NucIxO1oLfeest8YxJU8aHiyIfioKoeGCdMmBC2zmOPPSYApFGjRubDV1BeXp4opaRNmzYh04cOHSoA5J133okYxyWXXCIA5OuvvzanBROY3r17hy1/4MAB89vWWI6nJmqTwIj8cQ2sW7cuZPq2bdtEKSXt2rULmZ6UlCTp6ek1DdcUfCBbsGBB2LxLL71UAEifPn3C5r399tsRH/jrUgLTq1evsHV8Pp/5lqrim7ZoCUxNr/FIanJdBt16660CQEaPHi2ffvqpaJomzZs3j7jf4GcQ6U3FgQMHxOPxiFIq5B5Yk+MMnueLL7446jFXlsBomiY//fRTyDxd16VJkyYCRH4jeeONNwoAWbRokTltw4YNZuJQMSkM+vrrrwWAXHLJJSHTg/e75cuXh60zY8aMsP1EO56g1157TYDA20wioqOBbWBiFKzja7fb0aFDB7zwwgtITU3Fq6++irZt28ZlHzt27MCnn36Kxo0bY8iQIeb0jIwMXHTRRSgpKcEbb7wR8/Y+++wzAMD48ePD5jVt2hQDBw6EYRhYu3ZtreLet28fvvnmG7Rv3x6dO3cOm6+UQu/evaHrOr766quQea1atcIzzzwDn8+Hfv364aOPPkKfPn3wpz/9Ker+unbtipNOOils+rhx4wD8cdwAzJ7ehg8fHnFbZ599NoDAuDtHat68Oc4888yocVRm4MCBYdNOPPFEAMCZZ56J9PT0kHlpaWk47rjjsHv3bnOaYRj45JNP4PF4MGjQoGrHHymGjIyMsP3UNcHy+o9//CNk+j/+8Q+ISFh5PuOMM/D7779j6tSp+P7772u9/8o+u8rm1eVzOnbs2LBpDocDI0eOBBB6zURSm2s8ktpcl/feey+6du2K119/HYMHD4aIYNGiRZV2YBDp+DMyMjBw4ECICNasWROX47zkkkuixlCZ7OxsdOjQIWSapmlmm8RYy13wvA4bNixiJyzBNjGRzqvD4UD//v3Dpgfjqk757tq1KzRNw6JFi/Dcc8/VqH0UEVFlmMDEKDgOzOTJk3H99ddjwYIF2L59Oy699FJzmYyMDACBgSBr4pVXXoGIYOTIkXC5XCHzgo35gw38Y7Fr1y4AiNoIPzi9soassQg2JN6yZUvYwJ/Bn3nz5gEADhw4ELb+qFGjcOmllyI/Px8ejwcvv/wybDZb1P0F/6hHO57gcVeMbfz48RHjyszMjBrX8ccfX+WxR9OyZcuwaSkpKVHnBedXHEPlwIEDKCwshNfrhdPpjBj/rbfeGjX+Vq1aRdxPampqnR6rJVj+X3vtNei6bk4Pjod0ZAIzb948nHDCCXj++efRuXNnZGVlYcyYMWHrx6q6n11wXsWGznVNda6ZSGp7jUfbXk2uS6fTaTZGz8/Px9VXXx01wQ+K9fhre5w1vWdUdk+INj9SuQvGP2vWrKjxFxYWRow9Kysr4n03NTU1bD9V6dChAx544AF4vV5ceeWVaNq0KU477TTcdNNN+Pbbb2PeDhFRNBwHJkax9MZ02mmnAQB++eUX5OXloXHjxtXaR7Cr5FWrVqFPnz4h84IPnJ9++im2b98e9Q9ydcRrEDLDMAAE/gDW5EFi9+7d5jfAXq8XP/zwQ7V6PosltgsuuKDSXuEifXvrdrtrvN/KuqCOtXvqYOwpKSkYMWJEpcuecsopNd5PXZOeno6LLroIS5cuxccff4xBgwbhm2++wffff4/u3bujffv2Ict36dIFP/zwAz788EO8//77WLVqFV5//XW8/vrr6NmzJ1atWgWn0xnz/uPx2VUl+NlaRW2v8Wjbq8l1CQR6ZQzauHEjdF2v9EuPWNX2OGt6z6iqXFX3ntGnT59q1wyI9/3i5ptvxujRo/HPf/4Ty5cvx2effYZHHnkEjz76KB555BFcf/31cd0fETUsTGDiKDMzE2eddRbWr1+PJUuW4Oqrr4553a+++gqbNm0CAPz888/4+eefIy4nInjllVfw5z//ucpttmjRAlu3bsX27dvRqVOnsPnBb+uiffsXq+A3/U2aNKl2t7sigsmTJ+PAgQMYN24cXn/9dUyZMgXfffed+S3skSJ1WVtxeosWLcJiu+KKK6pMAuqaJk2awO12m1UxGtKo1+PHj8fSpUvxyiuvYNCgQebbl+CbyCO53W4MGzYMw4YNAwB8//33uOyyy7Bu3TosWLDAHE/pWAomTYWFhWHzKna9fixU55qJpDbXeGXbq8l1uWbNGtx///3IyspC586d8fHHH+Nvf/tbpYOnbt++HV26dIk4Hfjj+ON9nMdaMP5hw4bh5ptvTnA0QOvWrTFz5kzMnDkTfr8fS5YsweTJk3Hbbbdh4sSJYVVpiYhiZc2vaOuwW265BUBgLI59+/ZVumzF8TiCVcNuueUWSKBzhbCf4DghsVYjC9Yjf/XVV8Pm7d+/H8uWLTPrdNdGq1at0LFjR/zwww/YvHlztdZ94oknsGzZMvTu3Rsvv/wyZs2ahb1792Lq1KlR19m4cWPIWA9BS5YsAYCQt1cDBgwAACxdurRacdUFdrvdHIvmk08+Oar7Cj5sVxxbJZEGDx6MtLQ0/POf/0RRURFeffVV2Gw2jBkzJqb1TznlFEyfPh0A8N///vdohhpV8+bNASDiNbF8+fJqbau2n8/rr78eNs3v9+PNN98EgLA3vkeqzTUeSU2vy/z8fFx++eXQdR2LFi3C4sWLkZmZiTlz5uCLL76Iul6k4z906BA++uijkHtgvI/zWDuW97vqlkm73Y4JEyage/fu8Pl8Ee/hRESxYgITZ6NGjcLYsWOxd+9enHPOOVi3bl3YMnv27MGMGTPMb5N1XTeTjGBD9EjOPvtstGzZEps2bYqpoez06dOhaRoef/xxfPnll+Z0n8+HmTNnori4GMOHD0fr1q2re5hh/vKXv8AwDIwYMQIbN24Mm3/w4EE899xzIdN++OEH3H777UhNTTXbvfzlL3/BWWedhXfeeQdPP/10xH0ZhoGZM2fC6/Wa07766is8+eSTUErhmmuuMaePGDECnTp1wiuvvII5c+aE1eMWEaxdu7bWHRkcLbNmzYKmaZg8eXLEgS4LCwvx/PPPRx3QLlbBb6B/+umnWm0nXlwuF0aOHImCggLccsst+O2333D++eeHVTfyer14/PHHwwZlNQwDH374IQDEpXzXRN++fQEAf//730PK6ooVK/Doo49Wa1u1/XzWrFmD559/PmTa7NmzsWPHDnTp0sX8sqMyNbnGo6npdTljxgxs27YNM2bMMKufLViwAH6/HxMmTEBRUVHE/b322mshgyf6/X7ceOONKCoqwuDBg0ParsTzOI+1nJwcDBgwAGvXrsX06dORn58ftsw333xjXhu1UVmZXLlyJT7++OOwqpJbt27Fpk2boJSK2kaPiCgmiej6zEoQZRyYyvh8PpkyZYq5bseOHWX48OHmoIU2m80cy0RE5P333xcgMHBjVW666Sazj/9YBAfbtNvtcv7558vYsWPNwePat28fNiBbTbtRFvljPAZN0+T000+XUaNGyciRI6Vbt25is9kkLS3NXLa0tFS6du0qAOTFF18M2c7mzZslOTlZPB5PSHfJwe5dBw8eLK1bt5asrCwZPXq0DBo0SBwOR9TuRjdv3iwnnHCCAJCmTZvK+eefL5dddpkMHDjQHEvhkUceqdY5qEl3t5UNECgSvVvS+fPnm2Wmc+fOIWXJ5XIJgJCxaoLdKB/Z7Wll+ykuLjbPRd++fWXy5MkydepUWbt2bdRzUNGwYcMkJydHcnJyzPLVsmVLc1qkMTqqEhxLIvjz8ssvhy3z+++/CwBxOBzSo0cPGTt2rAwfPjxkgMQDBw7EtL/KuoWt7JxGKy9er1dOOukkASDHH3+8jBgxQnJyckTTNLnllluq1Y3yl19+KUopcbvdMnToUJk6dapMnTrVPLaqyuM111wjSik566yzZNy4cXLKKaeYXXpX7IJbpPJyWp1rvCrVvS6D47N06tQpbNDQadOmhXWhLhI+kGXfvn1l7Nix5n5btGgh27dvr/VxVtXNtUjl3ShHu9dU1hV3tM9879690q1bNwEgjRs3ln79+slll10mF198sXldHPn3AxG6Vq9qP3//+98FCAx6PHbsWJk6darcfvvtIiLyyCOPCBAYaPeCCy6Q8ePHy8CBA837VcWBaImIaoIJTBVqksAEff755zJlyhRp166deDwecblc5mjHb7/9tjn6/Lhx42IeN+M///mP+Qe/rKwspjjeffddOe+88yQtLU2cTqe0a9dObrvttrCxSERql8CIiKxevVpGjRolLVq0EIfDIRkZGdKlSxeZMWOGrF692lwuOJZDtME5n3nmGQEgZ5xxhjngY8UHq507d8qECRMkMzNTXC6XnHbaaVEf2EUC46zce++9cvrpp0tKSoq43W7Jzs6WQYMGybx580LGdKhrCYxIYHyH3NxcadOmjTidTmncuLGccsopMmXKFHn33XfNsiRSswRGJFC2BgwYIGlpaaKUqnQb0bYZ7Sfaw1FldF03xynxeDxSUFAQtkxZWZnMmzdPhg8fLm3bthWPxyONGzeWLl26yN133y0HDx6MeX/xTmBERH777TcZN26cpKenS1JSkpx55pnyxhtvVHscGBGRV155RU4//XRJSkoyz2vwwTaW8vjOO+9Iz549xePxSFpamgwdOlS+//77sP1UVU5jvcZjEet1+dtvv5njRW3YsCFsO4WFhdK+fXsBIG+99ZY5vWICsGjRIunatau43W7JyMiQyy+/XH799deosVXnOOtSAiMS+ELi8ccfl169epn3/datW0vfvn3lwQcfDDvumiQwZWVlcuedd0rbtm3NL5CC29iyZYvceeed0rt3b2nevLk4nU5p2bKlnHfeefLmm2+G3K+IiGpCiYhEeztDVJesWrUK/fv3R25uriUb2BIda5MmTcKLL76IlStXol+/fokO55jr168fVq9eja1bt8atZ0MiIko8toEhIiIiIiLLYAJDRERERESWwQSGiIiIiIgsg21giIiIiIjIMvgGhoiIiIiILIMJDBERERERWQYTGCIiIiIisgwmMEREREREZBlMYIiIiIiIyDKYwBARERERkWXYEx1AXZKXlwev15voMKgB83g8aNy4ccR5LJ+UaCyfVFdVVjaJqP5hAlMuLy8PTz75JPx+f6JDoQbMbrdjxowZYX+IWT6pLmD5pLoqWtkkovqJCUw5r9cLv9+Pbt26ISUlJdHhUANUWFiIDRs2wOv1hv0RZvmkRGP5pLqqsrJJRPUTE5gjpKSk8AZIdRbLJ9VlLJ9ERHQssBE/ERERERFZBhMYIiIiIiKyDFYho1p79913sWLFCmzbtg09e/bErbfemuiQiAAAjz76KD799FPY7X/c6ubNm4fMzMwERkUNVVXlcf/+/XjiiSewadMmpKWlYeLEiTjnnHMSFS4RUZ3FBIZq7bjjjsPo0aOxceNGFBQUJDocohBDhw5Fbm5uosMgAlB5eXzooYeQnZ2NWbNmYfPmzbj33nvRpk0btGnT5hhHSURUt7EKGdVar1690KNHDzRq1CjRoRARWdKuXbuwefNmXH755XC5XDj11FNx1llnYcWKFYkOjYiozuEbGCKq15YtW4Zly5ahSZMmGDJkCAYMGJDokKgBi1Yet2/fjszMzJBuqE844QR8++23iQqViKjOYgJDRPXWkCFDMGXKFCQnJ+P777/H/fffj+TkZPTq1SvRoVEDVFl5LCkpCRtDJzk5GcXFxQmKloio7mIVMiKqt9q2bYtGjRrBZrOhS5cuuPjii7F27dpEh0UNVGXl0e12o6ioKGR5r9eLpKSkRIRKRFSnMYEhogZDKQURSXQYRABCy2ObNm2wf/9+FBYWmvN/+eUXNuAnIoqACQzVmq7r8Pl8MAwDhmHA5/PB7/cnOiwirFmzBl6vF4Zh4IcffsB7772HHj16JDosaqAqK48tWrRAu3btsHjxYpSWluK///0v1q9fj3PPPTfBURMR1T1sA0O19tprr2HJkiXm/9euXYtzzz0XN9xwQwKjIgqMUTRv3jwYhoEmTZpgwoQJHFeDEqaq8njrrbfi8ccfx/jx49G4cWNce+21fANDRBQBExiqtcsuuwyXXXZZosMgCnPfffclOgQiU1XlMTMzE3PmzDlG0RARWRerkBERERERkWUwgSEiIiIiIstgAkNERERERJbBNjBHqNiFJdGxFEvZY/mkRGH5pLqK5Y6o4WECUy7Y7e+GDRsSHAk1dJG6oGb5pLqC5ZPqKnbfT9RwMIEpZ7cHTkX//v2Rnp5e5fI2mw2pqakoKCiArutHO7wasUKMgDXiPBYx/v7771i5cqVZFiuqTvm0wvkErBGnFWIEWD6PBivEaYUYgaMfZ2Vlk4jqJ17tR2jfvj1atGhR5XIiAr/fj9atW0MpVev9GoaBPXv2ICsrC5oWn6ZJ8Y4RsEacVogRCI9z165dWLlyZaXrxFI+G+rnDsQ/TivECLB8WuGcWiFGwBpx1qRsElH9wkb8RERERERkGUxgiIiIiIjIMpjAEBERERGRZTCBISIiIiIiy2ACQ0RERERElsEEhoiIiIiILIMJDBERERERWQYTGCIiIiIisgwmMEREREREZBlMYIiIiIi8Hf6OAAAgAElEQVSIyDKYwBARERERkWXYEx0AERElhiGCYr/AZwB2DfDYFGyaSnRYRERElWICQ0TUAOmGgUM+gVcHHArQDMBnAI2dgE0xiSEiorqLCQwRUQMjIsjzCXYXAxAACki1A2IT+AyFJFuiIyQiIoqObWCIiBqYMgEOlgJ+A3DaAbsCDpcBxTpgGJLo8IiIiCrFBIaIqIHx6QZKdEBTQFl5+xcIUKoDDraBISKiOo5VyIiIGhBDBAdLgTw/oJVXH/PYyn/bAaeNCQwREdVtfANDRNSAHCw2sKsYEB3w6YBfB7x+IMkGNHElOjoiIqKqMYEhImog/LqO7V7AWwYoDVA2QKlAO/7jnIDHzj8JRERU9/GvFRFRA3GgFCgsAwwA/vJpBgKN+JNtgGL3yUREZAFMYIiIGgC/ITjsA2y2wNsXQwcMCTTi1xTgsjN5ISIia2AjfiKiBsAvgeTFoQUa7/vtQJkOuLRA9TEFJjBERGQNTGCIiBoABcBtA5I0oFgAGwIJTYYDaOQMtIUhIiKyAiYwREQNgEMDUmwKhkuglQYGs0yxAakOIMWuYGMGQ0REFsEEhoioAdCUQiNnIJFJtgn8ArhsgNumwcXWkEREZCFMYIiIGghNKSQ7FJIdiY6EiIio5vi9GxERERERWQYTGCIiIiIisgwmMEREREREZBlMYIiIiIiIyDLYiJ+oninVBQVlgKYbcNsUPHYFxS5yiYiIqJ5gAkNUj5T4DRwoEfh1wOkASg2BDqCRgwkMERER1Q9MYIjqCRHBLq9gfymgA3CVAekuwKYEyXbhQIVERERULzCBIaonDpQa+M0L6BJo3FamgFIDaJGU6MiIiIiI4oeN+InqgRJdsMsLlAogAKACI66X6IEfXuhERERUX/ANTAUpKSmw2+0QkSqXDS4Ty7KxEBFz3/HcZsXf8dpmXY/TCjEGt1UxTru98ssxKysravk8VGKg0A8Y5bN0AUQAVZ7I1DZ2q57TeGyv4u94sOq5rE35PNaxxmubFX/HY3t1Pcbgtup6nNUtm0RU//Cqr6Bbt25IT0+H3++PeR1d1+O2//T0dBiGAcMw4rZNIL4xAtaI0woxAqFxpqenV7rs1KlTASCsfBoGsLck8Dv4pkUA+MVAsgYkKcDvr/15sOI5jRcrxAjUzfIZTUM8p1aIEbBGnNUpm0RU/zCBqWDDhg049dRTkZmZWeWyIgJd12Gz2eLSRa1hGDh48CAyMjKgafGp8BPvGAFrxGmFGIHwOPfv31/p8gsXLsTw4cPDymeez0CpAHYNcAMoMQDAgAYNzZOADI+CXatdzFY9p7VlhRiBul0+ExFrPPC+VHfjrG7ZJKL6hwlMBYWFhfD7/dW6wSoVnzE2lFLmvuM9Zkc8t2mFOK0QY3BbFeOs6pvrPXv2hJVPvyEo1oEkDdAV4LIBNh2AABkuoGWKBkctk5dIscaTFcqnFWIMbrsulc+qtt+QzqkVYgxuq67HWd2ySUT1D9v2ElmYzxCUGoDbBhgAlABODfDYgFbJiEvyQkRERFSX8A0MkUXphqCgTFCqB6qPJdkCDffdADKcgMfO7yeIiIio/uETDpFFlegCUQqNHYBCoPqYXQOauIE0R6KjIyIiIjo6+AaGyKKCVcZcdg12m0AXoFQXpDgALX69qhIRERHVKXwDQ2RRDk1BFGCIwK4UNABJNsV2L0RERFSvMYEhsiiXBqTYgDIJVCcDgDSHgi3OPQcRERER1SWsQkZkUUoppDgU3DaBANAUYFMqrqNyExEREdU1TGCILK62g1QSERERWQmrkBERERERkWUwgSEiIiIiIstgAkNERERERJbBBIaIiIiIiCyDCQwREREREVkGExgiIiIiIrIMJjBERERERGQZTGCIiIiIiMgymMAQEREREZFlMIEhIiIiIiLLYAJDRERERESWwQSGiIiIiIgsgwkMERERERFZBhMYIiIiIiKyDCYwRERERERkGUxgiIiIiIjIMpjAEBERERGRZTCBISIiIiIiy2ACQ0RERERElsEEhoiIiIiILIMJDBERERERWQYTGCIiIiIisgwmMEREREREZBlMYIiIiIiIyDKYwBARERERkWUwgSEiIiIiIstgAkNERERERJbBBIaIiIiIiCyDCQwREREREVkGExgiIiIiIrIMJjBERERERGQZTGCIiIiIiMgymMAQEREREZFl2BMdQDx99913mDVrVsR5DzzwADp27HiMIyIiIqLaEBHoEvi3TSU2FiKqG+pVAhM0ZMgQtGvXLmRaixYtEhQNERER1YQhgvwyQakOCAC3BiTbJdFhEVGC1csEplOnTujdu3eiwyAiIqJaKPQLSnTAVV7hvUQAw5/YmIgo8eptGxiv1wtd1xMdBhEREdWQzwDsClBKQSkFpwLKyt/GEFHDVS/fwDz++OMoLi6Gpmk45ZRTMGnSJLRv3z7RYREREVE1KABGhf8bUj6RiBq0epXA2O129OrVC2eccQYaNWqEX3/9FUuXLsUdd9yB+++/H23btk10iERERBSjZLvCYZ/AZwTeuRgCpNiA/ATHRUSJVa8SmJNPPhknn3yy+f+cnBz06tUL1113HV566SXcfffdIcvv3r0bu3fvBgDs378fRUVFAADDMFAVEYFhGDAMA0rV/uug4D5j2Xes4h0jYI04rRAjUP04HQ5HTMvXhVhjYYU4rRAjUDfiZPmsnBViBOpenE4FNLILSsrDcWqAU0ncYyQia6lXCUwkLVq0QE5ODtatWwdd12Gz2cx5zzzzTEhSM3bsWADAnj17jnmcQfv27UvYvqvDCnFaIUYg9jgnT54MgOUzFlaI0woxAiyf8WaFGIG6G2dxhX/X1RiJ6Oir9wkMADRp0gR+vx+lpaXweDzm9KuuugqXXHIJgMAbmI8//hgAkJWVVeU2RQR+vx92uz1u387t27cPTZs2habFp2+FeMcIWCNOK8QIhMdZ1YPfokWLMHny5CrLZ0P93IH4x2mFGAGWTyucUyvECFgjzuqWTSKqfxpEArN37144nU643e6Q6c2bN0fz5s0BALt27cK6desAIKabtohA0zRomha3PxzBfcfzj8bRiBGwRpxWiBGIPc6ysjJz+crUhVhjYYU4rRAjUDfiZPmMjRViBKwRZzxjJCJrqVdX/uHDh8Ombd26FevXr0fXrl15oyMiIiIisrh69QbmgQcegMvlQseOHZGWloZff/0Vy5Ytg8vlQm5ubqLDIyIiIiKiWqpXCUyPHj2wevVqvP322/B6vUhLS0PPnj0xduxYtGjRItHhERERERFRLdWrBGbIkCEYMmRIosMgIiIiIqKjhI1CiIiIiIjIMpjAEBERERGRZdSrKmRERESJIiLw+gXF5QPEJ2mAx67i3sUxEVFDxzcwREREceD1Cwr8ACTwU+APTCMiovjiGxgiImpQSnVBsS4QAZxxeksiEnjzYleAXSvfliEo1gGPnUkMEVE8MYEhIqIGo1QX5PkESgEKQKkfMCBIdcShmtcReYpSgMHchYgo7liFjIiIGoxiPZC8ODUFh6bg1ACvDuhSu0xDKQW3DSiTwLZ0EfgMwG0D28AQEcUZ38AQEVGDIRJ48xJk/lsQOqMGku0KAkGJHvh/ij0wjYiI4osJDBERNRhOLVBtzCYCBcBnBKZpccgzlFJIdSiklLd54ZsXIqKjgwkMERE1GB67ggGBt/wtiVMDUh3x7eqYiQsR0dHFBIaIiBqM4FsSj10ACbx5YcJBRGQtTGCIiKjBsQW7IatAF0GJXyAAbAqwsQcxIqI6iQkMERE1eLoEulcuMwJ5jQFBEoA0R6IjIyKiI7EbZSIiavCK/YIyAdw2BZdNwaUBRTrg50AuRER1DhMYIiJq8HSE/kHUlIIgbGxKIiKqA5jAEBFRg+dQgC6AlA9o6TcENhWf7pWJiCi+2AaGiIgavCSbgs8IDEKpyt+7pNrLG/sTEVGdwgSGiIgaPKUU0hyAxw6IBHohEz3RURERUSRMYIiIiBBIYpzlL1xEAH9iwyEioijYBoaIiIiIiCyDb2CIiIiqQTfE7LXMXoNW/iKCYr18zBkVaH/jYG8BREQxYwJDREQUI6/fQKE/UMUMCki1Czz26lVmKPQLivyBHs4MAUp1QWMnmMQQEcWIVciIiIhi4DMEBWWBBv4um4JdAQVlgemx0kXg1QGnBjg1BbdNwRCgWOeIM0REsWICQ0REFAO9/K1LsGtlm1KQ8vFjYmWUj46pVeieWZW/iSEiotgwgSEiIoqBQqDqWHCwSxEBJDA9VjYF2LU/3toYIjAk8EaGiIhiw1smERFRDJwa4NaAUiOQgJQagEurXvKhKYVGDgVNASXlDfk99kBDfiIiig0b8RMREcVAUwqNnIDDL/Aj8Ac0ya5CqoPFwqEpHOcMVD1TCLyVUdXcBhFRQ8YEhoiIKEaaUkh21D7Z0FTgLQwREVUfq5AREREREZFlMIEhIiIiIiLLYAJDRERERESWwQSGiIiIiIgsgwkMERERERFZBhMYIiIiIiKyDCYwRERERERkGUxgiIiIiIjIMpjAEBERERGRZTCBISIiIiIiy2ACQ0RERERElsEEhoiIiIiILIMJDBERERERWQYTGCIiIiIisgwmMEREREREZBn2RAdQl6SkpMBut0NEqlw2uEwsy8ZCRMx9x3ObFX/Ha5t1PU4rxBjcVsU47fbKL8esrKyYymdD/dyD24pnnFaIMbjNir/jtU2Wz4ZzX9JFYAiAOh5ncDvVKZtEVP/wqq+gW7duSE9Ph9/vj3kdXdfjtv/09HQYhgHDMOK2TSC+MQLWiNMKMQKhcaanp1e67NSpUwEg5vLZED934OjEaYUYAZbPun5O62qMxX6gSAcMAJoCklPrZpwVVadsElH9wwSmgg0bNuDUU09FZmZmlcuKCHRdh81mg1Kq1vs2DAMHDx5ERkYGNC0+NfviHSNgjTitECMQHuf+/fsrXX7hwoUYPnx4leWzoX7uQPzjtEKMAMunFc5pTWIUEQRTCFuEGOIRY5kh8IrAYQfsmkKZLth9OB9tMhrBZbfGuayqbBJR/cMEpoLCwkL4/f5q3WCVUnG5ISulzH3H6496xW3Ha5tWiNMKMQa3VTHOqr653rNnT7XKZ0P73IPbOhpxWiHG4LZZPuvmOa1ujLoICsqA0vJaV0k2Qao98rq1iVEHoLRA8gIAdk2gGzqM8u3G09E6l9WpNUFE9QMb8RMREdUhIoKCMkGJAE4FOBRQ5Ae8/vi1GwpSAEQqtlP5YzoRUV3FBIaIiKgOMQCUGoHkRSkFTSk4FFAS3yYpAACnFvgpNQCfISg1ADsMOPh0QER1GKuQERER1SGq/Kfi+xYDgOMo7EtTCmlOoMQv8EugEb8OP7Q4Vx8jIoonJjBERER1iKYUPDZBoR8wlKC8d2MkOY5OUmFTCsnl2zYMAwVHZS9ERPHDBIaIiKiOSbYrKAh85dXGPA4Fl41vRYiIACYwRERENSIiKBPAKK965dTi2/NdskMhOW5bJCKqP5jAEFXC7/fD7/ebPfRwxGciAsp7CvMLvOU9+CoAKXZBMlu/ExEddXwaI4rC7/cjPz8fhmGYI0grpeB2uxMcGRElms8AvHqgBy9NKRgiKPADDpvE9U0MERGF41dFRFF4vV7oug6n04mkpCQopVBYWAjDOAp9mRKRpRjlXYQFe+sK/jbiP1QLEREdgQkMURS6rodUGdM0DSLCBIaIoMr7Of5jAEgBFP+oNiRKKSil0LhxY+Tl5UVc5r777oNSCnfdddexDa6Wli9fjj59+iA1NdU8TgrVr18/KKWwbdu2RIfSIPFeSxSF3W6H3+83/6/rOjRNg6bxsiFq6Fwa4LYFBoAs0QUlBuCxwZIDQIoIfEbgRxe+Qqquw4cP4+GHH050GHGzY8cOXHrppVi/fj3OPvts5ObmIjc3N9Fh0VFmtYSMbWCIokhKSkJZWRlKS0vNaSkpKUxgiAhKKaQ5AklMsBcylwbLfVNtiCC/TFCiA1CAMgA/rHUMiaSUgsvlwmOPPYYbb7wR6enpiQ6p1j7++GMUFRXhL3/5C+65555Eh1NnvfTSS/B6vWjZsmWiQ2mQ+CRWTxmGgZKSEni9XpSWlrLaUw3Y7XY0btwYjRo1QkpKCho1agSn05nosIiojlBKwW1T8NgDv62WvABAsT+QvLg0wK0pKAV4YYfBNzEx0TQNV155JfLz8/HQQw8lOpy4+O233wAAJ554YoIjqduOP/54dOzYEQ6HI9GhNEhMYOohwzBw+PBhFBQUwOv14vDhw/B6vYkOy5I0TYPL5YLb7WYXykQWEKwOVaoL/EepRb1IoKqV1IOH/LLyt0fB5MuhAQYUdOsf2jHzpz/9CUlJSXjiiSdw8ODBmNfzer2YM2cOOnfujKSkJKSlpeGcc87BkiVL4hpfrPtZtWoVlFKYPXs2AGDy5Mlm+5dY2/B4vV7MnTsX3bp1Q0pKClJSUtCjRw+8+OKLYcvefvvtUEph9OjRYfMOHDiAFi1awGazYc2aNeb0SZMmQSmFVatW4YMPPkCfPn2QkpKC9PR0DB8+HD/++GPU2L744guMGjUKzZs3h9PpRKtWrXDFFVdgx44dYcveddddUErhhRdewPr16zF48GBkZGRAKYWNGzcCiF7lSimF7Oxs+P1+zJkzB+3atUNSUhJOPvlkLFq0yFxuxYoV6N+/Pxo1aoT09HRMnDgxavnx+/2YP38+evbsiUaNGiEpKQldu3bFo48+GlLVPSg7O9u8phcsWIAuXbogKSkJWVlZuOqqq0LabG3btg1KKaxevRoAcMIJJ5ife8UvZXw+H5566il0794dGRkZ8Hg8yM7OxuDBg+NeZmPBJ7J6qLi4GGVlZXC73fD7/dA0DSUlJXwIJ6J6TURQ6A90b6wQaGif5kBcR7D36YJ8v0AXwKaAVHt8t3+saQqomIfpgb4IwJ6gY9e8eXNcffXVeOSRR/Dggw/ivvvuq3KdgoIC9O/fH1999RUyMzMxePBgFBUVYcWKFfjss8+wbt06PPbYY7WOrTr7ycrKQm5uLjZu3IhvvvkGvXv3Rrt27QAAXbt2rXJf+/btw4ABA/Dtt98iKysLffv2hYjg888/x6RJk/Dll1/iiSeeMJefM2cOli9fjjfeeAMvvvhiSDubadOmYffu3Zg1axb69OkTtq833ngD8+fPx5lnnokhQ4bg22+/xdKlS7FixQqsXr0ap512WsjyTz31FGbOnAkA6N69O84++2z89NNPWLhwIf71r39h9erVOPnkk8P28+mnn+LKK69Ehw4dMHDgQOzatSvmauSjR482k5S2bdti9erVmDJlCgAgNTUV48aNQ48ePTBo0CCsW7cOL7/8MrZu3YpPP/00JHEoLi7GxRdfjJUrV+K4445Djx494Ha78cUXX+DGG2/EypUrsXTp0ohx3XbbbXjsscfQr18/tGvXDmvXrsWzzz6LTZs2YfXq1VBKISUlBbm5ufjwww+xd+9ejBgxAikpKWHbGj9+PP73f/8XqampOPvss9GoUSPs3LkTa9asQWFhIcaOHRvTeYkbIRER2blzp8yePVt27twZ0/KGYYjP5xPDMOKyf13XZefOnaLreq23VVBQIPv375fDhw/LwYMH5fDhw7J3714pLS2tU3EG1eVzGRTvGEXC46ysDFanfB6LWOPBCnFaIUYRls9grAWlftnt1eVQiS6/lxqyv1iXvcW6lOm6FJUFpueV6lLir3rfkeIs0w3ZW6zLvmJdDpYEfu8t1sXnD2yzqMwQr98QvcI6hhGYllfil//buUdKy/xxO+54nMsy3ZD9Jbrs9uqyx6vLzqJAnHW5fFanbB5NAMRms4mIyJ49e8Tj8UhycrLs27fPXGbu3LkCQGbPnh2y7owZMwSA9O/fX/Lz883pmzZtkqZNmwoAeeedd2odY032M3v2bAEgixYtqta+LrroIgEg119/vZSUlJjT9+zZI2eeeaYAkA8++CBknR9++EGSkpIkNTVVfvnlFxERefbZZwWAdO/eXcrKykKWz83NFQACQJ599llzumEYcvvttwsA6dq1a8g669atE5vNJi1btpQvv/wyZN6CBQsEgOTk5EQ8BwDk/vvvj3i8ffv2FQCydevWkOnB9Tp37hxSFlasWCEApHnz5pKRkSHvvvuuOe/w4cNyyimnCABZsWJFyPauvfZaASBjxoyRvLw8c3p+fr55zufPnx+yTps2bQSAZGVlyY8//mhO379/v7Rr104AyCeffBLT8YiI/PLLLwJA2rRpIwcOHAiZV1xcLJ9//nnEc3Q0sQpZPWS322EYhtnuxe/3QynFxudEVK/5j6gOZdcUDAAFZYL8skB1qVIDyPMFqpjVZPuGAA5NQVMKDk1BABwuE/zuExSUCfJ8gsM+gVFexazQH5hWbAAlsCGvDEetaltN2DWFxg6FVDvgsQPpDsAFPdFhWU6zZs1wzTXXoKioCPfff3+lyxYVFWHhwoXQNA1PPfUUUlNTzXkdO3bEnXfeCQC1fgNzrPYDABs3bsT777+P7t274+GHH4bL5TLnNWvWDM8++ywAYP78+SHrnXzyyXjooYdQUFCA8ePHY9OmTbjxxhvh8XiwePHiqLVGevXqhWnTppn/V0phzpw5aNWqFTZu3BhS7ey+++6Drut4+umnccYZZ4RsZ+rUqbjkkkvwxRdfYMOGDWH7OfXUU3HrrbdW/4QAePTRR5GZmWn+v3///ujWrRt2796NCy+8EBdffLE5r1GjRrjyyisBwKzKBQTeaj333HNo3bo1Fi1ahLS0NHNeamoqFi5cCKfTGXZeg+bMmYOTTjrJ/H+TJk1w9dVXAwi8XYrV/v37AQDdunVDRkZGyDy3242ePXvGvK144RNtPRQceDHYg5au60hOTrZc9TG/34+SkhKUlJSgrKws0eEQUR1nA1CxuxJDBGIISvVA2w6npuAMNlT3xyeJKDMExTrg1AJVydxaIEkq1QPVsbz+QAN5lwY4YUCXQLfLdYldU0h2aEh1aHDZFPsgq6Hbb78dycnJmD9/Pvbu3Rt1ua+++grFxcU4/fTT0bFjx7D5l19+OQBg7dq1teqA51jtBwA++ugjAMCwYcMiflkabBOzfv36sHnXXnstLr74Yqxbtw49evRAUVERHnnkEXTo0CHq/iJVV3I4HBg5ciQA4LPPPgMQaBP8ySefwOPxYNCgQRG3dfbZZwNAxNgGDx5co845HA4H+vXrFzY92DHCwIEDo87bvXu3OW3VqlUoKyvDBRdcgKSkpLB1srKy0L59e3z33XcoLi4Omx9pP8HzWnE/VenYsSOSk5Px3nvv4cEHH8SuXbtiXvdoYQJTD2mahuTkZKSkpJhJS3FxcZWjyPt8PuTl5eHQoUMoKCiI2DDsWPH7/Th8+DDy8/NRUFCAvLy8kO6MiYiO5LYDDhVIEEp1gU8CbxWUFvpQriE00YmVQwv8BDsIKNUFNgB2BWjlDzlKBfblFzH3oVV4ANIUqny/YYigRBcU64EOCcgaMjMzMX36dHi93krbwQQf/rKzsyPOb9y4MdLS0lBcXIzff/+9xvEcq/0AMBuyz5o1K6QBeMWfwsJCHDhwIOL6CxcuhNvtRn5+Pi688ELzbUQ0bdq0iTg9eKzBYz9w4AAKCwvh9XrhdDojxhV8wxIptuOPPz6Www+TlZUFm80WNj3YtiRS18vBeRWfdYLn9bnnnot6Xr///nuICA4dOhS2zVatWoVNC76Jq84zVaNGjfDcc8/B5XLhtttuQ8uWLXHSSSfh6quvxtq1a2PeTjxV6yv5jz/+GK+++ip27dqFrKwsDBs2DEOHDo26/P33349ly5ZhxYoVtQ6UqkfTNOi6Dr/fD5fLBaWU2RNZpMZZfr8f+fn5AACbzYbi4mLouo5GjRpVWvXM5/PB5/MBAFwuV9y6E/R6vRARuN1uM77CwkI4HA5WhSMiADCTCEMEfijYlEJjp0KJXyAIvFlwKsAoA3wG4NQC0/0CpIY/W1TJVj72S6Ff4Jc/uh4+7Ad0EdiUgsgf+7apQMJSZgjsKlAxXjcCSVY0hgSqoJUagU4IIECqQ+Cx875nBbfeeiueeuopPP3007jttttqvJ1j1SV3vPYT/HK0T58+aNu2bbXX/9e//oWSkhIAwE8//YTCwsKIzyo1jSslJQUjRoyodNlTTjklbFrwGaS6qnpOifU5Jhh/165dwzomOFLFanvV3U8sxo0bh/PPPx9vv/02PvroI6xevRrPPPMMnnnmGdx00034+9//Hrd9xSLmBOaWW27BI488AgBm15EvvfQSevbsiVdeeSViNvzjjz+G1OWjY6u0tBQ2m818C6OUQklJCTweT1ihLi0thYiYF4CmafD5fPD7/VHHPikpKUFhYaH5/+LiYqSlpUVdvmK7nKqqs+m6HvLthc1mg8/ng2EYTGCICD4j8KCvS6AXrUI4UKILPA4NySEZgkIjR2CwxmBS4LEDSfaaPbjZtUCSVJEBAwVlQBkCXXi5bYBb+2Owy8PlA0WWQQvsu5Jey4r9gTiDg2Lq5T2ruTSBjV2D1XlNmjTBzJkzMXfuXMydOxctWrQIWyY4bfv27RG3cfjwYeTl5SEpKalWA2Meq/0Af3zTP2zYMNx8883VWnfLli1mu5cLLrgAb731Fq677jo8//zzUdeJdkzB6cFjb9KkCdxuNzRNw6JFiyw3VlPwvPbp0yekB7dEyczMxBVXXIErrrgCIoJly5ZhzJgxePjhhzFlypSISeDREtOT4DvvvIOHH34YNpsN06ZNw7x583DzzTejSZMm+Pzzz9G9e3f85z//Odqx0lEkIiEXdlUXuWEYKCoqgs1mg9PphNPphKZpUcebCVYJO3ToEH7//fcqq7PZ7faQKmx+vx82m43JCxEBAIrKBIYAbpuC2wbYEHjQlwhjs9jKk44mLoUmToXU8uTFb0Id3zoAACAASURBVEhcBmz02DUc5wrs4ziHQprjj/ETnDaF41wK6U4gFWVItVd+f/UjtCOCwFudmlV5o8S4+eabkZqaimeffRY7d+4Mm3/GGWcgKSkJX331FbZs2RI2f/HixQCA3r171+pv3rHaDwAMGDAAALB06dJqref3+zFhwgQUFRXh4YcfxuLFi9GxY0csWrQIb775ZtT1Xn/99YjbCq4T7HrZbrejX79+yM/PxyeffFKt2OqC/v37w2az4d133z3qbYGDXz7H2nxAKYULLrjA7Izg+++/P2qxRRJTiX3qqaeglMLbb7+Np59+Gtdccw0efPBBbN68GaNHj8aBAwdw3nnnWbJw1Gcul8usRmYYBsrKyuByuSLeqJxOJ8rKyszBL71eb8jbm0hEJGRbmqZFTEoMw0BBQQF0XYfL5YLT6YTX6zVfF0eSlJQEu92OkpIS+Hw+iAg8Hk/IWxwiarh0BMZhCdIQSGii3R2UUoFqXZpCmQEc8gkOlAoOlgq8/trfUxyagtum4LSpsATFpgKdB9ggVX45ZEegp7NgIqaLQCk2WLWSjIwMXHfddSgtLcXChQvD5icnJ2PKlCkwDAPTp09HUVGROW/z5s249957AQDXXXddyHpPPvkkOnbsiDvuuCOmOGq6n5rIycnBgAEDsHbtWkyfPt2skl7RN998gw8//DBk2j333IP169djyJAhuOqqq5CUlITFixfD4XDgyiuvjNpYfM2aNWFvaGbPno0dO3agS5cuZsN8INAuR9M0TJ48GatWrQrbVmFhIZ5//vmIjeATrWXLlpgyZQq2bduGcePGRewc4ueff6402YtV8K3VTz/9FDZvw4YNeOutt8wmA0GHDh3CF198AQBo3bp1rWOojpiqkH355Zfo3r07LrzwwpDpaWlpWLJkCbp164Y///nPGDx4MF599VUMGzbsqARL1ZOUlAS/3w+/3w8RQVLS/7N370GS3eV9/9/fc+vr9Mysdle7Cz+VLMtSIgtkScSSsAiyCaAUsVRWwJaRHGsRMZDiYpcpOwRjS5SDMSZlSBwwLgMSigwuO3IwOEABRoYEkVgOBBkcsEIEAq3Y1e7O9PT9XL6/P858j3puOz07PTvTM59X1Za0PT3dz/acOd3P+X6f56lQrVZXvW+WZVhr6ff7ZFlGEATr1r/4vk8cx0RRhLWWOI5X7ZIxnDwVVxUXv3ctQRAwPT1dxJ6mKe12u9hCNjU1teZWNRHZ/UIDXQv+4gf9BJMX06/zfWlmmY/z7yl5eaewhRgCzxLtgC1alcAwyPJtZJCRWZgKlzYCkJ3vl3/5l/kP/+E/rPpBHuC3fuu3+NKXvsSnP/1pLrroIp7//OcXAyZ7vR6vf/3r+cmf/Mkl3/PUU0/xjW98Y0Pdo87mec7Wf/pP/4kbb7yR97znPfzRH/0RP/IjP8KRI0eYn5/nq1/9Ko8//jhveMMbuPHGGwF46KGHeNvb3sb555+/JNG7+uqrueuuu3jzm9/MHXfcwac+9akVif9rXvMaXvnKV/K+972PH/zBH+SrX/0qX/va12g0Gtxzzz1L7nv99dfzH//jf+S1r30tP/7jP87ll1/OJZdcQhiGPPbYY3zlK1+h3+9zyy23rPoZZru9+93v5rHHHuM//+f/zCc/+Ul+5Ed+hAsuuIB2u83Xv/51Hn30UW6++eZ1a3zWc9NNN3Hvvffy8pe/nBe96EVFy+Y//MM/5Nvf/jb//J//c6anp3nOc57DoUOHmJub4/Of/zwLCwv85E/+5DlvpTzSRZ35+fmivdtqfvVXf5V7772XNE356Z/+ae67776xBSgrZVlGp9Ph9OnTnD59mk6ns+qqhOtGNjs7y+zsLPV6fdWExD1euVzmvPPOY//+/dRqtRWZ9vLHnpqawvd9+v1+kcis9cu//OSzfMvaWs8RRRG+79PpdDDGFF1E5ufnt7VLmohsr3qYF+j3LfTS/M1sKlx/+2ti86Ql9EyxKgMQ75DWxp4xTEeGerA4DQ/oJIaFZDzb3eTcmJ2d5Rd/8RfX/PrU1BR/9Vd/xd13383+/fv58z//c77whS/wnOc8hz/6oz8ay2yWc/k8AAcPHuSLX/wi//7f/3suu+wyvvzlL/Onf/qnfPWrX+Wiiy7id37nd3jjG98I5Kset99+O2ma8oEPfGDJvBSAf/2v/zXXX389n/70p3nXu9614rl++qd/mj//8z/H930++tGP8t3vfpebb76Zhx56iCuvvHLF/V/96lfz8MMP8/M///MsLCzw8Y9/nE996lO0Wi1uu+02Pv7xjy+ZsbKTVCoVPvGJT3DvvfdyzTXX8Hd/93f86Z/+KQ8//DAHDhzg7rvv5h3veMemn+eWW27hd3/3d3nmM5/Jxz72Md7//vcXieW1117Lb/7mb3L11VfzjW98gz/5kz/h4Ycf5tnPfjYf+MAHxrICtFHGrrZheJnDhw/zD//hP1y3m9jHP/5xXvaylxHHMe9+97t5+OGH+dCHPkSa7vyhWE888QR/8Ad/wC/8wi+sWnS3nLWWJEkIgmAsRWFZlvHkk09y6NChdfeitttt2u12sb0rSRJqtRq1Wm1FjIPBoKgdWetxsyzj1KlThGGYF42maZEU7du3j0qlUnzv8jizLCsGZZ6pRmVhYYFut1sM2bTWFgX/672WvV6PZrO5pBtIr9ej0Wis2iFkI6/lqMb984aVcZ7pGNzI8XkuYh2HSYhzEmKEvXt8ZtaSZJDajJPHv8+REV7TQWo5FVtKQ3UmvdQyHZolhf3beY63Nh+MGWf5fBlL3kVtKoBa6C253148PjdybMrucscdd3Dvvffyuc99btU5K7J3jLSF7IorruDzn/887XZ7xYfkYf/sn/0zPvnJT3LTTTfx+te/fkVGLePR6/UIw7Do0uW6iw0nGpC3OF5YWMBai+/71Ov1VbddeZ5XbOkKgoCFhQX6/T6lUolOp0Oapmuu3rhVkvXUajU8zyvexMrl8oa2gC1/05u0TiIiMn6eMUQ+ZJkZuUYk8KBk8mGTvsnrZgIvTxR2igyIbR6Tmyvjm3xb2drvwCIie8dIp+yXvOQl9Ho9PvShD6173+c///l87nOf47zzzuP48eObDlCWGrWA3c11SdO0mM3SbDbX3HY1NTWF53m0Wi36/T6VSoVGo0EURUU75c1w29mmp6eLxx1VEATFVrUkSVa0hxYRGZVnDI3IUAvyAZSVAGZCs+NaFBuWNiSwqJBfRMQZ6Xx4880389znPpcvfOELIz3oVVddxRe+8AWuuOKKs55iKqvzPI9SqUQcx/nAtMXiedfG2HEJhxv86LZurZWIBEHAzMwMtVqNqampIqExxmx71y/XUKBcLmOMoVwu02g0lMCIyFnxjWEq9JgteTRCr6iD2Sk8oOzlQzoHi8M6LVA9y9k1W2kwGBRdJbf7vUJE9o6RPgFecMEF/Lf/9t829MCXXnopX/7yl88qKFmb68LlWhMHQbBq/QusPg/hTDzPo1qtrpi/4upnkiRhMBisO+ByKwRBwNTU1Dl7PhERgDiOSdMUY8ySrbtbJcnyoZuDLG82QGapBvmsmcjLB1v20/z87hvwlp3m48yS5PM0Cb08WdsqnU6naM1rrSWKoqK5i8hWuOeee1Z0GZO9SZewJ4yb0RIEQbFCsrz2BZ7eduVaFbvWyG5AZK/XK7aXuSm1kM+OqVarRdcvYwxTU1NkWVZsSXNF9dPT08X2NBGR3abX69Hr9YqV6DAMaTQaW/YBPbN5i+ckg5JnCL28eD/yyJOXzDIX58X9OUsZmF48DXeTjGYM1gA2T2Bmoq1JYtI0pdvtFqv8AP1+n36/v2a7fhGRcVECM0GSJKHb7S6ZpzIYDOh2uytWJ9y2KzfxPoqi4k1lfn6+WMnp9/ukaVoU2UNecF8qlYpWx57nMTc3V2zfCsOQLMtot9vMzMyc2xdBROQcyLKs+IDu+37R1bHT6WzZanBmIcmeLt73yYv3BxlUgU5qiS2UFyd4ptbSiaFuLQZoJflwT7clrpdZOollKhx/AuOGCg9fxPI8byK6jorI5FNN4IRZPj9leY2KSyxOnz5Nu90miiL27dtX1Iy4fcqlUokwDCmVSnS7XeI4XvI4QRAQhmFRZ+JWcBzf9/VGJSIjsdYSZ/mfSZll4j6guwYizWaTVqvFwsLC2M59ro5xxe1L7gPulJ/ZpW/avjEs7jLDLs63CYbu4JMnRFvBda90W46ttcXrJbKeVqvFb/zGb3DjjTeyb98+jDHaGiYbohWYCeKK8eM4JgzD4g1jOLEY3mLmtnsFQUCpVAJWJkBxHDM3N0ez2Sy2R0xPTy/Zkjb8RuWeK03T4jFFRNaSWsvCwNJb/CAdGUvV2zlvPm5Gifvw7c5xrvav2+3S7/eL1WhXf9hoNFZs3c2yrGiw4rbsrvWcbnuatZYwDKnVavjGUAmgnUCw2OIZA5XFFZfAQNcuJj5AO87rYdqJpWQyet0e3TQh9D1KpQqp71PeosuUvu9Tq9WKzpWQb0FebTaXyHJPPfUUb33rW7ngggu44oorePDBB7c7JJkwO+U9REbgeR5TU1MsLCwwGAwAKJfLVCoVYPUtZsO3Qd6VrNvtYq0lTVNOnTrFYDCgXq+TZRmnT58GWJHE1Gq1Yj5MkiTFm5eIyJm0YkvPQmnxdNLPIEugtAPK56y1tFoter0ekK9o1+v1oi6wVqtx6tSp4uJNGIZUq9WisH9558cTJ04wGAwwxlAqlZidnV212clgMKDVaoHngzEMunkiMzU1xVRg8Mm3jRkv7zwWLW4JqwSG2Fq6iaWTQpxB1YNuAvPdNkGW0PdCOrGlm3SZqVeplrZuRaRUKuH7frF674Yhi6zn8OHDHDt2jEOHDvHwww/zj/7RP9rukGTCKIGZMGEYMjMzU3TFcVcJ17L8zcTVwnS73aKQv1qtFglOv98vamqGHzeKIqanp4uam7NpY5wkCXEcF2/wbipzmqZYa6lWq9p+ILKL5FvHIByaeh95ln6SF6xvZYesUbhVkCiKinNRu90uCtOjKKJer9NqtVYMDx4+t1prOXnyJJ1OhyiKSJKE+fl5BoMBhw4dWtHspN/vM8AnNlG+XcwPibt9arV8FagWmlUHVnrGMB3m28SSvqURgLFgbcJCaqmWIqrGkgYeg0Gfmonwzda+zaudvZyNUqnEoUOHtjsMmWA680ygtZIWz/MIw5DBYEAURcUe7uE3GM/ziiuM3W53ybaw9bjOZ8tbibrnsdbi+/6qsSVJwtzcHO12mziOiw5qrouam1GzfOVHRCZX/jueb4Xyh+o4DPmf7eYuBLlkxNX2uSYnkJ8zB4MBcRwXF42WdyJzHbmiKCpmcyVJQqvVYn5+nunp6SX3jy10rE+J/HVJrKWLT5zB8DWcLMuKRiue5xUrQ6HJO4yFPriu9waLXayB8WxKt9dhwabEg7wrmDpGymZlWcYTTzxBt9ulUqlw5MgRvV/LtlECs4u45KTVahVbzCqVSrHFbFgQBFQqFcrlMu12u0hArLVL2iqvJ8uyJc/n+z5TU1MrkqJWq1V8AKhUKvT7fXq9HuVyGd/3CcOwWJ3RHmrZDPehz63y6Qrx9qoHhrlBPowR8mLzmr9ydXi7DAaDombFxWSMKeoDXTMU9zXXeWv5CozbShXHcdG1zPM8rLXFNt44jvO2zH5AZgeQJWTGYNOUICiRLXtMV19ijCm6oDUaDQJj8Ew+88UA1vh4nk+WDEjxWFhYIEmSYrubq9nR74KcrSzL+Ju/+Zt86+OiJ598kquuukpJjGyLkY46ay0vfOELufjii3nooYfWvf9DDz3ExRdfzD/9p/900wHKxrj2ybOzs+zbt29Je+TV7rt//37q9XrxZttoNFYtTl1Lu92m1+sRhmGxdWL4BAf5iS9NU3zfL65gujd798YM+YeG4SGaIhsVxzGtVouTJ0/SbDaLbTyyfUq+YTbKi9MrAcxEhvIO2CmapmkxmLfZbHL69Gm63W7Rbr7ZbBYF+cPnx9VmnPi+X6wku0G/aZpSr9eXdDHr9Xr5xZzBgFJUAsxiEX9EuVLGW9Zgpd/vE0VR8cdd5PE9w3RosDavKbLGcHCqSiX0i/qcRqNRfJ+LS+RsPfHEE7RareL3wVrLwsICTzzxxHaHJnvUSJdjPvrRj/LZz36WV7/61Vx33XXr3v+6667jxhtv5L3vfS9/8Rd/wUte8pJNByqjc1vMXJeyMwnDkEOHDi2530aupriOaMX+9sU32eVbMDzPI0mSonmAu911RVttu5vIRsRxzLe+9a0iealWqxw4cKCoadgpV/z3osg3RIt7yPKuX9scEHnHxizLmJ2dfTox8H3K5XLRHSyKomL7lqvhc8mMS1TcCku73abf7xcXZGZnZ6lUKsX2MzdDq1QqMRjEhEGAX5vCM5bMGkpePv/FGb6wM/xfd64u+YbzSoZBDGFoCDwfW5ouOoINNw9YrVWzyEZ0u90N3S6y1Ub6pPrhD38Y3/f59V//9ZEf+C1veQue53H//fefdXBy7rgkY6NLwa6tqONWVZar1WrFHvBer0ccx8W+bLftolKprNqxR2QU/+///T+OHTtWNJqYm5vjySefXDHjSAQoEhNjDFEUFavV7sKPMWbJykocx/T6AwjLdJOMU3PzLCwscOzYMY4fP17M1yqXy5RKpaLlfRRFK+oGfd+jQkLVs5gkJkz6VE26ZAXGrVi7Cz7LLwxBXtQfeBTNENy/xdVCutpCQDUwsimrbUU/0+0iW22ky93/83/+T66++uoNdYw4//zzec5znsOXvvSlsw7ubMRxzP3338+DDz5Iq9Xiwgsv5LbbbuPKK688p3HsFdVqlWazuWR7QrVaXZEIRVHEzMwM9XqdJEmKZgBu21iaphuqvREZ1mw2+e53v1v8PU1T0jSl2Wxy8OBBHVeywvAQRliZ0HS7XdI0LS6yBKUKtjLFwPNptzuEQZlKNiiSY3dOi+OYIAio1WpF4jI/P79k4GOapkSRT9ppQpJgjaHZszQajaIjZBAE1Ot15ufnabfbJElCpVIp2ui7+q7lF4xcu/1Wq1U0KWg0GkpgZFOOHDnCsWPHlmwRn5qa4siRI9sYlexlIyUwTz75JNdee+2GH/zCCy/kf//v/73h79uMd73rXXzxi1/kpptu4vDhw/zlX/4lb33rW/m3//bfctlll53TWFbjrg5nWUYURVQqlYn+cBVFEY1GoyiEjaJozQGXaxVUuw8Sk/w6yPZJkoRvfOMbq37NrfRp+9juliRJscVruOD+TCqVCkmSFFuu3Ad91z7ZDWlMkoRSqURSqpPi4duE2KRgfNqpgcUuZm47rKvzC8OwSBpqtVpRU+O6RMLSgcBJkixp4QwUhfvDw4ubzSa+7xfHdbVaXXFeDYKA6enpJTGJbIbneVx99dXqQiY7xkgJjFuO3ijXjeVc+eY3v8kXvvAFjh49yk/91E8B8BM/8RO89rWv5Z577uEd73jHOYtlNa5Y1L2huD3YU1NT2xrXZkVRRBAEK7Y3iJwLJ0+eZGFhYdWvuWGEsnt1u11arRbdbpf5+Xmq1Sq1Wm3dD+2u4YmrY1l+gaVSqRAEQd5RDDjWzdsde8Ynw8PPUvB9fN8nXtyu5bZtDW+ZhafnaHU6naK4vtlsLjlf+r5f1NgAxUwal6T4vk+z2SwSHLcyNNx4YJgSFxk3z/N45jOfObbH+73f+z3m5uaKRgAf+9jHipX0173udUxPT4/tuWT3GSmBOXz4MH/3d3+34Qf/+te/fk6XF//7f//veJ7Hi1/84uK2KIp44QtfyH333ceJEyc4cODAOYtnOTft2V2V832fXq838aswrk2n24JRq9XUClnOiSzL+M53vrPm19U6dndzqxauFbvb+uWK5dfjLyYga3FJwEIC/cxigcBAEpQZDHqEJq978YdqARuNxqrzrHzfJwgCoijC8zyCIKDT6SxpbrK8XbNLrNzw3+GExK30uKRHyYpMmne+8518+9vfLv7+wAMP8MADDwBw++23K4GRMxrpnf15z3seH/zgB/kf/+N/cM0114z0wF/60pf4P//n/3DnnXduKsCN+Na3vsUznvGMFVejLrnkEiAv8t3OBGa1N5lJ7w6TJAnNZhOgaNc5NzfH1NRUUcgqslXa7faaqy+A9mfvci5pcEmIO7+6wvdxSCz0UpiOoJ1CmkHmh5SrAfvDlFIwtaSj4qi7DsrlMvPz83S73aKrWalUwhhDqVSiVCoVSZAxpljdieO4WGFyuxyUvMgkeuyxx7Y7BJlgI132/5f/8l9ireXo0aM89dRT697/qaee4ujRoxhjeOUrX7npIEd1+vRpZmdnV9zubjt16tQ5i2U1YRgWU57d3ubh/c6TyM14cQX5g8GAVqvFqVOnmJubK/aXi4zbeqsvwLZesJCt52pP3IUg999xnlMtgIHQ82gEhqnQUAthumSoV0pFob7bbpYkCb1ej36/f8ZEyg3EnJmZKRIWyC8Kdbtd+v1+UefiVm0ajQYzMzNFwuOaBYiI7DUjXR6/5ppreMUrXsEHPvABrrjiCu666y5+5md+hkajseR+zWaTj3zkI9x11118//vf5xWveMXIKzbj4BKC5VzB5PIP08eOHePYsWMAnDhxgna7DTBSy1XXanOttsGriaKomDEALHnzcc85znavZxPjepbH6f6bpmnxxut5XnElcX5+npmZmTOuxIw7zkl9Ldfjju317r8TYh3FZuPs9XrMz8+v+XV3lXozMe+V13I1k3B8unON24rV6/Uol8tFTd6ZYuj1ekXzkNVWi12cnvHwLfRSS2TAkL9xlr2V/9Z+v79k2J+rs3GDe+Hp74njuHj+Xq9XPL9bxen1eszOzhat6o0xxX2GZ2lt9899FJNwjheRyTLy/p7f//3fp91u88d//Me8+tWv5jWveQ0XXXRRcYXzxIkTfOtb3ypO3Lfeeiu///u/v2WBr8YNUVzONSBYvif6fe97H3fffXfx91tvvRXIu65tJXfSHQwGRTLjHD9+fEufe1xcnFmWFR8E3IeCIAiWDH8bfnPejhh3ulHjPHr0KLD1x+eZ7JTX1FpLq9U6Y3ORWq22ra/VenbKa7menX58uvqRMAyLVY9Op3PG+w8Gg6KuxA2mPFMtYoqhS0CKwQAlEk6TrXhcV3TvtpHFcUyz2Vzy3nP8+HGSJCnaIwNFTYwxhnq9XiTe/X7/rD/wu9V+F89GH2cSjs9JiFFEtsbInyqDIODDH/4wt9xyC+985zv567/+ax599FEeffTRJff70R/9Ud74xjfy0pe+dOzBrmd2dnbVbWKnT58GYN++fUtuf9WrXsVNN90E5AnYZz7zGYCR5t3k06STVfvwn40syzh+/PhYZ1acbYzDcw1GiTOOY1qtFp1OhzAMmZ2dLa6A9vt9ZmZmzjigcje/lmeyPM71Pvh98IMf5OjRo+sen+ci1nHYTJz9fp8sy6hWq0vmEjiNRoOLL75404NR98JruZbdeny65MFte4X8eKpUKku2Yy2P01pLBtjM4pmlXb6yLKPT6RR1LOVyeUl7+OnpaeI45oknnqDRaBQXdWq1GmmaFrUslUqF2dlZ0jSlVqut2l1s2FqvZbfbLZIjay2lUol6vT7S8TYJx+dGj00R2X02fFn8ZS97GS972cs4efIkX/nKVzh58iQA5513HldccQX79+8fe5Cjuuiii3jkkUfodDpLTvxuRsQP/MAPLLn/4cOHOXz4MABPPPEEDz30EDDa/ml31c4NPhsX95jjcDYx9no92u12sf2hXq+vunriti60Wq2iiNq19XRb9ay1lMvlYv/2OOMcxXa/lqMaNU63urjefXdCrKPYTJxxHFMul2k0GsRxvGR7aBAEXHzxxWPphLcXXsv17Lbj0z3nkon2i7EM37Y8Tmst3Xa7ONbcrBhjDN1ut9g+61aB6vU6WZZ3KRteMXRtn8MwLIb3drvdIumBfEBgpVJZ9/VZ7bV0W3ndedetOCVJsqHfiUk4PscZo4hMlrPe13Peeefxghe8YJyxbNpzn/tc/uzP/oxPfepTxRyYOI757Gc/yyWXXKKC3nW4/du+7xdFogsLC6u2BHXdx5rNZlFM6gbAWWuLtqbjbhF9ptUh2Tvc1e9Go7HkA5pLaCqVynaHKDuUa53shkO6pirrdQ9zSYqr9XHbfyuVCv1+f7H2JqTTaRfNTFwi0u12i21uYRgWK9Ruq61rAjBcpH+23L9nuIOZMYYkSc76MUVEdpoNJTD/9b/+V/7Lf/kvPP7445RKJZ797Gdz9OjRFSsb2+XSSy/lx37sx/jQhz7E3Nwchw8f5i//8i85fvw4r3vd67Y7vB3PXVl0b+Supmi1AZUu2XHfkyQJrVaLmZkZfN8vJlqPS5ZltNvtouahUqkUVy9l7ymVSvT7fYIgoFKpFA0ygiBgYWHhnA7QlcnieR5TU1MsLCwU5y93PjmTfr9fXNyBpwc8R1FEnFl6mUdifLIIPJu3Sa7X66RpuqRWyyUx3W63KNa31hYrOps9p7lVDnfeHm4osFxqLdaCMeCrFbOITJCRE5jbbruNj3zkI8DTrSo/9rGP8c53vpOPfOQjRS3JdvulX/ol7r//fh588EFarRYXXnghb3nLW7j88su3O7RNG94qM+qgto3YyNK+66DjrmC6FZvBYLAlbT1brRa9Xq9Y4Wm1Wniep4GZe1QURUxNTdHtdpcMAQyCgDiOldjKGbn2xWmannWRezHXy/PpeRHJIIU0oRfHZKnBH8RkJ08W81q63S5ZlhUXeIDieRuNBo1GY9UumhsVBAHVapVOp1O8V0dRtKIerJtktBLILHgG6oGlEuj3RkQmw0gJzPvf/34+/OEPEwQBP/dzP8eVV17JwsICH//4x3nooYf4F//iX/Dtb397R0xNjaKIo0ePFh1xdovBYFAMjIR8O0O1Wh1r6TkVgwAAIABJREFUsuCuaidJUrzprlW/4t54Xecft4XHWjuWq4jDkiSh3+8XrZnh6TaoSmD2ruHZGcOzQM7UgUrEOVP9hFs16ff7xYf/crm8pGGEK7S3nk8QlUkW5uh2uwRBQFStYbNBsSpdLpfJsoxTp07R6/UIw5ALLrigKGrf7JaxTqdTbEerVCpUq9Vi7pg7Tw8/R5xZmgn4QMk3JJmlGUPgWbR2KSKTYKQE5t5778XzPD7xiU8sqXt505vexNGjR/nQhz7EAw88sOuShp2k2+0CT8+0SdOUbrc7co1JlmXFHmjXsnP4a66l8/C+7EqlsurjuwFsURSRpim+7xcF+/v27Rv7ytBq3IdVEXh6n7/mQshmufq+hYWFYtW3VqsxPT3N1NRUUftSLpepVCq0B+liV7x8RcYzHr7v5d3Khs6d9XqdhYUFqtUqlUplLK3l3Wq0Ow9nWUYcx8VqzlorOokFLAR+fkEo8AxpZkks+NpJJiITYKTLPo888gjXXnvtqkX7/+bf/BustTzyyCNjD06etrwOxe1tHuUDm+sW1mw2mZubY25ubsme7F6vx8LCAlmWFVcEa7UaU1NTS95k3Rt7p9Oh3W4Xb8TVapWZmRkOHjy4btvPsxEEAeVyueju4+YbaPVFRMat3W4XF4yq1Sq+79Pv92m320RRxMzMDDMzM1SrVay1dFoLDFJLElaxYZnYeAz6fQIo5rAMD87sdDq0Wq01i+rTNC1qDOfm5mg2m/T7/VUv2sRxXLRudtuKkyRZdR7aMANYnr4QZK0ls/ntIrvJHXfcwYUXXjjSfe+6666z7pJ3zz33YIzhscceO6vvl40b6RJQs9nkB3/wB1f9mrt9eHuTjF8YhnQ6nWLrVhzHReev9XS73WIrhOtGs7CwUEx5djMJXOGzaws6XCTvkiA3WM0lUK7NsjFm0zM3zsRtlXPD52q12pY+n4jsPa6eCp4uhncrG+7CiTsndrtdWu0OJ9p9YhPglyr0gxJBPKA06OBX8nkwLiFpt9uEYYjv+8U5ed++fUtWSTqdTrHNLEkSoiiiVCoxPz9PpVKh0Wiset5b/qFrvQtbkZf/6VvwrSUFSou3ocVt2cU6nQ7veMc7uOGGG7jhhhu2OxzZhJFWYM7UYnL4A65snWq1SrlcLq64uU46oyQwbpiae5MLgqB4o3YtN9fjtqC5mhi3MpOmKaVSacuTCffvnZ2dZd++fVSrVRVqiwhJZummlgEecba5T9/D9SjuvLg8oQGKNsmp8TFhRJgOiAZtzo88KqFPdXEg5fnnn8/U1BRhGFKv1/F9n06nQ6/X4/Tp0xw/frxYDR8MBjz11FMMBoPivBzHMadOneL06dN873vf4/HHHy8GVLqY3MDM4VjX257mGcN0ZKj5EBio+TAdGTx1IpNdrtPpcPfdd/Pggw+u+Nqv/dqvFauvsvPpE+CE8DyPer3OzMwM09PTzMzMjLyH2l1BdNybo3uzdu2SXSH0WsX7OyFJVdIiIk6cWU4PLPMxdAiYG0A/3VwSU6vVKJVKpGlKp9Mp5lxVKpXiQp5rdILnU4oioihcvLjUxw9CZvftK9p6l8tlyuUyxpii2YlLUjqdDk899RRJktDr9YpuesYYgiCg0+kUH6jcyvixY8eKhCUIgryRwOIspCzLqNfrI11Q8o1hKvSYLXlMhZ7aKMue535fZTKM/Gnw3nvvLQaALf9jjFnz6+MoVJScW/lY3lFmPW7Cc6/XYzAYEMcx1Wq1+NnUajUqlUrRBrlSqazobuZ5HqVSqXiTdHus9csuItulFee1GxUfIjKMgVZiN9Xkw7VYPnjwIOeddx4HDhwoVn2HWWvxDRjPIyqVKZdLlGs16rUqpXDp+55LYFzy4pqelMtlkiQpkhQ34DIIAtI0Lc6zrpNYqVQqzuPOcF3OzMyMhrjKRHD1Jt/85je5/fbbmZ6e5sCBA7zlLW/BWsvjjz/OzTffTKPR4NChQ/y7f/fviu9dq97kwQcfxBiz6uoKwGOPPVYMNL/77ruL5i933XXXkpiGGWN47Wtfy/3338+ll15KuVzm6quv5vOf//xI/85PfOITPO95zyvqil/ykpfwta99bbQXSc5o5E/B7ur8Rv/shKv2e52b8OymQjcajSUJyvD2rNnZ2SVb0waDAQsLC7RaLYIgoFQqFas3U1NTqkMRkW2TsrRrlm8gtZsv43CzVNx5c/l5LoqifDUm7hOlCf3U4perhFGJmZJH4JkVjzc1NVWshrvkxW3Pdp0dwzAsPlS57WDu+92513V9HOYubmmAq2yl1Foea2d8fT7jsXZGOoZuoD/zMz9DlmW8/e1v55prruE3f/M3ede73sULX/hCnvGMZ/Dbv/3bXHzxxbzxjW8cOWlYy4EDB3jve98LwE/91E9x3333cd9993HLLbec8fv+6q/+il/8xV/k9ttv561vfSsnT57kxhtv5G//9m/P+H333XcfL3nJS6jX6/z2b/82b3nLW/j617/O9ddfr2L/MRhpeURJyOQLgmDd1bDlXx8MBszPzxdvqL1ej0qlQr1eLxoAiIhsl8BAP3s6iUkshN7Wd9NyF4W63S5hmlH3fcqVCqHn4XurP3upVKLRaJCmKdZakiQpdin4vl/Miul0OiRJQqVS4eDBg3z/+98nyzJ6vR7GmLG1YBbZiNRavvhURnOowd13O5br9m9u++GP/uiP8r73vQ+AX/iFX+DCCy/kl3/5l/mt3/otfvVXfxWAn/3Zn+XIkSN84AMf4B//43981s9Vq9V46Utfymte8xqe/exnc/vtt4/0fX/7t3/Lww8/zNVXXw3ArbfeyqWXXsqv//qv88ADD6z6Pa1Wi9e//vW88pWv5A/+4A+K23/+53+eSy+9lLe97W1LbpeN01lQlnBbzHzfp91uL+ku5rrnKKEVkZ2gHhhSa+mmMMDDAFOhOetWqBvhVlU2IgxD9u/fz8LCQrGaUiqVqFarRXdFty3XXSDyfZ9ms1ncf2ZmRivfcs493smHnQ6vuczH+e0X1s7+9+2Vr3xl8f++7/Oc5zyH7373u9x5553F7TMzM1x66aV861vfOuvn2YzrrruuSF4ALrjgAm6++WY+9rGPFTOYlvv0pz/N3NwcP/uzP8tTTz1V3O77Ptdccw2f+9znzknsu5kSGCl0Oh06nU6x/W/5pHtrbdH+s9lsFi2URUS2Q+AZZiIYJJaYhNkIwjVWQHaKSqVStFcGVrTDX/5haHZ2llqtVrRwdkX+IudSZ/WxRWvePqoLLrhgyd+np6cpl8vs379/xe0nT57c3JOdpR/6oR9acdsll1xCp9PhxIkTHDp0aMXX//7v/x6An/iJn1j1MRuNxniD3IP06VPIsqxIStwVQchXY7rdbvH3ZrNZbH8YDAY0m00ajYaSGBHZNr4xlHxDSLaprSxxljcE8MzWJ0Guyc0ojDHFOVhku1TXeJtf6/ZRrfZ7sNbvhqv9WiuBH64b225up8p99923aoKjz02bp1dwj8uyjHa7TbvdptVqFVf3oiiiXC4zGAzo9/ukaUqapkxPTzM3N0epVKLf75MkyZb8IrpfftXZiMhWa8cZraEryfXAUlE9vEjh/6uaYhuZMx3mt59rs7OzAMzNzS25/dvf/va633s2q5duNWXYN7/5TarVatHVbDk35P3gwYP8k3/yTzb8nLI+fTrcZZIkIUmSketUhldZXFecTqdDHMfFTIF9+/bRaDRWbBkzxmyqXelqsiyj1Wpx6tQpTp06RbPZVM2NiGyZQWZpJRB45Cs5HiwkEGsivUjBN4bn7vf44WnDD9QMPzxtNl3Af7ZccjDclSxN05GK4l079OXJz5k89NBD/K//9b+Kvz/++ON89KMf5UUvetGaq0UvfvGLaTQavO1tbyvaoQ87ceLEyM8vq9MKzC7SbrfpdDpF17B6vb7uCkaSJMU050qlQrvdXhzINig6jrnH6Ha7xRwYN8ht3G07u90unU6nmHXT6/UA7RcVka3h5l66D2KeMWAsqdUVPpFhvjGbKtgflx/+4R/m2muv5U1vehOnTp1i3759fOQjHykGvJ5JpVLhsssu44//+I+55JJL2LdvH5dffjmXX375mt9z+eWX8+IXv5jXv/71lEol3vOe9wD5LJm1NBoN3vve9/JzP/dzXHXVVdx6660cOHCA73znO/zFX/wFP/ZjP8bv/d7vbfwfLwUlMLtEv99f8sE/SZKRCu2NMcUKRxiG1Go1+v1+UUjnkhfXNnRhYYEsy8iybM05MK7lZxzHxURpz/OKxMg912oJlpt67RKjrd6qJiJ7m0feWcnNt7I2HySz/R/TRGQt999/P6961at4+9vfzszMDHfeeSc//uM/zgtf+MJ1v/cP//APed3rXscv/dIvMRgM+I3f+I0zJjDPf/7zue6667j77rv5zne+w2WXXcY999zDs5/97DM+z8tf/nKOHDnC29/+dn7nd36Hfr/PM57xDJ73vOdx9OjRDf+bZSl9ItwlXLLgeV7RRSyO43WvSJRKJQaDAb1eD8/zyLKMRqOxYuo05MPbpqen6Xa7zM7OrplQuG5mWZYVW9QqlQq9Xo9+v0+pVCpWVw4ePLjke1fblub+XSIi4xZ5UPahm4KHxZL/PfIg2zk1wSK7yl133cVdd9214vZ77rmHe+65Z8XtDz744JK/X3TRRXz6059ecb/lnx9We6zrrruOhx9+eOSYAG677TZuu+22Vb8GcMcdd3DHHXesuP2GG27ghhtuWPP75Owpgdkl3DTnNE1ptVpFLQxAuVwmDMMl93dft9ZSrVaLwWpBEJxxxoDnecWf1SRJUsyKcclLv99nMBjg+34xaTqKIprNJrVabUmyVC6Xi/iNMcVANyUwIrIVjDE0Qij5kGSWwDOUFodhnuvqO2stGflze2qVLCKyJiUwu0QYhgRBUBS9e55HrVbDGEO73WZmZqa4r2uBnGVZ0ZFjenqaer0+lljSNKXf7+P7fjG3oNfrkaYpU1NTpGlaJCTLi9vc3Jlut4u1lkqlsupqkIjIuHjG5F3H/KeThnE3KFlPklmasSVerL2pBZZqoAs3IiKrUQKzSwRBQL1eLz74h2FIqVQqtpG5pAbyLV7wdLKQJAmtVouZmZlNr3R4nkcQBLTbbaIowvO8YvUlTVMGgwFhGJKmKcaYFStDLq7hAZoiIrtZnGXMDfI5NKFnyCw0Y/CNpeRrJUZEZDklMLtIFEVUq1WyLCsSgzRNi5oTJ03TJd3DfN9ftc3fWlyRvhsaFUVR0TzA8zzq9TqtVoter1dsG3P3dcX9YRgyNTW1agIjIrIXWGtpJ/nKSzOBug+hB4FnSFNLP1MCI7KdzvVKrIxOCcwuU6vVaDab9Ho9rLV4nrdiC1YQBMRxXCQx7v9HWX3Jsox+v8/p06fp9/tkWUYQBMzMzNBoNPA8j3K5zMGDB1lYWMBaS7lcxvd9jDE0m80i0QmCgCRJlMSIyJ7USfIZNL6BEOinAJZ6mHdGU+oiIrI6JTC7TBRFzMzMFAX67rZhw0mO6/A1av1LkiTFNrAwDPF9n8FgQLvdLraxQT4sKoqiYs5MEATMzc0xOztbJE5pmtLr9SiVSmN8BUREdjZrLb0MTg/yls2VACI/T2C6GQSpxTOGslZfRERWpQRmFwqCgCAIis5iq319OMnxfX/kGSsuKXLfN9y6eflzuTggX7lxcxac4Rk0IiJ7gbWWVgqdBPoZJBaSNN8+BtBL821kU6Eh9JTAiIisRgnMHuW6g22US1pcQuL+nKm18vDzdbvd4n6DwaBokaxERkT2gsRCN8nnzHihoRVb+ikEFkLfMB1BI1T3MRGRM1ECIxvi5sQEQVAMv3SF+pVK5YzfW6vVsNbS7/eBvNtYrVY7F2GLiOwIFrAmb90cGaiH0Eos1sBUANVAqy4iIutRAiMbVi6X2b9/P/1+vxh+WalU1t2G5mptXFMBt2qjLh8islf4BnwgziyhZwgMVP18mKbmvoiIjEYJjJwVtxKzUettNRMR2c18Y2iEhmZs6WUWY6EaQEUF+yIiI1MCIyIicg6VfMM+D1Kbt0oODEsanIiIyJkpgRERETnHfGM4l4su1lqSvGtzvo1NCZOITDAlMCIiIrtYZm2+ZS0FTP7G34ggUptmEZlQKkYQERHZpMxaeqmlk1j6qd1RzUm6SZ68lDwoe4YMaMaWbAfFKCKyEVqBERER2YThFQ5D3ia55kM92Bm1LYMs3zbmYglNPkQzs6BFGBGZRFqBERER2YR+Bt3FFY6Sn893aScQ75AFDs/LkxUnI09cdkBuJSJyVrQCIyIisglZZjE8vcLhGQNYxrlDy1qLhSXPM6qqbxik+dY2yAv5pwIV8ovI5FICIyIisgm+5xIWizGG1OYJzbi2ZyWZpRVbBottl2uB3dDcmNAzzEbQTy0ZefF+pP0XIjLBlMCIiIhsQsmDqg+dFCBPXupBnjhslquviTMIF7eCNeM8OSptIAkJPEOgghcR2SWUwIiIiGyCMYapEMp+Xl/im/EkL5APu4wziLz8eTyTb1nrZ5aSEhIR2aOUwIiIiGySMYbI34LHXeU2a1e/XURkr1ACIyIiskP5Bko+9FIITF7DAlDeQA2MiMhuowRGRERkhzLG0AjBM5ZBBiFQDQ2RZ3bUsEwRkXNJCYyIiMgO5hlDI9SKi4iIowRGRERkC1lrSbJ8+9fwqom1lsTmc1kC4+bHiIjIepTAiIiIbJEky9sgD1JYIKKeQMPLk5hmbOmleUG+78F0OL7uZSIiu5lGWYmIiGwBay0LizNcIg8CMjoJdBNLO8mTl5IHJd+QZnlCo7oWEZH1aQVmSL1eJwiCkd5A3H3G9WZjrS2ee5yPOfzfcT3mTo9zEmJ0jzUcZxCc+dfx0KFDIx2fe/Xn7h5rnHFOQozuMYf/O67H1PG5uThT6+a15K2PA9/HN9BL88f0TV6kD5bIs/SzfO7LqN2Y99JrufzxNnJsisjuo9/6IVdeeSWzs7MkSTLy96RpOrbnn52dJcsysixb/84bMM4YYTLinIQYYWmcs7OzZ7zvnXfeCTDy8bkXf+6wNXFOQoyg43MrXtN+kpIuzl3J61RG/97Mgk3zQZSegampBoMsw7MQWxhk+QpMYPIBmBZIE7Ab3EU2Ka/lVp3j1zs2RWT3UQIz5Mtf/jLPetazOHDgwLr3tdaSpim+7y9eQducLMs4efIk5513Hp43np19444RJiPOSYgRVsZ54sSJM97//e9/P7fccsu6x+c4Y82sJbVgM8vcqZPs3z9Zr+lmTUKMsHePz7ViHQdrLd04pZV6WPKkouxBIzAbKravk9FK8gSl2ZynPjUNPmQp9C10U6h4+ayXqQCicPT4J+m13Mpz/HrHpojsPkpghrRaLZIk2dAJ1hgzlhOyMaZ47nG9EQ0/9rgecxLinIQY3WMNx7nelesnn3xyQ8fnZmNNMsvcIN+/by10Ust5MFGv6bhMQozusffK8bn8sUZ9TTPX+ctC4IG/xv0za1lIwPch9Dyszbd4dVOob6ClcT308D1LP7V4WUwtgG5mqAVQDqCXWGKbP2YtOLvXZK8dnxs9NkVk91ECIyIrWGs5PchoxuT7WoAWIe0YpkfdoC+yw6TW0hxY+haMzbd1TUcQrbIvLLN5PUp58WvGGHyTJ/QbYYyhGhjKXkaXFN88fXtAnrj0UkvojT9hEBHZrdSFTERWSLKM73fhdB/aSf5BLsGwMN6t9iLnVCfJV1FKJu/8ZVm785cx+RtkOvS1zObtjjfD5UruObPF/6p7sojI6LQCIyJLWGv5Xgee6OaLL56B0EAJj0wdXmWCxdlw56/8uB7YxcRkWQLhG0PVz7eMxSY/8AMPqsvvuEElDyo+dDMwNp9iWQvyWEREZDRKYERkiXZiebydFx175Ftt+hYSfH3IkonmG0iGtoCldvEYX+O4rgb5FrIkA88YIn/tmplRGWNohIZylv+O+UDojb+2TERkN1MCIyJLLMSW7uKHPEv+ISv/oOVR0xlDJlg1MMSZLeawGGAq5IxdxSLPUNrkqstyxhhKqiUTETlr+jgiIoXUWuYHkJJ/uMtH7OV8UiqqmpMJFnqGmQj6iwlM6BmiMScnIiKy9ZTAiEghyfIWsxUDPfv0cD0fOI8+vl/b5ghFNifwDMEEVcwPMlsM0oy8M68WiYjsFUpgRKRgbV4PMB1COYMBkKZ5kfFMHG93eCJ7SifJWIgBk/9ulry87bOSGBHZ65TAiEgh8PLCZY981aWUgQngQAnMvFqQiZwraWZpJfnvpAekWHop+HF+lSHOwMNSRm/kIrL36LwnIoXA89gfpZwEyhasD5EP+yI4vd3BiYxJZi3dxJKQvwmWA7Pp7mLjlpGvumRAK8m3kSUZdFKohXncAwv9DILAEqqWR0T2ECUwIrJEPfTwPUs/zWfAVHxDYLT6IrtDZi3NgaWX5cd310I/s8zssK1ZHmCxNOM8zsBAD+gl0AgtgecRAK0EYgvhNscrInIuKYERkSWMMVQDQ3Xo7JBpgqXsEnEGvSyvJzHGYK2ln+UrGZUd1NrY9wxlH+YG+SpobKHsQR9Is3x2DOTF/fr9FJG9RgmMiIjsGe6jvhscaYzBYJ/+wg5S8T3qYUZg8tUhz1hO9vNkpmQtqc3bk6kVtIjsNZrqICIie4Zv8k57yeKqRWpt3ip8B74bhh5UFwP2gDQzTAf56tFgMeeaDvJ5NiIie4lWYEREZM8IPUMjsCwk0EstxsBUANGIScAgs3RiS0o+l6UWmC2rnfGMYTqCdmKJF7e91QKPwOTF/cbmbc5FRPYaJTAiIrKnVAKPyLdkdrFl+IjJS5xZ5gYWa/OVnHaSr+BMh09vSRs33xga4crH9tmRu95ERM4JJTAiIrLn+Maw0dKRfponPeXFb/RtPpulFsAqOYaIiGyRHbjrV0REZOex5F2/HLfqopUQEZFzSwmMiIjICCLPYMkbAFhr6aeWwMtntIiIyLmjBEZERGQEJd/QCPMVl4GFwIPpcOuK+EVEZHWqgRERERlRNfAo+3nrZY+tK94XEZG1KYERERHZAK24iIhsLyUwIiIiO5y1lgyt+oiIgBIYERGRHW2QWpqJJV2cPzMV5PU4IiJ7lYr4RUREdqgks8zF+fDMyIC1MBdb4kzNm0Vk71ICIyIiskMlFjILoWcwxhC6Vs7KX0RkD1MCIyIiMkmUvIjIHqcaGBERkR0q9PI//dTiG0gX589EuvwoInuYEhgREZEdyjeG6RDaiSWxUPKg7OXbyrQUIyJ7lRIYERGRHSzwDNORwVpLK7HMJ3lbZd9YqkZv5CKy92gRWkREZAL0UksrgdBA2c+L+RcSyKxWYkRkb1ECIyIiMgEGi3NgvMVBlpFnSGxeFyMispcogREREZkAHvkcGCezFgNopKWI7DXaOisiIjIBKr6hl1r6qcUYSDOoePmqjIjIXqIERkREZAIEnmE2gm5qySwEPoQWjFEGIyJ7ixIYERGRCRF4hikvT1istSRJts0RiYice6qBERERERGRiaEERkREREREJoYSGBERERERmRhKYEREREREZGIogRERERERkYmxq7qQffazn+Xd7373ql+79957mZ2dPccRiYiIiIjIOO2qBMZ5+ctfzvnnn7/ktlqttk3RiIiIiIjIuOzKBObqq6/mh37oh7Y7DBERERERGbNdWwPT6XRI03S7wxARERERkTHalSswv/Zrv0a32yUIAq666ipe8YpXcOTIke0OS0RERERENmlXJTClUokXvOAFPOtZz6JarfLoo4/y0Y9+lF/5lV/hd3/3dzlw4MB2hygiIiIiIpuwYxOYLMtIkmSk+4ZhiDGG66+/nuuvv764/dprr+Wqq67iTW96E3/yJ3/Cv/pX/2rJ9x07doxjx44BcOLECdrtdvHc67HWkmUZWZZhjBn1n7Um95yjPPeoxh0jTEackxAjbDzOMAxHuv9OiHUUkxDnJMQIOyNOHZ9nNgkxwmTEuRUxishk2bEJzNe+9jXe/OY3j3Tf97znPTzzmc9c9WuXXXYZl1xyCV/5yldWfO1973sfd999d/H3W2+9FYAnn3zyLCIej+PHj2/bc2/EJMQ5CTHC6HEePXoU0PE5ikmIcxJiBB2f4zYJMcJkxDkJMYrI1tixCcwzn/lM3vCGN4x03/Xmu+zfv5/vfe97K25/1atexU033QTkKzCf+cxnADh06NC6z2mtJUkSgiAY2xWl48ePc/DgQTxvPL0Vxh0jTEackxAjrIxzvQ9+H/zgBzl69Oi6x+de/bnD+OOchBhBx+ckvKaTECNMRpwbPTZFZPfZsQnM7OwsL3jBC8byWN///veZnp5ecfvhw4c5fPgwAE888QQPPfQQwEgnbWstnufhed7Y3jjcc4/zTWMrYoTJiHMSYoTR44zjuLj/meyEWEcxCXFOQoywM+LU8TmaSYgRJiPOccYoIpNlV/3mz8/Pr7jt4Ycf5tFHH+Wqq67ahohERERERGScduwKzNn4lV/5FS666CIuvvhiarUa//f//l8+85nPsH//fl760pdud3giIiIiIrJJuyqBed7znsdf//Vf85WvfIV+v8/s7CwvetGLuPXWW9etkxERERERkZ1vVyUwt99+O7fffvt2hyEiIiIiIltkV9XAiIiIiIjI7qYERkREREREJoYSGBERERERmRhKYEREREREZGIogRERERERkYmxq7qQicjOk1lLZsEY8Mc8LVxERET2HiUwIrIlMmtpDjJODwADZQ8aoaEWauFXREREzp4SGBEZO2stc4OME33wAWOhC2SxJfAsJV8rMSIiInJ2dClURMYuttCKAQuBB5EP1kKaQZzZ7Q5PREREJphWYERk7AZJxvEutNL871UfpiPwPdDai4iIiGyGEhgRGavMWh5rw6kYUvJl3jiDfgYX1tH2MREREdkUbSETkbFcv0QlAAAQ8klEQVSa72d8v/t08mLJ/z/LoOZD4CmBERERkbOnFRgRGZvMWp7sQkyevLjFltRC4EOo1RcRERHZJK3AiMjYDDIY2LzzGOSF+5nNV2HKPkQ644iIiMgm6eOEiIxNZqHkQyWA0uLZJQFCAxdUoOTrlCMiIiKboy1kIjI2voF6AEkG7RSiLL/9SBX2V5S8iIiIyOYpgRGRsYk8mIkMYAnTfAtZI4TzKx7GqP5FRERENk8JjIiMjTGGemgo+ZbM5isy6jomIiIi46QERkTGLlTSIiIiIltEm9JFRERERGRiKIEREREREZGJoQRGREREREQmhhIYERERERGZGEpgRERERERkYiiBERERERGRiaEERkREREREJoYSGBERERERmRhKYEREREREZGIogRERERERkYmhBEZERERERCaGEhgREREREZkYSmBERERERGRiKIEREREREZGJoQRGREREREQmhhIYERERERGZGEpgRERERERkYiiBERERERGRiaEERkREREREJoYSGBERERERmRjBdgcgIiIbl1pLN7GkFnws4XYHJCIico4ogRERmTCptZzuZ/QtGAvWQsnAvsBijNnu8ERERLaUEhgRkQmzMMj4XgfiDAIDtQBiYKoEpe0OTkREZIspgRERmSCDNE9emglEHqQW0gTKQJJZSv52RygiIrK1lMAMqdfrBEGAtXbd+7r7jHLfUVhri+ce52MO/3dcj7nT45yEGN1jDccZBGf+dTx06NBIx+de/bm7xxpnnDsxxnZsaSeQZXnyYjzoZvl/rd263yMdn5t/vJ0eo3usnR7nRo9NEdl99Fs/5Morr2R2dpYkSUb+njRNx/b8s7OzZFlGlmVje0wYb4wwGXFOQoywNM7Z2dkz3vfOO+8EGPn43Is/d9iaOHdSjJ0+tGNIgAEQpJABjQg8m5Ek4/t36/jUeWmctuq1XO/YFJHdRwnMkC9/+cs861nP4sCBA+ve11pLmqb4vj+Wotksyzh58iTnnXcenjee7tbjjhEmI85JiBFWxnnixIkz3v/9738/t9xyy7rH5179ucP449xpMVprmc8s/aHbUvITeT3IKAXe2H4+Oj51XtqpcW702BSR3UcJzJBWq0WSJBs6wRpjxnJCNsYUzz3uLkLjfMxJiHMSYnSPNRzneleun3zyyQ0dn3vt5+4eayvi3Ckx9lOb174YwECa5asvvoHpADzP0/G5Q4/PSYjRPdZOj3Ojx6aI7D5KYEREJkQCYKDigwXwIEnBD6Cks7mIiOwR41kfFhGRLedZi2chtuCZfOUFD6b9vCOZiIjIXqBrdiIiE8BaS2yhEUAc553HIN869gM10PxKERHZK5TAiIhMgNRCLzUcrFqmEhhYiFPYX4Jq5I21+5iIiMhOpgRGRGQC2MU/nvGohVADBpnF1+BKERHZY7RrWkRkAvgGAi9PWgAya0kthNo6JiIie4wSGBGRCeAZw3Ro8E3eTjm2MBVAxVcGIyIie4u2kImITIjQM8xGkFkwgO/lyYu1dnsDExEROYeUwIiITBDPGDwtuoiIyB6mLWQiIiIiIjIxlMCIiIiIiMjEUAIjIiIiIiITQwmMiIiIiIhMDCUwIiIiIiIyMZTAiIiIiIjIxFACIyIiIiIiE0MJjIiIiIiITAwlMCIiIiIiMjGUwIiIiIiIyMRQAiMiIiIiIhMj2O4AdpqnnnpqpPsFQcDs7CwnTpwgSZKxPf+TTz45tsfaqhhhMuKchBjh6ThHOfZGuc9e/7nD+OKchBhBx6czCa/pJMQIkxHnRo5NEdldlMAsqlarhGHIAw88sC3Pv7CwwN/8zd9w9dVXMzU1tS0xjGIS4pyEGGH1OMMwpFqtrrivjs/RTEKckxAj6Pgct0mIESYjzo0cmyKyOxlrrd3uIHaKubk5Op3Otjz3I488wo033sgnP/lJnvWsZ21LDKOYhDgnIUZYPc5qtcrMzMyq99fxub5JiHMSYgQdn+M2CTHCZMS50WNTRHYfrcAMmZmZ2bYToFsKP3DgAEeOHNmWGEYxCXFOQoyw8Th1fK5vEuKchBhBx+e4TUKMMBlxTkKMIrK1VMQvIiIiIiITw7/rrrvu2u4gJFev17nhhht27L5jZxLinIQYYXLihMmJdRLinIQYYXLihMmIdRJihMmIcxJiFJGtoxoYERERERGZGNpCJiIiIiIiE0MJjIiIiIiITAwlMCIiIiIiMjHURnmH+uxnP8u73/3uVb927733Mjs7e07jieOY+++/nwcffJBWq8WFF17IbbfdxpVXXnlO41jLI488wpvf/OZVv/aOd7yDf/AP/sE5jgi63S5/9md/xje+8Q3+/u//nlarxRve8AZe8IIXrLjv448/zv/f3v3HRF3HcRx/3XU/HDfEUximbinqKTTNECXBXLNYrYGbLdtNJJT8o5zZHzk3lnPl1h86t5p/uLYwjdW6xR/o9B8tWur4MdSmc2UGSsa0QEzMguA8rj8cN5ED70y+P+bzsfkHn/ue976Pr/H1/f31qaqq0vnz5+VyuZSXl6c33nhDaWlphtedCPKZHPJpHLKZPPIJwG5oYCxu9erVyszMHDLm8/kMr+Pjjz9WQ0ODVqxYoccff1zfffedtm/frg8//FA5OTmG1zOSkpISzZo1a8iYWesE/PXXXwqFQsrIyNCMGTN07ty5uNt1dXWpsrJSKSkpKisrU29vrw4cOKDLly9r165dcrvdBleeOPKZHPJpHLKZPPIJwC5oYCxu4cKFmj17tqk1/PLLLzpx4oTWrVunlStXSpKWL1+ujRs3av/+/dq5c6ep9d0tJydHhYWFZpchSZo4cWLsiG9LS4vefffduNvV1NTo33//1UcffaSMjAxJUiAQ0LZt21RXV6eXXnrJyLKTQj6TQz6NQzaTRz4B2AX3wNhAT0+PIpGIaZ9fX18vp9OpF198MTbm8XhUVFSkn3/+WdeuXTOttnjMnq9Bbrc7octVGhoatGjRotjOV5IWLFigqVOnqr6+fixLfCjMnm/y+WAehXyaPdd2y6Zk/pwNehTyCeDBcQbG4rZu3are3l65XC7l5uaqoqLC8FP6ly5d0tSpU5WSkjJkPBAISJLa2tqG7DzMtHv3bvX29srpdOrJJ5/U2rVrTT8KO5rr16/r5s2bwy7bkKTZs2fr9OnTJlSVOPKZHPJpHLKZPPIJwC5oYCzK6/Xq+eef17x585SSkqLW1lYdPHhQW7ZsGXKq3Ag3btyIeyRscOzPP/80rJaRuFwuFRQUaOHChRo/frza29tVW1uryspK7dixQzNnzjS7xLgG527ixInDXvP7/bp165bC4bDlruMmn8khn8Yhm8kjnwDshgbGAAMDA7p9+3ZC27rdbjkcDi1dulRLly6NjT/zzDPKzc1VZWWlampqtGHDhrEqd5j+/v64OwCPxyNJ6uvrM6yWkWRnZys7Ozv2c35+vgoKCrRp0yZVV1frgw8+MLG6kfX390vSfed3LHfA5HPskc8HQzaNQT4B2A0NjAF+/PHHER9Rea89e/Zo2rRpcV/LyclRIBDQmTNnHmZ59+XxeBQOh4eND+48vF6vofUkasqUKcrPz1djY6MikYgee+wxs0saZnAna+b8kk9zkM/7I5vmIZ8ArIwGxgDTpk3TO++8k9C297tpMT09XVeuXHkYZSXM7/fHvdThxo0bkuKfvreK9PR03b59W319fcOuQ7eCwbkbaX5TU1PH/Ogh+TQP+Rwd2TQX+QRgVTQwBvD7/XEX33oQHR0dhi/OlZWVpXPnzqmnp2fITuzChQuSpBkzZhhaTzI6Ojrk8Xg0btw4s0uJa9KkSUpLS1Nra+uw11paWgyZW/JpHvI5OrJpLvIJwKp4jLJF3bx5c9jYqVOn1NraqtzcXENrKSgo0MDAgI4cORIbC4fDqqurUyAQsMRTdOLNV1tbm5qbm7VgwQI5ndaN+pIlS3Ty5Mkhj1Q9e/asrly5Ypk1Ge5FPpNDPo1DNpNHPgHYDWdgLGrLli3KysrSrFmz5PP5dPHiRX377bdKT0/Xq6++amgtc+bMUWFhoaqrq9Xd3R1bTbqzs1Nvv/22obWMZOfOnfJ6vZo7d67S0tLU3t6uI0eOyOv1qry83LS6Dh8+rH/++Sd2iUNzc7O6urokScXFxfL5fFq1apXq6+v13nvvacWKFert7VVtba2eeOIJvfDCC6bVPhrymRzyaRyymTzyCcBuHNFoNGp2ERjuiy++0MmTJ9XZ2am+vj75/X7l5eUpGAwmtLjXw9bf368vv/xS33//vf7++29Nnz5dpaWlhh/RHMmhQ4d07Ngx/f777+rp6VFaWprmz5+vYDBo+NoPd1u/fr06Ozvjvvbpp58qMzNTkvTbb79p7969+umnn+RyuZSXl6eKigpT/q0TQT6TQz6NQzaTRz4B2A0NDAAAAADbsO6FrQAAAABwDxoYAAAAALZBAwMAAADANmhgAAAAANgGDQwAAAAA26CBAQAAAGAbNDAAAAAAbIMGBgAAAIBt0MAAAAAAsA0aGACGczgcQ/44nU5NmDBBzz77rKqqqhSNRkd8b1NTk9avX69AIKDU1FSNGzdO06dP12uvvaba2loNDAwkVEMkEtHXX3+tzZs3a9myZfL5fHI4HFq7du1D+pYAAGAsOKKj/U8BAMaAw+GQJJWXl0u600xcvHhRTU1NikajCgaD+uqrr4a8JxwO66233tLevXslSXPmzFF2drY8Ho/a2tp0+vRpDQwMaPny5aqrq7tvDd3d3fL7/cPGy8vLtX///v/5DQEAwFhxmV0AgEfXvY3CN998o5dfflmhUEilpaUqLi6Ovfb6668rFAopEAho3759KigoGPLeq1evavv27Tp69GhCn+12u1VWVqa8vDwtWrRIFy5c0Lp16/73dwIAAGOLBgaAZRQVFamsrEz79u3TgQMHYg1MTU2NQqGQMjMzdfz4cWVmZg5775QpU/TJJ5+ovr4+oc/y+Xyqrq6O/Xz58uWH8yUAAMCY4h4YAJby9NNPS5La29tjY7t27ZIkvf/++3Gbl7sVFhaOXXEAAMB0NDAALOXWrVuSJK/XK0nq6upSc3OzHA6HgsGgmaUBAAALoIEBYBnRaFSHDx+WJM2fP1+SdObMGUlSVlaWJkyYYFptAADAGmhgAJguEomopaVFFRUVamxslNfrjd1Qf/36dUlSRkaGmSUCAACL4CZ+AKYZfJzy3VJTU/X5559r5syZJlQEAACsjgYGgGkG14FxOp0aP3685s2bp1deeWXI+iyTJk2SJF27ds2UGgEAgLXQwAAwTSILRj711FOSpEuXLqm7u5v7YAAAeMRxDwwAS8vIyNDixYsVjUYVCoXMLgcAAJiMBgaA5W3evFnSnXVgOjs7R922oaHBiJIAAIBJaGAAWN6qVasUDAbV0dGhZcuWqbGxcdg2f/zxhzZu3Kg1a9aYUCEAADCKIxqNRs0uAsCjZfDpY8n8+gmHw3rzzTf12WefSZLmzp2rnJwcud1u/frrrzp16pQikYiKiop09OjRhP7ODRs26IcffpB053HNra2tSk9PH/IEtKampoRrBAAAY48GBoDhHqSBGdTY2KiqqiodP35cV69eVSQS0eTJk5Wfn6/S0lKVlJTEfTxzPM8995yOHTs26jb8igQAwFpoYAAAAADYBvfAAAAAALANGhgAAAAAtkEDAwAAAMA2aGAAAAAA2AYNDAAAAADboIEBAAAAYBs0MAAAAABsgwYGAAAAgG3QwAAAAACwDRoYAAAAALZBAwMAAADANmhgAAAAANjGf2o9MQev97lUAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_B = ggplot(all_data_df[all_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\", \n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " ) \\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#b3e5fc']) \\\n", - " + geom_point(data=all_data_df[all_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_B)\n", - "ggsave(plot=panel_B, filename=pca_uncorrected_file)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Corrected PCA" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 1 experiments...\n", - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 5 experiments...\n", - "(5549, 50)\n", - "Plotting PCA of 1 experiment vs 50 experiments...\n", - "(5549, 50)\n" - ] - } - ], - "source": [ - "lst_num_experiments = [lst_num_experiments[i] for i in pca_ind]\n", - "\n", - "all_corrected_data_df = pd.DataFrame()\n", - "\n", - "# Get batch 1 data\n", - "experiment_1_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_1_0.txt.xz\")\n", - "\n", - "experiment_1 = pd.read_table(\n", - " experiment_1_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - "\n", - "print(experiment_1.shape)\n", - "\n", - "# Transpose data to df: sample x gene\n", - "experiment_1 = experiment_1.T\n", - "\n", - "for i in lst_num_experiments:\n", - " print('Plotting PCA of 1 experiment vs {} experiments...'.format(i))\n", - " \n", - " # Simulated data with all samples in a single batch\n", - " original_data_df = experiment_1.copy()\n", - " \n", - " # Match format of column names in before and after df\n", - " original_data_df.columns = original_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " original_data_df['num_experiments'] = '1'\n", - " \n", - " # Get data with additional batch effects added and corrected\n", - " experiment_other_file = os.path.join(\n", - " compendia_dir,\n", - " \"Experiment_corrected_\"+str(i)+\"_0.txt.xz\")\n", - "\n", - " experiment_other = pd.read_table(\n", - " experiment_other_file,\n", - " header=0,\n", - " index_col=0,\n", - " sep='\\t')\n", - " \n", - " print(experiment_other.shape)\n", - " \n", - " # Transpose data to df: sample x gene\n", - " experiment_other = experiment_other.T\n", - " \n", - " # Simulated data with i batch effects that are corrected\n", - " experiment_data_df = experiment_other\n", - " \n", - " # Match format of column names in before and after df\n", - " experiment_data_df.columns = experiment_data_df.columns.astype(str)\n", - " \n", - " # Add grouping column for plotting\n", - " experiment_data_df['num_experiments'] = 'multiple'\n", - " \n", - " # Concatenate datasets together\n", - " combined_data_df = pd.concat([original_data_df, experiment_data_df])\n", - " \n", - " # PCA projection\n", - " pca = PCA(n_components=2)\n", - "\n", - " # Encode expression data into 2D PCA space \n", - " combined_data_numeric_df = combined_data_df.drop(['num_experiments'], axis=1) \n", - " combined_data_PCAencoded = pca.fit_transform(combined_data_numeric_df)\n", - "\n", - " \n", - " combined_data_PCAencoded_df = pd.DataFrame(combined_data_PCAencoded,\n", - " index=combined_data_df.index,\n", - " columns=['PC1', 'PC2']\n", - " )\n", - " \n", - " # Add back in batch labels (i.e. labels = \"batch_\")\n", - " combined_data_PCAencoded_df['num_experiments'] = combined_data_df['num_experiments']\n", - " \n", - " # Add column that designates which batch effect comparision (i.e. comparison of 1 batch vs 5 batches\n", - " # is represented by label = 5)\n", - " combined_data_PCAencoded_df['comparison'] = str(i)\n", - " \n", - " # Concatenate ALL comparisons\n", - " all_corrected_data_df = pd.concat([all_corrected_data_df, combined_data_PCAencoded_df])" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [], - "source": [ - "# Convert 'num_experiments' into categories to preserve the ordering\n", - "lst_num_experiments_str = [str(i) for i in lst_num_experiments]\n", - "num_experiments_cat = pd.Categorical(all_corrected_data_df['num_experiments'], categories=['1', 'multiple'])\n", - "\n", - "# Convert 'comparison' into categories to preserve the ordering\n", - "comparison_cat = pd.Categorical(all_corrected_data_df['comparison'], categories=lst_num_experiments_str)\n", - "\n", - "# Assign to a new column in the df\n", - "all_corrected_data_df = all_corrected_data_df.assign(num_experiments_cat = num_experiments_cat)\n", - "all_corrected_data_df = all_corrected_data_df.assign(comparison_cat = comparison_cat)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [], - "source": [ - "all_corrected_data_df.columns = ['PC1', 'PC2', 'num_experiments', 'comparison', 'No. of experiments', 'Comparison']" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAHoCAYAAACW+gpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8FGX+B/DPbM+mk0JCjTQREEOTqoBKUUKHUCVUG2BDxTu8Q8U7VDw7oogiByjCKWcHQZogJ4IgHiDgT4pSExDSs2W+vz+4HbLubrJJNtls+Lxfr7yUZ9p3Zp6Zne+U51FEREBERERERBQCdMEOgIiIiIiIyF9MYIiIiIiIKGQwgSEiIiIiopDBBIaIiIiIiEIGExgiIiIiIgoZTGCIiIiIiChkMIEhIiIiIqKQwQSGiIiIiIhCBhMYIiIiIiIKGUxgSqEoitufTqdDTEwMbrjhBixatAgi4nPa//znP5g8eTKaNWuGyMhIWCwWpKSkID09HatXr4aqqj6n3bFjh7bMJ598sjJWzafMzEyMGzcOycnJ0Ov1UBQF77zzTpXGUN298847UBQFjz/+eLBDCbq8vDwsXboU06dPR8eOHWE2m7ltyqm89SqQ9XHTpk1QFAXjx4+v8LzospSUFCiKEuwwiIhqBCYwfsrIyEBGRgbGjBmDFi1aYNu2bZgyZQpGjx7tMa7dbsfkyZPRuXNnvPXWW9DpdLjlllswcOBAJCYm4oMPPsCQIUPQq1cvn8tbunSp9v/Lly+vlHXyZdKkSVi6dCkSExMxatQoZGRkoEmTJlUaA1WtilwAHz58GOPGjcOrr76KHTt2wGazBT7AK9z48eOhKAo2bdoU7FCIADAhI6LgMgQ7gFDxxycQ69atw2233YYVK1ZgzJgxSEtL04aNGzcOK1asQLNmzbB48WJ06dLFbdqTJ0/iySefxJdfful1WXa7HStWrAAAJCUl4dChQ/j222/RsWPHwK6UFzabDZ9//jlSUlKwe/du6HTMcb0ZPHgwOnXqhPj4+GCHEnSRkZGYNGkSOnTogA4dOuCzzz7DX//612CHdUVhfaz+vvrqK9jt9mCHQURUI/DqtJx69eqF22+/HQDw73//WytftWoVVqxYgdq1a2PLli0eyQsA1KlTB6+//rrbU5bi1qxZg6ysLHTt2hX33HMPAPgcN9BOnz4Np9OJhg0bMnkpQXR0NJo3b84LRgCNGzfGokWLcOedd6Jt27YwGo3BDumKw/pY/TVu3BjNmzcPdhhERDUCr1AroE2bNgCAX3/9VSt77rnnAACPP/44ateuXeL0Xbt29Vq+bNkyAMDYsWMxduxYAMD7779f7rt3n3/+OXr16oXY2FhYLBZcffXVePTRR3HhwgW38VJSUtCwYUMAwObNm7VvcFJSUvxe1po1a9CvXz8kJCTAbDajUaNGePDBB3Hu3Dm38fbs2QOz2YxatWrht99+85jPlClToCgK7rzzTq2s+Lv5p06dwvjx41G7dm2EhYWhbdu2+Oc//+kzrvPnz+NPf/oTWrRogbCwMERHR+Omm27Cp59+6jHu0aNHoSgKevTogezsbDz44IO46qqrYDQacf/99wPw/cpV8Vd91q9fjxtvvBGRkZFITEzElClTcPHiRQDA2bNnceedd6Ju3bqwWCy4/vrrS3w96Ntvv8Xw4cORnJwMk8mEevXqYfLkyTh+/LjHuI8//rj23dKPP/6IAQMGIDY2FuHh4ejevTu++eYbt/F79OiBCRMmAACeeOIJt2++qvrbp9atW0NRFPz0009eh587dw4mkwm1a9eGw+HQyl11vG7dujCbzahTpw66deuGJ554wu9lF38lZv78+WjVqhXCwsJw1VVX4dlnn9W+d/v+++/Rv39/1KpVCxERERg4cCCOHTvmMb8ePXpAURQcPXrUY1jxOlYaRVGwZMkSAEDPnj3d9o9r3v7Uxy+++ALdunVDREQEYmNjMWTIEJ/buST+HuP+KMtxOWLECCiKgkceecRj2KFDhxAREYGIiAgcPnxYKy++D5YtW4Z27drBarUiMTERGRkZOHHiREDWs/h2Xrt2LXr27ImYmBgoiqKdZ729clW8HuTl5eHBBx9E/fr1tXPaJ598oo27atUqdOzYEeHh4ahduzbuvfdeFBQUeI09Pz8fc+fORZs2bbTt0qlTJ60e/ZHrPO90OvHMM8+gWbNmMJvNqF+/PmbOnImioiJtXNd52FXni9fH4r8Vubm5mDt3Lq677jpER0cjIiICjRs3xvDhw7F27Vqf252IyC9CJQIgvjbT3/72NwEg/fv3FxGRzMxMASCKosjvv/9eruVduHBBLBaLmEwmOXfunIiIdOnSRQDIxx9/XOb5/f3vfxcAYjAY5Oabb5YRI0ZIvXr1BIA0a9ZMTp8+rY07Y8YMGTp0qACQ2rVrS0ZGhmRkZMiMGTP8WtbMmTMFgJhMJunatasMGzZMmjZtKgCkcePGbssSEZk3b54AkJtuuklUVdXKV69ercWXm5urlW/cuFHb3g0aNJDatWtLenq69OrVSwwGgwCQ2bNne8R18OBBqV+/vgCQlJQUGThwoNx0001itVoFgMybN89t/CNHjggAuf766yU1NVViY2Nl0KBBMmTIEHn88cdFRGTx4sVel5eRkSEA5N577xW9Xi/dunWTYcOGadu8e/fukpmZKY0aNZKGDRvKiBEjpGPHjgJAzGaz7N271yP++fPni06nE51OJx07dpThw4dL69atBYAkJCTI/v373cafPXu2AJCpU6eK1WqVa6+9VkaMGCHXXXedABCLxSI//vijNv7cuXOla9euAkCuu+46bb9nZGTI119/XfJO92Lu3Lk+90Vpnn76aQEgjz32mNfhCxYsEAAyffp0rezVV18VAKLX6+XGG2+UUaNGSa9evbRt7q+GDRsKALn//vslLCxMbrvtNklLS5PIyEgBIH/9619l69atYrVapW3btpKeni5NmjTR6nd+fr7b/Lp37y4A5MiRIx7LctWx7t27u5V7q1cZGRnSuHFjASB9+vRx2z+ZmZk+p3NNC0DuueceURRFOnToICNHjpQWLVoIAImOjpY9e/a4TeM6zjIyMjziLusxXpKyHpfnz5+XevXqiU6nkw0bNmjlNptN2rdvLwDkzTffdJvGtQ+mTp0qiqLIjTfeKCNHjpSUlBQBIPXq1ZNff/21wuvp2s5Tpkxx284dOnSQCxcuiMjl+lWcqx507txZOnbsKImJiTJs2DDp0aOH6HQ60ev1sm7dOnn++ee1c/jgwYMlLi5OAMjo0aM9Yj9z5ox2fkhKSpLbbrtNbr31VomOjhYAMm3aNI9pAEjDhg0lPT1dIiIiJC0tTdLS0rRpxowZo4174MABycjIkPDwcK2e/PG3wuFwaOe1+Ph4GTBggKSnp0uXLl3EarV6rVtERGXBBKYUvhIYVVWlc+fOAkBmzZolIiLr1q3TfuDKa9GiRQJABg4cqJW99tprAkCGDx9epnnt2LFDdDqdREREyH/+8x+tvLCwUIYPHy4AZOjQoW7T+LqwKs3KlSsFgLRq1UoOHz6slauqKn/9618FgIwYMcJtGlVV5aabbnK7WDl58qTEx8eL0WiU7777zm1814UVAOnVq5dbcrNjxw6JiIgQnU4nu3bt0sodDodce+21AkCeffZZcTqd2rDDhw/LVVddJXq93u2C3rUNXBcW3pLR0i4YdTqdfPrpp1p5dna2tGrVSgBIixYtZOzYsWKz2bThjz32mACQcePGuc1v+/btotfrpW7durJz5063Ya660rFjR7dyVwIDQF566SW3Yffff78AkNtvv92v9SmPiiQwx48fF0VRfB5D3bp1EwBu9blBgwaiKIpHfVFVVTZu3Oj3sl0XmHXq1JGff/5ZKz9w4ICYzWaxWq2SkpIiCxYs0IYVFRVpdfjtt992m1+gEhiRy/XK1/qUNh0AWbhwoVauqqp2kZ6amuo2ja8EpjzHuC/lOS5FRDZs2CA6nU7q1asn58+fFxGRP//5zwJABg0a5LEc1z4wGAzy2WefaeU2m03GjBnjca4t73oW384rVqzwus4lJTCuGznFz2mufdqkSROJjY11q98nTpyQxMREASD/93//5zbP2267TQDIfffdJ4WFhVr56dOntUTviy++cJvGFcM111wjp06d0sp/+eUXiYmJEQBux4Sv9XHZsGGDAJAOHTpIQUGB27CLFy96nMuIiMqKCUwp/pjAOBwOOXTokIwfP167a+46sa9YsUIASKdOncq9PNcP7qpVq7SyrKwsMRqNYrFYtLt5/hg3bpwAkD/96U8ew86cOSNhYWGi0+nk+PHjWnl5ExjX3f0/XnCIXPrhT01NFb1er90xdvn1118lNjZWTCaTfP/999K7d28BIE899ZTHfFwXVjqdTn766SeP4a4LskmTJmllrqc5f0zUXD788EPtiYlL8YuKP14Uu5R2wTh27FiPaV566SUBIFFRUdrFl8uFCxdEURRp2LChW/nAgQMFgHzyySde4xgwYIAAkO+//14rcyUwXbt29Rg/KytLu9vqz/qUR0USGJHLx8D27dvdyo8ePSqKokiTJk3cysPCwiQ2Nra84WpcF2SLFi3yGDZ48GABIN26dfMY9tFHH3m94K9OCUyXLl08prHZbNpTquJP2nwlMOU9xr0pz3Hp8vDDDwsASU9Ply1btohOp5Pk5GSvy3XtA29PKrKyssRqtYqiKG7nwPKsp2s79+vXz+c6l5TA6HQ6OXjwoNswp9Mp8fHxAnh/IvnAAw8IAFm8eLFWtnv3bi1xKJ4Uunz//fcCQAYMGOBW7jrfrVu3zmOaadOmeSzH1/q4vP/++wJceppJRFQZ+A2Mn1zv+BoMBjRr1gzvvPMOIiMj8d5776Fx48YBWcbx48exZcsWxMTEoH///lp5XFwcbrvtNhQWFmLVqlV+z+/rr78GAIwZM8ZjWGJiInr37g1VVbFt27YKxX327Fn88MMPaNq0KVq1auUxXFEUdO3aFU6nE7t27XIbVq9ePbzxxhuw2Wzo0aMHvvzyS3Tr1g2PPvqoz+Wlpqbi6quv9igfNWoUgMvrDUBr6W3IkCFe53XDDTcAuNTvzh8lJyejffv2PuMoSe/evT3KGjVqBABo3749YmNj3YZFR0ejVq1aOHXqlFamqiq++uorWK1W9OnTp8zxe4shLi7OYznVjau+vvvuu27l7777LkTEoz63a9cOv//+OyZNmoR9+/ZVePkl7buShlXnbTpy5EiPMqPRiGHDhgFwP2a8qcgx7k1FjsunnnoKqampWLlyJdLS0iAiWLx4cYkNGHhb/7i4OPTu3Rsigq1btwZkPQcMGOAzhpKkpKSgWbNmbmU6nU77JtHfeufaroMGDfLaCIvrmxhv29VoNKJnz54e5a64ylK/U1NTodPpsHjxYrz55pvl+j6KiKgkTGD85OoHZsKECbjvvvuwaNEiHDt2DIMHD9bGiYuLA3CpI8jyWL58OUQEw4YNg9lsdhvm+pjf9YG/P06ePAkAPj/Cd5WX9CGrP1wfEh8+fNij40/X3/z58wEAWVlZHtMPHz4cgwcPRnZ2NqxWK5YuXQq9Xu9zea4fdV/r41rv4rGNGTPGa1wJCQk+42rQoEGp6+5L3bp1PcoiIiJ8DnMNL96HSlZWFnJzc5Gfnw+TyeQ1/ocffthn/PXq1fO6nMjIyGrdV4ur/r///vtwOp1auas/pD8mMPPnz8dVV12Ft99+G61atUJSUhJGjBjhMb2/yrrvXMOKf+hc3ZTlmPGmose4r/mV57g0mUzax+jZ2dm46667fCb4Lv6uf0XXs7znjJLOCb6Ge6t3rvhnzZrlM/7c3FyvsSclJXk970ZGRnospzTNmjXDs88+i/z8fNxxxx1ITEzEddddhwcffBB79+71ez5ERL6wHxg/+dMa03XXXQcA+OWXX3DhwgXExMSUaRmuppI3bdqEbt26uQ1zXXBu2bIFx44d8/mDXBaB6oRMVVUAl34Ay3MhcerUKe0OcH5+Pvbv31+mls/8ia1v374ltgrn7e6txWIp93JLaoLa3+apXbFHRERg6NChJY7bsmXLci+nuomNjcVtt92G1atXY/369ejTpw9++OEH7Nu3Dx06dEDTpk3dxm/dujX279+PNWvW4PPPP8emTZuwcuVKrFy5Ep07d8amTZtgMpn8Xn4g9l1pXPs2VFT0GPc1v/Icl8ClVhld9uzZA6fTWeJND39VdD3Le84orV6V9ZzRrVu3Mr8ZEOjzxYwZM5Ceno5///vfWLduHb7++mu88MILePHFF/HCCy/gvvvuC+jyiOjKwgQmgBISEnD99ddjx44dWLFiBe666y6/p921axcOHDgAAPj555/x888/ex1PRLB8+XL8+c9/LnWederUwZEjR3Ds2DG0aNHCY7jrbp2vu3/+ct3pj4+PL3OzuyKCCRMmICsrC6NGjcLKlSsxceJE/Pjjj9pd2D/y1mRt8fI6dep4xDZ58uRSk4DqJj4+HhaLRXsV40rq9XrMmDFYvXo1li9fjj59+mhPX1xPIv/IYrFg0KBBGDRoEABg3759GD16NLZv345FixZp/SlVJVfSlJub6zGseNPrVaEsx4w3FTnGS5pfeY7LrVu34plnnkFSUhJatWqF9evX429/+1uJnaceO3YMrVu39loOXF7/QK9nVXPFP2jQIMyYMSPI0QD169fH9OnTMX36dDgcDqxYsQITJkzAI488gnHjxnm8SktE5K/QvEVbjT300EMALvXFcfbs2RLHLd4fh+vVsIceeghyqXEFjz9XPyH+vkbmeo/8vffe8xiWmZmJtWvXau90V0S9evXQvHlz7N+/H4cOHSrTtK+88grWrl2Lrl27YunSpZg1axbOnDmDSZMm+Zxmz549bn09uKxYsQIA3J5e9erVCwCwevXqMsVVHRgMBq0vmq+++qpSl+W62C7et0owpaWlITo6Gv/+97+Rl5eH9957D3q9HiNGjPBr+pYtW2Lq1KkAgP/+97+VGapPycnJAOD1mFi3bl2Z5lXR/bNy5UqPMofDgQ8++AAAPJ74/lFFjnFvyntcZmdn4/bbb4fT6cTixYuxbNkyJCQkYM6cOfj22299Tudt/c+fP48vv/zS7RwY6PWsalV5vitrnTQYDBg7diw6dOgAm83m9RxOROQvJjABNnz4cIwcORJnzpzBjTfeiO3bt3uMc/r0aUybNk27m+x0OrUkw/Uhujc33HAD6tatiwMHDvj1oezUqVOh0+nw8ssvY+fOnVq5zWbD9OnTUVBQgCFDhqB+/fplXU0Pf/nLX6CqKoYOHYo9e/Z4DD937hzefPNNt7L9+/dj5syZiIyM1L57+ctf/oLrr78en3zyCV5//XWvy1JVFdOnT0d+fr5WtmvXLrz66qtQFAV33323Vj506FC0aNECy5cvx5w5czze4xYRbNu2rcINGVSWWbNmQafTYcKECV47uszNzcXbb7/ts0M7f7nuQB88eLBC8wkUs9mMYcOGIScnBw899BB+++033HLLLR6vG+Xn5+Pll1/26JRVVVWsWbMGAAJSv8uje/fuAIB//OMfbnV1w4YNePHFF8s0r4run61bt+Ltt992K5s9ezaOHz+O1q1bazc7SlKeY9yX8h6X06ZNw9GjRzFt2jTt9bNFixbB4XBg7NixyMvL87q8999/363zRIfDgQceeAB5eXlIS0tz+3YlkOtZ1Tp27IhevXph27ZtmDp1KrKzsz3G+eGHH7RjoyJKqpMbN27E+vXrPV6VPHLkCA4cOABFUXx+o0dE5JdgNH0WSuCjH5iS2Gw2mThxojZt8+bNZciQIVqnhXq9XuvLRETk888/F+BSx42lefDBB7U2/v3h6mzTYDDILbfcIiNHjtQ6j2vatKlHh2zlbUZZ5HJ/DDqdTtq2bSvDhw+XYcOGSZs2bUSv10t0dLQ2blFRkaSmpgoAWbJkidt8Dh06JOHh4WK1Wt2aS3Y175qWlib169eXpKQkSU9Plz59+ojRaPTZ3OihQ4fkqquuEgCSmJgot9xyi4wePVp69+6t9aXwwgsvlGkblKe525I6CBTx3SzpggULtDrTqlUrt7pkNpsFgFtfNa5mlP/Y7GlJyykoKNC2Rffu3WXChAkyadIk2bZtm89tUNygQYOkY8eO0rFjR61+1a1bVyvz1kdHaVx9Sbj+li5d6jHO77//LgDEaDRKp06dZOTIkTJkyBC3DhKzsrL8Wl5JzcKWtE191Zf8/Hy5+uqrBYA0aNBAhg4dKh07dhSdTicPPfRQmZpR3rlzpyiKIhaLRQYOHCiTJk2SSZMmaetWWn28++67RVEUuf7662XUqFHSsmVLrUnv4k1wi5RcT8tyjJemrMelq3+WFi1aeHQaOmXKFI8m1EU8O7Ls3r27jBw5UltunTp15NixYxVez9KauRYpuRllX+eakpri9rXPz5w5I23atBEAEhMTIz169JDRo0dLv379tOPij78f8NK0emnL+cc//iHApU6PR44cKZMmTZKZM2eKiMgLL7wgwKWOdvv27StjxoyR3r17a+er4h3REhGVBxOYUpQngXH55ptvZOLEidKkSROxWq1iNpu13o4/+ugjrff5UaNG+d1vxnfffaf94Nvtdr/i+PTTT+Xmm2+W6OhoMZlM0qRJE3nkkUc8+iIRqVgCIyKyefNmGT58uNSpU0eMRqPExcVJ69atZdq0abJ582ZtPFdfDr4653zjjTcEgLRr107r8LH4hdWJEydk7NixkpCQIGazWa677jqfF+wil/pZeeqpp6Rt27YSEREhFotFUlJSpE+fPjJ//ny3Ph2qWwIjcql/h4yMDGnYsKGYTCaJiYmRli1bysSJE+XTTz/V6pJI+RIYkUt1q1evXhIdHS2KopQ4D1/z9PXn6+KoJE6nU+unxGq1Sk5Ojsc4drtd5s+fL0OGDJHGjRuL1WqVmJgYad26tTzxxBNy7tw5v5cX6ARGROS3336TUaNGSWxsrISFhUn79u1l1apVZe4HRkRk+fLl0rZtWwkLC9O2q+vC1p/6+Mknn0jnzp3FarVKdHS0DBw4UPbt2+exnNLqqb/HuD/8PS5/++03rb+o3bt3e8wnNzdXmjZtKgDkww8/1MqLJwCLFy+W1NRUsVgsEhcXJ7fffrv8+uuvPmMry3pWpwRG5NINiZdfflm6dOminffr168v3bt3l3nz5nmsd3kSGLvdLo899pg0btxYu4Hkmsfhw4flsccek65du0pycrKYTCapW7eu3HzzzfLBBx+4na+IiMpDERHx9XSGqDrZtGkTevbsiYyMjJD8wJaoqo0fPx5LlizBxo0b0aNHj2CHU+V69OiBzZs348iRIwFr2ZCIiIKP38AQEREREVHIYAJDREREREQhgwkMERERERGFDH4DQ0REREREIYNPYIiIiIiIKGQwgSEiIiIiopDBBIaIiIiIiEIGExgiIiIiIgoZTGCIiIiIiChkMIEhIiIiIqKQYQh2ANXJhQsXkJ+fH+ww6ApmtVoRExPjdRjrJwUb6ydVVyXVTSKqeZjA/M+FCxfw6quvwuFwBDsUuoIZDAZMmzbN44eY9ZOqA9ZPqq581U0iqpmYwPxPfn4+HA4H2rRpg4iIiGCHQ1eg3Nxc7N69G/n5+R4/wqyfFGysn1RdlVQ3iahmYgLzBxERETwBUrXF+knVGesnERFVBX7ET0REREREIYMJDBERERERhQy+QkYV9umnn2LDhg04evQoOnfujIcffjjYIREBAF588UVs2bIFBsPlU938+fORkJAQxKjoSlVafczMzMQrr7yCAwcOIDo6GuPGjcONN94YrHCJiKotJjBUYbVq1UJ6ejr27NmDnJycYIdD5GbgwIHIyMgIdhhEAEquj8899xxSUlIwa9YsHDp0CE899RQaNmyIhg0bVnGURETVG18howrr0qULOnXqhKioqGCHQkQUkk6ePIlDhw7h9ttvh9lsxrXXXovrr78eGzZsCHZoRETVDp/AEFGNtnbtWqxduxbx8fHo378/evXqFeyQ6Armqz4eO3YMCQkJbs1QX3XVVdi7d2+wQiUiqraYwBBRjdW/f39MnDgR4eHh2LdvH5555hmEh4ejS5cuwQ6NrkAl1cfCwkKPPnTCw8NRUFAQpGiJiKovvkJGRDVW48aNERUVBb1ej9atW6Nfv37Ytm1bsMOiK1RJ9dFisSAvL89t/Pz8fISFhQUjVCKiao0JDBFdMRRFgYgEOwwiAO71sWHDhsjMzERubq42/JdffuEH/EREXjCBoQpzOp2w2WxQVRWqqsJms8HhcAQ7LCJs3boV+fn5UFUV+/fvx2effYZOnToFOyy6QpVUH+vUqYMmTZpg2bJlKCoqwn//+1/s2LEDN910U5CjJiKqfvgNDFXY+++/jxUrVmj/3rZtG2666Sbcf//9QYyK6FIfRfPnz4eqqoiPj8fYsWPZrwYFTWn18eGHH8bLL7+MMWPGICYmBvfccw+fwBARecEEhips9OjRGD16dLDDIPLw9NNPBzsEIk1p9TEhIQFz5sypomiIiEJXjUtgTp48ieXLl2P//v3IyclBQkICunfvjsGDB8NsNgc7PCIiIiIiqoAalcBkZmZixowZCA8PR79+/RAREYGDBw/i3Xffxc8//4zHHnss2CESEREREVEF1KgEZuPGjcjLy8MzzzyDBg0aAAD69u0LVVWxceNG5ObmerSzT0REREREoaNGJTCuDr9iYmLcymvVqgWdTgeDofTVLd6EJVFV8qfusX5SsLB+UnXFekd05alRCUyrVq3wwQcf4OWXX8bo0aMRGRmJn376CV988QXS0tJgsVh8Tutq9nf37t1VFS6RV96aoGb9pOqC9ZOqKzbfT3TlqFEJTLt27TBmzBisWrUKO3bs0MrT09MxduzYEqd1PZ3p2bMnYmNjodfrERkZiZycHDidzkqNOxBCLV6AMXvz4Ycfen1SWLx+xsfHc7tVgVCLuSriZf2sHkItXiB4504iqplq3NGemJiIli1bokuXLoiMjMTOnTuxatUqxMTEIC0tzW3cU6dO4dSpUwAuNQCQl5eHpk2bIikpCSICh8PF8t8mAAAgAElEQVSBunXrQlGUgMWnqirOnj2LxMRE6HSB60e0suIFQi/myooXqPyYS2I0GtG0aVPUrl2b+/p/Qnlfh8o2BqpH/eS+vozn+8v8qZtEVPPUqARmy5YtmD9/Pl5//XXEx8cDALp06QIRwZIlS3DjjTciKipKG/+NN97AE088of175MiRAIDTp09XeqyheMINtZhDLd7STJgwAQBw5syZSl9WqG27UIsXCM2YS1JV9TMUtxtjJiIKrBqVwHz++edo1KiRlry4XH/99fjqq6/wyy+/IDU1VSu/8847MWDAAACXnsCsX78eANyewBgMhpC6IxfoeIHQi7kq7tRWVswlWbx4MSZMmKDd4ea+Du19HSrbGKge9ZP7+jKe7y/jExiiK1ONSmAuXryI8PBwj3LX+7Z/fO82OTkZycnJAC51gLl9+3YAgE6ng4hAp9NBp9MF/AfCtYxA/zhUZrxA6MUc6HiBqtnOvtjtdgCX14v7+rJQ3Nehto1LU1X1k/ua53siosD+CgRZnTp18Msvv+DEiRNu5Vu2bIFOp0NKSkpwAiMiIiIiooCoUU9gBg8ejF27duHRRx9Fv379EBUVhe+++w67du1C7969ERcXF+wQiYiIiIioAmpUAtOqVSs8++yzeO+99/DFF18gJycHtWvXxtixYzF06NBgh0dERERERBVUoxIYAGjWrBlmz54d7DCIiIiIiKgS1KhvYIiIiIiIqGZjAkNERERERCGDCQwREREREYUMJjBERERERBQyatxH/ERU+Ww2GwoLCwEAJpMJZrOZndMRERFRlWACQ0RlYrPZkJ2dDQBQFAVFRUUQEYSFhQU5MiIiIroS8BUyIiqT/Px8KIoCk8kEo9EIg8GAgoICiEiwQyMiIqIrABMYIioTEYFOd/nUoSgKRIQJDBEREVUJJjBEVCZGoxF2u11LWux2O4xGI7+BISIioirBb2CIqEysVitERPv2xWQyITw8nAkMERERVQkmMERUJjqdDhEREVoio9frmbwQERFRlWECQ0RlpigK9Hp9sMMgIiKiKxC/gSEiIiIiopDBBIaIiIiIiEIGExgiIiIiIgoZTGCIiIiIiChkMIEhIiIiIqKQwQSGiIiIiIhCBptRJiKqBPk2FcfOFSHfriLKrEf9WiZYjLxnREREVFFMYIiIAqzArmLPr/nItamwGnTIyi1CdqETretZoWefn0RERBXCBIaIKMDO5zmQU+hEcrQJABBp0eFUth3ZBU7EWvkUhoiIqCL4S0pEFGAigKJcftSiKAr0igKnSBCjIiIiqhmYwBARBVi4WQedAuTZVIgIsgucMBoURJj1wQ6NiIgo5DGBISIKsFirAS2SLbA5VJzNdQCK4No6YbCaeMolIiKqKH4DQ0RUCerEmBAfYYBDBYx6BUZ+vU9ERBQQTGCIiCqJyaCDKdhBEBER1TB8n4GIiIiIiEIGExgiIiIiIgoZTGCIiIiIiChkMIEhIiIiIqKQwQSGiIiIiIhCBhMYIiIiIiIKGUxgiIiIiIgoZDCBISIiIiKikMEEhoiIiIiIQgYTGCIiIiIiChlMYIiIiIiIKGQwgSEiIiIiopDBBIaIiIiIiEIGExgiIiIiIgoZTGCIiIiIiChkMIEhIiIiIqKQwQSGiIiIiIhChiHYAVQnERERMBgMEBGICABo/w0UEfFYRqDmW/y/gRRqMVdWvK55F/9vIOdrMJR8OCYlJWnrVRkxFI+D+zr0Yq6KelGSyq6f3Nfu8y3+30AKtZj9qZtEVPPwqC+mTZs2iI2NhcPh0MqcTmfAlxMbGwtVVaGqasDnXRnxAqEXc2XGC1RezCWZNGmS27K5ry8J1X0dStsYqB71k/vaHc8Bl5RWN4mo5mECU8zu3btx7bXXIiEhASICp9MJvV4PRVECtgxVVXHu3DnExcVBpwvcG3yVFS8QejFXVrxA5cdckrfeegtDhgxBfHw89/X/hPK+DpVtDFSP+sl9fRnP95f5UzeJqOZhAlNMbm4uHA6H28lVUZSAnmwVRdGWEegfHtf8Az3fUIu5suN1LaMyYi7J6dOn3eon93Vo7+tQ2caueQa7fnJfe58/zwGl100iqnn4ET8REREREYUMJjBERERERBQymMAQEREREVHIYAJDREREREQhgwkMERERERGFDCYwREREREQUMpjAEBERERFRyGACQ0REREREIYMJDBERERERhQwmMEREREREFDKYwBARERERUchgAkNERERERCGDCQwREREREYUMJjBERERERBQymMAQEREREVHIYAJDREREREQhgwkMERERERGFDCYwREREREQUMpjAEBERERFRyGACQ0REREREIYMJDBERERERhQwmMEREREREFDKYwBARERERUchgAkNERERERCGDCQwREREREYUMJjBERERERBQymMAQEREREVHIYAJDREREREQhgwkMERERERGFDCYwREREREQUMpjAEBERERFRyGACQ0REREREIYMJDBERERERhQwmMEREREREFDKYwBARERERUchgAkNERERERCGDCQwREREREYUMJjBERERERBQymMAQEREREVHIYAJDREREREQhgwkMERERERGFDCYwREREREQUMmp8ArNy5UoMGDAA06ZNC3YoRERERERUQTU6gcnKysKqVatgsViCHQoREREREQWAIdgBVKbFixfj6quvhqqqyM7ODnY4RERERERUQTX2Ccx///tfbNu2DZMnTw52KER0hfk934Gfzxbi57OFOJfnCHY4RERENUqNfALjdDqxcOFC9O7dGykpKcEOh4iuIOdyHdjzWz4gABQFR8/ZcG3dMNSOMgY7NCIiohqhRj6BWbNmDTIzMzFmzJhgh0JEV5j/yyyCUa9DQqQRCREGhBl1+DmzECIS7NCIiIhqhBr3BCY7Oxvvvvsu0tPTER0dXeK4p06dwqlTpwAAmZmZyMvLAwCoqgoRgaqqUFUViqIELD5VVd3+GyiVFS8QejFXVrxA5cdcEqPRqI0bzH3t2gYAoNfr/ZrvlbKvRQSFdieMegWqXIrJqBfkFqmwO1QY9ErIHU9A9aif1W1f+yOU93WoxFwZ9YGIqr8al8AsW7YMERERSEtLK3XcN954A0888YT275EjRwIATp8+XWnxuZw9e7bSlxFooRZzqMVbmgkTJgAAzpw5U+nL8rXtVFVFfn4+HA4HFEWB2WyG2WwO+EVUWVWnfe3Md+Bkrop466Vtcr5AEBumICszz2286hRzIFRV/QzF7caYiYgCq0YlMCdPnsSXX36JyZMn4/z581q5zWaD0+nEmTNnYLVaERkZCQC48847MWDAAACXnsCsX78eAJCUlAQRgcPhgMFgCPjdorNnzyIxMRE6XeDe4KuseIHQi7my4gUqP+aSLF68GBMmTEDt2rWDsq9FBFlZWdDr9TCZTFp5dHQ0rFZrifO9kvZ1dJyKA6cKkZXrgAKgYYweLeuEwWrSVWrMVXEOKEll18/quK9LE8r7OlRi9qduElHNU6MSmHPnzkFVVSxcuBALFy70GD5lyhT0798fU6ZMAQAkJycjOTkZwKXkZ/v27QAAnU4HEYFOp4NOp6uUu8uueQdKZccLhF7MgY4XqJrt7Ivdbgdweb2qel/bbDbk5eXBbDZDr9dfel2qsBAFBQWIiIgocX5X0r4ON+uQWj8cuUWq9m+j3nP6UDueSlNV9bM67Wt/heK+DsWYiejKUaMSmIYNG+LPf/6zR/myZctQUFCAKVOmICkpKQiREYU+17vmrosP13+dTmfQYqquDHoFMVb/vg8iIiKisqlRCUxUVBQ6derkUf7xxx8DgNdhROQfg8EAo9EIm80Gg8GgfZRb2utjRERERIFUI5tRJqLAMxgMqFWrFoxGI5xOJ0QE0dHRpb4+RkRERBRINeoJjC9///vfgx0CUY1gtVq1BEZRFJhMpoB/j0BERERUkisigSGiwHAlLURERETBwlunREREREQUMpjAEBERERFRyOArZERUJq5mk9mfAxEREQUDExgi8ouIIC8vD0VFRRARGI1GREREQK9nfydERERUdfgKGRH5paCgAAUFBdDr9Vp/MHl5eRCRYIdGREREVxAmMETkF5vNBr1er706ZjQaYbfbmcAQERFRleIrZETkF0VR3JIVJi6+FdpVZBde+lYo0qJHmJH3ioiIiAKFCQwR+cVisSAnJwd2ux0AoKoqwsPD2ZHlH1zId2D9gWycvOiATgEaxBnRo2kUosL4rRAREVEgMIEhIr+YzWYoioLCwkKICEwmEywWS7DDqnY2HczB/2XZUCfaCFUEP58pQpgxF72uiQ52aERERDUCExgi8ouIwOl0QkSgKAqfvHhRYHPi+O82JEcZYTVd2j5FDsHxczY4VYFex2aniYiIKopXIETkl8LCQuTm5sLhcMButyM7OxtFRUXBDqt6URSYDDoUOVStyO4UmPQ6Ji9EREQBwgSGiEolIigoKIDBYIDRaITRaIRer0dBQUGwQ6tWLAYFrZLD8HueE0fP2fDreRsKbSpSG4QFOzQiIqIagwkMEZXK1eKYolx+iuD6f7ZGdpmiKEiO0SPCosPFQgdyi1S0bWhFy2QmMERERIHCb2CIqFQ6nQ5GoxGFhYUwmUwQETgcDoSFhbklNVe683kO/JJlR7sGVuj1OhTYVNicKvJsKiItbIWMiIgoEPgEhoj8Eh4eDrPZDLvdDofDAYvFAqvVGuywqpV8mwoRIMykh0mvIDpMD6d6qZyIiIgCg09giMgvOp0OkZGRUFVV+zefvrjT6xSoAq2lNlUEArY+RkREFEhMYIjIb4qiQK/nq1C+xIXrERehx+lsOyxGHQrsKmpHGhHDTiyJiIgChgkMEVGAmAw6XFsnDCcv2pFXpCLSrEOdGCMMej6BISIiChQmMEREAWQx6tAo3hzsMIiIiGosfsRPREREREQhgwkMERERERGFDL5CRkQUYEUOFblFl1pri7LoYeQ3MERERAHDBIaIKIByCp348UQBcoqcABTUsurRsk4YrCY+8CYiIgoE/qISEQWIiODgmUIU2AXJUSYkRRpwocCJ/8ssDHZoRERENQYTGCKiAHGoQG6Riuj/9fuiKAoizXpcyHcGOTIiIqKagwkMEVGAGHSASa+g0KZqZYV2la+PERERBRC/gSEiv6iqisLCQqiqCp1OB4vFAp2OF+bFKYqCpolm7D1RgNPZl5IYo15BowT2C0NERBQoTGCIqFSqqiInJwc2mw2KokBEYLPZEBUVxSTmDxIijWjXQIcL+Q4oClAr3IBIiz7YYREREdUYTGCIqFQOhwM2mw0mk8ktgbHb7TCb+XThj2KsesRYmbQQERFVBt46JaJSiQiAS69IFf+vq5yIiIioqjCBIaJS6fV6KIoCp/NSa1pOpxOKokCv51MGIiIiqlpMYIioVAaDAeHh4VBVFUVFRXA6nQgPD4fRaAx2aERERHSF4TcwROSXsLAwmEwmrRUyPn3x5FQFv/1uw5lsB3Q6oH6sCbWjmOQREREFEp/AEJHf9Ho9jEYjkxcfjmQV4cCpQtidggKb4Iff8nE62x7ssIiIiGoUPoEhIgoAu1Pw2wU7aoUbYDFevjf063kbkvgUhoiIKGD4BIaIyoQtj3mnikAVQK9TtDKdAnBzERERBRafwBCRX+x2O/Ly8rRvYPgRvzuTXkF8uB6nsu2IDzdCFUFOoRNXJ1mCHRoREVGNwgSGiErldDqRk5OjJS8OhwM5OTmIjo7m9zD/oygKmtW+lKxk5TmhAGicYEaDWqbgBkZERFTDMIEholI5HA4UFhZCVVWICAwGg5bIMIG5zGLU4dq6YbA5BQoAk4Fv6RIREQUaf12JqFQ2mw15eXmw2+1wOBwoKChAYWEhv4fxQlEUmA06Ji9ENZyiKFAUBTExMbhw4YLXcZ5++mkoioLHH3+8aoOroHXr1qFbt26IjIzU1pPc9ejRA4qi4OjRo8EO5YrEJzBEVCq73Q673Y6ioiLodDqICIxGI3/UiOiKd/HiRTz//PN48skngx1KQBw/fhyDBw+GzWbDLbfcgsTExGCHRFWgR48e2Lx5M44cOYKUlJRgh1MqJjBEVKqioiI4HA7YbDbtOxidTscEhoiuaIqiwGw246WXXsIDDzyA2NjYYIdUYevXr0deXh7+8pe/1JikrDL885//RH5+PurWrRvsUK5IfMeBiEpVVFSEoqIiqKoKvV4Pp9OJgoICOByOYIdGRBQ0Op0Od9xxB7Kzs/Hcc88FO5yA+O233wAAjRo1CnIk1VuDBg3QvHlztsYZJExgiomIiIDBYICIaO/2u/4/kH/FlxHIv8qKNxRjrqx4yxuz3W5HQUEBCgoKYLfbfcZckqSkJG29qnpfO51OqKoKo9EIvV4Pg8EAVVVhs9m4r6tRzJVdL4JdP7mvq25fh1LMpdXNyvboo48iLCwMr7zyCs6dO+f3dPn5+ZgzZw5atWqFsLAwREdH48Ybb8SKFSsCGp+/y9m0aRMURcHs2bMBABMmTNC+f/H3G578/HzMnTsXbdq0QUREBCIiItCpUycsWbLEY9yZM2dCURSkp6d7DMvKykKdOnWg1+uxdetWrXz8+PFQFAWbNm3CF198gW7duiEiIgKxsbEYMmQIfvrpJ5+xffvttxg+fDiSk5NhMplQr149TJ48GcePH/cY9/HHH4eiKHjnnXewY8cOpKWlIS4uDoqiYM+ePQB8fwOjKApSUlLgcDgwZ84cNGnSBGFhYbjmmmuwePFibbwNGzagZ8+eiIqKQmxsLMaNG+ez/jgcDixYsACdO3dGVFQUwsLCkJqaihdffNHrjcSUlBTtDYlFixahdevWCAsLQ1JSEu688063b7aOHj0KRVGwefNmAMBVV12l7ffib1nYbDa89tpr6NChA+Li4mC1WpGSkoK0tLSA11l/8BWyYtq0aYPY2Fi3yuB0OgO+nNjYWKiqClVVAz7vyogXCL2YKzNeoGwxuz6Ad7XgpdfrERkZ6fGjW9qrB5MmTXJbdlXua51OB4PBoLU45jqpqapapqcwNX1f+yvUjiegetRP7mt3PN9fEuzXtpKTk3HXXXfhhRdewLx58/D000+XOk1OTg569uyJXbt2ISEhAWlpacjLy8OGDRvw9ddfY/v27XjppZcqHFtZlpOUlISMjAzs2bMHP/zwA7p27YomTZoAAFJTU0td1tmzZ9GrVy/s3bsXSUlJ6N69O0QE33zzDcaPH4+dO3filVde0cafM2cO1q1bh1WrVmHJkiXIyMjQhk2ZMgWnTp3CrFmz0K1bN49lrVq1CgsWLED79u3Rv39/7N27F6tXr8aGDRuwefNmXHfddW7jv/baa5g+fToAoEOHDrjhhhtw8OBBvPXWW/j444+xefNmXHPNNR7L2bJlC+644w40a9YMvXv3xsmTJ6HT+XfvPz09XUtSGjdujM2bN2PixIkAgMjISIwaNQqdOnVCnz59sH37dixduhRHjhzBli1b3BKHgoIC9OvXDxs3bkStWrXQqVMnWCwWfPvtt3jggQewceNGrF692mtcjzzyCF566SX06NEDTZo0wbZt27Bw4UIcOHAAmzdvhqIoiIiIQEZGBtasWYMzZ85g6NChiIiI8JjXmDFj8K9//QuRkZG44YYbEBUVhRMnTmDr1q3Izc3FyJEj/douASMkIiInTpyQefPmyZkzZ0RVVXE6nWKz2cTpdIqqqgH7czgccubMGXE4HAGdb2XFG4oxV1a85Y05KytLMjMz5eLFi3Lx4kXJzMyU33//3WvMs2fPlhMnTnitnwsWLJAzZ84EZV+fP39efvzxR9m7d6/s27dP9u3bJwcPHpT8/Hzu6z/82exOOZdrk6wcmxTYPOMKteOputTP6rivgxUzz/f+183KBED0er2IiJw+fVqsVquEh4fL2bNntXHmzp0rAGT27Nlu006bNk0ASM+ePSU7O1srP3DggCQmJgoA+eSTTyocY3mWM3v2bAEgixcvLtOybrvtNgEg9913nxQWFmrlp0+flvbt2wsA+eKLL9ym2b9/v4SFhUlkZKT88ssvIiKycOFCASAdOnQQu93uNn5GRoYAEACycOFCrVxVVZk5c6YAkNTUVLdptm/fLnq9XurWrSs7d+50G7Zo0SIBIB07dvS6DQDIM88843V9u3fvLgDkyJEjbuWu6Vq1auVWFzZs2CAAJDk5WeLi4uTTTz/Vhl28eFFatmwpAGTDhg1u87vnnnsEgIwYMUIuXLiglWdnZ2vbfMGCBW7TNGzYUABIUlKS/PTTT1p5ZmamNGnSRADIV1995df6iIj88ssvAkAaNmwoWVlZbsMKCgrkm2++8bqNKhNfISsmNzcXDofD7bFZ8cdogforvoxA/lVWvKEYc2XFW9aY5X+vOBR/R9b1DYm3mEty+vRpbb2qel9HRUUhISEBFosFBoMBZrNZ+zf39eW/Iofgx5OF+O5YAXYeL8D3xwuQU6hWWcyVXS+CXT+r074Odsw837vHG2y1a9fG3Xffjby8PDzzzDMljpuXl4e33noLOp0Or732GiIjI7VhzZs3x2OPPQYAFX4CU1XLAYA9e/bg888/R4cOHfD888/DbDZrw2rXro2FCxcCABYsWOA23TXXXIPnnnsOOTk5GDNmDA4cOIAHHngAVqsVy5Yt8/l6YJcuXTBlyhTt34qiYM6cOahXrx727Nnj9trZ008/DafTiddffx3t2rVzm8+kSZMwYMAAfPvtt9i9e7fHcq699lo8/PDDZd8gAF588UUkJCRo/+7ZsyfatGmDU6dO4dZbb0W/fv20YVFRUbjjjjsAQHuVC7j0VOvNN99E/fr1sXjxYkRHR2vDIiMj8dZbb8FkMnlsV5c5c+bg6quv1v4dHx+Pu+66C8Clp0v+yszMBHDpTaW4uDi3YRaLBZ07d/Z7XoHCBIaoEul0Ouj1etjtdq3M6XSGXOePOp0O4eHhiIyMRHh4OGrVqoXo6GjtooQuOZJVhMxcO5IiDUiOMqLILvjpdCFUlf3lENV0M2fORHh4OBYsWIAzZ874HG/Xrl0oKChA27Zt0bx5c4/ht99+OwBg27ZtFXqNr6qWAwBffvklAGDQoEFeX2VyfROzY8cOj2H33HMP+vXrh+3bt6NTp07Iy8vDCy+8gGbNmvlcnrfXlYxGI4YNGwYA+PrrrwFces35q6++gtVqRZ8+fbzO64YbbgAAr7GlpaWV63fOaDSiR48eHuWuhhF69+7tc9ipU6e0sk2bNsFut6Nv374ICwvzmCYpKQlNmzbFjz/+iIKCAo/h3pbj2q7Fl1Oa5s2bIzw8HJ999hnmzZuHkydP+j1tZWECQ1TJIiIioCgKbDab1o+Kt/dLqzNXAwQmkwlhYWFwOBwoKioKdljVzsUCFZFmvfaDFx2mR26RCpuTCQxRTZeQkICpU6ciPz+/xO9gXBd/KT762oiJiUF0dDQKCgrw+++/lzueqloOAO1D9lmzZvl8Upabm4usrCyv07/11luwWCzIzs7Grbfeqj2N8KVhw4Zey13r6lr3rKws5ObmIj8/HyaTyWtcrics3mJr0KCBP6vvISkpyeuNStdvv7eml13Div+2urbrm2++6XO77tu3DyKC8+fPe8yzXr16HmWuJ3Fl+Q2PiorCm2++CbPZjEceeQR169bF1Vdfjbvuugvbtm3zez6BVKaP+NevX4/33nsPJ0+eRFJSEgYNGoSBAwf6HP+ZZ57B2rVrsWHDhgoHShSqjEYjoqOjtdcyXK14hQoRQWFhodtH/ABQWFjo9Y7QlcxiVPB7noqI/709UeRQYdADBh2fVBFdCR5++GG89tpreP311/HII4+Uez5V9XQ7UMtxPcHp1q0bGjduXObpP/74YxQWFgIADh48iNzc3IDc6HPFFRERgaFDh5Y4bsuWLT3KLBZLuZZb2of+/jYE4Io/NTXVo2GCPyr+2l5Zl+OPUaNG4ZZbbsFHH32EL7/8Eps3b8Ybb7yBN954Aw8++CD+8Y9/BGxZ/vD7Kuqhhx7CCy+8AABac4j//Oc/0blzZyxfvtxrNvzTTz+5vctHgeGq0IGsmFS5DAZDSCUtxbmO9+I/dK7/FxG+RlZMSpwZFwrycfqiHXodoAJomWyBQc9tRHQliI+Px/Tp0zF37lzMnTsXderU8RjHVXbs2DGv87h48SIuXLiAsLCwCrWwVlXLAS7f6R80aBBmzJhRpmkPHz6sfffSt29ffPjhh7j33nvx9ttv+5zG1zq5yl3rHh8fD4vFAp1Oh8WLF4fc75Vru3br1s2tBbdgSUhIwOTJkzF58mSICNauXYsRI0bg+eefx8SJE70mgZXFryvgTz75BM8//zz0ej2mTJmC+fPnY8aMGYiPj8c333yDDh064LvvvqvsWK94DocD2dnZOH/+PH7//XetaV6iyqTT6WA0GmG327WmVR0OB4xGY8j9GFS2GKse7RpY0bS2GSnxJrRtYEWdGFOwwyKiKjRjxgxERkZi4cKFOHHihMfwdu3aISwsDLt27cLhw4c9hi9btgwA0LVr1wrdqKyq5QBAr169AACrV68u03QOhwNjx45FXl4enn/+eSxbtgzNmzfH4sWL8cEHH/icbuXKlV7n5ZrG1fSywWBAjx49kJ2dja+++qpMsVUHPXv2hF6vx6effur2LW1lMJku/Vb52yiGoijo27ev1hjBvn37Ki02b/yqsa+99hoURcFHH32E119/HXfffTfmzZuHQ4cOIT09HVlZWbj55ptDsnKEClVVkZ+fj8LCQhiNRuh0OuTl5WmPXIkqU3h4OCwWC5xOJ5xOJ8LCwmC1WoMdVrUUadHjqngzGidYEBcemk/diKj84uLicO+996KoqAhvvfWWx/Dw8HBMnDgRqqpi6tSpyMvL04YdOnQITz31FADg3nvvdZvu1VdfRfPmzfGnP/3JrzjKu5zy6NixI2tjyn4AACAASURBVHr16oVt27Zh6tSpyM7O9hjnhx9+wJo1a9zKnnzySezYsQP9+/fHnXfeibCwMCxbtgxGoxF33HGHz4/Ft27d6vGEZvbs2Th+/Dhat26tfZgPXPouR6fTYcKECdi0aZPHvHJzc/H22297/Qg+2OrWrYuJEyfi6NGjGDVqlNfGIX7++ecSkz1/uZ5aHTx40GPY7t278eGHH8Jms7mVnz9/Ht9++y0AoH79+hWOoSz8+nXduXMnOnTogFtvvdWtPDo6GitWrECbNm3w5z//GWlpaXjvvfcwaNCgSgn2SqaqKoqKimA2m7XvKEQENpuNF5JU6VwND7heJ+Pri0REvs2YMQOvvPKK1wt5AJg7dy7+85//YN26dWjUqBG6d++udTBZWFiIe++9F/3793ebJisrCwcPHixT61HlWU55LVu2DH379sVrr72Gd999F6mpqahTpw4uXryIvXv34tdff8V9992Hvn37AgC2b9+Ov//976hdu7ZboteuXTs8/vjjmDVrFsaPH4+1a9d6PO2/++67MXnyZLzxxhto3Lgx9u7di3379iEqKgrvvPOO27jdunXD/PnzMW3aNPTs2ROtWrVCs2bNYDQacfToUezZswdFRUUYMmRItfyu86WXXsLRo0fxwQcfYM2aNUhNTUWDBg2Ql5eH/fv34+eff8bAgQNL/canNAMGDMCSJUswevRo9O7dW2uyedGiRTh27BiGDh2K6OhotG/fHklJSbhw4QK2bNmCnJwc9O/fv8qbUvbrKuTixYta827ezJw5E0uWLIHT6UR6ejqWLl0asADJN35/QFXJ4XAgNzcX2dnZyM/P5+uLJbA5VNgc3D5EV6rY2Fjcf//9PodHRkZi8+bNeOKJJxAfH4+PP/4YX3/9Ndq3b4933303IH2zVOVyACAxMRHffPMNXn75ZbRo0QK7d+/Gv/71L+zduxeNGjXCvHnz8NBDDwG49NRj7NixcDqdePvtt936SwGARx99FN26dcO6devw4osveiwrPT0dH3/8MfR6PT766CP89ttvGDhwILZv3442bdp4jH/XXXdh586dyPh/9u48yLKyvh//+znr3btvLzM9wzAMCExUFpkxAhpFYyhJkYKSkgQDGkZwq4omVqxKaYICZbkkpmKqiDvKUvzQX/Il8QtGjRommnwxihi/gKxBhmX2nu6+29nP8/2jeZ65vd+evrfv0u9XFTX07b7nfvqe0+eez3mez+f5oz9CtVrFfffdh+9973uo1Wq4+uqrcd99981ZY6WXZLNZfOc738Htt9+O888/H4899hj+8R//EQ8++CDGx8dx00034a/+6q/W/DpXXHEF/vZv/xbbtm3Dvffei1tvvVUnlhdccAE+8YlPYPfu3XjiiSfwD//wD3jwwQdxzjnn4Gtf+1pbRoBWS0h1S3UZW7Zswctf/vIVu4ndd999uPLKKxFFEf7u7/4ODz74IO644w4kSdK2gDtl//79+PKXv4z3vOc92Lp1K6SUiOMYlmW1NUlI0xQHDx7ExMTEqu9iV6tVBEGgR1/SNEWhUEAmk+lYvGuNeTm9+B6vpNMxNx+DzZqPzy1btqz7vo7jGDMzM5BSwjAMJEmCTCajW0SvZKPs6zBO8bN9dfxqv49ESrx8wsUFpxbh2sdj67e/J6A3js9e29et6Od93S8xr3Rs0mC59tprcfvtt+P+++9fdJ0V2jhamkJ27rnn4kc/+hHq9Try+fySP/d7v/d7+O53v4vLLrsMH/zgBxdk1LQ2+XxerycihNDJC1Gn+b6PNE11m0bTNBEEAbLZbN92V+uEHz9Vxf/+vzMQAjCFwNOHAzRCibe8YggGWykTERG1RUu3Vy699FL4vo877rhjxZ+96KKLcP/992N0dBSHDx9ec4B0nKpDGBkZQblc3rDJS5qmqNfrqNVq7MS2znzfh+d5CMMQaZqihQHcDaPqJfiPp+uQAIquCdsUCGKJB5+toxrwGCUiImqXlhKYyy+/HK997Wvx4x//uKWN7tq1Cz/+8Y9x7rnnnvAqprQ83/cxNTWFY8eOoVarreoiPooizMzMYGpqCrVareWWeb0gTVNUKhV4ngff91Gv11GpVJjEdJhpmqjX67oTXrVaRRiGLOZv4scpGlGKqp/gWD1GPUwxVY9xtB4jTpnoERERtUtLcz+2b9+O//iP/1jVhnfu3Ilf/OIXJxQULc/3fdRqNRiGASEEPM9DmqYtdc9QtQzA7EVpo9FAHMcolUqruhhN0xRJkuiaiPWaRhRFEcIw1N3YpJQIggBRFC26Ci21hxAClmXpRNFxHFiWhSRJYJpml6PrDY5lIGMBtSBF0bVgGECUSDiGACePERGt3W233bagyxhtTJy83oeCINAXlMDs1DLVYrmV50op9c8ahoEwDBHHsV7EaCVqClcQBEjTFIZhoFQqtfz8tZi/KnzzivDUOVJKZDIZWJalk9YwDPm+NyllDJx7UhZT9QQVP0aSAtvKDnadkoNtbuwUZv7fLRER0VowgelDS7VPbmUa1fznqlGM1QjDEJ7n6VGQOI5RrVYxNDTU0khMHMd69Ga1FzSGYeguWKZp6gSKU5k6S73XcRxDCIE0TfV6RDRLCIHztufhJwKGABxTIGMJDOVNZOyNeXyqmx1qBelsNotMJtPVREatn5UkCQzDgOM4TKyIiPrMxvxU7XOO48xJAoIggOM4LV3Eq1ES9dwwDGFZ1qoSgCiK9PQ1AHpqUSsJVBiGmJmZQaVSwczMDKrV6qpqcBzHQS6XQxzHeupYNptdl9GfjUy17la1U9VqFa7rsgPZPCePuDhj3IVhAImUyLoGXrEluyFHYKSUqNVq8H1fnytqtRqCIGjba6ikOo7jRc8/URSh0Wig0WggiiIdk1rLqFKpoFKp6OermzmqTf1Sr+n7vq4HW+m8J6VEkiSs0yNqUqvV8PGPfxyXXHIJRkZGIITg1DBaFV599CG17ovv+3o9jlwu19JIiuM4yGQyqFar+utisbiqC1HDMOZ8GKuRlJWSIHU3FoCewuZ5HhqNxqoWkMrlcnAcR4++8CK68xqNBkzTRLlcBrC2UbRBdqwRYyZI4JgCSSrh2gayG3j0JQzDOSMc6qbJWjsoSil1UwnP8yCEQDabRT6fRzab1e3mK5XKnPOi67qo1+t6FDdJElSrVdTrdViWBdd14TiOnmprmiay2SyCIJiTBBmGAdd19XTcQqGw6PlPJVBTU1OwLAv5fF5vPwxDALPnc96AoY3m6NGjuPnmm7F9+3ace+652Lt3b7dDoj7DK78+ZBiG/qBWX6tFwlYSBAE8z9PPEUKs+gLUdV0EQQDf93Uyk8vlWkokkiSBbdv6azUFbbXmv5aKR0o5p9ic2iOOY5imqaeMqQtAJjDHhXGKxw/6kKmEbRgwIPHCVIjxvIUzNm/MluedoG6E1Ot1vUiyGolWyUUmk0G9XocQArZt646Fhw4d0uc8y7JgWRYajQaEEMhkMvA8DzMzMygUCjBNE2EY6lFiNZKjGqaMjo4ik8nA9324rrugBlElRwD0DZdKpQLXdfXITRzHqNVqGBkZWZDUpWmKRqOhp7pxzSUaJFu2bMGBAwcwMTGBBx98EL/5m7/Z7ZCoz/Bs2APU9IXVjiastu4jTVPUajVYlqUvRH3fh+/7KBQKLW/HsiyUSiV9wWBZVst3ENWFr/o90zRd891H1ZVNXZjUajV9d5PawzAMRFGkjxt1vDJ5OS5MJI7WYhyrxQhiCdM04IUJSq6/IRMYNUrheR5s29bTstbSLTBJEj31VI2g5HI5GIah67NUl0KVzPi+jyAI9I0SlYwDs+eO+cd0c51XkiQ6UVKryKtkyPd9DA0NwbZtPSrc/Pegpo2pmzzqZk1z4tU8EnTSSSfpc7r6PYMg0Dd84jhGsVhEHMfwfR9RFCGXyyGXy/HvkPqO67qYmJjodhjUx5jAdFkQBPounZQS2Wx2VcnEaqgP5OYRENUKd7XU3cvVUAtxzszMII5jfYGRy+VW/frN1IiSikeNRqmLB1q7XC6HarWq6xeEECgWi7xwauKYAvunQjw3FSHnGLBMAcgUxxoWokRuuDoYIQTy+bxOKoQQKBQKJ3zDQo2yqJq3MAx1HZzapjqnqBEWNVVLCKF/Lo5jXfunpuCqEWm1Dc/zkCQJoijSbept29aJjUrGpqam9LbHx8dh27ZOlIQQCIIAtVpN/7zv+/rc5zgOkiTRN10cx8Ho6OicOkHXdRHHMbLZrG6WoqbdqlrEiYmJVU3BXeq95cK0tJI0TbF//354nodsNoutW7fyM5a6hglMF6kPJDU1R31w2rbd0l3K1V6gG4YB0zTnrN3h+77+vpr/3ckTkuM4GB4e1tOPAMxJqE7E/GlMzRcj1B62baNUKumRLdu217zfBk2cAl4kEcYJbBPwYglDClimQJxuvAQGOH7Toh1TDVWjEMuy9GiGGhFRtShq1AcA8vk8kiRBGIa665iKwTRNfZ5tnm6qzqlqWpj6Oc/z5jQKkFLq3ymTySBJEkxPTwOATiZqtRqmp6d12/vmxEZNHVPbs20bhw4dgud5cBxHLzBs2zZM09Q3aWq1mp5WpkaFGo0Gdu7ciWw2izAMEUWRHhVv5Vyu6olU0qY+I4iapWmKn//856jVavqxgwcPYteuXUxiqCtaOuqklLj44otx+umn44EHHljx5x944AGcfvrp+N3f/d01BzjI1B0vlUyoKVAr1YSEYYipqSkcO3YMU1NTukXpSlTtTJIkejX1IAhgWRbiONYr3HeabdvIZDJ6XZG1UndV1UWF+p14Um0vy7L0lBUmLwvVgwSWAUgIBHEKxzSRsQVylgF3AyYvzdoxUqe2oUZDVEG8amJSKBRQKpX0sWmaJoaGhpDP52GaJorFom4HbpqmLvwfGhpCsViEYRgoFosYHh7WN5Rc18WmTZt04xQ1/UzV2WSzWT09LooifQ5XozKqMYA6H6nkSwix6E2cY8eOIUkSuK4L27b1NF3V9azRaOhkI4oinQg988wzmJycxMzMDHzfR6VSQbVanZOcqalnnufpqcOqJrJarcL3fV3zU6vVmMTQHPv379ejieq/arWK/fv3dzs02qBaunr81re+hR/+8Id43/vehwsvvHDFn7/wwgtxySWX4Atf+AK+/e1v49JLL11zoINKrcPS/OG83NoaKtFQxalRFKFSqbQ8hSCTyeg7bJVKBY7jzFnU0vd9ZLPZvrr4Vx3Y1GiSmnZBtJ6O1RNM1mMEUYIj1RQmYgzlTewYs2EYGzuBaQe1ZkvzSEipVEKxWFwyoVaJRvPNIlUzMjY2Btu29blOjeio86P6XpqmGBsbg2EYmJ6e1iMVzdNv1fQyAHPWSTIMQ9fIANBJTj6fRxRF+nyvXkvdiBFCIJfL6bbTQRBgZGQElmXNSUxUQhQEAY4ePYpNmzbpxWbVyFMmk9GJSfM0NlU7pH5OTQs2DAOVSmVO/Q3RUjc31+OmJ9FiWrpKvfvuu2GaJj72sY+1vOEbbrgBhmHgrrvuOuHgBp0a5lfD/r7vr1hboj681Qem6m6zmgt2NQIy/7X6deqVunNaLpdRLpf13VRqrzAMUavVUKvVWh7120iqfozD1QjH6gkMATSiFPUg3bCLWHaC4zgolUp6JLB5xGUppmnqdvHDw8PI5/O66F6NxDRTU2mjKNLn5lKphE2bNuHUU0/FKaecguHhYT0l13GcORf/ihrBUSMtUkqdqKjvqREaNTJk27belppClslkUCwWUSgU9GhS88iKms7ZPKLTfENMTRFT74WqE0qSZM7nT/PokBohIlJU19NWHyfqtJZGYH76059i9+7dq+oYsXnzZrz61a/GT37ykxMObtCp+eHqwyqTyazr4oCO4+hWyMDsBWrzHcl+09zZjNrL931MTU3pRNm2bZTL5TV1lBo0h6sxJATOGM8ikhKGkDhaS3CkFuP0Td2ObnCstk5PFcCrWhQp5bI3OdQNkeY1X1SSZNu2npbWaDR0dzM1lS1NU53cl8tlvQ6MYRgol8vI5/N6+lapVML09LSuzVHNCVQTAtu2USgUkMvldN1LJpPB+Pi4nrajboKpREyd+5pHaFSBvhpZUp0j1UhP87o0KrFR0+R6hWq8ALD+rlu2bt2KAwcOzKmBKRaL2Lp1axejoo2spSvlgwcP4oILLlj1xnfs2IFf/vKXq37eRhGGoZ721OpiZuouXxiGcwry1QfSajRPvVJdceZ3QAvDcM5K1730oUbrQ0qJqakpvR4GcLxea/PmzV2OrnfkXQNZy4DrCORNA0EkMZwDTMG/mW5Sbd9VQmJZ1ooXwM3NAOZTycVS03ZV8qDO00EQYNOmTXBdF0IIHUuSJBgeHp6zfpVaEHN+W30hhG6/nM1mMTExgWq1qrutOY6jp6mpRE3V5wCzIy9xHOvkKIoi3WrasiyUy2WdIKjt9crNCTVNWk3LA2anDnLxz/VlGAZ2797NLmTUM1pKYGzbPqF1NZrXjaC5VFGmEoYhCoXCiitUqw/jer2uO/KoRdea1zlQ/6/mVy9msQUxm09GtVoNvu8jSRI0Gg3UajWUSiWesDYYtRZGHMf6Isz3fczMzGBsbIx/4y85ZdTFlrKNOElhGQaEJVHK2pgosdljtzUvwtppzedHNR2seY0YNeqhFIvFFbu0qUUs1UX86OioHgFS38/lcrpTm5repraZz+f12jlqlEUlWGo6nmpJrUapemXRzHq9rqfcAdBr6TTXHdH6MAwD27Zta9v2brnlFkxPT+sRxXvvvRcvvPACAOADH/jAmtuD02Br6Qy1ZcsWPPbYY6ve+K9+9SsOLy5CrbDcfIdNtcNcKYEBZqdQqNoX9WGpRl9UV5rmdVaWS4zmJy2KGh1Sw/WmacL3fd09jDYWdeHUfBHWPDWFgFNGHLzh9AL+1y+mcawRougauOzcYWwr804xLa+VC/HmG1FqzbD5azEtdXNJjRipRTqba2VUIqBGcNSCx71i/jlGJWDtaM1N3fXZz34W+/bt01/fc889uOeeewAA11xzDRMYWlZLt9Jf//rX44knnsB//dd/tbzhn/zkJ3j88cfxhje84YSDG2QquVCaLwgXowr1m4v1F/uwUh1mXNfVHcea1xtYTXwqLvVaamoDbSyGYeg6AtXKFZi968sLiOPCROLATATLALaWLJRcC/uOhphssCMedZ9pmrpBgeu6+v97/W9YdXtrvkm3WPMF6j/PPvvsnLbMzf/t2LGj2+FRj2spgXn3u98NKSX27NmDo0ePrvjzR48exZ49eyCEwPXXX7/mIAeNKgpVc7LVGgJLFdCr1slTU1OYnp5eNiFpXqQSgO5Y01zH0mqMwPFEpnlqAm0sarE+VaCsjls1dZFmPTcZ4qf7GrAMA5ZpwjSBX0+GePKQv/KTiWhR+XwelmXpeiLTNFEoFJjAEG1wLV2Nnn/++XjXu96Fxx9/HOeeey6+8pWvoFKpLPi5SqWCL3/5yzjnnHPw5JNP4l3vehfOP//8tgc9CNRigOqCsLkIs1mapqhWq/pnbNtGo9HQxf/zNdfCANCrNU9OTuKFF17A888/jyNHjqzYdlm171TtnVUHHBZObjxq5EXVv6ikVrVdpVkHZkK8cCxAxYsx3UjgRymmGgkm6xy1JDpRpmmiVCphaGgIQ0NDKJVKPVOfQ0Td0/JZ4Itf/CLq9Tq++c1v4n3vex/e//7347TTTsP4+DgA4MiRI3jmmWf0iMJVV12FL37xix0LvN+pYvzmjjWLjW6o0ZPmoX7LspZch0NN9VHtkdXd8uafV91rhoeHl/0gKBQKeuG4IAh0hxzaWMIwRL1e14sASikRBAEajQZKpVK3w+sZM16CIJYI4hTFrIGjtQRemGIsz78ZorVQi5gSESktJzCWZeHuu+/GFVdcgc9+9rP42c9+hqeffhpPP/30nJ97zWtegw9/+MN429ve1vZgB81SSctKliucNk0TQ0NDOnEJgkAvYqa6uKiVl9XK08tZapG2dlFT05p/H05V6y3qpoRqDAHMjuxxMcu5hADO2JzBTCPBdCOBTIFNJROnjvVGO1oiIqJBsepx2CuvvBJXXnklJicn8d///d+YnJwEAIyOjuLcc8/F2NhY24PcyCzLQiaTged5c9Z6WW712+Y1DKSUqNVqC2paukl1OPM8D0EQ6KlpakE1VcdTKBS4YFkPULVZaqE7ALqhAzsBHTeSt/HyiSymGxHCBJCQ2DrkYCzP6S5ERETtdMKfrKOjo3jzm9/czlhoCfl8Xk8Ha16xuRWqDbJqrQxAL3zZjnnEzY0BWhmlCcMQMzMziOMYnuchSRK9vsH09DTy+Twcx9GLlw0NDXG+c5c5jqOnJqp9oRYDVPuPgFNGHcx4Cco5E6kEgjjF7u052BZHE4mIiNppVVce//Iv/4J//ud/xvPPPw/XdXHOOedgz549OPXUUzsVH+H4gpMnwrIsjIyMwLIs1Go1nQC1oxAyDEO9OJpaT2ClhS5939friagkKooiZDIZfYGsFnprdZobdZYQAuVyGcDx9WAymQyL+OfZOmQjSSX++/kGGmGKLSUb40Ueu0RERO3W8qfr1VdfjW984xsAjk9Duvfee/HZz34W3/jGN3DZZZd1JkJaM5XEDA8P68fWWmPSvNhZJpOZU9hdKBSWfF7zlKPm/1+svTOnJ/WO+R3IgiBALpdjrdI8tSCFYxnYlrUQJBL/90UPu07OIe+y3TQREVG7tJTA3Hrrrbj77rthWRbe8Y534LzzzkO1WsV9992HBx54AO985zuxb98+rpra49p5sZmmKZIk0VPZ1IhKK+2ZgyCAZVnwfR++7+sESE0dA46vZ8N1RnpDGIZwXRe2bc+po2KCeVwtSPHidITNRRumMfu+HKxEOFiJ8LJxHsdERETt0lICc/vtt8MwDHznO9+ZU/fykY98BHv27MEdd9yBe+65B3v27OlYoNRbDMOAEGJOB7E0TVec7qUWRPQ8TzcayOVyupC/0Wjo7RQKBU4f6wGqA5nrunpfJ0miV8dmEjMrSQEpoZMXALANgSjpfuMMIiKiQdLSLfmHH34YF1xwwaJF+x/96EchpcTDDz/c9uCodxmGgVwuhyRJ9ArJQohFF+Oc/7xCoYByuYyxsTFs2bIFY2NjKBaLcF0X5XIZ5XJ5xTVqaP2omqXmaX6qFobJy3FZR8C2gMcPNPDUIR9PH/Yx48cYzvE4JiLqhmuvvRY7duxo6WdvvPHGE/5Mu+222yCEwLPPPntCz6fVaymBqVQqeNnLXrbo99TjlUqlfVFRX8jlciiVSshkMsjlcqvqGLbc2jKsq+g9+Xxe1zkFQQAp5Qk3lhhUtiHgmAIvzkR4birEM0cDhLFEyeXxTETUCxqNBm688Ubs3bu326HQGrX0ySqlXLIWQV1sLlaEPSjUuiW+7w/073kiHMdBoVBAPp/niMkAs21bT/lTo2hcGXuuGT9BPZB43csKOP/UPN5wRhGlrImjteXrwoiIaH00Gg3cdNNNiyYwf/mXfwnP89Y/KDohA3fFGUUR7rrrLuzduxe1Wg07duzA1VdfjfPOO++Etlev1+H7vl6N3HGcFVsFEw0StRiq6jqntGstoUExe29DImMfv9ljGwJRyhoYIqJex8+0/tLyVfjtt9+uu0LN/08IseT31/tg+NznPodvfetbuOiii3D99dfDMAzcfPPN+NWvfrXqbcVxDN/39d1n13URxzHCMOxA5P1LvScrdSCj/pQkCWZmZhAEgR6JrNVqvFM1T841kLEMzHgJAMCPUsQSKGXYgYyIqJmqN3nyySdxzTXXYGhoCOPj47jhhhsgpcTzzz+Pyy+/HKVSCRMTE/ibv/kb/dyl6k327t0LIcSS08OeffZZjI+PAwBuuukmXcd54403zompmRACf/zHf4y77roLO3fuRCaTwe7du/GjH/2opd/zO9/5Dl7/+tcjn8+jWCzi0ksvxaOPPtram0TLajmBUSMQq/1vPadcPfnkk/jxj3+Md77zndizZw8uueQSfOITn8D4+Dhuu+22VW9PtQpWB7T6lxfqxzUaDUxNTWF6ehrT09ML7tJT/4uiCJ7nIUkSRFGEMAzRaDTg+363Q+spWdvA5iEbv5708V+/ruGF6RBnjjsYK/COHhH1vyBO8fX/M4mb7juAr/+fSQTx2q/v/uAP/gBpmuLTn/40zj//fHziE5/A5z73OVx88cU46aST8JnPfAann346PvzhD7ecNCxlfHwcX/jCFwAAb33rW3HnnXfizjvvxBVXXLHs8/793/8df/qnf4prrrkGN998MyYnJ3HJJZfgkUceWfZ5d955Jy699FIUCgV85jOfwQ033IBf/epX+K3f+i0W+7dBS5+s/VL38Z//+Z8wDANvectb9GOO4+Diiy/GnXfeiSNHjujsuxXNrYINw9BJGYcYZ8VxjEajAcuyYJompJTwPA+O47A+YsCopN11XUgp0Wg0OBI5z8FKhOcmQ2wdshEmEkkKOLbBTm1E1PeCOMVbv/AMHj3gA5AABP7hoSn80/tOg2ud+JT617zmNfjSl74EAHjPe96DHTt24M/+7M/wqU99Cn/+538OAHj729+OrVu34mtf+xre8IY3nPBr5fN5vO1tb8P73/9+nHPOObjmmmtaet4jjzyCBx98ELt37wYAXHXVVdi5cyc+9rGP4Z577ln0ObVaDR/84Adx/fXX48tf/rJ+/I/+6I+wc+dOfPKTn5zzOK3eQBVyPPPMMzjppJMWtPI988wzAQC//vWvV7U9y7KQz+f1FKkgCOC6Li/OX5Iks1NlVIMHIQTiOMbU1BQmJydRqVQ4WjUADMPQSWocx4jjGLZtM5Gf55kjAVxbIGubKLgmCq6BXx8N5iz8SUTUj/6/n07h0QM+okQiSoAokXh0v4+7fza1pu1ef/31+v9N08SrX/1q10iywQAAIABJREFUSClx3XXX6ceHh4exc+dOPPPMM2t6rRN14YUX6uQFALZv347LL78c3/ve9/R10Hzf//73MT09jbe//e04evSo/s80TZx//vm4//771yv8gTVQVyBTU1Mol8sLHlePHTt2bNXbzOVycBwHSZLoCzkW8M8SQuhRKZW81Ot15PN5GIaBIAiQJAmGhob4nvUx27aRy+X0Wj/A7AdNJpPpcmS9Q0oJP0qxfyZCI5wdsTYEsHXIQSoBk4MwRNTHnjsWYnbkpZnEvsm1jcRv3759ztdDQ0PIZDIYGxtb8Pjk5OSaXutEnXHGGQseO/PMM9FoNHDkyBFMTEws+P5TTz0FAPjt3/7tRbdZKpXaG+QGNFAJTBiGsG17weNqxCQIgjmPHzhwAAcOHAAAHDlyBPV6HcDslDlVv6NWmm9uI72WKXXque2eltccb7unrCwVs2EYsG0bnufBMAx4nqcvbFWyp2omFhu16lTMnXqPgc7HvBx1bKvXX899PTw8jJmZGf21ZVlwXbfl93gj7OsgSvH8sQCnjjkQQuC5YyEy1uwUVIHjz+/nc8ByOn189tK+blU/7+t+iblfprj3u+0jDgCBuUmMwCmja5uRstgSHUst26FGs5c6fpYaDekGdVzeeeediyY4nMGwdgP1DjqOgyiKFjyu5uqrdSyUL33pS7jpppv011dddRUA4ODBgx2Mctbhw4c7/hrttljMaZoijmOkaYooipAkyZwPFNXJrRt/rP34Hi9nz549AIBDhw51/LXmv3dSSsRxrJtaJElyQiOandIL+zr2QuQQ44VDHqQEihlABALPvRggay/8wO2FmNtpvY7PfnzfGDP1uz98TRn/8POpOTUwr9yawdt/c+Gsl05Ts2qmp6fnPL5v374Vn3siybMaTWn25JNPIpfLLVlXrRZ537RpE37nd35n1a9JKxuoBKZcLi96UTU1NTtHc2RkZM7j733ve3HZZZcBmB2B+cEPfgAAmJiY0BdslmW1/W7R4cOHsWnTprZOq+pUvMDKMauEJY5jVCoVGIYB0zQRRREsy1py3Zx+e4+Bzse8nK9//evYs2cPNm/e3LV9faI2wr4+JfXg5CPdNjmVEkEscdKWPJymItd+e4+B3jg+e2lft6qf93W/xNzKsUlr51oG/un9p+Hun01h32SIU0YdvP03y2sq4D9RKjn40Y9+hFe96lUAZkdfWimKVzXS85Of5TzwwAN46KGHsGvXLgDA888/j29961u45JJLlhwtestb3oJSqYRPfvKTeNOb3rRgdtBqm0rRQgOVwJx22ml4+OGH0Wg05hTyP/HEEwCAU089dc7Pb9myBVu2bAEA7N+/Hw888AAA6I5jhmHoTmTtprbdLquNN01TvXaLaZpwXXfFeJpjVsXcjUZDTwnIZDIoFou65a7jOCgUCkuOvvTbewx0PublqNFF9fqdjKHbx+dq9cK+PnUsgxkvRSWQsAQQpxKv3JpBxln8+O+393gl63V89sK+Xq1+3Nf9GDN1lmsZuPbC0W6HgVe+8pW44IIL8JGPfATHjh3DyMgIvvGNb7TUNCibzeIVr3gFvvnNb+LMM8/EyMgIzjrrLJx11llLPuess87CW97yFnzwgx+E67r4/Oc/DwBzZvDMVyqV8IUvfAHveMc7sGvXLlx11VUYHx/Hc889h29/+9t43eteh1tuuWX1vzxpA5XAvPa1r8U//dM/4Xvf+x7e+ta3Apj9UP3hD3+IM888k9nuS9I0Rb1e17UraZrC9/2Wi+0bjYZeyDCKIuTzeWQyGdTrdRQKBQwPDwMAC/cHiJRSzy/uxAXkIChmTOzansORaoxESgxlLa4BQ0TUAXfddRfe+9734tOf/jSGh4dx3XXX4U1vehMuvvjiFZ/71a9+FR/4wAfwoQ99CGEY4uMf//iyCcxFF12ECy+8EDfddBOee+45vOIVr8Btt92Gc845Z9nX+cM//ENs3boVn/70p/HXf/3XCIIAJ510El7/+tfrKbd04gbq03Xnzp143etehzvuuAPT09PYsmUL/u3f/g2HDx/GBz7wgW6H1zNUXYrruvpOWBAECMNwxc5SURShVqvpVdlV8b7jOHra2Pw21uulk0W+G5mUErVaDb7vQwgB0zRRLBZZhDiPlBIzXoIjtRhSApYhUM6ZMA3ebSYianbjjTfixhtvXPD4bbfdtujC43v37p3z9WmnnYbvf//7C35uftv6xbZ14YUX4sEHH2w5JgC4+uqrcfXVVy/6PQC49tprce211y54/I1vfCPe+MY3Lvk8OnEDdwXyoQ99CHfddRf27t2LWq2GHTt24IYbblg2u95oVNvj+cP4raxXkSQJPM/T3WSA2SYJ2Wy2q+vjhGGIer2ui8y5/kz7+L4P3/dh2zYMw0AYhqhWq2yPPc+BmQgP7/eRsw0YAnjsoI84lXjZONtNExERtdPAJTCO42DPnj09PTzX3JmrG+vKqKKzJElgmqZOXFqJQ9XOZLNZSCkRRdHsGhgvXeB2Y22QOI5RrVYBzLZyjaIInuchjmMuOtoGURTNmTZm2zbCMESapkxgmrwwFSFvGyhlZ/++bFPghakIp4y4sLgQDBERUdsMXALT63zfh+d5qNVqAGYTrqW6dHWKZVnI5XKo1+v64jSbzS66hs5iz3UcB3Ec65jVOjmFQmFBq+r1EMcxpJQ6WbFtW3e8YQKzdmrBUmWpEbyNLk4kphoxDtciCAClrAlDCKRytuUoERERtQcTmHUUxzFqtRoMw9AX+kEQwPM85PP5dYlBTf3KZDJwHEffRW+1nsGyLBSLRV0PoepoSqVS11Zmn3+BTe2VyWQQhiGCINBNH3K53JLtIzeqREo8vN/DaN6EgMBThwK87vS5LZSJiKh/8NqidzGBWUfzp2qpgui1rh4bx7FeRBLAkiMpYRiiVqshSRIYhrGqEROV+Kh1XYQQiKIIQghks9muJS/A8RGgIAhgWZYeVWKReXvYto2hoSH4vg8pJSzL6ur+7kVRItEIU+QcgX3HQhhCYHPR5tQxIiKiDuAV3jpSU26au2QlSbKmaVdq8Ui1SrrneRgaGlowdUr9nBACjuMgSRJUKhUMDw8vO3VMPa9er2NqagrFYhGZTAZDQ0P69+h2oqCSqkajgTiOdS1Ot+MaJJZloVAodDuMnhUnKZ6fCuGYBn5jcxZxIlEJYkw31nZzgoiIiBbi3IZ1pGpP1LorQRCsufC90WggSRJkMhk9natWqy1oJay6ctm2DSEELMuas7bHYtI01cmRKuKu1WoIw1CPcPRKkqCSmJGREQwNDfVMXLQxJKlEnEgYhkDOEShkDEQJwNkHRERE7cervHWWy+WQzWZRLBZhGAYcx1lTAX8cx3Mu1tUUqvkdooQQq14fRY3quK6rE5YoihCGIYvjN5goihAEAdI01Uk3i/iPE0Jg27CDip/gcDWGIQTGCxY2l1ZujEFERESrwwSmC1QNQTs6j1mWhTAMF7RGnr9t27Zh27auE0mSpKURlPmJDwvaNp4oilCpVHT3Md/3kSQJ8vk8k5iXZG0DowULz04GSOTs30nWNrB1mKdYIiKiduOna5/L5XKI4xhBEOjRmMUWGDQMA8Vicc76KLlcbtkERiU4vu/r9V8AdKVVMnVPEARz2lSbpgnf95HNZtmJ7CUSgIREkEjU/AQSElnbQZww4SciImo3JjB9TtV+RFGEOI6RyWSWLMpXLZBbpTqVGYaBSqUCy7KQz+dbWi+GBocagVP1UoZhQErJ0bgmXpTif474qPoJ/HB25PLFmQhPHAxwUpkJPxERUTsxgRkAlmXBNM0F9TAnIo7jOd3FVPepQqGw6MgODT7TNFGv15GmqV7AMp/P81hoJiUeedHHVCOBZQoYQsCvJ3jsoIfffnmp29ERERENFCYwpIVhqGsdgNm6mVKJF18bnVpnKIoiSClhmiYKhQLrX5qEicSBmRiHaxFcS0BKAYkUk/VI1w4RERFRezCBIQCz04Sq1aruNialRBAEaDQayOVy3Q6PuqhWqwGYW/uk6mJ4YT5rqpECkCg4JvKugJDAdADE6ex/NkuFiIiI2oYJzAYVhqEuyletnNV6MgD0WjFq/RjamJIkQaPRQBiGc2qfoihi8tJEQGLbiI3DlQSmIZBKiSKAU8ouklTCNvleERERtQsTmA0oCAJUq1X9te/7ulhftWEGjrdkrtVq8DwP9XqdtQ8bTBRFAGYTWrUOjEp0mcAcl3NNnDqagWOGkHK2K5mAxOmbXThMXoiIiNqKV6IbUL1e14toOo4DIYSeKpYkCYIggO/7EEIgiiI0Gg3EcYxGo4FKpbLqBTGpv9m2raeLWZYFwzBOaGHUQbapYOE1O3LYOuQg7xgougZ2n1LAq0/JwzCYwBAREbUTR2A2iDRN9VSger2ObDarv2cYBtI0RSaTgWVZiKJIj8Y0Gg1ks1nU63U4joMwDPU6MjT4DMOAaZp6+phaD8Y0TSRJwtG4lxiGwNkn5bBt2MGMn8K1BDaXbFgcfSEiImo7Xn1sAGmaolKpoNFozPk6SRJIKRHHMWzb1qMy+XxeL1LYPE3IMAy9Bki3fo84jue0eqbOsm0brusiSRL9vqvjgBYKEokwSV/6l+vkbGQPPfQwvvrTR7sdBhHRQOIITI9L03TOuiwnQrXBdV0XQgiUSiVMTU2hVqvpUZfFOo2pBEYtYBjHsW6ju97iONbT19I0RTabZT3OOhBCwHVdmKYJ0zT1yFwcx3zvm0gp8fSRAM8cDeCaBsJU4sBMiPNOziPn8H3aSB566GH83jePf30jJvGqiUn8y4fO7l5QREQDhp+sPUxdtE9NTemE40RHHppb3qp1PNTilENDQ4smR47jIJvN6lGPJElQKpXWvFjmaqkWz2mawnEcuK4L3/fhed66xrFRqali9Xpdj9wxeZmrHqZ47liI8YKN0YKFLSUbtWA2iaGNpTl5Uf774GxiQ0RE7cERmB6VpilqtRqiKNL1Jo1GQ6+CvhqqjiGKIliWpacB5fP5FWtZ8vk8bNuG7/sol8tzWumuFL9qwazWlmlOvlQ3qzRNV0yI0jTVI0jA7KiA+n2os6SUqNfr8DxPt9iO4xi+73dtKmEvihMglZjTLtkxBYKY7xHN2vO/gV/u6nYURESDgQlMj1IX7apLGABdYL9almWhVCqhWq0iDEMIIZDL5VouxLcsC5ZltTx1TCVfYRgiTVOYpolsNosgCJAkCcIw1PU3SZJgeHgY5XJ52W3Ov+PfSuJDa5ckCZIkgRACcRzr7mNSSiYwTTK2QMYWqHgJSlkTcSIRxCmGslzBkoiIqN14BdgnVEcwwzBWlXwotm1jeHh4XYqwPc9DGIYwDANxHMPzPBw9elRPVVPJTTabRZqmmJychG3bKBQKi27PsixkMhk0Gg2YpqkvnNWIAHXe/LbJqpUyzcrYBl65NYtH93s4WIkgAOwYdbGl1NqIJQ2+r1/W7QiIiAYHE5geZVkWstksGo2GnsaTpiny+TwqlQqKxaKeUrUYVbcCQHcXW6/uUarYv9Fo6KliQRDopEbVUKhRnTAMUavVkMvlloxPfU8Vj7uu2/J0Nlqb5jVgACAMw1WNyG0Uo3kLr9mRhxelsAyBgsskbyO67w8W1sGcNwHs2sUifiKidmEC08NyuRyEEDh27Bgsy9L1KHEco16v69bH88VxjGq1qqdpCSFQKBTWbcRC1ackSQLHcSCl1ImLiklJ07Slizw18kTrS003VImmlBLFYhH5fJ4X54vI2AYyNhscbGS7dp2N/btmi/YfDIHf2z6KiYmJbodFRDRQmMD0MFVo7/u+LsQHsGIBu+/7iKJIJyxJkqBWq+lalk7LZDJz6m2klLqbGTA7uuT7vm7PrBZKZGer3iOE0AtXlkolAJjTWIKIFrdr19l4VZri4MGD3Q6FiGjgMIHpA7ZtIwgCncCobmJLXfAnSTJnes96d+yyLAtDQ0N6ulcul4OUEp7nwbZtjI6O6iQLmB1pGhoaWrf4qHWGYaBQKKBarer9Zds2stlslyMjIiKijYoJTB/I5XK6jgQ4vo7LUkzTRBAEsCxLL0SpFiFcizAMEYYhoiiCYRjIZrO6tmaxmA3D0GvXmKaJzZs367od3/dRrVb173Si69tQ59m2jaGhIT1itlzyvJGFcYp9kyGONRK4lsD2EQcjeZ5iiYiI2o2frn2geURDfb3cBWQmk0EURQiCAIZhQEqJUqm0potOVVej1gBJkgSu66JQKKBYLC46NS2TyejHmxsIqBoeIQQymQyEEJiZmcHw8DAL83uUaZos2l9Gmko8ftDHgZkIxYyJqUaKqYaH807OYTjH942IiKidmMD0CdVJrBUq4YmiCFLKttS+qIUk4ziGZVlwXRdhGCIIghVbIM+nFrBs3p5KipjA9B41/S+KIp10sgZmrlqQ4lA1xqaiDdMQKLjA4WqEw9WICQwREVGbMYEZUKrVcLuohQullLBtW3cWU62NT2R71B/q9ToajQYsy0KapgjDEKVSiUlME4nZY9o0jndmM4VAyuOciIio7TiRnVqipqJJKRFFEeI41otKrnZ0x7Zt2LYN3/cRx7FuULAeHdJodZIkge/7OnkBZuuVfN/vcmS9JecYGMpYOFKNkKQSjTBFmErWwBAREXUAP12pJY7jIJ/P6wUqVetj27ZXvb6MYRgoFouo1+sIw1BPQWMC05uSJIHneTqBkVKyHmYe2xR45UkZPHbQx1QjgWUCr5hwMV7gMU1ERNRu/HSllqh2urlcDmEY6sdOtL7GsiyUSiVdA8NFEXuTYRiIomjOukLNa/jQLCklZrwESSJhCImJkoOtww6PayIiog5gAkOrsl6LYVLvULUucRxDCIFsNqunD/ICfdaBmQiP7PeRtw04loFnjgQQAM7YvLrRSSIiIloZr0SJaElCCL3Wj0pc1bpCTF6Oe2EqQt42UMrOTq2zDIEXZyLsGHNhm3yfiIiI2olF/ES0rHw+P2cqmRAC+Xy+22H1lFQCzcssGYaAlOy2R0RE1AkcgSGiZdm2rRdSVW20WcQ/10TJwuMHfViGgCGAo/UY28o2HIv3iIiIiNqNCQwRrcg0TSYtyzh5xEGcSrw4HSGVwMllB2dsat86TERERHQcExgiojUyDYHTN2WwY9SFBFj3QkRE1EFMYIiI2qARpqj6CQwBlLImXE4fIyIi6ggmMES0ojAM9fo/ruvCtu0uR9RbjtVjPPKiBz+WACSGMhbO3pZFzmESQ0RE1G78dCWiZXmeh5mZGfi+D8/zUKlUEEVRt8PqGWkq8cQhHwAwUbIxUXIwEyT49dGgy5ERERENJo7AENGS0jSF53mwLEsX8UdRBM/zOArzkjCR8EKJ4ayJOJWIE4msJVDx026HRkRENJCYwDQpFAqwLAtSSr1+Q7vXcZBSLniNdm23+d926reYOxWv2nbzv+3crloocikTExP69+pEDM1xqPdOSok0TefEJoTQLZVXs91OxNwL+9oyANsEnp/ycayRIkokvDDFeSdnF31uv/09qW12+/jshX19Itvt133dLzG3cmwS0eDhX32T8847D+VyGXEc68eSJGn765TLZaRpijRt/x3aTsQL9F/MnYwX6FzMy7nuuuvmvPZ67GspJYQQ8H0fjuNASokwDJHNZuf8nbRqUPf1przA/Y/XUQ8BQ0gUMwZmGiYqjXDROph++3sCeuP47IV9vVr9uq/7KeaVjk0iGjxMYJr84he/wNlnn43x8XFIKZEkCUzThBDta4mapikmJycxOjoKw2hfCVKn4gX6L+ZOxQt0Publ3HrrrbjiiiswNja2rvu6VCqhWq0ijmMIIZDL5VAoFFb13g76vm5EISbrKfwYACSiVOBgJYWfCJTm3R3ut78noDeOz17Z16vRz/u6X2Ju5dgkosHDBKZJrVbTF2mKEKKtJ1s1/abd223efru3228xdzpe9RqdiHk5Bw8enHN8rte+NgwD2WxWTyVzHOeEX3cQ93WSSvxyfwNhIrBz8+x7c6we4fHDAX4nlAue229/T2qb3T4+e2Ffn8j2+nVf90vMrRybRDR4mMAQ0ZLiOEalUtHTPlQxP+ecHxclEkgFhrMGqn4K2xJI0tnFLTM2Gz0SERG1G69CiGhJ1WoVnufpwtswDCGEwPDwcJcj6x2OKVAumEgPSVTDGNIXsA3gZWMZFFwmMERERO3GT1ciWpSUEr7v6wUsgdkEptFodKT7Ub8SAhjLW/BCiWO1FFONGF4kce72LIoZs9vhERERDRyOwBDRoprnwqs1YOI41i2UO1WH0G+8KMX/HAlw6piNaiCRSonxgo0cp48RERF1BBMYIlpSNptFpVKB53kAANM0kclkuhxVb5msJzhYiXFy2cV2SyBJgBdnQkzVO9PiloiIaKPjLUIiWpIahVFrQqRpikwm0/Y2tv1MACi4ArUgQZpKJFIiiFPkXI5QERERdQJHYIhoUSpxKRaLetoYANi23eXIekvWNrCt7KIepJjxEkgAEyUbp4y63Q6NiIhoIDGBIaJFpWkKIQTy+fycLmQs4J+rnDNx+iYX+46FKGQMCCFw2piDsTxPr0RERJ3AT1giWpQq0k/TFIZh6MSF08fmMgyB39icwXjBQphIOKbAaN6CYXAKGRERUScwgSGiRVmWhUwmg0qlAt/3AQD5fJ5TyBZhGALjRb4vRERE64G3UoloUap9su/7iKIISZKg0Wig0Wh0OzQiIiLawJjAENGSpqenAQDFYhH5fB5CCExNTSFJ2CKYiIiIuoMJDBEtSkqJOI5hWRaEEBBCwLIsJEnCQn4iIiLqGiYwRLQolbCoFspSSoRhCNu2YZpmt8MjIiKiDYoJDBEtaWRkBLZto1aroVqtQkqJkZER3aGMiIiIaL2xCxkRLcm2bWSzWUgp9YhMmqb6ayIiIqL1xgSGiJYURRHSNMXQ0BCEEEjTFL7vw3VdtlNuEiUSL06FqAYpsrbA1mEHOYcD3ERERJ3ABIaIlpQkiS7gB44vYski/uOSVOKxAx72z0TI2QYOxBJHajFedXIOWZtJDBERUbvx05WIlqSK9VXCkqYpAHD6WJMZL8GBSoyJko3hnIWJko0ZL8FkLe52aERERAOJIzBEtCTHcZDJZOD7PoDZxCWXy3H6WJNUAgYkjKakzjIE4oSjVERERJ3ABIaIliSEQKFQgOu6kFLCMAwmL/PM1roIPH7QgyEEBADbAgoZtpomIiLqBCYwRLQsIQQcx+l2GD3LMQVMU+CFqQhCzNbEnD7uIu9wmh0REVEnMIEhIlqDGS9BlEi8/ow8omR2+tixRoxjjQQnORyFISIiajcmMEREa5BIiShK8MiLIQ5VYri2QDlv4JVbMt0OjYiIaCCxCxkR0RrYhsAj+338fF8djSjBi1MhHtrn4Ug16nZoREREA4kJDBHRGoRJilgC5YIJQwgM5S2MFky8MB1xvRwiIqIO4BQyIqI1SFIg7xjYXrZhmgKGEJisxYhTQEqAS+YQERG1F0dgiIjWYChrYjRv4Wg9gQEBP5RohAm2lx0YBrMXIiKidmMCQ0S0BnnXxMWvKCLvCDx2sIEXpgPs3p7DuSfnuh0aERHRQOIUMiKiNYpiiZPLNsaKNkwxu7hlnErYJkdgiIiI2o0JDBEtK01TpGkKIQRMk+uazOdFKZ4+GmKs4CBjzw5qH5iJ8OJUiNM3sZUyERFRuzGBIaIlRVGEWq2GOI4hhEAul0M2m4VgZboWxRJxInXyAgBZW6ARsgMZERFRJ7AGhogWlSQJqtUq0jSF67qwLAv1eh1hGHY7tJ7i2gIZW6AWJACAVEp4UYpihqdXIiKiTuAnLBEtSk0ds20bAGAYBoQQiCIu0NjMtQy8fCKDIJY4VIlwqBpjc8nGtrLT7dCIiIgGEqeQEdGykiSBlBJCCEgpYRi87zHfeNHGa3YYqIcpTENgOGvCZAtlIiKijmACQ0SLsiwLhmFgampKP5bJZPSIDM2Vd03kXTY5ICIi6jQmMES0qDRNkSQJMpmMLtoXQiBN0y5HRkRERBsZExgiWlSSzBalFwoF/VgYhvpxIiIiom7gZHYiWpQadZHyeDvg5v8nIiIi6gaOwBDRoizLQiaTged5uoDftm24rtvt0IiIiGgD4wgMES1KCKGTFd/3EccxHMeBabJQnYiIiLqHIzBEtKg0TdFoNGAYBorFItI0hed5sG0bjsM1ToiIiKg7BnoE5pZbbsFll12Gm2++uduhEPWdJEkQRREcx4FhGLCs2fsdYRh2OTIiIiLayAY2gXnqqafwwx/+kHeKidaIRfxERETUSwYygZFS4itf+Qre9KY3YXh4uNvhEPUly7LgOA7CMEQcx4iiCIZhsIifiIiIumogE5j7778f+/btwzve8Y5uh0LUt4QQKBaLyGazEELAsiwUi0XYtt3t0IiIiGgDG7gi/kajgdtvvx1XXnklyuVyt8Mh6muGYcxZyJKIiIio2wZuBOab3/wmHMfB5Zdf3u1QiIiIiIiozXp2BCZNU8Rx3NLP2rYNIQRefPFF3Hvvvfjwhz/c0jSXAwcO4MCBAwCAI0eOoF6v69eWUiJNU6Rpqlckb4c0Tef82y6dihfov5g7FS/Q+ZiXo45p9frc1/29r/vlPQZ64/jkvj6O5/vjOnE8EFHv69kE5tFHH8Vf/MVftPSzn//857Ft2zZ85StfwW/8xm/gta99bUvP+9KXvoSbbrpJf33VVVcBAA4ePLj6gFfp8OHDHX+Nduu3mPst3pXs2bMHAHDo0KGOv1a/vXf9Fi/QnzEvZ72Oz3583xgzEVF79WwCs23bNvzJn/xJSz9bLpfxy1/+Eg899BA+8pGPzPkATZIEYRji0KFDKBaLyOVy+nvvfe97cdlllwGYHYH5wQ9+AACYmJiAlBJxHMOyrLbfLTp8+DA2bdoEw2jfDL5OxQv0X8ydihfdpvhyAAARQElEQVTofMzL+frXv449e/Zg8+bN3Ncv6ed93S/vMdAbxyf39XE83x/XyrFJRIOnZxOYcrmMN7/5zS3//NGjRwEAn/rUpxZ8b3JyEu9+97tx3XXXzamN2bJlC7Zs2QIA2L9/Px544AEAs4XLUkoYhgHDMNr+AaFeo90fDp2MF+i/mNsdL7A+7/NSoigCcPz34r4+rh/3db+9xytZr+OT+5rneyKink1gVuucc87BRz/60QWP//3f/z3Gx8fx+7//+zjllFO6EBkREREREbXLwCQw4+PjGB8fX/D4V7/6VQwPD+OCCy7oQlREtFEEcQopAdcSvMNMRETUQQOTwBARdUOcSDx1OMCBmdkpVGMFEzsnMnCtgetST0RE1BMGPoH56le/2u0QiGiAPTsZYN+xEGMFCwaAAzMRDAM4a2tuxecSERHR6vEWIRHRGhyqRhjKmnBMAcsUGM1bOFpLECey26ERERENJCYwRERrYAoDaXo8WYlTwBAAy2CIiIg6gwkMEdEabB+xUQsSTHsJKl6CaS/G9rID02AGQ0RE1AkDXwNDRNRJW4ZsGIbAi9MhAGDHWAZbh5wuR0VERDS4mMAQEa2BEAITJRsTJbvboRAREW0InEJGRERERER9gwkMERERERH1DSYwRERERETUN5jAEBERERFR32ACQ0REREREfYMJDBERERER9Q0mMERERERE1DeYwBARERERUd9gAkNERERERH2DCQwREREREfUNq9sBEBH1u1qQIIwlXEsg75rdDoeIiGigMYEhIlqDZ48G+J+jAZIUsAyBMzY5OHnE7XZYREREA4sJDBHRCTpWj/HU4QDDOROuZcCPUjxxKEAxY2E4x5EYIiKiTmANDBHRCfKiFBKAa82eSjO2gVRKeFHa3cCIiIgGGBMYIqITZBkCaSohpQQApFIilYBtii5HRkRENLg4hYyI6ASN5i1sLtk4UIngmAbCRGJiyEaZ08eIiIg6hgkMEdEJskyBs07KYmzGhBdJ5ByBiZID0+AIDBERUacwgSEiWgPbFOw6RkREtI5YA0NERERERH2DCQwREREREfUNJjBERERERNQ3mMAQEREREVHfYAJDRERERER9gwkMERERERH1DSYwRERERETUN7gODBEtKk1TeJ6HJElgGAay2SxMkyvMExERUXcxgSGiBdI0Rb1eRxiGMAwDaZoijmOUSiUYBgduiYiIqHuYwBDRAnEcIwxDOI4DIQQAIAgCRFEE1+Wq80RERNQ9vJVKRAtIKQFAJy/zHyciIiLqFiYwRLSAaZowDANxHAMAkiSBEII1MERERNR1TGCIaAHLslAoFADMTh1L0xT5fB62bXc5MiIiItroWANDRItyXRe2bSNNUxiGweJ9IiIi6glMYIhoSUxciIiIqNfwyoSIiIiIiPoGExgiIiIiIuobTGCIiIiIiKhvMIEhIiIiIqK+wQSGiIiIiIj6BhMYIiIiIiLqG2yj3KRQKMCyLEgpIaUEAP1vu0gpF7xGu7bb/G879VvMnYpXbbv533Zu17KW/3OcmJjQv1cnYmiOg/u6/2Jej+NiOZ0+Prmv5263+d926reYWzk2iWjw8K++yXnnnYdyuYw4jvVjSZK0/XXK5TLSNEWapm3fdifiBfov5k7GC3Qu5uVcd911c16b+3pWv+7rfnqPgd44Prmv5+I5YNZKxyYRDR4mME1+8Ytf4Oyzz8b4+DiklEiSBKZpQgjRttdI0xSTk5MYHR1t6wKBnYoX6L+YOxUv0PmYl3PrrbfiiiuuwNjYGPf1S/p5X/fLewz0xvHJfX0cz/fHtXJsEtHgYQLTpFarIY7jOSdXIURbT7ZCCP0a7f7gUdtv93b7LeZOx6teoxMxL+fgwYNzjk/u6/7e1/3yHqttdvv45L5efPs8B6x8bBLR4GERPxERERER9Q2OwMxz9OhRAIBlWSiXyzhy5EhH7u4cPHiwrdvrdLxA/8Xc7niB9Xmfl3P06FHu60X0477ut/e4FetxfHJf83xPRMQE5iW5XA62beOee+7p6OtUq1X8/Oc/x+7du1EsFjv6Wu3SbzH3W7zA8ZgvuOAC5HK5Bd/n8bm4fosX6O+Yu3l89vP7xpg7Z6Vjk4gGk5Cd6MPYp6anp9FoNDr6Gg8//DAuueQSfPe738XZZ5/d0ddql36Lud/iBY7HvHfvXlx00UWL/gyPz4X6LV6gv2Pu5vHZz+8bY+6cVo5NIho8HIFpMjw8jOHh4Y6+hhqWHx8fx9atWzv6Wu3SbzH3W7zA8ZiXu+PJ43OhfosX6O+Yu3l89vP7xpg7p5Vjk4gGD4v4iYiIiIiob5g33njjjd0OYqMpFAp44xvf2Fd3jPot5n6LF+idmHsljlb1W7wAY+7nGFaLMXdev8VLRGvHGhgiIiIiIuobnEJGRERERER9gwkMERERERH1DSYwRERERETUN9hGucfccsst+Nd//Ve8+tWvxsc+9rGuxhJFEe666y7s3bsXtVoNO3bswNVXX43zzjuvq3G16v//f+3df0xV9R/H8de9k4sTL3HTK6ZOCTegUrNZ1nBh2bCWuEZNxgak1mUrp2tN/jCbW7M/WtYfrWVzSCEOleQP88e0aEThCGaiZeUkC3VNJl5IEn9M8N7TH477jS8/vNWBzz3r+dic83PP9bzu3Wvc++bec87u3aqsrNT06dP1wQcfmI4zqLa2Nu3YsUMnT55Ud3e3/H6/Fi5cqNzcXMXHx5uO1w/dtBf9tBf9tA/dBBDr+AQmhpw+fVq1tbXyeDymo0iS3nvvPe3du1cLFy5UIBCQ2+3Wxo0bdfLkSdPRbqujo0PV1dUaO3as6ShDCgaDWrt2rVpaWrRkyRIFAgFlZGRo586deuedd0zH64du2ot+2ot+2oduAnACPoGJEZZlaevWrXr88cd14sQJ03H0888/6/Dhw1q5cqVyc3MlSYsWLdLq1au1bds2bdq0yXDC4ZWXlys9PV3hcFiXL182HWdQdXV1unr1qt5++21Nnz5dkvTUU08pHA6rrq5OV65c0fjx4w2npJsjgX7ah37ai24CcAI+gYkRdXV1OnfunIqKikxHkSQ1NDTI7XbrySefjKx5PB5lZ2fr1KlTCgaDBtMN78cff1RDQ4MCgYDpKMO6fv26JA24evmdd94pt9utMWNi4/cLdNNe9NNe9NM+dBOAUzDAxIBr166poqJCy5Ytk8/nMx1HktTa2qqpU6dq3Lhx/dbT0tIkSWfOnDER67ZCoZBKS0u1ePFipaSkmI4zrFmzZkmS3n//fbW2tioYDOrw4cM6dOiQcnJyYuIrHHTTXvTTXvTTPnQTgJPwa4oY8Mknn8jj8eiZZ54xHSXi0qVLg74h6Fv7/fffRztSVD777DMFg0G9+eabpqPc1rx581RQUKDq6modOXIksp6Xl6fCwkKDyf6HbtqLftqLftqHbgJwEgYYG4XDYd28eTOqbePi4uRyuXT+/Hnt379fJSUliouLG+GE0evp6Rk0T99Bsjdu3BjtSLd1+fJl7dy5U3l5ebrjjjtMx4nKpEmTdN999ykzM1Ner1dHjx5VdXW1kpKSlJOTY9t+6KZ59HNo9NMsugnAaRhgbPTTTz/p9ddfj2rbDz/8UNOmTdPWrVuVkZGhzMzMEU7393g8HvX29g5Y7+npkaSYPE1lZWWlxo8f75gXr/r6em3evFlbtmzRxIkTJUmZmZmyLEsVFRXKyspSYmKiLfuim+bRz6HRT7PoJgCnYYCx0bRp0/TKK69Eta3P59P333+vY8eO6bXXXlN7e3vktlAopJ6eHrW3t8vr9Q74LvVo8Pl8g37V4dKlS5JuHSwZS9ra2lRTU6NAINAvd09Pj0KhkNrb2zVu3Dh5vV6DKfs7ePCgUlNTIy/AfebPn6/a2lq1trZq7ty5tuyLbppFP4dHP82hmwCciAHGRj6fT0888UTU23d0dEiS3nrrrQG3dXZ2qri4WC+++KKR73enpqbqhx9+0LVr1/q9CWhpaZEk3X333aOeaTidnZ0Kh8MqLS1VaWnpgNuLi4u1dOlSFRcXG0g3uD/++EMJCQkD1kOhUL+/7UA3zaKfw6Of5tBNAE7EAGPQnDlztH79+gHrmzdvlt/vV15enmbMmGEg2a2P4/fs2aPPP/88ci2D3t5e1dbWKi0tTX6/30iuocyYMWPQ57KyslLXr19XcXGxJk+ebCDZ0KZMmaLjx4/r/Pnzmjp1amS9vr5ebrfb6JmA6Ka96Ke96Kd96CYAJ2KAMcjv9w/6YlZWVqakpCQ98sgjBlLdkp6ergULFmj79u3q6urSXXfdpS+//FIXL17UmjVrjOUaSmJi4qDP1759+yTJ6HM5lNzcXDU3N2vdunVasmSJEhMT9e2336q5uVmLFy/WhAkTjGWjm/ain/ain/ahmwCciAEGQ3r11Ve1Y8cOffXVV7py5YpSUlK0YcOGyDn48e/MmjVLmzZt0q5du3To0CF1d3crOTlZhYWFeu6550zHi2l0c+TRz3+Ofo4sugnAZVmWZToEAAAAAETDbToAAAAAAESLAQYAAACAYzDAAAAAAHAMBhgAAAAAjsEAAwAAAMAxGGAAAAAAOAYDDAAAAADHYIABAAAA4BgMMAAAAAAcgwEGwKhzuVz9/rjdbiUlJenRRx9VWVmZLMsa8r5NTU0KBAJKS0uT1+vV2LFjlZKSory8PO3Zs0fhcDiqDKFQSLt371ZJSYmysrKUkJAgl8ulFStW2PQoAQDASHBZw71TAIAR4HK5JEnLly+XdGuY+PXXX9XU1CTLspSfn69du3b1u09vb69efvllffTRR5Kk9PR03XPPPfJ4PDpz5oyam5sVDoe1aNEi1dbW3jZDV1eXfD7fgPXly5dr27Zt//IRAgCAkTLGdAAA/13/Pyh88cUXevrpp1VVVaWCggLl5OREbnv++edVVVWltLQ0lZeXKzMzs99929ratHHjRtXU1ES177i4OBUVFenBBx/UQw89pJaWFq1cufJfPyYAADCyGGAAxIzs7GwVFRWpvLxcn376aWSAqa6uVlVVlZKTk1VfX6/k5OQB950yZYq2bNmihoaGqPaVkJCg7du3R/597tw5ex4EAAAYURwDAyCmPPDAA5Kk3377LbL27rvvSpLeeOONQYeXv1qwYMHIhQMAAMYxwACIKd3d3ZKk+Ph4SVJHR4eOHDkil8ul/Px8k9EAAEAMYIABEDMsy9KBAwckSXPmzJEkfffdd5Kk1NRUJSUlGcsGAABiAwMMAONCoZBOnz6tF154QY2NjYqPj48cUN/Z2SlJ8vv9JiMCAIAYwUH8AIzpO53yX3m9XlVUVGjmzJkGEgEAgFjHAAPAmL7rwLjdbiUmJmr27Nl69tln+12fZcKECZKkYDBoJCMAAIgtDDAAjInmgpH333+/JKm1tVVdXV0cBwMAwH8cx8AAiGl+v1/z58+XZVmqqqoyHQcAABjGAAMg5pWUlEi6dR2YixcvDrvtN998MxqRAACAIQwwAGLesmXLlJ+fr/b2dmVlZamxsXHANhcuXNDq1atVWFhoICEAABgtLsuyLNMhAPy39J197O/8+Ont7dVLL72kjz/+WJKUkZGhe++9V3FxcTp79qyOHj2qUCik7Oxs1dTURPV/rlq1SseOHZN063TNv/zyiyZOnNjvDGhNTU1RZwQAACOPAQbAqPsnA0yfxsZGlZWVqb6+Xm1tbQqFQpo8ebIefvhhFRQUaOnSpYOennkwjz32mL7++utht+FHJAAAsYUBBgAAAIBjcAwMAAAAAMdggAEAAADgGAwwAAAAAByDAQYAAACAYzDAAAAAAHAMBhgAAAAAjsEAAwAAAMAxGGAAAAAAOAYDDAAAAADHYIABAAAA4BgMMAAAAAAcgwEGAAAAgGP8Cf6Ea9Cad8ViAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Plot all comparisons in one figure\n", - "panel_C = ggplot(all_corrected_data_df[all_corrected_data_df['Comparison'] != '1'],\n", - " aes(x='PC1', y='PC2')) \\\n", - " + geom_point(aes(color='No. of experiments'), \n", - " alpha=0.2) \\\n", - " + facet_wrap('~Comparison') \\\n", - " + labs(x = \"PC 1\",\n", - " y = \"PC 2\", \n", - " title = \"PCA of experiment 1 vs multiple experiments\") \\\n", - " + theme_bw() \\\n", - " + theme(\n", - " legend_title_align = \"center\",\n", - " plot_background=element_rect(fill='white'),\n", - " legend_key=element_rect(fill='white', colour='white'), \n", - " legend_title=element_text(family='sans-serif', size=15),\n", - " legend_text=element_text(family='sans-serif', size=12),\n", - " plot_title=element_text(family='sans-serif', size=15),\n", - " axis_text=element_text(family='sans-serif', size=12),\n", - " axis_title=element_text(family='sans-serif', size=15)\n", - " )\\\n", - " + guides(colour=guide_legend(override_aes={'alpha': 1})) \\\n", - " + scale_color_manual(['#bdbdbd', '#1976d2']) \\\n", - " + geom_point(data=all_corrected_data_df[all_corrected_data_df['Comparison'] == '1'],\n", - " alpha=0.1, \n", - " color='#bdbdbd')\n", - "\n", - "print(panel_C)\n", - "ggsave(plot=panel_C, filename=pca_corrected_file)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python [conda env:simulate_expression_compendia] *", - "language": "python", - "name": "conda-env-simulate_expression_compendia-py" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Pseudomonas_tests/data/input/train_set_normalized_test.tsv b/Pseudomonas_tests/data/input/train_set_normalized_test.tsv deleted file mode 100644 index 965af3d..0000000 --- a/Pseudomonas_tests/data/input/train_set_normalized_test.tsv +++ /dev/null @@ -1,5550 +0,0 @@ -Gene_symbol 05_PA14000-4-2_5-10-07_S2.CEL 54375-4-05.CEL AKGlu_plus_nt_7-8-09_s1.CEL anaerobic_NO3_1.CEL anaerobic_NO3_2.CEL control1aerobic_Pae_G1a.CEL control1_anaerobic_Pae_G1a.CEL control2aerobic_Pae_G1a.CEL control2_anaerobic_Pae_G1a.CEL control3aerobic_Pae_G1a.CEL control3_anaerobic_Pae_G1a.CEL -PA0001 0.853357438 0.778789658 0.78915519 0.716320169 0.65801519 0.365511525 0.689253533 0.353000012 0.674305247 0.399186209 0.66038591 -PA0002 0.725280404 0.767872684 0.729507718 0.585078632 0.592172421 0.572967189 0.723461199 0.580625598 0.680740384 0.653977308 0.741509115 -PA0003 0.640616819 0.61485889 0.725912595 0.390210627 0.410330663 0.417762099 0.510094209 0.302544416 0.515478239 0.328754596 0.494089832 -PA0004 0.811465328 0.907865442 0.718988541 0.193247812 0.245503909 0.663095579 0.801569235 0.639623521 0.747121428 0.692894653 0.818501245 -PA0005 0.694459786 0.398800433 0.530159671 0.279456119 0.312027586 0.424846198 0.619373626 0.281793035 0.656701381 0.48248214 0.684195702 -PA0006 0.533958424 0.460849107 0.466326564 0.301780573 0.305851593 0.606589788 0.937262411 0.687342723 0.910653708 0.618445982 0.969857478 -PA0007 0.158864958 0.113876488 0.07950684 0.513546667 0.513499361 0.378900347 0.138600359 0.462644636 0.149743745 0.308135426 0.229250269 -PA0008 0.889579417 0.761350988 0.731642606 0.342051488 0.336722679 0.224257084 0.298615405 0 0.262492218 0.191401173 0.26137868 -PA0009 0.884945493 0.801740139 0.827707481 0.41566753 0.33422627 0.16158193 0.306533449 0.107960936 0.263527973 0.20116961 0.232540322 -PA0010 0.176558497 0.222709376 0.241847032 0.125914006 0.162964751 0.074461422 0.032482111 0.093162991 0.019909804 0.020374768 0.088296298 -PA0011 0.508393075 0.53610587 0.49220005 0.55087788 0.397272044 0.747978286 0.824547198 0.721733844 0.906766801 0.813768277 0.762278839 -PA0012 0.574737012 0.424370688 0.666643273 0.789358235 0.801253349 0.288118429 0.191857778 0.260258035 0.370564527 0.127692717 0.340626412 -PA0013 0.211950914 0.069501166 0.166325452 0.117096463 0.133774213 0.173339062 0.260225847 0.22402107 0.270486437 0.175170072 0.381425347 -PA0014 0.346369497 0.20730239 0.268976858 0.205795697 0.223304834 0.209706999 0.354312352 0.3544999 0.427878073 0.3551742 0.429040845 -PA0015 0.289759451 0.395063846 0.256625741 0.298559345 0.3189291 0.59924599 0.571666833 0.57661085 0.594987384 0.563701952 0.774440298 -PA0016 0.760732539 0.720094153 0.877866074 0.564832155 0.547799737 0.389525099 0.330777991 0.375679452 0.41692093 0.29714039 0.426178498 -PA0017 0.968098267 0.74778871 0.835161334 0.374777235 0.325020007 0.585709681 0.527076708 0.616812623 0.519636236 0.62876018 0.543068404 -PA0018 0.913531751 0.785984311 0.854847996 0.404156074 0.441348977 0.286578504 0.382935925 0.310681005 0.286142939 0.276813621 0.316358742 -PA0019 0.822313857 0.791657787 0.837594737 0.517857526 0.56645818 0.670157849 0.871529142 0.76742823 0.839926939 0.732636553 0.84884591 -PA0020 0.69483489 0.700445559 0.823804791 0.617106302 0.647513293 0.357632607 0.420371037 0.319133411 0.374124729 0.249592739 0.446204434 -PA0021 0.358382216 0.368386623 0.194719853 0.318760255 0.293973182 0.419163771 0.388536037 0.30033759 0.373371507 0.419442076 0.546023579 -PA0022 0.736800594 0.549842614 0.743330584 0.461914164 0.471748759 0.568764962 0.563277742 0.543532176 0.643838661 0.52606639 0.85692962 -PA0023 0.552906126 0.603189959 0.56355646 0.545560401 0.508874548 0.29667604 0.35111391 0.282723419 0.186169398 0.38134651 0.184236333 -PA0024 0.570323329 0.748181799 0.50675664 0.790391944 0.751610009 0.559969265 0.593775729 0.631901343 0.625513136 0.613396434 0.527815821 -PA0025 0.342567319 0.564246878 0.186186918 0.360287191 0.31501829 0.650262106 0.708474036 0.723393701 0.746962761 0.695786119 0.73278451 -PA0026 0.36938479 0.466329385 0.507798068 0.775932026 0.706265733 0.256078605 0.122400993 0.258767565 0.217848457 0.212732417 0.25263638 -PA0027 0.273316278 0.24360049 0.305884448 0.56405551 0.470302465 0.34358 0.239886984 0.16026996 0.322942164 0.212381032 0.204768736 -PA0028 0.270007521 0.238079121 0.37257603 0.481650322 0.484179396 0.341412044 0.222784508 0.301995421 0.293383065 0.28040622 0.242092526 -PA0029 0.242972259 0.286132336 0.188099102 0.242310531 0.1933266 0.324835094 0.485442215 0.432622083 0.445944542 0.323699567 0.398027722 -PA0030 0.229370142 0.256387831 0.24328471 0.296201324 0.283726499 0.313395987 0.317772763 0.372606428 0.320114407 0.273775237 0.407694268 -PA0031 0.252786852 0.360320227 0.211676482 0.274258561 0.338320845 0.239164504 0.330300553 0.180304103 0.240439729 0.29274175 0.276753522 -PA0032 0.420577998 0.397702434 0.356439138 0.269629581 0.269809358 0.112143718 0.264324844 0.295426091 0.258059911 0.161933664 0.366327839 -PA0033 0.464643552 0.24925093 0.515961606 0.096354162 0.173320957 0.362074527 0.306236182 0.381592326 0.502989667 0.373649943 0.483631722 -PA0034 0.767763031 0.236939616 0.704828144 0.16401737 0.126331179 0.156462568 0.223246072 0.246359396 0.272727016 0.172477477 0.238796402 -PA0035 0.807119514 0.436012128 0.892770715 0.352641605 0.284632979 0.211995483 0.212249185 0.143915002 0.237727645 0.254167254 0.218014258 -PA0036 0.745765334 0.358798293 0.870661858 0.242014241 0.248495479 0.21309074 0.119641768 0.239165356 0.145189411 0.240031101 0.185227181 -PA0037 0.423191006 0.274617023 0.41697515 0.215022464 0.167695752 0.312418051 0.337044063 0.308428537 0.287994303 0.242817023 0.405756469 -PA0038 0.228167083 0.377909447 0.350350909 0.7794098 0.796652363 0.611064496 0.369817653 0.665596315 0.403693709 0.559787143 0.379673224 -PA0039 0.592613985 0.526707962 0.601658515 0.899312849 0.909207081 0.536117353 0.64229858 0.583876184 0.604707621 0.613856373 0.643013076 -PA0040 0.608415508 0.486052028 0.4049466 0.221536042 0.217934609 0.291436631 0.214499352 0.303295318 0.30538926 0.297156031 0.24878414 -PA0041 0.369066946 0.425199241 0.245218412 0.257016057 0.209019038 0.298877757 0.32196088 0.222708667 0.325269423 0.263687828 0.366874063 -PA0042 0.533867992 0.457909312 0.580435832 0.456526626 0.456473025 0.272449359 0.384659547 0.25203745 0.454416738 0.366738879 0.477639329 -PA0043 0.30553738 0.343294976 0.258217775 0.406474603 0.410246255 0.208283709 0.097105536 0.223218694 0.143143461 0.160704571 0.166787414 -PA0044 0.168331816 0.210322467 0.537793882 0.209955438 0.172854511 0.109590199 0.062247408 0.054684899 0.02287076 0.103633899 0.03830586 -PA0045 0.87341452 0.781744622 0.504374876 0.224686438 0.185012068 0.221799387 0.283777264 0.257555334 0.280624457 0.258093922 0.279806078 -PA0046 0.828195863 0.705740309 0.569403205 0.216438105 0.227252807 0.115613819 0.045835306 0.05606301 0.119821264 0.086783315 0.117755854 -PA0047 0.805505789 0.576304141 0.393061026 0.16059391 0.107075615 0.137804214 0.111817508 0.148751106 0.135331776 0.145799924 0.122888003 -PA0048 0.135155027 0.214366182 0.126823281 0.202547369 0.211550557 0.161789928 0.206434442 0.078723164 0.117087532 0.13166289 0.278079854 -PA0049 0.187971149 0.338164039 0.143365172 0.195489828 0.19566823 0.187512915 0.173462334 0.133243319 0.188215589 0.169242481 0.154188864 -PA0050 0.082886057 0.141904917 0.08479584 0.489730052 0.408987177 0.425465252 0.328807131 0.529577576 0.416608871 0.485509853 0.390361628 -PA0051 0.238403382 0.321620777 0.125894115 0.295301055 0.31106344 0.28392541 0.326374081 0.420438666 0.38750771 0.465934528 0.292909382 -PA0052 0.180845306 0.190228437 0.107093722 0.995725559 1 0.319789395 0.130614086 0.391845807 0.117329895 0.346574681 0.16084896 -PA0053 0.278162192 0.783704109 0.255720919 0.282118403 0.30996385 0.243803061 0.337818484 0.480664869 0.244853406 0.290246398 0.335921293 -PA0054 0.75898675 0.462320601 0.813446227 0.312980163 0.347277211 0.330235092 0.259445565 0.1386991 0.349664409 0.387164136 0.278069834 -PA0055 0.724817437 0.717862427 0.812693046 0.711699537 0.706436815 0.635175449 0.642298367 0.659655929 0.627857439 0.630678446 0.584619269 -PA0056 0.360318862 0.231590243 0.515561805 0.241699941 0.287331546 0.196526405 0.306617549 0.165831282 0.177201533 0.18007657 0.19788725 -PA0057 0.161278931 0.179150705 0.177213706 0.141339462 0.086264949 0.129012861 0.133779381 0.193731344 0.197676604 0.097506734 0.147112191 -PA0058 0.288670476 0.206704543 0.327967706 0.307619977 0.30846746 0.274109252 0.148882341 0.355892795 0.188834638 0.14315649 0.230365475 -PA0059 0.10958132 0.288039473 0.342778698 0.680709517 0.739631614 0.459186017 0.285236542 0.52302831 0.326352289 0.467035255 0.338330006 -PA0060 0.50521446 0.536142221 0.646190736 0.600594145 0.674685017 0.34010342 0.26014849 0.433767232 0.313062648 0.247133045 0.20847403 -PA0061 0.182653586 0.273256055 0.298796399 0.47563549 0.47698078 0.418317452 0.572628377 0.413741299 0.747680655 0.431475995 0.476967525 -PA0062 0.134376473 0.282103157 0.441191564 0.260148827 0.304986825 0.492697344 0.463958359 0.5119487 0.48320936 0.485239696 0.471733057 -PA0063 0.699076797 0.629822469 0.679800859 0.445639516 0.493828409 0.517000191 0.679365929 0.547840848 0.633282814 0.501134617 0.574379367 -PA0064 0.601377304 0.245145674 0.393269314 0.356342643 0.371746178 0.283234061 0.261867269 0.10292307 0.282120976 0.04031015 0.202597544 -PA0065 0.674982947 0.582301081 0.78257995 0.544128794 0.541036016 0.272739894 0.285583135 0.065482044 0.382813908 0.425464217 0.219320916 -PA0066 0.908246629 0.744001133 0.791112407 0.813097043 0.83858652 0.408802852 0.37523659 0.344597316 0.553652204 0.526864918 0.468244937 -PA0067 0.751584112 0.818294971 0.702442112 0.566234725 0.615157659 0.482304653 0.332397395 0.465539429 0.341663323 0.447780457 0.373892296 -PA0068 0.556615783 0.582010639 0.614834088 0.283189988 0.293067643 0.586303755 0.464769375 0.45979958 0.433682049 0.518506895 0.33739855 -PA0069 0.169880894 0.115989579 0.120459089 0.084531854 0.132699449 0.183633804 0.171406928 0.168839424 0.155932316 0.18240637 0.091455079 -PA0070 0.658111187 0.863638461 0.391001234 0.420832416 0.359139249 0.539183011 0.543134194 0.510774671 0.545745149 0.531707451 0.524825847 -PA0071 0.62051099 0.655948357 0.349088311 0.372190051 0.366645735 0.375616755 0.562719233 0.268952981 0.401523014 0.496813541 0.392768039 -PA0072 0.570396533 0.491372843 0.25793276 0.249371301 0.265389113 0.413032872 0.351963359 0.12441263 0.416875823 0.282015739 0.375232771 -PA0073 0.468571971 0.466591393 0.263160691 0.156864595 0.170765539 0.219030577 0.217672642 0.156111419 0.223004248 0.193359191 0.22822144 -PA0074 0.659236524 0.687207104 0.37567688 0.183765412 0.097303308 0.415747098 0.403883007 0.352046862 0.326293722 0.380409845 0.435625864 -PA0075 0.666695842 0.773030467 0.453209634 0.253734757 0.277293126 0.446155001 0.506897459 0.478683243 0.571366389 0.51021829 0.454142967 -PA0076 0.635836707 0.673340726 0.302526018 0.202060437 0.148308567 0.328609507 0.403426555 0.466547486 0.260185229 0.266774552 0.327203201 -PA0077 0.565592124 0.612873494 0.220571881 0.258733279 0.204403338 0.491043112 0.488856164 0.478384295 0.517223858 0.50687449 0.491785158 -PA0078 0.572990448 0.568852707 0.303180548 0.189955368 0.219767578 0.587800282 0.562408447 0.507056933 0.584140204 0.559688542 0.479431009 -PA0079 0.681192052 0.728332404 0.372631865 0.362273218 0.330551841 0.31781014 0.229303503 0.205179954 0.303297626 0.316016173 0.266079689 -PA0080 0.55515847 0.597418381 0.286096845 0.255111068 0.288310065 0.134594784 0.208184282 0.226817629 0.401214253 0.271387287 0.101994839 -PA0081 0.583280073 0.618069381 0.397384375 0.546254144 0.477075362 0.279751738 0.363593876 0.275117723 0.464389042 0.287671188 0.396620771 -PA0082 0.623091267 0.446574267 0.229954736 0.149564547 0.124055795 0.347040833 0.50268319 0.348447684 0.534429172 0.329607974 0.496438016 -PA0083 0.632133232 0.714704687 0.318526818 0.152363535 0.11882787 0.305609911 0.463293887 0.283946264 0.443649537 0.318146708 0.406936151 -PA0084 0.640034278 0.729578444 0.32993567 0.195001918 0.134218804 0.424308911 0.520444957 0.363889777 0.555001643 0.46169901 0.492913481 -PA0085 0.569365931 0.647691854 0.246838125 0.184238973 0.224338116 0.495452345 0.571561723 0.342158554 0.527918442 0.478752778 0.550004635 -PA0086 0.493985808 0.496497497 0.135946268 0.086061407 0.102609781 0.400781965 0.478751185 0.252972239 0.471586268 0.341777005 0.40450349 -PA0087 0.508815095 0.46263495 0.19499163 0.159326914 0.152013855 0.456998313 0.399210468 0.371096082 0.481198865 0.333476764 0.449396715 -PA0088 0.527302147 0.457347369 0.247571127 0.241034401 0.196804848 0.392523444 0.412784131 0.285064376 0.428716857 0.381658452 0.394653748 -PA0089 0.481224221 0.480676656 0.093439504 0.069370905 0.085955462 0.359385756 0.428934177 0.369029552 0.449667629 0.507271732 0.442807584 -PA0090 0.488442335 0.548916021 0.197563115 0.126171917 0.146507211 0.414298111 0.406520933 0.349919866 0.407177257 0.417235042 0.353888465 -PA0091 0.304398369 0.375984375 0.128071963 0.190064329 0.17618887 0.479164285 0.501860099 0.448678725 0.462901074 0.509373545 0.570369273 -PA0092 0.152219997 0.520528195 0.013509129 0.039127765 0.125776666 0.364553613 0.569124128 0.313439598 0.629720177 0.456513004 0.524494844 -PA0093 0.626156778 0.451158469 0.309210475 0.253510335 0.220877501 0.394005487 0.286194163 0.405052735 0.354996895 0.34086058 0.268428438 -PA0094 0.672319382 0.63463469 0.472468046 0.539380878 0.556744263 0.196869196 0.19477028 0.091435459 0.148123871 0.181975954 0.174285281 -PA0095 0.349707495 0.36859924 0.41408387 0.708846669 0.649605087 0.572592332 0.453138215 0.613357252 0.540092734 0.610598339 0.385157541 -PA0096 0.215691437 0.317877566 0.077547491 0.404711324 0.37541249 0.361638593 0.396868056 0.512485636 0.248967777 0.458031442 0.279356172 -PA0097 0.336791162 0.340335104 0.158392627 0.443797089 0.455162751 0.209798085 0.172433906 0.361603853 0.229413679 0.341537715 0.304868028 -PA0098 0.486497997 0.414273222 0.419291673 0.661864708 0.608296182 0.627234915 0.440215322 0.566870968 0.517873842 0.609822261 0.467169487 -PA0099 0.348344202 0.329886999 0.349231463 0.368146518 0.334700913 0.541354108 0.510531069 0.618315326 0.666575063 0.55850579 0.564021775 -PA0100 0.255285094 0.541175654 0.180666802 0.233627857 0.247037673 0.632137429 0.636766045 0.678797254 0.645912498 0.651344402 0.644192419 -PA0101 0.492001037 0.372630796 0.220852367 0.466321569 0.416766488 0.34198117 0.38675534 0.365391671 0.395231906 0.429338318 0.325368951 -PA0102 0.544026272 0.496710578 0.478870507 0.62601858 0.584891756 0.658427601 0.582581099 0.625866262 0.58707777 0.719629593 0.563271429 -PA0103 0.338967337 0.165235101 0.344230158 0.477312389 0.430740321 0.326200149 0.127307341 0.143915769 0.172926397 0.19102138 0.17711478 -PA0104 0.180893032 0.060354376 0.264509153 0.120155827 0.156846831 0.473000369 0.457892106 0.47815776 0.34356567 0.451050994 0.419264754 -PA0105 0.080025832 0.063448942 0.252701802 0.501609977 0.520528941 0.277438485 0.233464144 0.222721982 0.276712995 0.388030951 0.247362778 -PA0106 0.048778692 0.044908251 0.294029688 0.47508364 0.516199769 0.12987667 0.170048363 0.165727535 0.121692532 0.160545356 0.177453257 -PA0107 0.025354071 0.055250572 0.240833551 0.45713287 0.486540682 0.226440933 0.169400655 0.466376838 0.243348106 0.313592289 0.176726854 -PA0108 0.072201941 0.112205919 0.321839969 0.608096737 0.6394844 0.393959298 0.234188663 0.528203327 0.290127078 0.400128899 0.331038681 -PA0109 0.118779302 0.229161277 0.250266098 0.99412608 1 0.542016974 0.379629696 0.638701259 0.40770788 0.539553264 0.412691308 -PA0110 0.102080412 0.157804939 0.141809262 0.28597993 0.32201273 0.18943966 0.155252935 0.083919994 0.196899647 0.158106018 0.194398857 -PA0111 0.172352678 0.191960608 0.32288681 0.445496232 0.471972723 0.269914206 0.19138354 0.229142098 0.167523873 0.238460936 0.169252008 -PA0112 0.101298393 0.067295314 0.097344996 0.32427643 0.338052342 0.227304736 0.118007257 0.276327405 0.251578215 0.143531896 0.233730533 -PA0113 0.135036341 0.15641135 0.234518098 0.331869598 0.349569784 0.307602674 0.237155837 0.334096413 0.295813132 0.309695782 0.191800306 -PA0114 0.462531327 0.534802204 0.445117503 0.507922539 0.591623105 0.611136157 0.498573167 0.699929997 0.555712906 0.644464219 0.489941569 -PA0115 0.735776547 0.474416028 0.699077269 0.218594417 0.198674241 0.493262593 0.42048891 0.350013385 0.34677045 0.13822347 0.258553666 -PA0116 0.222776112 0.343628268 0.216449156 0.332953366 0.380440534 0.273411025 0.143298348 0.241972622 0.293495487 0.113124172 0.147098864 -PA0117 0.237582908 0.209629137 0.316454262 0.294516177 0.326758563 0.175400961 0.151553086 0.101422096 0.100386369 0.173652322 0.081940954 -PA0118 0.349429862 0.373989303 0.258112696 0.369537223 0.372668918 0.209757231 0.252007196 0.146553226 0.321687203 0.140390308 0.166354719 -PA0119 0.142630923 0.194522622 0.094433342 0.107425393 0.069502922 0.18553186 0.202426029 0.222235002 0.162422664 0.154541769 0.183792963 -PA0120 0.153784151 0.195042576 0.232379334 0.402427344 0.40527807 0.165245988 0.096297489 0.188738849 0.134142474 0.111105827 0.097005685 -PA0121 0.153393823 0.221883583 0.075839671 0.343221251 0.313768962 0.136260334 0.067301462 0.184439215 0.021976829 0.109102676 0.103862557 -PA0122 0.294204588 0.171857078 0.378565415 0.875511595 0.85284716 0.749949573 0.637788342 0.810757613 0.69936802 0.731406068 0.681538643 -PA0123 0.471223992 0.264692497 0.444972815 0.629451744 0.592985718 0.604963651 0.380316638 0.624094268 0.533742952 0.577142287 0.495337685 -PA0124 0.597379734 0.542276144 0.50149226 0.599225977 0.618555504 0.32709846 0.729599661 0.378343555 0.674737886 0.317470842 0.582210089 -PA0125 0.525638267 0.44284882 0.31946592 0.627344003 0.662075844 0.232827703 0.19674594 0.133070916 0.222280084 0.27631855 0.212663439 -PA0126 0.678183564 0.569682401 0.528517248 0.557327124 0.49056206 0.133809872 0.192590896 0.117177102 0.214006356 0.034247602 0.061809363 -PA0127 0.377074813 0.532541883 0.287663378 0.305982364 0.420061381 0.215811397 0.259523004 0.273503405 0.385566467 0.217577382 0.335792168 -PA0128 0.488277339 0.416956638 0.389436091 0.046006139 0.139180405 0.503846432 0.636543807 0.355604648 0.600180249 0.359627461 0.562259708 -PA0129 0.321376008 0.179317632 0.371941681 0.179863153 0.117357846 0.553805842 0.432387549 0.502233593 0.389746641 0.428650866 0.568911394 -PA0130 0.370070525 0.263025959 0.345477902 0.431803358 0.465318659 0.441722331 0.281104556 0.37924845 0.361670618 0.480081678 0.277433818 -PA0131 0.251598586 0.29151376 0.374670567 0.318392217 0.40624359 0.679013908 0.551151362 0.637177754 0.53333555 0.602591668 0.530159289 -PA0132 0.18277295 0.289742529 0.187165271 0.407138671 0.483064998 0.494462608 0.403852314 0.460629138 0.44602979 0.450546819 0.409035908 -PA0133 0.29975939 0.244916907 0.443702331 0.192274777 0.266469178 0.353031125 0.384368648 0.312725368 0.282689466 0.294528183 0.257461522 -PA0134 0.101995562 0.337321554 0.100004642 0.347057983 0.446239503 0.179739441 0.204084398 0.208911686 0.183181749 0.162115746 0.197535668 -PA0135 0.165172683 0.189991346 0.086686054 0.177665402 0.159459497 0.317976675 0.284965256 0.178509444 0.266483502 0.197274346 0.223188281 -PA0136 0.220967983 0.257122128 0.147230518 0.235980878 0.34632065 0.191450418 0.287759503 0.328057318 0.233335762 0.312838948 0.324109038 -PA0137 0.304608486 0.349123309 0.183944036 0.31193842 0.259663282 0.347253343 0.28853237 0.414335142 0.346015792 0.271372459 0.29325402 -PA0138 0.226906153 0.224849266 0.207640106 0.412655133 0.332442251 0.432469806 0.592669557 0.602239821 0.381900839 0.49183007 0.531248743 -PA0139 0.739990475 0.841882002 0.729139199 0.717748815 0.722023358 0.543806177 0.545284209 0.586368133 0.54231244 0.554608332 0.56885721 -PA0140 0.289459654 0.279689562 0.395938296 0.07761946 0.082786523 0.124721839 0.141217445 0.154145826 0.080431422 0.130795749 0.149631622 -PA0141 0.498175547 0.878240112 0.268800413 0.53803709 0.554671711 0.558053026 0.412687481 0.655385965 0.412233375 0.55952492 0.511950402 -PA0142 0.328988803 0.52525961 0.202705149 0.343562685 0.336259273 0.326043231 0.279641811 0.434165884 0.222689566 0.181433511 0.205582042 -PA0143 0.707346744 0.534479643 0.766518401 0.632152113 0.600184311 0.75868282 0.591976148 0.758178852 0.609922431 0.720197569 0.653872834 -PA0144 0.495054235 0.265796565 0.350643813 0.947181293 1 0.582819006 0.369301515 0.645100444 0.372749347 0.602057605 0.234356168 -PA0145 0.120393332 0.423539707 0.15260412 0.360261527 0.443881745 0.25758657 0.341087037 0.291974388 0.300623743 0.481440015 0.324845874 -PA0146 0.320760549 0.331447557 0.197386356 0.327790434 0.304640348 0.456342449 0.501129593 0.525248942 0.395775347 0.417148836 0.476442975 -PA0147 0.247925939 0.47064318 0.424827862 0.580617443 0.567963788 0.181186332 0.215008407 0.233466073 0.274469015 0.278225664 0.096567885 -PA0148 0.737246385 0.838879179 0.715448582 0.879524473 0.824649345 0.607041456 0.584407577 0.618454317 0.611292736 0.550831288 0.579520751 -PA0149 0.27051863 0.241443672 0.266038149 0.15168914 0.17889055 0.250697811 0.335145526 0.239374855 0.302824568 0.231578975 0.251402265 -PA0150 0.357928696 0.17868379 0.133552512 0.117206121 0.076881484 0.258949372 0.255888129 0.193287476 0.26091954 0.169681227 0.334335963 -PA0151 0.210830855 0.125744628 0.109292461 0.092384747 0.128565111 0.160669893 0.144701565 0.106105952 0.207617154 0.134412905 0.232984597 -PA0152 0.454863238 0.279430641 0.382270834 0.309116645 0.296580984 0.359547501 0.488748145 0.491543608 0.543172712 0.439048218 0.453046607 -PA0153 0.273581957 0.193174631 0.188937239 0.154815453 0.138954295 0.219674519 0.219339652 0.24283804 0.131541083 0.275346991 0.241287921 -PA0154 0.177813528 0.204874008 0.1862378 0.180751967 0.167460442 0.188641427 0.26517831 0.163975818 0.230613452 0.159296721 0.307352356 -PA0155 0.662144021 0.470086494 0.624033559 0.31216929 0.493708511 0.270317459 0.292933606 0.198340211 0.265567262 0.139044054 0.145227492 -PA0156 0.734369164 0.500494073 0.56844515 0.858839834 0.929067584 0.483597755 0.416990786 0.506134219 0.375484502 0.528165557 0.50201127 -PA0157 0.652727367 0.389037381 0.491713162 0.93995834 1 0.363234682 0.23599926 0.267414581 0.258510828 0.3172744 0.224926775 -PA0158 0.439294611 0.318359058 0.381336699 0.738316505 0.72568947 0.336231791 0.277233858 0.236894476 0.13788665 0.359529488 0.156588639 -PA0159 0.793767788 0.562162317 0.925831063 0.841410821 0.90798731 0.787033304 0.562095949 0.625250509 0.684303488 0.785939429 0.519403305 -PA0160 0.455713975 0.365819094 0.458698794 0.430889544 0.489411279 0.490614441 0.419197102 0.481346199 0.495259312 0.465771446 0.39925305 -PA0161 0.358176666 0.512542527 0.142422358 0.085054162 0.118807315 0.405372376 0.561943956 0.50231812 0.510997321 0.385993687 0.417779357 -PA0162 0.760999702 0.751767415 0.41293228 0.243531274 0.238398379 0.20348757 0.358714052 0.236106909 0.309980531 0.173011345 0.3005668 -PA0163 0.617528553 0.434411244 0.394743283 0.436680093 0.491942448 0.273685303 0.375887761 0.320962202 0.345858217 0.304285882 0.597890276 -PA0164 0.296334791 0.835266094 0.212304577 0.232784464 0.226866969 0.401128743 0.272500808 0.359007493 0.306391319 0.248125768 0.192689445 -PA0165 0.718313212 0.628819315 0.535309086 0.190422729 0.172116729 0.264520578 0.281440311 0.263002055 0.26274073 0.227889452 0.290904736 -PA0166 0.235650639 0.230960302 0.200282455 0.413898905 0.193926668 0.376965616 0.332292956 0.232093786 0.311070728 0.417162682 0.237190584 -PA0167 0.828161064 0.719037982 0.998370885 0.390310031 0.411354836 0.162890494 0.263152958 0.303271339 0.2494212 0.229807958 0.132460629 -PA0168 0.635173241 0.352174757 0.693355407 0.151405707 0.131254739 0.288150667 0.435509911 0.192328266 0.346892991 0.408267722 0.429869659 -PA0169 0.672670902 0.230869097 0.333673496 0.088582457 0.095201232 0.288656741 0.506817817 0.307960724 0.489458932 0.301003696 0.360746924 -PA0170 0.74003563 0.358106651 0.23304609 0.137247817 0.193852499 0.213844812 0.315198236 0.223197063 0.301794067 0.042530936 0.380693334 -PA0171 0.792749744 0.465725896 0.446090586 0.301524423 0.270340951 0.252888511 0.40860555 0.278927764 0.461886472 0.23514579 0.394039428 -PA0172 0.726423687 0.369805808 0.222702912 0.198399268 0.251987004 0.157075004 0.342117405 0.21751629 0.296178455 0 0.317872803 -PA0173 0.141074067 0.156968799 0.208630687 0.444565752 0.471353761 0.49646731 0.287383166 0.613115719 0.275777203 0.456479215 0.219873964 -PA0174 0.101891695 0.062851745 0.277623496 0.501468285 0.53981689 0.459807863 0.101671799 0.526867199 0.28763836 0.448301699 0.279513273 -PA0175 0.114964956 0.095135737 0.24108744 0.502469582 0.507119871 0.602122776 0.216167761 0.768760621 0.25533597 0.63608695 0.268939294 -PA0176 0.193048754 0.233136253 0.369519021 0.812549945 0.785022137 0.685634026 0.228577726 0.786966469 0.243131215 0.648858088 0.238108672 -PA0177 0.073330803 0.071491616 0.222100805 0.550161209 0.509226795 0.505425647 0.127479252 0.648288511 0.233169267 0.461048473 0.198928635 -PA0178 0.108564103 0.193126447 0.342624054 0.663436939 0.649029283 0.500453334 0.231850828 0.66661539 0.263821449 0.478666612 0.184309024 -PA0179 0.181940245 0.34070015 0.539430891 0.879683048 0.909864451 0.703864626 0.48081402 0.748767138 0.50858226 0.665899432 0.464403896 -PA0180 0.264373195 0.286027791 0.357704141 0.902294266 0.880164887 0.410505695 0.030397994 0.556027936 0.228525324 0.397853606 0.181607906 -PA0181 0.534586283 0.424717319 0.531264215 0.579970956 0.562081482 0.525782855 0.364622097 0.695650666 0.450289076 0.54643315 0.376337844 -PA0182 0.17886625 0.174545869 0.208462787 0.14580816 0.146444473 0.035142905 0.104391613 0.14344709 0.010355921 0.024646792 0.13335824 -PA0183 0.149646913 0.158003542 0.122465817 0.09079086 0.114833304 0.026642019 0.027367604 0.097814757 0.030591039 0.07435741 0.047849546 -PA0184 0.137137184 0.129859952 0.128857522 0.156887001 0.130159474 0.12997207 0.132653594 0.121153418 0.132591946 0.175266101 0.226749935 -PA0185 0.173147546 0.16370537 0.141950064 0.206313865 0.202967266 0.166356493 0.236321089 0.218870747 0.180573372 0.154492697 0.195336689 -PA0186 0.144765244 0.085455522 0.099166878 0.137840843 0.096100582 0.197406619 0.174512147 0.197646045 0.19186172 0.184088459 0.18232515 -PA0187 0.14631405 0.272843767 0.097888137 0.238738864 0.103988107 0.285818737 0.26100934 0.394538601 0.289882958 0.386373334 0.264862332 -PA0188 0.240852972 0.25412002 0.217513827 0.237677522 0.205667419 0.376155796 0.351446737 0.493948464 0.296319322 0.347771327 0.314547566 -PA0189 0.256710319 0.211489875 0.166124856 0.245749993 0.270353461 0.291730734 0.287392621 0.295141704 0.322199797 0.251105787 0.373670452 -PA0190 0.181517125 0.213793289 0.212590999 0.216243821 0.195938131 0.26915872 0.338831066 0.225338273 0.429048467 0.327774351 0.175627964 -PA0191 0.18325839 0.176648338 0.468322024 0.147505624 0.18552223 0.021064314 0.142076642 0.077038899 0.152794542 0.125759054 0.08626239 -PA0192 0.117831431 0.160593417 0.101934663 0.148806913 0.140986543 0.182203032 0.169359352 0.075988472 0.123431601 0.134484488 0.112860704 -PA0193 0.12831844 0.128293493 0.116319855 0.131590299 0.097625555 0.099518243 0.072619613 0.059427129 0.084127152 0.081863553 0.114697491 -PA0194 0.16820299 0.162278953 0.125132566 0.207577211 0.166359018 0.226334037 0.158363385 0.184714895 0.202143597 0.198785898 0.240509438 -PA0195 0.508945713 0.238084125 0.510041531 0.786032584 0.778276595 0.412274509 0.238622135 0.4210202 0.212451287 0.312049364 0.325728732 -PA0196 0.245388177 0.168096001 0.469311431 0.599570653 0.55723587 0.307815855 0.219967391 0.412783063 0.24975942 0.32194877 0.233108775 -PA0197 0.159327443 0.130084046 0.171937487 0.156220023 0.176595438 0.109204348 0.114783313 0.183781807 0.150697706 0.134021518 0.176218193 -PA0198 0.054480956 0.0862939 0.139404658 0.183588286 0.161956026 0.254259487 0.167065742 0.264971216 0.194447408 0.300555897 0.1819268 -PA0199 0.148257839 0.188238339 0.187101694 0.208697198 0.188285323 0.345348433 0.215307134 0.451582705 0.246799443 0.459187065 0.226207821 -PA0200 0.195731413 0.556321034 0.187839198 0.545189347 0.566221371 0.847091288 0.583084553 0.931395633 0.538173871 0.841973413 0.567931926 -PA0201 0.15354665 0.593168527 0.256170141 0.170493927 0.163312023 0.350778571 0.196341155 0.258983742 0.172116223 0.346948442 0.18400262 -PA0202 0.352644044 0.388093541 0.239138901 0.429455453 0.381662227 0.363947134 0.425630168 0.502107352 0.437981416 0.422958037 0.439052628 -PA0203 0.304803363 0.264845889 0.126725641 0.38694104 0.291470093 0.376978287 0.442758287 0.360928451 0.244394035 0.361569627 0.300617922 -PA0204 0.277924791 0.310272351 0.232845247 0.259928633 0.227361477 0.272926282 0.222805793 0.313090413 0.268641848 0.3251739 0.392603517 -PA0205 0.217585056 0.237733481 0.109912885 0.199267678 0.193305226 0.212383312 0.194859558 0.26820111 0.252638741 0.25682153 0.273714753 -PA0206 0.271583006 0.313667737 0.21972863 0.240699985 0.201896125 0.25630198 0.24831198 0.239086631 0.200770426 0.23692987 0.225376356 -PA0207 0.325303294 0.636663295 0.288705204 0.407765973 0.360892835 0.510868248 0.405664538 0.716870253 0.446798467 0.513752664 0.363769191 -PA0208 0.168232461 0.195407162 0.221728285 0.143735827 0.17248773 0.231290554 0.274508697 0.194750515 0.338025844 0.2289083 0.263703016 -PA0209 0.100501463 0.099791763 0.070183755 0.062325164 0.09261421 0.182007266 0.128251501 0.163745954 0.1087446 0.078533954 0.068556844 -PA0210 0.159592935 0.093360178 0.168969795 0.079735538 0.101443298 0.129071154 0.03170091 0.165835429 0.080996539 0.049890566 0.099319063 -PA0211 0.180022156 0.210440862 0.100579624 0.288021567 0.159790039 0.194176539 0.181809445 0.209284898 0.23625696 0.153051194 0.185052153 -PA0212 0.170304842 0.154641739 0.106511152 0.189412126 0.136031662 0.136050578 0.189605938 0.214904531 0.188058668 0.15845064 0.147530508 -PA0213 0.209042844 0.169943967 0.175213329 0.197995623 0.208024403 0.227373605 0.184089791 0.253483538 0.231807251 0.23764522 0.266882849 -PA0214 0.195454387 0.256502144 0.208889235 0.23014908 0.19896527 0.215020924 0.198607158 0.114089904 0.301483602 0.320355998 0.212953957 -PA0215 0.149044183 0.136258249 0.298118044 0.362559682 0.377632219 0.118767764 0.22274282 0.240825337 0.168940408 0.157757844 0.182970928 -PA0216 0.198383864 0.209682154 0.197841472 0.164269589 0.260426491 0.065627732 0.282382353 0.184363866 0.280356508 0.235231716 0.250617575 -PA0217 0.491473218 0.431684075 0.696297169 0.438592579 0.450085287 0.289067517 0.326845385 0.376163765 0.516803354 0.370815725 0.322601238 -PA0218 0.276750996 0.305977775 0.316699396 0.298989729 0.330373063 0.221342019 0.115277862 0.255412887 0.186802535 0.228028235 0.205731218 -PA0219 0.295289192 0.233203925 0.218321137 0.344359905 0.367275751 0.143315304 0.137556544 0.243695212 0.22165563 0.265306592 0.255918194 -PA0220 0.270858285 0.111057531 0.244671344 0.299954152 0.32573315 0.530526586 0.615416461 0.608466696 0.558315091 0.530725318 0.363651751 -PA0221 0.344845826 0.35151213 0.385598837 0.272852648 0.268132944 0.213350108 0.171320019 0.286224289 0.131956493 0.180394975 0.220236785 -PA0222 0.235112405 0.208675642 0.22696401 0.288317254 0.256376288 0.376267688 0.29054737 0.459825086 0.447107236 0.535285533 0.420537416 -PA0223 0.281800276 0.298107079 0.141377154 0.29600532 0.170463798 0.485963675 0.186011761 0.454152306 0.022636319 0.514188372 0.166495175 -PA0224 0.274887788 0.290634934 0.221606859 0.174453465 0.23407975 0.541650262 0.371891507 0.554080301 0.256027042 0.586148367 0.365258629 -PA0225 0.435325854 0.562739111 0.611104737 0.306962449 0.388392113 0.414817929 0.519201627 0.513647774 0.499975734 0.337940278 0.652582126 -PA0226 0.213703595 0.211202156 0.219489358 0.20478478 0.196431337 0.165702165 0.179979638 0.122436759 0.174402718 0.185626534 0.196439873 -PA0227 0.198385699 0.211167322 0.163201661 0.134119549 0.167840848 0.280623936 0.2463834 0.213845439 0.176402471 0.231552661 0.277775675 -PA0228 0.148415019 0.11847838 0.143421591 0.161800958 0.113113597 0.094718537 0.014141005 0.089796507 0.092168294 0.0927954 0.074172008 -PA0229 0.17710809 0.120743284 0.243589937 0.217205107 0.227875703 0.143003723 0.135028611 0.282208862 0.203266508 0.263197056 0.222074638 -PA0230 0.272423656 0.335129764 0.302267135 0.256982686 0.307441375 0.257440531 0.099865112 0.230788694 0.165213664 0.21608104 0.088360885 -PA0231 0.30719546 0.456531536 0.36149945 0.263669399 0.333642836 0.319232845 0.187344581 0.330018569 0.195593498 0.200288473 0.239007585 -PA0232 0.346379236 0.341599985 0.475393928 0.306773585 0.378294892 0.189924804 0.145820895 0.278493045 0.175099639 0.177455308 0.149282847 -PA0233 0.391110521 0.303101729 0.424049071 0.2818772 0.231067247 0.353551589 0.294653196 0.343254508 0.366780644 0.29666902 0.267794486 -PA0234 0.208714483 0.201344107 0.11772578 0.216388412 0.205908726 0.346807359 0.329874172 0.318417307 0.277168333 0.46590914 0.270455736 -PA0235 0.280496785 0.220344706 0.131228587 0.313276153 0.260159271 0.395525179 0.193009647 0.491009677 0.315097775 0.432690574 0.32558145 -PA0236 0.74315129 0.342305796 0.702219734 0.381209805 0.330231689 0.069065126 0.181825489 0 0.191388521 0.148900769 0.094042919 -PA0237 0.378466188 0.254488956 0.293712244 0.345701031 0.327772418 0.200511209 0.373338255 0.352143094 0.391977622 0.178890432 0.257276207 -PA0238 0.213226683 0.173817866 0.178008009 0.197543591 0.172502451 0.189726471 0.266183074 0.249497416 0.104975733 0.150540394 0.186587526 -PA0239 0.339053683 0.353463064 0.225937966 0.296881961 0.342679657 0.415211187 0.444828751 0.441785209 0.466594116 0.371883104 0.4434032 -PA0240 0.11337941 0.09736704 0.185592383 0.161285776 0.092930682 0.280226314 0.206703227 0.203760956 0.137097611 0.302725087 0.168239751 -PA0241 0.247968071 0.263951086 0.243323267 0.305423243 0.293831845 0.358151303 0.360960758 0.35477193 0.247801395 0.348461141 0.385201112 -PA0242 0.262874418 0.330473152 0.184823426 0.214124516 0.216797902 0.335191293 0.301613608 0.287928036 0.323843563 0.287324793 0.215936053 -PA0243 0.422027071 0.142459 0.518794279 0.554423354 0.470407589 0.506395689 0.534907166 0.362911013 0.347207724 0.581945125 0.40584682 -PA0244 0.273695002 0.320507783 0.156222962 0.317150608 0.310273222 0.328741719 0.38490268 0.422584759 0.3489273 0.383903148 0.321532825 -PA0245 0.273055514 0.247927848 0.242713545 0.1850464 0.204647062 0.205245051 0.201751634 0.223369117 0.284076625 0.239533155 0.14551275 -PA0246 0.308585468 0.21492406 0.259537807 0.122028689 0.085414339 0.382120562 0.37961942 0.538727301 0.235083061 0.224700064 0.302184487 -PA0247 0.212164895 0.250670133 0.26442309 0.287168324 0.218111724 0.304569536 0.274829585 0.213803037 0.237228417 0.187198595 0.16347287 -PA0248 0.446145282 0.506780374 0.525923343 0.424915284 0.344804592 0.299953878 0.535600192 0.310093897 0.364834363 0.304672899 0.320799565 -PA0249 0.299851323 0.253292453 0.258912042 0.43480338 0.479656011 0.227719765 0.303986375 0.264638863 0.234904614 0.025479147 0.280729356 -PA0250 0.19090134 0.309245344 0.348085971 0.618950072 0.596023701 0.405574581 0.380085591 0.502953439 0.408246382 0.433097577 0.433155971 -PA0251 0.167992489 0.19967101 0.072777164 0.200449642 0.153554613 0.299515254 0.292891129 0.266527614 0.210567336 0.284773937 0.363455238 -PA0252 0.210762585 0.223457797 0.127282377 0.12229738 0.091865563 0.151741249 0.183164706 0.180752393 0.184184702 0.184420042 0.245060923 -PA0253 0.381389423 0.265170116 0.286592369 0.272562298 0.26668883 0.426093635 0.432846049 0.363997403 0.391900331 0.363850599 0.50094804 -PA0254 0.448208016 0.153099261 0.55232408 0.373845476 0.407260187 0.195049048 0.250481598 0.32083981 0.341227261 0.166906399 0.199740232 -PA0255 0.25838407 0.173181297 0.381798329 0.323307324 0.344431302 0.172871132 0.309616056 0.072964945 0.346421369 0.164381418 0.410311344 -PA0256 0.153003357 0.0942009 0.190176268 0.807120371 0.809074514 0.249233065 0.29025745 0.368336043 0.414492816 0.290850894 0.446663188 -PA0257 0.105777739 0.222481159 0.061413664 0.102249526 0.040057257 0.468876654 0.526583263 0.567046563 0.381882849 0.622657893 0.641209037 -PA0258 0.046014037 0.294515076 0.030967602 0.082224288 0.047329596 0.601079103 0.576299203 0.586551645 0.520118462 0.612417976 0.569430224 -PA0259 0.572560183 0.643716706 0.569890022 0.632733501 0.6688014 0.388362279 0.419137346 0.479659294 0.415718469 0.419640385 0.500758639 -PA0260 0.48732468 0.543835601 0.326815421 0.345250584 0.372282927 0.198307616 0.249078281 0.217042282 0.300256665 0.308123218 0.360888064 -PA0261 0.403073792 0.440714525 0.233928655 0.441433428 0.403568569 0.414856344 0.381628896 0.551821147 0.404816515 0.438677867 0.301062327 -PA0262 0.237141694 0.175005434 0.100007027 0.2218914 0.2802312 0.382378667 0.258084683 0.327083862 0.185901277 0.404818126 0.240949589 -PA0263 0.301501459 0.260170405 0.403812383 0.479753996 0.531065724 0.575893228 0.533435145 0.681810716 0.523869253 0.622184003 0.534764272 -PA0264 0.299922245 0.163412516 0.309412678 0.402260179 0.480075799 0.784101707 0.708404796 0.827649455 0.778631658 0.766300725 0.69986562 -PA0265 0.698413913 0.68605915 0.540760462 0.683099957 0.712548515 0.438856727 0.524070463 0.376981493 0.535310726 0.427897719 0.526079703 -PA0266 0.671630665 0.566408463 0.455049882 0.540304236 0.598233041 0.28607887 0.245322202 0.218508949 0.282827664 0.277854054 0.285624533 -PA0267 0.639432848 0.25414012 0.52573832 0.311115001 0.258391269 0.510830288 0.523140087 0.569481887 0.530162978 0.473148171 0.45611688 -PA0268 0.264046469 0.270723895 0.390090969 0.529789469 0.501041298 0.160820743 0.178005126 0.12191049 0.23243691 0.340555796 0.176511565 -PA0269 0.26852672 0.284003198 0.32517222 0.58043773 0.576053607 0.294165346 0.217611373 0.242000479 0.345102615 0.341785584 0.242702518 -PA0270 0.172624974 0.129937973 0.229728584 0.542166321 0.543631232 0.177750389 0.21242791 0.167170184 0.242602144 0.237354782 0.226594085 -PA0271 0.246529539 0.195379913 0.330969479 0.714728438 0.685635456 0.265694781 0.308433765 0.332483986 0.386088153 0.236475644 0.319075558 -PA0272 0.336124172 0.392945819 0.303959129 0.29370943 0.278092707 0.343063837 0.275113311 0.346093621 0.441238926 0.341720487 0.23049393 -PA0273 0.231799261 0.189817759 0.15538919 0.272007079 0.23678792 0.284506587 0.404255033 0.476332219 0.308151811 0.308020935 0.43606082 -PA0274 0.251872154 0.416948949 0.182422374 0.294368311 0.244468888 0.341861324 0.168161507 0 0.289853839 0.199175091 0.142151226 -PA0275 0.357684368 0.391176374 0.511319371 0.690988407 0.583256697 0.211065983 0.146109233 0.233381229 0.301838001 0.177791777 0.320234751 -PA0276 0.105855957 0.14913782 0.06140742 0.965265239 0.940657138 0.210536921 0.217334384 0.223708277 0.1805884 0.135995238 0.215433797 -PA0277 0.634819141 0.601740553 0.34523397 0.363943997 0.277034573 0.18512576 0.212648405 0.25335643 0.130364532 0.132275308 0.215974343 -PA0278 0.149969544 0.189801647 0.121730439 0.333007123 0.334505456 0.17177191 0.153287157 0.281603835 0.171645014 0.182791132 0.216250996 -PA0279 0.247315297 0.164410911 0.293955836 0.700552732 0.698723366 0.218574857 0.332110039 0.325814428 0.203744668 0.035275466 0.125361421 -PA0280 0.279664109 0.280796392 0.520921712 0.11430415 0.105604516 0.119407069 0.133156869 0.16827367 0.203737737 0.258600384 0.216774494 -PA0281 0.306909288 0.212476507 0.51619837 0.031471904 0.050976499 0.064910822 0.059883335 0.044528337 0.083170398 0.032921144 0.119982788 -PA0282 0.303981431 0.256654103 0.628219594 0.181627123 0.134666048 0.190536959 0.159997653 0.154892436 0.073443021 0.167790852 0.101382368 -PA0283 0.357618522 0.2705481 0.617980089 0.186365143 0.22278348 0.15432646 0.155109341 0.153261562 0.09880405 0.167382232 0.249829816 -PA0284 0.443684395 0.36873823 0.764607231 0.376304351 0.442059931 0.440535428 0.379535285 0.377497183 0.366940253 0.384243911 0.241837416 -PA0285 0.745393524 0.549980113 0.521204894 0.175450343 0.139070625 0.240088053 0.245456604 0.266143912 0.279144314 0.264582924 0.259146279 -PA0286 0.489079492 0.555160492 0.622733376 0.314542057 0.340716333 0.502382568 0.502862425 0.530092535 0.598330836 0.55741815 0.513623219 -PA0287 0.215433725 0.180490774 0.235575283 0.319983749 0.209743132 0.336740555 0.224311969 0.252663712 0.231822759 0.186362398 0.25146432 -PA0288 0.2706966 0.300995764 0.196418579 0.230870468 0.198034146 0.502334362 0.392429328 0.359087593 0.331667152 0.460821577 0.472726352 -PA0289 0.352658447 0.52660529 0.425653741 0.588048485 0.50980366 0.374167873 0.552513989 0.446886623 0.35349215 0.48852224 0.449377799 -PA0290 0.146467589 0.132924232 0.207088917 0.515978756 0.540772889 0.262788989 0.323265101 0.265941026 0.357101743 0.371767831 0.321059842 -PA0291 0.688307904 0.700121506 0.647445415 0.525541404 0.538682923 0.726214389 0.53069934 0.630690156 0.522186824 0.705744114 0.484421945 -PA0292 0.298756348 0.35198732 0.31536577 0.233983943 0.218931658 0.18035109 0.184591714 0.174397518 0.166039895 0.093854408 0.186223391 -PA0293 0.323832866 0.336955417 0.136747293 0.065001634 0.165919948 0.104077891 0.071842854 0.180646623 0.142446077 0.114873356 0.125726856 -PA0294 0.329647648 0.433843711 0.345952794 0.21558221 0.270087556 0.639992563 0.444506114 0.523767822 0.468111123 0.546261171 0.643622988 -PA0295 0.304386949 0.958460657 0.497287812 0.385847007 0.459480521 0.259203501 0.290134298 0.37874023 0.289444075 0.396913773 0.213806352 -PA0296 0.498209078 0.506440676 0.441047873 0.593339158 0.623111618 0.518636292 0.513822479 0.52903391 0.526438083 0.545403814 0.548180381 -PA0297 0.206926406 0.23059036 0.166363964 0.223098447 0.360603 0.356813094 0.47642186 0.391701099 0.501642878 0.280448315 0.470222427 -PA0298 0.438393203 0.413373433 0.348205097 0.363227639 0.44470784 0.482328799 0.532786287 0.484019643 0.517370584 0.470455481 0.471281249 -PA0299 0.637272435 0.59650349 0.541500862 0.612571381 0.69258404 0.247593637 0.284550622 0.243815857 0.271154212 0.290701803 0.221439167 -PA0300 0.678183613 0.699223635 0.741236031 0.580613657 0.597392809 0.618317929 0.608047906 0.646042657 0.652076388 0.672312993 0.67804251 -PA0301 0.643283969 0.547822071 0.654584995 0.448271452 0.456459542 0.388395996 0.375674034 0.302747754 0.242208917 0.434669558 0.38529418 -PA0302 0.662006183 0.428846454 0.739389971 0.293522705 0.435458676 0.318291073 0.262008357 0.246718991 0.275564072 0.231351803 0.33686109 -PA0303 0.36372623 0.208771101 0.446484964 0.081479743 0.079249541 0.218117805 0.204889914 0.164659862 0.167992734 0.127804456 0.178426078 -PA0304 0.597355731 0.425318371 0.632202658 0.441501543 0.439631957 0.393170798 0.430010803 0.206632871 0.450940877 0.412461766 0.470859823 -PA0305 0.531171159 0.614907724 0.634434787 0.454520138 0.489555838 0.446454719 0.451325514 0.460791201 0.424295118 0.450216408 0.475016199 -PA0306 0.320092976 0.271174528 0.40831719 0.183924093 0.183670011 0.396345415 0.233216041 0.347489068 0.202903396 0.236527091 0.17718714 -PA0307 0.480005783 0.374615153 0.347351018 0.425166262 0.406682709 0.267001703 0.366382478 0.3968004 0.236279651 0.252326677 0.221278347 -PA0308 0.652048409 0.402369179 0.606689941 0.236449399 0.310579482 0.08024753 0.188649803 0.129425103 0.356050056 0.173287241 0.329280584 -PA0309 0.669061644 0.610226754 0.708628607 0.60465946 0.644436361 0.333685425 0.190089058 0.235299951 0.173822094 0.24274526 0.220520134 -PA0310 0.434545062 0.560603939 0.266386763 0.347876413 0.366436731 0.751640013 0.806462375 0.800889949 0.865210708 0.680686164 0.858025924 -PA0311 0.321777768 0.271871678 0.345801281 0.471326056 0.423434744 0.32469347 0.278754744 0.177964161 0.25858724 0.195240548 0.244847938 -PA0312 0.232276164 0.36228659 0.173863303 0.681561559 0.66208311 0.31390275 0.180220171 0.263911088 0.293684075 0.253654378 0.26088502 -PA0313 0.622683711 0.548932503 0.656443189 0.732362667 0.759712739 0.528502157 0.469981465 0.551694291 0.532931407 0.495325526 0.456331946 -PA0314 0.658759529 0.649114095 0.662161686 0.748999715 0.723573483 0.547613719 0.480292616 0.658174384 0.55356403 0.6433375 0.577411597 -PA0315 0.326826368 0.528468597 0.593769171 0.690559704 0.730662033 0.371429824 0.257707692 0.275161881 0.280161929 0.334382274 0.284688241 -PA0316 0.632510748 0.568718559 0.641324377 0.197032905 0.34210838 0.358767274 0.679130591 0.212030836 0.752359429 0.432201696 0.732495335 -PA0317 0.836048959 0.713975416 0.886299144 0.46937304 0.424517765 0.645765147 0.823753746 0.708272935 0.78169597 0.646552686 0.82678381 -PA0318 0.581914678 0.639462887 0.687698395 0.663969661 0.668883599 0.338525341 0.470697938 0.429430645 0.420482757 0.432033262 0.472979131 -PA0319 0.742830752 0.683757449 0.677098355 0.388703528 0.318481604 0.626046696 0.644836118 0.669725083 0.681543255 0.407988309 0.792183914 -PA0320 0.265383086 0.215033831 0.262381358 0.270084785 0.258421959 0.456717951 0.266513498 0.381871648 0.224552451 0.426585177 0.29310241 -PA0321 0.202220601 0.197346898 0.194066098 0.263345258 0.238620527 0.293570618 0.391219099 0.457058503 0.438527861 0.337029433 0.358423921 -PA0322 0.164402253 0.118457298 0.18095885 0.178559765 0.149166409 0.333968893 0.281605226 0.252144209 0.372164484 0.276187621 0.393242806 -PA0323 0.119804358 0.105153992 0.133551457 0.080428861 0.100917919 0.237191037 0.227027883 0.145333881 0.128996451 0.202883147 0.229235613 -PA0324 0.313831872 0.263877571 0.347738391 0.403085524 0.342111692 0.501811242 0.514845234 0.575206183 0.567313537 0.402240644 0.509920681 -PA0325 0.253642231 0.26005451 0.264023809 0.30877215 0.305427595 0.265163109 0.389142229 0.418573798 0.425233218 0.360497431 0.269808042 -PA0326 0.246093599 0.246990341 0.258341135 0.200579914 0.186217488 0.203357896 0.13767877 0.178587406 0.171426452 0.235363646 0.180181938 -PA0327 0.09974084 0.085340755 0.141605473 0.22698956 0.297192772 0.154887245 0.148174705 0.238587455 0.21050046 0.166406755 0.239124962 -PA0328 0.347006932 0.288579979 0.344364511 0.357199791 0.360815953 0.192047894 0.231356808 0.370520805 0.201367695 0.154128042 0.143591737 -PA0329 0.42384602 0.471006182 0.486965475 0.839650722 0.847974531 0.604861087 0.542048265 0.660468175 0.544511196 0.609126904 0.564289309 -PA0330 0.970359326 0.787334521 0.883377332 0.489068749 0.518929957 0.652354997 0.756461442 0.652097014 0.718388058 0.679585097 0.735956026 -PA0331 0.477233059 0.504643633 0.577528678 0.13772467 0.147105 0.289506081 0.368722564 0.229487482 0.320588147 0.33507121 0.297356926 -PA0332 0.474790163 0.325979046 0.42092408 1 0.991385013 0.297869033 0.29604464 0.381241947 0.308672976 0.255168805 0.271284716 -PA0333 0.44418287 0.359177379 0.305549761 0.635240646 0.657534197 0.275023919 0.234192776 0.352122302 0.30513579 0.406168925 0.328649249 -PA0334 0.654433795 0.422309858 0.478273165 0.334015057 0.295353322 0.282503484 0.309747551 0.17257368 0.2632482 0.120265763 0.136385897 -PA0335 0.624928408 0.885419827 0.546893611 0.3939596 0.352364569 0.458493502 0.384688811 0.431547393 0.379136025 0.39780008 0.275184452 -PA0336 0.843335833 0.875709655 0.84520967 0.745659051 0.819525714 0.687836598 0.766959599 0.737609443 0.750365159 0.761592225 0.752011721 -PA0337 0.658278769 0.614213763 0.7349422 0.592779053 0.592500922 0.593935266 0.694596245 0.582626622 0.734790602 0.741966752 0.600166631 -PA0338 0.19896264 0.088571143 0.212040531 0.245762645 0.250448979 0.664636629 1 0.635585193 0.853948904 0.707352548 0.870223871 -PA0339 0.413339853 0.49579761 0.414776265 0.42895434 0.503848834 0.243715527 0.399593129 0.311167531 0.352390566 0.374816723 0.256383475 -PA0340 0.597383402 0.600382499 0.550793984 0.203077127 0.189904315 0.424498003 0.605466781 0.527359981 0.545472658 0.413778115 0.404038907 -PA0341 0.660665068 0.485083995 0.576170349 0.140291436 0.126236023 0.167246937 0.46022964 0.263730106 0.357852124 0.259324792 0.337936149 -PA0342 0.937845837 0.776536513 0.907200431 0.298479687 0.344196158 0.428138754 0.456584079 0.352145419 0.588875829 0.401649361 0.505449989 -PA0343 0.245769923 0.182875864 0.250406096 0.221140219 0.282074895 0.298802957 0.505942104 0.156148812 0.431296271 0.335080002 0.466704817 -PA0344 0.495941802 0.326555597 0.584233313 0.521036298 0.504154889 0.436757271 0.220649486 0.304718583 0.225442334 0.272986094 0.193744858 -PA0345 0.458951003 0.427923941 0.361025994 0.330762944 0.393529275 0.203791453 0.204989865 0.168304 0.311475967 0.214530409 0.1802214 -PA0346 0.282418155 0.204111202 0.26359947 0.276582967 0.281823136 0.165101432 0.264978948 0.246915656 0.179010968 0.206024732 0.191165166 -PA0347 0.136166688 0.156791924 0.17618147 0.111085418 0.151811102 0.168768304 0.160302196 0.041983132 0.173378609 0.080448317 0.12601383 -PA0348 0.438350143 0.371539014 0.290550815 0.466244233 0.343457753 0.333866699 0.425029031 0.473180687 0.512008312 0.379038457 0.398471237 -PA0349 0.173120759 0.167235056 0.116706097 0.169567963 0.179960724 0.253609939 0.346061724 0.363294227 0.415296668 0.213275335 0.426769468 -PA0350 0.762223411 0.646562309 0.612354841 0.262622156 0.166798398 0.252090126 0.319343013 0.222249939 0.390206845 0.354185741 0.314109907 -PA0351 0.529807852 0.571613058 0.691387283 0.476902522 0.515652205 0.473837924 0.609688347 0.47224434 0.661274744 0.636231415 0.683583256 -PA0352 0.737745554 0.429772763 0.47617188 0.264205985 0.295636111 0.22667782 0.327535106 0.350997524 0.407225904 0.13419411 0.355240775 -PA0353 0.687202112 0.698089371 0.850860882 0.480013507 0.485753115 0.232585893 0.263657927 0.151274341 0.245269846 0.208974788 0.200759541 -PA0354 0.528013494 0.648620362 0.325383185 0.265529382 0.303697078 0.313604027 0.526990878 0.348313439 0.491551607 0.383471943 0.473417522 -PA0355 0.144209722 0.269528846 0.315352332 0.614528224 0.693644981 0.574577486 0.342970434 0.648104922 0.345824288 0.599986546 0.327434994 -PA0356 0.401317424 0.595596161 0.326809506 0.100970346 0.044478594 0.301029498 0.467071714 0.313244082 0.572016881 0.370974288 0.462938374 -PA0357 0.744537144 0.484427801 0.757442408 0.422257521 0.350772925 0.465059919 0.462954462 0.341996866 0.521655611 0.412829625 0.305148884 -PA0358 0.70070259 0.386189379 0.435159785 0.222637382 0.216196528 0.319805725 0.321499316 0.231747489 0.350851322 0.337508899 0.354484027 -PA0359 0.456910251 0.326777679 0.526271137 0.58286038 0.585084193 0.462641053 0.389353898 0.505489669 0.411745379 0.58649392 0.356713253 -PA0360 0.39745915 0.303764689 0.32906581 0.419460974 0.366597355 0.248814018 0.365565118 0.185512793 0.293039573 0.324168767 0.197655285 -PA0361 0.652004005 0.581391089 0.501511111 0.676943724 0.635973076 0.155177862 0.308947194 0.228564523 0.099777307 0.22111189 0.254453031 -PA0362 0.795281564 0.780487243 0.699315709 0.581334829 0.661636229 0.672375987 0.772603847 0.906004093 0.769484467 0.608629119 0.716421007 -PA0363 0.879380962 0.774448424 0.925230247 0.47450718 0.440729991 0.569523631 0.709494657 0.36510362 0.633724443 0.44540692 0.697234888 -PA0364 0.176900057 0.150932078 0.281272245 0.363183504 0.423619011 0.249072723 0.187208111 0.126857101 0.174307006 0.261446528 0.232184937 -PA0365 0.253484826 0.192481547 0.376726062 0.619020828 0.725884605 0.416197324 0.292118194 0.363473536 0.326897176 0.437671398 0.278258992 -PA0366 0.284987454 0.316928529 0.324158508 0.908921469 1 0.3160969 0.210129124 0.299957054 0.272867881 0.328581567 0.234592572 -PA0367 0.31152667 0.25554133 0.489391316 0.574309661 0.846456571 0.417622569 0.356967955 0.431584714 0.309683772 0.420388399 0.378231819 -PA0368 0.585218622 0.459929273 0.426118786 0.402624003 0.421845609 0.573905573 0.548957421 0.432327292 0.64177005 0.543937189 0.49031744 -PA0369 0.678629303 0.547391955 0.734158337 0.240246859 0.231406209 0.80602538 0.761268652 0.375213657 0.785245682 0.779318064 0.679239847 -PA0370 0.88410733 0.69693663 0.682370613 0.182410715 0.192064909 0.368402813 0.293943576 0.033604391 0.332423195 0.347132576 0.140124187 -PA0371 0.651915135 0.59107759 0.688877846 0.205946822 0.168595151 0.562653809 0.61050528 0.323588918 0.600824909 0.430195161 0.57787637 -PA0372 0.675956747 0.79760787 0.718385984 0.39029677 0.310517703 0.437152651 0.449443841 0.373319249 0.444635545 0.428035433 0.436686124 -PA0373 0.837167722 0.837950674 0.729889158 0.372452839 0.275349292 0.584314068 0.573535336 0.455292863 0.471685701 0.44710687 0.542489463 -PA0374 0.710946434 0.601234193 0.71443173 0.260972185 0.344445061 0.551137391 0.612552073 0.417358686 0.614311866 0.656735088 0.581255536 -PA0375 0.715045779 0.677889119 0.652040025 0.332891851 0.328268234 0.795408296 0.857198307 0.722162805 0.843753898 0.848222797 0.772616288 -PA0376 0.671415239 0.685051331 0.713399711 0.665996427 0.683448207 0.653140095 0.711426833 0.688837312 0.711365341 0.693943871 0.718941303 -PA0377 0.690945353 0.400379344 0.782769948 0.211856019 0.211651775 0.495475811 0.612733041 0.441606781 0.708119403 0.570195423 0.610025998 -PA0378 0.639573832 0.255911154 0.561326956 0.220283417 0.246076252 0.344992496 0.427627976 0.244016596 0.467148451 0.322782049 0.453381435 -PA0379 0.376501658 0.481693003 0.328336561 0.181881655 0.272594078 0.24268503 0.272749952 0.300960941 0.266811864 0.251422191 0.228578798 -PA0380 0.98647214 0.879603006 0.793811133 0.376977195 0.493460017 0.442031534 0.479927494 0.342297242 0.551508578 0.479468779 0.445803639 -PA0381 0.657158886 0.574592183 0.711435533 0.274412304 0.285754247 0.507130097 0.499751796 0.379328455 0.549691254 0.426905155 0.499136227 -PA0382 0.754589707 0.605823609 0.601925628 0.046519565 0 0.488764644 0.593526262 0.418031875 0.659295434 0.57363954 0.691687741 -PA0383 0.234398425 0.245476775 0.258014665 0.332093939 0.276951474 0.373353988 0.274463499 0.430992151 0.352700956 0.412511465 0.309326882 -PA0384 0.29807264 0.285442152 0.273755709 0.621505935 0.611646199 0.198389169 0.249978913 0.361166013 0.39138448 0.374316253 0.332143604 -PA0385 0.784508215 0.712817327 0.790302815 0.451422739 0.569151926 0.349552257 0.466106383 0.302659085 0.493624496 0.353849579 0.400655299 -PA0386 0.884316729 0.837665968 0.721509232 0.267159317 0.259669684 0.298371266 0.37388205 0.32794859 0.32259911 0.337611581 0.295314164 -PA0387 0.673762966 0.794915583 0.504080625 1 0.978449278 0.387165701 0.362905722 0.471933847 0.422394294 0.408009107 0.310428246 -PA0388 0.564609766 0.707142403 0.511013878 0.923965252 0.911011087 0.61129921 0.632744646 0.763348985 0.637870991 0.708548486 0.633044134 -PA0389 0.742112999 0.550508575 0.597532773 0.020799252 0 0.536934201 0.538504585 0.500574591 0.507843454 0.473560585 0.61644178 -PA0390 0.772869209 0.635278082 0.745788709 0.133819923 0.091558465 0.403591738 0.520919926 0.33080946 0.457159141 0.429510321 0.507802125 -PA0391 0.639254533 0.493973697 0.780307599 0.497294122 0.512424704 0.383882397 0.238913376 0.421466189 0.411663821 0.419470537 0.41817252 -PA0392 0.713918435 0.73052598 0.903202957 0.413115882 0.432547083 0.444711796 0.647802273 0.456251536 0.630833132 0.580592891 0.636628513 -PA0393 0.729370917 0.799240027 0.672354258 0.547977478 0.577258654 0.481740715 0.425758796 0.290461146 0.555124664 0.613482107 0.597358378 -PA0394 0.792177077 0.855625755 0.838295692 0.55488188 0.569506918 0.506551793 0.355922249 0.491913831 0.400436901 0.450554307 0.462859852 -PA0395 0.652832444 0.52748945 0.766348608 0.781203852 0.743147533 0.518271369 0.505959991 0.577558837 0.552254493 0.571881726 0.526927513 -PA0396 0.57399856 0.55883385 0.603784706 0.887717089 0.86992225 0.286183857 0.274863013 0.306087021 0.303042393 0.332902832 0.341104726 -PA0397 0.317333068 0.190727237 0.376676622 0.727932334 0.763352986 0.591122168 0.506803056 0.461506818 0.511915493 0.590494589 0.469196893 -PA0398 0.391360148 0.443644033 0.47495821 0.522502931 0.576862085 0.25988606 0.479068098 0.369439146 0.418609506 0.445178095 0.331073912 -PA0399 0.559328088 0.41446398 0.575904034 0.50380499 0.465204531 0.114846207 0.088736912 0.169187428 0.149247174 0.22437015 0.10406659 -PA0400 0.598674496 0.544033483 0.624525279 0.464232917 0.516790299 0.259467156 0.338118122 0.317750936 0.21470547 0.320241317 0.365446582 -PA0401 0.718162809 0.908307039 0.833599292 0.346905037 0.439480587 0.38102792 0.23115661 0.186087713 0.236043632 0.259420448 0.210526611 -PA0402 0.81577188 0.9162208 0.814251874 0.396956036 0.485399688 0.582061307 0.496932596 0.508447245 0.498917235 0.551594827 0.412873352 -PA0403 0.512958572 0.972352948 0.472906759 0.396749227 0.43855349 0.621138206 0.327402561 0.690184807 0.330386612 0.626748191 0.470441539 -PA0404 0.824696944 0.797027004 0.711664438 0.595783958 0.685220979 0.707969138 0.784415674 0.69475678 0.821600916 0.770424299 0.754420556 -PA0405 0.85739287 0.814519798 0.710807399 0.662214054 0.728303315 0.546270763 0.588583303 0.260783879 0.449412285 0.392843926 0.605986665 -PA0406 0.838719077 0.736105523 0.822226809 0.390317857 0.478438982 0.570209443 0.569970278 0.487065786 0.731778861 0.40848609 0.645211797 -PA0407 0.697153981 0.807358737 0.660190912 0.746986851 0.732782211 0.589186193 0.672166841 0.466843349 0.630332067 0.498376399 0.46984183 -PA0408 0.639663552 0.820689966 0.816022541 0.621329568 0.679388799 0.724225148 0.712700984 0.760047332 0.733632721 0.713204102 0.666451304 -PA0409 0.776139383 0.971261936 0.849288728 0.652164627 0.687178745 0.549352219 0.614134797 0.620107651 0.614493226 0.566991789 0.639145441 -PA0410 0.494629585 0.508855302 0.588126525 0.255673781 0.313404522 0.307781577 0.361689705 0.367135674 0.368233468 0.314933673 0.427275872 -PA0411 0.747710724 0.842944849 0.849463342 0.424209349 0.45198344 0.578831703 0.668838366 0.552236817 0.627513377 0.60809478 0.647983558 -PA0412 0.550430368 0.51254947 0.490706413 0.170160493 0.226265765 0.228536229 0.312115944 0.217882586 0.275850324 0.259961738 0.239030129 -PA0413 0.777582135 0.728259368 0.782394029 0.44625386 0.49870221 0.498726675 0.423421325 0.405758434 0.452194894 0.475718054 0.377872259 -PA0414 0.712447199 0.555661882 0.846507542 0.341463714 0.348978015 0.419316385 0.387248721 0.368807976 0.387313061 0.48979021 0.427127168 -PA0415 0.706875451 0.708383054 0.789157073 0.39492692 0.378233627 0.323409815 0.113260905 0.35419036 0.324702097 0.312573628 0.3011481 -PA0416 0.56813071 0.552439526 0.865878882 0.148011809 0.332791379 0.389849217 0.265451313 0.311790547 0.499113264 0.341733901 0.353212889 -PA0417 0.163972139 0.326434722 0.071037844 0.106468151 0.136651943 0.213478828 0.255836487 0.24958833 0.378984291 0.194211088 0.309874332 -PA0418 0.565255879 0.470953595 0.514295166 0.514208345 0.48849943 0.353761975 0.15378658 0.267647768 0.209500062 0.278260431 0.204761689 -PA0419 0.670924819 0.543753876 0.519984089 0.228536388 0.14071706 0.731375869 0.752446625 0.790887225 0.649137406 0.688047588 0.645959326 -PA0420 0.539844059 0.523884651 0.575009848 0.28924296 0.347242008 0.396777217 0.419699507 0.35278542 0.299205327 0.394253188 0.379699143 -PA0421 0.711744426 0.669521677 0.746123271 0.204586448 0.199629997 0.477139498 0.604928839 0.494734762 0.573574122 0.535174156 0.591464521 -PA0422 0.487072507 0.689654008 0.360808834 0.360440827 0.353090373 0.815196947 0.816866615 0.765878338 0.786283221 0.776766597 0.838381716 -PA0423 0.492472808 0.61862955 0.491924782 0.296211309 0.30481911 0.558040133 0.570732122 0.417921892 0.614746001 0.540916648 0.70674106 -PA0424 0.409508292 0.29829527 0.410888446 0.482954452 0.454188447 0.597006805 0.52791923 0.524870776 0.460863644 0.604031946 0.505362557 -PA0425 0.620206686 0.56582123 0.596007159 0.531700911 0.523811313 0.599380541 0.522410556 0.520530097 0.54063019 0.592618425 0.536276347 -PA0426 0.656016311 0.596507367 0.63812245 0.453123003 0.487766437 0.532527329 0.549019283 0.481100709 0.633766386 0.596618848 0.59311109 -PA0427 0.612909834 0.538628549 0.621718463 0.631012541 0.638629014 0.442644638 0.356811638 0.392937033 0.411952798 0.338363177 0.425419784 -PA0428 0.862235858 0.829234699 0.762911283 0.530952332 0.518633718 0.326786018 0.440232223 0.254329356 0.436192772 0.327675661 0.360388286 -PA0429 0.748856636 0.56204381 0.691961573 0.758436552 0.796137887 0.719049378 0.649315147 0.553130917 0.670528373 0.686418887 0.686261033 -PA0430 0.706026888 0.59529849 0.620732314 0.586391488 0.628889217 0.61035301 0.709840154 0.479409946 0.63356578 0.627862959 0.664299077 -PA0431 0.660836212 0.680507523 0.653260129 0.65408862 0.742777252 0.490082327 0.685628609 0.364692548 0.756865562 0.513871955 0.736381245 -PA0432 0.700201161 0.689257797 0.675390914 0.785882756 0.795445156 0.601764901 0.717406782 0.451266506 0.763828388 0.62586972 0.739003821 -PA0433 0.293647693 0.27610992 0.367761484 0.192792972 0.1694347 0.174895508 0.230637902 0.06776816 0.184209642 0.111753521 0.25562779 -PA0434 0.259921557 0.230041519 0.161475057 0.249039353 0.213277666 0.222828515 0.26699465 0.389657618 0.257691538 0.324099184 0.3427016 -PA0435 0.179442531 0.159758443 0.131253157 0.225416552 0.191859469 0.131625222 0.135084653 0.199955235 0.249904004 0.120438838 0.183253642 -PA0436 0.534254245 0.538188292 0.515308466 0.548035003 0.602441705 0.73599604 0.41032096 0.697600326 0.513391599 0.69353119 0.415372423 -PA0437 0.806263445 0.585460108 0.655347296 0.349330854 0.307841599 0.34471208 0.394022501 0.370080323 0.342912535 0.306551069 0.380051925 -PA0438 0.726425708 0.344588142 0.615206492 0.336641832 0.280518397 0.173092547 0.036028857 0.193008564 0.308926496 0.080542635 0.150333116 -PA0439 0.118103883 0.15007336 0.116616052 0.205171768 0.168540108 0.463962153 0.356751297 0.429324047 0.346572236 0.511301585 0.381347526 -PA0440 0.153914295 0.16070808 0.137975491 0.336573377 0.240701869 0.224720297 0.116982103 0.237685419 0.163699318 0.318805768 0.193411889 -PA0441 0.196423823 0.211294368 0.144759231 0.583700864 0.461105373 0.518976954 0.483036292 0.600372852 0.455290812 0.595631354 0.460247431 -PA0442 0.012373883 0.015453492 0.010656705 0.038916624 0.003846243 0.05522222 0.022494115 0.133921929 0.044005166 0.07885228 0.032389249 -PA0443 0.139451468 0.191810728 0.130379761 0.569536738 0.527688537 0.537040718 0.539891553 0.550766364 0.549058132 0.626457909 0.503439686 -PA0444 0.161422013 0.163774253 0.168364006 0.675074515 0.602360447 0.391379786 0.301960532 0.383972139 0.305992769 0.302618931 0.248781001 -PA0445 0.169678154 0.353296654 0.129662256 0.162618558 0.104077207 0.166552464 0.165745153 0.104365436 0.212739433 0.107583161 0.120044326 -PA0446 0.480155129 0.361878369 0.363785956 0.462242564 0.427138264 0.388088038 0.203032512 0.395646076 0.345655121 0.366765361 0.260701243 -PA0447 0.408858076 0.396538189 0.338484024 0.579696825 0.567644552 0.33212204 0.262755844 0.337439108 0.248790369 0.330024573 0.236623157 -PA0448 0.404089038 0.280590338 0.391203566 0.380960779 0.40438667 0.024446495 0.051452523 0.097759704 0.082360756 0 0.252518633 -PA0449 0.529555892 0.6413432 0.649112255 0.580816273 0.587335907 0.471890492 0.376211335 0.509245408 0.412723527 0.395148682 0.407970547 -PA0450 0.17492091 0.254829328 0.210136272 0.197476536 0.175726835 0.247543844 0.237886583 0.289541712 0.300093637 0.269409267 0.183652333 -PA0451 0.17000135 0.221016912 0.162664453 0.778266106 0.761131034 0.312074085 0.287011403 0.326369531 0.335333739 0.340793784 0.334858441 -PA0452 0.043220816 0.073321684 0.120585776 1 0.941610303 0.145678839 0.078308505 0.327264165 0.084003644 0.122650918 0.063521292 -PA0453 0.217758207 0.132623823 0.256943935 0.300530299 0.302706436 0.428731156 0.314826725 0.534568739 0.30365514 0.397065773 0.351824024 -PA0454 0.557168785 0.369044978 0.372520258 0.394953892 0.291456337 0.497648416 0.427609414 0.346120195 0.267376333 0.343943391 0.371667966 -PA0455 0.781243898 0.731637345 0.656369585 0.543446053 0.566000361 0.375747429 0.357018611 0.448581291 0.427112153 0.435647208 0.428254001 -PA0456 0.915381621 0.942748846 0.820870082 0.811810154 0.824772008 0.687968858 0.866473521 0.667852852 0.834722803 0.713251915 0.874537111 -PA0457 0.785143436 0.399677815 0.428315876 0.311842741 0.33205352 0.537531104 0.544609296 0.536810289 0.535020895 0.530954893 0.534001016 -PA0458 0.476697319 0.532845925 0.56540786 0.545008223 0.613045207 0.641694261 0.565920284 0.687312438 0.443112719 0.71778261 0.532126918 -PA0459 0.131546918 0.54578344 0.294783088 1 0.986940021 0.670845999 0.343621568 0.666048513 0.411224549 0.666303742 0.423932162 -PA0460 0.245910322 0.631024328 0.346402308 0.810059633 0.832812432 0.51925318 0.508347528 0.480395743 0.446898091 0.66277581 0.469709045 -PA0461 0.643549599 0.566222331 0.711431806 0.561961262 0.538603831 0.662736825 0.811522873 0.596047134 0.728244992 0.607902081 0.857280013 -PA0462 0.20388017 0.570619919 0.373094841 0.619267191 0.617226914 0.610930419 0.606641674 0.679431781 0.556799395 0.640453411 0.541490707 -PA0463 0.60479642 0.554752035 0.769629195 0.443458422 0.44579086 0.518042617 0.530125611 0.4899764 0.60052186 0.44873623 0.681069191 -PA0464 0.49130195 0.394652196 0.481884879 0.381181944 0.270554551 0.635945632 0.695734151 0.67905852 0.646814374 0.598459232 0.632549359 -PA0465 0.064707906 0.076775334 0.051765198 0.069903286 0.075441403 0.128148267 0.095792452 0.218099417 0.142892069 0.210405566 0.141995451 -PA0466 0.067014927 0.109282296 0.048687799 0.106106916 0.072100129 0.223880619 0.173987561 0.273375727 0.177134611 0.223476357 0.212743545 -PA0467 0.595811985 0.8412627 0.549362722 0.840844469 0.753896678 0.281086509 0.147524471 0.219150564 0.141523628 0.328776156 0.094978597 -PA0468 0.337747882 0.560233346 0.306265696 0.829718855 0.754935608 0.333943012 0.214313484 0.187183088 0.353029543 0.312571938 0.297504594 -PA0469 0.586029103 0.678415748 0.661815014 0.717097983 0.692288241 0.355041946 0.472913402 0.346322259 0.42165123 0.416464695 0.470194377 -PA0470 0.245843055 0.230928364 0.208093742 0.273369409 0.227861437 0.278490313 0.109716841 0.300073375 0.264761287 0.193863308 0.154146577 -PA0471 0.343868383 0.153999232 0.487601201 0.28191869 0.239520355 0.302029188 0.393017102 0.243300751 0.533313919 0.379321586 0.448532627 -PA0472 0.409469753 0.180373563 0.537712191 0.206576897 0.208407644 0.308348137 0.402620098 0.20929412 0.555208176 0.315599298 0.406778369 -PA0473 0.364810673 0.276559209 0.465590162 0.334706098 0.288912789 0.293797287 0.19871122 0.135705669 0.407251467 0.218376248 0.155521982 -PA0474 0.180926098 0.178786634 0.056278027 0.235864942 0.228523579 0.318315222 0.435640575 0.314122362 0.336530864 0.301107535 0.309166124 -PA0475 0.341966424 0.261872969 0.309083302 0.237152377 0.243745443 0.323333173 0.178337038 0.167653792 0.01361365 0.178875844 0.3319992 -PA0476 0.135263282 0.155725048 0.283945052 0.412831863 0.438400164 0.200267107 0.20300765 0.285681995 0.108872698 0.117503498 0.222944334 -PA0477 0.320920125 0.329762389 0.283766603 0.289622783 0.611757879 0.161900717 0.228046285 0.227357025 0.190162962 0.484211233 0.267467663 -PA0478 0.550136911 0.404502461 0.419547689 0.532863401 0.678916156 0.407957195 0.211338094 0.195741628 0.1787822 0.241388887 0.345339776 -PA0479 0.279390244 0.369607973 0.396406516 0.38442481 0.36866021 0.170088647 0.233573382 0.215467438 0.289955005 0.246178655 0.232329424 -PA0480 0.339338311 0.151497195 0.418195576 1 0.993017208 0.452987282 0.557699136 0.565668791 0.461582835 0.413205529 0.579135471 -PA0481 0.638518527 0.343380446 0.788688833 0.878472617 0.9212174 0.303063285 0.401426224 0.486465233 0.431426196 0.242398804 0.469540575 -PA0482 0.583364249 0.512961116 0.781868643 0.646088004 0.684559117 0.433150216 0.426254228 0.304012543 0.514341853 0.469610039 0.44765231 -PA0483 0.20520763 0.186466936 0.251890324 0.789447803 0.784295145 0.404470934 0.352564674 0.460315261 0.400189516 0.306745311 0.366218112 -PA0484 0.098675805 0.166942381 0.25791572 0.945486372 0.92143537 0.248697389 0.033208873 0.295657623 0.224434175 0.253415957 0.126660456 -PA0485 0.534379271 0.578114781 0.402464926 0.277231802 0.242927016 0.223757339 0.243819581 0.310606945 0.110590089 0.39092946 0.326711125 -PA0486 0.434284917 0.564091571 0.437554917 0.494800812 0.655748141 0.347319383 0.378714826 0.303121891 0.313020628 0.164838274 0.470640933 -PA0487 0.639371406 0.65897548 0.626204825 0.55116796 0.589629608 0.313596965 0.412410366 0.446030035 0.42006029 0.309536073 0.255195399 -PA0488 0.27425987 0.466336248 0.184346299 0.393783174 0.330978135 0.451553967 0.54422956 0.391160075 0.485347637 0.383931052 0.470720745 -PA0489 0.248517212 0.344671239 0.172736164 0.330130566 0.316813977 0.310553278 0.370960117 0.342177643 0.244364695 0.267303916 0.30026877 -PA0490 0.090393137 0.385546974 0.25131141 0.389357792 0.356103403 0.318616303 0.477988305 0.487790841 0.451453623 0.347381161 0.424574544 -PA0491 0.460582548 0.411422005 0.314137482 0.319380479 0.173990285 0.267091861 0.178276284 0.275041773 0.342577247 0.237706772 0.399539458 -PA0492 0.133119997 0.271510222 0.074497193 0.146329607 0.152822648 0.153271122 0.201975203 0.121913411 0.154407361 0.124256911 0.1596858 -PA0493 0.180729129 0.222460397 0.16366762 0.127731582 0.148984811 0.092082235 0.141345992 0.157853391 0.125210657 0.076448822 0.092774625 -PA0494 0.140376262 0.166720629 0.125295379 0.114949887 0.156625221 0.112300691 0.186567227 0.064431727 0.101715129 0.168831273 0.158746428 -PA0495 0.190946712 0.21755206 0.208974813 0.265007896 0.200626786 0.061262071 0.163264332 0.160552719 0.14237485 0.078965082 0.079613341 -PA0496 0.120530697 0.168272379 0.147258599 0.163632563 0.1394986 0.235362045 0.372314618 0.299484359 0.339929486 0.260129596 0.275534691 -PA0497 0.166259956 0.162981974 0.147215977 0.157714844 0.148627727 0.390580291 0.481837042 0.655612721 0.416353162 0.52806553 0.513134624 -PA0498 0.027401436 0.056253981 0.045730679 0.052324026 0.002509329 0.295427951 0.3144667 0.402285765 0.317409438 0.267585443 0.257280275 -PA0499 0.228657498 0.20947276 0.188972747 0.167182228 0.170687048 0.403655905 0.355800885 0.495144208 0.390218064 0.395659293 0.405357884 -PA0500 0.617980606 0.777377059 0.687608407 0.367454825 0.349329557 0.499545206 0.527702126 0.308904859 0.510464546 0.479622856 0.501760805 -PA0501 0.644528965 0.672671924 0.559488627 0.475464191 0.49518614 0.130070166 0.221433228 0.125707193 0.219982078 0.121998585 0.220988525 -PA0502 0.583188252 0.686884002 0.368669987 0.650925816 0.615511156 0.191967025 0.223275061 0.212696188 0.230891701 0.083135865 0.189984738 -PA0503 0.633239886 0.556867294 0.621601287 0.519832772 0.596546529 0.33182187 0.285065482 0.428285996 0.250379078 0.335649282 0.370457262 -PA0504 0.348264137 0.446541974 0.187807698 0.215557148 0.187279445 0.32186735 0.373747395 0.209598502 0.469359263 0.335566735 0.469129269 -PA0505 0.23750467 0.497621613 0.227067486 0.531466052 0.594819085 0.650272378 0.558798384 0.754046948 0.61637154 0.670231832 0.519257847 -PA0506 0.317398758 0.547461607 0.323573838 0.481549301 0.530049346 0.251791883 0.351315436 0.406081163 0.315769102 0.26746176 0.331031481 -PA0507 0.287707249 0.407934929 0.325087621 0.393290655 0.349769574 0.380905599 0.436197907 0.382731691 0.338968184 0.393420359 0.42913778 -PA0508 0.225490043 0.243567566 0.2724743 0.127365979 0.149344476 0.129803075 0.167628239 0.055362355 0.138203579 0.199675311 0.135129265 -PA0509 0.432729373 0.381935873 0.161442577 0.826816217 0.836066729 0.886325374 0.725543423 0.927711415 0.758126853 0.892690864 0.756109885 -PA0510 0.268762736 0.457541371 0.087354526 0.912909176 0.89675233 0.599662746 0.458623447 0.628435517 0.526762576 0.612226552 0.414980716 -PA0511 0.228900418 0.416027038 0.17078473 0.971068826 1 0.745845358 0.571360035 0.742359767 0.62917874 0.735589211 0.582120294 -PA0512 0.149251466 0.350655472 0.055395413 0.902275201 0.962175631 0.738238741 0.62141536 0.774698633 0.544058994 0.780234923 0.550606425 -PA0513 0.152542501 0.443459945 0.103612489 1 0.982026021 0.763213556 0.561420583 0.773523084 0.593738871 0.755361653 0.566377375 -PA0514 0.178545261 0.465402467 0.145733336 0.912995109 0.942336907 0.593426339 0.462375574 0.565130923 0.502255365 0.607526823 0.452567163 -PA0515 0.207796756 0.519853636 0.222340568 0.929846089 0.93966651 0.894365992 0.743535216 0.87265795 0.768216791 0.891568549 0.74046241 -PA0516 0.145881875 0.465972948 0.176740268 0.955936385 0.963481631 0.661069399 0.543993351 0.658304591 0.595204555 0.676814886 0.589565192 -PA0517 0.219480268 0.631677792 0.210693861 0.991616357 0.995946332 0.551999278 0.350785558 0.521597869 0.394898352 0.585830172 0.387362983 -PA0518 0.312530676 0.664340945 0.215839248 0.948220568 0.972118085 0.642089998 0.640292615 0.692252901 0.659146398 0.698250327 0.605906609 -PA0519 0.308546707 0.667918526 0.258218204 0.970532831 0.965879061 0.83958746 0.780207285 0.831725216 0.793757887 0.833754156 0.807791685 -PA0520 0.191515195 0.200524451 0.226681471 0.99581174 1 0.719421318 0.604557328 0.711562501 0.568571308 0.69924648 0.577356319 -PA0521 0.127404727 0.138978798 0.115651235 0.892684617 0.869183109 0.892884711 0.708234002 0.90051466 0.786864892 0.913035133 0.707660922 -PA0522 0.154257211 0.290919776 0.13128515 0.565724484 0.582439595 0.843540932 0.772907348 0.827118054 0.781675953 0.817865351 0.756740695 -PA0523 0.141364283 0.124749569 0.093449586 0.982039168 0.979958987 0.800776125 0.763234395 0.828830763 0.761207263 0.807638893 0.784603205 -PA0524 0.073140154 0.047007976 0.072927565 0.99443535 0.996624046 0.804772418 0.76951974 0.784783031 0.803810832 0.827562178 0.782756814 -PA0525 0.09810847 0.15131751 0.093213485 0.847948142 0.846606863 0.514672565 0.45775215 0.492571914 0.499590057 0.477282042 0.5088258 -PA0526 0.135319521 0.5590525 0.16789936 1 0.976873051 0.963473019 0.969843204 0.914531471 0.972089623 0.970403786 0.946232482 -PA0527 0.292234012 0.936644452 0.37781929 0.635915881 0.61865664 0.663995177 0.687043352 0.693969495 0.622519198 0.695144164 0.628130936 -PA0528 0.267539065 0.311004048 0.279389267 0.263797301 0.287288594 0.042262796 0.193629721 0.163591124 0.169434956 0.057046669 0.154570978 -PA0529 0.195071553 0.564863976 0.260361293 0.415308882 0.419770257 0.438718105 0.373427047 0.469731919 0.417227939 0.475168857 0.386443426 -PA0530 0.172301456 0.445949125 0.181017655 0.318550222 0.262694454 0.371858822 0.284153122 0.503658141 0.201453788 0.4245141 0.352019505 -PA0531 0.161967922 0.384326311 0.201285759 0.228076188 0.250781464 0.587705881 0.40294077 0.531488482 0.521460857 0.684426449 0.389357173 -PA0532 0.050078585 0.096566954 0.04815435 0.126443708 0.117935906 0.135531826 0.105821549 0.108914006 0.02868731 0.044013196 0.046740772 -PA0533 0.23472604 0.28236563 0.561028925 0.324309531 0.379733879 0.323068309 0.381497249 0.574933594 0.299330105 0.174622634 0.368605256 -PA0534 0.166531378 0.261926965 0.164053847 0.358090923 0.557521132 0.149555831 0.169847567 0.139408162 0.133661383 0.146316967 0.195443063 -PA0535 0.198457241 0.159402965 0.192375829 0.287477095 0.357810107 0.067787216 0.175594289 0.165899433 0.1417946 0.095467155 0.153568535 -PA0536 0.7490853 0.689301739 0.838863319 0.647409094 0.621985745 0.647920625 0.816168185 0.580304559 0.799447894 0.69817295 0.72901057 -PA0537 0.666947091 0.778095058 0.678142794 0.626000916 0.600135842 0.391522313 0.449985103 0.436031293 0.477468094 0.494669117 0.352512664 -PA0538 0.415504921 0.364074852 0.412596373 0.198967428 0.24151289 0.06543325 0.154057382 0.230223376 0.277938515 0.150268863 0.307652458 -PA0539 0.193157372 0.141974356 0.142222904 0.247511829 0.191846875 0.28361079 0.286040813 0.418620859 0.400313105 0.319648362 0.394406928 -PA0540 0.147524711 0.092068084 0.244754406 0.377251665 0.35178204 0.213850096 0.285333229 0.292383217 0.259445209 0.167725603 0.210336311 -PA0541 0.677393907 0.477611965 0.6253824 0.480067362 0.446655307 0.50934738 0.466539705 0.507814334 0.507090329 0.417424324 0.406956709 -PA0542 0.742305861 0.818482539 0.718057784 0.438514664 0.464409727 0.367835212 0.307804583 0.443622305 0.411036743 0.401318611 0.332468937 -PA0543 0.153840682 0.183561083 0.082084345 0.622260921 0.642005558 0.221864454 0.129586721 0.229982819 0.084195845 0.205412533 0.098353361 -PA0544 0.345096007 0.407792325 0.30490632 0.338077795 0.312993889 0.3035779 0.346061088 0.34200936 0.383655011 0.237965658 0.323116314 -PA0545 0.146366374 0.410744452 0.100271005 0.291230789 0.223092392 0.257093711 0.393001354 0.264116209 0.222331705 0.257115728 0.260768165 -PA0546 0.597680595 0.428900931 0.74718531 0.530545852 0.640778286 0.458763331 0.615053895 0.317836961 0.662627477 0.457363252 0.552363786 -PA0547 0.399019218 0.09450367 0.381000394 0.275727823 0.409530421 0.283078342 0.497603236 0.161358796 0.515424984 0.293680726 0.487541541 -PA0548 0.928411436 0.715569392 0.772462624 0.466905499 0.535720381 0.38235894 0.531581699 0.239416594 0.573302644 0.351721491 0.433591887 -PA0549 0.720514475 0.511003902 0.471784823 0.381771943 0.317656256 0.403235037 0.602661064 0.28776939 0.591542018 0.394632218 0.511119815 -PA0550 0.595574161 0.320224309 0.658998467 0.407151214 0.399261467 0.531353801 0.687497809 0.27524096 0.707060458 0.53653604 0.606415316 -PA0551 0.920432228 0.621470383 0.758012313 0.19156169 0.323586059 0.522946995 0.501271737 0.567024823 0.48833223 0.442319316 0.500778526 -PA0552 0.890246698 0.707117446 0.796660979 0.299383711 0.289074317 0.534983873 0.464740338 0.333591819 0.520408534 0.460337549 0.429601214 -PA0553 0.571333811 0.370650894 0.392034796 0.606120495 0.594799356 0.332307099 0.403122098 0.314690466 0.382781962 0.315283188 0.403198275 -PA0554 0.760427061 0.576328768 0.602332557 0.712328134 0.75024109 0.232447531 0.350768815 0.216757639 0.40985531 0.269363974 0.455672641 -PA0555 0.88689727 0.764843399 0.88844793 0.839707626 0.826560737 0.4606039 0.552994239 0.482436092 0.632897132 0.512808613 0.618641156 -PA0556 1 0.453535064 0.536120834 0.316237624 0.366670188 0.444957962 0.293123742 0.421726497 0.445214276 0.52778001 0.438723311 -PA0557 0.150487767 0.247189861 0.292427715 0.476736285 0.567885825 0.35379266 0.280610235 0.394897827 0.378085998 0.406187817 0.431453719 -PA0558 0.293753107 0.568252431 0.388387669 0.408611788 0.461989243 0.44074349 0.429673697 0.414151517 0.316258059 0.424675123 0.401549127 -PA0559 0.765695956 0.382242747 0.744172974 0.349961502 0.309069632 0.382011286 0.357317091 0.268903888 0.359127623 0.265518001 0.303913874 -PA0560 0.473911532 0.428785985 0.367520301 0.112220404 0.140635973 0.674433821 0.862519767 0.572788421 0.692060878 0.640888344 0.892385712 -PA0561 0.444069914 0.365494806 0.280614726 0.210014658 0.199101451 0.233104856 0.365642392 0.360773499 0.21403201 0.242192854 0.332032926 -PA0562 0.776080551 0.771243399 0.765611729 0.592160589 0.596699387 0.518971772 0.590085125 0.45021362 0.608110963 0.405101688 0.560233589 -PA0563 0.653142973 0.656686327 0.488451665 0.611915582 0.559650138 0.478790169 0.631054045 0.433688408 0.646165782 0.386047792 0.641273959 -PA0564 0.32278018 0.296627612 0.423987839 0.133198198 0.133068594 0.133668115 0.085162086 0.017166481 0.118493829 0.017033352 0.110586075 -PA0565 0.171546238 0.1423039 0.196663588 0.501086865 0.555648967 0.227606745 0.170524446 0.24346581 0.213045971 0.204140167 0.17330062 -PA0566 0.302571761 0.347252248 0.362681277 0.522061888 0.54748148 0 0.053711264 0.169070187 0.103738826 0.094480036 0.170133211 -PA0567 0.185672661 0.323692621 0.302167154 0.488199323 0.558345325 0.782493955 0.447910449 0.786485037 0.452611665 0.794948269 0.438914107 -PA0568 0.497540772 0.489131556 0.440167923 0.504811354 0.462543548 0.386771316 0.279756023 0.327134109 0.293746759 0.36208435 0.308822719 -PA0569 0.487037608 0.379787856 0.408779209 0.234747947 0.266125241 0.108148463 0.181501195 0.277808535 0.309270706 0.272800164 0.230938913 -PA0570 0.699297648 0.756521551 0.627529258 0.446255341 0.489661429 0.305278171 0.33629582 0.263235183 0.194057899 0.317152414 0.244392855 -PA0571 0.470454385 0.619407016 0.357292054 0.390257994 0.487356181 0.500196109 0.528053795 0.356004851 0.341442126 0.228113439 0.458157576 -PA0572 0.262306314 0.160934753 0.615549649 0.620739356 0.642996984 0.268033243 0.135416852 0.304547783 0.071149 0.255318571 0.19310902 -PA0573 0.344726925 0.230577583 0.254553099 0.308561168 0.273395332 0.612930778 0.668087289 0.547052416 0.568726564 0.436554575 0.484794331 -PA0574 0.629371106 0.523058044 0.644115873 0.272055281 0.318608236 0.331848089 0.323589417 0.355915043 0.280495427 0.298629653 0.287842531 -PA0575 0.297350089 0.249820056 0.263838289 0.524107354 0.478738984 0.545892639 0.213038706 0.778199571 0.348574634 0.581133767 0.284719941 -PA0576 0.872728012 0.820281162 0.903780041 0.565585728 0.575390127 0.628111157 0.854565376 0.616817891 0.882854261 0.668659312 0.854404966 -PA0577 0.906982128 0.646333682 0.860231267 0.461495618 0.492398597 0.390958872 0.516782462 0.353677648 0.577568026 0.441557159 0.516240159 -PA0578 0.884327404 0.56551995 0.775651086 0.075565732 0.04690125 0.427859867 0.855275143 0.344580352 0.835412992 0.408641022 0.889646791 -PA0579 0.950911741 0.877929668 0.93805308 0.446529257 0.468057767 0.501815646 0.866340328 0.428382363 0.820621081 0.534278073 0.808283436 -PA0580 0.88387559 0.392235609 0.543768748 0.228106974 0.208028232 0.361383415 0.660012612 0.402258242 0.55718989 0.419463022 0.627834876 -PA0581 0.369718891 0.30049659 0.310958008 0.484595185 0.489460771 0.170873607 0.23158663 0.180616089 0.268962795 0.275682234 0.203999671 -PA0582 0.650228031 0.377376349 0.51800697 0.713495832 0.648622465 0.244925732 0.422686184 0.29726218 0.363081347 0.346010535 0.374662957 -PA0583 0.632395186 0.293091417 0.45006061 0.506872346 0.466756508 0.219738839 0.36657142 0.273111312 0.182939993 0.265122538 0.121409371 -PA0584 0.531018253 0.440124463 0.494512032 0.62877814 0.568145555 0.238424048 0.262955077 0.123369148 0.298993545 0.145883702 0.303832019 -PA0585 0.177117052 0.078086036 0.137097475 0.478379926 0.491106384 0.223585852 0.224408087 0.249363256 0.195168818 0.295556076 0.169598298 -PA0586 0.028572594 0.190311405 0.462779795 0.875722763 0.898016674 0.692593724 0.428312256 0.76039751 0.480251968 0.707926188 0.4828837 -PA0587 0.102107418 0.228851087 0.353833709 0.903347882 0.910615805 0.49967103 0.176723537 0.60352424 0.207273042 0.476529564 0.232104603 -PA0588 0.102915624 0.348746242 0.512764848 0.915967417 0.905507633 0.624662043 0.318616314 0.712876136 0.375631716 0.579911808 0.340879304 -PA0589 0.55880011 0.574265877 0.587690008 0.405230528 0.455331357 0.670352791 0.492358127 0.589852681 0.546003587 0.566344347 0.638236523 -PA0590 0.656090828 0.793958923 0.664319361 0.692778151 0.773060279 0.500018748 0.496305321 0.479945539 0.509177378 0.464203081 0.506120806 -PA0591 0.80761685 0.809261673 0.655048381 0.971351552 1 0.42409514 0.438684405 0.383958337 0.399951583 0.252410847 0.293356689 -PA0592 0.896050655 0.667590892 0.775382381 0.378575535 0.407924345 0.391300128 0.401701123 0.297709142 0.401350997 0.379384599 0.444496591 -PA0593 0.746026085 0.653618038 0.799569721 0.301764537 0.286710335 0.74261135 0.857650756 0.636869867 0.818728755 0.764440328 0.940364147 -PA0594 0.880104349 0.887748209 0.860956968 0.287613731 0.320720358 0.70641779 0.723225002 0.516192015 0.750734939 0.740507375 0.700856664 -PA0595 0.932720514 0.885407938 0.867584503 0.350600751 0.396405519 0.631210831 0.75844268 0.519493667 0.740293301 0.615334388 0.747559001 -PA0596 0.621066243 0.893096945 0.541741868 0.570071202 0.584558685 0.335087069 0.370580701 0.384267947 0.290970281 0.395728516 0.29114917 -PA0597 0.520050153 0.590429565 0.37236908 0.346495696 0.402376093 0.196814718 0.399461997 0.170413563 0.238811747 0.211765489 0.175396394 -PA0598 0.348489006 0.289279964 0.266641866 0.471123718 0.454801657 0.471960153 0.249249131 0.389555246 0.437568261 0.312424686 0.347537991 -PA0599 0.486101297 0.629784496 0.612059503 0.650453708 0.639303413 0.479975228 0.669061534 0.517515226 0.588203483 0.633933469 0.532739339 -PA0600 0.419544408 0.142689169 0.476883299 0.301507645 0.319638728 0.395775198 0.344996247 0.238745836 0.401497378 0.371497656 0.378655151 -PA0601 0.254256072 0.403895688 0.619462673 0.865932574 0.727244208 0.675650361 0.633048481 0.660634092 0.569500628 0.625176521 0.644859479 -PA0602 0.390410435 0.199931532 0.432478456 0.412427973 0.389134138 0.367402418 0.267091476 0.312531118 0.270878234 0.225672614 0.283668209 -PA0603 0.336487099 0.156017186 0.337473499 0.300726237 0.346587961 0.218519247 0.247563055 0.143307741 0.160762348 0.200327982 0.258478473 -PA0604 0.247278884 0.135947518 0.312492069 0.271048205 0.305685017 0.226464905 0.289128431 0.198630338 0.270801034 0.235517112 0.138801657 -PA0605 0.274971507 0.192109852 0.367815659 0.250474234 0.188516102 0.194554865 0.209527013 0.150291515 0.165466884 0.136748538 0.188713663 -PA0606 0.173286108 0.149210246 0.258060127 0.146451878 0.142688594 0.124043978 0.20024667 0.182618978 0.206269843 0.075218417 0.177043827 -PA0607 0.679243174 0.55231182 0.671775478 0.315419239 0.316860085 0.295306958 0.47020111 0.261666675 0.422230903 0.408726194 0.482518424 -PA0608 0.75019197 0.645690237 0.503533125 0.242286888 0.167388052 0.525278541 0.732667082 0.561185695 0.716781632 0.516509897 0.71936564 -PA0609 0.413218981 0.386130396 0.539464273 0.2291504 0.268240651 0.57086723 0.681257498 0.215792252 0.669467081 0.478391023 0.576195039 -PA0610 0.37399155 0.406860603 0.300052697 0.547607979 0.4937917 0.31479451 0.607182758 0.33434648 0.503786561 0.333441684 0.446596926 -PA0611 0.486040977 0.446749009 0.47957336 0.220001044 0.318620516 0.395961573 0.628519795 0.319313299 0.571084637 0.406759068 0.574647346 -PA0612 0.554678097 0.360192132 0.479970017 0.438752153 0.39362719 0.340858363 0.44988328 0.293362759 0.507624946 0.349950318 0.441741399 -PA0613 0.522380048 0.301682916 0.485464823 0.351228478 0.343832391 0.121540129 0.424245176 0.234605769 0.455702999 0.349131806 0.420093123 -PA0614 0.3954372 0.23998739 0.180407038 0.211013833 0.206092923 0.165359202 0.506542073 0.220310874 0.487513071 0.193041695 0.456601253 -PA0615 0.39138737 0.280410055 0.243401778 0.36285428 0.385276421 0.145898943 0.132494657 0.172891174 0.156262666 0.154383065 0.168457758 -PA0616 0.504074403 0.359757677 0.327698258 0.327584017 0.316816699 0.15842951 0.120521356 0.126363834 0.195970718 0.158867504 0.134004017 -PA0617 0.396066504 0.288554265 0.24569253 0.285626476 0.246125617 0.189273954 0.108138111 0.193785895 0.129568812 0.133416062 0.162874076 -PA0618 0.428009242 0.329545547 0.33287426 0.295403395 0.269807099 0.269273531 0.285260417 0.220298149 0.125560686 0.155952548 0.225015372 -PA0619 0.457009543 0.403053653 0.401830113 0.353918513 0.327921088 0.11221713 0.096242377 0.137300843 0.094980684 0.151735036 0.150254775 -PA0620 0.468073618 0.330667849 0.376616836 0.287765128 0.284169323 0.165436087 0.10093547 0.11420725 0.138004229 0.158933285 0.097273702 -PA0621 0.499236018 0.493421029 0.506793402 0.445262572 0.433537277 0.130262788 0.102745967 0.092325553 0.081039715 0.042263734 0.157021495 -PA0622 0.571212799 0.497631164 0.436553195 0.471956143 0.448214549 0.129333713 0.115403156 0.151105042 0.12094783 0.139477584 0.175325535 -PA0623 0.552053564 0.438099882 0.434030541 0.397106843 0.403567015 0.188358929 0.209522461 0.197632534 0.136783302 0.156219055 0.205632358 -PA0624 0.519106179 0.342066292 0.398649969 0.454237889 0.407052757 0.242790491 0.23475154 0.254751273 0.270734968 0.141842951 0.243589829 -PA0625 0.421398608 0.275075056 0.286747307 0.271129868 0.280438655 0.152826556 0.200704547 0.191059297 0.199377674 0.093477099 0.174992985 -PA0626 0.440571377 0.2311753 0.321665789 0.297225912 0.265530445 0.111655809 0.042509601 0.104139746 0.119857928 0.122719543 0.093947424 -PA0627 0.510554961 0.261957381 0.448304804 0.423614262 0.387118165 0.147853424 0.188224515 0.189415384 0.173766305 0.156476456 0.158421621 -PA0628 0.439568703 0.248772717 0.328593977 0.298989234 0.275623589 0.231253217 0.185822257 0.222228226 0.247501104 0.130132723 0.227319566 -PA0629 0.364059062 0.122631599 0.159274612 0.238380344 0.211699409 0.055356399 0.286743755 0.160755347 0.187928704 0.059000049 0.262156997 -PA0630 0.139178363 0.17905759 0.070887651 0.117024101 0.043389879 0.157049897 0.241065391 0.15173436 0.205105148 0.15884888 0.264913373 -PA0631 0.39942702 0.130416347 0.2420492 0.247473227 0.217750224 0.188231708 0.405771217 0.275953745 0.470999435 0.191035834 0.388370015 -PA0632 0.41251861 0.184219131 0.239711897 0.281235043 0.253678485 0.274547257 0.75206987 0.349479302 0.613492196 0.319873726 0.686354898 -PA0633 0.557968882 0.459051658 0.428158673 0.381775444 0.341968722 0.500938522 0.67440598 0.518684085 0.668484033 0.449293344 0.616609237 -PA0634 0.513796849 0.315841548 0.33214967 0.352580738 0.330168739 0.180562946 0.504515983 0.164474867 0.458210856 0.148867565 0.459838091 -PA0635 0.41286024 0.275069953 0.296483009 0.286827801 0.265763569 0.35594202 0.56605064 0.299172043 0.519282403 0.317516288 0.508898862 -PA0636 0.548244589 0.304138828 0.404840168 0.33944992 0.303747338 0.3683967 0.551645884 0.275959478 0.598960642 0.315388164 0.5081688 -PA0637 0.472197982 0.250417819 0.290924974 0.295704027 0.279307536 0.309094389 0.582346957 0.300825686 0.643946507 0.337822849 0.505613123 -PA0638 0.468710276 0.296934829 0.30503838 0.302872072 0.237949226 0.260239686 0.389730556 0.260428061 0.431372593 0.249687376 0.400548644 -PA0639 0.457652626 0.249093218 0.313614672 0.281290195 0.228906505 0.335557272 0.525440245 0.361029392 0.641820404 0.355205595 0.513450399 -PA0640 0.327528848 0.213594792 0.285886791 0.254556087 0.194660288 0.300505457 0.719933596 0.498467175 0.666526814 0.355923978 0.648292365 -PA0641 0.405335115 0.319340323 0.322498144 0.27089673 0.289056402 0.313618462 0.48884233 0.321564 0.514859577 0.316362737 0.408056646 -PA0642 0.118311867 0.132726576 0.095603369 0.12918964 0.083727026 0.182023051 0.159878249 0.127274394 0.130596865 0.121744736 0.18519308 -PA0643 0.179722367 0.235491606 0.131906344 0.150314873 0.177363804 0.210228515 0.15237786 0.24740649 0.212703928 0.150521329 0.188041441 -PA0644 0.039494925 0.169465095 0.049034396 0.02850035 0.040895638 0.051380781 0.052194458 0.085116683 0.049486458 0.11506922 0.092543253 -PA0645 0.158817149 0.231607802 0.108194663 0.193936378 0.126087811 0.136918895 0.161687804 0.208097121 0.217911377 0.144342576 0.203625639 -PA0646 0.274732275 0.253890373 0.220454764 0.255161554 0.204659373 0.180358265 0.192439339 0.155284052 0.15323545 0.258616138 0.221954417 -PA0647 0.347037792 0.204005653 0.413274813 0.357200912 0.411918396 0.052891854 0.083818729 0.096495579 0.092892401 0.060481702 0.196259601 -PA0648 0.529097369 0.329970698 0.587724992 0.548371931 0.51510443 0.136337861 0.128715631 0.253161017 0.124535194 0.124818335 0.143764998 -PA0649 0.559262592 0.668823259 0.507302308 0.520650647 0.497678934 0.388717335 0.386183279 0.331535068 0.371751665 0.413542436 0.396724265 -PA0650 0.616451247 0.565288033 0.59084326 0.712901022 0.686586584 0.38738224 0.461523587 0.437277225 0.430847327 0.43264265 0.435353836 -PA0651 0.600552937 0.597972809 0.537320337 0.45534605 0.40980255 0.398221211 0.674037256 0.369825355 0.635282047 0.51104637 0.624156422 -PA0652 0.827182163 0.828761287 0.881066327 0.695927283 0.722640735 0.654575873 0.715594588 0.614295621 0.709828985 0.586337229 0.722092799 -PA0653 0.331743214 0.285956792 0.232164926 0.113759939 0.090695626 0.466786726 0.531506153 0.451169874 0.510014392 0.461280825 0.519617822 -PA0654 0.812599065 0.502885322 0.788853532 0.352061875 0.324691987 0.402589803 0.618962688 0.426776078 0.565426944 0.443433041 0.628229432 -PA0655 0.50277319 0.568262031 0.530366051 0.744285034 0.755861845 0.482311931 0.491568618 0.549938385 0.523394847 0.554291077 0.521426316 -PA0656 0.26431623 0.394015256 0.370152689 1 0.974126697 0.696542811 0.433773657 0.732005275 0.402971314 0.643526769 0.403527355 -PA0657 0.551409625 0.5968294 0.718397231 0.802545937 0.759877696 0.420682972 0.530952548 0.280605209 0.600314048 0.545329506 0.53540998 -PA0658 0.589567139 0.593766947 0.547791146 0.34511934 0.293580273 0.565424182 0.4883115 0.332570772 0.554884432 0.47941241 0.356311812 -PA0659 0.742049084 0.815884631 0.740879894 0.503591896 0.496834518 0.583446183 0.628014589 0.444190526 0.684912817 0.62440795 0.633969771 -PA0660 0.39803296 0.326469649 0.4099301 0.340573015 0.413065731 0.239543482 0.113062312 0.243981004 0.250612312 0.246806613 0.23736759 -PA0661 0.74792342 0.839024455 0.783749708 0.689831651 0.733852958 0.752733013 0.762725659 0.665924405 0.861859272 0.749432939 0.827377154 -PA0662 0.79701684 0.422749714 0.590021217 0.45582801 0.470002904 0.698344766 0.809763302 0.657340289 0.779495125 0.659859764 0.831102252 -PA0663 0.715727911 0.330817325 0.779249539 0.391072509 0.395433504 0.952242213 0.932415288 0.707528873 0.811455392 0.944310862 0.845606004 -PA0664 0.770323678 0.648011008 0.809979095 0.511385113 0.562921306 0.763225742 0.82231253 0.720746405 0.849635513 0.792794929 0.735664879 -PA0665 0.510872549 0.475842476 0.39033054 0.526251177 0.53113333 0.717456389 0.79247686 0.723888974 0.846509244 0.762333751 0.759014907 -PA0666 0.575872899 0.308632864 0.78147458 0.245418746 0.299456897 0.328707258 0.468948443 0.241965052 0.448304244 0.283472577 0.351839404 -PA0667 0.726525659 0.700263509 0.933477802 0.751710099 0.729029482 0.649540657 0.679335066 0.61505117 0.740235662 0.727526315 0.649784164 -PA0668 0.620972182 0.525130383 0.586562122 0.405056156 0.448792333 0.706356415 0.919641875 0.733019836 0.922085074 0.782184729 0.875216186 -PA0669 0.291809068 0.27023708 0.227528322 0.399050454 0.295877209 0.450807893 0.422587226 0.505075972 0.396996852 0.428443025 0.307693869 -PA0670 0.376276445 0.267112138 0.287563213 0.302006197 0.312600745 0.37857009 0.377084957 0.423381638 0.39701214 0.259360347 0.472733144 -PA0671 0.256816138 0.207097605 0.231518593 0.19321076 0.227302732 0.284712112 0.371206456 0.339202456 0.487201244 0.337827983 0.369720425 -PA0672 0.234369167 0.136348071 0.260987171 0.14802402 0.142814783 0.222180912 0.19728855 0.191176103 0.25511058 0.251171912 0.223870252 -PA0673 0.175803206 0.270180325 0.258659832 0.455859685 0.541604312 0.208791648 0.209902026 0.116213062 0.236849272 0.172406142 0.237121595 -PA0674 0.142139834 0.178589635 0.150791463 0.172438538 0.171162221 0.167657252 0.181455637 0.152714696 0.229363816 0.114993785 0.216782553 -PA0675 0.142944931 0.124612034 0.099371865 0.11946028 0.106268179 0.136687748 0.142877381 0.184759861 0.127308569 0.138369338 0.201229167 -PA0676 0.117193931 0.073114306 0.086506276 0.111552021 0.123255007 0.073994551 0.065310713 0.140492415 0.126436339 0.088262731 0.150314717 -PA0677 0.153119068 0.163868097 0.106200879 0.235362211 0.200765963 0.187363595 0.21811328 0.235475853 0.125927467 0.138545534 0.140383288 -PA0678 0.197645218 0.149202137 0.122282608 0.180446824 0.17472722 0.157113522 0.149633398 0.201902354 0.189044458 0.128763344 0.091771549 -PA0679 0.148746204 0.120711729 0.053408138 0.209452337 0.213606044 0.203672804 0.195643854 0.297032079 0.06885599 0.354594156 0.290963217 -PA0680 0.137781902 0.110500959 0.105414248 0.21261187 0.146803515 0.158534951 0.119423971 0.171122992 0.181229604 0.149703838 0.140485829 -PA0681 0.134617222 0.141100912 0.107051242 0.232946591 0.234715365 0.207189103 0.137177312 0.101690487 0.105678778 0.265531915 0.158431512 -PA0682 0.201656607 0.231210161 0.143389715 0.179997988 0.243697899 0.273646775 0.141827171 0.258768032 0.191268796 0.294311303 0.301671295 -PA0683 0.131977337 0.133395625 0.093148906 0.161509767 0.140267899 0.142281202 0.212854613 0.065089788 0.103964687 0.119339226 0.163580575 -PA0684 0.221766809 0.25860101 0.227110373 0.274088873 0.237589818 0.341683844 0.318087017 0.387569404 0.20814939 0.278068807 0.379895163 -PA0685 0.096518418 0.11121058 0.122794693 0.167615152 0.152029546 0.148598341 0.17371406 0.208638714 0.225200832 0.1387521 0.166453253 -PA0686 0.180749633 0.163065128 0.199371303 0.227612737 0.268090872 0.19889019 0.225500096 0.185429893 0.269010225 0.228430194 0.265617506 -PA0687 0.306141373 0.370789455 0.279443201 0.384727914 0.371179061 0.25792677 0.351617414 0.475420572 0.259808575 0.210651714 0.373926916 -PA0688 0.064317119 0.086314882 0.03730601 0.039351211 0.052148749 0.166519709 0.118026562 0.182439334 0.213835241 0.150899702 0.177787188 -PA0689 0.2103764 0.271177032 0.081268234 0.127995816 0.116354396 0.499080328 0.533520612 0.407185995 0.493959601 0.620008776 0.49594297 -PA0690 0.162236858 0.104062192 0.105817672 0.134063925 0.117443479 0.140615706 0.237128704 0.18048188 0.145760377 0.154188283 0.125390109 -PA0691 0.090075291 0.067194591 0.059675887 0.078805166 0.064371052 0.183023463 0.129308193 0.220194989 0.083500749 0.195651886 0.093352073 -PA0692 0.140492238 0.124012697 0.132710079 0.154502558 0.159334943 0.187822186 0.141175269 0.159144693 0.15923253 0.137658558 0.169922407 -PA0693 0.154093265 0.121667867 0.085523419 0.163490412 0.176881264 0.206921306 0.19255929 0.201750459 0.21792427 0.206679135 0.218012245 -PA0694 0.208164244 0.192929238 0.209958449 0.143849916 0.195744572 0.233125642 0.180510629 0.159436039 0.190683401 0.174506049 0.206633398 -PA0695 0.243496272 0.232027843 0.223097339 0.207842708 0.257357976 0.295107727 0.190891113 0.235326063 0.241437149 0.286962306 0.235399997 -PA0696 0.128477743 0.086338137 0.136868928 0.124506302 0.125763012 0.24284483 0.199275412 0.217880619 0.204669464 0.130578098 0.252213815 -PA0697 0.148621174 0.17447942 0.160971456 0.154786133 0.130152483 0.135106221 0.129623809 0.086357431 0.105665119 0.110399934 0.076296574 -PA0698 0.146597422 0.075041952 0.112872577 0.12414287 0.121067901 0.062475865 0.100668069 0.077831901 0.082821309 0.162638402 0.068375647 -PA0699 0.170418367 0.167230356 0.176558377 0.156654897 0.16226951 0.188977092 0.100032545 0.13519629 0.143700377 0.100511977 0.146203071 -PA0700 0.207376396 0.154678648 0.198536869 0.316012925 0.320632805 0.32830343 0.234738795 0.256172696 0.221490764 0.238430136 0.261894543 -PA0701 0.221520939 0.232559306 0.219537067 0.277070343 0.225461482 0.229414457 0.192439412 0.284282768 0.22308732 0.219455664 0.202037572 -PA0702 0.241806359 0.164274643 0.253965821 0.222240312 0.244381468 0.378275896 0.515484965 0.338634307 0.422708606 0.347698619 0.376969449 -PA0703 0.502851729 0.436588605 0.336196063 0.257176318 0.180752516 0.446603863 0.304980413 0.294996274 0.318787505 0.443374234 0.36935793 -PA0704 0.234594185 0.287295255 0.284990805 0.946952492 0.904929595 0.360369443 0.046912416 0.383139071 0.223475388 0.356450206 0.13753527 -PA0705 0.618357553 0.704719795 0.76734719 0.465108311 0.430602158 0.445826735 0.659701025 0.38458413 0.654435798 0.501010706 0.639360434 -PA0706 0.665924205 0.507841204 0.538936537 0.281301437 0.337143769 0.582067747 0.78232198 0.569452084 0.737682601 0.464927787 0.782472467 -PA0707 0.288590413 0.273470136 0.247692626 0.187249657 0.144480508 0.221470493 0.17680296 0.217567268 0.275504476 0.166745224 0.198110284 -PA0708 0.393953431 0.454221383 0.405518312 0.154580726 0.25027945 0.151048173 0.1312839 0.126154745 0.125613571 0.137807056 0.230101714 -PA0709 0.182960572 0.184482872 0.207839953 0.235294975 0.288969135 0.166390903 0.233731089 0.067762126 0.318595223 0.290942402 0.314022686 -PA0710 0.221459726 0.264918926 0.321210914 0.410927428 0.375534669 0.298677659 0.265263957 0.388903635 0.345209588 0.129849904 0.275868487 -PA0711 0.231672961 0.233018921 0.278988913 0.3054595 0.242470799 0.197348591 0.191781583 0.159708369 0.196474403 0.16383643 0.3604574 -PA0712 0.481535582 0.27666188 0.491930822 0.443217777 0.444305779 0.312294757 0.432257077 0.251627252 0.348726158 0.33953381 0.359766055 -PA0713 0.07091185 0.359701287 0.270443625 0.814271301 0.837424713 0.320349476 0.404446892 0.432195746 0.308841168 0.367860886 0.352396404 -PA0714 0.226390669 0.216608609 0.244628082 0.695411538 0.746934453 0.458664941 0.597904071 0.444135042 0.476214314 0.402099373 0.552999578 -PA0715 0.069845132 0.454797091 0.071935925 0.066309771 0.059915284 0.087733524 0.101124696 0.140779514 0.143061328 0.315548493 0.122654829 -PA0716 0.032181628 0.107440253 0.010808609 0.033927353 0.006550946 0.065595244 0.023677405 0.068838327 0.04530131 0.051755915 0.064842251 -PA0717 0.12587847 0.292323751 0.13362002 0.318364573 0.299793723 0.15009459 0.100961075 0.209758617 0.136731238 0.160014349 0.196774277 -PA0718 0.077657981 0.282268159 0.078667812 0.192981308 0.192614268 0.123326437 0.12237345 0.138575998 0.08337838 0.095991395 0.119427428 -PA0719 0.153154363 0.22707513 0.101780996 0.210003981 0.219281109 0.169252825 0.212572841 0.198520833 0.165749368 0.209772343 0.198950492 -PA0720 0.176683377 0.360054709 0.135447613 0.285541899 0.276042365 0.242750662 0.325787443 0.305343796 0.264650361 0.305175122 0.209497843 -PA0721 0.129844094 0.191403405 0.098267736 0.178516524 0.195438781 0.201736957 0.238032083 0.27105538 0.214279998 0.142258419 0.23675465 -PA0722 0.200839932 0.351516174 0.219895927 0.316224824 0.324499717 0.093742694 0.143166709 0.121275503 0.137473397 0.092507456 0.126762778 -PA0723 0.092002227 0.358566205 0.090798954 0.104683834 0.110774001 0.072146582 0.03943975 0.101722814 0.070653015 0.054511549 0.041821477 -PA0724 0.083968708 0.086852077 0.044479234 0.077920207 0.065213393 0.064478805 0.103592048 0.083426087 0.082338227 0.098425046 0.078747441 -PA0725 0.081821506 0.071412014 0.073977446 0.078732632 0.086199688 0.07173107 0.078767112 0.096987711 0.087280931 0.075527487 0.059139423 -PA0726 0.098021288 0.139546843 0.11177971 0.137914868 0.13068124 0.110953858 0.126256844 0.161138568 0.122436323 0.14480628 0.159260094 -PA0727 0.081834021 0.151408806 0.072328792 0.103388681 0.104320866 0.109904195 0.258868583 0.153981091 0.160733467 0.160675878 0.115031046 -PA0728 0.136996438 0.182816989 0.109969063 0.135857088 0.144637112 0.370056211 0.2356974 0.371741657 0.393628223 0.427056532 0.396921463 -PA0729 0.154617303 0.528530509 0.088886235 0.175891973 0.167415708 0.239159394 0.170728113 0.195939737 0.169858837 0.109723467 0.138191991 -PA0730 0.494719077 0.468015111 0.44283247 0.267554992 0.22288577 0.586749809 0.672754937 0.584269447 0.700699685 0.577608623 0.703940862 -PA0731 0.251058517 0.335628167 0.366384071 0.186753771 0.249733812 0.83233467 0.707894822 0.659734592 0.605223228 0.85454192 0.670078251 -PA0732 0.112289001 0.306058625 0.250390294 0.63412693 0.576104397 0.415083472 0.316790838 0.465479052 0.403455704 0.35991185 0.465655301 -PA0733 0.465818898 0.622606439 0.404397451 0.108597725 0.109218396 0.283827724 0.414610694 0.090130375 0.137359177 0.323277783 0.470359833 -PA0734 0.141878719 0.66440414 0.124856198 0.128546371 0.162132402 0.308405348 0.298161872 0.248049604 0.201813705 0.385076854 0.228704684 -PA0735 0.40052017 0.318115281 0.420796984 0.214998735 0.253395698 0.276623651 0.254559144 0.369446863 0.37794341 0.341628221 0.212286448 -PA0736 0.458674383 0.437729464 0.305939391 0.239813012 0.278783824 0.524173458 0.382836567 0.494782134 0.391717273 0.461308022 0.385164371 -PA0737 0.069715787 0.19019552 0.17955117 0.317206101 0.236209769 0.295689535 0.379226368 0.229540714 0.387167766 0.298978386 0.430186136 -PA0738 0.148791188 0.097462146 0.146815683 0.173138374 0.152040083 0.254404044 0.465559277 0.434161841 0.444682079 0.320994749 0.417486244 -PA0739 0.304896174 0.447285259 0.325128814 0.354539085 0.41137235 0 0.162564991 0.169588757 0.413949951 0.145901672 0.108906459 -PA0740 0.207935833 0.229731076 0.171901219 0.235127933 0.169808655 0.167695218 0.126390549 0.172652021 0.196045141 0.139483644 0.168051004 -PA0741 0.086988659 0.092991729 0.211051895 0.717433992 0.740047862 0.128152278 0.153843286 0.261821007 0.20985137 0.167142674 0.254058865 -PA0742 0.166554245 0.205464437 0.197567288 0.946906584 0.919839463 0.225127012 0.259628289 0.257229802 0.182399985 0.424374732 0.243491609 -PA0743 0.101397762 0.090130416 0.192457222 0.885867614 0.857864335 0.165781153 0.1861205 0.231721396 0.106237562 0.121755744 0.097665307 -PA0744 0.215486293 0.239549077 0.358150371 0.399833717 0.482076474 0.223992535 0.069069063 0.228667324 0.127643342 0.258034497 0.142311097 -PA0745 0.338539182 0.41638 0.560488454 0.602441282 0.632915575 0.567406886 0.261015649 0.462032482 0.332795857 0.597915547 0.29164027 -PA0746 0.179021224 0.232706033 0.354514137 0.504459154 0.51034248 0.248437396 0.298656618 0.296493964 0.344504342 0.324119557 0.253307519 -PA0747 0.171094558 0.293462506 0.231715747 0.536702973 0.621079667 0.385569256 0.333843594 0.510363144 0.364392815 0.378341969 0.260261005 -PA0748 0.31890963 0.30745752 0.132564199 0.3146743 0.168558877 0.170531872 0.246067445 0.441145503 0.267963936 0.312357998 0.346081764 -PA0749 0.534062077 0.387348261 0.290807515 0.324786446 0.25376749 0.416397892 0.246461464 0.294876478 0.146002813 0.395661815 0.323621542 -PA0750 0.585527848 0.465491033 0.886451836 0.421330054 0.456500879 0.267522166 0.418495133 0.288392533 0.471403316 0.295850188 0.48431733 -PA0751 0.097122517 0.057058199 0.119609911 0.120863799 0.144536603 0.35801861 0.395679892 0.206702482 0.315314121 0.269196816 0.285885879 -PA0752 0.120881464 0.153820367 0.077423644 0.252502477 0.223864162 0.264176721 0.337523541 0.267320905 0.308265342 0.197034365 0.305258761 -PA0753 0.183157932 0.103013265 0.156201105 0.227466445 0.280289548 0.328573058 0.362271176 0.219138045 0.260845039 0.233821501 0.300603482 -PA0754 0.170865212 0.105099067 0.173080285 0.35280115 0.394669659 0.317668308 0.403312276 0.332262815 0.420925252 0.335363247 0.379729179 -PA0755 0.225106899 0.22904385 0.198229809 0.335575205 0.327699806 0.668902552 0.627255335 0.563841366 0.611318797 0.647745119 0.599523671 -PA0756 0.630551448 0.464865936 0.659805955 0.402887475 0.376704738 0.507212083 0.646846089 0.435288356 0.624528884 0.437934324 0.581436628 -PA0757 0.502189547 0.371103113 0.51933609 0.123856562 0.169150708 0.20396343 0.327525319 0.307261271 0.392276653 0.298832677 0.363636042 -PA0758 0.590326534 0.622679842 0.983981678 0.333298081 0.331212632 0.360202604 0.390754487 0.330480004 0.367342984 0.408180849 0.416680785 -PA0759 0.684210991 0.673428357 0.757530858 0.795292096 0.720635906 0.426575016 0.413183591 0.403456111 0.376798506 0.284088692 0.33402644 -PA0760 0.553525459 0.371543076 0.576133791 0.519229492 0.500915205 0.51107455 0.697236272 0.199319262 0.659917746 0.382968888 0.62317778 -PA0761 0.58598937 0.602705442 0.638740665 0.624192496 0.641168607 0.563409331 0.655065489 0.648423941 0.517336181 0.587721263 0.641879801 -PA0762 0.518383479 0.71190526 0.551754009 0.607476999 0.68337503 0.772322593 0.817378407 0.845710837 0.811572248 0.818475041 0.813692203 -PA0763 0.490793585 0.680990015 0.475409462 0.707124515 0.730698021 0.588163256 0.657175532 0.667701898 0.632176104 0.617739161 0.657104973 -PA0764 0.519578004 0.661008724 0.531272666 0.643123384 0.702191621 0.607915681 0.627780294 0.647648316 0.660947129 0.659094494 0.669357895 -PA0765 0.6542932 0.603807054 0.840334905 0.575415603 0.642930917 0.9020267 0.971853997 0.910442735 1 0.920426 0.983710914 -PA0766 0.724500676 0.695852588 0.907119731 0.322537052 0.320166538 0.730195616 0.7837952 0.664313199 0.818729166 0.735831198 0.757686213 -PA0767 0.921702252 0.62301422 0.871653768 0.191973655 0.176236728 0.395477672 0.561874587 0.497679538 0.710291856 0.382688727 0.572092739 -PA0768 0.836909236 0.675811205 0.806957549 0.638650542 0.606255849 0.517675162 0.574435083 0.377704174 0.537001125 0.507285844 0.535193839 -PA0769 0.618326997 0.465908527 0.60285985 0.737182292 0.726643336 0.7539808 0.674188995 0.81037842 0.671288493 0.768608643 0.734757673 -PA0770 0.97328511 0.719718859 0.822519426 0.908021234 0.870399503 0.525688653 0.556525481 0.529051463 0.487293598 0.581859544 0.578138223 -PA0771 0.936145685 0.72527203 0.920807006 0.853373355 0.849534816 0.54761875 0.686277459 0.670374404 0.669873658 0.597690421 0.571970318 -PA0772 0.560989096 0.379253645 0.373181835 0.345241617 0.364804709 0.36246005 0.300868747 0.309873185 0.442436156 0.296088946 0.358424189 -PA0773 0.718065348 0.581068825 0.634268447 0.559645122 0.578107821 0.233050926 0.390986689 0.146016894 0.349739914 0.19930646 0.300936969 -PA0774 0.502074132 0.253359875 0.294650389 0.101085829 0.128328731 0.142023751 0.21291168 0.139917197 0.150516137 0.198765522 0.175416028 -PA0775 0.791706261 0.444523525 0.819945208 0.319721172 0.281958205 0.152710323 0.259067818 0.203065157 0.245489279 0.211975655 0.264557947 -PA0776 0.143366987 0.087585701 0.109347344 0.869577602 0.879372278 0.213877922 0.380146051 0.216466153 0.077661826 0.197348592 0.27801376 -PA0777 0.407707437 0.625004274 0.235223498 0.159765887 0.185314348 0.402502313 0.410914827 0.448992837 0.358472931 0.292712475 0.341746368 -PA0778 0.653139846 0.626227168 0.643062832 0.119248037 0.098835331 0.240927645 0.292553853 0.11941105 0.213461419 0.120320146 0.084950119 -PA0779 0.344414121 0.665261421 0.688149526 0.243843766 0.203044556 0.361997346 0.167905263 0.318076428 0.179230998 0.324991954 0.243960026 -PA0780 0.379248407 0.480694838 1 0.467165185 0.462665271 0.424962075 0.442723533 0.285314303 0.339404705 0.351431453 0.342397178 -PA0781 0.255353842 0.20430918 0.875477096 0.564888424 0.588075462 0.150425069 0.08124992 0.079614721 0.126203207 0.088098264 0.132565847 -PA0782 0.914915526 0.667196675 0.387840394 0.618821559 0.59476239 0.611253777 0.566291869 0.397936971 0.534820919 0.485470022 0.521253892 -PA0783 0.85061877 0.550272698 0.484474354 0.275972794 0.320074517 0.376895091 0.428859769 0.269105957 0.479200566 0.367848391 0.49830354 -PA0784 0.208709297 0.495805938 0.209511439 0.357341008 0.379431405 0.198265971 0.138251442 0.105491635 0.151326002 0.19859096 0.2313444 -PA0785 0.151324335 0.180464361 0.116336383 0.062637072 0.08777562 0.039135391 0.263208936 0.135909631 0.184719432 0.172812801 0.294843025 -PA0786 0.145120686 0.169542575 0.093657439 0.201988226 0.167185352 0.185992787 0.307496756 0.438338767 0.303943394 0.288245275 0.381831249 -PA0787 0.279414517 0.351658771 0.283348521 0.337529014 0.325292174 0.27633345 0.145942298 0.301082104 0.18134744 0.191423095 0.276282165 -PA0788 0.191892643 0.257655094 0.199513756 0.761672326 0.749278265 0.427214985 0.135662719 0.592844926 0.233483658 0.366424738 0.211281025 -PA0789 0.697973373 0.472792263 0.358778804 0.132183226 0.029374622 0.073196199 0.267843749 0.169846388 0.212575121 0.306595586 0.188486696 -PA0790 0.335240361 0.244985932 0.230896801 0.364850517 0.296589989 0.366724311 0.452370303 0.671929541 0.602421833 0.382233257 0.357172191 -PA0791 0.29836512 0.297949497 0.449952039 0.4967361 0.470798473 0.301911696 0.356109117 0.214433424 0.342870306 0.083440685 0.300310351 -PA0792 0.224943807 0.234310154 0.397894952 0.555329708 0.563963046 0.224210135 0.172464095 0.154409399 0.205035559 0.240593268 0.216897861 -PA0793 0.385751659 0.34067463 0.508385762 0.223419353 0.232724308 0.306450928 0.27062567 0.282042834 0.280666694 0.242814999 0.219484821 -PA0794 0.464216942 0.355165343 0.476208356 0.305853113 0.257433825 0.325859843 0.26789513 0.300058945 0.258372961 0.292315595 0.271488584 -PA0795 0.550729066 0.400979624 0.668696396 0.49817729 0.47284649 0.358016922 0.339360472 0.239866415 0.332416911 0.311878731 0.32963064 -PA0796 0.495814359 0.414398403 0.526203558 0.30021832 0.237209212 0.411816841 0.409915873 0.354317876 0.407438359 0.388504757 0.465593717 -PA0797 0.455161178 0.270552981 0.418658094 0.314947056 0.188590655 0.294720726 0.335605761 0.362480861 0.325773279 0.290358347 0.341908576 -PA0798 0.125187573 0.107419388 0.135189784 0.657403957 0.581722377 0.385965755 0.19449861 0.330396937 0.246774319 0.278670081 0.284096423 -PA0799 0.671673774 0.455988111 0.753113495 0.268707967 0.21792424 0.321497658 0.289533875 0.19899798 0.25740636 0.257531602 0.312831139 -PA0800 0.527313126 0.22865352 0.497440785 0.09771419 0.068927596 0.247508306 0.204606529 0.299845409 0.280215322 0.312100187 0.388735654 -PA0801 0.62850292 0.300428198 0.703957596 0.335028045 0.3330063 0.315747502 0.308225206 0.32212498 0.367107699 0.231640322 0.334295989 -PA0802 0.409662992 0.06211759 0.461654112 0.089854006 0.067285508 0.266653823 0.414084382 0.136244559 0.474699578 0.29545671 0.333934582 -PA0803 0.255688679 0.14720299 0.353210077 0.839175415 0.745226632 0.395366132 0.389714009 0.33804038 0.290105176 0.249696974 0.469060697 -PA0804 0.2149158 0.265666929 0.382214534 0.802816673 0.805712506 0.283508529 0.299999961 0.333984259 0.3783184 0.228777577 0.306419965 -PA0805 0.372162197 0.551636481 0.467783121 0.714929849 0.718470117 0.770044308 0.795371681 0.796560613 0.776492826 0.813360806 0.755737924 -PA0806 0.203717477 0.089675271 0.231725499 0.39687257 0.428325427 0.316082421 0.297942555 0.314311127 0.280569274 0.105833819 0.297250337 -PA0807 0.474022362 0.177766499 0.469699115 0.448681399 0.420203401 0.632192162 0.971867995 0.72456562 0.959100188 0.621326281 0.969488673 -PA0808 0.206881548 0.094465663 0.161192338 0.393707059 0.401303802 0.094344377 0.34593341 0.149845137 0.372765552 0.175634972 0.363587242 -PA0809 0.183070595 0.158829525 0.179554168 0.330640359 0.213729043 0.451876951 0.61713855 0.354336989 0.505952788 0.299323006 0.628999387 -PA0810 0.299200994 0.307397632 0.290859335 0.718843585 0.772107263 0.465586501 0.682172714 0.44009214 0.671721373 0.40076653 0.678555296 -PA0811 0.257049551 0.308622585 0.212392883 0.320394593 0.351570143 0.412595113 0.512642593 0.367002153 0.507478883 0.347015743 0.448606867 -PA0812 0.250656012 0.270981353 0.321941133 0.385619663 0.366991902 0.475649452 0.716312426 0.529841106 0.749463089 0.524241887 0.687453563 -PA0813 0.243286998 0.283506884 0.225244938 0.487467746 0.534375027 0.335324747 0.458875506 0.197903588 0.486120934 0.352379225 0.358784765 -PA0814 0.273376054 0.2740105 0.242047526 0.523867228 0.471404607 0.328163134 0.369805982 0.216018136 0.436843734 0.271372251 0.318954622 -PA0815 0.264348978 0.269997354 0.356722001 0.628033988 0.577071303 0.102501632 0.234805201 0.090213848 0.235319213 0.126812656 0.233411377 -PA0816 0.313431534 0.322995711 0.197776764 0.538483925 0.478475239 0.465654872 0.562210951 0.393196569 0.529356459 0.41397299 0.575777053 -PA0817 0.181305027 0.204975311 0.080144189 0.213887223 0.217412077 0.631399156 0.913118285 0.678827834 0.835082797 0.648483251 0.817312408 -PA0818 0.200626853 0.266554679 0.217461103 0.210477381 0.259932948 0.455535561 0.670355962 0.432353054 0.610839039 0.469240621 0.571866844 -PA0819 0.293272841 0.270091144 0.244325985 0.440440528 0.342058854 0.671112523 0.915998334 0.627883542 1 0.768858672 0.810424026 -PA0820 0.485587368 0.547308216 0.585969641 0.651196475 0.649941161 0.203381787 0.139947693 0.184140745 0.176555905 0.28728115 0.184145483 -PA0821 0.360593504 0.361349027 0.560558177 0.434030626 0.473999112 0.197793669 0.170990138 0.262526727 0.191078579 0.192179675 0.221162807 -PA0822 0.278353573 0.279931413 0.3769103 0.287652377 0.306653682 0.198027897 0.134422559 0.224765075 0.092270722 0.162549536 0.192201593 -PA0823 0.208032724 0.175550383 0.346088136 0.209570147 0.251720061 0.105170451 0.093921069 0.084967125 0.128761781 0.11854881 0.140434657 -PA0824 0.356408453 0.328295001 0.335538873 0.431809018 0.364498216 0.274198354 0.299284697 0.297030921 0.291401446 0.283269796 0.329884007 -PA0825 0.236263062 0.138262549 0.245547574 0.237711294 0.199773561 0.304066783 0.169242461 0.395840451 0.242973186 0.196056346 0.232750008 -PA0826 0.137731625 0.293387693 0.12874818 0.278768947 0.255474344 0.079467209 0.06545893 0.174065245 0.064503357 0.084749967 0.132918614 -PA0827 0.533369532 0.598837714 0.482956861 0.331353921 0.285735122 0.316315032 0.576048064 0.386313251 0.57694275 0.374782847 0.55853862 -PA0828 0.23479853 0.205501483 0.26944293 0.361935735 0.320661468 0.383933331 0.388234225 0.473509597 0.31739245 0.264593778 0.400171668 -PA0829 0.137201108 0.135588149 0.038656942 0.192877253 0.131990719 0.209750289 0.191065727 0.271221376 0.217204276 0.09377484 0.259820216 -PA0830 0.12580283 0.216126976 0.123680615 0.249619649 0.422679034 0.397850194 0.403801875 0.405057134 0.406007172 0.466081333 0.466828815 -PA0831 0.630948351 0.468886694 0.535098979 0.335439928 0.34375236 0.471024844 0.812865627 0.564422448 0.73024011 0.539666098 0.787631895 -PA0832 0.603560678 0.604040186 0.604441313 0.680260584 0.621999899 0.361802859 0.814434941 0.270063837 0.648598246 0.323645091 0.761066945 -PA0833 0.629079245 0.7887941 0.661022644 0.663556842 0.64764422 0.560771941 0.641605423 0.536598784 0.665624512 0.559389618 0.667539273 -PA0834 0.633597641 0.507406762 0.525837465 0.35147146 0.413841628 0.430035481 0.544700363 0.46764878 0.566051289 0.442160891 0.519143101 -PA0835 0.435024035 0.886758086 0.472049171 0.685877844 0.697542313 0.504844928 0.377824156 0.447533865 0.369988942 0.469894641 0.335467067 -PA0836 0.306622015 0.890139264 0.406136677 0.6935528 0.696160952 0.365875048 0.225168439 0.407196469 0.243576817 0.41049618 0.2103229 -PA0837 0.609227875 0.502441879 0.421678951 0.598936174 0.610102794 0.541023223 0.486916642 0.550419626 0.552953664 0.54940732 0.486724351 -PA0838 0.427437573 0.526631051 0.392563916 0.76274388 0.683390294 0.488853377 0.652554961 0.459169331 0.63307104 0.589291241 0.61349482 -PA0839 0.154756795 0.380417388 0.07759141 0.283493565 0.394404413 0.228251993 0.362824074 0.249114215 0.328193243 0.235593204 0.295775606 -PA0840 0.243146033 0.391520439 0.162036416 0.322013157 0.346778219 0.408067562 0.297020715 0.271379661 0.366114761 0.350628191 0.279016045 -PA0841 0.211768293 0.147424118 0.331932286 0.184742362 0.202761483 0.121333338 0.30823544 0.087162505 0.258850123 0.139596227 0.138059191 -PA0842 0.096202851 0.074760857 0.073157875 0.063175713 0.077563088 0.195831573 0.178718281 0.277910536 0.271514815 0.218887005 0.164213903 -PA0843 0.09104221 0.180754122 0.131485077 0.33286549 0.370138448 0.136284417 0.320391924 0.186992903 0.330123675 0.240722064 0.202838554 -PA0844 0.135543954 0.123873518 0.074746266 0.162553558 0.182698092 0.190850904 0.259006405 0.173351905 0.395695069 0.177627852 0.36506757 -PA0845 0.17961721 0.156053672 0.104156699 0.191249368 0.1355133 0.271922834 0.266434371 0.185277971 0.224054199 0.196091806 0.155170603 -PA0846 0.515800122 0.477633682 0.543327728 0.265576284 0.356376027 0.207031465 0.27686942 0.179620479 0.323532571 0.099982219 0.32022218 -PA0847 0.330771035 0.366147172 0.348229924 0.467757027 0.507295445 0.515036104 0.323230842 0.386728658 0.223722699 0.476544516 0.318421485 -PA0848 0.214384637 0.124156086 0.249810053 0.169134925 0.227230921 0.049923002 0.22422868 0.161044522 0.193702309 0.151901552 0.235361689 -PA0849 0.160307905 0.081125147 0.178530661 0.120238842 0.124182822 0.084704362 0.196205991 0.13315745 0.241959396 0.092594448 0.181512956 -PA0850 0.110611102 0.128344547 0.206873625 0.628190482 0.697881226 0.183416091 0.202085457 0.192427218 0.307381843 0.125266842 0.219360719 -PA0851 0.357407479 0.505052332 0.378358666 0.441950863 0.503070674 0.450835485 0.352126669 0.504985124 0.357235265 0.481598946 0.563367098 -PA0852 0.317258805 0.1627403 0.415476287 0.718432445 0.682470374 0.589779997 0.399462697 0.582439456 0.510541194 0.615553833 0.339167168 -PA0853 0.47314357 0.497536466 0.540437002 0.704975608 0.740324643 0.428799112 0.40289651 0.459492875 0.349104044 0.475933232 0.42758831 -PA0854 0.501939433 0.552083657 0.526924007 0.794832096 0.816279738 0.705835163 0.556172681 0.719918949 0.549977317 0.673917143 0.5640826 -PA0855 0.81998949 0.404296426 0.517712827 0.493706921 0.483716958 0.383438559 0.491948737 0.293703756 0.415323596 0.389159134 0.519096466 -PA0856 0.798120452 0.809427651 0.827206021 0.737397798 0.758144206 0.874193733 0.912806352 0.857038718 0.924952575 0.873214344 0.926561124 -PA0857 0.82154091 0.692905511 0.781089697 0.692529935 0.703528609 0.682989997 0.816473516 0.715212051 0.736299071 0.768152874 0.780487831 -PA0858 0.752135244 0.4567109 0.966289576 0.501999932 0.495212939 0.377764243 0.480353337 0.445294609 0.497183392 0.391044389 0.458787023 -PA0859 0.836949884 0.412857379 0.768772471 0.701983252 0.778856619 0.365649259 0.461495425 0.450681589 0.355404015 0.283714927 0.36498205 -PA0860 0.941088746 0.423543035 0.935431513 0.629185846 0.636179142 0.271590394 0.317695111 0.218715549 0.371370235 0.487857072 0.368834637 -PA0861 0.305700654 0.42325778 0.37546273 0.337464709 0.353518623 0.638848961 0.501403042 0.841277447 0.522831833 0.724831062 0.562291975 -PA0862 0.293278429 0.535957091 0.48448382 0.610977507 0.625053541 0.459330032 0.415411183 0.526770595 0.387961193 0.397625902 0.312363466 -PA0863 0.237287292 0.18915275 0.221189968 0.438449679 0.376702117 0.115059643 0.274784588 0.004531943 0.140040165 0.007737532 0.28437507 -PA0864 0.157945148 0.153358319 0.167145091 0.129859689 0.178726483 0.102216907 0.143981661 0.191569478 0.182394277 0.059590326 0.227064179 -PA0865 0.67663505 0.338186546 0.103962713 0.668091906 0.651751709 0.683365623 0.710615293 0.646256629 0.69278183 0.706653971 0.733640079 -PA0866 0.546394722 0.164548936 0.070363767 0.209776381 0.215645554 0.326294676 0.36210102 0.225908533 0.384571386 0.280985876 0.396966513 -PA0867 0.630876595 0.508436602 0.765024277 0.536273159 0.528187628 0.661773227 0.718140157 0.704319773 0.718284399 0.670242529 0.717136439 -PA0868 0.617516373 0.300459516 0.693482945 0.426701 0.408722267 0.371165997 0.605801268 0.608874376 0.676328969 0.48747264 0.555284184 -PA0869 0.653050939 0.686790018 0.673079943 0.639588548 0.628118065 0.333257983 0.414468821 0.470787847 0.35258965 0.41013306 0.467577244 -PA0870 0.65507977 0.630077486 0.26496041 0.610772777 0.612255888 0.520638424 0.396542449 0.437142901 0.409231572 0.476799467 0.414204673 -PA0871 0.573784421 0.75733019 0.318819963 0.662824807 0.671204576 0.603724965 0.589558759 0.569203149 0.531397056 0.607797515 0.541018284 -PA0872 0.751685987 0.815678617 0.124135826 0.868379703 0.882840263 0.628211516 0.561215866 0.669749279 0.589900489 0.613461128 0.558435067 -PA0873 0.285091056 0.189461681 0.093054696 0.354355999 0.396958185 0.281767084 0.335288222 0.254296145 0.338665735 0.22518188 0.366057599 -PA0874 0.124438927 0.292766188 0.121378665 0.155108311 0.151565882 0.217033203 0.302450104 0.465250694 0.31992485 0.275442242 0.395884262 -PA0875 0.311831502 0.273959315 0.323582543 0.413062771 0.43985799 0.453603746 0.509647692 0.578412514 0.390916453 0.440726259 0.438646504 -PA0876 0.742535747 0.732625719 0.79731296 0.477868493 0.548970407 0.295262837 0.382612412 0.181924352 0.371991515 0.303643708 0.345069686 -PA0877 0.161332193 0.251063984 0.172502201 0.186160721 0.243961223 0.18904674 0.260841699 0.100097458 0.137023711 0.157182435 0.219317328 -PA0878 0.220479993 0.224802937 0.162897528 0.209820906 0.1916549 0.250689303 0.295815473 0.264711344 0.241030649 0.306190027 0.299992838 -PA0879 0.105745967 0.078997542 0.094237412 0.103658121 0.118571015 0.153711767 0.211357213 0.204570064 0.191096747 0.095864085 0.223973942 -PA0880 0.190752868 0.182631183 0.177874021 0.273543374 0.208118167 0.142422061 0.161637878 0.171285431 0.193121458 0.227163566 0.202231657 -PA0881 0.154557889 0.115329954 0.162031071 0.14917297 0.138357644 0.115787276 0.104490255 0.115552204 0.061870267 0.172912347 0.137416734 -PA0882 0.14159708 0.124908808 0.101625039 0.120702189 0.112463414 0.147651965 0.143284206 0.182799866 0.127979265 0.165209474 0.184381878 -PA0883 0.172230919 0.191721059 0.11885724 0.149352696 0.151637674 0.195215449 0.119007062 0.180034854 0.166777289 0.19237725 0.199380748 -PA0884 0.15255621 0.124682842 0.096075029 0.186070366 0.132759298 0.18396163 0.356571215 0.284441708 0.306652723 0.303060557 0.299849619 -PA0885 0.214705146 0.187382998 0.176639659 0.162644588 0.225283494 0.325421737 0.367581965 0.372186272 0.390467436 0.297751773 0.282553033 -PA0886 0.098487471 0.071301172 0.128962804 0.148512246 0.161068585 0.118957295 0.191349693 0.110666602 0.291673704 0.284335137 0.262156267 -PA0887 0.421046172 0.320643189 0.605933446 0.167728356 0.213488651 0.256405998 0.392624572 0.195216457 0.369762055 0.279303222 0.382469821 -PA0888 0.76606256 0.554237031 0.745813082 0.668512749 0.673842343 0.735810696 0.689871662 0.779264297 0.620134817 0.73357154 0.684551688 -PA0889 0.759428411 0.356052296 0.631896483 0.41900688 0.392241741 0.316747225 0.254171681 0.305384166 0.280670475 0.276143603 0.297035684 -PA0890 0.684671695 0.351976483 0.590296211 0.354052604 0.44911412 0.168679829 0.143324214 0.129916587 0.139025935 0.077963139 0.083233793 -PA0891 0.680953864 0.426690598 0.511345963 0.424380085 0.422928276 0.343600195 0.364499741 0.437716676 0.320851072 0.352758847 0.403314658 -PA0892 0.667470173 0.569014709 0.521486516 0.352235866 0.343313445 0.431512072 0.376626134 0.414007465 0.394683784 0.458575078 0.396689879 -PA0893 0.612053122 0.327589872 0.474954745 0.386590492 0.430639699 0.523010647 0.455418924 0.57599664 0.51652013 0.557897339 0.527610588 -PA0894 0.140276386 0.095432493 0.067134069 0.258826413 0.226758314 0.492536662 0.525508356 0.426679305 0.516178012 0.504154739 0.392412038 -PA0895 0.540023825 0.465497097 0.394622344 0.355343146 0.40505975 0.298808064 0.231303763 0.325152195 0.300076984 0.285789998 0.206499378 -PA0896 0.521971066 0.35843515 0.375822651 0.28949836 0.299020277 0.552800481 0.513354152 0.641257287 0.480918801 0.567718525 0.471301501 -PA0897 0.55296087 0.4244888 0.357729602 0.369703903 0.35816161 0.292753523 0.141229488 0.326240359 0.159949412 0.28259859 0.179598736 -PA0898 0.573644667 0.545391988 0.339401356 0.487988247 0.467251305 0.252019494 0.216187863 0.253474686 0.172059759 0.322272134 0.214171933 -PA0899 0.583952904 0.499899612 0.379948994 0.601544518 0.661176223 0.319999475 0.241397773 0.343106427 0.403467493 0.437584435 0.314531016 -PA0900 0.700817881 0.649342204 0.709581261 0.780042086 0.757171689 0.512644156 0.455017555 0.456203617 0.529160053 0.528378182 0.473126701 -PA0901 0.524961297 0.459002112 0.457071802 0.602308745 0.650253018 0.376623314 0.33840275 0.36836471 0.357671421 0.377087282 0.304369671 -PA0902 0.69180648 0.739791948 0.774880279 0.307866584 0.377948527 0.484170206 0.590384529 0.466165744 0.620435032 0.541647823 0.615989232 -PA0903 0.715167643 0.742015049 0.634163089 0.260264059 0.298198792 0.309791237 0.445173447 0.265311281 0.377995692 0.288606325 0.413451983 -PA0904 0.71902163 0.821224571 0.755763335 0.222530224 0.293342922 0.699915501 0.739015003 0.608056524 0.748892319 0.686585974 0.740773039 -PA0905 0.485020197 0.551923802 0.580484974 0.664404165 0.690698541 0.942748194 0.909166091 1 0.884576163 0.984243867 0.890987521 -PA0906 0.372990391 0.470343259 0.410609146 0.30265937 0.322318502 0.355358883 0.465998295 0.318280927 0.338495154 0.30906198 0.454805543 -PA0907 0.133743866 0.102224245 0.087881559 0.210745579 0.212222107 0.25842955 0.308314784 0.288279244 0.325695507 0.187181111 0.307612072 -PA0908 0.343308625 0.160625597 0.184208037 0.161899163 0.162146102 0.30589602 0.525469846 0.393376484 0.552483245 0.274125028 0.48305805 -PA0909 0.327108973 0.247562208 0.255509482 0.169586667 0.15845721 0.445439472 0.726108324 0.538237056 0.639676767 0.312678888 0.678262868 -PA0910 0.368464251 0.13775767 0.255364885 0.143071711 0.165687183 0.283083132 0.599947092 0.281686226 0.593365614 0.321728642 0.497007792 -PA0911 0.451335665 0.141413214 0.346618174 0.231170399 0.196515126 0.28581648 0.710056292 0.347523137 0.676141009 0.273844845 0.673147465 -PA0912 0.341535036 0.366219776 0.25810815 0.296576845 0.215005287 0.215816668 0.768644962 0.367903313 0.72559414 0.41122438 0.831557084 -PA0913 0.681448466 0.523335955 0.421768633 0.420318115 0.440549734 0.497040384 0.656898041 0.520609467 0.712813932 0.522868984 0.689749644 -PA0914 0.691187306 0.335855995 0.304687898 0.269353969 0.242428822 0.433699844 0.685320591 0.47403621 0.535663631 0.424645057 0.495137496 -PA0915 0.828000502 0.415195535 0.472762582 0.385493868 0.406624375 0.230916327 0.433017261 0.213097238 0.325640845 0.169038142 0.299548215 -PA0916 0.735908122 0.371314109 0.625816381 0.646660832 0.620730304 0.155772614 0.369343728 0.206910313 0.267304346 0.159937379 0.352982916 -PA0917 0.482468816 0.254623582 0.532072253 0.581602026 0.599224466 0.217410163 0.550113839 0.501749924 0.624717663 0.25034281 0.33869599 -PA0918 0.119129425 0.486456257 0.289883594 0.549412804 0.55676575 0.399203685 0.467572932 0.557485589 0.363814477 0.357538624 0.308073526 -PA0919 0.375477155 0.654686552 0.436954419 0.698551362 0.708396827 0.486212942 0.600695908 0.464195937 0.606356384 0.676593725 0.576182931 -PA0920 0.483996624 0.481005605 0.370269158 0.230298183 0.312359384 0.520888119 0.583998885 0.533943736 0.494455432 0.446252117 0.48797781 -PA0921 0.091272223 0.387961355 0.492860038 0.101377894 0.128703048 0.588782106 0.800881676 0.460962119 0.7710255 0.609756727 0.79525446 -PA0922 0.411289358 0.336811062 0.317793738 0.352463554 0.364569331 0.560460532 0.676480949 0.373234173 0.770081007 0.50942011 0.619362642 -PA0923 0.261578342 0.161224588 0.202641021 0.142616553 0.197160051 0.303839718 0.404892911 0.165958807 0.381277176 0.272156976 0.354904461 -PA0924 0.278244514 0.20007974 0.224772059 0.281113234 0.233839065 0.467349719 0.396660067 0.551573387 0.381361518 0.259107384 0.37704009 -PA0925 0.561849471 0.582286316 0.527485558 0.444260148 0.471605623 0.732763578 0.872318397 0.629708327 0.951804111 0.741077764 0.836084546 -PA0926 0.940910273 0.884271426 0.853135805 0.530704575 0.536810098 0.752184735 0.906959811 0.54546101 0.8408122 0.788493208 0.924478001 -PA0927 0.630420222 0.549897712 0.70830961 0.685360747 0.624374029 0.798046428 0.383087398 0.852669834 0.479269257 0.867475673 0.613376379 -PA0928 0.580512475 0.505946813 0.349842251 0.705668506 0.699242435 0.603451639 0.36649222 0.466157396 0.441221296 0.29254158 0.478965603 -PA0929 0.538444127 0.207006756 0.794695523 0.268368302 0.183614731 0.510518453 0.792799804 0.318004668 0.923540912 0.517033689 0.897900936 -PA0930 0.350508944 0.19699342 0.599380069 0.330605754 0.31993529 0.298329154 0.744864074 0.161771569 0.799065537 0.393626823 0.796993208 -PA0931 0.216486661 0.125834939 0.351001436 0.195978107 0.133598505 0.22996887 0.433513992 0.195104217 0.451930491 0.195655421 0.348275904 -PA0932 0.809177556 0.725511722 0.70579148 0.411849066 0.449624335 0.748506655 0.757165822 0.673449861 0.725875372 0.803746672 0.713794693 -PA0933 0.719550288 0.449727274 0.599536459 0.334458715 0.425887308 0.400780722 0.525320829 0.320021118 0.550976203 0.416704854 0.511380319 -PA0934 0.720668323 0.574524762 0.744250454 0.790829978 0.700095929 0.85732031 0.831178539 0.719044648 0.831888391 0.841798324 0.922252176 -PA0935 0.649147084 0.465662251 0.726022122 0.560603522 0.551531816 0.433625424 0.590472142 0.528804122 0.465377968 0.655501028 0.59253339 -PA0936 0.609390766 0.424607803 0.778983913 0.708693312 0.728879909 0.538862488 0.465808201 0.370430441 0.607797461 0.400545704 0.599885582 -PA0937 0.633051016 0.583917487 0.733653846 0.454453142 0.432228489 0.661377214 0.709473826 0.650439289 0.691125169 0.656753492 0.733195184 -PA0938 0.626652443 0.32266795 0.602453139 0.139106137 0.125384883 0.682365139 0.797630408 0.717460478 0.792926753 0.681009362 0.799675307 -PA0939 0.191814535 0.099235205 0.092068064 0.2472671 0.243018972 0.230601013 0.332053403 0.242925368 0.227060767 0.293221755 0.247365007 -PA0940 0.253753592 0.11554985 0.197963615 0.232628 0.285183076 0.37723951 0.226318104 0.422003038 0.199393253 0.264979279 0.208989412 -PA0941 0.171935737 0.10292862 0.17346776 0.320986995 0.291511073 0.532392728 0.250213264 0.477834765 0.24850667 0.504602035 0.289036116 -PA0942 0.139396944 0.141878221 0.219732013 0.301777028 0.369502441 0.391648237 0.502132121 0.521723171 0.306700263 0.343080121 0.316848788 -PA0943 0.708485274 0.696476183 0.648684012 0.517992792 0.569709183 0.73316242 0.833391735 0.725166105 0.832328615 0.751697743 0.842639404 -PA0944 0.801897191 0.429887073 0.708889976 0.323700372 0.24494557 0.281956611 0.343934138 0.250260785 0.33552977 0.351709836 0.436927683 -PA0945 0.94857597 0.599382822 0.867842183 0.421455191 0.387410219 0.395497959 0.49326124 0.435671041 0.388564205 0.306656691 0.461648683 -PA0946 0.578201568 0.711945334 0.7073538 0.569110678 0.611974587 0.4227438 0.441064558 0.508891611 0.50388189 0.48235646 0.478655166 -PA0947 0.560705893 0.443733513 0.54588448 0.278164153 0.283308827 0.536059412 0.606829185 0.487277946 0.604730985 0.458465706 0.605663472 -PA0948 0.668829786 0.454421361 0.619188908 0.23545295 0.241316424 0.323510742 0.430517716 0.109921781 0.315393126 0.286523674 0.213881691 -PA0949 0.725007957 0.616160447 0.80035106 0.34502485 0.448210571 0.307331479 0.284582239 0.366159471 0.283260116 0.430231941 0.267377024 -PA0950 0.848949682 0.806731788 0.774829709 0.677904594 0.715166743 0.524888033 0.44590938 0.304368491 0.504428885 0.623318601 0.431959839 -PA0951 0.384568385 0.105704983 0.364406821 0.382160134 0.312671988 0.474633102 0.578089695 0.530464702 0.70423591 0.564364488 0.620080143 -PA0952 0.185276688 0.065963451 0.384903369 0.376008028 0.470209216 0.315039405 0.566519667 0.359217393 0.487697583 0.263335025 0.575780184 -PA0953 0.437536683 0.233732627 0.568782152 0.354854539 0.355423493 0.573208425 0.472078335 0.491947277 0.515269798 0.555278045 0.513974496 -PA0954 0.389590848 0.234314371 0.497597363 0.271821478 0.314510283 0.340168299 0.355516392 0.415420168 0.501330573 0.461556687 0.293079433 -PA0955 0.902708511 0.646606966 0.803616379 0.097267993 0.076556976 0.647930878 0.777007737 0.670998187 0.752297221 0.64528205 0.872445526 -PA0956 0.897520379 0.816049142 0.871744726 0.402438836 0.413773718 0.715291791 0.722411466 0.538652135 0.743112404 0.649547889 0.745801353 -PA0957 0.394648108 0.221508649 0.519751483 0.240279092 0.231207773 0.332166931 0.523730113 0.529655027 0.387174618 0.385186306 0.510097608 -PA0958 0.697816891 0.682374089 0.527849347 0.559277473 0.542491761 0.267847776 0.27126947 0.244627899 0.226763853 0.2056057 0.243660422 -PA0959 0.273719208 0.154825085 0.198947274 0.702044592 0.730683909 0.43044201 0.439232965 0.567815721 0.445934628 0.473710195 0.415717357 -PA0960 0.290429965 0.22252868 0.404903622 0.725756153 0.7395555 0.317668361 0.402847044 0.445601039 0.411734483 0.430951903 0.436454509 -PA0961 0.389654231 0.423139889 0.474136313 0.083740566 0.104525649 0.232542147 0.331712977 0.212446276 0.366184979 0.205942844 0.312483447 -PA0962 0.465283851 0.83674327 0.474780831 0.710820084 0.738378592 0.507163757 0.653684173 0.567900087 0.625051643 0.579087291 0.668210781 -PA0963 0.4508559 0.531807735 0.382302407 0.188689441 0.167087804 0.452311359 0.558291049 0.326946322 0.522520795 0.410774558 0.488494858 -PA0964 0.764980293 0.799194364 0.695322943 0.310230309 0.317535054 0.574694104 0.666711797 0.533223074 0.659229697 0.556547901 0.651846337 -PA0965 0.969348492 0.703462122 0.860994228 0.493182275 0.513388163 0.611231198 0.717549066 0.562808242 0.675760971 0.585339896 0.72529827 -PA0966 0.930090735 0.747116126 0.894076257 0.5040191 0.476830687 0.577783214 0.649953697 0.467924892 0.627744818 0.583696194 0.617411175 -PA0967 0.725659954 0.548637175 0.629752549 0.269925683 0.321166402 0.450747555 0.469256438 0.399112254 0.455784827 0.547817415 0.537973006 -PA0968 0.834219037 0.552381931 0.833058981 0.166697556 0.230384527 0.603926479 0.756322947 0.602515037 0.778163444 0.634837839 0.677096486 -PA0969 0.762335815 0.707075986 0.907983904 0.209645281 0.284950558 0.498520155 0.649626222 0.40624881 0.544244959 0.522910072 0.641412539 -PA0970 0.790701993 0.766700666 0.85117798 0.325871311 0.306524924 0.791284557 0.920046081 0.724896147 0.962789116 0.84939336 0.912446076 -PA0971 0.765236177 0.660315582 0.862788874 0.460894198 0.530844437 0.803272665 0.767893648 0.695594314 0.759095128 0.771218966 0.714923619 -PA0972 0.785322968 0.733460892 0.899634733 0.421444588 0.449015631 0.795852505 0.860843992 0.717329003 0.906096035 0.854730943 0.851750072 -PA0973 0.799742388 0.788306235 0.803061649 0.496385278 0.510281582 0.695457315 0.729074305 0.672133176 0.738874109 0.718544621 0.703038995 -PA0974 0.828014828 0.621515976 0.743487526 0.398580567 0.349054653 0.743966148 0.717388354 0.616542351 0.734215738 0.705837687 0.646982139 -PA0975 0.425097101 0.252848783 0.263421345 0.274559314 0.325051221 0.25415016 0.498611584 0.359401335 0.436832435 0.331594248 0.544665503 -PA0976 0.584431921 0.265670495 0.472990678 0.432171214 0.418596661 0.510908283 0.306864237 0.347690436 0.395121807 0.49852182 0.388900214 -PA0977 0.206059415 0.141337859 0.183551485 0.143146568 0.171575033 0.130149538 0.112858308 0.184879688 0.13561995 0.114319848 0.143486957 -PA0978 0.343330796 0.118345184 0.322543132 0.186883005 0.199469012 0.498190881 0.50713486 0.519601371 0.513677992 0.465724603 0.492862484 -PA0979 0.5921667 0.100025439 0.675847347 0.590061536 0.653071788 0.709083979 0.622665456 0.718933671 0.595399096 0.654599748 0.585594978 -PA0980 0.07790718 0.09461794 0.130353306 0.135459456 0.154888076 0.076638833 0.075483009 0.09817174 0.086373279 0.03733837 0.051584617 -PA0981 0.147782084 0.153960946 0.174488108 0.195737948 0.178078514 0.135084349 0.188678467 0.163403441 0.123078856 0.147584833 0.175462136 -PA0982 0.405687386 0.451468248 0.457483746 0.354724181 0.36150376 0.243864932 0.250547729 0.1881048 0.254849765 0.225108015 0.301810035 -PA0983 0.230028542 0.443067966 0.255065066 0.263389649 0.290688137 0.160803705 0.169187829 0.294639589 0.230520393 0.253667127 0.177038316 -PA0984 0.113840371 0.144267052 0.115431156 0.14883441 0.116456009 0.10797707 0.186533825 0.218565664 0.151701329 0.141705903 0.194016586 -PA0985 0.284767111 0.215715586 0.190130293 0.143283819 0.133360561 0.084428211 0.076556363 0.095203364 0.0801651 0.099976326 0.102396707 -PA0986 0.43342396 0.104746716 0.580165666 0.529083059 0.496172438 0.546668326 0.678099082 0.531403439 0.65042494 0.618347062 0.625701266 -PA0987 0.31708356 0.081872575 0.321097049 0.19651511 0.263381437 0.234623654 0.23379735 0.215128881 0.213217372 0.259163721 0.222197924 -PA0988 0.490636305 0.483134348 0.555224136 0.70309893 0.716795914 0.736223211 0.794792264 0.781210748 0.74886644 0.699392817 0.648707791 -PA0989 0.274710203 0.159841402 0.256905952 0.125106795 0.211262531 0.331181646 0.365563617 0.281350216 0.419139603 0.288834511 0.192586549 -PA0990 0.242951221 0.352454957 0.324435663 0.553208544 0.621092492 0.355119087 0.63095665 0.557886 0.536381356 0.508957157 0.43250005 -PA0991 0.221475106 0.058673371 0.247809751 0.226153054 0.206590769 0.645091057 0.556140083 0.631453987 0.442352167 0.734769629 0.539882055 -PA0992 0.263173969 0.263840768 0.297784469 0.222291165 0.245714387 0.407331219 0.380849468 0.334528765 0.319921094 0.446029643 0.30018705 -PA0993 0.080753161 0.086717796 0.126180541 0.054766875 0.055984741 0.404364216 0.394679845 0.313912814 0.361501591 0.269098323 0.457515777 -PA0994 0.413516084 0.271832014 0.373145663 0.405545297 0.389917129 0.274827063 0.489472475 0.411510565 0.372692688 0.340038683 0.425706428 -PA0995 0.391797379 0.432568597 0.438653792 0.368518359 0.38987239 0.795737082 0.772666852 0.785245141 0.730324894 0.839239383 0.787800953 -PA0996 0.752062216 0.363283179 0.283871226 0.533041708 0.425617749 0.522522913 0.728806928 0.487383174 0.738201956 0.550716796 0.760755849 -PA0997 0.82748369 0.31119968 0.225578709 0.56137846 0.467292774 0.487107146 0.552289686 0.285177466 0.584729399 0.484370194 0.515493496 -PA0998 0.828918499 0.265750176 0.219879625 0.500315419 0.436327035 0.334576152 0.478262606 0.268679777 0.528833518 0.381753109 0.455536319 -PA0999 0.851238056 0.329776651 0.273102194 0.560394825 0.475540049 0.521270577 0.597600645 0.37003627 0.651576281 0.583605331 0.637686316 -PA1000 0.756318733 0.155936517 0.180365132 0.373077985 0.300547837 0.546710079 0.602017828 0.357404632 0.679539548 0.517833699 0.646395368 -PA1001 0.83135822 0.155920166 0.159779419 0.375224251 0.416837211 0.42751986 0.529339024 0.241711871 0.607134553 0.466373253 0.517062038 -PA1002 0.618535202 0.167852665 0.229438902 0.407665888 0.394314578 0.301017397 0.467520457 0.300602085 0.475571135 0.335266031 0.437628086 -PA1003 0.642672173 0.341138223 0.623189436 0.743389342 0.762167835 0.53771108 0.458701813 0.470458004 0.565579194 0.505119074 0.581674637 -PA1004 0.84302152 0.680074509 0.745493359 0.667167026 0.628986384 0.651390064 0.677445169 0.685540316 0.761456033 0.59096648 0.686556671 -PA1005 0.57052336 0.618728141 0.769992309 0.27940836 0.310952957 0.665131499 0.616454569 0.699139444 0.538105439 0.719882569 0.560047286 -PA1006 0.701791453 0.49259973 0.663852069 0.342496668 0.346297659 0.407433288 0.533501434 0.459528759 0.553488729 0.52302289 0.521510242 -PA1007 0.52457722 0.250943333 0.380270346 0.208070153 0.244146248 0.340894712 0.554569237 0.317160261 0.49828823 0.42986164 0.586940435 -PA1008 0.585622356 0.554330365 0.581025973 0.387835353 0.390188245 0.537333037 0.684326346 0.499950826 0.654094123 0.543321865 0.638289596 -PA1009 0.8796085 0.843618132 0.870934945 0.64939044 0.682633233 0.435051706 0.543058426 0.321264886 0.609687882 0.470988461 0.580653216 -PA1010 0.840142718 0.944706221 0.791724321 0.553941063 0.569974643 0.462229919 0.657966049 0.474770139 0.625262162 0.57908572 0.695890245 -PA1011 0.796528173 0.622551563 0.778237756 0.27803511 0.220261763 0.498032516 0.732027686 0.441347446 0.688055602 0.394764955 0.702569558 -PA1012 0.738255656 0.450513181 0.646751372 0.29134422 0.271015671 0.742761308 0.923646368 0.676357511 0.860010499 0.834561682 0.958233821 -PA1013 0.718347668 0.875306442 0.780011972 0.608927588 0.621216091 0.615748797 0.728882391 0.519466762 0.720277573 0.662453941 0.735816086 -PA1014 0.762815907 0.278026196 0.785117818 0.471033548 0.549144216 0.135753064 0.211655039 0.196891485 0.161313513 0.141781821 0.134206445 -PA1015 0.433700567 0.397405884 0.506437199 0.296633712 0.237831153 0.289470832 0.204676533 0.292024195 0.300370087 0.207324316 0.262999931 -PA1016 0.250752894 0.187754993 0.377035433 0.194111715 0.200624695 0.216460034 0.109568225 0.179623999 0.135264014 0.175702355 0.090953972 -PA1017 0.163210732 0.170100087 0.222534793 0.219504293 0.185605788 0.229537855 0.186402998 0.174745373 0.185311637 0.191895992 0.17983464 -PA1018 0.173602055 0.150388234 0.212722578 0.107702109 0.112378254 0.153999573 0.193212852 0.141972064 0.082390626 0.096361928 0.163199898 -PA1019 0.074134848 0.07883843 0.129549586 0.085026876 0.097404582 0.164121038 0.179229253 0.267104269 0.173967863 0.233637332 0.162652452 -PA1020 0.177037324 0.116040521 0.171231706 0.13795748 0.107818948 0.166570581 0.126916602 0.129722832 0.141728099 0.211374726 0.208766647 -PA1021 0.09413281 0.106115045 0.23782906 0.116239194 0.096075224 0.094194463 0.052216382 0.030615026 0.075914538 0.128447666 0.068727793 -PA1022 0.209515877 0.27492698 0.367964847 0.26285012 0.253739163 0.146329912 0.148024499 0.303477329 0.257088527 0.153085822 0.176469047 -PA1023 0.185973094 0.240458374 0.464791121 0.204729024 0.205961254 0.087370764 0.169884684 0.216996287 0.045868445 0.094688591 0.177889587 -PA1024 0.191262325 0.236979644 0.290902803 0.13888209 0.134461577 0.165343676 0.083217543 0.375937503 0.127715324 0.258881035 0.135595972 -PA1025 0.206042471 0.12503095 0.150810391 0.240657002 0.180751985 0.456844079 0.416491479 0.387361471 0.392354626 0.419018241 0.339962073 -PA1026 0.581714668 0.46148593 0.543477103 0.395433518 0.324530619 0.176718329 0.238696016 0.268975464 0.233798175 0.325029681 0.270279768 -PA1027 0.301992266 0.217348671 0.306778925 0.713252449 0.748157466 0.146508014 0.308993651 0.183248427 0.16407653 0.096296153 0.1901593 -PA1028 0.195966388 0.203970349 0.129042068 0.505486292 0.490740616 0.377853062 0.272148448 0.43584591 0.377546384 0.256164841 0.448340336 -PA1029 0.325171446 0.328669944 0.242769422 0.319012789 0.310838825 0.136373034 0.077927259 0.049792586 0.043104659 0.066360765 0.009745906 -PA1030 0.318047787 0.271435198 0.30140265 0.367898527 0.359455017 0.184253928 0.345935141 0.155158604 0.16467396 0.253067069 0.296476341 -PA1031 0.550721056 0.36677968 0.525302974 0.408194015 0.373441187 0.299493732 0.233213767 0.360871396 0.307230822 0.357102847 0.280390575 -PA1032 0.804360855 0.441030628 0.703959582 0.472238216 0.437716845 0.442404144 0.457608095 0.474249283 0.411216727 0.531663597 0.565246025 -PA1033 0.500754981 0.484528198 0.588180211 0.520507888 0.489616572 0.425600969 0.293737597 0.300465218 0.297269425 0.204407522 0.277543726 -PA1034 0.460460584 0.251546063 0.399731224 0.301072327 0.301171512 0.437863888 0.369625591 0.411719043 0.360771141 0.334987733 0.468323972 -PA1035 0.426277959 0.417787358 0.435117192 0.322081283 0.329043747 0.381697205 0.350374909 0.341306162 0.43402504 0.411155113 0.259404056 -PA1036 0.438930127 0.423927885 0.525217725 1 0.922366068 0.514268447 0.419779811 0.420302139 0.391884271 0.506665001 0.345284524 -PA1037 0.373487401 0.195444878 0.314239683 0.369110202 0.337545678 0.52854189 0.399966766 0.356350583 0.478985562 0.482956316 0.38488183 -PA1038 0.276984011 0.221511206 0.47054642 0.289351803 0.32071261 0.370137716 0.421152827 0.544560277 0.504086333 0.504721113 0.353459661 -PA1039 0.541040814 0.546174299 0.585816788 0.566128129 0.577684042 0.372985186 0.278240115 0.430000896 0.314809858 0.341761207 0.283175 -PA1040 0.593726782 0.685186841 0.698289639 0.681969641 0.832963572 0.356574618 0.479940032 0.679301342 0.603600719 0.590698563 0.555671414 -PA1041 0.069631027 0.226625303 0.24199035 0.895858865 0.875690522 0.513123092 0.192497481 0.596707239 0.27131896 0.531259702 0.208929871 -PA1042 0.162804101 0.033591148 0.30529951 0.459934238 0.440753683 0.127708172 0.275485762 0.173993134 0.193461025 0.169167511 0.227150124 -PA1043 0.258573654 0.147508441 0.267422188 0.383514237 0.324783513 0.17511461 0.163268717 0.195864179 0.10252965 0.139832294 0.211617427 -PA1044 0.411649577 0.381718831 0.32377384 0.29776001 0.307039931 0.169267782 0.46544036 0.531109857 0.427501247 0.486630259 0.501732003 -PA1045 0.847671127 0.542100616 0.744122356 0.240116693 0.278573494 0.545524772 0.573257712 0.498871975 0.684272914 0.692339596 0.563498681 -PA1046 0.291307574 0.177069955 0.144020203 0.236772741 0.210511082 0.34186983 0.409950683 0.294715576 0.388051598 0.34442955 0.339678929 -PA1047 0.835518852 0.566293119 0.84417642 0.742924306 0.685407881 0.544123124 0.451998225 0.343352236 0.516546922 0.518954072 0.533712742 -PA1048 0.614885152 0.587986804 0.646406265 0.663394202 0.685657367 0.890128582 0.825973515 0.842819619 0.798524567 0.868658679 0.820543871 -PA1049 0.423915722 0.80250702 0.396318227 0.455374134 0.419727979 0.629176793 0.575760437 0.621966932 0.537456997 0.656309981 0.527367221 -PA1050 0.27105953 0.672844419 0.129128886 0.321298203 0.309957253 0.236272945 0.127058773 0.299338215 0.26192211 0.29807908 0.271524804 -PA1051 0.167161237 0.418478688 0.088639015 0.127802506 0.136660361 0.227571854 0.171201635 0.142840826 0.173992468 0.157246461 0.195262074 -PA1052 0.35023682 0.420471255 0.297735672 0.571638888 0.507002814 0.506386601 0.347768398 0.536084951 0.394191786 0.304238846 0.404458724 -PA1053 0.553577564 0.766576774 0.534006999 0.597173729 0.612014132 0.815150475 0.693172449 0.800405923 0.717865133 0.802587617 0.668831303 -PA1054 0.4635386 0.478233126 0.195531652 0.471341363 0.445993292 0.384654362 0.363994968 0.404004367 0.307418618 0.292744587 0.412418632 -PA1055 0.341102634 0.463666677 0.264298441 0.556094346 0.496933424 0.458079478 0.414688069 0.389095825 0.368528876 0.363688059 0.465114824 -PA1056 0.491847237 0.496633517 0.424934403 0.687450187 0.621159606 0.573356461 0.432908395 0.509947223 0.499313631 0.705849849 0.542804404 -PA1057 0.506365286 0.505622428 0.543838509 0.75518812 0.727666549 0.667195137 0.496444158 0.582546087 0.627206443 0.603588709 0.690756419 -PA1058 0.643417116 0.629130974 0.672292702 0.842090112 0.818980375 0.541063833 0.461194485 0.459186441 0.391307646 0.507717112 0.526301711 -PA1059 0.551206251 0.642079467 0.389581355 0.697167943 0.669215812 0.70079432 0.47730413 0.350695808 0.238075106 0.654746067 0.415182979 -PA1060 0.336347196 0.476439291 0.32037557 0.410480554 0.376904915 0.271581037 0.257499037 0.255116176 0.343506926 0.250087818 0.34596601 -PA1061 0.517817268 0.541831654 0.44702922 0.520956037 0.57331851 0.247129619 0.140481092 0.168210176 0.199959627 0.208529379 0.123924407 -PA1062 0.456315132 0.465690505 0.568917491 0.398568692 0.485062955 0.48903245 0.538299924 0.578873936 0.602536525 0.510611949 0.432243816 -PA1063 0.470936052 0.391435895 0.749088745 0.350220524 0.395781943 0.486183068 0.542475165 0.378418278 0.500722022 0.547647098 0.350986287 -PA1064 0.895492023 0.916451795 0.855957001 0.550240275 0.517167911 0.541652487 0.52298752 0.273631281 0.444972316 0.335869115 0.508146194 -PA1065 0.279292359 0.53289613 0.244210671 0.791113896 0.801156099 0.573721189 0.323983094 0.594921151 0.216557908 0.468721029 0.239001337 -PA1066 0.128163664 0.160480886 0.115822431 0.342770005 0.380905684 0.522323234 0.515990181 0.497479089 0.32000017 0.461164567 0.525968269 -PA1067 0.384970563 0.227260951 0.338917565 0.31404532 0.252664969 0.321781986 0.326919707 0.204769722 0.283436104 0.229158406 0.286563258 -PA1068 0.533998677 0.643018646 0.562384906 0.417966447 0.465982566 0.503027371 0.346775686 0.506026727 0.482554946 0.41391618 0.50553001 -PA1069 0.689323358 0.416932871 0.425745895 0.238991512 0.284141598 0.576294311 0.609625874 0.426172723 0.465661009 0.559193972 0.486448344 -PA1070 0.614797014 0.287802056 0.624539344 0.351316399 0.439132985 0.193396682 0.310542036 0.133647285 0.271908146 0.167725866 0.365303688 -PA1071 0.649656348 0.389766849 0.683787005 0.318723488 0.308618067 0.321879499 0.357450894 0.253024733 0.278014149 0.389352303 0.336961963 -PA1072 0.582784848 0.274508919 0.597865144 0.170861315 0.172159992 0.322515059 0.257199874 0.254314028 0.294643775 0.305344618 0.265221748 -PA1073 0.635834897 0.411927343 0.663608673 0.171657064 0.247548324 0.181702042 0.227765338 0.06051593 0.231844414 0.299594331 0.298604169 -PA1074 0.566357627 0.533687155 0.634313268 0.625514451 0.636446976 0.49728282 0.439311167 0.473279799 0.458633558 0.449243683 0.389161158 -PA1075 0.667353432 0.614049313 0.553816175 0.635869561 0.665385115 0.603039869 0.65385951 0.70315942 0.714370331 0.565186183 0.714547358 -PA1076 0.255692315 0.581308968 0.284262016 0.533616645 0.527217734 0.366792854 0.215974104 0.485210711 0.252362462 0.402363191 0.329080891 -PA1077 0.584277738 0.638717004 0.595647859 0.509968126 0.612121131 0.7433831 0.633772176 0.742423884 0.631917322 0.739231296 0.6371603 -PA1078 0.538644096 0.54790147 0.599381366 0.484434349 0.515558205 0.478823031 0.509073902 0.456843296 0.465338897 0.5070994 0.490879276 -PA1079 0.564534386 0.510497514 0.571391922 0.431146855 0.512256968 0.558910461 0.612899044 0.616961048 0.542643662 0.562693881 0.620165975 -PA1080 0.576191989 0.667035206 0.586183393 0.580836673 0.609553817 0.626763048 0.600725941 0.624399855 0.547552912 0.627046051 0.588689441 -PA1081 0.41670348 0.493664434 0.370096422 0.274594666 0.338026237 0.684990612 0.630510333 0.68872082 0.617929252 0.703031074 0.578082219 -PA1082 0.580014219 0.759550891 0.600353661 0.589888922 0.583418162 0.626078601 0.612486412 0.596938825 0.536932098 0.700452869 0.52642267 -PA1083 0.485368668 0.591199657 0.46876703 0.441487227 0.49840662 0.571159138 0.532396072 0.596760205 0.497587095 0.578525276 0.465020215 -PA1084 0.481785993 0.526002695 0.502149584 0.466099243 0.457331677 0.622162824 0.580085969 0.581582086 0.596571729 0.597284619 0.558923954 -PA1085 0.481707257 0.495039029 0.522423042 0.318933148 0.312261189 0.453475528 0.438421741 0.439923583 0.416047115 0.444053781 0.438320354 -PA1086 0.573409817 0.707215023 0.657775783 0.55135232 0.571900466 0.137590983 0.135642135 0.173956195 0.153279758 0.162617488 0.135312832 -PA1087 0.721174444 0.694774292 0.779200358 0.600613816 0.615220783 0.184499658 0.180467638 0.2614259 0.17250877 0.200322069 0.09888896 -PA1088 0.629991172 0.629378282 0.609957821 0.465436931 0.484843084 0.320876262 0.286846233 0.228329939 0.249423938 0.242797657 0.310076205 -PA1089 0.593612677 0.492622954 0.590567375 0.462121881 0.459508925 0.349846456 0.262078797 0.402665989 0.34567708 0.388245092 0.412651083 -PA1090 0.622647326 0.515409747 0.567557316 0.51679143 0.474534191 0.289857666 0.238960729 0.150591236 0.294017099 0.251001755 0.231743328 -PA1091 0.587840617 0.558848074 0.592469874 0.388873009 0.385607305 0.435322296 0.39755772 0.415783414 0.403969913 0.237904777 0.440352441 -PA1092 0.820541693 0.852540458 0.847265788 0.806958058 0.818727119 0.197321401 0.144611419 0.220526759 0.199972563 0.13588221 0.157359742 -PA1093 0.696660404 0.621571806 0.762493088 0.60532917 0.610840321 0.298986348 0.259673481 0.297613444 0.242944805 0.235567386 0.248093759 -PA1094 0.717861497 0.810999796 0.817096932 0.720476415 0.733468788 0.130723171 0.226436988 0.176438343 0.205293613 0.254229557 0.248885228 -PA1095 0.687334699 0.743603913 0.747763737 0.492827894 0.542930654 0.072638797 0.104910278 0.194730226 0.101003028 0.093055135 0.175774613 -PA1096 0.605860905 0.687355387 0.775727966 0.453015884 0.510029763 0.123079138 0.124352672 0.113022652 0.147323141 0.14295087 0.147279958 -PA1097 0.699447339 0.743134675 0.778313197 0.846751251 0.831667775 0.677486186 0.70880684 0.694897367 0.620061938 0.73851649 0.683310156 -PA1098 0.512050263 0.548434724 0.56152966 0.439385034 0.534672711 0.373105292 0.53126471 0.266093464 0.280442119 0.454926679 0.290704397 -PA1099 0.572225775 0.693028804 0.604459613 0.537567804 0.547944551 0.281882952 0.320251484 0.262721346 0.341193797 0.358108014 0.40774136 -PA1100 0.46508853 0.542704136 0.517293007 0.468406485 0.459940639 0.342634513 0.562117533 0.390524094 0.40553891 0.469139489 0.439433996 -PA1101 0.620920021 0.663121693 0.666995448 0.464505541 0.476766703 0.430128869 0.490872731 0.407890435 0.492755322 0.424035914 0.471069366 -PA1102 0.647330662 0.604141426 0.786905318 0.643047862 0.618551672 0.705259423 0.760204015 0.720182857 0.767077587 0.773106475 0.778484548 -PA1103 0.732079795 0.650830652 0.781418512 0.605577651 0.575960691 0.677512856 0.630598703 0.724929244 0.588622331 0.664790706 0.647957661 -PA1104 0.543705483 0.491372084 0.45508686 0.147102169 0.220360148 0.308176876 0.334875115 0.361374127 0.26626369 0.354658638 0.37793089 -PA1105 0.442632104 0.294414344 0.575911571 0.199054488 0.237132803 0.347484448 0.584695568 0.367281763 0.629407427 0.471698671 0.520188876 -PA1106 0.191497082 0.253884557 0.657031566 0.673285025 0.660947413 0.688725614 0.830203901 0.669487187 0.820937442 0.663987385 0.897961685 -PA1107 0.18089286 0.188365568 0.090846778 0.367635396 0.382934682 0.327063617 0.233988883 0.552348987 0.288591811 0.368552898 0.278145557 -PA1108 0.272392353 0.223489775 0.217150708 0.293051731 0.240309968 0.486787945 0.340710768 0.48758762 0.527527693 0.376089205 0.488177849 -PA1109 0.268877 0.262770539 0.346763426 0.331997036 0.363387887 0.262498904 0.276310218 0.339392132 0.361336857 0.195762939 0.314366759 -PA1110 0.714265072 0.686204235 0.640150177 0.337091204 0.417104331 0.400480264 0.615813092 0.435637297 0.734970268 0.479767098 0.627264784 -PA1111 0.163557576 0.24497194 0.13719797 0.379823351 0.358010169 0.282627798 0.222945626 0.264462796 0.224446794 0.302639746 0.223018154 -PA1112 0.051956502 0.135384805 0.095032335 0.371481841 0.411817529 0.435676392 0.496051998 0.371481841 0.53516453 0.545577408 0.50232337 -PA1113 0.078112151 0.06846032 0.137445394 0.10643766 0.090987533 0.202099054 0.195807318 0.241173742 0.155839013 0.154145617 0.157234264 -PA1114 0.484485837 0.50747453 0.526472183 0.637486132 0.690862658 0.631126224 0.684650848 0.607200755 0.766568483 0.727787164 0.661335472 -PA1115 0.42056948 0.428499205 0.511117498 0.534963998 0.50662955 0.740752248 0.651361172 0.785569209 0.623219282 0.743444285 0.664306938 -PA1116 0.728725124 0.410601126 0.696851035 0.331237312 0.343773112 0.455234288 0.501505852 0.388529988 0.621231242 0.464197854 0.559632365 -PA1117 0.397199982 0.423384594 0.445164992 1 0.978203555 0.102948458 0.238445559 0.202655111 0.203197117 0.078136275 0.235382663 -PA1118 0.194355651 0.15071067 0.248845318 0.971560721 0.94647996 0.207688808 0.146123156 0.208842388 0.160683682 0.215743652 0.175919847 -PA1119 0.520072209 0.64702963 0.576401049 0.708545288 0.715828277 0.478097916 0.514479054 0.530198082 0.423405331 0.562486425 0.464484204 -PA1120 0.460568403 0.313962255 0.407123259 0.831131496 0.82967284 0.516476644 0.343289649 0.445311484 0.439841159 0.436935376 0.373876174 -PA1121 0.377331912 0.28664389 0.323790229 0.878045574 0.855212474 0.618530074 0.476639698 0.63143575 0.486179151 0.551894941 0.485092796 -PA1122 0.393889202 0.390530847 0.510250399 0.68456726 0.69870845 0.261514696 0.183096248 0.22726892 0.245477851 0.280954669 0.207702183 -PA1123 0.294946769 0.224366615 0.225045049 0.55626426 0.56841154 0.636935218 0.746300549 0.620593844 0.734960989 0.631477004 0.658262678 -PA1124 0.301975351 0.331559602 0.473267643 0.54487117 0.577829017 0.587972282 0.740763245 0.674761504 0.475228891 0.490696108 0.842767301 -PA1125 0.40728398 0.352555134 0.495480818 0.573090351 0.635730076 0.468511134 0.716452194 0.521019698 0.594676724 0.629980567 0.635867026 -PA1126 0.616911021 0.480838406 0.685157464 0.239530566 0.168616549 0.624774776 0.648938171 0.488835343 0.536436815 0.614035117 0.547363546 -PA1127 0.377383913 0.673787288 0.540254766 0.461360216 0.473218985 0.188712214 0.186814875 0.287446718 0.189638166 0.115832231 0.141819129 -PA1128 0.428267032 0.431835285 0.417303938 0.330798089 0.27945161 0.39476424 0.439535548 0.408008107 0.491301834 0.442545915 0.555799352 -PA1129 0.23480397 0.14060331 0.271272781 0.251957014 0.237814437 0.10723657 0.145094937 0.343311289 0.096400217 0.070622705 0.185055712 -PA1130 0.049925142 0.150658352 0.013264947 0.289335076 0.241277069 0.377204521 0.160061988 0.336008183 0.284926624 0.412116862 0.196862411 -PA1131 0.124455215 0.096130177 0.187609949 0.437592553 0.330924233 0.320162143 0.327691736 0.521218274 0.351830277 0.396422887 0.426208227 -PA1132 0.950871075 0.479104972 0.776175126 0.264002943 0.267619145 0.369406522 0.603383983 0.450876257 0.571318974 0.37273386 0.47280682 -PA1133 0.324815966 0.310770217 0.184295153 0.256301883 0.33192352 0.487577209 0.465863832 0.314062441 0.538640126 0.357469376 0.504579858 -PA1134 0.223875634 0.200868941 0.189622861 0.1991027 0.200557747 0.249247916 0.23183213 0.291076645 0.306873095 0.193304354 0.245497188 -PA1135 0.15169767 0.426149041 0.289147024 0.651331414 0.607961765 0.342828624 0.153963119 0.438465576 0.294007601 0.428218961 0.318223314 -PA1136 0.254479518 0.556614442 0.190396932 0.481504796 0.468912719 0.275925233 0.106836178 0.427860872 0.153137365 0.365827467 0.349039956 -PA1137 0.077217227 0.785524189 0.121072296 0.119870137 0.112733857 0.124466884 0.144165587 0.171543357 0.111413613 0.20077025 0.13145191 -PA1138 0.38648114 0.314996468 0.35422191 0.499892479 0.426885508 0.178612596 0.296380325 0.352782928 0.34067119 0.169310073 0.173973484 -PA1139 0.223121019 0.266161063 0.268872647 0.4086408 0.347650761 0.379152009 0.527992893 0.258410483 0.371620704 0.379155637 0.393558441 -PA1140 0.400139736 0.170818296 0.325825854 0.255461281 0.206867514 0.466254906 0.506932832 0.271821979 0.486721377 0.54654069 0.382065259 -PA1141 0.289505948 0.208543887 0.237461014 0.269813007 0.236517906 0.177506137 0.108095976 0.201684993 0.16834317 0.125630008 0.173191393 -PA1142 0.47249003 0.296233097 0.635385876 0.367512366 0.328015521 0.186452686 0.237470952 0.139635689 0.05373609 0.006876675 0.17691117 -PA1143 0.253299804 0.240307895 0.174545798 0.306743314 0.165076231 0.269396351 0.170527024 0.512116093 0.338070905 0.305113908 0.361718869 -PA1144 0.170686564 0.165770409 0.079128475 0.155586396 0.13330423 0.24756775 0.279880868 0.325158718 0.31320909 0.200663635 0.448467054 -PA1145 0.278057607 0.350518884 0.216420884 0.247407064 0.21816328 0.451388141 0.439840564 0.51554439 0.417759874 0.315072992 0.396547871 -PA1146 0.151666246 0.141549662 0.093602548 0.20996139 0.186934909 0.109030818 0.089547757 0.107047488 0.141186532 0.134337585 0.209964605 -PA1147 0.181543877 0.151657174 0.098886126 0.169592579 0.191312849 0.23042461 0.240983195 0.254210384 0.271094461 0.202952755 0.330876046 -PA1148 0.214830278 0.275007326 0.176069394 0.298191516 0.264105829 0.270398265 0.166954707 0.249352375 0.294011953 0.271483731 0.254472657 -PA1149 0.406449651 0.456430133 0.248008773 0.409153242 0.313384325 0.453160259 0.475899153 0.47032691 0.544239078 0.458358141 0.530430583 -PA1150 0.200986515 0.402670129 0.184512521 0.159178872 0.140871273 0.168647107 0.230414749 0.250843002 0.167425875 0.120114165 0.202503374 -PA1151 0.103002764 0.446581021 0.080213271 0.092471102 0.083348498 0.098042323 0.121275717 0.191162457 0.108345921 0.126036241 0.174495802 -PA1152 0.094936171 0.119213194 0.097889692 0.096311793 0.037839649 0.073589564 0.060176762 0.124215736 0.099046047 0.045911273 0.1051174 -PA1153 0.425427586 0.190416107 0.598509731 0.209189577 0.283822877 0.557641733 0.528455198 0.540894702 0.532479159 0.522713373 0.532034683 -PA1154 0.191112282 0.224213803 0.113208685 0.295376287 0.236302082 0.443772815 0.502302707 0.543471025 0.419761549 0.404315754 0.670999556 -PA1155 0.798270762 0.749320757 0.70481913 0.720246827 0.686611853 0.531852401 0.760415818 0.479493128 0.789619671 0.583746286 0.78669564 -PA1156 0.670729993 0.664309271 0.690159758 0.678414183 0.652442957 0.447900307 0.512782379 0.371995402 0.457144577 0.463446868 0.504845105 -PA1157 0.57237603 0.306744135 0.564332841 0.59232317 0.535794616 0.406341173 0.564155245 0.415773122 0.564991946 0.322045985 0.606472352 -PA1158 0.401770926 0.070618571 0.437376897 0.390200405 0.29569115 0.344857114 0.541645845 0.372748334 0.335327918 0.265883844 0.567082051 -PA1159 0.669697957 0.46293353 0.628729676 0.616147543 0.618451211 0.719138285 0.852927205 0.663088609 0.840219547 0.75859969 0.859522856 -PA1160 0.667589728 0.665505625 0.638647441 0.656864675 0.711828682 0.268152636 0.387355327 0.27191811 0.321372807 0.351196707 0.430732681 -PA1161 0.637446999 0.555693425 0.637435204 0.149597628 0.196004089 0.241313748 0.231803579 0.207157157 0.28117964 0.170932834 0.203174191 -PA1162 0.641765674 0.569367033 0.656709473 0.284817049 0.233008391 0.365892103 0.355229586 0.377378568 0.430317152 0.391353877 0.372581655 -PA1163 0.276822011 0.233766951 0.14418311 0.418805952 0.489641396 0.130145911 0.115642693 0.404898312 0.179565532 0.315415144 0.202298094 -PA1164 0.578973021 0.405628422 0.457002664 0.470630484 0.446435593 0.423647984 0.40937363 0.279705357 0.49144907 0.265622896 0.369354418 -PA1165 0.287870349 0.322532138 0.30029655 0.300006917 0.212378837 0.205509073 0.204885504 0.176663508 0.054794934 0.109642854 0.305356834 -PA1166 0.112302444 0.174510281 0.28256753 1 0.94822003 0.172307416 0.244721806 0.223334834 0.091007084 0.284060683 0.278093364 -PA1167 0.283291486 0.286753594 0.314422745 1 0.965759282 0.475090704 0.461223999 0.459509222 0.41030784 0.498467831 0.405528315 -PA1168 0.219567071 0.061857246 0.116700038 0.115409511 0.104642236 0.200123378 0.317827117 0.330511764 0.271924913 0.220236708 0.289824838 -PA1169 0.181588002 0.074650224 0.108030175 0.13306308 0.157793471 0.319825155 0.369073687 0.321289479 0.347846228 0.216224092 0.416885584 -PA1170 0.637291444 0.384936479 0.386048304 0.178345589 0.189199012 0.203304397 0.27739948 0.17194512 0.398780028 0.248001877 0.273610446 -PA1171 0.729879675 0.418118352 0.640310633 0.633127517 0.607954176 0.442980897 0.381757579 0.402135276 0.545196617 0.438156849 0.355546345 -PA1172 0.268658299 0.201403996 0.420731453 0.971621837 0.978937086 0.638142407 0.411574688 0.804787395 0.397875106 0.657271181 0.408304251 -PA1173 0.154161673 0.129598801 0.336486405 1 0.996235959 0.438890588 0.193265654 0.445977902 0.228324278 0.351237123 0.263652152 -PA1174 0.089653119 0.175660832 0.315575278 0.946692969 0.922913807 0.470932136 0.158573597 0.501187802 0.20364904 0.416977444 0.168219467 -PA1175 0.09211369 0.146983863 0.363278395 0.971618121 1 0.270384583 0.150036987 0.449426438 0.104058189 0.403206886 0.181956878 -PA1176 0.021005248 0.146012269 0.169899888 0.721591886 0.757700471 0.240868658 0.253722677 0.384610979 0.216936936 0.328768736 0.151114441 -PA1177 0.037917014 0.052745236 0.088484079 0.73296294 0.757470686 0.090730004 0.130355986 0.184865609 0.177454883 0.122447636 0.122281165 -PA1178 0.086554783 0.716605696 0.512181748 0.417715539 0.418925529 0.852146031 0.843701319 0.806469622 0.825942205 0.848653981 0.867234563 -PA1179 0.114542639 0.453630923 0.37801741 0.306478342 0.315823696 0.411964121 0.444775135 0.359372722 0.449175343 0.363213568 0.441745256 -PA1180 0.05486994 0.384446862 0.297831318 0.146019135 0.181825462 0.316450496 0.419145217 0.29143497 0.347728654 0.411118152 0.335970137 -PA1181 0.33678382 0.181994553 0.239990762 0.470016758 0.44319766 0.276949635 0.31666148 0.413445775 0.214183819 0.311005288 0.187747414 -PA1182 0.398338918 0.237369775 0.616429489 0.456553731 0.383171052 0.342810351 0.277335903 0.419390804 0.293878555 0.222279851 0.375361572 -PA1183 0.346231617 0.475931456 0.139798029 0.127720099 0.141058664 0.273534279 0.140904728 0.276009594 0.20506958 0.229181168 0.17723417 -PA1184 0.29595378 0.1659877 0.419441283 0.280818794 0.339323268 0.270861591 0.246523872 0.410686648 0.348523172 0.202393277 0.195084969 -PA1185 0.218599526 0.249048295 0.155061096 0.456489614 0.414064534 0.492211104 0.487039257 0.530271773 0.449321776 0.416477369 0.325178501 -PA1186 0.42448223 0.432138175 0.325415115 0.452261145 0.475725246 0.525292631 0.469580305 0.595187084 0.586096699 0.511092615 0.721690893 -PA1187 0.300696435 0.335357869 0.355942039 0.334673049 0.38108629 0.273353103 0.15917842 0.240236371 0.140542154 0.350216283 0.114029301 -PA1188 0.245982166 0.133538267 0.353796315 0.6348844 0.572854426 0.22415042 0.213365628 0.232099103 0.198133976 0.113727336 0.236183225 -PA1189 0.411323797 0.279700219 0.575099155 0.359575495 0.341141227 0.309895114 0.211035218 0.337499026 0.292742379 0.24258474 0.340374201 -PA1190 0.106440061 0.103314232 0.203009878 0.388879921 0.407764333 0.260058303 0.163107057 0.323169417 0.214246529 0.254110949 0.182266389 -PA1191 0.243318817 0.197432082 0.386473752 0.498595016 0.608494008 0.66602445 0.334409744 0.883867664 0.209945215 0.674044069 0.433714731 -PA1192 0.829186225 0.602781794 0.870676341 0.153438636 0.28375609 0.5697899 0.675099496 0.490311395 0.681303036 0.489274198 0.709676901 -PA1193 0.813070326 0.573959793 0.777586334 0.159119749 0.160715933 0.652846267 0.75918349 0.581654607 0.796962562 0.777267584 0.718713981 -PA1194 0.203457455 0.129342961 0.193227385 0.32257197 0.463867716 0.253880979 0.348504597 0.171520715 0.491837854 0.223398112 0.209227145 -PA1195 0.137084726 0.141265544 0.127232189 0.524449339 0.651555211 0.15817133 0.052297712 0.152053719 0.087109307 0.073698865 0.169654536 -PA1196 0.182630589 0.883204427 0.175299654 0.334507335 0.324525271 0.20153788 0.046268606 0.130234436 0.052183401 0.071758236 0.036599805 -PA1197 0.124177663 0.50293555 0.255609296 0.210511584 0.25427361 0.220190923 0.167515085 0.14465688 0.157674839 0.215423936 0.221167791 -PA1198 0.551161873 0.592180743 0.532273434 0.615225584 0.61472131 0.465901294 0.588221196 0.488559558 0.515931034 0.492797465 0.53152529 -PA1199 0.660644348 0.48796609 0.578603937 0.484599246 0.565750009 0.681982715 0.597130572 0.651449846 0.563589363 0.712777764 0.496517525 -PA1200 0.500468452 0.218258126 0.492366921 0.398519036 0.418399694 0.662681919 0.557758383 0.691767421 0.554047377 0.617404608 0.61010466 -PA1201 0.413558709 0.321102697 0.445129481 0.256517432 0.225148292 0.494104614 0.522145493 0.335576829 0.431356287 0.578536013 0.531930476 -PA1202 0.152167757 0.435397009 0.245726891 0.7954431 0.772577101 0.424512084 0.237709435 0.466721439 0.33023464 0.467721426 0.351392073 -PA1203 0.193643262 0.30440481 0.418304456 0.353911808 0.379971623 0.2346899 0.116703572 0.238324761 0.267600396 0.154334582 0.123077136 -PA1204 0.384090828 0.445940883 0.349017842 0.516140013 0.501882398 0.396425653 0.366513359 0.505895697 0.403041548 0.375130934 0.273073465 -PA1205 0.335374766 0.431722183 0.462676651 0.432073079 0.479521162 0.270927057 0.186129755 0.250769692 0.182978344 0.414295786 0.159603254 -PA1206 0.570271047 0.443779742 0.430398358 0.346338672 0.345177904 0.262543103 0.33587759 0.362085559 0.343681897 0.372496989 0.423350006 -PA1207 0.464066168 0.199459649 0.421025185 0.143364219 0.087775193 0.284487655 0.215891804 0.237966975 0.253767538 0.213598692 0.259550867 -PA1208 0.277830615 0.169125969 0.136669864 0.629701994 0.741133479 0.213832194 0.195717902 0.184630627 0.111297886 0.333332977 0.278357271 -PA1209 0.31012925 0.312951569 0.314488679 0.480545009 0.50722048 0.104534799 0.188934823 0.233745029 0.087511342 0.115779402 0.147112087 -PA1210 0.170922354 0.194214096 0.153455405 0.254985273 0.309323825 0.156185723 0.119793741 0.197099533 0.149802894 0.203446799 0.275051659 -PA1211 0.147061644 0.175659824 0.138541743 0.237315742 0.228355737 0.204254906 0.297639722 0.32285752 0.123113982 0.40837722 0.232327053 -PA1212 0.141454066 0.108367735 0.076082683 0.128045934 0.129023283 0.172270889 0.136187996 0.324176225 0.078402902 0.301887818 0.076523929 -PA1213 0.077265573 0.148030431 0.0770725 0.134524195 0.091275787 0.130726533 0.060734355 0.082654703 0.056963477 0.143464423 0.070468682 -PA1214 0.15599279 0.175108626 0.18784582 0.153402925 0.168212313 0.222100829 0.260397786 0.258820135 0.261030453 0.21198863 0.221280606 -PA1215 0.153994738 0.109661824 0.116614406 0.201257238 0.187270025 0.153693455 0.150586184 0.232338385 0.110469234 0.207477799 0.088525093 -PA1216 0.139022718 0.075237293 0.29200922 0.297915908 0.320138594 0.367105352 0.125279144 0.376064775 0.138672395 0.372350176 0.171346509 -PA1217 0.11788325 0.117108591 0.183997166 0.243781241 0.251058785 0.286885912 0.183442239 0.27552382 0.196749176 0.281836159 0.167751132 -PA1218 0.103611696 0.093429157 0.165554759 0.267317458 0.265822539 0.193653399 0.108616129 0.200867234 0.141569168 0.159254165 0.133590711 -PA1219 0.142648343 0.160934619 0.138242433 0.280157483 0.259846462 0.221632573 0.14096222 0.199432678 0.14362625 0.245926386 0.233681188 -PA1220 0.198519917 0.131024444 0.153137265 0.228192531 0.17168267 0.170450049 0.213523945 0.196418677 0.221403593 0.256287339 0.276074756 -PA1221 0.165170188 0.161461754 0.158817043 0.257372567 0.231394342 0.158858146 0.129119937 0.181926672 0.153292927 0.15250875 0.152804464 -PA1222 0.680976034 0.639222417 0.692624136 0.273814369 0.346255524 0.395413823 0.349764297 0.285604339 0.500243501 0.403614325 0.5078322 -PA1223 0.199558265 0.620169172 0.165366865 0.309634621 0.230358381 0.562422475 0.583203422 0.516497505 0.607330476 0.450200474 0.52205431 -PA1224 0.319487624 0.397863526 0.19937266 0.380537649 0.245512478 0.473546133 0.4681677 0.591472558 0.382472999 0.450761658 0.542086386 -PA1225 0.58751831 0.350966091 0.435646807 0.368014732 0.348533778 0.313325914 0.312743 0.320873672 0.332597621 0.335322576 0.368962342 -PA1226 0.459864398 0.51265839 0.416472328 0.46082184 0.568440728 0.354745603 0.281561147 0.390762017 0.277637882 0.374113683 0.374922378 -PA1227 0.563398986 0.328320147 0.434031687 0.237620608 0.325856871 0.488047662 0.544999605 0.327904358 0.526389311 0.367726648 0.668871437 -PA1228 0.700420281 0.594580973 0.360835244 0.223853285 0.212260041 0.237951773 0.196920037 0.174799707 0.184235493 0.270262412 0.249873462 -PA1229 0.390504001 0.3845583 0.416752623 0.389291692 0.438237935 0.286485384 0.401182134 0.210023426 0.275789789 0.203588995 0.160681601 -PA1230 0.114654844 0.096701312 0.192160637 0.193105603 0.160631063 0.224880742 0.200789528 0.31624591 0.204565764 0.199279079 0.228250534 -PA1231 0.247216671 0.275908264 0.242077743 0.304620757 0.272131689 0.246903005 0.296401997 0.424252234 0.234749218 0.317218281 0.339923459 -PA1232 0.212639143 0.199018821 0.157396347 0.257066671 0.262721821 0.26351431 0.203992198 0.290715721 0.225248295 0.083130645 0.347531628 -PA1233 0.149684178 0.154963571 0.296579745 0.270146409 0.245018214 0.366986407 0.406404154 0.252633216 0.44716578 0.324957384 0.360770319 -PA1234 0.381536868 0.445102694 0.626032959 0.524698628 0.521732084 0.502438568 0.391635497 0.219393441 0.387742591 0.329089139 0.343648853 -PA1235 0.375205352 0.319520559 0.37532283 0.471730721 0.385913492 0.28989548 0.38622108 0.424279281 0.356682161 0.299155209 0.410146356 -PA1236 0.245287982 0.256413732 0.175438541 0.284624483 0.288366364 0.375347617 0.30141905 0.279040242 0.285456378 0.305350471 0.453188653 -PA1237 0.259481519 0.280235528 0.1823641 0.324445678 0.382512931 0.3530238 0.07196378 0.306014831 0.22911915 0.276160305 0.250900403 -PA1238 0.29119736 0.276616631 0.327733482 0.474115838 0.372986266 0.224393439 0.233318154 0.237649857 0.293468782 0.236488539 0.222879076 -PA1239 0.208606007 0.198947444 0.189363432 0.253325735 0.23316208 0.25064307 0.193308337 0.215697886 0.164282747 0.175099151 0.182547628 -PA1240 0.216891754 0.182616406 0.181517018 0.211647474 0.255682949 0.144056271 0.187801877 0.204226899 0.141354815 0.173921284 0.171685291 -PA1241 0.551344956 0.4081602 0.426675429 0.448580027 0.46873884 0.635626397 0.769521453 0.635937972 0.673794534 0.637356662 0.686374866 -PA1242 0.300867748 0.247451865 0.282089433 0.542220359 0.588829794 0.512669547 0.414673836 0.654686058 0.431809948 0.45894524 0.457784866 -PA1243 0.111075774 0.167299299 0.140799949 0.36345904 0.419889355 0.256396193 0.096570013 0.290727297 0.164476306 0.405609403 0.243766317 -PA1244 0.387204554 0.676385734 0.34688222 0.257565678 0.30075039 0.156189033 0.159058349 0.124727915 0.181031748 0.078180468 0.133787854 -PA1245 0.29480114 0.200613757 0.467171104 0.52797215 0.578837529 0.343886461 0.424467577 0.358213231 0.391658239 0.365961438 0.350796472 -PA1246 0.168067429 0.125236925 0.315831616 0.42873839 0.451496119 0.22634542 0.368385002 0.286563291 0.378575558 0.317304999 0.34433138 -PA1247 0.099208506 0.155766832 0.397663016 0.404976183 0.47946366 0.253107072 0.177243009 0.289095582 0.261063723 0.273650869 0.280130288 -PA1248 0.211048335 0.183369077 0.403401858 0.426875327 0.450340931 0.37763219 0.313604353 0.34221094 0.261402687 0.374265328 0.278667695 -PA1249 0.136457643 0.041697384 0.566937499 0.652059059 0.719314614 0.539421485 0.489483629 0.625523993 0.504499593 0.613550653 0.502551142 -PA1250 0.383042797 0.135277918 0.794984764 0.66902113 0.667697053 0.330356742 0.383249162 0.355202594 0.395636792 0.341432013 0.393310378 -PA1251 0.171177823 0.126027197 0.2424324 0.210447028 0.186374596 0.356246741 0.378258601 0.244759512 0.333283228 0.320670177 0.371915923 -PA1252 0.254440684 0.237123573 0.305979639 0.617757393 0.572030462 0.223958604 0.163209985 0.191890671 0.237832385 0.209451622 0.162096128 -PA1253 0.234668145 0.173317551 0.191131949 0.195232505 0.227629721 0.242728943 0.201773264 0.270669819 0.175150791 0.252289973 0.212374298 -PA1254 0.133510003 0.135938245 0.075573671 0.089067 0.102542455 0.149458305 0.117453958 0.152377993 0.149161611 0.139449978 0.168330071 -PA1255 0.1816067 0.177900184 0.101081068 0.336209058 0.340265122 0.269413101 0.222881011 0.273836421 0.13317874 0.166865535 0.264010987 -PA1256 0.097159022 0.150122674 0.101409634 0.279162677 0.271399497 0.190418557 0.123488809 0.201702225 0.179254026 0.184444907 0.24077972 -PA1257 0.184333012 0.185945343 0.152827457 0.285925571 0.152889439 0.279573692 0.15329363 0.252277304 0.321878303 0.222098896 0.304087747 -PA1258 0.218329729 0.207507346 0.038521712 0.202133234 0.176726027 0.296272883 0.353420576 0.331290736 0.417428963 0.382453875 0.308856391 -PA1259 0.122869916 0.06936487 0.053806207 0.195010028 0.13688093 0.169319235 0.130133706 0.194260242 0.275783774 0.099769545 0.062202973 -PA1260 0.111814209 0.10096358 0.084706266 0.152263807 0.098850783 0.17479333 0.102091022 0.137063094 0.107035669 0.104920147 0.088878372 -PA1261 0.43975627 0.392738974 0.476833166 0.428138238 0.369840719 0.476448832 0.347567022 0.23826617 0.371803516 0.304257212 0.285018703 -PA1262 0.256373505 0.227173565 0.297233378 0.334357146 0.296127059 0.335661039 0.250010253 0.297225894 0.297957356 0.272527727 0.380275022 -PA1263 0.459537637 0.290946764 1 0.582970518 0.577225544 0.546939152 0.402835393 0.728522413 0.456011748 0.679583085 0.304234297 -PA1264 0.262535749 0.224622674 0.27243811 0.392002812 0.412120009 0.301729513 0.409153011 0.514620507 0.334030229 0.325351289 0.285503004 -PA1265 0.211255209 0.213134757 0.204288388 0.252181518 0.231628526 0.317805264 0.164394541 0.519641131 0.321903185 0.284273557 0.3795637 -PA1266 0.294923271 0.22113253 0.201470719 0.358297648 0.33300579 0.115624092 0.197932316 0.235068424 0.166894945 0.157155675 0.11483422 -PA1267 0.290739648 0.323532334 0.203172972 0.478942874 0.376136917 0.266366969 0.147356371 0.149818626 0.293424433 0.262195314 0.189182708 -PA1268 0.185590253 0.210343106 0.119362705 0.294286152 0.242272476 0.195719721 0.228292194 0.142413651 0.17463987 0.245058645 0.156415529 -PA1269 0.498484518 0.496060467 0.596576437 0.526058317 0.561687326 0.65190239 0.647664713 0.596222793 0.547707002 0.573610285 0.595132323 -PA1270 0.192538962 0.265813215 0.05105645 0.259988335 0.266101276 0.287951889 0.345583555 0.38967683 0.327003853 0.272943876 0.440397906 -PA1271 0.906851719 0.496785225 0.301739123 0.106990465 0.0816583 0.210026295 0.347978017 0.230088902 0.412886393 0.229460582 0.268196479 -PA1272 0.919857204 0.679230256 0.479430497 0.48612346 0.383586937 0.718489521 0.587797011 0.617866511 0.601851268 0.732695815 0.642801886 -PA1273 0.910567227 0.473674097 0.371638825 0.232136607 0.174181824 0.349748351 0.23437906 0.263520322 0.459770132 0.354263745 0.370893875 -PA1274 0.990886024 0.506738651 0.380284126 0.278670587 0.227736034 0.294842358 0.328424618 0.272204198 0.366506824 0.321477871 0.365085185 -PA1275 0.772044836 0.420597542 0.280078808 0.377173128 0.359733638 0.419038717 0.414555893 0.375192419 0.352944735 0.316201642 0.384401496 -PA1276 0.766176626 0.442298049 0.238728892 0.145155922 0.009358517 0.164160844 0.229482569 0.204585472 0.280817578 0.215117447 0.293812065 -PA1277 0.938594173 0.557375691 0.416032207 0.118541823 0.123757716 0.375834072 0.270502893 0.188191837 0.420426679 0.296806403 0.411100322 -PA1278 0.843579161 0.573622214 0.540620823 0.248756108 0.303191067 0.300683364 0.265476281 0.033206945 0.247438012 0.131288467 0.08594377 -PA1279 0.728942097 0.670271345 0.295566827 0.310833932 0.227689398 0.264637858 0.309912043 0.109603627 0.448358447 0.397802155 0.348332064 -PA1280 0.848169259 0.525804699 0.404975767 0.125235365 0.222141968 0.449399829 0.465825231 0.413332769 0.361262515 0.388956799 0.435964362 -PA1281 0.536312268 0.284998166 0.132989091 0.081203383 0.040476141 0.242193637 0.237378807 0.257705539 0.292150882 0.152922378 0.179215425 -PA1282 0.138527342 0.324066673 0.06366686 0.142839233 0.117468603 0.117964833 0.246709403 0.165610355 0.237630456 0.159859443 0.223643959 -PA1283 0.147687501 0.3207976 0.238081095 0.191157385 0.24034196 0.319668053 0.071055493 0.423106688 0.060300967 0.144650774 0.13923833 -PA1284 0.292496405 0.245659368 0.219078411 0.385363965 0.274110205 0.285952428 0.165477759 0.21933557 0.205321698 0.195723147 0.255838747 -PA1285 0.263385378 0.241634781 0.266075515 0.346188807 0.390524946 0.275466173 0.237596063 0.38123831 0.306730654 0.192559678 0.276778853 -PA1286 0.168740411 0.068300209 0.084601912 0.092594012 0.08405964 0.13928197 0.113551832 0.198163028 0.15119784 0.159837636 0.238188968 -PA1287 0.29499187 0.284480396 0.389350948 0.508116146 0.474753575 0.543993094 0.565781807 0.695736631 0.571239958 0.540496158 0.511704257 -PA1288 0.864492331 0.800992761 0.834213361 0.492151683 0.525312151 0.711056667 0.674290025 0.697405573 0.676371668 0.712434897 0.665393286 -PA1289 0.19857128 0.186550181 0.27052059 0.858001479 0.911504165 0.258367601 0.146314619 0.418283729 0.19015318 0.299521341 0.084006172 -PA1290 0.395389178 0.328194625 0.304051044 0.606384292 0.825328585 0.387439635 0.163284809 0.483355117 0.25642811 0.317235729 0.171911646 -PA1291 0.316592257 0.151897512 0.364745544 0.380219553 0.469357321 0.245363855 0.244637179 0.244847007 0.228328289 0.226004339 0.289525309 -PA1292 0.55702989 0.590361915 0.453043846 0.388951684 0.45026416 0.267508959 0.185612817 0.212127348 0.153994718 0.256032499 0.09444267 -PA1293 0.529751339 0.447576121 0.565144209 0.085404318 0.086095937 0.331564311 0.465412886 0.239736013 0.305379187 0.273642012 0.440146478 -PA1294 0.690999329 0.623485613 0.709893144 0.558682147 0.578495827 0.250012662 0.301438341 0.119909333 0.214013377 0.330499161 0.171165404 -PA1295 0.489539911 0.288369093 0.507290841 0.220761538 0.252441937 0.24113887 0.367020168 0.167124229 0.461838291 0.400048918 0.351749585 -PA1296 0.451916352 0.482397334 0.513765478 0.318263662 0.412546494 0.49678191 0.721978716 0.602255471 0.636162278 0.626061073 0.692649136 -PA1297 0.201526217 0.158398445 0.42095034 0.18922364 0.177112298 0.270234173 0.295141346 0.364531324 0.241603178 0.287072297 0.394523391 -PA1298 0.194238729 0.15462761 0.288227245 0.13606959 0.134031886 0.082757755 0.255571681 0.123099873 0.410486372 0.169263968 0.331233268 -PA1299 0.681028686 0.277796662 0.612339714 0.1693421 0.253228527 0.487206769 0.368017087 0.485007005 0.476410222 0.181051122 0.47510935 -PA1300 0.26073827 0.088887866 0.196541395 0.095407995 0.07317731 0.212674615 0.22572665 0.208132542 0.193545547 0.17142261 0.183476184 -PA1301 0.210848886 0.132960176 0.129679519 0.22146262 0.191774113 0.138137187 0.127700797 0.17885921 0.148705839 0.163707674 0.214741177 -PA1302 0.162256699 0.14574108 0.102431803 0.139357835 0.152124495 0.304258965 0.31927862 0.352972029 0.255744309 0.30101575 0.387902789 -PA1303 0.263964464 0.143225651 0.144127286 0.046816629 0.072462033 0.078617389 0.086200538 0.104499785 0.143970495 0.06275752 0.027125012 -PA1304 0.239798611 0.199262807 0.250500835 0.108616497 0.097253812 0.225106538 0.208394981 0.256050053 0.174657897 0.225124932 0.26619166 -PA1305 0.41804746 0.351371698 0.373171795 0.303455124 0.316303236 0.534593229 0.455821171 0.540294639 0.485911179 0.537288602 0.50878152 -PA1306 0.514305099 0.509195498 0.621285343 0.486989103 0.551367708 0.28237752 0.50200089 0.317141849 0.316988355 0.288166289 0.318429935 -PA1307 0.503116573 0.479028635 0.603665696 0.636629258 0.60129913 0.624073114 0.687336796 0.7703935 0.600317477 0.667642526 0.589127196 -PA1308 0.288676694 0.343848619 0.286878136 0.540478457 0.551941851 0.642312661 0.570886578 0.658438693 0.523949464 0.650478281 0.574534155 -PA1309 0.22869867 0.103867588 0.283396048 0.528106462 0.431009249 0.57261407 0.289617214 0.254052776 0.367682226 0.289967898 0.39235387 -PA1310 0.213755253 0.182266051 0.31276417 0.671394405 0.728634822 0.296589866 0.271771893 0.266392437 0.292673258 0.390088822 0.371215988 -PA1311 0.392503929 0.308314855 0.37838101 0.852436078 0.921134762 0.413058899 0.455934234 0.384976896 0.45117215 0.355939192 0.288940041 -PA1312 0.300843746 0.309997186 0.443092242 0.523100663 0.694690296 0.369331637 0.376647161 0.465794369 0.462829656 0.255008408 0.459539681 -PA1313 0.251196252 0.194460413 0.175270077 0.192408738 0.232105585 0.347711669 0.186376495 0.384974523 0.338334123 0.332443402 0.324073161 -PA1314 0.236996652 0.198213252 0.197719115 0.354068882 0.345608043 0.269255319 0.352549854 0.339679352 0.396262875 0.291460468 0.372257527 -PA1315 0.491547533 0.465073923 0.43560422 0.570351554 0.494834016 0.612785597 0.458105219 0.685035746 0.701230396 0.458636129 0.551282339 -PA1316 0.242433484 0.162191959 0.239292868 0.301309667 0.309175826 0.48183016 0.471055817 0.712536419 0.432044704 0.43778708 0.50102423 -PA1317 0.520434484 0.464652832 0.343922295 0.116968314 0.1184956 0.245049762 0.216214011 0.178669012 0.219985181 0.211242392 0.183661213 -PA1318 0.451833183 0.37445467 0.288693643 0.191978089 0.171186563 0.255750165 0.114135558 0.227165556 0.278909117 0.233331692 0.163136039 -PA1319 0.508682755 0.315420086 0.283542017 0.193012156 0.085719812 0.167907989 0.099433363 0.144581166 0.192058094 0.153758607 0.172858681 -PA1320 0.333539841 0.184106519 0.166883216 0.064457625 0.089579589 0.185832064 0.280772619 0.178432059 0.152243187 0.114719985 0.206006537 -PA1321 0.530935743 0.346012659 0.148722144 0.208749509 0.19038775 0.230042832 0.188878612 0.254617038 0.189238763 0.205724219 0.177689302 -PA1322 0.254616677 0.289397574 0.30170745 0.288043772 0.240680336 0.303786681 0.478584995 0.212620263 0.243076683 0.254181683 0.361857114 -PA1323 0.258982228 0.485381764 0.592682059 0.801160369 0.854688953 0.758079039 0.620605356 0.806991402 0.571562552 0.781380313 0.622987369 -PA1324 0.16528822 0.346500639 0.519238286 0.725467138 0.798418671 0.557737257 0.439925325 0.613388865 0.417936536 0.560405747 0.481524048 -PA1325 0.38058135 0.41855501 0.84170094 0.381814717 0.375615472 0.245418798 0.335420316 0.413498122 0.447384957 0.221140025 0.413280126 -PA1326 0.3833006 0.44799402 0.735306467 0.278635732 0.319155961 0.135402817 0.148034598 0.188523972 0.278894377 0.165704306 0.246766543 -PA1327 0.064625209 0.102104098 0.310073187 0.726045758 0.689045254 0.09406028 0.04337652 0.226215733 0.096137626 0.093764399 0.098850053 -PA1328 0.23396458 0.206334463 0.254186113 0.38526865 0.355413861 0.304218945 0.18008589 0.26922663 0.14501337 0.171228242 0.166462682 -PA1329 0.150852212 0.200669147 0.084624344 0.285113253 0.328775093 0.215866534 0.209281451 0.279077764 0.167565086 0.243059418 0.243457249 -PA1330 0.246578856 0.337133882 0.29385954 0.489064687 0.482927333 0.151920883 0.320558672 0.255602053 0.397924826 0.410136493 0.149301489 -PA1331 0.200766351 0.293800105 0.292156 0.189507436 0.214387464 0.228956744 0.246552765 0.175312417 0.241661823 0.145826553 0.151558263 -PA1332 0.175099941 0.073318604 0.201194421 0.318207691 0.382344101 0.242788983 0.13082149 0.266840121 0.197895356 0.150725521 0.217619957 -PA1333 0.293166964 0.306932912 0.419664813 0.523216612 0.524058089 0.418911605 0.334236165 0.446130085 0.290255892 0.399071179 0.2773576 -PA1334 0.270533742 0.192195209 0.251918166 0.282943784 0.241888321 0.196595567 0.168020023 0.236080266 0.153995667 0.225182465 0.183090609 -PA1335 0.413616563 0.342656707 0.537249182 0.162577514 0.26518284 0.487382981 0.346363341 0.216172141 0.437970639 0.436670659 0.316600854 -PA1336 0.542823429 0.39835072 0.556136924 0.306658478 0.305905566 0.430817613 0.294685803 0.334315681 0.332207452 0.381234325 0.352380526 -PA1337 0.574449189 0.507200164 0.625627227 0.644948809 0.6442164 0.529038808 0.448968098 0.480961316 0.46896953 0.529806387 0.472218928 -PA1338 0.554979681 0.34484906 0.432721225 0.245854501 0.26778737 0.349662738 0.277649188 0.306816136 0.207759993 0.347228301 0.273186052 -PA1339 0.718660428 0.533992401 0.638089181 0.648356644 0.653792442 0.36690761 0.386991935 0.321663686 0.379625581 0.483761355 0.390891328 -PA1340 0.672947447 0.44631216 0.535098299 0.495276673 0.545601951 0.375514057 0.306688595 0.328051014 0.369579148 0.403401965 0.416052028 -PA1341 0.655361084 0.375678977 0.567385591 0.479384298 0.443676156 0.174552918 0.251266582 0.223550278 0.269014548 0.253061644 0.236045119 -PA1342 0.750126006 0.648290404 0.704430489 0.82210309 0.840333134 0.515804997 0.459567584 0.513676844 0.487393012 0.579463843 0.493324481 -PA1343 0.126030991 0.384372228 0.233821532 0.198345905 0.227773059 0.236826567 0.31820617 0.327323022 0.276704319 0.295457694 0.29541376 -PA1344 0.112380393 0.328790483 0.318312306 0.779494934 0.748503484 0.569148336 0.40528032 0.527777833 0.446336732 0.581498989 0.45454345 -PA1345 0.094369983 0.12169095 0.058169632 0.216891336 0.228043648 0.24505674 0.262989171 0.176143121 0.165550427 0.137053784 0.257643581 -PA1346 0.2534305 0.147511936 0.224646565 0.284265885 0.164698919 0.259933189 0.367313336 0.243582959 0.214746873 0.267163432 0.305694073 -PA1347 0.145047982 0.114905233 0.237620529 0.127349742 0.20663716 0.425436069 0.355686483 0.480681103 0.44938989 0.534062767 0.47755359 -PA1348 0.13566492 0.163309376 0.408324187 0.964928028 1 0.322814151 0.306854435 0.573841442 0.303092631 0.303955399 0.295349215 -PA1349 0.122728407 0.104376627 0.279466776 0.968029764 0.898213346 0.186609453 0.167108299 0.321275048 0.179775449 0.24116953 0.188673343 -PA1350 0.169329443 0.163364602 0.275852629 0.876845294 0.799766919 0.423320067 0.296379327 0.400662808 0.255729643 0.437757463 0.239198199 -PA1351 0.274394608 0.159289488 0.230661119 0.564478774 0.563468631 0.236096492 0.256940275 0.310059759 0.249432785 0.338630345 0.268186579 -PA1352 0.247557005 0.3106835 0.168677964 0.303757773 0.292978979 0.408180074 0.257026026 0.560871124 0.402976928 0.33782772 0.440945029 -PA1353 0.127667155 0.129974892 0.292560094 0.751765474 0.728057435 0.240916807 0.228179344 0.268783036 0.28207365 0.304708614 0.225332759 -PA1354 0.2819951 0.281137283 0.372394222 0.71383433 0.678507279 0.356520072 0.424809421 0.386533447 0.303333101 0.342160571 0.380498661 -PA1355 0.044191604 0.039910013 0.082011639 0.772422431 0.729945864 0.096680139 0.078834124 0.10763168 0.097587074 0.107067477 0.130094188 -PA1356 0.221420744 0.171852399 0.227625373 1 0.985570173 0.285024761 0.167536301 0.260236067 0.175748274 0.132763235 0.09137319 -PA1357 0.651122113 0.400616042 0.775006979 0.699023469 0.694098372 0.337624227 0.48532865 0.364819094 0.532444926 0.313626039 0.454543932 -PA1358 0.281462639 0.293684713 0.402004273 0.921134209 0.936852591 0.450429736 0.316602729 0.431042043 0.496724408 0.414345966 0.390364316 -PA1359 0.565521751 0.284203501 0.376713971 0.340562296 0.401425752 0.282117958 0.352388984 0.441709961 0.279629392 0.224452066 0.396141048 -PA1360 0.609960464 0.379071304 0.412128274 0.230358028 0.248009504 0.245133239 0.162181283 0.242253087 0.226455538 0.164765483 0 -PA1361 0.43355419 0.297501021 0.296324342 0.160593658 0.189736517 0.323374151 0.459324841 0.172301362 0.395728606 0.30056637 0.307622286 -PA1362 0.165567359 0.25589168 0.241126454 0.401607189 0.401758006 0.617635096 0.425789481 0.566154359 0.484916149 0.492807095 0.399379434 -PA1363 0.393038742 0.213918361 0.529011735 0.121723356 0.127923157 0.434597869 0.505336604 0.458953055 0.485746044 0.416155263 0.374319589 -PA1364 0.422133953 0.188621456 0.417390261 0.117190606 0.112963607 0.185211363 0.252245911 0.108435312 0.336410068 0.136356602 0.280765612 -PA1365 0.384750079 0.118944516 0.438453617 0.207531071 0.139178432 0.109117366 0.083945699 0.163112254 0.341135774 0.110534619 0.258526403 -PA1366 0.152514315 0.605139842 0.179382414 0.151930524 0.130829542 0.21402196 0.261931507 0.249845496 0.167231203 0.25004362 0.216275955 -PA1367 0.357769186 0.397663908 0.319066541 0.257059383 0.261472113 0.387034403 0.324419334 0.534196352 0.362693587 0.27217856 0.435618996 -PA1368 0.244275926 0.314819784 0.255201352 0.297102848 0.271333701 0.275719331 0.246528366 0.279570708 0.242222273 0.266271403 0.274695373 -PA1369 0.096125734 0.195499519 0.086323568 0.092411427 0.082646054 0.081503215 0.076628213 0.180256616 0.079785754 0.101703466 0.139235239 -PA1370 0.136603409 0.211009902 0.088962586 0.145834485 0.162779539 0.200254481 0.153421309 0.183955203 0.201228859 0.195302701 0.24329942 -PA1371 0.171425342 0.411992754 0.161486539 0.133433568 0.073971085 0.168761898 0.131179392 0.176749514 0.130836193 0.19889322 0.127713601 -PA1372 0.06651485 0.544733286 0.064024966 0.019703578 0.010788938 0.131389255 0.091437447 0.12110198 0.066201757 0.111188493 0.136143588 -PA1373 0.417286379 0.370155165 0.366659601 0.352126988 0.286937409 0.157434505 0.235529144 0.167433575 0.176895468 0.295431942 0.241605342 -PA1374 0.211833177 0.145619125 0.243506564 0.192114291 0.14862791 0.16151827 0.170846902 0.125506415 0.196747116 0 0.090738527 -PA1375 0.54177398 0.600175557 0.673468684 0.299686196 0.282661595 0.451389887 0.4393912 0.184951043 0.526007507 0.451945188 0.523482421 -PA1376 0.367231409 0.408373082 0.589756974 0.581638668 0.57230932 0.486045773 0.333808175 0.343964539 0.388376995 0.381411879 0.311484105 -PA1377 0.629942092 0.566007259 0.665822586 0.845610108 0.883358574 0.550860284 0.37781215 0.499664492 0.244708142 0.424395497 0.280043613 -PA1378 0.56692584 0.487766426 0.634170619 0.748613572 0.760767996 0.315327906 0.317073841 0.307164924 0.333934664 0.295923902 0.388230991 -PA1379 0.387876025 0.374116418 0.362351637 0.439805752 0.40401456 0.354044639 0.302792102 0.404868356 0.300182908 0.247840839 0.291812029 -PA1380 0.491855848 0.450561682 0.553316778 0.511754388 0.485731462 0.456977044 0.482818579 0.445459409 0.509345203 0.466830272 0.621834933 -PA1381 0.235470854 0.198104315 0.164779165 0.295618143 0.223508656 0.204825726 0.293921004 0.333759595 0.277618601 0.252984692 0.397442606 -PA1382 0.302628723 0.388417613 0.299655176 0.378434186 0.368289784 0.380911411 0.38257895 0.427710646 0.375190415 0.41961877 0.398618035 -PA1383 0.21378903 0.298601202 0.171407992 0.24661614 0.173768349 0.138149502 0.199554126 0.319308754 0.12949937 0.256916857 0.245645198 -PA1384 0.12452468 0.107605142 0.082501081 0.09487064 0.10656143 0.181897131 0.260981041 0.231600349 0.236311917 0.168409276 0.158633221 -PA1385 0.227095156 0.2471532 0.23888988 0.220823245 0.220852738 0.236796583 0.311400161 0.300621527 0.257938619 0.259995446 0.310701956 -PA1386 0.095591658 0.098359936 0.065479203 0.059708847 0.09527146 0.090814572 0.08756286 0.221618101 0.146827755 0.126193385 0.107602946 -PA1387 0.282589123 0.267530592 0.270011835 0.182838204 0.201292506 0.194195633 0.176893934 0.287036016 0.201012028 0.167886287 0.260874395 -PA1388 0.349780866 0.296975043 0.196216099 0.213709639 0.233345835 0.229293956 0.469468296 0.407046968 0.316995407 0.312447481 0.297898152 -PA1389 0.278078844 0.366278919 0.228423307 0.265364832 0.275010275 0.55049385 0.30295333 0.431395097 0.338559681 0.430209675 0.361400587 -PA1390 0.232716545 0.312795847 0.210840284 0.309161278 0.229376782 0.317439428 0.394959903 0.374496471 0.411485176 0.372513942 0.353550339 -PA1391 0.179702151 0.250434247 0.149810855 0.278013052 0.208370915 0.347163559 0.385605201 0.274272627 0.562019497 0.261964189 0.428500632 -PA1392 0.179131983 0.202361708 0.09882092 0.178246924 0.147661526 0.334557654 0.271902501 0.323375283 0.273555819 0.358347148 0.316258054 -PA1393 0.175778477 0.202177536 0.132347428 0.14622956 0.161172929 0.171722861 0.153190302 0.211113307 0.249361376 0.224654829 0.203521354 -PA1394 0.157745909 0.308963345 0.152453702 0.164532968 0.1012542 0.412244818 0.263491432 0.233293915 0.540039808 0.519462571 0.447414131 -PA1395 0.316126885 0.230504336 0.295097951 0.264721859 0.259432692 0.518407345 0.665346295 0.438589483 0.525605787 0.593951182 0.63362317 -PA1396 0.378116552 0.296816216 0.349661397 0.2997421 0.29429884 0.336159647 0.200537782 0.169064139 0.415437606 0.350468541 0.34476659 -PA1397 0.607225067 0.347476228 0.688584234 0.671655179 0.651417323 0.117304205 0.255054393 0.102910524 0.171419491 0.257847171 0.120288502 -PA1398 0.397484838 0.423946501 0.41639035 0.311302408 0.308353525 0.240835 0.421221989 0.253116651 0.189042404 0.262259405 0.243545669 -PA1399 0.162913199 0.275410825 0.250375101 0.285906081 0.267740586 0.160603779 0.243747431 0.177801772 0.261476751 0.194029043 0.19185316 -PA1400 0.265896306 0.24470796 0.266720102 0.351423016 0.348990527 0.332226109 0.26680674 0.326663929 0.223013525 0.251626213 0.352580638 -PA1401 0.497640316 0.520746191 0.570781865 0.635851464 0.69264439 0.569127555 0.489247095 0.434080923 0.445635992 0.540400109 0.483313878 -PA1402 0.293601003 0.314076829 0.301205078 0.42341324 0.489581834 0.125681016 0.125162276 0.277587924 0.178613743 0.21281014 0.189561093 -PA1403 0.241213153 0.07783848 0.359809742 0.407215896 0.481437304 0.351425718 0.376303339 0.327547418 0.341212604 0.505611629 0.331298997 -PA1404 0.276332469 0.300497618 0.354578932 0.751338091 0.78047409 0.70375538 0.556968913 0.722196723 0.479698382 0.629269688 0.468082185 -PA1405 0.56805758 0.460832648 0.477913047 0.130391475 0.14497819 0.312184635 0.403011845 0.49598923 0.451813728 0.39107699 0.265629886 -PA1406 0.413182512 0.554999713 0.332592688 0.627516457 0.715652867 0.178904306 0.109179973 0.310003942 0.257187849 0.267816002 0.297472932 -PA1407 0.517680631 0.408404743 0.19299652 0.402496245 0.31599904 0.291074411 0.376108444 0.394848725 0.257779538 0.31869798 0.213959535 -PA1408 0.10569091 0.239811422 0.281599496 0.916515354 0.875486965 0.346522718 0.309280121 0.536373855 0.225072077 0.341214636 0.291326106 -PA1409 0.217348856 0.157846327 0.248633026 0.253481775 0.253639516 0.240161657 0.143933228 0.164127876 0.082202267 0.20137861 0.155734176 -PA1410 0.152965779 0.121369526 0.214934684 0.115049061 0.207744967 0.130726567 0.223208488 0.146495632 0.215139813 0.180659342 0.14877457 -PA1411 0.316793178 0.237955082 0.462837627 0.475837166 0.494166551 0.499765534 0.454220599 0.454772165 0.502758759 0.466294358 0.478881016 -PA1412 0.149656656 0.166381771 0.115679878 0.186516322 0.127145469 0.261082376 0.232368453 0.195257338 0.166707575 0.149104936 0.233845991 -PA1413 0.166077941 0.177522211 0.126625613 0.203991944 0.192924351 0.163904871 0.256344835 0.196820254 0.159638237 0.174577232 0.231221023 -PA1414 0.275874126 0.789609449 0.406230991 0.956081204 0.938179986 0.727442516 0.678615934 0.707850085 0.603582958 0.742090246 0.54177143 -PA1415 0.172635674 0.264993945 0.26011902 0.813280531 0.82326531 0.646159532 0.55921066 0.669687757 0.478056925 0.582366783 0.420870181 -PA1416 0.223797573 0.423839609 0.199822829 0.281646911 0.294217363 0.189254439 0.124985479 0.212644368 0.163777021 0.228160862 0.197436323 -PA1417 0.185364825 0.397019786 0.241580062 0.274775694 0.236663233 0.159327234 0.047739496 0.029974116 0.04686113 0.139248073 0.114134872 -PA1418 0.108954418 0.37412984 0.096866801 0.182683768 0.224768356 0.084245073 0.099834684 0.139948485 0.07498111 0.073003905 0.104201585 -PA1419 0.194224123 0.313245403 0.140437282 0.378064193 0.317236596 0.184521241 0.232409867 0.209643963 0.247502917 0.180703949 0.311089677 -PA1420 0.119929594 0.505391962 0.160818617 0.599683561 0.620188984 0.570864769 0.517286049 0.501075734 0.2335852 0.667075982 0.479233698 -PA1421 0.202498155 0.808051372 0.189558362 0.837754385 0.83038237 0.279862915 0.176936512 0.143519862 0.176004928 0.281443719 0.168666898 -PA1422 0.305747115 0.173243364 0.306067516 0.33857708 0.283950492 0.219713789 0.17988273 0.177927593 0.237438886 0.185657941 0.105058129 -PA1423 0.290444142 0.260211464 0.228749124 0.141227873 0.113571814 0.210401303 0.159239008 0.340727367 0.273252524 0.180616405 0.165071529 -PA1424 0.144461277 0.16253282 0.047399259 0.161765878 0.158154429 0.283502038 0.302214706 0.297554939 0.388452981 0.406953574 0.455614694 -PA1425 0.268272112 0.27605411 0.242759714 0.231608663 0.202853746 0.410561751 0.48446347 0.237510044 0.294974523 0.263235538 0.358916863 -PA1426 0.241523587 0.166080501 0.343568015 0.260569275 0.159680435 0.542278209 0.345886135 0.688993389 0.349322816 0.503006051 0.472130056 -PA1427 0.273836814 0.294357324 0.459532673 0.322581089 0.271472257 0.590851363 0.43011897 0.37940408 0.509801172 0.60383493 0.349063374 -PA1428 0.300572486 0.286904613 0.180661799 0.14180075 0.192403331 0.246780425 0.371539038 0.29563414 0.274197326 0.193188797 0.323834194 -PA1429 0.087638789 0.755706873 0.079204481 0.263343581 0.343247152 0.305132791 0.24836861 0.406488928 0.187425163 0.261769939 0.107661443 -PA1430 0.29346361 0.39931 0.350690669 0.732630118 0.700351125 0.618701748 0.625326945 0.524241088 0.61534943 0.621373907 0.644732622 -PA1431 0.704830083 0.645586031 0.777478857 0.850987544 0.859912716 0.895134118 0.79890427 0.913414729 0.762525441 0.896937811 0.773328995 -PA1432 0.726129867 0.756949539 0.80184055 0.532931458 0.611474186 0.489802291 0.596765731 0.515887759 0.586440292 0.534738251 0.612445906 -PA1433 0.387527836 0.255688727 0.42471763 0.441250887 0.395667249 0.313462683 0.436161935 0.152899883 0.31054783 0.377683249 0.448573425 -PA1434 0.44526156 0.326397614 0.40949376 0.435655267 0.468952659 0.38194586 0.198640486 0.223652133 0.100828752 0.323414988 0.293361946 -PA1435 0.218567965 0.12715892 0.246181734 0.317434486 0.297917488 0.368410975 0.319027705 0.327462081 0.273959254 0.254369531 0.247240148 -PA1436 0.19675505 0.26229774 0.220883139 0.332341089 0.367406284 0.254315523 0.292857937 0.383536503 0.316970862 0.319575681 0.435614932 -PA1437 0.243812186 0.23218449 0.409939808 0.504019499 0.483758453 0.602057574 0.601520011 0.615588949 0.58987473 0.600084965 0.196220395 -PA1438 0.372235861 0.338620104 0.367129995 0.435532036 0.420649645 0.430599939 0.404784607 0.409482653 0.427851742 0.266355053 0.36397394 -PA1439 0.543436979 0.438016672 0.381073891 0.373127468 0.333745366 0.261785335 0.398306406 0.204674675 0.306897964 0.191833393 0.367868076 -PA1440 0.65754221 0.661351455 0.744745785 0.908489585 0.895734612 0.593882008 0.619828228 0.557121613 0.590485246 0.597500101 0.52790262 -PA1441 0.424587163 0.469523541 0.438351864 0.402634012 0.450251081 0.430491499 0.417306902 0.427947996 0.411765154 0.414079485 0.437270741 -PA1442 0.549835676 0.430913782 0.504339566 0.445511194 0.450550041 0.396693577 0.436608582 0.371541169 0.462919793 0.461098862 0.445778882 -PA1443 0.567220083 0.527825382 0.596029819 0.63780593 0.61471562 0.470786238 0.574620678 0.43974164 0.538130724 0.50200229 0.573044887 -PA1444 0.388613842 0.425850277 0.487128627 0.576664904 0.49583419 0.711833378 0.474965836 0.636561691 0.536698494 0.655518252 0.576005342 -PA1445 0.578138083 0.472886591 0.759223047 0.729927367 0.733378696 0.379589183 0.232555326 0.361808402 0.214627337 0.279592988 0.325154622 -PA1446 0.676950591 0.534362722 0.712431179 0.53357234 0.575040917 0.591504238 0.659103422 0.577622451 0.624291912 0.632874475 0.581477489 -PA1447 0.280544904 0.254446966 0.333858919 0.438160994 0.413580046 0.229365954 0.364270555 0.242617282 0.259290623 0.242661185 0.326322479 -PA1448 0.20124605 0.147307093 0.123725825 0.351312878 0.353073338 0.35095383 0.301888344 0.10773385 0.360180342 0.409998744 0.39350864 -PA1449 0.36168943 0.29163865 0.226347306 0.36848387 0.271584745 0.429138593 0.452702327 0.341718748 0.623659078 0.56261169 0.506198711 -PA1450 0.415092675 0.234651766 0.230996356 0.183459547 0.182527999 0.231118544 0.350716276 0.419466645 0.393862947 0.223289333 0.526998862 -PA1451 0.550064718 0.303841735 0.485088991 0.316678419 0.357997104 0.544781 0.576003908 0.496283191 0.62496501 0.496100101 0.737723841 -PA1452 0.292995631 0.29882093 0.385679519 0.306706271 0.267839963 0.423679765 0.426717066 0.399770825 0.47270559 0.352825474 0.460239152 -PA1453 0.488898688 0.435612443 0.543696878 0.523495764 0.481158786 0.493067183 0.524080674 0.43127412 0.450791191 0.48432409 0.451458695 -PA1454 0.583055886 0.595115865 0.654547653 0.791931567 0.725820899 0.611026297 0.561144931 0.65905603 0.604976116 0.669316025 0.473308505 -PA1455 0.642605952 0.701231436 0.717790547 0.81526329 0.805781354 0.841593005 0.760922744 0.871289526 0.679965672 0.811591162 0.687990331 -PA1456 0.705318857 0.777097872 0.778663981 0.7334745 0.717407646 0.48193113 0.532387447 0.614630609 0.427621888 0.523742375 0.439369103 -PA1457 0.700308752 0.742453028 0.809391531 0.779536515 0.760680119 0.768245998 0.752813677 0.684493142 0.735520569 0.785038055 0.775363809 -PA1458 0.735055938 0.724149694 0.735953539 0.604643762 0.553262739 0.550749922 0.635713345 0.626408032 0.570402933 0.526606418 0.599046096 -PA1459 0.710643355 0.660428039 0.748964698 0.592233001 0.594555021 0.594721674 0.448437192 0.482430758 0.360709088 0.546787921 0.375345876 -PA1460 0.740628543 0.311289853 0.734014252 0.399396459 0.475863448 0.627514491 0.58791069 0.713463895 0.580835203 0.551583192 0.645578777 -PA1461 0.710765073 0.638701851 0.618997651 0.474350022 0.427831006 0.61171474 0.481353005 0.652088069 0.520460163 0.663416888 0.480176443 -PA1462 0.705120866 0.589858523 0.73336378 0.727475772 0.741910035 0.708256695 0.656812284 0.731946792 0.635540714 0.76382766 0.654156041 -PA1463 0.542637747 0.52333935 0.487499632 0.58676635 0.532751164 0.530365155 0.366761573 0.617258945 0.524577684 0.47017314 0.460295053 -PA1464 0.640440798 0.681120563 0.706241162 0.643050044 0.657453861 0.528449769 0.492919519 0.600326771 0.513242913 0.491809526 0.490277135 -PA1465 0.392582833 0.590501062 0.615752262 0.57449969 0.606891142 0.331055351 0.328647156 0.243503038 0.315151069 0.294500474 0.295658369 -PA1466 0.253187245 0.244161099 0.274415145 0.196626169 0.210384142 0.41805548 0.325439721 0.471502676 0.378930535 0.308603186 0.263939201 -PA1467 0.546031258 0.547173689 0.519265794 0.552594356 0.547026173 0.446530691 0.596758063 0.499081706 0.443879822 0.493403781 0.435573116 -PA1468 0.2136185 0.115987491 0.303265755 0.415674453 0.261711984 0.288648831 0.383889114 0.220086571 0.520479225 0.244622706 0.404651333 -PA1469 0.23339415 0.236597502 0.28262149 0.476766164 0.480325406 0.49072371 0.399701378 0.373726998 0.378241847 0.367120518 0.415085811 -PA1470 0.238047746 0.28420857 0.304909776 0.503362297 0.53528994 0.349568956 0.250252139 0.374656845 0.403913375 0.339809769 0.339456315 -PA1471 0.047498883 0.443728923 0.04137566 0.062428588 0.055538676 0.183278039 0.189819568 0.144689319 0.105793316 0.210585091 0.211233188 -PA1472 0.367530334 0.545396972 0.226120145 0.366196826 0.436058051 0.507420177 0.38832259 0.383331023 0.399703945 0.338989547 0.412482796 -PA1473 0.345672277 0.383696383 0.526789938 0.48258326 0.523275269 0.415426348 0.358325231 0.407535063 0.351558311 0.366004315 0.24286931 -PA1474 0.488860263 0.54025554 0.468789178 0.742408986 0.78375537 0.171463764 0.290544165 0.408552819 0.245365643 0.327481727 0.216625247 -PA1475 0.666505661 0.565920292 0.47209565 0.251079178 0.242671252 0.207365146 0.231994083 0.185625395 0.37692594 0.132210911 0.358204194 -PA1476 0.410136214 0.189190277 0.418428757 0.273103953 0.335998206 0.339220077 0.480630823 0.244174409 0.46293169 0.406860123 0.4586185 -PA1477 0.436790352 0.369126868 0.366423747 0.356274723 0.346622708 0.369302309 0.42410761 0.454390588 0.430881285 0.457483725 0.504719175 -PA1478 0.731962755 0.655651521 0.553676878 0.50996086 0.504968345 0.323829302 0.409206198 0.322686498 0.339869812 0.404862554 0.40784381 -PA1479 0.736993259 0.571083849 0.704903279 0.495381532 0.492530104 0.663993481 0.569793576 0.510899669 0.616919841 0.659028338 0.576186571 -PA1480 0.695240999 0.491246814 0.64021383 0.37632291 0.438570363 0.517876154 0.523425007 0.342441551 0.597515561 0.577676837 0.569792761 -PA1481 0.582130555 0.542491198 0.476009942 0.239562849 0.230794884 0.718446199 0.626107106 0.626218268 0.611421985 0.68822194 0.590607591 -PA1482 0.785276126 0.641845053 0.723613889 0.387456085 0.438825794 0.713428354 0.776903263 0.615323057 0.789279355 0.744234943 0.736734857 -PA1483 0.696423275 0.619564278 0.580663452 0.212300896 0.312867409 0.380720494 0.370151222 0.275793955 0.30289799 0.332870257 0.23947086 -PA1484 0.274817047 0.175326427 0.318446968 0.411199028 0.440613987 0.4396131 0.566574167 0.403138233 0.500559452 0.376888296 0.586017901 -PA1485 0.230970528 0.279753548 0.143324018 0.314863308 0.359299304 0.254030527 0.367949864 0.451872422 0.205479835 0.254205259 0.267241823 -PA1486 0.246248982 0.210757463 0.203987288 0.399322791 0.414344247 0.514505296 0.499530311 0.435988264 0.390890126 0.499928258 0.528099566 -PA1487 0.393697105 0.373564588 0.326506799 0.383842551 0.400527717 0.113044365 0.230065652 0.290483488 0.19241333 0.267444683 0.194481059 -PA1488 0.357115601 0.286249564 0.237284933 0.315132191 0.299082561 0.383516066 0.24286004 0.478966488 0.370081448 0.294401861 0.376371152 -PA1489 0.420396874 0.286952718 0.207989107 0.460183717 0.41469079 0.282387145 0.206620659 0.421446578 0.244201497 0.233125377 0.357408367 -PA1490 0.519981566 0.312743591 0.703124362 0.428547493 0.446690812 0.326572198 0.263313925 0.27378491 0.20893307 0.167041408 0.260811665 -PA1491 0.220262153 0.189817105 0.155737294 0.261561913 0.268385923 0.329845108 0.388800063 0.477089494 0.552384353 0.32819221 0.52446847 -PA1492 0.319415121 0.307065813 0.196274872 0.511201099 0.499401836 0.436894775 0.381962094 0.372766234 0.235592393 0.224735581 0.22103824 -PA1493 0.598421535 0.671847207 0.665827867 0.324805953 0.317884519 0.248131618 0.357699079 0.326702681 0.321362924 0.296719623 0.340938723 -PA1494 0.555149594 0.571385568 0.383478443 0.355401136 0.3505163 0.364486831 0.264264126 0.366008226 0.24010548 0.235650783 0.192298831 -PA1495 0.47461843 0.296381215 0.448716757 0.581871462 0.542292435 0.252821269 0.254934044 0.16863869 0.38046307 0.232321551 0.221587557 -PA1496 0.375034066 0.166645169 0.427173772 0.608175569 0.709899528 0.094576953 0.13206598 0.286162046 0.323762761 0.174811086 0.142463899 -PA1497 0.252866706 0.215246674 0.163437696 0.183034103 0.169452981 0.223249766 0.263067927 0.296470495 0.405382411 0.240616643 0.354226915 -PA1498 0.174128149 0.130449173 0.167513143 0.136864783 0.162322957 0.171542648 0.104289983 0.179320374 0.207787764 0.138569367 0.160130463 -PA1499 0.174033053 0.157311738 0.15504793 0.179716034 0.193679473 0.203076056 0.156281574 0.140283051 0.134109665 0.180324931 0.187707821 -PA1500 0.160766514 0.128521276 0.202657497 0.149761209 0.171801919 0.195713429 0.179716426 0.124507517 0.119845743 0.168057412 0.10293683 -PA1501 0.082266715 0.072892897 0.142912459 0.065933606 0.110632723 0.185381385 0.13552734 0.241582575 0.213773034 0.105533352 0.1545947 -PA1502 0.150737292 0.15678134 0.148823142 0.191849869 0.147835727 0.109578402 0.15262135 0.073596325 0.110741102 0.159359001 0.110189086 -PA1503 0.113028343 0.113797788 0.111494121 0.227056779 0.270090931 0.063862507 0.079361344 0.074149544 0.035411644 0.083191764 0.019333579 -PA1504 0.887385428 0.692077512 1 0.39722685 0.412373285 0.24675829 0.46699437 0.272219722 0.451004269 0.212715453 0.459863106 -PA1505 0.374918747 0.616269747 0.368654609 0.288474489 0.323402233 0.473968499 0.543169482 0.510188238 0.531140798 0.551327639 0.51325516 -PA1506 0.286816343 0.455878678 0.20848178 0.316704265 0.291758905 0.506749674 0.457882881 0.323400815 0.233184309 0.497203902 0.376687532 -PA1507 0.147161813 0.068969741 0.478564581 0.18171301 0.265284219 0.181930825 0.267510999 0.204107096 0.297321705 0.18423138 0.283703604 -PA1508 0.507538963 0.408002949 0.524631757 0.532977873 0.566816397 0.599607361 0.518766467 0.455166317 0.472105777 0.459418026 0.541490609 -PA1509 0.339132273 0.455625611 0.423323113 0.453987055 0.473294412 0.389948346 0.357720441 0.514267969 0.255137095 0.294183801 0.366279481 -PA1510 0.132109806 0.09713051 0.22030646 0.108927128 0.126906322 0.128322138 0.125060116 0.217420708 0.15985681 0.18820577 0.182436778 -PA1511 0.173135902 0.212124425 0.254975714 0.265897984 0.227455899 0.666740128 0.526854861 0.877952135 0.434428872 0.592159611 0.470570006 -PA1513 0.267089637 0.311486206 0.592259985 0.300319987 0.388204665 0.450085234 0.285396646 0.246809876 0.43241841 0.430034801 0.270477545 -PA1514 0.167596202 0.183903979 0.415447777 0.301024807 0.421079753 0.679291732 0.549163713 0.608975617 0.537635659 0.758084483 0.537421466 -PA1515 0.283706457 0.288021593 0.392495902 0.384469606 0.501338389 0.448482647 0.333714165 0.409063395 0.259407508 0.3961557 0.40750894 -PA1516 0.172185236 0.204332742 0.488198746 0.330282764 0.43296412 0.242335512 0.210733513 0.189652584 0.213410841 0.104521515 0.167849503 -PA1517 0.27626578 0.350024303 0.476621462 0.441784803 0.524120134 0.278821019 0.248850568 0.294368671 0.188204838 0.309022648 0.19379014 -PA1518 0.149019216 0.298883304 0.325732453 0.480541977 0.545459556 0.317275163 0.142004727 0.261212952 0.153130298 0.252527505 0.171080361 -PA1519 0.159095301 0.133386617 0.132359641 0.130390816 0.186612397 0.153205946 0.191203208 0.230206817 0.191998857 0.177693725 0.189119405 -PA1520 0.642590347 0.518567416 0.798993203 0.644131781 0.663961516 0.667993723 0.604031628 0.578003768 0.657566095 0.684870787 0.658223543 -PA1521 0.339032344 0.334038269 0.347581852 0.549121245 0.510805506 0.487541683 0.419297421 0.467773605 0.418815924 0.536998385 0.418064908 -PA1522 0.297404621 0.252420956 0.256817552 0.577071985 0.56417462 0.383809523 0.450537917 0.400974585 0.365879934 0.438604197 0.374670064 -PA1523 0.217851687 0.283448765 0.20354052 0.580520481 0.554875967 0.401245958 0.309723094 0.412074218 0.27425028 0.405075074 0.344013321 -PA1524 0.130473032 0.310831216 0.108752538 0.522317233 0.512280306 0.2019144 0.17104813 0.083819258 0.236615866 0.147938565 0.139597421 -PA1525 0.097121665 0.076494047 0.159706156 0.188685031 0.181274382 0.35696916 0.222699096 0.342888164 0.243304598 0.242159438 0.245590987 -PA1526 0.551096562 0.518824107 0.477614155 0.329806671 0.39246364 0.584318139 0.598740785 0.827039065 0.628048411 0.827128516 0.629113831 -PA1527 0.712155795 0.62295831 0.635443312 0.408288749 0.36630472 0.747915602 0.543527362 0.650372412 0.65429724 0.747983318 0.510608473 -PA1528 0.611728217 0.597813487 0.628197512 0.641858175 0.679577646 0.877955404 0.890938043 0.871246027 0.883167956 0.873651932 0.897030582 -PA1529 0.927862662 0.467821088 0.653042111 0.589711277 0.492307416 0.471442396 0.431473165 0.49103049 0.573274322 0.644678626 0.507289865 -PA1530 0.854021289 0.599912247 0.62306333 0.73456525 0.688181912 0.75110561 0.623053066 0.628356748 0.738630848 0.866585993 0.609884567 -PA1531 0.132004772 0.190854215 0.186428736 0.241020952 0.201920417 0.223159633 0.188977667 0.252526648 0.138126043 0.144532311 0.243738665 -PA1532 0.84734413 0.784381961 0.726483652 0.259934364 0.323869935 0.452478638 0.401440386 0.231917644 0.304292491 0.47674688 0.405703088 -PA1533 0.777909736 0.79535121 0.839300088 0.434034713 0.499566367 0.878791494 0.75816599 0.811459932 0.711007645 0.869261966 0.751475665 -PA1534 0.812835537 0.744813445 0.770882633 0.252706109 0.26020153 0.305277572 0.478356167 0.211059661 0.401415803 0.405533966 0.315870256 -PA1535 0.39359327 0.189564405 0.383451923 0.695154034 0.782007212 0.242053507 0.306466034 0.230435013 0.182151057 0.170895215 0.270005822 -PA1536 0.356498983 0.354798044 0.317131182 0.463633815 0.360073766 0.364563696 0.397796466 0.397602333 0.331268932 0.394295314 0.386175419 -PA1537 0.255147658 0.222642374 0.281195444 0.328870944 0.270955453 0.298555395 0.250933638 0.34580504 0.297762292 0.319869587 0.271298854 -PA1538 0.09307331 0.170870341 0.127292211 0.093603567 0.089206648 0.151870743 0.03200713 0.145835843 0 0.094077972 0.15207892 -PA1539 0.227705184 0.199124779 0.298759905 0.28390403 0.250107129 0.43716638 0.478667748 0.549473416 0.393167142 0.522768208 0.435766034 -PA1540 0.124755858 0.118414084 0.133717509 0.128292794 0.130968696 0.276883535 0.193205032 0.167523302 0.27562793 0.211552234 0.197573634 -PA1541 0.137348381 0.127930238 0.101927888 0.133060485 0.113627219 0.312075471 0.241856568 0.258568431 0.251692182 0.259095537 0.125860729 -PA1542 0.213402235 0.197645554 0.181982445 0.412773684 0.690539565 0.197616311 0.371887705 0.261335514 0.255383719 0.327332765 0.385731021 -PA1543 0.722900716 0.505581523 0.628228034 0.201625232 0.31064859 0.735602005 0.799893092 0.685875916 0.848190176 0.793178279 0.862916275 -PA1544 0.72878482 0.780033719 0.746601945 0.497912288 0.564544592 0.728424763 0.747001829 0.722348995 0.80128199 0.736365573 0.753143448 -PA1545 0.295175083 0.300809982 0.353895704 0.340621081 0.38539713 0.691524665 0.47278753 0.829177359 0.504251331 0.731533076 0.462902245 -PA1546 0.271607622 0.825261682 0.459389083 0.866639432 0.841894419 0.772553541 0.528651581 0.817784209 0.523167444 0.768821936 0.518884018 -PA1547 0.381893079 0.30539541 0.322310452 0.257310562 0.275893783 0.90825264 0.781532679 0.725208826 0.69117346 0.883571334 0.683822147 -PA1548 0.428058543 0.457701854 0.508895446 0.707423566 0.709977974 0.930453184 0.797732908 1 0.72126321 0.941693593 0.790781845 -PA1549 0.629975222 0.625258078 0.239472043 0.253311824 0.290509501 0.54649855 0.557001584 0.654764048 0.515688177 0.73163972 0.500244012 -PA1550 0.601368324 0.84993095 0.422407181 0.735499229 0.78360899 0.763538524 0.797077037 0.837156794 0.767555202 0.77090603 0.722607275 -PA1551 0.418611309 0.717589019 0.140748248 0.558421107 0.597378064 0.771016241 0.808777592 0.870861913 0.718836602 0.788888041 0.724437175 -PA1552 0.876323911 0.762279081 0.906927182 0.528587903 0.535337972 0.502703482 0.401571853 0.488218954 0.52258631 0.549721459 0.527059457 -PA1553 0.902548239 0.714706575 0.88742955 0.477090565 0.457450089 0.547757741 0.660086589 0.511159151 0.693400335 0.588721503 0.680509104 -PA1554 0.849098794 0.685926871 0.867820922 0.445836241 0.552892272 0.663338885 0.814779918 0.712747274 0.734909108 0.658829891 0.838676889 -PA1555 0.646578561 0.805580364 0.388644162 0.615826769 0.598156328 0.718743096 0.6803503 0.732129998 0.670766535 0.728076333 0.717643359 -PA1556 0.627318519 0.783529099 0.421237594 0.55790316 0.535403671 0.656491571 0.609845137 0.678461403 0.562076283 0.692115626 0.602954676 -PA1557 0.586836138 0.784399663 0.468570278 0.614567091 0.607568691 0.715937055 0.601423763 0.682668709 0.580317719 0.679942401 0.631990187 -PA1558 0.482415707 0.293898219 0.509318549 0.637289006 0.652060597 0.510562885 0.451998695 0.219579497 0.468874404 0.206025257 0.50594368 -PA1559 0.165861895 0.218889766 0.265737299 0.105008612 0.10503397 0.285656496 0.41221725 0.196246606 0.341285378 0.422009726 0.352351684 -PA1560 0.117487531 0.186457976 0.277613541 0.125575401 0.110566334 0.39122443 0.389845037 0.402586591 0.460021075 0.463270498 0.437015752 -PA1561 0.562636423 0.756564355 0.571262703 0.297491687 0.362869621 0.533096584 0.295040334 0.564114029 0.324007778 0.503476166 0.336988378 -PA1562 0.211221349 0.422468799 0.515667167 0.821339816 0.822779299 0.518389365 0.364843639 0.63458521 0.389397421 0.57620009 0.364837274 -PA1563 0.383700755 0.204137513 0.363424969 0.262273925 0.245002954 0.170151248 0.376821781 0.287357119 0.291077448 0.264934356 0.263688014 -PA1564 0.66128314 0.688732934 0.610086964 0.644353859 0.745228375 0.674910273 0.433612441 0.667211326 0.726909961 0.658249559 0.575785005 -PA1565 0.304583251 0.321674018 0.239962312 0.220425659 0.1852079 0.484193383 0.451160134 0.489007043 0.342148626 0.505296128 0.53038512 -PA1566 0.223880274 0.279104524 0.170932754 0.193333093 0.179711809 0.291829657 0.336246149 0.178162901 0.168262616 0.203407246 0.218307941 -PA1567 0.312240878 0.26892163 0.274626228 0.624083959 0.57856588 0.340152313 0.341962359 0.393707491 0.313374945 0.440837715 0.439861756 -PA1568 0.376441434 0.401378647 0.278539797 0.443477555 0.427805138 0.407029817 0.401540689 0.382836681 0.323634932 0.433716356 0.474172197 -PA1569 0.192478036 0.169410072 0.14925586 0.218267475 0.197503438 0.172746793 0.225599469 0.257844545 0.247282645 0.236782402 0.166680972 -PA1570 0.296458151 0.333177274 0.232659993 0.297568998 0.200413657 0.288366767 0.385427961 0.236318307 0.243973524 0.152968608 0.304385634 -PA1571 0.239658007 0.218228194 0.416334058 0.57966153 0.54801202 0.589284192 0.485877884 0.589193538 0.426165631 0.619564802 0.447511533 -PA1572 0.16386185 0.386041102 0.559421063 0.541377017 0.572678811 0.542793539 0.479518402 0.414762454 0.395039473 0.584197455 0.293132511 -PA1573 0.467166387 0.501418954 0.544915541 0.512882974 0.510049924 0.487386188 0.364140176 0.465069427 0.266086684 0.242391746 0.392924875 -PA1574 0.82231709 0.506642696 0.913344652 0.869885522 0.872214124 0.465976476 0.552685937 0.231465308 0.638420474 0.530413837 0.408745435 -PA1575 0.345432428 0.327400306 0.278283972 1 0.98200265 0.427197842 0.319144748 0.593581593 0.353197607 0.46620382 0.255656689 -PA1576 0.327843801 0.21789299 0.364913601 0.506012873 0.539554784 0.571508711 0.526822363 0.357588032 0.490798756 0.560073222 0.495423001 -PA1577 0.279643809 0.182770872 0.292223928 0.187721494 0.195669622 0.576769644 0.567814929 0.447420702 0.629442477 0.627682565 0.517850793 -PA1578 0.16940235 0.193412548 0.155649316 0.346630543 0.293132818 0.267708357 0.322730723 0.154401662 0.291704767 0.255592913 0.28672885 -PA1579 0.490398755 0.499106227 0.538693122 0.629365586 0.611866573 0.607548543 0.557882208 0.521015233 0.564845126 0.614522216 0.536894461 -PA1580 0.795741093 0.823373339 0.813342974 0.596015923 0.614256693 0.616345052 0.717745895 0.548107267 0.705935484 0.664192008 0.724843275 -PA1581 0.850135768 0.683456371 0.856990384 0.561088667 0.653920907 0.693975393 0.859930626 0.622181074 0.805448255 0.718180126 0.818345439 -PA1582 0.87978991 0.720569563 0.869192335 0.562927803 0.648596061 0.692916748 0.828300747 0.610661955 0.751430406 0.699585947 0.755884717 -PA1583 0.902692514 0.878466742 0.896569384 0.562817209 0.657554285 0.609685985 0.724571886 0.575174667 0.714232613 0.682612435 0.716586596 -PA1584 0.851207589 0.833689567 0.941400027 0.645234157 0.6999752 0.618729896 0.673117749 0.429335133 0.695456019 0.553188985 0.655095929 -PA1585 0.846824106 0.808186397 0.894972859 0.485893039 0.556841626 0.602848967 0.604398154 0.52702084 0.645918596 0.554151646 0.593184198 -PA1586 0.88524934 0.924131215 0.889496682 0.68574243 0.673727464 0.539754878 0.570332663 0.469689139 0.579504256 0.544434627 0.546929344 -PA1587 0.870768708 0.930167969 0.916503438 0.742596534 0.738668381 0.550733641 0.59133035 0.516745129 0.504146213 0.549257103 0.572366224 -PA1588 0.928350245 0.919183742 0.967842677 0.509630401 0.490516845 0.786651956 0.816222258 0.700640814 0.81128858 0.794284449 0.845316733 -PA1589 0.948328237 0.899575319 0.968955534 0.453680073 0.464536358 0.54383803 0.590954685 0.474704434 0.560482441 0.539972175 0.587278619 -PA1590 0.765364192 0.581078858 0.72904326 0.467861453 0.459652117 0.660764712 0.725349188 0.640261826 0.749169175 0.675712466 0.792215129 -PA1591 0.507614731 0.27503889 0.306572786 0.249866273 0.147085267 0.484009536 0.550406725 0.452027809 0.487466178 0.518469038 0.620994161 -PA1592 0.727703592 0.909573377 0.595005895 0.822192726 0.848775434 0.589786102 0.641576606 0.595945515 0.625926308 0.596105352 0.618222183 -PA1593 0.734816566 0.480783125 0.68425493 0.277774543 0.367518321 0.208390532 0.327556367 0.175217797 0.23910884 0.266835911 0.270627564 -PA1594 0.539857313 0.365083366 0.583210815 0.274355263 0.239999599 0.358506643 0.409029765 0.337777825 0.355458956 0.249039315 0.146287856 -PA1595 0.454226271 0.164044386 0.307799855 0.249466299 0.243620535 0.393886271 0.346193754 0.358851479 0.442607656 0.280238594 0.433076874 -PA1596 0.683056894 0.721318935 0.899220215 0.26866728 0.278714105 0.30181411 0.319949609 0.253818583 0.311136404 0.365866372 0.304744329 -PA1597 0.385303088 0.414637604 0.75549675 0.309467753 0.28100718 0.234626238 0.118003409 0.441471588 0.16312202 0.195004902 0.118160829 -PA1598 0.283265098 0.296187773 0.548010689 0.364267691 0.342344208 0.386608685 0.345353102 0.378614042 0.3962903 0.268797387 0.253015684 -PA1599 0.419008868 0.166894568 0.600860418 0.413517261 0.424555023 0.388460494 0.262052854 0.47032739 0.195419776 0.276929418 0.34981655 -PA1600 0.320063377 0.514393701 0.245388096 0.217154671 0.23225955 0.211995265 0.149423673 0.233889937 0.12553582 0.182944996 0.132632026 -PA1601 0.222566022 0.388036968 0.25051149 0.28786429 0.251205638 0.209123176 0.139498712 0.204725396 0.193684262 0.272583035 0.169021605 -PA1602 0.317439481 0.636536046 0.217091759 0.412435887 0.395280919 0.054663268 0.028149975 0.181301401 0 0.185212225 0.205731728 -PA1603 0.428888485 0.452562702 0.476693044 0.485561657 0.622662462 0.503659104 0.306718941 0.45460467 0.568853316 0.621375432 0.421090325 -PA1604 0.028294731 0.340775836 0.097863948 0.29667818 0.306686236 0.304001829 0.325811426 0.477243436 0.229789662 0.320870263 0.22658613 -PA1605 0.168129234 0.230017166 0.355596369 0.175722976 0.279898553 0.310877725 0.225835118 0.568296701 0.277583914 0.333503771 0.406038197 -PA1606 0.115201957 0.106018899 0.222834405 0.173470734 0.122759521 0.107831372 0.190517795 0.153057961 0.213260241 0.177267069 0.202215587 -PA1607 0.37774423 0.382542071 0.357101233 0.250358009 0.372865204 0.1312172 0.231411029 0.129081179 0.294099424 0.149622524 0.311171528 -PA1608 0.682005821 0.539613929 0.61658373 0.309801664 0.259947611 0.299366515 0.348376036 0.378559342 0.352053114 0.362285221 0.402664725 -PA1609 0.848464645 0.805846575 0.717053195 0.488997055 0.480403632 0.450906414 0.540505393 0.372345868 0.500998606 0.430740543 0.508812027 -PA1610 0.794930067 0.752052192 0.715272652 0.50274312 0.49501287 0.688846234 0.736268153 0.639435858 0.760451319 0.670970048 0.740650152 -PA1611 0.567007405 0.411378849 0.553670256 0.26847314 0.208515372 0.748862214 0.476090631 0.495674579 0.620314336 0.553701441 0.527312034 -PA1612 0.680260825 0.552292512 0.528648702 0.204932663 0.263415832 0.507662373 0.418767243 0.473688863 0.481049013 0.433500604 0.430998442 -PA1613 0.521416969 0.591691945 0.408314845 0.23786753 0.208603786 0.25813017 0.294757645 0.028936679 0.371818918 0.297066533 0.311491798 -PA1614 0.786268841 0.742950877 0.919027355 0.693483222 0.675011027 0.503046963 0.515184162 0.512741004 0.453965355 0.561556611 0.42744719 -PA1615 0.715747478 0.769794513 0.72005758 0.734409119 0.678522437 0.393289448 0.342489787 0.352621053 0.510039558 0.394725862 0.376839108 -PA1616 0.872942067 0.629007968 0.744445647 0.789587561 0.779610519 0.468145013 0.511222621 0.434511662 0.55357261 0.566908299 0.494219771 -PA1617 0.171760641 0.137553389 0.227535409 0.594759414 0.569260988 0.215748554 0.219923815 0.312555212 0.18195249 0.293414025 0.17193191 -PA1618 0.417322478 0.530721002 0.466462643 0.376872525 0.387123007 0.145225711 0.222273032 0.199957262 0.234654781 0.196075973 0.269497749 -PA1619 0.432174721 0.424083668 0.391723384 0.362835113 0.388926414 0.401268636 0.344462547 0.202996254 0.333333026 0.265778884 0.344595204 -PA1620 0.223292095 0.240943566 0.120082875 0.158194841 0.214167115 0.244325371 0.332114213 0.330340996 0.256886564 0.302175077 0.281872226 -PA1621 0.340551049 0.200724459 0.328659205 0.402760976 0.381068561 0.184222343 0.205397961 0.070728769 0.09174806 0.091186455 0.086304117 -PA1622 0.275967307 0.261808639 0.264907738 0.291205676 0.330115504 0.249958703 0.267353539 0.381690941 0.288800085 0.33892526 0.344541296 -PA1623 0.516210016 0.678611279 0.559581607 0.658665734 0.711951674 0.487127955 0.512914871 0.491809925 0.447807217 0.418691482 0.446686369 -PA1624 0.503481162 0.687744242 0.490457115 0.512495699 0.544118582 0.616336248 0.619901973 0.496609894 0.668403509 0.53946512 0.568423941 -PA1625 0.32696207 0.191189692 0.231814756 0.299442111 0.34695199 0.491785736 0.401299597 0.590743754 0.368269088 0.462168235 0.67298208 -PA1626 0.442036456 0.381485768 0.320397747 0.323977421 0.292344368 0.333451122 0.334744875 0.414261579 0.284220639 0.246333901 0.362258229 -PA1627 0.237574086 0.159313422 0.170554055 0.148783393 0.131964446 0.113946558 0.140939716 0.127556969 0.18071691 0.108968364 0.166090747 -PA1628 0.284038359 0.39629792 0.324114145 0.325762812 0.25261512 0.261281702 0.123466766 0.156003213 0.312072411 0.232316124 0.17721751 -PA1629 0.253119063 0.316603841 0.276848496 0.173954029 0.15745936 0.261774229 0.369843264 0.213127627 0.329365195 0.177844619 0.336623221 -PA1630 0.227180396 0.130686092 0.191083045 0.191682237 0.020846653 0.135427482 0.260019925 0.142119263 0.18522461 0.281275639 0.250241946 -PA1631 0.3579336 0.213004339 0.282277064 0.521871188 0.367624627 0.37604166 0.359242897 0.182282548 0.329873074 0.360098038 0.26187661 -PA1632 0.096454539 0.09592064 0.252870012 0.15405396 0.159129677 0.184557146 0.193910505 0.224531443 0.195998 0.163105063 0.229635064 -PA1633 0.171821124 0.20058994 0.429514907 0.236192009 0.168868639 0.170563669 0.144744656 0.176402782 0.10609062 0.137247087 0.099290114 -PA1634 0.140243727 0.136881803 0.417541315 0.116529514 0.094356203 0.099175526 0.059021429 0.174751752 0.115085861 0.153645732 0.136934421 -PA1635 0.144354368 0.182577055 0.469789542 0.173190537 0.172339684 0.219474497 0.127440322 0.127059701 0.155473481 0.150340999 0.14849328 -PA1636 0.29837812 0.343332171 0.424913675 0.514940159 0.478067905 0.273366984 0.312397089 0.265509615 0.279823774 0.303377495 0.348882637 -PA1637 0.261997312 0.1602184 0.486425687 0.399842243 0.42360185 0.384239187 0.436201346 0.451809937 0.517675675 0.366004036 0.522936396 -PA1638 0.651120886 0.373297943 0.480496927 0.334919637 0.29227449 0.299604976 0.286817363 0.412199897 0.349318336 0.338892659 0.423971262 -PA1639 0.423738079 0.415415745 0.314615204 0.078471277 0.09567016 0.236476916 0.435309217 0.225889007 0.41912023 0.225657505 0.274045219 -PA1640 0.638566449 0.564066466 0.837526854 0.322329433 0.341283126 0.401975581 0.549809611 0.358151457 0.538828249 0.273755351 0.499777765 -PA1641 0.4503547 0.510668873 0.582001432 0.912780614 0.915320676 0.490625979 0.395526901 0.62423559 0.462858445 0.55479788 0.291073966 -PA1642 0.678217344 0.642388128 0.756344241 0.672210302 0.676731318 0.82361672 0.736902651 0.677853843 0.664095142 0.743642493 0.611226658 -PA1643 0.486162221 0.318997394 0.585055595 0.394663479 0.374046575 0.765381142 0.749222207 0.803158901 0.712376796 0.885646464 0.759284248 -PA1644 0.466004433 0.47563503 0.53878852 0.539983749 0.506051605 0.258922697 0.373066088 0.19201147 0.313943579 0.196877732 0.234136686 -PA1645 0.460592563 0.185530347 0.476090111 0.726287546 0.763133599 0.126840402 0.238558937 0.285259071 0.397136807 0.128044216 0.286001179 -PA1646 0.236556638 0.251670756 0.322247933 0.240507731 0.225082235 0.275059853 0.292126938 0.316949979 0.210218951 0.137349023 0.19645085 -PA1647 0.112192456 0.716216273 0.187692428 0.153143679 0.151484423 0.223612009 0.054116514 0.37592944 0.243337869 0.118948916 0.126752472 -PA1648 0.173292219 0.199929548 0.17047308 0.444743108 0.44938097 0.197004016 0.118909102 0.295953216 0.083701369 0.156522854 0.157680413 -PA1649 0.131063647 0.184659035 0.091510632 0.358950953 0.347595811 0.185641958 0.092484254 0.15225657 0.048624209 0.132432449 0.112843789 -PA1650 0.134155517 0.167790994 0.188990291 0.42522284 0.450831739 0.321862583 0.272626146 0.207411185 0.166980166 0.281875278 0.230270052 -PA1651 0.423211322 0.596352751 0.318077376 0.225316511 0.232328454 0.253851517 0.249128074 0.3864943 0.286615353 0.351880235 0.167240094 -PA1652 0.213466918 0.206779696 0.179946021 0.154218597 0.168136702 0.217927896 0.240690178 0.202349871 0.394179379 0.194340827 0.339828177 -PA1653 0.487404183 0.667177837 0.375796049 0.311861182 0.392952006 0.323249575 0.284596585 0.258578811 0.393400791 0.466331523 0.33635628 -PA1654 0.756428154 0.880460026 0.574200842 0.257452685 0.311099205 0.428949614 0.480561869 0.259229239 0.474093269 0.344201912 0.385044945 -PA1655 0.631850611 0.726905782 0.740124055 0.250643499 0.315866818 0.39422539 0.703885581 0.347503951 0.615792337 0.372589006 0.573996564 -PA1656 0.378182772 0.578939926 0.300862278 0.377138962 0.404976622 0.535864726 0.60711339 0.574778066 0.663841873 0.553299609 0.59496629 -PA1657 0.249896516 0.585970191 0.150238035 0.20399544 0.218930451 0.670158731 0.566777895 0.662922506 0.601454437 0.654053032 0.62657717 -PA1658 0.256779655 0.416759882 0.188970492 0.25689387 0.249738607 0.354667723 0.396290978 0.396210387 0.417552982 0.395413933 0.350351728 -PA1659 0.232201564 0.394960544 0.216297559 0.204871169 0.208616673 0.352352113 0.329933382 0.228514861 0.268618031 0.305427262 0.268191513 -PA1660 0.239540789 0.245165159 0.185795665 0.201548103 0.137220531 0.24818918 0.274634193 0.262286264 0.257946629 0.304699722 0.193463635 -PA1661 0.248098616 0.17849155 0.183070946 0.205353325 0.227254939 0.500537117 0.475366183 0.705268468 0.551484854 0.491969552 0.582167072 -PA1662 0.430928076 0.252502981 0.16092276 0.19001803 0.176511871 0.425209112 0.453972376 0.496771524 0.431782269 0.370929781 0.374133718 -PA1663 0.287952458 0.257211322 0.107764214 0.120736559 0.082541501 0.240915403 0.219877723 0.231802572 0.238389137 0.273261425 0.273114128 -PA1664 0.397221163 0.463495722 0.18924235 0.139786003 0.133003962 0.248931767 0.201979587 0.266876024 0.116238476 0.250787038 0.164889612 -PA1665 0.266206396 0.17649477 0.095762168 0.147292264 0.154754163 0.385528542 0.352489428 0.422415192 0.385700767 0.463996047 0.495567045 -PA1666 0.256561974 0.273983841 0.198132893 0.194111495 0.242202892 0.379485185 0.401278941 0.519754229 0.383432226 0.459982843 0.435109223 -PA1667 0.263418142 0.277384171 0.251205214 0.334259417 0.465535559 0.349223884 0.317431521 0.319360881 0.412247846 0.350038918 0.320385609 -PA1668 0.322446336 0.224066513 0.135808493 0.275619569 0.173753012 0.52312735 0.617644134 0.558154204 0.396885337 0.619175176 0.524104186 -PA1669 0.292730362 0.217603636 0.143496931 0.172173547 0.164121741 0.45512004 0.413868228 0.437327349 0.355191954 0.302033686 0.394051157 -PA1670 0.268087055 0.224020189 0.211094086 0.242811809 0.253319484 0.308223975 0.362174849 0.29996031 0.344020167 0.134418164 0.276017833 -PA1671 0.238017529 0.227737754 0.258839376 0.3245133 0.328298311 0.266985035 0.361215261 0.375671207 0.248667228 0.328553227 0.249241607 -PA1672 0.44083649 0.328059001 0.520370281 0.61708301 0.650723206 0.636546808 0.704018972 0.741191072 0.53617752 0.637013321 0.530907764 -PA1673 0.203482797 0.761584946 0.380051915 0.715239291 0.713863904 0.447081367 0.364085904 0.548879709 0.332825081 0.485536896 0.312635376 -PA1674 0.786443373 0.480070951 0.78684789 0.596090661 0.647025254 0.619024057 0.727774715 0.552748326 0.68082006 0.528954392 0.733431946 -PA1675 0.852594674 0.532987849 0.779911393 0.620618291 0.583168312 0.537226623 0.789598413 0.356397678 0.745739495 0.574842836 0.724237537 -PA1676 0.429996086 0.623287874 0.375139998 0.599410108 0.606066425 0.157822365 0.252381172 0.28138169 0.232697076 0.128391872 0.305927744 -PA1677 0.550745163 0.832141351 0.507230546 0.746721625 0.776273858 0.515851586 0.386767116 0.530448813 0.527204218 0.523052209 0.373353389 -PA1678 0.557855783 0.426066403 0.418868709 0.500490117 0.442588858 0.599110248 0.617129121 0.383214525 0.579422869 0.415819902 0.628291037 -PA1679 0.385708715 0.585782967 0.439483316 0.203489398 0.27202478 0.582141913 0.663639251 0.6737397 0.671593066 0.624760727 0.69597469 -PA1680 0.367530219 0.651565276 0.277725999 0.367577693 0.322565671 0.360278091 0.408356901 0.342305711 0.552397678 0.40332868 0.366494559 -PA1681 0.867748771 0.776475507 0.88822041 0.613534139 0.634541103 0.78912349 0.841854923 0.656974395 0.837383821 0.783005179 0.842688036 -PA1682 0.495451109 0.301128143 0.348197321 0.200559854 0.158316939 0.352624096 0.389841381 0.319432149 0.387474512 0.282010255 0.37718298 -PA1683 0.7444314 0.717120469 0.825960411 0.357066875 0.355413558 0.312857313 0.649192853 0.446742762 0.531401533 0.439165194 0.577924259 -PA1684 0.723036635 0.725347094 0.961477194 0.772198649 0.791098317 0.484061582 0.55968332 0.495376091 0.521559182 0.477694008 0.496096666 -PA1685 0.497889401 0.379528731 0.539560692 0.136279353 0.162980909 0.404131255 0.496695205 0.238291223 0.524003466 0.370507055 0.423953947 -PA1686 0.544270379 0.676099942 0.579679843 0.66502368 0.583967058 0.304069811 0.350582383 0.428419222 0.180003241 0.179255552 0.334710032 -PA1687 0.633880076 0.526528131 0.697637219 0.329235592 0.353487572 0.084480749 0.226161619 0.058311428 0.134818062 0.122500594 0.246660033 -PA1688 0.473086549 0.183940425 0.436850188 0.115117855 0.152257423 0.122597271 0.133198018 0.070609261 0.244004801 0.100857014 0.175536121 -PA1689 0.555592835 0.274260102 0.720401995 0.139333265 0.09564469 0.274886634 0.30771106 0.323909923 0.430907181 0.302284713 0.521302907 -PA1690 0.188930814 0.211345876 0.442786342 0.201988369 0.235893214 0.134201869 0.254036915 0.315522688 0.414556494 0.305395945 0.229141123 -PA1691 0.184059963 0.148854569 0.456787255 0.096813073 0.10414976 0.223019788 0.230122845 0.251145348 0.262420501 0.212711887 0.195851851 -PA1692 0.204892973 0.236094191 0.61389465 0.100033859 0.173851719 0.147645088 0.174192743 0.203865294 0.015062561 0.174734357 0.109499251 -PA1693 0.18631649 0.274188015 0.597910075 0.011842465 0.069371272 0.135902744 0.095999043 0.198444504 0.17998099 0.152519409 0.13277955 -PA1694 0.212029615 0.280053579 0.497976179 0.224725563 0.184238064 0.229741143 0.161315025 0.151064806 0.192678687 0.198638764 0.171697412 -PA1695 0.275113696 0.300705106 0.523205726 0.257434967 0.161182276 0.155580263 0.050271645 0.126614487 0.133356913 0.117597518 0.12018416 -PA1696 0.226567314 0.186952923 0.520714527 0.126720485 0.116928186 0.087345126 0.052194954 0.124836468 0.075027849 0.107897978 0.121583698 -PA1697 0.343970006 0.345543066 0.574821211 0.282227389 0.253618491 0.260012018 0.232360711 0.289155216 0.2707506 0.284007558 0.222588427 -PA1698 0.257606888 0.216166667 0.449425013 0.255179856 0.238801426 0.285469349 0.198990519 0.230686679 0.182913851 0.285656612 0.272362835 -PA1699 0.191302152 0.111132271 0.426946694 0.088263713 0.116772174 0.136448665 0.072241356 0.126113102 0.12714267 0.082504274 0.163115407 -PA1700 0.221996386 0.183789216 0.457305843 0.122630137 0.195581122 0.176413146 0.146727872 0.124111565 0.195365385 0.161000631 0.03786684 -PA1701 0.235131932 0.183546798 0.584219213 0.142774005 0.112604315 0.097431339 0.016375762 0.045323649 0.069512712 0.004475386 0.033688756 -PA1702 0.167025373 0.114468532 0.318060287 0.164629038 0.123183455 0.179742196 0.132014838 0.115964441 0.180691442 0.110394006 0.214157371 -PA1703 0.181330111 0.196153458 0.35904298 0.17617142 0.196073608 0.233156773 0.216825842 0.228654528 0.201559734 0.284465912 0.223937183 -PA1704 0.212681251 0.248304938 0.311725945 0.217969591 0.205526358 0.2837636 0.266330432 0.251947148 0.258861753 0.159307394 0.207017959 -PA1705 0.251470804 0.280594686 0.461072863 0.261355448 0.258364373 0.010257938 0.0910453 0.060085648 0.05143617 0.033682889 0.058108633 -PA1706 0.222106059 0.234554722 0.568420534 0.202782236 0.192077127 0.207783541 0.128156115 0.186684069 0.146663797 0.158449859 0.153971196 -PA1707 0.2096584 0.256843823 0.629384482 0.162159118 0.162587308 0.125555208 0.111740931 0.170871425 0.082676152 0.211216872 0.095496759 -PA1708 0.252519986 0.320346325 0.773786231 0.279628696 0.268220149 0.179752368 0.178312898 0.177764374 0.162165816 0.253950741 0.179349813 -PA1709 0.238950157 0.323779409 0.677220768 0.238924905 0.211111544 0.117561071 0.133239965 0.077862159 0.087190435 0.069609637 0.090309834 -PA1710 0.358930868 0.350464273 0.608015659 0.348005736 0.314843609 0.136664594 0.139973817 0.072575378 0.156203155 0.059167421 0.198679997 -PA1711 0.100930807 0.37652853 0.180463399 0.116183613 0.104158225 0.236606741 0.269080883 0.286419622 0.24446055 0.361858883 0.308997118 -PA1712 0.240058174 0.230194068 0.39346468 0.176878738 0.162111906 0.515658471 0.48500971 0.39743224 0.537352407 0.503089089 0.489093169 -PA1713 0.225628333 0.206517173 0.464257281 0.097129147 0.039668212 0.232836448 0.311108861 0.355175977 0.302584434 0.314395426 0.225558462 -PA1714 0.260186167 0.245291742 0.46967942 0.13683168 0.133729252 0.25776301 0.362316484 0.160368499 0.354191483 0.205442439 0.253966493 -PA1715 0.293451702 0.254210384 0.500161059 0.094408709 0.083611776 0.070917575 0.190584986 0.165232123 0.280455497 0.081725936 0.140207803 -PA1716 0.249510979 0.292741887 0.384597373 0.108745307 0.131748484 0.133043538 0.123052778 0.18479731 0.109002168 0.178875845 0.130965344 -PA1717 0.204650628 0.191209044 0.341333473 0.189692441 0.181797183 0.259612841 0.170199534 0.250317865 0.176194359 0.29958497 0.228133195 -PA1718 0.44136516 0.470860486 0.702835136 0.135893211 0.19540577 0.25464483 0.223846986 0.191421455 0.2846616 0.124060285 0.078962216 -PA1719 0.312309573 0.372358091 0.558433492 0.128283082 0.127931419 0.088462587 0.054976137 0.060492955 0.134657714 0.130849095 0.046349057 -PA1720 0.225323045 0.260970011 0.44542207 0.107676072 0.09055073 0.131379207 0.127010661 0.200127421 0.092851947 0.159870952 0.127227869 -PA1721 0.335638606 0.270626663 0.477004126 0.077072105 0.119199479 0.150099856 0.245065157 0.19437909 0.173421445 0.247223865 0.141105424 -PA1722 0.420793918 0.376677468 0.665265678 0.218421234 0.245673607 0.29429734 0.287073797 0.324178455 0.28031067 0.218191518 0.256001911 -PA1723 0.241070821 0.205730671 0.554817181 0.108965287 0.126238097 0.07397255 0.126044039 0 0.137426966 0.024617368 0.260533142 -PA1724 0.2576374 0.209796891 0.362414285 0.168961409 0.128939954 0.220864507 0.176422854 0.266036135 0.2024855 0.134145076 0.22603303 -PA1725 0.26022278 0.165618289 0.334845623 0.242731742 0.200257342 0.202351016 0.131422156 0.321547441 0.202990053 0.111436214 0.300870021 -PA1726 0.81387085 0.639828818 0.77412622 0.521660409 0.481380235 0.577945564 0.493351989 0.520035003 0.565907284 0.59770428 0.492298274 -PA1727 0.464588904 0.326621297 0.473903577 0.160125104 0.103494878 0.441576258 0.466768288 0.434553327 0.529110001 0.41943337 0.531378609 -PA1728 0.14608131 0.156887448 0.175842212 0.708622685 0.705693429 0.567873029 0.526269807 0.587609994 0.514559391 0.549741087 0.532468679 -PA1729 0.15438072 0.316333924 0.153998125 0.457887729 0.407674555 0.200107957 0.184477446 0.238936034 0.103067998 0.079040463 0.169561547 -PA1730 0.207354589 0.269559665 0.219475132 0.829450626 0.824362334 0.420978573 0.136657768 0.523057271 0.321903444 0.317705823 0.068377008 -PA1731 0.167046344 0.149245263 0.165827779 0.814257747 0.82174353 0.170993865 0.138861564 0.184204835 0.111512652 0.193365974 0.100326805 -PA1732 0.102653405 0.157076615 0.195701168 0.913105342 0.908675543 0.313500833 0.143451463 0.33467237 0.153117156 0.357677417 0.229636029 -PA1733 0.154575863 0.221444344 0.361630841 0.954518093 1 0.515870005 0.389356313 0.649296273 0.45852222 0.513272711 0.294829244 -PA1734 0.348313525 0.302196417 0.308724284 0.427530905 0.451894181 0.292646596 0.269827516 0.222878542 0.166631992 0.372918383 0.149384805 -PA1735 0.197040999 0.250466541 0.281954666 0.281377307 0.324568478 0.360206944 0.256225174 0.29026755 0.267598393 0.460982774 0.4693287 -PA1736 0.133938462 0.184615314 0.242244505 0.487967446 0.666727161 0.139468984 0.147065513 0.179902123 0.088037072 0.0491386 0.046632413 -PA1737 0.24738283 0.316143891 0.328506373 0.624871963 0.729556197 0.202417794 0.237408811 0.162334998 0.086389569 0.136118145 0.185585368 -PA1738 0.123513773 0.413409281 0.169746881 0.094751918 0.049031974 0.214963691 0.103110891 0.263742161 0.223932628 0.225969941 0.173165799 -PA1739 0.326876284 0.297399759 0.325552281 0.285557149 0.295386677 0.497459752 0.484293045 0.417633519 0.41447277 0.469454749 0.371141068 -PA1740 0.171894185 0.1187751 0.215173051 0.203639107 0.221457262 0.441979926 0.647616491 0.521528235 0.595487594 0.497388346 0.661561009 -PA1741 0.662137477 0.639331484 0.656431 0.559984501 0.567152363 0.440649944 0.69244413 0.64095475 0.466628231 0.407771235 0.483034875 -PA1742 0.42301628 0.578536145 0.27902442 0.353653636 0.467649145 0.396858074 0.248773868 0.4043618 0.242805404 0.331669435 0.347985508 -PA1743 0.148612201 0.103032212 0.15462384 0.195671871 0.129547386 0.134705089 0.064877045 0.111458492 0.05499991 0.048676485 0.106862491 -PA1744 0.070199939 0.071193885 0.170955513 0.1798087 0.196916556 0.300919854 0.164448231 0.475003471 0.201747565 0.206312793 0.372083001 -PA1745 0.13133635 0.182462309 0.329027011 0.988812984 1 0.500674063 0.370341744 0.575149264 0.262213412 0.336781661 0.330612477 -PA1746 0.276296663 0.621676258 0.035939272 0.565430687 0.573405795 0.479673646 0.444893393 0.632442092 0.429054337 0.484723889 0.445206452 -PA1747 0.21661652 0.17825295 0.254158036 0.361639023 0.331160655 0.646780564 0.467868268 0.779251214 0.553405034 0.648373685 0.451110409 -PA1748 0.616418246 0.396469785 0.493640213 0.418322772 0.45478712 0.354419337 0.356368958 0.332249263 0.297506646 0.431417663 0.301252799 -PA1749 0.428926352 0.413889424 0.553956012 0.632183676 0.710420998 0.279321289 0.458049931 0.484893824 0.437161856 0.509455053 0.263576922 -PA1750 0.740791415 0.663092589 0.901552273 0.382531301 0.358391297 0.407033933 0.495188845 0.369473982 0.46898944 0.374722056 0.529385429 -PA1751 0.438226202 0.495703986 0.543522565 0.776419645 0.750447234 0.266055958 0.321473158 0.268663631 0.211728171 0.106624127 0.264751779 -PA1752 0.365941364 0.293493492 0.589934282 0.676755675 0.678591698 0.457809811 0.436033339 0.506138103 0.402273468 0.396740774 0.627931496 -PA1753 0.259540456 0.242104812 0.323492628 0.767826108 0.782053346 0.48789073 0.435938963 0.574913876 0.45432986 0.513552174 0.452884302 -PA1754 0.549070199 0.727071058 0.74678661 0.93068332 0.966464626 0.493564622 0.534318601 0.421355128 0.447088072 0.487727352 0.449809069 -PA1755 0.472209982 0.545467438 0.426439667 0.501521691 0.528850713 0.496479501 0.470191726 0.511677937 0.44214827 0.45303806 0.466022079 -PA1756 0.366712413 0.33419315 0.719761069 0.346404812 0.512506217 0.379827106 0.369536843 0.38364418 0.356115967 0.403644763 0.423348839 -PA1757 0.866189714 0.536945743 0.719567133 0.199126901 0.238433045 0.358959539 0.567656093 0.34517124 0.587469728 0.354247709 0.619714475 -PA1758 0.491668237 0.443826962 0.546227563 0.360205871 0.313246106 0.402892848 0.379686384 0.373011785 0.287045418 0.345540222 0.404976867 -PA1759 0.359661398 0.361545021 0.453973768 0.41064378 0.421289967 0.409006378 0.362078386 0.338674974 0.311603621 0.488951697 0.29958421 -PA1760 0.341694454 0.37683153 0.359016453 0.513356871 0.513193889 0.366581742 0.400569015 0.268129899 0.267422837 0.450147066 0.324017058 -PA1761 0.278467722 0.256498913 0.350267911 0.539511895 0.52602111 0.164780575 0.12023881 0.242628849 0.232272416 0.229539658 0.178953934 -PA1762 0.128091338 0.084341237 0.261931095 0.361250485 0.321946404 0.378993978 0.234691772 0.452182595 0.229955312 0.356311071 0.275171133 -PA1763 0.149525401 0.070802732 0.196892019 0.191880799 0.219089416 0.197383358 0.143666149 0.243951456 0.18268839 0.311876745 0.249231523 -PA1764 0.292682443 0.271706846 0.281680985 0.345916635 0.312126611 0.233378772 0.210396347 0.191393818 0.27285743 0.308320731 0.248474685 -PA1765 0.149894834 0.067093331 0.192470843 0.617719885 0.568205876 0.0355124 0.122970046 0.274361288 0.121896828 0.049340723 0.130324127 -PA1766 0.790143008 0.621851322 0.895903207 0.375077859 0.370657216 0.428898926 0.631526839 0.458993364 0.62263471 0.534295678 0.628500201 -PA1767 0.819827523 0.597802989 0.828536097 0.134682995 0.239552126 0.556590359 0.628256724 0.559828034 0.808269994 0.643869128 0.652069076 -PA1768 0.630219732 0.577353998 0.60528004 0.23388544 0.259319641 0.459847558 0.536914457 0.438746986 0.565577198 0.478152885 0.545175152 -PA1769 0.358232437 0.40399367 0.463293071 0.454495261 0.479353391 0.361116518 0.453247447 0.378920551 0.449546383 0.391258351 0.462923726 -PA1770 0.87928366 0.779583474 0.921753778 0.583128549 0.626572177 0.544333426 0.612585327 0.437545801 0.484986237 0.607542308 0.633254799 -PA1771 0.954416674 0.378568714 0.708015239 0.090602954 0.087256425 0.240248394 0.272036424 0.204608012 0.262023762 0.259229708 0.301254655 -PA1772 0.586535406 0.492666117 0.646110217 0.871500319 0.87556706 0.448349231 0.482681566 0.366038035 0.538616707 0.600691337 0.472398271 -PA1773 0.546774117 0.362033188 0.657065132 0.485529806 0.498356497 0.565246414 0.44908208 0.503410591 0.40971801 0.505994852 0.398921761 -PA1774 0.548442682 0.352725285 0.56646988 0.286924528 0.325558079 0.781796422 0.715517431 0.90742722 0.73189889 0.836556221 0.681500075 -PA1775 0.555234821 0.346146153 0.552498585 0.230554103 0.238163112 0.734236323 0.707081522 0.778812069 0.736397337 0.710574932 0.723515432 -PA1776 0.625642907 0.553792599 0.627851097 0.551388183 0.570912835 0.873042837 0.8956632 0.892709823 0.861199838 0.88098011 0.886363055 -PA1777 0.828208762 0.85977492 0.87312202 0.917439464 0.956149265 0.785159044 0.748321607 0.7960004 0.87585802 0.796732321 0.738039764 -PA1778 0.240628753 0.139949876 0.148405654 0.18501467 0.077114889 0.235444802 0.271937183 0.234211361 0.206863343 0.208397048 0.242436726 -PA1779 0.076659067 0.131812706 0.134853592 0.080379371 0.084147529 0.13440677 0.057009524 0.073309273 0 0.063337397 0.090138781 -PA1780 0.086352321 0.117917506 0.073745022 0.085813512 0.091189197 0.08412306 0.112751589 0.104058056 0.087543623 0.107010427 0.107726786 -PA1781 0.179940811 0.223855042 0.084236363 0.229480782 0.217556117 0.19999414 0.170784754 0.234147059 0.150585811 0.187753021 0.340034151 -PA1782 0.216318299 0.237020617 0.187493595 0.272430355 0.266768414 0.216584691 0.178837785 0.329526142 0.223236131 0.264239802 0.262118977 -PA1783 0.124832296 0.127849748 0.11521649 0.153917894 0.162081358 0.178071329 0.185517131 0.289683456 0.183252182 0.214876809 0.114087256 -PA1784 0.140367479 0.134587552 0.229092261 1 0.952471611 0.360707088 0.226695047 0.546814387 0.178910684 0.437876298 0.145912982 -PA1785 0.318944168 0.257019532 0.286898634 0.259653352 0.236436855 0.401331018 0.500475529 0.571087586 0.451652601 0.295360641 0.546734867 -PA1786 0.554329382 0.372831642 0.359365061 0.366178954 0.354773608 0.361991885 0.266832348 0.334760742 0.317321587 0.161650744 0.509590429 -PA1787 0.876099632 0.7754337 0.940133643 0.449241769 0.474399698 0.352286489 0.481857635 0.272606035 0.466784541 0.360087757 0.44594396 -PA1788 0.516491708 0.279573841 0.510588763 0.360737664 0.381985558 0.355720919 0.519029764 0.342503892 0.536600164 0.473337319 0.42519546 -PA1789 0.204363357 0.824968656 0.339406553 0.841424316 0.814928623 0.635952931 0.469196465 0.697248944 0.448278276 0.673466155 0.477826022 -PA1790 0.619707727 0.696256356 0.549896746 0.325386265 0.381939414 0.243305305 0.381454997 0.210382067 0.460047465 0.195298835 0.309991788 -PA1791 0.706488536 0.577232283 0.589844609 0.387165915 0.339228964 0.340505622 0.347754176 0.304880593 0.280942105 0.220748268 0.325062428 -PA1792 0.910843177 0.655368225 0.736101569 0.437384192 0.433568736 0.688528553 0.553847142 0.601660505 0.52843901 0.57881005 0.52492728 -PA1793 0.818638454 0.794477691 0.745322591 0.552363174 0.598511572 0.867610033 0.843911961 0.877181331 0.85082591 0.881624858 0.838955617 -PA1794 0.791301906 0.621142086 0.72024492 0.23562393 0.252352195 0.75664793 0.785255548 0.722222445 0.791046785 0.841271285 0.734000336 -PA1795 0.785891731 0.704274696 0.795499852 0.360266393 0.391028732 0.714901761 0.741487689 0.646576504 0.680609943 0.760301372 0.725560905 -PA1796 0.873415367 0.85184279 0.742820076 0.540106345 0.57724473 0.553757349 0.582161715 0.433414821 0.560149473 0.482166203 0.504905745 -PA1797 0.099186064 0.155781461 0.061856603 0.111097453 0.115981684 0.196136913 0.210146651 0.267776627 0.15048909 0.193847619 0.22102311 -PA1798 0.475590028 0.489707664 0.496090184 0.329626092 0.355797022 0.463302309 0.697955332 0.357077915 0.845276046 0.514435977 0.712902117 -PA1799 0.691823093 0.520696402 0.673551572 0.527439849 0.590165539 0.241960575 0.412837618 0.180856589 0.268293508 0.288484308 0.510001476 -PA1800 0.887764832 0.667758029 0.836799298 0.245888261 0.294833694 0.671789343 0.901588788 0.620380205 0.880705034 0.663365842 0.918454306 -PA1801 0.881756257 0.792280897 0.816831394 0.617288536 0.577959188 0.466578417 0.627131211 0.364705016 0.571821221 0.480387368 0.587713704 -PA1802 0.785679692 0.81166614 0.865821563 0.744291951 0.773907559 0.715110238 0.771755573 0.664441372 0.809687639 0.760112525 0.704727513 -PA1803 0.694060092 0.570634156 0.665548138 0.487820011 0.448357617 0.578488153 0.546143778 0.633235918 0.513108538 0.604826955 0.589032048 -PA1804 0.781130593 0.739368557 0.797369315 0.705084117 0.665701585 0.654218391 0.693431892 0.615304332 0.696153468 0.644082574 0.659974102 -PA1805 0.869805679 0.7321318 0.854560274 0.315571838 0.346799326 0.717910244 0.674488492 0.545300572 0.698848678 0.615278898 0.662347322 -PA1806 0.848300981 0.805724514 0.728340892 0.290299181 0.297578085 0.650750059 0.516675377 0.565602609 0.507479237 0.522649844 0.617668484 -PA1807 0.654375184 0.539185668 0.771377278 0.232633117 0.401333679 0.669947575 0.606400745 0.437319735 0.623250518 0.699594096 0.684607812 -PA1808 0.637243382 0.656474782 0.752108378 0.133745182 0.160133516 0.663092086 0.40999388 0.571927589 0.601398272 0.587840439 0.634851976 -PA1809 0.688871672 0.633802404 0.711086608 0.163699235 0.137836823 0.636596262 0.514749905 0.563189591 0.613432726 0.716430468 0.596112425 -PA1810 0.385932957 0.486702771 0.507817834 0.193768692 0.157525753 1 0.593359845 0.616925472 0.593242705 0.815385233 0.728112359 -PA1811 0.630605202 0.638102946 0.517000198 0.227027918 0.355986918 0.511598598 0.560038214 0.580991625 0.617621049 0.515098293 0.552363685 -PA1812 0.80337803 0.806664401 0.900904183 0.206425545 0.2778404 0.621321335 0.895499651 0.520347985 0.827958914 0.639853156 0.898231919 -PA1813 0.584888578 0.651752474 0.630121011 0.676697726 0.774581284 0.52126527 0.577406906 0.47887835 0.565421487 0.511297719 0.731109001 -PA1814 0.357845019 0.355893885 0.350366376 0.435109253 0.521689449 0.402609478 0.549441359 0.581978818 0.519072761 0.508307125 0.50699469 -PA1815 0.735926138 0.629757593 0.783909103 0.487815995 0.463242052 0.696794995 0.866485337 0.742885053 0.784706203 0.781893578 0.80153527 -PA1816 0.473282893 0.340387027 0.441948303 0.274784945 0.284839789 0.367193109 0.389381703 0.353735384 0.446030183 0.417944605 0.313948255 -PA1817 0.219580674 0.186021468 0.263542176 0.371015935 0.358870601 0.441662795 0.77539152 0.352602265 0.627618484 0.455019543 0.693878463 -PA1818 0.440015261 0.345379758 0.323365386 0.385094872 0.375801356 0.325389226 0.226314927 0.252726719 0.105994662 0.18874568 0.279722667 -PA1819 0.297470168 0.179690289 0.177378104 0.410721603 0.40769026 0.372883477 0.429037774 0.394009303 0.407980608 0.497075912 0.435022041 -PA1820 0.409351628 0.398720537 0.537363101 0.36907281 0.294829553 0.466203515 0.384612824 0.59712863 0.466644319 0.491169135 0.645840277 -PA1821 0.673323412 0.684177201 0.799548336 0.590588335 0.602200709 0.585236401 0.553610759 0.566162791 0.627732591 0.595385939 0.679921315 -PA1822 0.754241637 0.630154046 0.932044127 0.390551611 0.554878572 0.593828547 0.495818781 0.650217793 0.504291143 0.581796422 0.562118166 -PA1823 0.614306578 0.322038466 0.794341083 0.323024744 0.316321715 0.727424242 0.647726146 0.65708554 0.70401619 0.724351897 0.781070923 -PA1824 0.540626814 0.214546262 0.358011963 0.144043591 0.135878058 0.303933675 0.507544408 0.218944512 0.555517678 0.417939354 0.518017527 -PA1825 0.316362211 0.082512833 0.356642485 0.495413732 0.557089034 0.140367162 0.21733761 0.118996501 0.241274793 0.190633111 0.237079084 -PA1826 0.117413611 0.187221773 0.129557302 0.345048178 0.377742774 0.215595361 0.045112372 0.194785119 0.182882445 0.302711176 0.030384525 -PA1827 0.337477268 0.320685793 0.249195514 0.310288619 0.309216793 0.35209434 0.323601129 0.350975175 0.316610862 0.402027013 0.406304731 -PA1828 0.376305086 0.351106316 0.645570623 0.728060456 0.7142964 0.583702025 0.42481533 0.649314737 0.440820229 0.658473296 0.474973382 -PA1829 0.363260262 0.451296436 0.392095553 0.376699553 0.400499809 0.352575002 0.261854262 0.436107728 0.261851006 0.462702603 0.197229523 -PA1830 0.468443949 0.669839006 0.636975688 0.546827103 0.566606222 0.710850472 0.710261272 0.671802262 0.683172683 0.720729332 0.68367766 -PA1831 0.363671403 0.427580831 0.37282787 0.359702105 0.400348953 0.62286641 0.642094953 0.38960532 0.41010892 0.52713393 0.533388103 -PA1832 0.621020398 0.458727473 0.667044181 0.456706933 0.492619364 0.443937693 0.533758382 0.585620625 0.450346674 0.68683916 0.468815022 -PA1833 0.408258333 0.518894533 0.476234276 0.753846467 0.69913335 0.283028833 0.280032476 0.382370007 0.288783645 0.280162297 0.300638029 -PA1834 0.232962025 0.132361506 0.457967946 0.285269333 0.275416159 0.048627425 0.236779749 0.17897485 0.071871554 0.173169811 0.069237434 -PA1835 0.202747145 0.211427723 0.408554926 0.380307485 0.388128845 0.189026009 0.161226382 0.134317878 0.108221934 0.10775035 0.081967175 -PA1836 0.22961504 0.155384959 0.283145685 0.276039146 0.331254359 0.057731682 0.051975592 0.062984867 0.128109721 0 0.081676806 -PA1837 0.527515858 0.450894304 0.771747357 0.254223467 0.295771806 0.175665472 0.181375706 0.182279063 0.199627573 0.204958037 0.248815574 -PA1838 0.686718473 0.422187821 0.992682988 0.302433346 0.383516555 0.367493867 0.282414336 0.280380631 0.24598623 0.29530785 0.29263246 -PA1839 0.627011176 0.410682815 0.695243341 0.526962445 0.517563497 0.329890521 0.441338607 0.501612678 0.357611963 0.449802919 0.394235291 -PA1840 0.59144713 0.500563392 0.661705164 0.413834352 0.413767486 0.258627836 0.600619505 0.317634059 0.393109757 0.29073111 0.509142285 -PA1841 0.617489279 0.349028326 0.549229961 0.414508282 0.431442608 0.721621478 0.97421149 0.669369591 0.956754515 0.739618785 0.992650533 -PA1842 0.420349291 0.33129035 0.676071369 0.15654622 0.24197715 0.573434007 0.76903181 0.341682839 0.766720777 0.480912428 0.748990194 -PA1843 0.564942052 0.50768899 0.470729529 0.180332005 0.217683646 0.712461124 0.793081515 0.552628778 0.815114391 0.706488023 0.810990084 -PA1844 0.184334223 0.11366541 0.113502412 0.136341245 0.181795525 0.26862985 0.317842639 0.19000289 0.341396176 0.213419657 0.168119523 -PA1845 0.405709573 0.256019928 0.197175231 0.209746904 0.228594031 0.243237046 0.356390363 0.314228392 0.321496643 0.2867945 0.409925695 -PA1846 0.648205073 0.556651808 0.276780612 0.125745449 0.17863518 0.438127518 0.631890492 0.364124883 0.612456461 0.645584172 0.783120267 -PA1847 0.533237894 0.58287984 0.513692818 0.714397502 0.716873961 0.884732657 0.824471906 0.934095667 0.821054177 0.901230976 0.832841866 -PA1848 0.228040628 0.153874254 0.176065884 0.204749238 0.235687843 0.114947192 0.089783841 0.258729337 0.234750832 0.259127021 0.15685642 -PA1849 0.215459888 0.210318573 0.329922327 0.236300299 0.2179364 0.175423126 0.007466569 0.192506541 0.196204028 0.218941821 0.201674212 -PA1850 0.395504515 0.681591562 0.459491069 0.52752089 0.50502267 0.219045486 0.164513066 0.30267302 0.3815164 0.13876551 0.339768213 -PA1851 0.19643637 0.103542887 0.173535363 0.513901177 0.526128905 0.216100334 0.32225279 0.296755799 0.287565104 0.196381749 0.355121173 -PA1852 0.561447213 0.332317617 0.485239801 0.554534244 0.541297355 0.593938927 0.55276795 0.672738324 0.540140153 0.619221152 0.534608458 -PA1853 0.310410533 0.225428253 0.283718421 0.205628981 0.156694467 0.411080723 0.480165093 0.177782206 0.474529992 0.605770723 0.628159297 -PA1854 0.15840283 0.179665923 0.220562139 0.155798951 0.091018752 0.681776344 0.720134995 0.246561317 0.794657679 0.683675499 0.762876573 -PA1855 0.288742712 0.237306469 0.254380836 0.370291729 0.324246073 0.429852823 0.434803232 0.350792973 0.433513056 0.460539531 0.388737066 -PA1856 0.097151472 0.073654781 0.125917902 0.08395555 0.089900149 0.72113847 0.872984941 0.282216579 0.906636925 0.754461962 0.864160222 -PA1857 0.566239053 0.880828486 0.412690011 0.387022046 0.425793286 0.585381644 0.510707479 0.472659153 0.531905392 0.755779572 0.601327995 -PA1858 0.417452667 0.293735973 0.494960465 0.332612487 0.351347019 0.816856555 0.514684406 0.790293052 0.659192327 0.800959987 0.63696722 -PA1859 0.403199024 0.331329782 0.352366659 0.605480707 0.628344228 0.369579762 0.300440162 0.401160476 0.357493019 0.477014629 0.231469278 -PA1860 0.16966329 0.187353496 0.159590676 0.774394096 0.751518753 0.353248633 0.294132044 0.374411143 0.301761211 0.334211785 0.277219458 -PA1861 0.282149881 0.219699404 0.629973696 0.517849648 0.59863482 0.144204418 0.221719191 0.209004236 0.219990975 0.194777194 0.131678499 -PA1862 0.544230997 0.374442197 1 0.815681706 0.881423694 0.318940987 0.243771213 0.203299495 0.187621228 0.213385823 0.235693581 -PA1863 0.455546555 0.458583082 0.868545972 0.921062902 1 0.147287078 0.059479727 0.21994885 0.130755478 0.075798156 0.090714182 -PA1864 0.29184814 0.288938304 0.838238552 0.371928785 0.424354229 0.245301479 0.222424029 0.119795721 0.150284261 0.192310969 0.204814597 -PA1865 0.341097392 0.266739715 0.28679038 0.448099351 0.545645328 0.384723567 0.452349789 0.270678099 0.504385625 0.527999037 0.477736615 -PA1866 0.391106337 0.307633912 0.20022172 0.405728687 0.403492758 0.398856365 0.498307019 0.381764493 0.53672718 0.401573052 0.573673224 -PA1867 0.2575282 0.144927086 0.177239962 0.185086531 0.165739205 0.282712598 0.216579884 0.308139704 0.317592455 0.220251117 0.308536287 -PA1868 0.422150671 0.41887042 0.241385106 0.454482839 0.330921595 0.546061907 0.302740214 0.464248406 0.426346728 0.339577639 0.397198344 -PA1869 0.497241428 0.181931575 0.542997844 0.66598575 0.655995283 0.841444524 0.670651882 0.783965691 0.736674703 0.836092458 0.659158583 -PA1870 0.124563623 0.134215492 0.037853053 0.110539227 0.176351591 0.201135976 0.120206015 0.141313933 0.275191715 0.228260185 0.167513772 -PA1871 0.10851488 0.129513801 0.200780565 0.783152401 0.750331239 0.375448224 0.284414525 0.404294628 0.298871492 0.351730968 0.274826666 -PA1872 0.253654179 0.258275296 0.310669078 0.520495218 0.584499767 0.262497898 0.171271479 0.355969661 0.174104326 0.351086888 0.197546373 -PA1873 0.227036697 0.191669805 0.15751885 0.261738715 0.247272522 0.380682031 0.366892567 0.4235588 0.240495497 0.24756969 0.261065943 -PA1874 0.099919463 0.087374503 0.155642568 1 0.967272223 0.220878083 0.149255728 0.311152887 0.155924402 0.254586727 0.19405538 -PA1875 0.116131413 0.160792012 0.277314903 0.93008577 0.936224193 0.312312192 0.175226052 0.372957182 0.295969585 0.249260567 0.26809016 -PA1876 0.071227096 0.089397377 0.04968885 0.760517121 0.729021053 0.205560364 0.157872988 0.258832096 0.159316344 0.144317681 0.131526629 -PA1877 0.179479422 0.171868343 0.102097172 0.759637618 0.808895093 0.22442388 0.145015936 0.254547108 0.137023578 0.179476861 0.197681958 -PA1878 0.363318648 0.408014095 0.345591378 0.553635884 0.509074604 0.38711142 0.367911052 0.410659444 0.391978061 0.466329372 0.466991147 -PA1879 0.430000897 0.363673851 0.334087478 0.557328285 0.540836065 0.335980869 0.275202746 0.57428916 0.374678615 0.493213091 0.462184812 -PA1880 0.259192333 0.244870896 0.361966427 0.689175445 0.666001504 0.303568968 0.195973988 0.346119902 0.324805396 0.335559476 0.153312615 -PA1881 0.104676631 0.175661744 0.326021931 0.735251181 0.731156708 0.08391619 0.083853392 0.110692884 0.016468919 0.159091057 0.072220891 -PA1882 0.251459302 0.248792024 0.242601119 0.279353261 0.28220162 0.287590476 0.386898401 0.497942615 0.423456968 0.32418081 0.33311772 -PA1883 0.16566924 0.211629242 0.163555986 0.227413843 0.186477351 0.254702212 0.251973873 0.335034202 0.331163452 0.210890864 0.332209795 -PA1884 0.114701877 0.130689293 0.071907874 0.167588252 0.121690002 0.270601439 0.341279118 0.128257954 0.421654953 0.366780886 0.361742797 -PA1885 0.155707104 0.221381372 0.141198291 0.416777187 0.441279146 0.265726426 0.09978329 0.229911441 0.157404608 0.12093557 0.006676146 -PA1886 0.426730126 0.299464635 0.441018527 0.558331615 0.578851327 0.259400263 0.21441306 0.145285779 0.108183454 0.139891649 0.469424863 -PA1887 0.13229675 0.115186004 0.190499194 0.545567664 0.617330993 0.132687077 0.118785381 0.148200745 0.138784309 0.176728505 0.122425184 -PA1888 0.088391619 0.136125215 0.215242571 0.652649934 0.653697114 0.109358115 0.135085231 0.06980197 0.115047176 0.146102405 0.097970478 -PA1889 0.424341432 0.463193907 0.554250316 0.361015959 0.374814897 0.374923298 0.49639772 0.441233135 0.471256668 0.422959564 0.548456846 -PA1890 0.390617807 0.201658371 0.352362014 0.331326658 0.32635238 0.696892577 0.566616321 0.578479316 0.670104044 0.556622969 0.572028037 -PA1891 0.111950741 0.065004197 0.085723042 0.112515386 0.095432501 0.083757121 0.130173496 0.089109859 0.112951611 0.183098213 0.160526413 -PA1892 0.119711972 0.041228585 0.108852863 0.101557922 0.094595015 0.142229652 0.119428822 0.098617936 0.145755162 0.100024019 0.11888895 -PA1893 0.171854111 0.088355913 0.115882611 0.126354218 0.086419132 0.138524067 0.151880234 0.133229972 0.095912278 0.166967849 0.09476766 -PA1894 0.206753089 0.085491913 0.232837426 0.073972871 0.071470137 0.194537795 0.196915807 0.235797622 0.192453273 0.246061429 0.181458423 -PA1895 0.111374575 0.070147833 0.187462779 0.104591225 0.094295175 0.164956911 0.044933031 0.209571464 0.083332042 0.157580982 0.107349781 -PA1896 0.102492572 0.077254003 0.154017247 0.07980162 0.043618896 0.127575495 0.062430986 0.04513537 0.052599228 0.144991042 0.033726238 -PA1897 0.195601427 0.06009196 0.259676468 0.137563781 0.099677417 0.250884316 0.107328027 0.110638141 0.116890931 0.177979779 0.151445967 -PA1898 0.1539959 0.12800034 0.175654931 0.204504464 0.202416836 0.474713592 0.393330174 0.475983471 0.440236435 0.48179328 0.373660626 -PA1901 0.293678734 0.24812512 0.229402169 0.573439977 0.483447293 0.453148556 0.328478008 0.431158067 0.395552118 0.469883245 0.369073108 -PA1902 0.181036884 0.126996645 0.208800228 0.398713298 0.326703366 0.532097665 0.302288512 0.462415912 0.431904843 0.512466923 0.381870413 -PA1903 0.251044775 0.116256594 0.188458808 0.463402359 0.396786659 0.50582808 0.364602046 0.446786048 0.425225429 0.50379057 0.405650224 -PA1904 0.178594285 0.099111464 0.183570391 0.45870421 0.381230657 0.373331782 0.295428294 0.310362857 0.313867615 0.369641338 0.211489633 -PA1905 0.229557081 0.113494348 0.217544268 0.542797856 0.49227985 0.538024205 0.442405333 0.427290341 0.522937885 0.503245621 0.420283438 -PA1906 0.296272808 0.217496428 0.281806668 0.330067472 0.338069401 0.399377594 0.473080512 0.278327609 0.421239164 0.430129622 0.526444571 -PA1907 0.195764491 0.107246058 0.121204222 0.134689991 0.131754529 0.25119339 0.228329848 0.341225456 0.148102838 0.186904958 0.333914367 -PA1908 0.194278388 0.145047621 0.168000347 0.202691432 0.182409279 0.255636732 0.207157395 0.362668916 0.288031861 0.196121272 0.4003118 -PA1909 0.206298696 0.168161749 0.19029178 0.221912935 0.259753168 0.071380257 0.143012846 0.362297209 0.308642139 0.12284123 0.030272678 -PA1910 0.239829331 0.210800938 0.283061557 0.122516262 0.1881351 0.213116743 0.186635321 0.171640712 0.202938862 0.155155125 0.2220155 -PA1911 0.201960536 0.135501473 0.163944772 0.104912304 0.098211997 0.061830975 0.095351554 0.081580419 0.202827197 0.112368442 0.155293904 -PA1912 0.282484246 0.159750542 0.374782695 0.101931156 0 0.09315303 0.073727394 0.062140458 0.264651378 0.087870443 0.161486488 -PA1913 0.826805533 0.600663204 0.598784763 0.331837334 0.354051038 0.186706901 0.159999905 0.202740898 0.254835708 0.136215603 0.292512521 -PA1914 0.167261976 0.15764906 0.17245518 1 0.982489821 0.276538766 0.2046446 0.298934491 0.251957278 0.224797313 0.278102375 -PA1915 0.130808833 0.153453041 0.185209988 0.307637673 0.345519224 0.337206248 0.246881267 0.4103798 0.220444894 0.383079126 0.227587812 -PA1916 0.287717546 0.245631551 0.225959166 0.298584421 0.289730846 0.470043563 0.58282218 0.374004166 0.546407118 0.400162465 0.656325818 -PA1917 0.14508979 0.217880486 0.248132596 0.295379418 0.229866896 0.455385119 0.524360292 0.484330573 0.433682016 0.517680773 0.460377002 -PA1918 0.281308935 0.259956699 0.22042608 0.369710832 0.239170694 0.381253572 0.511097054 0.379269869 0.382595121 0.462303716 0.442375554 -PA1919 0.249527768 0.263254331 0.257040027 0.679298935 0.614418314 0.556486713 0.468856369 0.466248668 0.50142656 0.559191275 0.494701359 -PA1920 0.216755128 0.516274763 0.175256295 0.660756745 0.51882173 0.767106633 0.410259237 0.695715706 0.323291852 0.827201377 0.370912261 -PA1921 0.115683769 0.200422721 0.936154528 0.939246608 1 0.248519544 0.159178961 0.255920203 0.194634819 0.203352486 0.256033213 -PA1922 0.206656659 0.186571108 0.784783984 0.386124031 0.411377567 0.204849133 0.174345746 0.290680835 0.153392369 0.171658335 0.150079319 -PA1923 0.228022859 0.167500155 0.666361552 0.301940762 0.350240432 0.243751768 0.279445216 0.309552748 0.304244858 0.163791326 0.238690207 -PA1924 0.151548972 0.128055277 0.680613693 0.27197086 0.294379603 0.177058047 0.116952875 0.254341315 0.185853624 0.203612923 0.097796193 -PA1925 0.108696298 0.101709458 0.674229344 0.239159419 0.261526498 0.165814653 0.17563544 0.106516978 0.220807312 0.212061141 0.131822038 -PA1926 0.630641086 0.561017517 0.779812988 0.289190383 0.240512211 0.483105031 0.510789426 0.385616573 0.432202291 0.500971818 0.53406036 -PA1927 0.108211527 0.077387546 0.084053227 0.450426992 0.629331741 0.521547873 0.70845772 0.243031574 0.815554446 0.565565666 0.757129571 -PA1928 0.283511554 0.315204178 0.324388168 0.345518031 0.378782621 0.513232709 0.780141652 0.353243755 0.85203117 0.505385897 0.784094775 -PA1929 0.240572835 0.262769991 0.32377419 0.451003577 0.463677839 0.313380709 0.518938073 0.189652706 0.70403319 0.421127125 0.522442152 -PA1930 0.071946097 0.026011024 0.124066531 0.981167835 0.954025232 0.402161066 0.102336118 0.623236108 0.191341642 0.402149784 0.23501398 -PA1931 0.197541479 0.21805088 0.220884966 0.842623742 0.859932782 0.423302765 0.29891361 0.534100448 0.280465533 0.455943293 0.280119874 -PA1932 0.253877899 0.312404456 0.320138159 0.738321283 0.758940651 0.331077229 0.301422888 0.34411904 0.176344796 0.323088303 0.291616328 -PA1933 0.287424945 0.253482341 0.337321857 0.632176639 0.661542141 0.515435536 0.311611257 0.487649465 0.353671651 0.526338294 0.346217772 -PA1934 0.348260346 0.428634208 0.299665062 0.269085576 0.302878663 0.129075331 0.208355663 0.209392923 0.220780631 0.181364094 0.212804281 -PA1935 0.299641783 0.390244763 0.257510151 0.292985728 0.150267426 0.295275868 0.285385877 0.500535299 0.410226277 0.395839787 0.321572939 -PA1936 0.139072453 0.135683348 0.076173274 0.087601393 0.077473724 0.200976856 0.218800028 0.245618499 0.190220511 0.132770422 0.319686009 -PA1939 0.105966069 0.430561698 0.121353801 0.216065892 0.126847987 0.192224718 0.151377733 0.190079151 0.223968932 0.125221338 0.108815919 -PA1940 0.379002976 0.341343698 0.455790392 0.339177982 0.336188614 0.245575929 0.332596783 0.380036557 0.333120802 0.412068168 0.352413438 -PA1941 0.623541716 0.454124206 0.650956241 0.422388577 0.475681526 0.481628427 0.379302497 0.440373629 0.355702429 0.394151109 0.348038368 -PA1942 0.17404044 0.185363913 0.368009463 0.330604053 0.332782852 0.435162202 0.327598032 0.527890101 0.454541449 0.396153034 0.332369901 -PA1943 0.380566007 0.5051748 0.397675017 0.744091547 0.641196178 0.222698558 0.095752888 0.587472876 0.118365056 0.244447275 0.191966529 -PA1944 0.222860243 0.351390083 0.425375981 0.63677226 0.653909279 0.417442428 0.243702328 0.433621624 0.371130427 0.409312782 0.183682876 -PA1945 0.167462683 0.101706538 0.228750419 0.432940005 0.371993057 0.449199178 0.39971676 0.352961037 0.316235271 0.270564638 0.332098602 -PA1946 0.227868379 0.419641395 0.180140404 0.285339703 0.301350031 0.424756365 0.323389848 0.43056951 0.390410015 0.387367274 0.299031303 -PA1947 0.216573888 0.223094382 0.113622036 0.235803159 0.230346205 0.243890156 0.19977113 0.199831169 0.16815247 0.117414764 0.156940158 -PA1948 0.332427545 0.154379348 0.178687506 0.333609506 0.337687717 0.480784997 0.370411813 0.444646394 0.382371472 0.350067464 0.342605227 -PA1949 0.42118388 0.458468061 0.401599414 0.416734235 0.385327729 0.416118993 0.322993174 0.297985452 0.453073102 0.408633344 0.359421397 -PA1950 0.356606209 0.404168148 0.324915089 0.487213955 0.432753706 0.53684131 0.432454171 0.471399714 0.535491595 0.526672614 0.437732265 -PA1951 0.090698346 0.152561137 0.144351581 0.520956818 0.517332402 0.174116231 0.214648081 0.431969439 0.181746245 0.221208804 0.188609517 -PA1952 0.231432909 0.195971546 0.198612745 0.286346733 0.256405607 0.526065874 0.458997556 0.322513877 0.392877655 0.302362084 0.391267086 -PA1953 0.265164125 0.220194012 0.210769061 0.328835624 0.232988769 0.343251859 0.354438495 0.352583826 0.45378262 0.307511802 0.418728289 -PA1954 0.126242654 0.149561012 0.127976003 0.172428914 0.204666992 0.088281481 0.056952132 0.121853 0.071903743 0.233856482 0.120052642 -PA1955 0.183805738 0.1382553 0.149945536 0.226004698 0.216483489 0.16364075 0.152770764 0.143149898 0.143627514 0.2287683 0.171905724 -PA1956 0.203506069 0.231356349 0.200966335 0.202134319 0.189746082 0.221066178 0.206381642 0.323938768 0.210345239 0.463798114 0.253343481 -PA1957 0.375580348 0.272586405 0.409325496 0.285767669 0.302357695 0.410015685 0.5050756 0.346974783 0.50368301 0.413476433 0.414296802 -PA1958 0.567904828 0.32263817 0.637584787 0.16793826 0.225368008 0.363940949 0.506085687 0.488320569 0.374979453 0.705024187 0.541964804 -PA1959 0.725398366 0.4822425 0.612303156 0.094756298 0.107415616 0.285807828 0.480095908 0.338526565 0.354853642 0.277223387 0.465862697 -PA1960 0.444591456 0.186759752 0.357144889 0.345290784 0.359988008 0.183441294 0.314457202 0.11080867 0.303887235 0.231936786 0.229821441 -PA1961 0.29504737 0.287693607 0.370279305 0.235975064 0.149714484 0.249644521 0.103675395 0.342797689 0.29503492 0.189909127 0.387955159 -PA1962 0.165081317 0.081112606 0.118946057 0.134447552 0.127945708 0.112533807 0.106772871 0.074843944 0.115440218 0.059931782 0.162366265 -PA1963 0.520956874 0.44703404 0.672323797 0.64178594 0.712536647 0.358314906 0.384733427 0.31287762 0.364874662 0.445663704 0.330341621 -PA1964 0.80117205 0.775689753 0.611012762 0.36913427 0.326286788 0.667889859 0.622942008 0.516111279 0.671386807 0.628281665 0.629121556 -PA1965 0.451425903 0.491356036 0.52624752 0.249568976 0.249228963 0.52167608 0.941287873 0.475829978 0.853071203 0.618462866 0.86736646 -PA1966 0.740699559 0.387446675 0.610240647 0.490605061 0.596743958 0.398433931 0.536679919 0.494724556 0.505298018 0.35390017 0.471432949 -PA1967 0.32953152 0.453829156 0.370769003 0.666775579 0.821480436 0.291680596 0.202940406 0.231590461 0.202194909 0.19860188 0.368134937 -PA1968 0.485941969 0.546929736 0.567595863 0.513402286 0.520502524 0.597492304 0.718160465 0.648213038 0.716130982 0.560630252 0.589914351 -PA1969 0.604244137 0.716450062 0.611105875 0.409940284 0.440681866 0.273415342 0.396898636 0.295773227 0.290323542 0.302046278 0.256967524 -PA1970 0.252931145 0.197545418 0.327073991 0.208378073 0.197942907 0.328830213 0.397055109 0.30033012 0.337803594 0.400212379 0.408548814 -PA1971 0.530882877 0.298995787 0.628134487 0.214475864 0.137325378 0.47809626 0.598341843 0.340445171 0.60843042 0.226374562 0.485341642 -PA1972 0.156746247 0.166422917 0.11648796 0.147077409 0.146863178 0.175940342 0.203182158 0.147366837 0.232422175 0.215303538 0.221814917 -PA1973 0.486435378 0.480268659 0.471545287 0.387931557 0.404119831 0.332989716 0.431547952 0.417488222 0.390004109 0.349137411 0.334187045 -PA1974 0.120398157 0.133994476 0.105801096 0.232268372 0.178583538 0.23891711 0.106623268 0.201523401 0.139446775 0.16306428 0.179207462 -PA1975 0.277113179 0.236022845 0.228743813 0.255903514 0.273624545 0.341903095 0.361609444 0.290463997 0.283240012 0.216067161 0.414544102 -PA1976 0.139287551 0.205854018 0.145186176 0.225261703 0.208759743 0.170672303 0.163546368 0.250333998 0.231578399 0.244939815 0.20586634 -PA1977 0.25514767 0.210816921 0.152681216 0.243081437 0.289300902 0.358570623 0.371408203 0.391256978 0.396686094 0.252056586 0.466499218 -PA1978 0.185583873 0.145559383 0.353650923 0.132800486 0.160407211 0.097488778 0.119404929 0.082126056 0.146945885 0.12449556 0.098937786 -PA1979 0.063980607 0.072089901 0.082300958 0.239113387 0.162476736 0.129269289 0.092059853 0.163811261 0.144270223 0.110952378 0.157239915 -PA1980 0.162490638 0.150340333 0.169558318 0.274236108 0.252744909 0.265004053 0.238295546 0.233807507 0.204749583 0.211060202 0.221309351 -PA1981 0.151385061 0.144780017 0.267248205 0.214117357 0.15924762 0.030056633 0.032948414 0.088509915 0.065567943 0.047388443 0.06055111 -PA1982 0.179038367 0.132673301 0.188427546 0.193166691 0.209961509 0.133461249 0.152376206 0.205699678 0.14191787 0.173076461 0.148875989 -PA1983 0.080148177 0.109508662 0.245517494 0.342219555 0.358746952 0.149855486 0.079660581 0.099671273 0.09916476 0.105959485 0.112559059 -PA1984 0.50166145 0.231897606 0.250380826 0.664070187 0.535669614 0.302517956 0.620268507 0.206176594 0.558632517 0.321488285 0.578545062 -PA1985 0.09290564 0.144464585 0.29146509 0.536346961 0.531010676 0.469464463 0.405554702 0.409831897 0.568320491 0.464725271 0.361640317 -PA1986 0.152600877 0.19934875 0.250332976 0.411295965 0.411735748 0.2683574 0.246281352 0.239853091 0.242343172 0.205604869 0.288868327 -PA1987 0.10377653 0.131004225 0.267877773 0.41944726 0.367162584 0.263258936 0.169140604 0.379302099 0.242528789 0.281947555 0.175209446 -PA1988 0.143853717 0.101551078 0.456063923 0.530981154 0.492968455 0.202582221 0.090319129 0.178191046 0.150937611 0.162054121 0.209476419 -PA1989 0.079743364 0.121475467 0.207248071 0.299660968 0.316013657 0.211934029 0.1103583 0.117548434 0.20972707 0.195942612 0.207080917 -PA1990 0.195015031 0.137881038 0.083975886 0.227024088 0.267334604 0.269844014 0.101933606 0.156862285 0.202049931 0.125966158 0.143416567 -PA1991 0.423892206 0.198554018 0.485519498 0.365187926 0.43738528 0.341884206 0.363968699 0.384736242 0.255348215 0.260249296 0.302068446 -PA1992 0.260417974 0.143495763 0.449573073 0.30666365 0.252309606 0.362663546 0.268805858 0.224422431 0.3168718 0.220861619 0.235178129 -PA1993 0.258943712 0.197588575 0.345978423 0.079357147 0.086901574 0.245887238 0.320695274 0.288854672 0.224879827 0.279360401 0.398102212 -PA1994 0.449401165 0.290307373 0.491979776 0.581179851 0.632944641 0.722768192 0.726831541 0.790694849 0.836635505 0.772589778 0.414480557 -PA1995 0.668107847 0.565878115 0.635083481 0.907572008 0.889605584 0.575090042 0.641785728 0.540177394 0.590957 0.479263125 0.622467907 -PA1996 0.663907385 0.541950103 0.850494595 0.839403802 0.832711772 0.387392465 0.50013492 0.485424618 0.467535045 0.664496392 0.616622188 -PA1997 0.342079871 0.314861537 0.397733959 0.547994439 0.564413018 0.21698365 0.143569149 0.315411693 0.19549883 0.23370587 0.023425326 -PA1998 0.37001535 0.201770158 0.237511197 0.292059913 0.252320647 0.433572385 0.229632034 0.395448993 0.266288697 0.346559326 0.271936335 -PA1999 0.686083464 0.269956652 0.228868099 0.535780575 0.337834727 0.677558676 0.509439293 0.703773898 0.496192653 0.669301399 0.494929599 -PA2000 0.617799588 0.173654954 0.129190455 0.399262116 0.21238616 0.528738269 0.350734283 0.552242643 0.279699107 0.47650541 0.363457997 -PA2001 0.676838712 0.280834317 0.266774856 0.508834395 0.440161884 0.359996575 0.259214144 0.394776648 0.242534936 0.288969283 0.254101961 -PA2002 0.466679645 0.137003142 0.17224686 0.199984108 0.189180304 0.370460427 0.294929228 0.24518563 0.266951645 0.275109175 0.248776445 -PA2003 0.226814936 0.257168718 0.169863512 0.865621133 0.891392064 0.395084474 0.186901917 0.508373269 0.166219856 0.418968844 0.090854462 -PA2004 0.257075331 0.193181299 0.154172299 1 0.942007089 0.608681201 0.182610756 0.656598138 0.16736497 0.534926137 0.146286986 -PA2005 0.452697766 0.340624738 0.477476362 0.2644591 0.103645141 0.365234155 0.119710884 0.140077701 0.251656183 0 0.255010453 -PA2006 0.543353724 0.278707089 0.25716616 0.321598659 0.347465666 0.285407883 0.434226912 0.325125883 0.366652127 0.204982569 0.356105872 -PA2007 0.580150401 0.31795499 0.233614246 0.431641076 0.496314897 0.833786571 0.797012974 0.843791532 0.879239598 0.795640446 0.840494872 -PA2008 0.645226839 0.426205208 0.314039991 0.483853782 0.532691559 0.536891355 0.542020424 0.533610002 0.574139192 0.523094076 0.545121715 -PA2009 0.698967509 0.505563016 0.202400058 0.621996187 0.615868087 0.614681137 0.57840783 0.653972106 0.566603929 0.604531425 0.645142997 -PA2010 0.442165702 0.255571111 0.396088101 0.331900783 0.370210242 0.58749477 0.654068004 0.679893741 0.670310253 0.650518304 0.560130636 -PA2011 0.327198446 0.232548046 0.363277841 0.17536871 0.112189045 0.624379957 0.612141366 0.554913242 0.636226743 0.615899019 0.550816176 -PA2012 0.201254769 0.163455394 0.20460597 0.183076258 0.207457975 0.285291813 0.214467934 0.238837415 0.205296673 0.275553237 0.133222258 -PA2013 0.381573651 0.412970733 0.385066506 0.326034131 0.287391917 0.28439892 0.284711492 0.283428312 0.297524135 0.334226831 0.297584823 -PA2014 0.384548095 0.290228517 0.301943503 0.189493782 0.150041386 0.432165787 0.403445959 0.354383384 0.404549441 0.480534802 0.294792427 -PA2015 0.412195295 0.31759469 0.43435487 0.455862377 0.434847757 0.588425173 0.581442588 0.667612766 0.579169068 0.641598828 0.599300466 -PA2016 0.480125119 0.417688679 0.468481854 0.611259047 0.585217626 0.926098402 0.812810177 0.955989576 0.850616656 0.889295221 0.818941749 -PA2017 0.167597957 0.1686129 0.151932614 0.384150856 0.370081548 0.485515331 0.506587831 0.467057893 0.530504812 0.440561228 0.515221872 -PA2018 0.131248504 0.160295164 0.085697511 0.127582903 0.118754375 0.433015455 0.610670609 0.356534615 0.592451088 0.480923216 0.558756398 -PA2019 0.238912474 0.284003724 0.075856935 0.106573651 0.099758577 0.362739942 0.466689303 0.293720023 0.555043442 0.329869088 0.480458864 -PA2020 0.235521073 0.156960916 0.285049677 0.268307425 0.229119154 0.678822319 0.655249367 0.747152281 0.69819345 0.661557962 0.664703456 -PA2021 0.061174482 0.166493439 0.13754013 0.249313992 0.241589768 0.642806732 0.563765908 0.717789564 0.612117657 0.696939199 0.581620471 -PA2022 0.112992675 0.143085815 0.083988324 0.084302832 0.07548094 0.225478538 0.338333408 0.300278069 0.288953116 0.221644792 0.305877165 -PA2023 0.694539521 0.539245346 0.69405336 0.508039611 0.519698599 0.881625514 0.952084876 0.835448663 0.912953812 0.87151661 0.949051439 -PA2024 0.080544835 0.123602881 0.148963274 0.79956051 0.797999875 0.390750424 0.284283574 0.472836787 0.245847473 0.456875481 0.237725731 -PA2025 0.335908009 0.442913792 0.336332104 0.745127424 0.687850713 0.598459897 0.53958238 0.65288197 0.568636584 0.635824496 0.585624967 -PA2026 0.22464551 0.788495039 0.220241913 0.423316732 0.355929549 0.23272308 0.193921872 0.168743415 0.190673807 0.227297778 0.169990246 -PA2027 0.143236587 0.149556668 0.502373557 0.190378535 0.166283011 0.250976812 0.101718154 0.136098199 0.12838736 0.253273752 0.1773847 -PA2028 0.294797114 0.273947224 0.261752678 0.243389772 0.297751826 0.52155355 0.551864308 0.564918607 0.591397069 0.752086678 0.502279137 -PA2029 0.485109926 0.202328021 0.66185363 0.579247923 0.548845108 0.973419747 0.659607567 0.811077991 0.801150094 0.86307302 0.810466672 -PA2030 0.176151838 0.111354051 0.462831859 0.738213482 0.686549404 0.600327874 0.382614042 0.48746665 0.484675495 0.532638414 0.343496169 -PA2031 0.40243256 0.26670977 0.564684104 0.754913231 0.720776422 0.559765647 0.402682824 0.469154003 0.463756362 0.44638714 0.438418799 -PA2032 0.525087588 0.28706784 0.711150184 0.577143403 0.556410155 0.398702641 0.490931645 0.305472928 0.504975135 0.380572294 0.498097174 -PA2033 0.128154965 0.069627373 0.148575754 0.097722551 0.127459115 0.087606777 0.112216478 0.042991972 0.090238048 0.071192949 0.097900743 -PA2034 0.14992134 0.15222016 0.197879503 0.212132355 0.173970308 0.178782239 0.228899829 0.271324653 0.210694331 0.188275887 0.208748616 -PA2035 0.220121233 0.260499886 0.188273822 0.31804019 0.345528509 0.215182907 0.152311902 0.354908741 0.181393289 0.170873138 0.225843435 -PA2036 0.196589303 0.182396651 0.209914813 0.21070108 0.212686438 0.445105013 0.378344338 0.493901392 0.438697072 0.528651414 0.468195132 -PA2037 0.179131879 0.184134068 0.23087366 0.171497226 0.18584349 0.721403628 0.7812712 0.778096376 0.738753265 0.772398186 0.714675293 -PA2038 0.455672602 0.367590543 0.436691387 0.43531642 0.478290727 0.777208781 1 0.718105305 0.944559813 0.805083257 0.957201572 -PA2039 0.549050292 0.786554542 0.322948174 0.501082308 0.414405061 0.679148094 0.586755871 0.362188077 0.672497377 0.568591926 0.65177757 -PA2041 0.167053171 0.16152339 0.107184307 0.148060113 0.10846262 0.308056953 0.361628159 0.377203316 0.386826928 0.361545224 0.427293861 -PA2042 0.777883067 0.469200792 0.511582408 0.279243197 0.304622626 0.394264715 0.56106651 0.354465041 0.499635917 0.4516747 0.55165783 -PA2043 0.396007325 0.222937885 0.229103315 0.152398668 0.175226375 0.277076943 0.32403222 0.358121246 0.223633482 0.275671577 0.304895186 -PA2044 0.777860607 0.522883637 0.774146451 0.208834245 0.13638373 0.220751038 0.305950397 0.141905651 0.386587177 0.382639511 0.347342696 -PA2045 0.690821044 0.659709722 0.723637697 0.758631249 0.681638525 0.730066736 0.645506212 0.661711395 0.471455551 0.712902255 0.571638761 -PA2046 0.257153453 0.156867199 0.150023119 0.316788169 0.271631223 0.42099796 0.646543184 0.590171919 0.464561311 0.42341706 0.688476927 -PA2047 0.101346359 0.227014097 0.400422716 0.334907598 0.355106875 0.061208155 0.073594853 0.206182351 0.041377007 0.18437232 0.128372126 -PA2048 0.145136867 0.129542539 0.303152508 0.433837473 0.444294474 0.132375656 0.209903505 0.137831447 0.187489103 0.119906747 0.15109842 -PA2049 0.329963462 0.382890171 0.290892191 0.138763745 0.185243439 0.418856464 0.382036612 0.365273627 0.311056401 0.352911039 0.363240247 -PA2050 0.173473059 0.132711733 0.20217841 0.176100443 0.155237395 0.289126858 0.31986036 0.301286259 0.241490257 0.230580698 0.316907082 -PA2051 0.155532186 0.167162939 0.127491227 0.197936471 0.189241836 0.191083005 0.201560717 0.27928654 0.220394844 0.273573069 0.345319969 -PA2052 0.198912909 0.22504102 0.277598886 0.173782146 0.201838972 0.497277555 0.41871904 0.426624544 0.588658615 0.664225818 0.488191067 -PA2053 0.191923866 0.237963323 0.172646096 0.31466117 0.309809834 0.273894379 0.231318968 0.228912459 0.173593175 0.282789309 0.2651668 -PA2054 0.266275446 0.255692198 0.257334416 0.330216702 0.320734833 0.399911247 0.341581424 0.445772381 0.366554485 0.352476211 0.369710982 -PA2055 0.266459389 0.204040031 0.144928208 0.253725612 0.243400923 0.374951127 0.254814566 0.256212652 0.269675494 0.288910053 0.375300114 -PA2056 0.41404791 0.310068377 0.187473308 0.267377232 0.179849035 0.219454673 0.191893874 0.274049384 0.286473228 0.299835842 0.144813493 -PA2057 0.212844363 0.248795886 0.144379148 0.379490435 0.377487346 0.43914246 0.39696529 0.735453169 0.190200856 0.34809283 0.52541728 -PA2058 0.250840192 0.187470034 0.220326771 0.213954463 0.201300231 0.475524911 0.615216519 0.514304682 0.411978349 0.406304762 0.484105389 -PA2059 0.223863846 0.318223277 0.210598889 0.330619156 0.222958821 0.270768564 0.222647775 0.265095671 0.138132197 0.296479469 0.150549666 -PA2060 0.2849335 0.222832972 0.209108922 0.201197892 0.18710411 0.345833965 0.327563157 0.442489753 0.337953435 0.331266299 0.473894605 -PA2061 0.199204658 0.192133681 0.252220292 0.246404163 0.228219998 0.292248271 0.270739313 0.426231767 0.317424552 0.387078168 0.321819491 -PA2062 0.235716451 0.269224246 0.368552054 0.447356824 0.449833275 0.269897186 0.189135623 0.239588861 0.220832098 0.20147418 0.238918443 -PA2063 0.408586368 0.234313263 0.393852795 0.168459999 0.142049488 0.315775522 0.292836445 0.322765051 0.282457004 0.22978327 0.277576113 -PA2064 0.221950888 0.213471911 0.217302965 0.220645692 0.237322654 0.314530933 0.192655958 0.360140715 0.272301134 0.303243582 0.224855368 -PA2065 0.162605774 0.169142824 0.182685926 0.211693031 0.169358285 0.290481354 0.17522437 0.228952441 0.173732764 0.207423088 0.206215803 -PA2066 0.312528315 0.308905063 0.298308906 0.601189867 0.568327412 0.968555717 0.634698281 0.851366904 0.762919432 1 0.618646093 -PA2067 0.200453156 0.175123949 0.238764246 0.669790299 0.64846708 0.636511399 0.376640014 0.443573534 0.50962917 0.612302117 0.284484844 -PA2068 0.178389559 0.120013312 0.087068315 0.252895865 0.233600083 0.675599786 0.256743752 0.676416049 0.367531398 0.684423032 0.369840871 -PA2069 0.191821326 0.188435202 0.225507522 0.529092846 0.468673922 0.58956481 0.326476889 0.509661176 0.374717137 0.586813835 0.359936306 -PA2070 0.356535693 0.312244534 0.247394317 0.307201956 0.311458667 0.529077458 0.359949666 0.609709637 0.51816389 0.444324189 0.450112088 -PA2071 0.277097447 0.36489697 0.467979147 0.992899014 0.830778948 0.735260897 0.500878505 0.780946321 0.506884038 0.723063268 0.422286204 -PA2072 0.226720945 0.206266715 0.253359036 1 0.946828413 0.409242705 0.319374655 0.642101085 0.364811665 0.459995122 0.326488459 -PA2073 0.179600448 0.193771981 0.079576948 0.196088706 0.175697345 0.299090678 0.334546223 0.416006122 0.309878362 0.30533651 0.256883109 -PA2074 0.329037432 0.430471846 0.286106123 0.347847163 0.304503259 0.578269201 0.453197302 0.610128785 0.427778426 0.505713702 0.415224926 -PA2075 0.189411318 0.224674987 0.221980137 0.335753146 0.284211057 0.368240626 0.377207454 0.40296402 0.158259302 0.262446848 0.413774441 -PA2076 0.485100174 0.3470303 0.548001159 0.405562355 0.379657581 0.494301626 0.455770073 0.532521101 0.550333557 0.448096495 0.523188074 -PA2077 0.192180832 0.169271279 0.132974261 0.271826969 0.231789143 0.214925408 0.119378233 0.234169167 0.145544815 0.163566896 0.151922493 -PA2078 0.220464482 0.219053445 0.164071987 0.235318937 0.212402101 0.278867365 0.141758006 0.29900464 0.257863768 0.322357192 0.249955991 -PA2079 0.260205969 0.157650496 0.292156499 0.199101504 0.205618232 0.424677385 0.353725631 0.401498249 0.423697803 0.485743574 0.403395468 -PA2080 0.493259006 0.41230425 0.521945086 0.236407928 0.221052727 0.187457659 0.163631433 0.153490595 0.233129819 0.229589073 0.193367831 -PA2081 0.597776528 0.600541083 0.540230753 0.436346444 0.448219718 0.411768132 0.322112072 0.366248291 0.346568909 0.323107002 0.389540388 -PA2082 0.606364116 0.661761667 0.712266751 0.511870981 0.53207386 0.676158043 0.797137633 0.675070216 0.775171014 0.691535037 0.729927442 -PA2083 0.275890023 0.242524027 0.354105326 0.252506921 0.243238169 0.222108946 0.22063489 0.190511267 0.178023003 0.201005787 0.171695065 -PA2084 0.234561566 0.175373221 0.255963753 0.195252647 0.22615226 0.251052318 0.18214554 0.154826211 0.193376487 0.188465616 0.225758281 -PA2085 0.238138106 0.185170484 0.281505097 0.224550767 0.219865043 0.223041776 0.209691914 0.174994033 0.128717751 0.24298946 0.306757076 -PA2086 0.204318942 0.166947954 0.200953147 0.144762367 0.149336014 0.160750156 0.120947037 0.162735886 0.144263011 0.22587518 0.143902535 -PA2087 0.162121755 0.119210201 0.15931551 0.128017379 0.124072872 0.16788954 0.136045052 0.136151305 0.165430697 0.178515159 0.189797122 -PA2088 0.164085777 0.136485302 0.210681386 0.143407875 0.18553781 0.250064134 0.205509362 0.258824499 0.162341629 0.266856828 0.1765863 -PA2089 0.18948195 0.195147771 0.182357829 0.256270857 0.177167912 0.208062774 0.208417588 0.187329742 0.157755392 0.185119537 0.18771765 -PA2090 0.166026312 0.145291719 0.184117548 0.168797298 0.148349454 0.057093014 0.110187573 0.133578663 0.126601254 0.149390504 0.117229235 -PA2091 0.277703957 0.273235126 0.225065253 0.285564116 0.284290468 0.350807434 0.374841273 0.420040984 0.376102345 0.381308849 0.378850788 -PA2092 0.124317046 0.180722326 0.19330001 0.274428336 0.254036265 0.183587305 0.196201651 0.172873436 0.272671282 0.244386022 0.220832277 -PA2093 0.157488708 0.136817163 0.164622312 0.157722494 0.162112459 0.121075227 0.09423722 0.14013275 0.146948773 0.173961345 0.119433703 -PA2094 0.170362705 0.248577532 0.142972466 0.231530054 0.222726245 0.260822628 0.231961836 0.224773263 0.193757052 0.205375125 0.192205297 -PA2095 0.14502673 0.183344884 0.200595458 0.240108936 0.283562535 0.126030611 0.166478711 0.107173874 0.109672239 0.082121703 0.150784636 -PA2096 0.380465239 0.306321915 0.326319008 0.469353435 0.444560349 0.292227854 0.279818547 0.357366778 0.240506705 0.296042559 0.279286151 -PA2097 0.220432411 0.215436812 0.196075346 0.290175062 0.250719827 0.446933594 0.321456975 0.315574982 0.430505043 0.370560707 0.465743299 -PA2098 0.27448883 0.391927919 0.264013692 0.358804462 0.417840046 0.299777905 0.442951287 0.297909453 0.437322347 0.19106882 0.381273052 -PA2099 0.280034886 0.299831497 0.357914033 0.439160341 0.541135977 0.351427071 0.495935158 0.583749387 0.480393035 0.423193775 0.510061026 -PA2100 0.179335335 0.347512953 0.176940084 0.155973237 0.108180822 0.540101482 0.575924399 0.657397094 0.523023878 0.630510529 0.61963047 -PA2101 0.164220845 0.177798283 0.130597122 0.122397837 0.150213343 0.543255407 0.336841029 0.665218719 0.589151237 0.584709046 0.403806184 -PA2102 0.263643084 0.323458199 0.196268226 0.189197324 0.233908299 0.589095177 0.549220022 0.756185293 0.622747011 0.585137807 0.606145791 -PA2103 0.250057173 0.403075718 0.206081719 0.231934403 0.227896795 0.48067261 0.439198775 0.447435548 0.460035885 0.429691133 0.406521694 -PA2104 0.13418492 0.351748234 0.211288811 0.187943461 0.151762426 0.703880126 0.686193355 0.759552967 0.73545755 0.662766655 0.724356338 -PA2105 0.251859228 0.381430575 0.117369307 0.160851655 0.098694265 0.566819474 0.744433542 0.7100193 0.73555132 0.720905626 0.591757687 -PA2106 0.264740385 0.380960923 0.232969455 0.320075674 0.30733926 0.7755618 0.615832166 0.742916967 0.696161642 0.676654738 0.815932313 -PA2107 0.391567751 0.467323497 0.376161115 0.584911887 0.555248359 0.391298789 0.36054158 0.466600916 0.215552734 0.335086968 0.394387063 -PA2108 0.320104342 0.35493334 0.349175061 0.64981903 0.700499376 0.289761658 0.295022835 0.306436771 0.282752877 0.315720267 0.208157099 -PA2109 0.208944252 0.327765813 0.151168795 0.341340374 0.386050154 0.405761739 0.307301988 0.411394875 0.290974485 0.263481158 0.363452409 -PA2110 0.120479564 0.502054348 0.156089515 0.166218375 0.167242714 0.321956798 0.169147661 0.241325303 0.241617791 0.310974513 0.193091447 -PA2111 0.160902286 0.574425719 0.222440098 0.200329514 0.193624693 0.279020892 0.120710118 0.25887499 0.208193524 0.304092328 0.117855621 -PA2112 0.124494836 0.600777752 0.199954852 0.2021819 0.23041712 0.310678938 0.123014226 0.185327854 0.165539196 0.26980765 0.16160029 -PA2113 0.198530359 0.430767866 0.18640735 0.194184433 0.184046281 0.457099451 0.199509505 0.396861762 0.313616258 0.419489354 0.284387347 -PA2114 0.127436843 0.574123096 0.119716128 0.164659569 0.15346838 0.230711366 0.13282372 0.241774972 0.218238025 0.264860555 0.213127028 -PA2115 0.513829318 0.561560538 0.441964219 0.336627935 0.389056089 0.481671989 0.335889789 0.506396 0.437843352 0.419589214 0.385190523 -PA2116 0.182388464 0.414297932 0.218420579 0.23200624 0.226848132 0.489284785 0.326466582 0.481820745 0.302206415 0.507041985 0.298070908 -PA2117 0.443119695 0.234444334 0.456142483 0.40499012 0.462845402 0.393133784 0.221078013 0.376274507 0.287224555 0.379967996 0.215730961 -PA2118 0.449152283 0.363106949 0.365740335 0.505170267 0.511856024 0.364953931 0.365312484 0.288446171 0.378523915 0.333594592 0.438510418 -PA2119 0.129706864 0.72159339 0.120977663 0.140233989 0.141553614 0.727625073 0.536564882 0.803090949 0.498289062 0.668374865 0.503418757 -PA2120 0.212613868 0.270695171 0.254514692 0.531767871 0.595537165 0.239416851 0.261962611 0.262474134 0.291186922 0.28446225 0.252837316 -PA2121 0.193328271 0.461795614 0.247795926 0.35167353 0.601149918 0.268523534 0.159867746 0.259993724 0.241465864 0.380238129 0.356940303 -PA2122 0.169284164 0.222443412 0.150647839 0.725414348 0.970122419 0.216303556 0.215951395 0.169501001 0.232124807 0.172851525 0.209164827 -PA2123 0.208486369 0.290279809 0.207723002 0.800726023 1 0.2326548 0.296953138 0.14362412 0.231656138 0.227453573 0.271661503 -PA2124 0.32327505 0.304415397 0.203344703 0.408618045 0.610848094 0.494554214 0.407212185 0.472596926 0.331401893 0.513505394 0.326443469 -PA2125 0.408789726 0.331822823 0.258272482 0.489362411 0.434448743 0.441824763 0.403639122 0.464440573 0.461249643 0.305430168 0.573180433 -PA2126 0.360686343 0.730291468 0.276049151 0.351045797 0.370563188 0.408808177 0.361769697 0.386988559 0.343824791 0.440315259 0.338260861 -PA2127 0.330004182 0.76568932 0.301440935 0.2891967 0.296284512 0.359378274 0.291473554 0.480291705 0.280022514 0.455830547 0.237405836 -PA2128 0.304491265 0.314444499 0.266782033 0.333142287 0.464051465 0.199886461 0.350631764 0.209601942 0.401005588 0.222398636 0.360899253 -PA2129 0.216071545 0.160113501 0.204994215 0.22446052 0.264940849 0.20284731 0.282928364 0.259788457 0.307709085 0.243920998 0.268762536 -PA2130 0.26189128 0.275482305 0.16687513 0.273243284 0.254842158 0.214348944 0.26208266 0.304755152 0.304746711 0.278406204 0.196637586 -PA2131 0.335603762 0.329668537 0.257464012 0.314169885 0.376624776 0.405635007 0.289264563 0.366792665 0.271827865 0.263254261 0.3861933 -PA2132 0.171624635 0.212367929 0.160847668 0.280463155 0.262008042 0.150069627 0.089150655 0.122670572 0.121379222 0.113275534 0.127140159 -PA2133 0.414987157 0.274834688 0.218310774 0.445926366 0.417361342 0.463489743 0.420215566 0.601726802 0.413571491 0.501377084 0.408293315 -PA2134 0.146477401 0.171428979 0.219872185 0.702464173 0.748971877 0.451588505 0.278712797 0.528459567 0.248126809 0.487822342 0.233600115 -PA2135 0.208153515 0.237890264 0.141062746 0.340789619 0.388884794 0.264957147 0.192422211 0.298499095 0.206854803 0.325686347 0.262446729 -PA2136 0.238079269 0.253080508 0.18927402 0.516300234 0.540737877 0.283062608 0.229680623 0.266144754 0.246774295 0.411844713 0.188497431 -PA2137 0.10488653 0.15343545 0.179586898 0.504041966 0.457940535 0.28948163 0.163151686 0.246068803 0.164885045 0.162743493 0.172526021 -PA2138 0.15602185 0.212604693 0.157860515 0.596167083 0.60224187 0.366514286 0.311702145 0.546754653 0.244680077 0.312887047 0.251792095 -PA2139 0.121205054 0.101355358 0.136141688 0.496872705 0.581254855 0.204332629 0.045361226 0.265719706 0.086491858 0.248518307 0.06841793 -PA2140 0.148675556 0.147880853 0.095079765 0.532071983 0.600185285 0.166008866 0.108213927 0.233624916 0.122578831 0.218484808 0.122419279 -PA2141 0.171796305 0.157267425 0.118671396 0.48537277 0.68761907 0.237575084 0.19269665 0.348810431 0.249336835 0.278219507 0.204317766 -PA2142 0.149217826 0.222627788 0.19205308 0.601499794 0.603724887 0.303539388 0.198217112 0.363287909 0.215428532 0.32188235 0.162443565 -PA2143 0.07367138 0.123200206 0.104366592 0.721210435 0.766564439 0.798588567 0.361006513 0.871544916 0.362785811 0.815776877 0.2614527 -PA2144 0.153274789 0.201517915 0.179669351 0.560285295 0.693171536 0.561071241 0.255829334 0.533097096 0.230125988 0.488168171 0.353750058 -PA2145 0.238030484 0.264204676 0.231066568 0.700598463 0.712702136 0.499238614 0.358640784 0.485390333 0.315633819 0.446878335 0.3918176 -PA2146 0.129979817 0.139275229 0.18454485 0.91225884 0.890853502 0.235210852 0.183568671 0.230081507 0.120634835 0.294990358 0.131748055 -PA2147 0.150357185 0.125269224 0.170115549 0.615131387 0.726188049 0.259510993 0.209076634 0.26764615 0.193047121 0.285262797 0.231537132 -PA2148 0.202451651 0.165253619 0.154177324 0.593063561 0.675961226 0.266272679 0.16886423 0.232842347 0.178517339 0.201246321 0.286458767 -PA2149 0.127981246 0.118569527 0.180253404 0.633465361 0.695237355 0.275445673 0.129303875 0.290431322 0.12094529 0.266907114 0.099452882 -PA2150 0.176130519 0.208776183 0.188475881 0.298326842 0.491567801 0.201858747 0.131670792 0.317543201 0.246641738 0.243073555 0.18696461 -PA2151 0.137659856 0.131523392 0.14772008 0.606284053 0.739204268 0.35869017 0.238723955 0.287842933 0.160424701 0.294452951 0.188820388 -PA2152 0.163763407 0.236299673 0.27237205 0.597621076 0.698553521 0.377521062 0.178347643 0.347500427 0.206352177 0.38272759 0.231449322 -PA2153 0.232946053 0.216996777 0.293739442 0.701753431 0.766937957 0.518147283 0.308631523 0.347527853 0.160130401 0.49619106 0.349712591 -PA2154 0.278084377 0.206875695 0.213119035 0.319188145 0.266235984 0.654897296 0.250979883 0.625836501 0.327744359 0.603856166 0.454994502 -PA2155 0.309861336 0.279426649 0.271912539 0.510737454 0.527904758 0.33260447 0.301792175 0.369758811 0.250397451 0.356387901 0.311239726 -PA2156 0.07883277 0.077626382 0.076398702 0.447803854 0.613463071 0.164340164 0.152146567 0.201803646 0.13943042 0.29242776 0.142910636 -PA2157 0.239062353 0.268105827 0.179002427 0.588465318 0.685483454 0.228119807 0.145665756 0.290846665 0.200016582 0.22494481 0.188332555 -PA2158 0.137712608 0.123555282 0.219925555 0.788359619 0.862595866 0.319730653 0.216430459 0.33468035 0.190709498 0.35443362 0.246532863 -PA2159 0.094438447 0.128817091 0.254519414 0.854707593 0.898589674 0.529361718 0.221359872 0.447020978 0.262686002 0.509567044 0.28181294 -PA2160 0.161676396 0.196824131 0.279757353 0.855014416 0.745689301 0.445279135 0.20145351 0.364913631 0.220928137 0.463351443 0.19451161 -PA2161 0.165650425 0.123457416 0.182646287 0.71003876 0.775906233 0.147333556 0.158906206 0.207369425 0.139429843 0.280872673 0.109162893 -PA2162 0.261874822 0.276307473 0.192550197 0.508742873 0.580226728 0.282296843 0.231208338 0.399367028 0.233893624 0.278879184 0.236718723 -PA2163 0.279076508 0.231969864 0.210440557 0.644192095 0.676144514 0.488732419 0.249286035 0.43824274 0.256521117 0.405134511 0.357684368 -PA2164 0.147669165 0.094933966 0.165320073 0.387661202 0.440080504 0.322385552 0.170107689 0.292223747 0.224224013 0.291733532 0.23122886 -PA2165 0.163507397 0.150045488 0.178327325 0.604686997 0.609826588 0.3449323 0.171165012 0.449113348 0.207553663 0.371388798 0.242775072 -PA2166 0.084049855 0.077268344 0.143989359 0.63043259 0.563087927 0.793277387 0.419138867 0.882515826 0.449606631 0.815210159 0.434970929 -PA2167 0.126491924 0.173145206 0.144045211 0.378750361 0.475770522 0.368981695 0.225512971 0.332027679 0.266711289 0.301273772 0.248855897 -PA2168 0.153400728 0.214284794 0.146067778 0.354898065 0.356368065 0.483982116 0.210626593 0.570306338 0.324816875 0.508680098 0.361549919 -PA2169 0.167546209 0.151837088 0.22576192 0.804133818 0.83783061 0.435076828 0.273463615 0.441227168 0.24930668 0.427966804 0.269555566 -PA2170 0.096755377 0.10406897 0.06231213 0.093104421 0.117354769 0.309582057 0.183089893 0.276865597 0.279448393 0.388669541 0.216152675 -PA2171 0.158526207 0.150147265 0.217808288 0.75371302 0.772243087 0.56152464 0.276917537 0.630365275 0.377788105 0.535251248 0.339381966 -PA2172 0.130898344 0.106251669 0.170213103 0.775995719 0.811456262 0.299547836 0.193141212 0.365897314 0.130202743 0.256337301 0.154384736 -PA2173 0.205985171 0.195869161 0.279582747 0.880547801 0.924213338 0.343451196 0.157936441 0.337574191 0.21180624 0.397298196 0.213083983 -PA2174 0.138458496 0.153263995 0.208176498 0.622172731 0.61146394 0.515922381 0.232415501 0.534767667 0.21889944 0.463579104 0.285261051 -PA2175 0.161703034 0.166006954 0.19947628 0.502436997 0.523575836 0.343406504 0.368837745 0.315130058 0.311371223 0.353895586 0.398827661 -PA2176 0.161379349 0.255941889 0.258795579 0.672867511 0.705707133 0.324482718 0.263194859 0.291231657 0.278755607 0.284291636 0.251577072 -PA2177 0.334103753 0.217400462 0.455276768 0.802248769 0.822762599 0.594586164 0.460055197 0.59055202 0.417962694 0.601401375 0.470598799 -PA2178 0.191958386 0.151023012 0.205722439 0.612864063 0.622341593 0.322983926 0.285150551 0.405742101 0.337635358 0.359499996 0.265182478 -PA2179 0.137502537 0.221273951 0.18618527 0.456684261 0.625403303 0.244805406 0.213040421 0.373661257 0.23225206 0.26379807 0.188839159 -PA2180 0.119783804 0.235350562 0.120314657 0.582620152 0.613943245 0.273022093 0.155814537 0.262409366 0.182532261 0.265650855 0.254044949 -PA2181 0.16949618 0.262770677 0.17287243 0.668383049 0.636397179 0.318219264 0.302674399 0.351825927 0.248827768 0.365752563 0.343201351 -PA2182 0.084123469 0.12941889 0.01234485 0.074757323 0.086006308 0.300556487 0.210182129 0.289329866 0.191004031 0.30869329 0.100033586 -PA2183 0.111165981 0.134740759 0.061990555 0.136164667 0.109736503 0.316736612 0.207975331 0.322545673 0.173955977 0.373772703 0.251696153 -PA2184 0.098417375 0.143859656 0.071911057 0.122790651 0.120142844 0.420499119 0.196004377 0.324109797 0.124645866 0.423506593 0.14613193 -PA2185 0.195688465 0.203881108 0.135924797 0.172334511 0.131970975 0.246157986 0.2226732 0.204425085 0.232283592 0.311507843 0.228302641 -PA2186 0.256639072 0.252180065 0.147514653 0.302443373 0.269225744 0.291446744 0.268054779 0.40719961 0.236535089 0.36774516 0.19457238 -PA2187 0.09551675 0.129256424 0.118839747 0.228273332 0.190952522 0.20549193 0.171745606 0.165048772 0.162977266 0.218605283 0.110161334 -PA2188 0.235424858 0.259513072 0.18195956 0.227247848 0.205590997 0.476972999 0.38405969 0.432004664 0.352163887 0.397837332 0.417588838 -PA2189 0.176248812 0.121240546 0.270954387 0.657645305 0.747571693 0.248286671 0.238673987 0.311850392 0.203750592 0.284653418 0.235140172 -PA2190 0.137417239 0.134420967 0.103881758 0.143945319 0.135932139 0.404113638 0.186407688 0.440921105 0.188218617 0.319292552 0.162659289 -PA2191 0.188176636 0.147897058 0.46628255 0.392099657 0.417777204 0.316473241 0.205979289 0.221389966 0.260409451 0.25888665 0.277743541 -PA2192 0.111737374 0.158965912 0.126331533 0.104030017 0.116809411 0.235249751 0.158249745 0.168277944 0.103696545 0.261776909 0.167420888 -PA2193 0.69019605 0.405880857 0.565505106 0.863172746 0.828037059 0.502360308 0.379813785 0.400327878 0.459060329 0.601893672 0.386010178 -PA2194 0.661529856 0.348913449 0.465914333 0.684799448 0.640124905 0.589552234 0.529478192 0.467394147 0.571404902 0.6579629 0.5675597 -PA2195 0.614137042 0.341934902 0.498122768 0.712301258 0.672623052 0.678881496 0.663989732 0.649802837 0.681833874 0.709008402 0.691895509 -PA2196 0.592868441 0.460055201 0.424613998 0.709413287 0.714684083 0.525491196 0.502315374 0.401103717 0.475644968 0.420272311 0.374835257 -PA2197 0.423477714 0.509090727 0.423608206 0.503197215 0.520210532 0.301188438 0.250229194 0.307641225 0.244707847 0.299966225 0.317076309 -PA2198 0.366885271 0.50353553 0.319117558 0.36791883 0.383712025 0.185835963 0.200495693 0.286073791 0.211383878 0.18904089 0.190685505 -PA2199 0.318882377 0.501759783 0.44381815 0.391583701 0.381496004 0.210466927 0.404789893 0.418021442 0.394062 0.268345266 0.337100493 -PA2200 0.328171385 0.350585903 0.217819565 0.306156521 0.243382344 0.400669577 0.362223368 0.584056304 0.445328459 0.310874117 0.406538702 -PA2201 0.618889516 0.314486683 0.669811156 0.311367853 0.319199414 0.400006334 0.36588636 0.341384415 0.278570017 0.311616654 0.329462748 -PA2202 0.284121778 0.230459876 0.663497394 0.234793963 0.225801894 0.395993059 0.293293275 0.333976748 0.422540528 0.351619914 0.334332615 -PA2203 0.330454374 0.30988749 0.661054514 0.25909634 0.22152524 0.344702931 0.349274615 0.340625562 0.335333216 0.23438281 0.299505396 -PA2204 0.328381315 0.326792165 0.719030529 0.290164952 0.318797946 0.23315571 0.200303501 0.191682654 0.246302292 0.219011592 0.235360672 -PA2205 0.423927202 0.424992312 0.378821318 0.505248697 0.422710148 0.438568715 0.456339141 0.500388671 0.548876319 0.438587529 0.374347207 -PA2206 0.154912792 0.155952782 0.215842585 0.231212338 0.22095698 0.272991773 0.229239319 0.277984476 0.236712373 0.278665018 0.240530294 -PA2207 0.255037588 0.256875435 0.17020854 0.212321059 0.262568649 0.284414798 0.256954064 0.419474155 0.170846282 0.21597145 0.43643108 -PA2208 0.174382384 0.160414758 0.057978056 0.280428073 0.248671315 0.239037238 0.306162504 0.400164259 0.208044362 0.285767244 0.385449492 -PA2209 0.292397866 0.252142141 0.172051402 0.24050188 0.352142674 0.283239359 0.229688968 0.289200715 0.361174018 0.211058361 0.107832292 -PA2210 0.195065991 0.243515357 0.12135982 0.228766495 0.188282075 0.363299107 0.300878021 0.349376767 0.267605479 0.37639336 0.402795401 -PA2211 0.216512974 0.169970353 0.210640788 0.315568161 0.233989183 0.2981399 0.249078123 0.343976483 0.174755016 0.259078326 0.067318834 -PA2212 0.37182075 0.403941665 0.332091583 0.392090826 0.385601546 0.365583284 0.461237709 0.39577555 0.368190455 0.48893831 0.415755877 -PA2213 0.233879199 0.1760114 0.219221831 0.313578104 0.309231841 0.259643059 0.249028987 0.223141614 0.351538999 0.279815299 0.253803495 -PA2214 0.261258465 0.259172777 0.12764538 0.289125822 0.220327874 0.22131322 0.118379757 0.298040451 0.184314853 0.230041198 0.216110192 -PA2215 0.291995055 0.327809094 0.326371989 0.342621195 0.393042658 0.387160328 0.313850885 0.33115227 0.459656056 0.430254946 0.39499959 -PA2216 0.376504855 0.398811224 0.356184334 0.584205617 0.441528843 0.359207814 0.422137939 0.420945549 0.358496033 0.272670599 0.266892868 -PA2217 0.293660301 0.256276619 0.291341391 0.369268891 0.260740093 0.255781296 0.167509773 0.211411341 0.275182725 0.258384298 0.277484734 -PA2218 0.274748547 0.556907284 0.229377936 0.279755241 0.316430926 0.452457391 0.55683895 0.528493677 0.743038868 0.582181141 0.538137872 -PA2219 0.336025884 0.373870666 0.354171152 0.418161248 0.398325311 0.715979241 0.789447936 0.643125991 0.738460517 0.655933666 0.803844442 -PA2220 0.238918409 0.337927289 0.16743514 0.260759369 0.209388516 0.398176132 0.437052473 0.306191383 0.341006921 0.367492594 0.421144308 -PA2221 0.190119031 0.196819967 0.154771406 0.197250048 0.198212632 0.184018133 0.177496351 0.22090156 0.180528193 0.163225154 0.170888502 -PA2222 0.085995171 0.17797064 0.04951821 0.030217706 0.056108766 0.098283272 0.148006865 0.207253038 0.154057201 0.138586041 0.137803187 -PA2223 0.054598241 0.22357322 0.053403026 0.027427405 0.044230948 0.122772325 0.051478662 0.157527515 0.067227487 0.10360473 0.056620853 -PA2224 0.062976969 0.101931526 0.082001409 0.07165083 0.080706619 0.119484058 0.099667152 0.123439617 0.102227745 0.148089642 0.116227145 -PA2225 0.181612013 0.194475999 0.098819887 0.221666279 0.197189397 0.228412372 0.241887992 0.188589556 0.219538948 0.202421212 0.163288434 -PA2226 0.033253267 0.052142616 0.032677694 0.079268326 0.074199474 0.032775021 0.086044863 0.093367066 0.077905448 0.040231404 0.111603708 -PA2227 0.145218465 0.188060611 0.159184085 0.139408667 0.094394901 0.169286034 0.168996141 0.174505265 0.161840886 0.181252862 0.169950461 -PA2228 0.069143317 0.121604421 0.09692911 0.054180078 0.053415866 0.110948814 0.10870756 0.117337248 0.205104576 0.139281326 0.123634076 -PA2229 0.184927127 0.605630581 0.190482041 0.227864088 0.153899906 0.811258949 0.804055298 0.620146431 0.907268107 0.802800128 0.809264214 -PA2230 0.248122614 0.451489382 0.139393288 0.248801032 0.157369775 0.418222827 0.523132195 0.387371712 0.509434283 0.462573066 0.465905293 -PA2231 0.255208597 0.617917112 0.229394862 0.246240635 0.227360062 0.731010784 0.615240226 0.734553659 0.536438309 0.709605509 0.555791524 -PA2232 0.196386663 0.64142997 0.086747364 0.192043131 0.200377587 0.544323239 0.373844336 0.511093597 0.418550235 0.539996981 0.382284223 -PA2233 0.219658303 0.570073338 0.113420194 0.105141969 0.196140388 0.638772684 0.459023871 0.679624101 0.462398484 0.633558907 0.471221011 -PA2234 0.126209756 0.620181442 0.107176392 0.313934938 0.239775096 0.693339497 0.415855946 0.756559644 0.508030141 0.684153704 0.49082973 -PA2235 0.215269575 0.641526979 0.130930049 0.265887109 0.292116234 0.682205985 0.451361528 0.699819989 0.594030972 0.628933067 0.468199598 -PA2236 0.278208508 0.653260886 0.259686327 0.320222119 0.477706066 0.65032639 0.421122891 0.665707134 0.446461995 0.660467536 0.346752875 -PA2237 0.200851826 0.586367551 0.146212546 0.573042094 0.505127633 0.773939131 0.340385961 0.913566104 0.475706913 0.797149101 0.482359277 -PA2238 0.30113428 0.463354596 0.250298571 0.470092624 0.467198194 0.691042481 0.433958566 0.591720416 0.441317893 0.613957805 0.45234576 -PA2239 0.271792039 0.38936108 0.19735584 0.402449149 0.440195171 0.559655163 0.441574038 0.651650656 0.369240482 0.707144609 0.469826606 -PA2240 0.348361898 0.456892177 0.256183176 0.473981719 0.405110516 0.785294336 0.500307261 0.779974134 0.532376553 0.787283704 0.412393679 -PA2241 0.258402677 0.332729503 0.194115913 0.337029064 0.276164046 0.54100899 0.417498012 0.503925276 0.462769928 0.501070939 0.511710131 -PA2242 0.261743922 0.559425226 0.3044105 0.314388753 0.340171495 0.739644677 0.671903737 0.720169778 0.720238537 0.69390223 0.635854234 -PA2243 0.210518296 0.32974868 0.317389286 0.346550188 0.395383238 0.183472097 0.080122145 0.432860567 0.269389953 0.239817703 0.2742847 -PA2244 0.258016809 0.202129445 0.252906056 0.458604788 0.467737218 0.360007452 0.244046507 0.340776501 0.296099324 0.3649366 0.280369293 -PA2245 0.174621964 0.140381912 0.15832258 0.287740526 0.288237665 0.435593656 0.47579702 0.483580734 0.2998542 0.443018178 0.420244584 -PA2246 0.372257211 0.417212142 0.368007051 0.629201195 0.612226093 0.522578201 0.437432787 0.552378493 0.440347717 0.480068579 0.372491219 -PA2247 0.609167878 0.56650947 0.21418427 0.843542568 0.853623498 0.389144125 0.357578208 0.421600449 0.31227221 0.433574681 0.370379534 -PA2248 0.548928091 0.49741268 0.21274475 0.827548116 0.836632125 0.342500779 0.203355921 0.367047057 0.275772279 0.355987109 0.228540342 -PA2249 0.45578224 0.375851165 0.212106746 0.739407765 0.79292629 0.444029863 0.359900043 0.519200301 0.400783527 0.476114233 0.307008841 -PA2250 0.442762625 0.305692813 0.141613822 0.722286196 0.733306218 0.362191855 0.215087348 0.361836727 0.227369118 0.321007107 0.21259674 -PA2251 0.63858431 0.477454206 0.5021811 0.768241229 0.825538117 0.407153791 0.391395498 0.584511326 0.376527503 0.447978306 0.399312404 -PA2252 0.171634368 0.651081673 0.158252786 0.249822567 0.236904312 0.19155285 0.221307831 0.292601217 0.219656046 0.19839656 0.189511214 -PA2253 0.542237292 0.664742837 0.602913489 0.375246975 0.378998725 0.258528182 0.233949889 0.290769893 0.200892643 0.253363094 0.282819684 -PA2254 0.400535426 0.361573703 0.374377303 0.337658338 0.314342102 0.321674023 0.388433039 0.395012448 0.444902666 0.397579023 0.375317651 -PA2255 0.121426702 0.182366018 0.156218573 0.139559572 0.164726379 0.097731761 0.092714026 0.163297451 0.062566572 0.104610667 0.139569365 -PA2256 0.26915574 0.371056807 0.237726985 0.33133017 0.293486656 0.33510623 0.319907084 0.294082777 0.306016 0.38557143 0.242941003 -PA2257 0.408059108 0.441842122 0.362383104 0.451068008 0.418628604 0.527631959 0.48509687 0.471793518 0.441696378 0.446619922 0.56154664 -PA2258 0.26034555 0.34087354 0.230950889 0.357583066 0.310147267 0.2974036 0.325177787 0.366831399 0.466315315 0.354124504 0.41676068 -PA2259 0.318354421 0.415265471 0.436272608 0.447245122 0.432406754 0.376751367 0.315560625 0.376740929 0.310990999 0.316399453 0.303322399 -PA2260 0.190911246 0.327265257 0.231380122 0.249710581 0.242184621 0.282969876 0.222523137 0.291152615 0.24564887 0.276992073 0.198941828 -PA2261 0.230271384 0.303697292 0.261493434 0.400086722 0.365686845 0.364404142 0.295127557 0.416787231 0.27273484 0.369615842 0.376133518 -PA2262 0.092234425 0.14730802 0.156077277 0.151519297 0.082976684 0.289120684 0.17827005 0.318495712 0.127376702 0.242236598 0.212689725 -PA2263 0.235473382 0.297308901 0.283296247 0.276700785 0.27961075 0.265777979 0.152629398 0.271989126 0.235964885 0.328674348 0.183849845 -PA2264 0.351280848 0.622885672 0.531468885 0.55018968 0.620772949 0.490611874 0.408980004 0.583780525 0.266476967 0.634704354 0.389482595 -PA2265 0.358102557 0.739706186 0.514912202 0.56710793 0.597300916 0.540552407 0.483127173 0.515897318 0.421308425 0.57041171 0.409947736 -PA2266 0.346506434 0.717710583 0.508938039 0.648920603 0.691115755 0.425258194 0.409172508 0.551523235 0.362553119 0.532092216 0.341761896 -PA2267 0.75824365 0.625354969 0.689280395 0.657089737 0.638850522 0.457764651 0.419888459 0.477551396 0.493813924 0.538125135 0.608901671 -PA2268 0.222248203 0.201196142 0.200286183 0.254050305 0.271340384 0.239401622 0.257327739 0.27058916 0.232023129 0.199059066 0.207924579 -PA2269 0.474663638 0.491973053 0.379572962 0.47740285 0.496997339 0.525523366 0.489751379 0.656107757 0.68326784 0.584678943 0.491243584 -PA2270 0.688397922 0.657587819 0.658101346 0.489764165 0.547671732 0.386823438 0.276501148 0.26906283 0.292170311 0.287995148 0.206405735 -PA2271 0.669272838 0.651084212 0.714503271 0.464050609 0.462586309 0.57483446 0.37918268 0.641311644 0.535002553 0.711888099 0.63266583 -PA2272 0.707296246 0.346444057 1 0.369695405 0.480708209 0.432254915 0.421175332 0.340742547 0.360593851 0.492039109 0.393194274 -PA2273 0.366212717 0.353925008 0.52868788 0.382727794 0.447342291 0.422232426 0.446061081 0.541995567 0.399616604 0.420814146 0.395717107 -PA2274 0.212712773 0.213261334 0.245697474 0.274409606 0.25169799 0.246097485 0.253085177 0.223152041 0.239557242 0.337717292 0.27801267 -PA2275 0.211895837 0.200591084 0.181670634 0.309771594 0.29649694 0.408632483 0.378412805 0.296274103 0.402872106 0.410669013 0.292622208 -PA2276 0.415381382 0.394994434 0.369223403 0.38688531 0.354816661 0.341285387 0.308600963 0.25448195 0.287382152 0.376015087 0.363158597 -PA2277 0.399249038 0.413872589 0.442752727 0.345869822 0.316898219 0.43516412 0.343583894 0.349246641 0.380803435 0.368543993 0.374665079 -PA2278 0.264609459 0.279846415 0.326261946 0.239940496 0.205636213 0.254270792 0.192027752 0.241016061 0.298449728 0.272324595 0.275267937 -PA2279 0.341615875 0.282887494 0.501271579 0.137178594 0.178319798 0.250611551 0.177369043 0.168869638 0.175759902 0.178021236 0.207218164 -PA2280 0.44641306 0.391883337 0.584131695 0.369093503 0.336362536 0.649702235 0.629687103 0.551970925 0.512355671 0.535856062 0.649726019 -PA2281 0.670453985 0.639117742 0.746138192 0.524221224 0.514984206 0.612007415 0.590840552 0.525361528 0.75184661 0.614406275 0.568490853 -PA2282 0.279417693 0.29103742 0.318612881 0.326886341 0.363082551 0.430825191 0.456075491 0.387306927 0.447758895 0.53728322 0.345692763 -PA2283 0.246512989 0.314608354 0.19071087 0.313422116 0.295887332 0.340072767 0.366706197 0.448493483 0.336150026 0.237633018 0.391042278 -PA2284 0.221924877 0.265668464 0.218906685 0.277715301 0.333262933 0.314964201 0.302748036 0.332043701 0.270502684 0.241092701 0.354944661 -PA2285 0.221777486 0.30971611 0.246954865 0.214113211 0.18386138 0.141934681 0.228516885 0.198483362 0.289696737 0.121090601 0.194122546 -PA2286 0.26001433 0.244531524 0.323897876 0.26208378 0.239975375 0.236478937 0.279937819 0.32243833 0.337067762 0.252181625 0.375226974 -PA2287 0.253266108 0.242942229 0.201160456 0.237873171 0.293631543 0.31574617 0.391462944 0.331559895 0.457529251 0.311803176 0.451037558 -PA2288 0.306468977 0.275713337 0.235453433 0.381386734 0.34325113 0.373346768 0.387433592 0.293460126 0.384278689 0.295128848 0.34023978 -PA2289 0.417088286 0.527874246 0.507438677 0.445103439 0.513413863 0.567510381 0.508095998 0.613479914 0.549708467 0.541489719 0.572341652 -PA2290 0.326927864 0.677214267 0.538267502 0.736231809 0.695164031 0.528653054 0.4476014 0.485128547 0.531143794 0.538279794 0.520499326 -PA2292 0.12794957 0.201147939 0.183775056 0.254949635 0.221373372 0.217665681 0.246982242 0.198254028 0.296037523 0.182225552 0.193922953 -PA2293 0.140342557 0.106718614 0.111731662 0.183669635 0.124029278 0.206524902 0.172921541 0.209520304 0.189252012 0.177901331 0.180590702 -PA2294 0.181300522 0.23047918 0.18742477 0.203088468 0.167345728 0.214342117 0.168470341 0.239120812 0.201062884 0.190035509 0.179035453 -PA2295 0.120345134 0.124119373 0.089897298 0.113371669 0.095739064 0.15216658 0.158796354 0.203323393 0.214350251 0.192648158 0.214358742 -PA2296 0.153562389 0.195669649 0.030245091 0.144274724 0.146631041 0.147415835 0.204703081 0.208875621 0.176672679 0.173250562 0.198936797 -PA2297 0.250256968 0.339236472 0.270246368 0.305220014 0.338490978 0.278661414 0.244077802 0.233970038 0.258212742 0.270524301 0.247265737 -PA2298 0.264613422 0.375491568 0.249033685 0.258223309 0.273968467 0.212653606 0.173903732 0.268075583 0.164456162 0.268873629 0.199174445 -PA2299 0.234637981 0.279328548 0.270941916 0.265875022 0.259517313 0.235398147 0.229338422 0.251950716 0.18143967 0.218121469 0.225268206 -PA2300 0.185907983 0.14177613 0.176415997 0.530970519 0.432762096 0.567965904 0.344380332 0.59811142 0.357535321 0.58672037 0.369358233 -PA2301 0.421749716 0.535093349 0.539197606 0.46624851 0.4358698 0.930129419 0.800302516 0.934301411 0.792322584 0.922273511 0.821204996 -PA2302 0.444499198 0.355790279 0.491882595 0.551268156 0.486774295 0.705002424 0.540216762 0.63589379 0.57631899 0.64091718 0.499904925 -PA2303 0.254344907 0.250647714 0.416994319 0.49118155 0.46810891 0.628819024 0.418890018 0.570588973 0.344998525 0.643658018 0.391158785 -PA2304 0.442790444 0.449842868 0.558027614 0.650688077 0.592954002 0.633725426 0.445483409 0.669431355 0.472883067 0.647839622 0.395898803 -PA2305 0.546058417 0.413818997 0.48320705 0.598134376 0.524146182 0.714808651 0.572778632 0.613890961 0.597869275 0.743559918 0.608464746 -PA2306 0.349963959 0.455281869 0.554233074 0.313395867 0.386933549 0.332468456 0.172487294 0.280770072 0.250249079 0.346091092 0.306480622 -PA2307 0.167438868 0.158454083 0.1137117 0.237377108 0.195475564 0.26006647 0.289010502 0.368571419 0.235982613 0.274102695 0.295939368 -PA2308 0.153476502 0.147344595 0.142257851 0.17284965 0.128335709 0.182320952 0.205038669 0.240505081 0.192766351 0.194419712 0.283350759 -PA2309 0.213924778 0.183477538 0.158931856 0.2385787 0.227322675 0.276763988 0.229021501 0.254066229 0.250537313 0.226742016 0.25874454 -PA2310 0.121795673 0.137279998 0.17616515 0.176412382 0.179606372 0.134791193 0.130600902 0.166372231 0.110972776 0.115893014 0.209595726 -PA2311 0.330775385 0.308240538 0.402113834 0.399494085 0.349474372 0.452905627 0.397935113 0.399181638 0.361331376 0.37725296 0.346421907 -PA2312 0.185578132 0.204156408 0.380110796 0.174623118 0.187019593 0.183360625 0.205852455 0.165766394 0.169544776 0.178649362 0.258210466 -PA2313 0.125376722 0.096132241 0.213800941 0.172067358 0.195469271 0.47842293 0.592123852 0.471083905 0.495266084 0.466822215 0.759935479 -PA2314 0.190709269 0.162899836 0.188181186 0.252862555 0.236170312 0.283165521 0.317995468 0.308026541 0.342114116 0.201386148 0.386216362 -PA2315 0.363966233 0.361351337 0.252691215 0.342217611 0.32490627 0.394738514 0.378365536 0.496755589 0.372559856 0.435073431 0.4713242 -PA2316 0.328420353 0.404713396 0.292953824 0.310020617 0.326769855 0.323953281 0.299757933 0.277861223 0.332125311 0.217756855 0.353973355 -PA2317 0.235220253 0.274242428 0.318426815 0.306523533 0.285180037 0.315084738 0.242046443 0.365033929 0.32307158 0.327860878 0.188944905 -PA2318 0.315606123 0.342485431 0.313457488 0.38810663 0.371252061 0.43307397 0.253658297 0.325097819 0.319870135 0.42245214 0.336866854 -PA2320 0.555274233 0.468906353 0.760511845 0.535355336 0.499576753 0.430443935 0.341665137 0.499570463 0.365615218 0.441144271 0.273686327 -PA2321 0.515185372 0.502540941 1 0.581036132 0.538387897 0.726645351 0.471179274 0.728586079 0.474763312 0.748692445 0.398003839 -PA2322 0.360423091 0.35723554 1 0.248253942 0.238466786 0.274542373 0.214165466 0.288028069 0.185414051 0.319513408 0.204863231 -PA2323 0.313883802 0.879282347 0.96068994 0.522374769 0.539553672 0.630985274 0.490215171 0.654724836 0.440091867 0.681730246 0.50055331 -PA2324 0.059681825 0.09813319 0.114191746 0.07979021 0.076871012 0.105983172 0.07662501 0.071122117 0.165987313 0.084632571 0.160463774 -PA2325 0.13582091 0.187389707 0.141216811 0.173865961 0.1271839 0.096122614 0.088343556 0.153178345 0.103872715 0.140854076 0.150029523 -PA2326 0.201433405 0.178692626 0.18964518 0.215262668 0.188604243 0.204637585 0.152589014 0.237857375 0.175770512 0.189593743 0.208518544 -PA2327 0.217968955 0.224423577 0.202047639 0.216763586 0.215619119 0.247141706 0.288529272 0.238840194 0.20748146 0.265022462 0.231984115 -PA2328 0.155325655 0.177375879 0.23124562 0.202114101 0.200694738 0.211028135 0.210793966 0.282624794 0.205091705 0.209867888 0.195087383 -PA2329 0.225998096 0.220517855 0.366324365 0.186814178 0.181678957 0.271184334 0.176104487 0.25618601 0.187567287 0.223685848 0.307323723 -PA2330 0.224836431 0.213508486 0.231248077 0.222037098 0.218099941 0.234478722 0.137873147 0.216212547 0.190317306 0.205615663 0.140404186 -PA2331 0.279945658 0.304606276 0.360281339 0.188674742 0.240927273 0.245099483 0.217148804 0.337286198 0.162144316 0.232528699 0.227006543 -PA2332 0.565151957 0.537403856 0.599457856 0.330742544 0.356143457 0.418711264 0.410151825 0.415683753 0.416529256 0.344970944 0.490879793 -PA2333 0.389200155 0.387778298 0.228882092 0.423015608 0.331248157 0.446597716 0.526862792 0.43090392 0.357105781 0.370527735 0.422754362 -PA2334 0.322636688 0.255064841 0.17240833 0.429435471 0.257240745 0.409351905 0.326445463 0.434222609 0.426034171 0.340864938 0.193237305 -PA2335 0.199944707 0.211514861 0.158578763 0.228742349 0.170053044 0.350015162 0.179895002 0.316446334 0.154984366 0.164467486 0.222610099 -PA2336 0.188938127 0.208464444 0.173669643 0.217287504 0.166251761 0.181767451 0.215509483 0.15745509 0.099841823 0.177986761 0.135673815 -PA2337 0.452481042 0.479343936 0.654499555 0.661349381 0.701062451 0.431593625 0.474063318 0.565373312 0.491227796 0.495022532 0.410057807 -PA2338 0.339544021 0.373721425 0.275146418 0.335946902 0.364836263 0.327373722 0.283586618 0.329580255 0.260917849 0.306450806 0.318057125 -PA2339 0.189551382 0.19875343 0.251815358 0.25777391 0.216497333 0.337514338 0.261352363 0.25963692 0.261864028 0.297329892 0.210599223 -PA2340 0.135924327 0.148787211 0.221206937 0.293057651 0.225647133 0.177417647 0.091988781 0.241276846 0.131384226 0.225966014 0.158974859 -PA2341 0.12314256 0.123639233 0.129697765 0.174799267 0.146321708 0.10078366 0.075478543 0.195040145 0.066091372 0.109835462 0.105855632 -PA2342 0.16314476 0.155380533 0.170988781 0.172621922 0.151223897 0.252493155 0.233004465 0.229468143 0.271186249 0.231865232 0.252565463 -PA2343 0.271919346 0.37027694 0.241511123 0.267273386 0.269014069 0.241197876 0.073406775 0.269646333 0.259878856 0.320080383 0.173559318 -PA2344 0.468248091 0.445872412 0.510394564 0.412525503 0.394019805 0.489659925 0.417175122 0.47348967 0.455931353 0.5163374 0.455361791 -PA2345 0.411086124 0.480237414 0.471942142 0.638807511 0.517270173 0.242932978 0.203791947 0.348133536 0.214507076 0.262616049 0.14273005 -PA2346 0.180828763 0.20216082 0.147306553 0.200130914 0.204478716 0.178491898 0.17022311 0.203235921 0.170785904 0.193997857 0.187626967 -PA2347 0.207943544 0.213623294 0.148817966 0.235008688 0.218512 0.265300644 0.226167582 0.247497117 0.15459666 0.174559613 0.188919876 -PA2348 0.227333335 0.181273645 0.158730133 0.215026476 0.194333318 0.236738343 0.20098417 0.260950361 0.194031591 0.221022181 0.231157762 -PA2349 0.20106951 0.204535588 0.166855275 0.167607517 0.163983957 0.185337893 0.127108178 0.17674782 0.153010123 0.121560243 0.159053805 -PA2350 0.288139069 0.26980772 0.227340163 0.285420867 0.278237809 0.29243962 0.259293654 0.369200319 0.297662897 0.328011457 0.306994107 -PA2351 0.109596287 0.120688504 0.075370574 0.141621537 0.145024666 0.238254748 0.158981007 0.215077553 0.102111188 0.155206413 0.239629381 -PA2352 0.734228909 0.61516232 0.516297729 0.323268342 0.305071825 0.307277895 0.267636265 0.135786967 0.220584632 0.263260123 0.248450384 -PA2353 0.505883799 0.403143544 0.507671417 0.351389731 0.403196988 0.540454674 0.557870652 0.585868948 0.600411259 0.506760143 0.503783546 -PA2354 0.230458304 0.221399272 0.210283832 0.29272081 0.302160396 0.336599468 0.341898991 0.344227119 0.38564698 0.339328093 0.276505256 -PA2355 0.167733753 0.185628846 0.200909948 0.200665215 0.184219051 0.174498359 0.157832995 0.240042907 0.150363424 0.10357224 0.130708262 -PA2356 0.188713913 0.18933623 0.153685832 0.145864824 0.122708185 0.284200163 0.217834801 0.343318573 0.229447988 0.31268031 0.29386594 -PA2357 0.115102848 0.122042973 0.132604954 0.147380469 0.128804566 0.241400202 0.203540178 0.153433479 0.143615063 0.165514985 0.245488503 -PA2358 0.112108594 0.146928756 0.226507148 0.162914347 0.186001044 0.173110625 0.142776582 0.192358118 0.190525834 0.168568692 0.107771203 -PA2359 0.163950102 0.145673568 0.294067101 0.119013875 0.108915336 0.11747612 0.133591333 0.218168076 0.140940109 0.228971711 0.154621107 -PA2360 0.231135857 0.20712618 0.386741171 0.619087481 0.573113362 0.262037606 0.097229577 0.30131993 0.173042331 0.265717304 0.13995984 -PA2361 0.269848247 0.264758766 0.165670134 0.529282304 0.523302733 0.291327894 0.293016127 0.405987914 0.367030823 0.309235707 0.386855187 -PA2362 0.275838729 0.21218305 0.28642502 0.789529906 0.71149893 0.374359131 0.230246556 0.317740988 0.160876896 0.19887171 0.219631703 -PA2363 0.30569625 0.28077928 0.302153198 0.858174286 0.831320922 0.30366902 0.232988661 0.302487326 0.274373505 0.218933546 0.271314429 -PA2364 0.291361432 0.248651811 0.240482717 0.890090819 0.904320694 0.214268598 0.176713561 0.296609966 0.237689756 0.115145978 0.212077 -PA2365 0.206396841 0.173973651 0.327551551 0.815206875 0.779505967 0.284547945 0.081939229 0.276144196 0.105630183 0.203627185 0.138313796 -PA2366 0.175809692 0.170182627 0.311761989 0.824326101 0.771859948 0.262402979 0.165130912 0.33538183 0.225061998 0.247706389 0.22179691 -PA2367 0.153661771 0.178941827 0.30879339 0.768787798 0.709756448 0.317007223 0.28603001 0.421457689 0.255205903 0.361303281 0.250217531 -PA2368 0.227105362 0.226338488 0.305043807 0.724261309 0.686005084 0.289394654 0.249475641 0.262012123 0.219647878 0.194538961 0.300256576 -PA2369 0.305229411 0.324603295 0.280598904 0.691490058 0.666627772 0.265352347 0.271702512 0.263727716 0.252715223 0.194037682 0.276324745 -PA2370 0.224667771 0.253256312 0.174494074 0.687817012 0.695054025 0.249017663 0.166251882 0.268748066 0.199520072 0.188992534 0.177557134 -PA2371 0.224345683 0.270477593 0.211366856 0.570314291 0.567705666 0.275543527 0.222649787 0.247591097 0.164565396 0.321052884 0.241508191 -PA2372 0.071185373 0.07333897 0.056469717 0.058817643 0.07039732 0.786928569 0.503467419 0.984916279 0.500001529 0.888788284 0.417874987 -PA2373 0.260315609 0.302919859 0.264507605 0.508662555 0.459587237 0.51151324 0.382652803 0.636336524 0.41275257 0.466526357 0.362890018 -PA2374 0.240275677 0.267730763 0.309134383 0.615620453 0.475643254 0.450928732 0.292517816 0.44042657 0.232791334 0.494448889 0.318977942 -PA2375 0.215000216 0.238702592 0.37594298 0.875685821 0.893410743 0.405344822 0.235465501 0.505059279 0.275361613 0.429430142 0.309457452 -PA2376 0.202608409 0.276135523 0.152142091 0.283763998 0.277097975 0.301012668 0.264503737 0.442254175 0.369364951 0.322575111 0.355810705 -PA2377 0.206463051 0.136101376 0.139446932 0.220323235 0.191766796 0.213263897 0.19076177 0.200957863 0.204185337 0.2607138 0.136091057 -PA2378 0.553216636 0.580970368 0.625508784 0.581859626 0.646796368 0.464341881 0.339862039 0.460879976 0.340153368 0.457666859 0.415378234 -PA2379 0.548079216 0.662096428 0.65153449 0.633556586 0.629306823 0.312993621 0.306889746 0.258430101 0.270528831 0.296651873 0.185520883 -PA2380 0.442392959 0.40604991 0.38910257 0.419259413 0.454244779 0.304295197 0.268316265 0.3104449 0.302421235 0.226489447 0.232093029 -PA2381 0.383053911 0.496865329 0.503104653 0.992007727 0.987867347 0.705614566 0.480860791 0.676341431 0.526138506 0.704801149 0.457069628 -PA2382 0.505993074 0.529155435 0.257586774 0.505680217 0.503985668 0.287838252 0.264990597 0.318978311 0.261897291 0.412067281 0.246707493 -PA2383 0.600443774 0.571895456 0.474947603 0.456876472 0.455855648 0.411065131 0.339282214 0.320460743 0.347294394 0.353475308 0.331825628 -PA2384 0.430567006 0.252669301 0.16281384 0.19132014 0.16792249 0.179641562 0.140081544 0.224489887 0.204970584 0.152939008 0.249018737 -PA2385 0.313892995 0.186248099 0.129935324 0.233823317 0.179398425 0.151001774 0.184260868 0.209227739 0.188848379 0.165105532 0.190238685 -PA2386 0.343937844 0.193285035 0.145962469 0.149898895 0.104822983 0.068716802 0.082993157 0.120604806 0.106349972 0.076293814 0.155765936 -PA2387 0.578966 0.269586236 0.581394027 0.22556651 0.327013602 0.209883482 0.237165335 0.303478535 0.216472845 0.233464558 0.264080143 -PA2388 0.799427317 0.570724752 0.85056662 0.487925588 0.442509602 0.383213759 0.418646648 0.42867378 0.358005543 0.351081463 0.297144022 -PA2389 0.508730011 0.368636154 0.373350951 0.17207522 0.246701892 0.281816635 0.226607334 0.277083872 0.250360392 0.191649189 0.260158685 -PA2390 0.375704335 0.336201678 0.372040593 0.31772272 0.31026657 0.233402996 0.216632868 0.234627466 0.243473451 0.26034655 0.318789918 -PA2391 0.372915029 0.364572467 0.291911633 0.249833397 0.252265909 0.312193382 0.312770053 0.289480886 0.301732766 0.188911203 0.338868847 -PA2392 0.256711881 0.261106089 0.220851206 0.210496467 0.216290271 0.347489806 0.341045337 0.362642271 0.308132926 0.330199417 0.299595574 -PA2393 0.232051995 0.186651536 0.160088857 0.127019557 0.14352735 0.211544569 0.168883852 0.213829256 0.146007246 0.18732938 0.212506629 -PA2394 0.306344393 0.252875983 0.156599991 0.181135419 0.180118637 0.207359029 0.188183403 0.192793536 0.189289352 0.186139203 0.178641264 -PA2395 0.289745729 0.244486978 0.154299724 0.177003916 0.178778526 0.160741181 0.134594654 0.140810633 0.096060698 0.118314484 0.128886199 -PA2396 0.334081484 0.277501378 0.230996148 0.25849587 0.24901767 0.068297513 0.056087605 0.227606127 0.131491654 0.107414053 0.063302006 -PA2397 0.240146058 0.15778023 0.20760082 0.238137091 0.208470043 0.165986221 0.172184107 0.162053063 0.150028248 0.105045098 0.133631114 -PA2398 0.649107645 0.283363483 0.293475289 0.151802641 0.168053254 0.13019586 0.105257271 0.123653376 0.093687135 0.131196922 0.087745183 -PA2399 0.290515654 0.246110214 0.220361168 0.247701512 0.285015321 0.176424795 0.169565923 0.218366636 0.166294556 0.202349489 0.133789072 -PA2400 0.228265665 0.325836904 0.194289448 0.226034637 0.231350775 0.225510108 0.196676297 0.166846579 0.201583444 0.176540733 0.243326722 -PA2401 0.182307401 0.212211975 0.135332356 0.178774532 0.177379219 0.161520867 0.097698596 0.182682978 0.151885302 0.124878508 0.104358636 -PA2402 0.304023369 0.296516839 0.190712635 0.274906696 0.216687708 0.227732566 0.16190206 0.242020859 0.19198609 0.174884573 0.160744897 -PA2403 0.569377971 0.325675447 0.247992413 0.258639653 0.275608817 0.188932146 0.200417855 0.174760006 0.212687402 0.186267732 0.160395068 -PA2404 0.585554202 0.439759078 0.359625512 0.275910566 0.237678441 0.280423451 0.303704131 0.317505288 0.229154366 0.255639426 0.301793285 -PA2405 0.635427857 0.468946023 0.266589462 0.189499423 0.157375478 0.275834926 0.158710346 0.210764413 0.209369617 0.14738372 0.142129475 -PA2406 0.43686552 0.199005435 0.18435103 0.294132933 0.229601047 0.187334472 0.10646131 0.1470711 0.185277628 0.171410302 0.150484558 -PA2407 0.569008553 0.472113529 0.297729369 0.33231248 0.326278846 0.224026608 0.227276073 0.259666477 0.257345255 0.215484462 0.249514176 -PA2408 0.588528079 0.395972337 0.158752101 0.173782524 0.136753522 0.210334641 0.210117961 0.199784704 0.209184541 0.183812823 0.266948221 -PA2409 0.586113612 0.427801194 0.189348147 0.259650979 0.152244567 0.263340246 0.228823015 0.309266743 0.186777979 0.2452283 0.120251625 -PA2410 0.476189716 0.586916329 0.270857213 0.396208439 0.379922594 0.389800801 0.376171893 0.35012253 0.332334177 0.383643409 0.32218911 -PA2411 0.227436671 0.260308837 0.098675068 0.175586944 0.185124821 0.181919776 0.142578466 0.130692631 0.113839688 0.187098427 0.111291667 -PA2412 0.301068925 0.296656984 0.133196249 0.178348823 0.259492816 0.110052316 0.109594066 0.158491062 0.114855861 0.153736585 0.132062261 -PA2413 0.241033454 0.211364048 0.16031766 0.225434755 0.244310663 0.281052549 0.200545568 0.263660033 0.207356154 0.281022455 0.241191583 -PA2414 0.328080742 0.328840532 0.358214344 0.725322163 0.819485065 0.782640105 0.540113248 0.795287637 0.657457735 0.736399437 0.615638805 -PA2415 0.177510228 0.201393188 0.142736466 0.483150433 0.511957049 0.299705768 0.306093615 0.300511393 0.309397712 0.385587817 0.303006386 -PA2416 0.276437694 0.276374487 0.33244718 0.670503332 0.65457102 0.431823883 0.451337377 0.534668829 0.450347341 0.395515297 0.374406245 -PA2417 0.230036531 0.335675843 0.305733884 0.393055942 0.420767061 0.348875309 0.417067269 0.401501674 0.404109888 0.30380681 0.351230315 -PA2418 0.186660537 0.209134308 0.232177893 0.451725355 0.490222741 0.201267333 0.357561962 0.226092514 0.182178232 0.244026057 0.235065441 -PA2419 0.160687369 0.129920559 0.150482277 0.234480083 0.282076637 0.144224166 0.108937307 0.200727497 0.158771795 0.185072338 0.166821438 -PA2420 0.224808642 0.176634031 0.401569502 0.335666419 0.338749132 0.243881101 0.279590396 0.20758552 0.367238893 0.249133146 0.328533047 -PA2421 0.373257287 0.330968835 0.355547862 0.460166779 0.356369244 0.416567114 0.34254669 0.32799183 0.314415498 0.251217392 0.418954549 -PA2422 0.224111468 0.18220212 0.290267973 0.420564642 0.543756903 0.842124501 0.454730569 0.771171911 0.472429088 0.893744516 0.401552795 -PA2423 0.387197855 0.289939752 0.517808335 0.916764274 0.909875452 0.432540021 0.463112092 0.456790679 0.420214447 0.443417796 0.469081419 -PA2424 0.219897639 0.213272651 0.142288738 0.159064612 0.151921796 0.227069754 0.218066811 0.233565004 0.187545718 0.238438112 0.233571755 -PA2425 0.191931105 0.19385248 0.110181175 0.187970596 0.163312634 0.12435016 0.142452772 0.141833833 0.175632753 0.171538084 0.153952771 -PA2426 0.301657285 0.083531086 0.501587527 0.140522471 0.144945439 0.20901302 0.187697484 0.21381282 0.28171415 0.216562873 0.158269775 -PA2427 0.148283293 0.112573531 0.110555838 0.133760692 0.121352443 0.147672844 0.085444048 0.093111623 0.184885695 0.195288609 0.178980347 -PA2428 0.221579859 0.221614364 0.209652413 0.248859313 0.226344458 0.189115333 0.19848127 0.195677364 0.192706757 0.288080259 0.249852779 -PA2429 0.146756133 0.16496869 0.13634057 0.1832991 0.189746461 0.260508852 0.164838267 0.271750746 0.226000546 0.228180339 0.173914699 -PA2430 0.442812504 0.464869451 0.383611344 0.589640928 0.550184651 0.685727442 0.502834612 0.626093768 0.467448766 0.501607032 0.569660864 -PA2431 0.315898386 0.287943261 0.220846059 0.398522607 0.415119311 0.328377544 0.353687613 0.590026871 0.347510568 0.474339856 0.411313677 -PA2432 0.277201649 0.564166048 0.408004883 0.408632945 0.45678797 0.258659077 0.224396135 0.377488794 0.29125648 0.367232751 0.330524445 -PA2433 0.217647099 0.378470955 0.38581867 0.841646874 0.849020911 0.473914704 0.265279767 0.524631774 0.251348929 0.464941536 0.212616792 -PA2434 0.320623657 0.245094017 0.668206176 0.669576642 0.656781613 0.514476856 0.592477707 0.462639757 0.56133046 0.560352364 0.545802797 -PA2435 0.440655699 0.383142132 0.675069639 0.634016795 0.643489885 0.312662799 0.317708654 0.405400057 0.334893616 0.418825943 0.237797041 -PA2436 0.523411246 0.503335841 0.824709384 0.817234324 0.813924098 0.3481248 0.37059143 0.311264056 0.358972689 0.247413388 0.423043812 -PA2437 0.457146515 0.435714495 0.781828299 0.432599378 0.428206461 0.588955295 0.574552122 0.569907628 0.610295923 0.529800186 0.468228543 -PA2438 0.396681632 0.359485664 0.777944908 0.487065883 0.48617197 0.369543494 0.345502851 0.40291491 0.360857634 0.362425278 0.307002153 -PA2439 0.206901068 0.208493552 0.573081411 0.343867506 0.289443884 0.270908992 0.275119841 0.369467312 0.283321473 0.292302582 0.225731809 -PA2440 0.347038371 0.310796126 0.210084351 0.2551934 0.262289727 0.315948128 0.345121152 0.411874505 0.388280684 0.310390391 0.378554132 -PA2441 0.325964871 0.267041694 0.250722871 0.281541028 0.221338655 0.145170161 0.245981569 0.21311755 0.217939819 0.32304568 0.259163884 -PA2442 0.582263999 0.582198969 0.184162782 0.65028524 0.645465855 0.179915487 0.148008052 0.238717633 0.18185909 0.25164458 0.250514229 -PA2443 0.465389318 0.473672357 0.281559745 0.684953093 0.71877422 0.424751373 0.291899387 0.466636519 0.364087661 0.441443927 0.270985775 -PA2444 0.475656205 0.487804693 0.185400613 0.272308055 0.382866379 0.175013953 0.041179454 0.097691382 0.181976117 0.165985607 0.084035388 -PA2445 0.651899151 0.730503989 0.296774606 0.596323212 0.617311959 0.368782109 0.205479854 0.3552746 0.318112903 0.379469147 0.258446258 -PA2446 0.683380087 0.763399523 0.257063087 0.652545257 0.706905635 0.421934433 0.311807029 0.437099026 0.260135035 0.399756774 0.234191122 -PA2447 0.432969874 0.423959342 0.391852044 0.434304496 0.489354392 0.313551824 0.240756039 0.385315904 0.087324779 0.135387553 0.134859392 -PA2448 0.230881294 0.23944964 0.301845247 0.483121397 0.401991858 0.278193916 0.226251281 0.30416659 0.326545498 0.269429762 0.267414901 -PA2449 0.527141787 0.532071849 0.58997047 0.340053642 0.219796174 0.48381943 0.568208037 0.457024003 0.609384523 0.530374536 0.496373058 -PA2450 0.643622273 0.52154955 0.465556205 0.541204109 0.609727862 0.425220965 0.512025778 0.500261061 0.583991697 0.413059227 0.47672654 -PA2451 0.267475303 0.230999632 0.198507952 0.288803965 0.282390627 0.296323468 0.31363268 0.361828873 0.335072297 0.27021084 0.364960303 -PA2452 0.240526433 0.232616723 0.140986348 0.304098228 0.31015173 0.142388464 0.153035914 0.145851094 0.155862034 0.17398818 0.071515027 -PA2453 0.805156655 0.878120233 0.704610938 0.68096453 0.752555709 0.11977693 0.293624512 0.28126511 0.255765904 0.13798173 0.253107003 -PA2454 0.85779623 0.562266029 0.527525408 0.776258252 0.707851816 0.313304789 0.391987484 0.492853358 0.438079318 0.369957974 0.373599809 -PA2455 0.773432805 0.669613557 0.485576845 0.583446153 0.604672936 0.635581292 0.524942668 0.546889311 0.598894487 0.683219006 0.582980445 -PA2456 0.11078475 0.342492669 0.04312213 0.056414345 0.031842453 0.072190357 0.075625129 0.169796508 0.046436455 0.193579073 0.262889983 -PA2457 0.245910934 0.286133932 0.202527366 0.219615032 0.22508207 0.219868867 0.248343794 0.224882718 0.207763917 0.208011296 0.226552344 -PA2458 0.482019025 0.275892496 0.530225106 0.357040547 0.36339119 0.314657155 0.215832477 0.397385751 0.336248506 0.366063269 0.231436306 -PA2459 0.097324038 0.609749777 0.118250204 0.066124499 0.117647953 0.125227539 0.124692183 0.13259717 0.14255169 0.151620318 0.122850409 -PA2460 0.038693861 0.67857819 0.076510849 0.1279991 0.160181219 0.057976783 0.07484162 0.018136771 0.051009103 0.05642051 0.104050647 -PA2461 0.06858542 0.537278056 0.046434817 0.074999644 0.051369963 0.098064063 0.113475869 0.125485843 0.064303968 0.138733175 0.108500229 -PA2462 0.606290074 0.618004243 0.360097086 0.41765182 0.477089629 0.14743176 0.135333568 0.088669489 0.10458524 0.116377449 0.1340429 -PA2464 0.683053605 0.674937344 0.579072141 0.688929401 0.630396501 0.717347194 0.663680023 0.706884335 0.677148379 0.70282302 0.613361409 -PA2465 0.340413134 0.32372329 0.262805026 0.295531968 0.400943429 0.385486691 0.310803648 0.581585331 0.441042502 0.222922844 0.32966697 -PA2466 0.324195085 0.184181589 0.418271788 0.183495601 0.174358518 0.377148666 0.340086597 0.411184237 0.332151857 0.322417264 0.316712836 -PA2467 0.379981076 0.29395344 0.395552755 0.286413009 0.276794145 0.334964742 0.337592633 0.367517848 0.371722936 0.283335953 0.44678666 -PA2468 0.40562366 0.266527359 0.511013801 0.30554168 0.212123259 0.25183015 0.355360789 0.23920941 0.384181501 0.319297391 0.328623 -PA2469 0.504348008 0.423440406 0.409281962 0.277762562 0.406652778 0.374186038 0.320736406 0.412413696 0.255837726 0.279367992 0.236204715 -PA2470 0.488799636 0.488443403 0.426317903 0.435429608 0.490750027 0.286255158 0.492743844 0.55156936 0.338628598 0.433016632 0.61975667 -PA2471 0.33450757 0.340255578 0.314727653 0.349912804 0.330543538 0.279742266 0.26797118 0.25388303 0.318053527 0.368082162 0.244652763 -PA2472 0.168180463 0.162976452 0.181604389 0.170997134 0.26985013 0.363690964 0.405867322 0.485358531 0.394460836 0.280743525 0.371588463 -PA2473 0.276305052 0.334129354 0.300344543 0.38861078 0.344389474 0.326114852 0.38643637 0.378455048 0.320580153 0.362501888 0.358074859 -PA2474 0.27270376 0.264470213 0.247394558 0.306401557 0.269096289 0.305623432 0.260513954 0.470997986 0.217200669 0.239168721 0.32599712 -PA2475 0.335477056 0.292101844 0.204533136 0.798085555 0.773708015 0.35780449 0.242374257 0.431003347 0.36452276 0.456309008 0.384787685 -PA2476 0.504490511 0.40793222 0.457786038 0.437156541 0.431807113 0.402565767 0.233981572 0.323826934 0.337960015 0.32399724 0.266935542 -PA2477 0.268668725 0.213286634 0.275484755 0.356784402 0.348929471 0.260595797 0.228298589 0.25720835 0.30209134 0.26351763 0.266699907 -PA2478 0.226576665 0.153894156 0.200826781 0.236220995 0.206692226 0.191258266 0.112949237 0.181392208 0.185777926 0.144334638 0.163135508 -PA2479 0.346908263 0.338956538 0.384875802 0.363682974 0.328188098 0.504703966 0.447160437 0.536051082 0.471536388 0.544419113 0.391929648 -PA2480 0.238680516 0.219257136 0.257431699 0.248646778 0.227744407 0.29293287 0.195691391 0.295271227 0.249589826 0.236520426 0.219778347 -PA2481 0.862214779 0.735629825 0.351116702 0.426285414 0.41638589 0.450567463 0.267116364 0.412972893 0.367495602 0.504523224 0.420992861 -PA2482 0.834196837 0.889736402 0.399610158 0.419442426 0.431038319 0.258212647 0.297645328 0.209458046 0.258551325 0.30833688 0.176415587 -PA2483 0.315300809 0.458743679 0.308990835 0.458051386 0.50127652 0.300525153 0.278679134 0.290462557 0.258229958 0.281810235 0.271215033 -PA2484 0.507746168 0.521202342 0.502889224 0.651292306 0.681244609 0.467755889 0.430112023 0.43289005 0.467731674 0.492146977 0.392518049 -PA2485 0.167345054 0.508881762 0.411123487 0.56594633 0.673266967 0.534384845 0.480227275 0.544580197 0.55337188 0.588658629 0.487737915 -PA2486 0.118397484 0.340580643 0.378634342 0.420299414 0.526346014 0.380290095 0.447948765 0.439592298 0.35099035 0.377048729 0.391555219 -PA2487 0.235392837 0.206337158 0.291666471 0.299641267 0.292702374 0.361202052 0.369841817 0.347736218 0.375042029 0.438244667 0.388239802 -PA2488 0.537567457 0.427960798 0.492748925 0.555936417 0.590074004 0.479135545 0.516646582 0.57205124 0.552657368 0.451787085 0.371044721 -PA2489 0.438858792 0.407376577 0.479733384 0.406202103 0.419296316 0.561162434 0.546348304 0.658842319 0.487017639 0.555976415 0.54054316 -PA2490 0.395153178 0.442423948 0.38410564 0.492350185 0.474205963 0.50686058 0.476357107 0.512287925 0.421557031 0.484027801 0.311014278 -PA2491 0.47080374 0.450709618 0.48509513 0.499459414 0.542066352 0.372161376 0.422125546 0.390848681 0.432188071 0.419820505 0.389462156 -PA2492 0.727275756 0.743082733 0.79190549 0.711238293 0.733710232 0.610907957 0.499837395 0.519173383 0.461797796 0.537402971 0.63856571 -PA2493 0.23996944 0.221756197 0.158898686 0.13819563 0.113161292 0.171258089 0.10023465 0.167777804 0.216663288 0.112006513 0.164722129 -PA2494 0.274074399 0.190868463 0.192871602 0.146198343 0.104772061 0.043893937 0.11519938 0.07860483 0.126658416 0.091863108 0.085089316 -PA2495 0.270007378 0.190072331 0.177509658 0.223971074 0.231660317 0.202971572 0.128324853 0.157141509 0.158479192 0.19709451 0.188232725 -PA2496 0.778417889 0.363061836 0.514086205 0.271706296 0.350838402 0.311466634 0.393404571 0.429257704 0.505211887 0.470992558 0.571184753 -PA2497 0.343907165 0.422427093 0.433494743 0.434381005 0.449634313 0.379085374 0.384986409 0.361345854 0.429446073 0.307699906 0.401229946 -PA2498 0.512765656 0.427821293 0.374757579 0.598776722 0.60073807 0.374674341 0.342625696 0.467522131 0.276050061 0.36959262 0.409475652 -PA2499 0.429881091 0.354583805 0.411413993 0.627621233 0.656226889 0.370931553 0.422032266 0.422686969 0.522732942 0.568262541 0.408605938 -PA2500 0.321781365 0.337782461 0.41677687 0.683448424 0.687762898 0.587577165 0.649176524 0.520520264 0.571553047 0.616235308 0.529048301 -PA2501 0.405191106 0.808827421 0.474543256 0.684037895 0.723194154 0.984622439 0.754769263 0.995606269 0.769411757 0.972612701 0.749269082 -PA2502 0.737405697 0.42084719 0.494753056 0.449495869 0.513193141 0.478454692 0.43062211 0.550858348 0.482808668 0.445935085 0.404279689 -PA2503 0.623225119 0.558199613 0.412117629 0.823165835 0.675074487 0.33417733 0.295692927 0.325030093 0.316354012 0.358880837 0.340849737 -PA2504 0.21674663 0.210713939 0.25557465 1 0.985275982 0.366171893 0.234985936 0.457574399 0.278418364 0.370638572 0.202160576 -PA2505 0.193572815 0.154058708 0.252587058 0.284512537 0.250141312 0.152659972 0.133509049 0.139208976 0.152563693 0.157838938 0.202932645 -PA2506 0.091054261 0.140292416 0.098630487 0.204828019 0.181938654 0.138478249 0.121731126 0.111778798 0.05112372 0.15592437 0.063416602 -PA2507 0.164709101 0.182331827 0.171531153 0.155437593 0.180916523 0.201045705 0.183443105 0.237147774 0.201008134 0.189443761 0.207940543 -PA2508 0.183169903 0.195782049 0.188312543 0.199065988 0.213724907 0.196224799 0.209987735 0.180614111 0.185116537 0.265092258 0.235009279 -PA2509 0.19385323 0.166214704 0.164209613 0.224183113 0.239174301 0.192006626 0.190308285 0.183259287 0.199042161 0.216404072 0.179611079 -PA2510 0.493162472 0.536898265 0.459266769 0.389960872 0.376308677 0.437184855 0.480877887 0.360275339 0.468893883 0.424957083 0.453513437 -PA2511 0.277922922 0.22791074 0.234191188 0.34573948 0.337700364 0.307997542 0.300514611 0.311046366 0.288076786 0.249334078 0.286063786 -PA2512 0.182322798 0.20287205 0.193577805 0.229181344 0.214113485 0.125884168 0.143397702 0.107496157 0.098585714 0.103076671 0.174694817 -PA2513 0.149262601 0.10800107 0.118354217 0.136536781 0.126988785 0.2011739 0.184949401 0.229304851 0.245030549 0.181740123 0.175148003 -PA2514 0.084465041 0.072786888 0.065496674 0.090349608 0.03851812 0.105411387 0.107254247 0.133976677 0.096448311 0.10079538 0.052035863 -PA2515 0.295005316 0.360439411 0.252417012 0.40609263 0.344238698 0.400231985 0.271421281 0.35036457 0.438689345 0.415882452 0.418012861 -PA2516 0.315676509 0.336335748 0.255396951 0.375831645 0.340610709 0.507820671 0.476699752 0.506533116 0.436515188 0.368535039 0.465022848 -PA2517 0.217388182 0.333234866 0.299969502 0.333121741 0.364606964 0.154463178 0.213883371 0.162412015 0.154993885 0.234084679 0.108133115 -PA2518 0.24375779 0.1711294 0.227254807 0.268589319 0.313097041 0.300439872 0.305762079 0.253451425 0.166631594 0.194896476 0.373491163 -PA2519 0.275727416 0.246964593 0.315929685 0.355544746 0.29846326 0.389731563 0.288807183 0.428528574 0.300320338 0.273680411 0.378994113 -PA2520 0.176917623 0.179036531 0.114890627 0.220885359 0.198408453 0.230211801 0.241633215 0.251887283 0.187842172 0.172019007 0.235044496 -PA2521 0.16161104 0.134416369 0.144142157 0.203162876 0.163426222 0.181681031 0.103259654 0.251353434 0.154175069 0.082180334 0.198454835 -PA2522 0.154098751 0.175154467 0.1638723 0.168287686 0.157524364 0.140962292 0.170309395 0.176816529 0.167819315 0.137012555 0.086639201 -PA2523 0.279250344 0.339923272 0.244346638 0.247655713 0.283451921 0.433245775 0.340252339 0.513100602 0.378054795 0.50601729 0.313648182 -PA2524 0.233423465 0.201673455 0.189252503 0.244462186 0.191842015 0.304849415 0.330327087 0.29080911 0.313038915 0.24778795 0.312952551 -PA2525 0.603626546 0.520389138 0.636802294 0.399682847 0.385998756 0.538349425 0.439583392 0.447304395 0.400570195 0.532306648 0.446727686 -PA2526 0.532998622 0.428972329 0.60270121 0.415511194 0.335032604 0.677391657 0.51906864 0.463571526 0.579289301 0.679936638 0.564337518 -PA2527 0.586461066 0.521906723 0.625101756 0.440299943 0.372212361 0.714336823 0.679916936 0.589604174 0.706330891 0.733090004 0.599991596 -PA2528 0.569520577 0.52426682 0.648130141 0.502237944 0.425846091 0.539145544 0.593722252 0.30109899 0.515185999 0.477726523 0.603783772 -PA2529 0.626944968 0.390558655 0.725440261 0.553232742 0.440002958 0.546694376 0.133636946 0.376144314 0.325077191 0.442501211 0.374252278 -PA2530 0.789757838 0.586238741 0.776520673 0.582149249 0.572578494 0.738075834 0.421259539 0.693413011 0.56126683 0.848394125 0.49368026 -PA2531 0.201285523 0.191481248 0.1704829 0.259133007 0.182631056 0.122726412 0.190591969 0.180833661 0.241143249 0.224013344 0.233318574 -PA2532 0.624162614 0.492299202 0.565375071 0.628043108 0.620923609 0.358581569 0.389593526 0.366824627 0.392435525 0.40688972 0.397989667 -PA2533 0.695699209 0.262198659 0.627056006 0.031867112 0.101186027 0.337165059 0.163264578 0.247543413 0.194798987 0.298292401 0.248448185 -PA2534 0.211896903 0.299832413 0.130129299 0.28800765 0.343743563 0.397441943 0.328738237 0.451787727 0.316412675 0.416858769 0.310181018 -PA2535 0.257707669 0.277411798 0.20828445 0.303870905 0.291747593 0.16057885 0.013275849 0.223973627 0.135347792 0.068054838 0.143912051 -PA2536 0.446425852 0.400435644 0.208143848 0.124463097 0.10598988 0.270269998 0.26054477 0.135987688 0.210130098 0.20331924 0.14428253 -PA2537 0.373927053 0.455517617 0.228963085 0.217805071 0.181784324 0.245191617 0.154872822 0.206725616 0.142572616 0.190325956 0.168516078 -PA2538 0.413433175 0.401762822 0.089616172 0.170661581 0.220522614 0.358509979 0.259390832 0.424895902 0.247960086 0.329097597 0.251114466 -PA2539 0.348801383 0.317904203 0.097156377 0.191548985 0.163073432 0.194824332 0.127496375 0.181895275 0.206746774 0.176570761 0.14177286 -PA2540 0.448884894 0.610225906 0.18553473 0.342026476 0.304278017 0.3464856 0.274990441 0.2854634 0.260010326 0.347763377 0.161337604 -PA2541 0.365384217 0.422131743 0.142324536 0.243055195 0.223201804 0.117484225 0.122923841 0.071699928 0.286926531 0.119654524 0.170905725 -PA2542 0.496700649 0.415646678 0.299348941 0.363004034 0.375252434 0.347043991 0.440022876 0.284608097 0.367530393 0.371717076 0.337244765 -PA2543 0.609441408 0.409983911 0.384931777 0.297332805 0.321960018 0.591641946 0.39578794 0.326586659 0.373361681 0.463457883 0.415419193 -PA2544 0.143400536 0.174548886 0.306615812 0.894319036 0.86955337 0.417396941 0.420491257 0.428197142 0.422095391 0.536141796 0.436362706 -PA2545 0.813127776 0.820334527 0.742953683 0.465259155 0.47005885 0.44269749 0.625727588 0.432894809 0.432409152 0.51119005 0.522446371 -PA2546 0.176947487 0.240401558 0.185010747 0.317975363 0.288855455 0.524529122 0.406904059 0.419068531 0.511198738 0.452560531 0.449254505 -PA2547 0.387821067 0.368295301 0.301901571 0.319151351 0.21288797 0.388547827 0.273238298 0.320664586 0.312969899 0.387529491 0.210253598 -PA2548 0.255469414 0.261125131 0.175498739 0.295214184 0.224679784 0.218567521 0.175978379 0.218473503 0.269657428 0.228494386 0.20064495 -PA2549 0.165915246 0.290354201 0.23601827 0.262578385 0.267145816 0.253737216 0.331757238 0.391655062 0.248999185 0.223450078 0.536472972 -PA2550 0.094008458 0.222154703 0.063146211 0.280443637 0.26553141 0.184573983 0.086506921 0.208073697 0.072020831 0.156522233 0.051820278 -PA2551 0.488425739 0.523061987 0.605683763 0.631072028 0.746463908 0.651969606 0.533516734 0.644076948 0.565375806 0.599265493 0.526541212 -PA2552 0.364873295 0.090185892 0.182958464 0.59521014 0.536338062 0.364458631 0.194825186 0.409430023 0.256164379 0.433429635 0.137431457 -PA2553 0.417747358 0.193434125 0.221942395 0.646847525 0.61548863 0.471806205 0.237695061 0.349625271 0.329058519 0.38341676 0.229582087 -PA2554 0.284170147 0.086357461 0.090539653 0.504634073 0.430801785 0.481558094 0.248461283 0.529171884 0.257175335 0.481862319 0.192600673 -PA2555 0.240388551 0.080576664 0.061915423 0.389996143 0.33345688 0.323744493 0.333109485 0.428871763 0.321948825 0.344798596 0.217529207 -PA2556 0.232773398 0.297504498 0.339674528 0.412158833 0.456833451 0.250713808 0.46690351 0.2734398 0.295473698 0.173720449 0.46196169 -PA2557 0.202219355 0.048305131 0.286804537 0.221116518 0.251060014 0.391914571 0.369118765 0.31944797 0.39955072 0.378539812 0.326100789 -PA2558 0.403409424 0.223871997 0.386963364 0.277833021 0.296882515 0.636740674 0.901602438 0.780184373 0.613726351 0.528973044 0.836183343 -PA2559 0.385105578 0.32449408 0.471112573 0.556054242 0.485758809 0.358355182 0.414952787 0.376872454 0.481780293 0.363818864 0.33035815 -PA2560 0.384280725 0.345791678 0.221125012 0.450331445 0.345512453 0.436368951 0.436122857 0.4803739 0.507269404 0.397064818 0.464873395 -PA2561 0.366527322 0.321283873 0.554355319 0.253165919 0.22332217 0.314187103 0.49506462 0.470185269 0.470602131 0.389347369 0.382501254 -PA2562 0 0.453435355 0.101372706 0.575533114 0.523144391 0.794574256 0.77218669 0.820742268 0.7552182 0.802135894 0.799123876 -PA2563 0.323052327 0.146903589 0.095931418 0.304739329 0.335239939 0.364027527 0.317612003 0.434115055 0.288595028 0.397022349 0.3166362 -PA2564 0.196213658 0.174990705 0.193320827 0.803388193 0.713565278 0.358919286 0.163368315 0.415575967 0.263045904 0.380150883 0.329435086 -PA2565 0.270179138 0.251903261 0.286632954 0.830330801 0.799710542 0.403198045 0.359862011 0.483453125 0.33268094 0.439681195 0.409916165 -PA2566 0.207843391 0.152395794 0.215602062 1 0.959872024 0.439726933 0.415479964 0.544408479 0.295635327 0.385982343 0.264120416 -PA2567 0.044172346 0.748620781 0.064780234 0.16145347 0.145129119 0.56692241 0.358812815 0.619501953 0.348784463 0.576509217 0.368447631 -PA2568 0.173606791 0.265518339 0.179996717 0.575303792 0.601455039 0.736736761 0.654281686 0.670960277 0.748978572 0.737028334 0.67150488 -PA2569 0.165697619 0.247733595 0.309824127 0.816144138 0.747414509 0.384090644 0.645789101 0.537501237 0.612753242 0.506650574 0.519707956 -PA2570 0.021194812 0.034901362 0.022626922 0.874168494 0.806855107 0.329296861 0.105400798 0.416640881 0.021489776 0.292350791 0.132672771 -PA2571 0.152400577 0.178409048 0.199266951 0.79382607 0.741359445 0.53470577 0.417974773 0.714624847 0.246656536 0.543442995 0.368823134 -PA2572 0.124084032 0.203927477 0.207137539 0.773830984 0.750167174 0.409159259 0.199708324 0.568522776 0.192857163 0.411120962 0.270891084 -PA2573 0.010664071 0.061642209 0.150255378 0.53153669 0.573452204 0.406744494 0.326631992 0.608834389 0.31926308 0.473046082 0.290455492 -PA2574 0.181179028 0.093130205 0.217339069 0.365511241 0.500859204 0.507387816 0.560665591 0.685863991 0.555515078 0.494866324 0.370751039 -PA2575 0.425524656 0.542538419 0.54574913 0.263414472 0.393781267 0.17761659 0.320901153 0.293938456 0.390210198 0.208828844 0.543021976 -PA2576 0.208924229 0.295214641 0.218855115 0.345708357 0.379108613 0.343628806 0.251805786 0.475417396 0.326409419 0.329969147 0.14174541 -PA2577 0.413390043 0.587244533 0.558909975 0.852063119 0.792043076 0.349447152 0.27433867 0.231712343 0.172234337 0.233739532 0.137722305 -PA2578 0.20894144 0.210836292 0.230165519 0.325047302 0.384211022 0.098795807 0.038334299 0.076454306 0.045419955 0.063282344 0.147647775 -PA2579 0.587657411 0.47005543 0.444125733 0.568703967 0.512947881 0.23999497 0.321181925 0.18151367 0.295104996 0.342351728 0.177882068 -PA2580 0.159657066 0.092364553 0.057590553 0.23962462 0.123242112 0.170703608 0.276198717 0.222882332 0.157286306 0.201150686 0.26623965 -PA2581 0.586631495 0.458742905 0.598449064 0.559958512 0.500158286 0.156940099 0.310147488 0.174131875 0.22115149 0.250992188 0.193846049 -PA2582 0.577846713 0.563818829 0.496068748 0.554335166 0.5473911 0.822936582 0.774580936 0.867941973 0.793297956 0.882457714 0.78197236 -PA2583 0.493776112 0.320511127 0.295516059 0.338795428 0.367445901 0.92088395 0.811041521 0.700005835 0.909115245 0.867966285 0.729644111 -PA2584 0.691959362 0.572098054 0.684037481 0.071188085 0.126366181 0.551462577 0.838623461 0.62682234 0.840845651 0.706117882 0.778488947 -PA2585 0.701329313 0.504673002 0.715359311 0.299106826 0.437593127 0.558791173 0.547126556 0.537398378 0.609481558 0.620347106 0.485757366 -PA2586 0.667905262 0.654123073 0.74554188 0.967547878 0.973999707 0.798659365 0.756253521 0.838322478 0.775988728 0.795286789 0.750555645 -PA2587 0.62241111 0.378247113 0.730325937 0.512385748 0.465850643 0.704808741 0.767509154 0.680073154 0.743747461 0.666862259 0.695042073 -PA2588 0.297920516 0.201635432 0.331897344 0.475051759 0.463750206 0.46485876 0.355147805 0.505704985 0.314307914 0.477162432 0.378821246 -PA2589 0.11419142 0.168142803 0.138688083 0.196026874 0.218535607 0.363486753 0.267577094 0.479167801 0.363894307 0.292804816 0.380331991 -PA2590 0.17251691 0.138899323 0.160109156 0.234890672 0.194112683 0.2107838 0.217846461 0.227278829 0.194989904 0.165823711 0.203262016 -PA2591 0.417985393 0.269919735 0.56205682 0.787715955 0.758649917 0.506286679 0.640238998 0.673842527 0.604332019 0.641971292 0.538104307 -PA2592 0.435188047 0.229318435 0.478660248 0.78074683 0.787981994 0.378239562 0.491984176 0.372734159 0.462164501 0.375121207 0.403665851 -PA2593 0.242636169 0.141545496 0.261842504 0.421932797 0.476054037 0.254195485 0.209818783 0.285077742 0.342518347 0.218424315 0.300893414 -PA2594 0.147553683 0.121988323 0.231882197 0.217152277 0.199141794 0.312856821 0.130218125 0.237912108 0.230304238 0.263062254 0.183736443 -PA2595 0.167868851 0.230637792 0.191833976 0.192184213 0.223452113 0.206156597 0.13281945 0.059564034 0.126471244 0.231619887 0.163319861 -PA2596 0.112757123 0.127443753 0.136527446 0.098223232 0.154781954 0.146055 0.112781699 0.210199954 0.133511986 0.077080986 0.134547635 -PA2597 0.175414235 0.245226923 0.169765869 0.145421082 0.177016762 0.120720944 0.130117353 0.096772801 0.179939044 0.088700425 0.161038252 -PA2598 0.194635531 0.147684553 0.290031797 0.117537214 0.116884894 0.217058194 0.289413308 0.181511282 0.08497921 0.123910686 0.209107366 -PA2599 0.208692127 0.191329479 0.214188917 0.223221887 0.184701472 0.264957994 0.394289396 0.326207127 0.253405822 0.189432521 0.314943966 -PA2600 0.165529368 0.156505523 0.10181054 0.127554812 0.10295444 0.121106762 0.147119075 0.080713856 0.118921687 0.186034197 0.271662541 -PA2601 0.354116268 0.27613323 0.412976507 0.608428704 0.647113252 0.333918141 0.469432636 0.30694186 0.307490302 0.382391511 0.444823901 -PA2602 0.245314107 0.134506162 0.334835932 0.272897138 0.335349442 0.316435493 0.214899983 0.289968618 0.179783594 0.156970073 0.273343917 -PA2603 0.277761235 0.167222099 0.36473471 0.296093212 0.310045671 0.13841906 0.096617282 0.165644089 0.103888557 0.061635103 0.114027392 -PA2604 0.387340065 0.521875377 0.446622665 0.76193728 0.753464131 0.660066748 0.523015731 0.641893381 0.556888965 0.662905043 0.535240341 -PA2605 0.546636639 0.512646114 0.44885417 0.700580278 0.721157432 0.239372231 0.185486774 0.24937189 0.127874957 0.276262529 0.263884996 -PA2606 0.643763151 0.623496188 0.766149532 0.863503648 0.881133099 0.509049062 0.418656938 0.592929612 0.396706604 0.526038386 0.347884741 -PA2607 0.599336284 0.600945087 0.590659419 0.583816513 0.632810904 0.560247346 0.357689576 0.692549298 0.397067609 0.61029642 0.390118131 -PA2608 0.488124329 0.445043841 0.48799262 0.429895246 0.515022185 0.625092292 0.485604768 0.739053699 0.459064645 0.619629404 0.563286903 -PA2609 0.63350765 0.53632692 0.68981511 0.558476119 0.565210717 0.615344868 0.488799936 0.56784116 0.421899327 0.468564272 0.493859893 -PA2610 0.281041699 0.151628005 0.335986846 0.532653095 0.587363738 0.196690237 0.293855184 0.368611838 0.354550093 0.342145483 0.387166763 -PA2611 0.914652578 0.607290048 0.781055104 0.426704817 0.416356927 0.520132998 0.501679662 0.465738771 0.478703904 0.454385012 0.459699081 -PA2612 0.844126139 0.939896768 0.915970645 0.511686568 0.523945891 0.490603781 0.599194717 0.367141755 0.634510568 0.604608591 0.601637751 -PA2613 0.825346497 0.764712674 0.708095628 0.43211365 0.406085249 0.62715097 0.810462963 0.549268685 0.711814271 0.794337969 0.747454535 -PA2614 0.79075994 0.799968828 0.753738393 0.532445453 0.611609823 0.628378112 0.628232242 0.48995896 0.566482154 0.612582274 0.705822647 -PA2615 0.78522689 0.767983204 0.73923909 0.533197537 0.553502973 0.602202869 0.65211219 0.518557033 0.622569918 0.632425008 0.640167199 -PA2616 0.718448983 0.756482885 0.686607128 0.665131197 0.66769831 0.530821195 0.576561316 0.504254272 0.571955342 0.556343486 0.610973745 -PA2617 0.534414998 0.415629515 0.442774778 0.219694375 0.289525542 0.270599759 0.25268227 0.238273842 0.209624753 0.146377816 0.24842262 -PA2618 0.380627452 0.236578913 0.530610174 0.880361181 0.883281386 0.675176996 0.483227754 0.710408674 0.411156894 0.668917432 0.469638619 -PA2619 0.841585444 0.671065673 0.826464253 0.474134889 0.526484753 0.737898162 0.730859328 0.598112767 0.782286747 0.694416933 0.757562393 -PA2620 0.497536648 0.475030569 0.539392449 0.904213788 0.881153096 0.558109517 0.487492742 0.661885865 0.582299091 0.554799246 0.525827674 -PA2621 0.521946217 0.506403903 0.702122066 0.826555004 0.841012214 0.823311202 0.788400566 0.903258657 0.773973397 0.874449597 0.768939885 -PA2622 0.427519563 0.641643599 0.610470197 0.93969301 0.935107343 0.477493194 0.429264052 0.524593371 0.470122532 0.449588662 0.450528964 -PA2623 0.685242807 0.784544636 0.818101948 0.83431437 0.825708425 0.55004477 0.698340826 0.569083349 0.689909126 0.57482398 0.68561473 -PA2624 0.784320284 0.796349816 0.796031176 0.299724743 0.335383526 0.545560077 0.587093198 0.466102044 0.602833259 0.500848866 0.592492323 -PA2625 0.726934619 0.768628964 0.390586769 0.260716868 0.21135219 0.397957705 0.416917586 0.492621553 0.460841011 0.327699606 0.433050269 -PA2626 0.847352736 0.740885097 0.832666542 0.500699695 0.479302189 0.591366257 0.60365721 0.403886188 0.597360534 0.574687923 0.435645583 -PA2627 0.656376909 0.524450018 0.723394317 0.373701732 0.362830496 0.452428094 0.621748682 0.423964159 0.578689704 0.565076929 0.485682757 -PA2628 0.238324354 0.233480086 0.358521877 0.350661538 0.301874029 0.316217438 0.284444464 0.382139202 0.337696884 0.318996684 0.419531836 -PA2629 0.781242446 0.606597317 0.798677573 0.337590738 0.364414648 0.344513709 0.448378359 0.29913187 0.408728447 0.331279373 0.427742209 -PA2630 0.814451886 0.801953559 0.616585813 0.429133348 0.436088397 0.372887911 0.32037895 0.3457678 0.327252127 0.381948605 0.374376792 -PA2631 0.746458255 0.669083316 0.58870178 0.663819971 0.645186291 0.642747369 0.529894344 0.687723404 0.526193435 0.563140126 0.545258416 -PA2632 0.57297685 0.513320229 0.616605914 0.416802264 0.483000533 0.49558793 0.299878546 0.625238664 0.381523689 0.497461824 0.342836727 -PA2633 0.36651438 0.352212619 0.782949535 0.866447159 0.847177421 0.488692987 0.385618301 0.576822644 0.324285694 0.5207954 0.381069518 -PA2634 0.505455769 0.406624848 0.640825612 0.585797482 0.591527064 0.356880285 0.330576721 0.291056478 0.317027147 0.370589077 0.325353532 -PA2635 0.144580026 0.133155725 0.08687807 0.193813457 0.179754375 0.096118607 0.108604784 0.10384448 0.127602256 0.11173685 0.11495857 -PA2636 0.144083112 0.150487967 0.146919521 0.136310917 0.151361389 0.284741888 0.235559114 0.094415774 0.248109686 0.175871199 0.18803407 -PA2637 0.509095728 0.420462873 0.564893052 0.397506523 0.460590422 0.89195387 0.853568792 0.920601667 0.959122419 0.933609179 0.865566877 -PA2638 0.814551463 0.931385767 0.792318375 0.769206789 0.79553226 0.529006607 0.679858276 0.682302966 0.604144541 0.650201596 0.615844819 -PA2639 0.792756326 0.745869209 0.839378213 0.682927405 0.712762852 0.735074512 0.687172538 0.770595937 0.721669661 0.760484898 0.710080346 -PA2640 0.851148754 0.79942131 0.901060518 0.786057083 0.779771589 0.774414079 0.723570968 0.734726043 0.716725661 0.801514114 0.747083744 -PA2641 0.903724962 0.816564493 0.820201179 0.714693029 0.742124501 0.68249512 0.645013973 0.598026308 0.58398535 0.666582541 0.638191389 -PA2642 0.83107731 0.85393866 0.746218533 0.657371499 0.657108849 0.627462288 0.620745275 0.541208592 0.563346417 0.631478373 0.572241846 -PA2643 0.652848801 0.579630982 0.641524656 0.533593723 0.580452924 0.549559366 0.544030981 0.434329185 0.546941136 0.618957274 0.570697247 -PA2644 0.735593496 0.701743114 0.811431772 0.597856965 0.609313049 0.721855649 0.661478838 0.68629746 0.604868941 0.716915895 0.654424938 -PA2645 0.823346939 0.826504655 0.749233479 0.574160117 0.626998433 0.732794005 0.746484524 0.614823904 0.644270433 0.702963406 0.769220838 -PA2646 0.768083823 0.729629998 0.755103533 0.629165231 0.672853355 0.801557236 0.665678509 0.660403746 0.706788968 0.803707315 0.691675217 -PA2647 0.830565114 0.731237392 0.811834067 0.48611892 0.534900782 0.868727644 0.794105339 0.901790723 0.806724496 0.934877843 0.799463314 -PA2648 0.858760716 0.691416774 0.984474493 0.42122008 0.49503993 0.854198505 0.795945443 0.811973893 0.710894187 0.855181869 0.7484769 -PA2649 0.842953498 0.808825421 0.896496656 0.338094466 0.435504063 0.605339457 0.594858315 0.570207091 0.638121454 0.669134635 0.619114194 -PA2650 0.56814836 0.536044126 0.345572872 0.163998513 0.169092221 0.440678721 0.398705782 0.598927957 0.357739742 0.464985082 0.528314401 -PA2651 0.617669922 0.429665782 0.579518744 0.367488616 0.339694002 0.603304462 0.696767567 0.723062093 0.699128858 0.603477562 0.7127565 -PA2652 0.735602755 0.684614946 0.519624102 0.250813987 0.200415373 0.234887053 0.286673261 0.574689281 0.253002325 0.250665129 0.299263657 -PA2653 0.7695814 0.315780838 0.314243639 0.087844652 0.145818546 0.344204125 0.285914305 0.374476133 0.372998464 0.211977428 0.42437599 -PA2654 0.354578328 0.579070292 0.480169053 0.195819112 0.171246892 0.401446948 0.482755213 0.483760175 0.436280069 0.352988061 0.502026489 -PA2655 0.342547724 0.292501784 0.377300119 0.293967263 0.27892034 0.585289883 0.661333281 0.662739687 0.7030459 0.626627796 0.610730942 -PA2656 0.298581674 0.146802828 0.312231564 0.383169781 0.398701311 0.266546482 0.219304679 0.303492305 0.154598507 0.246487238 0.177696224 -PA2657 0.356101762 0.237910726 0.38695808 0.589720236 0.552824102 0.262330926 0.25333626 0.242644845 0.218040868 0.26622196 0.150328801 -PA2658 0.318615607 0.276807317 0.369214119 0.651797855 0.589020353 0.318202408 0.261020619 0.332419166 0.302314696 0.300380055 0.250992041 -PA2659 0.369650354 0.373635601 0.473118387 0.674059585 0.683309784 0.368405238 0.201993009 0.382348058 0.266587826 0.379503062 0.221379312 -PA2660 0.812334244 0.658725601 0.955261598 0.315278117 0.31813521 0.289905076 0.208847655 0.113265537 0.286214714 0.167454166 0.244925969 -PA2661 0.538049154 0.391166232 0.613495933 0.312456621 0.34845725 0.722375779 1 0.713387889 0.78897815 0.704890927 0.908233458 -PA2662 0.096066762 0.214629998 0.185947865 0.767762251 0.827392176 0.541399969 0.587409954 0.430550343 0.58860592 0.552876167 0.590570701 -PA2663 0.041425087 0.286275482 0.089163071 0.95049957 0.97618134 0.549488922 0.632236908 0.43363202 0.588709257 0.581691508 0.604546609 -PA2664 0.078000605 0.048911698 0.062945286 0.918347354 0.957746036 0.758597878 0.72427617 0.560461782 0.698576846 0.741718075 0.732180915 -PA2665 0.281800984 0.276863367 0.307618012 0.384743075 0.447731951 0.216785852 0.215424769 0.224120098 0.279553356 0.225566911 0.215995654 -PA2666 0.759061978 0.615550999 0.619095235 0.377955245 0.427704988 0.692157802 0.866258532 0.719895081 0.849142775 0.652111006 0.813877759 -PA2667 0.707059653 0.496815775 0.763109049 0.508637202 0.573287967 0.857947569 0.92483404 0.818502132 0.884248816 0.880809586 0.897464891 -PA2668 0.349067228 0.291502131 0.431048889 0.565227085 0.643929797 0.70044529 0.74878872 0.722183621 0.877762326 0.62604543 0.806343422 -PA2669 0.134363355 0.046923763 0.29307794 0.264183973 0.352312973 0.382558825 0.417213828 0.530125904 0.373849483 0.433320402 0.511224309 -PA2670 0.189344826 0.09052883 0.225744131 0.241925139 0.296375908 0.333248323 0.321608282 0.36282202 0.229809996 0.189946088 0.181612561 -PA2671 0.224378152 0.185075207 0.179199536 0.235292493 0.299560631 0.49246454 0.43708016 0.450415438 0.335158717 0.36998164 0.467554056 -PA2672 0.372127115 0.284834691 0.28513015 0.256596088 0.325040734 0.238744087 0.468111761 0.469047905 0.371835866 0.229648074 0.40814353 -PA2673 0.241914957 0.223542067 0.169294072 0.180381612 0.188473213 0.327683168 0.289560271 0.411814517 0.422380814 0.41835633 0.342241794 -PA2674 0.272310521 0.220550985 0.230521716 0.282486731 0.213948559 0.274437132 0.307270211 0.333678333 0.276279266 0.355196536 0.362936429 -PA2675 0.396120723 0.266521154 0.269350875 0.357667135 0.297072499 0.333524367 0.439214097 0.548796128 0.39607013 0.490641261 0.41135688 -PA2676 0.194815396 0.234833889 0.132940748 0.226459655 0.262960937 0.109728583 0.265261006 0.454243793 0.249834246 0.313807923 0.209401288 -PA2677 0.26818781 0.212910117 0.260438566 0.373152343 0.32131781 0.289591618 0.33449089 0.253863801 0.310198081 0.227515889 0.254426345 -PA2678 0.10955315 0.08855325 0.16889297 0.208639846 0.228428389 0.30898621 0.293606921 0.421747238 0.533356529 0.310448426 0.183376303 -PA2679 0.135111073 0.208660673 0.09377756 0.1936766 0.195054128 0.315482437 0.416125186 0.383486948 0.358480836 0.357747098 0.448199554 -PA2680 0.319036109 0.314151894 0.341400967 0.467868383 0.484413363 0.304536907 0.265319134 0.238649015 0.055335845 0.112543913 0.229675197 -PA2681 0.44333219 0.445428139 0.388014753 0.471549895 0.509556795 0.245972707 0.326007486 0.282112428 0.289806481 0.17611243 0.349920492 -PA2682 0.260418203 0.173146725 0.285975916 0.261043514 0.245284846 0.263446976 0.213523733 0.223791103 0.083020756 0.192463498 0.220546544 -PA2683 0.639390056 0.736315396 0.567713604 0.590223112 0.687262126 0.402059796 0.358551222 0.354375931 0.231468302 0.370406257 0.518012506 -PA2684 0.421884887 0.361253602 0.239809553 0.315512005 0.273693649 0.459478421 0.398776984 0.298408849 0.249589614 0.282948365 0.316114241 -PA2685 0.413086516 0.26085711 0.433306693 0.363904703 0.396942205 0.329969431 0.483988728 0.313689232 0.49171909 0.266899919 0.425328997 -PA2686 0.211158677 0.193511133 0.229716786 0.143707832 0.083342956 0.246660275 0.296446959 0.291066992 0.362422112 0.224094331 0.282141043 -PA2687 0.378305878 0.216390032 0.381891739 0.279837922 0.271808346 0.230276433 0.365500703 0.225629955 0.4678504 0.198300522 0.3606162 -PA2688 0.175093712 0.151172643 0.23751495 0.256097145 0.213118778 0.332907492 0.36690716 0.333811374 0.397369952 0.328569057 0.346992773 -PA2689 0.243342061 0.258279168 0.150524251 0.385349655 0.345767906 0.277127264 0.192698213 0.331054724 0.192285057 0.210138846 0.257017038 -PA2691 0.123073723 0.097627974 0.113825637 0.155786029 0.129031194 0.136549214 0.093043782 0.169918208 0.188483935 0.154780412 0.142100309 -PA2692 0.567815261 0.619454045 0.405491611 0.629197446 0.656121108 0.524694249 0.430141305 0.630560194 0.481125139 0.467191947 0.369323118 -PA2693 0.303955852 0.377268323 0.36734004 0.384303872 0.385104535 0.582319606 0.384179807 0.470965127 0.592541278 0.533349848 0.490027655 -PA2694 0.261035792 0.225691878 0.163322065 0.400972513 0.369003857 0.292269334 0.332867551 0.490806167 0.434273806 0.486831587 0.412702086 -PA2695 0.516186031 0.301924512 0.375125643 0.408850288 0.342537566 0.445036895 0.426890858 0.156323828 0.385632535 0.308485083 0.376258803 -PA2696 0.085101146 0.185887998 0.167462894 0.243527862 0.212045584 0.392135744 0.405987404 0.479946902 0.230233648 0.550870977 0.432495102 -PA2697 0.280175826 0.22030152 0.183945135 0.21467198 0.216465957 0.207085974 0.274968054 0.370050914 0.30783202 0.315150653 0.297581739 -PA2698 0.287601586 0.202621253 0.24306564 0.256621949 0.32212233 0.136245989 0.242322785 0.159247628 0.234818967 0.182588382 0.271805845 -PA2699 0.123987547 0.133697733 0.210763672 0.731719368 0.744949958 0.127880381 0.033883727 0.204713047 0.069605903 0.156082097 0.136634611 -PA2700 0.214286897 0.179274001 0.133889847 0.453437314 0.489996452 0.354890624 0.443385892 0.466584199 0.298963649 0.322799458 0.289135223 -PA2701 0.259152742 0.159848732 0.241958825 0.347549834 0.356737795 0.309074702 0.198991915 0.4952573 0.334872939 0.264965206 0.312392891 -PA2702 0.447278233 0.41246747 0.387704343 0.45881302 0.415324419 0.303620331 0.325505925 0.332332096 0.384175123 0.314697307 0.356130047 -PA2703 0.308673799 0.321540944 0.347608908 0.370130483 0.289317296 0.246308077 0.238918213 0.135198524 0.321512258 0.152902369 0.278928881 -PA2704 0.238613568 0.125442074 0.162240584 0.276781546 0.311375565 0.15605689 0.100212019 0.170751018 0.111125511 0.13648774 0.204559423 -PA2705 0.45281456 0.45027222 0.402461551 0.471030388 0.476847838 0.499411584 0.631120051 0.715667775 0.537510818 0.577296667 0.510932012 -PA2706 0.52630831 0.48178814 0.658538273 0.778955697 0.853191066 0.854580895 0.837464586 0.810805768 0.83707734 0.846146757 0.792201431 -PA2707 0.434166529 0.50055889 0.714378975 0.619852493 0.670708843 0.739920516 0.725825252 0.783952783 0.646468804 0.766993375 0.727617125 -PA2708 0.134756303 0.17386865 0.229123178 0.298266088 0.432199556 0.363020126 0.222086072 0.434462474 0.362053973 0.399097733 0.28754921 -PA2709 0.57242651 0.691433891 0.770286993 0.65860237 0.657795895 0.531918941 0.423199895 0.494567825 0.458853145 0.562956279 0.442548267 -PA2710 0.524350457 0.548731025 0.660329706 0.605424283 0.605695843 0.521573544 0.420382221 0.463764381 0.51373071 0.481989334 0.437290376 -PA2711 0.234164657 0.341554636 0.188004757 0.362399775 0.384676723 0.120153029 0.139992421 0.148058844 0.181138921 0.0810808 0.084262863 -PA2712 0.416589836 0.297216665 0.224533858 0.612642613 0.538253682 0.455048872 0.515772424 0.473358756 0.48657742 0.577689649 0.481892399 -PA2713 0.383733621 0.49647056 0.352236043 0.735021609 0.835896771 0.410970381 0.370338088 0.445811591 0.253904726 0.468575471 0.436485823 -PA2714 0.148408902 0.12483919 0.189657693 0.179017116 0.222657428 0.075893497 0.082382485 0.113114154 0.062580579 0.064465596 0.053785274 -PA2715 0.115469938 0.043823476 0.161056992 0.174936035 0.250067721 0.201266955 0.195804511 0.219009988 0.09499785 0.126542526 0.156306703 -PA2716 0.304635394 0.263964487 0.209756153 0.383268565 0.431104787 0.244304399 0.234263816 0.378888421 0.165887526 0.309593475 0.242859522 -PA2717 0.108348595 0.057037996 0.201914665 0.799945442 0.756226402 0.467538224 0.265668031 0.377595281 0.255938323 0.343365435 0.235621338 -PA2718 0.362720666 0.450641766 0.466573897 0.729042224 0.7561926 0.510147323 0.415733459 0.561813205 0.334957658 0.508433856 0.456929359 -PA2719 0.176466722 0.281985859 0.172547476 0.490202486 0.472377353 0.215591032 0.11372968 0.159792544 0.106278588 0.306512795 0.37890214 -PA2720 0.241599502 0.315869437 0.210685876 0.1814265 0.130120202 0.350601964 0.56247058 0.390556724 0.455288305 0.427721921 0.365314608 -PA2721 0.137017098 0.131631705 0.161016301 0.64228364 0.596617503 0.356848607 0.210375179 0.336591744 0.217922973 0.295202327 0.330026103 -PA2722 0.147464794 0.157992972 0.037672341 0.34832158 0.303978882 0.283759868 0.242770798 0.270361615 0.319130449 0.161854369 0.315771821 -PA2723 0.225850798 0.488666287 0.136126205 0.258878042 0.346391425 0.396673576 0.309889254 0.459214387 0.338937523 0.385783346 0.305240685 -PA2724 0.25697491 0.402582773 0.253910933 0.346170922 0.277213854 0.274067615 0.15583649 0.37261944 0.165906056 0.25618463 0.092818526 -PA2725 0.607316707 0.540561758 0.606168955 0.534174213 0.486184396 0.50076646 0.467373444 0.383719554 0.355446393 0.460991047 0.38112119 -PA2726 0.62007645 0.522773229 0.446110794 0.275506217 0.309068418 0.421534189 0.508744674 0.426121905 0.44376045 0.473947898 0.304145992 -PA2727 0.649081622 0.615235023 0.52496404 0.369417086 0.256211789 0.623005227 0.442950502 0.581477659 0.556872588 0.425053062 0.382810155 -PA2728 0.60718886 0.601239689 0.502387226 0.366292829 0.33124614 0.368337847 0.446611038 0.199145816 0.455306067 0.288902245 0.182672338 -PA2729 0.559268463 0.478957476 0.460322692 0.107367216 0.165874031 0.349966603 0.147622544 0.261466132 0.389648266 0.468925786 0.253272782 -PA2730 0.111889379 0.692133485 0.117946831 0.125549829 0.120600408 0.094867082 0.186800026 0.268958641 0.196021985 0.145295432 0.175268315 -PA2731 0.116496376 0.731273864 0.086236627 0.119036996 0.110183584 0.159937568 0.285637657 0.264954586 0.144105244 0.226275606 0.178472172 -PA2732 0.198830963 0.649657361 0.120276662 0.200543978 0.195598914 0.208329711 0.231015992 0.290198892 0.259643629 0.20954188 0.243162457 -PA2733 0.252882737 0.873669061 0.232214434 0.196332952 0.203952985 0.226063259 0.207625574 0.234708578 0.165913057 0.146389599 0.150474713 -PA2734 0.288882817 0.766708824 0.223276639 0.313795317 0.318968761 0.275482755 0.24802801 0.215533554 0.243422602 0.368247484 0.319777401 -PA2735 0.216512771 0.826540856 0.224994953 0.278901798 0.246185483 0.311242694 0.332375092 0.361065335 0.337623956 0.3332188 0.347814072 -PA2736 0.261562708 0.761624891 0.259888957 0.257983889 0.26249023 0.214805767 0.215539776 0.247270969 0.171969691 0.182161719 0.166594721 -PA2737 0.506636768 0.629349253 0.656366375 0.718295576 0.693402893 0.747304797 0.743073115 0.709804764 0.746430367 0.77829967 0.747417569 -PA2738 0.636687026 0.791817876 0.721412981 0.729405868 0.772701505 0.784246055 0.760778756 0.804358761 0.735599527 0.821021864 0.757119436 -PA2739 0.790790684 0.867709954 0.716369828 0.277831022 0.238203778 0.658385339 0.521735401 0.429004747 0.64339198 0.643532534 0.532249823 -PA2740 0.875370135 0.829496224 0.718950271 0.256929735 0.266615397 0.558034129 0.598319348 0.43834768 0.60953263 0.55817312 0.599505354 -PA2741 0.732344415 0.719459367 0.673473673 0.531875143 0.528197251 0.703540831 0.72551888 0.670217237 0.6988887 0.704108362 0.720002398 -PA2742 0.904140772 0.845210698 0.887912914 0.722075102 0.738144275 0.894892049 0.867248459 0.851031396 0.872332168 0.873508622 0.881818264 -PA2743 0.783218206 0.724020916 0.763125922 0.604923443 0.620164353 0.898720114 0.855744874 0.896435962 0.852328941 0.90871676 0.873535305 -PA2744 0.879828444 0.900844251 0.876836548 0.312689724 0.309651806 0.553956659 0.489531979 0.535642603 0.612785983 0.52986472 0.626463977 -PA2745 0.592406458 0.451451863 0.353020574 0.379502218 0.356873319 0.230245671 0.620863843 0.310894674 0.434456858 0.393404755 0.502463319 -PA2746 0.038028117 0.024738292 0.186099833 0.878002412 0.868207768 0.540294716 0.230690144 0.670632112 0.174951517 0.507123353 0.162812114 -PA2747 0.187488477 0.076662649 0.387839959 0.767558325 0.743755306 0.343886646 0.185003245 0.457243741 0.221106779 0.384669235 0.24033496 -PA2748 0.466924267 0.204051841 0.501188446 0.326850765 0.436210705 0.464498132 0.458399611 0.444569572 0.381667971 0.332980395 0.49611119 -PA2749 0.402115373 0.208353256 0.36207378 0.19441862 0.199869147 0.255788019 0.32055229 0.29470321 0.233312045 0.298254908 0.289388993 -PA2750 0.489226786 0.343445802 0.335486177 0.382368857 0.392276076 0.12888702 0.123501512 0.005888511 0.179516627 0.012699547 0.172477815 -PA2751 0.046631201 0.18640979 0.198846336 0.24445693 0.309602169 0.415573561 0.424349064 0.479302319 0.503800362 0.453406333 0.504396378 -PA2752 0.214306196 0.197704025 0.375109573 0.23148181 0.2729641 0.578872299 0.475563924 0.401525968 0.458383891 0.438276269 0.454687032 -PA2753 0.12496058 0.764383675 0.109320196 0.673289825 0.755699394 0.386374792 0.196243097 0.433633304 0.141339337 0.439372407 0.122971897 -PA2754 0.123146468 0.698197666 0.35704351 0.729006794 0.810303655 0.521898016 0.407516723 0.596513205 0.429847083 0.571547328 0.395727145 -PA2755 0.420805592 0.690795007 0.389966793 0.650056458 0.62411558 0.265850833 0.348627865 0.230631385 0.437111593 0.170817406 0.367501385 -PA2756 0.290685607 0.237335795 0.478106234 0.563822584 0.564891212 0.814857434 0.854122385 0.881284548 0.868661204 0.842022363 0.845294525 -PA2757 0.17314361 0.178653086 0.171413081 0.127865601 0.125006179 0.307135507 0.693876287 0.172155567 0.550875446 0.323090535 0.526242364 -PA2758 0.300774873 0.256419828 0.308468424 0.286093601 0.335132441 0.160056806 0.246192842 0.318844884 0.2563718 0.209418448 0.424519137 -PA2759 0.017979493 0.045096919 0.067804578 0.199934474 0.233165052 0.186391869 0.072616182 0.203272285 0.157634713 0.128690439 0.152353706 -PA2760 0.81949594 0.687175872 0.733560642 0.239606527 0.331102485 0.26593596 0.385144668 0.17015714 0.344120227 0.32373489 0.330676772 -PA2761 0.509008994 0.260982769 0.58373021 0.100076045 0.06054744 0.097340823 0.179914421 0.107676544 0.178599971 0.041873281 0.206719411 -PA2762 0.149965525 0.094575903 0.362557225 0.244397725 0.227989387 0.13487406 0.232657934 0.180948539 0.274978104 0.218060164 0.291630717 -PA2763 0.17475509 0.056946392 0.222314807 0.160853588 0.163491297 0.345386859 0.340900976 0.242410666 0.357128822 0.349453728 0.417473211 -PA2764 0.232578008 0.204944541 0.404646375 0.368034235 0.344814729 0.334756615 0.274667325 0.351337183 0.317262456 0.344457002 0.424621353 -PA2765 1 0.798420089 0.857012261 0.567115856 0.554880042 0.367254751 0.384742186 0.318346474 0.451398115 0.417549044 0.380101692 -PA2766 0.328541198 0.201559215 0.391923698 0.356402165 0.130213895 0.263970459 0.168202141 0.297773185 0.278789699 0.293069404 0.178531358 -PA2767 0.239047741 0.274766761 0.148562811 0.194697248 0.164447333 0.097155788 0.107213235 0.162183394 0.120834601 0.195540191 0.092753774 -PA2768 0.289962768 0.168544511 0.216612596 0.216814764 0.199274976 0.317661644 0.316575229 0.370995462 0.371813498 0.323738663 0.295881891 -PA2769 0.43236366 0.232166954 0.49054917 0.219526498 0.260565821 0.243981771 0.066905048 0.268002302 0.181435463 0.355981307 0.198469709 -PA2770 0.714401801 0.569378294 0.698597368 0.426066772 0.414743063 0.354067342 0.339629303 0.445584178 0.27637209 0.303968409 0.228895309 -PA2771 0.081348087 0.185788196 0.097678287 0.117785178 0.100575506 0.425495562 0.29483546 0.40386664 0.303548009 0.45168912 0.273628361 -PA2772 0.171107458 0.343220274 0.095359842 0.190172295 0.226521518 0.522887633 0.525905021 0.694946862 0.450001703 0.600506577 0.46763806 -PA2773 0.453455171 0.229738367 0.27574597 0.433905561 0.475154797 0.477345811 0.807465634 0.411155399 0.530745669 0.50204371 0.50881913 -PA2774 0.609981737 0.412206048 0.398875513 0.336833513 0.334922247 0.231039168 0.379741521 0.289007624 0.294570963 0.232393615 0.365302521 -PA2775 0.709124911 0.374995376 0.398729877 0.172322477 0.20053819 0.490577238 0.540310106 0.437472327 0.574851044 0.397479632 0.439537915 -PA2776 0.337489105 0.396555123 0.228238925 0.381298829 0.456847003 0.246724064 0.202744212 0.17408159 0.22824445 0.162382689 0.265383111 -PA2777 0.059360206 0.146273391 0.181684239 0.336680261 0.370055622 0.29375589 0.260335204 0.31614798 0.227095979 0.293048932 0.23670076 -PA2778 0.041907273 0.280720043 0.04538558 0.37974654 0.40470308 0.178750086 0.212042833 0.220342688 0.211880615 0.10616367 0.209909614 -PA2779 0.020496099 0.35846798 0.068791428 0.450324326 0.495690658 0.36869853 0.368189015 0.481273294 0.350863894 0.424166606 0.34998884 -PA2780 0.096818505 0.170118367 0.284040349 0.417580454 0.410733745 0.540478285 0.351674764 0.503119644 0.304443273 0.592415759 0.211231144 -PA2781 0.090932823 0.167751541 0.228930195 0.497514561 0.501892112 0.39683766 0.210796671 0.468808073 0.286530117 0.463752194 0.20246876 -PA2782 0.144604978 0.159476247 0.219928941 0.287149735 0.33531657 0.14267964 0.079400703 0.164495535 0.112039129 0.086441239 0.073435196 -PA2783 0.118066926 0.118046118 0.137211874 0.130670626 0.107716683 0.163030738 0.082659404 0.099686976 0.075208734 0.052152531 0.059608372 -PA2784 0.327765525 0.199143641 0.21870184 0.445195499 0.408755291 0.367168926 0.558660491 0.560736841 0.458476122 0.368351937 0.420937428 -PA2785 0.308937314 0.299273037 0.284005471 0.416160757 0.455881217 0.261700332 0.293667845 0.002636874 0.279756052 0.259129247 0.11669846 -PA2786 0.12294288 0.099651616 0.162527824 0.152415553 0.174998789 0.136947143 0.129445822 0.127993782 0.107881277 0.185399542 0.148314991 -PA2787 0.259367509 0.268210495 0.232864525 0.572410371 0.567139165 0.580908196 0.343901749 0.726477055 0.380268643 0.614277589 0.293855634 -PA2788 0.188537598 0.270319324 0.241807866 0.46592468 0.476586225 0.646933258 0.457599472 0.765704076 0.499293096 0.631589168 0.424845754 -PA2789 0.33430196 0.332605415 0.213708174 0.205485931 0.262008197 0.173481323 0.076370034 0.142414022 0.190118558 0.147211784 0.192455564 -PA2790 0.160069009 0.177931864 0.166388713 0.265423006 0.268843786 0.322798485 0.246753416 0.390027394 0.287043362 0.402066409 0.219683386 -PA2791 0.109967078 0.04939654 0.072936532 0.146302571 0.131387882 0.307311518 0.333478823 0.36657048 0.336836238 0.231391807 0.293593092 -PA2792 0.479453616 0.21599748 0.310013265 0.224720159 0.134028802 0.085811113 0.132492957 0.228967126 0.369376501 0.12015834 0.231223654 -PA2793 0.647754186 0.50106966 0.541286881 0.323552023 0.238742822 0.330140898 0.494206091 0.33027424 0.408106517 0.364884874 0.497128684 -PA2794 0.214622924 0.289717223 0.304367203 0.216891112 0.243660693 0.222218762 0.329572287 0.350738254 0.21603673 0.330788141 0.427144124 -PA2795 0.535245844 0.613477406 0.470077576 0.220468764 0.197119893 0.335238341 0.448843298 0.213457927 0.388233475 0.237429041 0.413002542 -PA2796 0.577052556 0.597465791 0.832484614 0.72364105 0.750429169 0.515655824 0.548095788 0.490755377 0.55994632 0.516917708 0.535805472 -PA2797 0.40303129 0.245264453 0.487192182 0.657412866 0.579688151 0.775923233 0.772939196 0.696572968 0.800167398 0.78082053 0.790752321 -PA2798 0.5958991 0.536609756 0.656773117 0.745088713 0.618036014 0.596586428 0.607596254 0.664128362 0.737375628 0.573215941 0.777054503 -PA2799 0.224675522 0.246109562 0.258558933 0.849562202 0.83477546 0.32680793 0.193074697 0.379553694 0.162963026 0.222282225 0.180095805 -PA2800 0.764259318 0.685820328 0.757052806 0.636854062 0.63533156 0.834037273 0.918660479 0.876216539 0.933878336 0.884986974 0.95648445 -PA2801 0.480183964 0.338928273 0.392345898 0.326698677 0.334377747 0.386585616 0.450879412 0.412145959 0.455881166 0.29370199 0.428253558 -PA2802 0.570826003 0.398375226 0.642939691 0.324991029 0.423187455 0.467958737 0.355003161 0.274760412 0.292764467 0.401626422 0.454976215 -PA2803 0.163986226 0.174975938 0.156004146 0.201142728 0.218215809 0.213102189 0.244992358 0.138986331 0.192252655 0.181761083 0.152612188 -PA2804 0.142771209 0.108339476 0.144497705 0.204321523 0.197683278 0.231692998 0.160106876 0.124918436 0.147423935 0.112439094 0.249196522 -PA2805 0.433172408 0.635986255 0.606408533 0.654788364 0.689702365 0.82792744 0.538446741 0.869012458 0.605042425 0.837901343 0.625270118 -PA2806 0.453135656 0.24970179 0.495426524 0.342764927 0.277644108 0.250782412 0.270045242 0.220488623 0.272825336 0.269895697 0.260101375 -PA2807 0.090657968 0.105675822 0.090326051 0.195181206 0.145264206 0.220944457 0.18418618 0.151229082 0.215649774 0.210963928 0.221608292 -PA2808 0.149025171 0.127593594 0.134215866 0.184792825 0.150695392 0.200526023 0.101388183 0.177272932 0.136281258 0.250855335 0.170555902 -PA2809 0.433614898 0.415198501 0.561038658 0.45463719 0.499681195 0.385986085 0.267596279 0.503443375 0.250661003 0.365476873 0.274027635 -PA2810 0.463432511 0.354813248 0.459487531 0.438930014 0.476418667 0.253581712 0.278322081 0.202066696 0.286272288 0.210703467 0.256007871 -PA2811 0.351530809 0.21707454 0.604291014 0.177821178 0.123114583 0.200995834 0.270167089 0.055115556 0.254266749 0.156855377 0.300508446 -PA2812 0.596234122 0.363168667 0.722933347 0.454006373 0.423628525 0.35946026 0.357217441 0.28114559 0.386013809 0.438551991 0.390950208 -PA2813 0.413232654 0.437716904 0.400868116 0.474375504 0.449549521 0.383685564 0.402510147 0.351545737 0.338140729 0.431697358 0.445717115 -PA2814 0.209299465 0.238384389 0.121831271 0.2864564 0.289439575 0.15713039 0.303056629 0.309097582 0.236237775 0.170442672 0.265902488 -PA2815 0.137555582 0.204107323 0.390503639 1 0.965521549 0.21633596 0.152920336 0.303361219 0.229910876 0.261806238 0.179551595 -PA2816 0.295500581 0.255603693 0.516141304 0.974570163 1 0.132072171 0.06967645 0.146519192 0 0.169485432 0.085770851 -PA2817 0.679883638 0.551731065 0.532906678 0.825025638 0.816590755 0.155422162 0.124718265 0.235686671 0.211165481 0.181970503 0.068907154 -PA2818 0.38491017 0.410914252 0.274063637 0.300946907 0.303397185 0.510368504 0.471565011 0.626686951 0.487310258 0.416790837 0.503576961 -PA2819 0.22639351 0.238830754 0.228857751 0.238032936 0.207113426 0.619367249 0.801341946 0.474311327 0.638948467 0.527322919 0.503130892 -PA2820 0.497336177 0.70926915 0.548961405 0.418088395 0.451462197 0.247752911 0.172692524 0.311473231 0.24646131 0.163434525 0.222626471 -PA2821 0.455069565 0.553791408 0.532487794 0.558488212 0.570231384 0.254215673 0.507313847 0.28895738 0.513491196 0.340714372 0.485961978 -PA2822 0.524307513 0.345070024 0.637884349 0.277371831 0.384412024 0.468536125 0.380459623 0.377963143 0.451299828 0.44674578 0.463375146 -PA2823 0.645458026 0.52821057 0.785542388 0.422931899 0.33815796 0.40453908 0.433771835 0.13634612 0.292520294 0.152252629 0.359505396 -PA2824 0.275999778 0.349522178 0.32105663 0.494637445 0.480275346 0.449677819 0.307008281 0.33376456 0.245750289 0.285187263 0.188602435 -PA2825 0.286466622 0.202917173 0.208964847 0.508122541 0.520631513 0.270230838 0.216855588 0.310604735 0.292865055 0.422764791 0.283917068 -PA2826 0.360778341 0.327394199 0.373360846 0.689392695 0.691709991 0.111318973 0.101577512 0.165946294 0.09023149 0.189101608 0.023813364 -PA2827 0.267683708 0.405751931 0.232574532 0.685165809 0.714817507 0.366121555 0.318378809 0.442852475 0.242588495 0.396883519 0.306790846 -PA2828 0.803677428 0.482780835 0.934952506 0.210741227 0.210799949 0.388423665 0.494059575 0.226251464 0.382386416 0.312991135 0.464950214 -PA2829 0.540258207 0.275518754 0.421410472 0.091759426 0.093360931 0.199579724 0.247676986 0.18184438 0.148397542 0.219655172 0.214695617 -PA2830 0.519043732 0.496477928 0.503774102 0.492035846 0.478525401 0.3863424 0.32556717 0.298400089 0.382770102 0.323613998 0.339579653 -PA2831 0.776690586 0.559624218 0.738889761 0.468482098 0.534557309 0.569006698 0.289901419 0.3830656 0.296428521 0.488555425 0.365745017 -PA2832 0.564881683 0.370510607 0.593659111 0.354509621 0.391488751 0.475362529 0.399349012 0.497732034 0.506193755 0.385694422 0.426873658 -PA2833 0.14286493 0.262467125 0.150073596 0.262396778 0.25066398 0.337866068 0.409188578 0.533668546 0.546118579 0.317634985 0.545387773 -PA2834 0.1790628 0.354584235 0.199905126 0.255716695 0.185795264 0.316007955 0.210024338 0.288385294 0.194788437 0.327968052 0.240075544 -PA2835 0.150749248 0.166396084 0.060725272 0.125843166 0.168706673 0.258361492 0.215165754 0.20698648 0.19888428 0.158235433 0.289132399 -PA2836 0.302825791 0.264519276 0.31843982 0.301352807 0.246213268 0.298322947 0.27113335 0.312783144 0.086883476 0.222171309 0.220753663 -PA2837 0.359797955 0.309182959 0.178322118 0.288788015 0.270891338 0.317146648 0.2692351 0.346796434 0.207587988 0.203090439 0.232223794 -PA2838 0.247210545 0.295222558 0.190325378 0.460324958 0.356944091 0.304647261 0.317444963 0.329885265 0.316155491 0.239777205 0.375944074 -PA2839 0.129997339 0.197179925 0.182624265 0.239797962 0.218045866 0.121357403 0.12249137 0 0.160440721 0.104084916 0.143172435 -PA2840 0.715875986 0.730654833 0.44714174 0.209744057 0.16845254 0.187368196 0.176578037 0.190692994 0.245551264 0.13567832 0.253095726 -PA2841 0.258498785 0.312734319 0.368828075 0.649258318 0.625420297 0.331094084 0.360497784 0.379234184 0.278480174 0.345877116 0.307232645 -PA2842 0.367231127 0.209709454 0.401682376 0.342324788 0.281811356 0.563795469 0.630640224 0.609415748 0.63964115 0.518932133 0.517158523 -PA2843 0.809328467 0.736956405 0.605606479 0.216634056 0.264653253 0.273094183 0.293763654 0.221677622 0.298471642 0.359625071 0.223060631 -PA2844 0.189021946 0.175871688 0.191621048 0.171889203 0.21511002 0.173564954 0.278640237 0.16178813 0.174734627 0.280817003 0.138169459 -PA2845 0.090379959 0.126077843 0.027903498 0.1200895 0.118090771 0.087832798 0.167988113 0.264573814 0.110970602 0.183576209 0.19080744 -PA2846 0.112564542 0.139042365 0.152115446 0.257400644 0.236205329 0.194235054 0.22865561 0.144294505 0.180045819 0.244068869 0.143805648 -PA2847 0.104776245 0.091568041 0.037018743 0.11500257 0.143416715 0.119632702 0.152369578 0.159776022 0.11500257 0.133739018 0.096317571 -PA2848 0.281235378 0.322446023 0.200348783 0.135800988 0.120523353 0.290838414 0.287582759 0.154397125 0.227129468 0.358590954 0.231449827 -PA2849 0.500701381 0.264106009 0.483415215 0.749359309 0.805552638 0.312648742 0.27407419 0.387865115 0.169116124 0.259437461 0.264906045 -PA2850 0.489526548 0.346227123 0.400288443 0.237993399 0.274973542 0.178748118 0.229734585 0.180403524 0.193751216 0.167364006 0.167760128 -PA2851 0.918837212 0.870636537 0.835932713 0.524883654 0.576373963 0.529042866 0.728621678 0.490931737 0.69269183 0.532612428 0.642521375 -PA2852 0.306382117 0.165853735 0.395001 0.298058076 0.284449445 0.403261508 0.382656965 0.342500118 0.316810175 0.509598587 0.464463193 -PA2853 0.903757069 0.914983591 0.890799622 0.943787248 0.966022995 0.749100598 0.627083115 0.758864317 0.635754148 0.723528483 0.647007896 -PA2854 0.546942138 0.438822693 0.595312738 0.483623089 0.479898062 0.806566412 0.701758804 0.701435735 0.776291379 0.788446948 0.61367154 -PA2855 0.776731097 0.552413799 0.593926664 0.273493765 0.245160548 0.498284898 0.507127658 0.51628471 0.507874106 0.570250046 0.466574397 -PA2856 0.330113136 0.368748417 0.467376948 0.277652737 0.21453599 0.073002521 0.198061749 0.030516074 0.327691732 0.215464192 0.228191117 -PA2857 0.545390043 0.595243945 0.608615504 0.396937544 0.439943681 0.423968299 0.403876446 0.535635395 0.413722203 0.526696998 0.240738628 -PA2858 0.687564631 0.499690953 0.587217004 0.371350021 0.405790913 0.314638302 0.271511538 0.239982439 0.340151821 0.263321221 0.139783845 -PA2859 0.720809316 0.580646504 0.888609265 0.229659428 0.208941248 0.408200188 0.510421149 0.321967913 0.591518883 0.20055914 0.473869182 -PA2860 0.546341837 0.400183806 0.838595751 0.495776593 0.49762205 0.402329208 0.306713779 0.319505649 0.41423628 0.362267693 0.305149437 -PA2861 0.166809191 0.243913286 0.199156146 0.303355244 0.301082353 0.176992654 0.131660495 0.224092382 0.250148874 0.201370774 0.240531553 -PA2862 0.17914839 0.064543804 0.254088167 0.143544264 0.120876884 0.148488747 0.113486921 0.119893067 0.129962044 0.139563445 0.084096913 -PA2863 0.128032934 0.061419659 0.135918833 0.153264411 0.126303295 0.098085419 0.123283604 0.066877999 0.035693303 0.063141086 0.134595922 -PA2864 0.36018721 0.505515487 0.338890815 0.962741493 0.993820689 0.208531769 0.340819464 0.313063976 0.293151762 0.225061118 0.183727891 -PA2865 0.515297955 0.389500674 0.38562452 0.247231221 0.317280598 0.591836535 0.541178072 0.521105003 0.525270352 0.585534184 0.597905924 -PA2866 0.569022204 0.779427602 0.54896729 0.463581394 0.42268288 0.773171505 0.636759346 0.651627054 0.632749603 0.6285783 0.561607478 -PA2867 0.457555294 0.770309438 0.546993648 0.29389654 0.275886361 0.474947576 0.361418283 0.500845938 0.330735137 0.51989998 0.261303228 -PA2868 0.246326878 0.441354292 0.359703199 0.552684547 0.578779048 0.374459193 0.278638252 0.428664587 0.250343516 0.357523196 0.288755743 -PA2869 0.235400007 0.272042988 0.229083462 0.292383694 0.298381107 0.310143092 0.165835927 0.407076403 0.282421413 0.341861291 0.235949986 -PA2870 0.592582948 0.540587873 0.3819122 0.749123146 0.751241023 0.570809054 0.424153842 0.527313063 0.54521346 0.361925721 0.55840916 -PA2871 0.374556597 0.213368665 0.304040364 0.40118164 0.411557614 0.327858582 0.396403713 0.510858237 0.482862363 0.508757031 0.3170803 -PA2872 0.247669544 0.216251961 0.36108018 0.626985625 0.611384969 0.353073571 0.262768546 0.234185314 0.349156009 0.287670038 0.26607252 -PA2873 0.229595843 0.134976019 0.25582833 0.21276329 0.139452372 0.254256434 0.223582371 0.338697611 0.286842147 0.300886834 0.335829387 -PA2874 0.369644749 0.285661354 0.274599472 0.354957217 0.241602343 0.186125741 0.045395196 0.165256634 0.070604115 0.081583622 0.096642959 -PA2875 0.368874768 0.253277236 0.342958361 0.631129761 0.707606899 0.404674586 0.264332687 0.411935849 0.379701726 0.212301151 0.371451948 -PA2876 0.50104996 0.390085914 0.479119305 0.089731562 0.200760946 0.073898644 0.180375576 0.040153249 0.186465584 0.010384631 0.121654311 -PA2877 0.287180564 0.300188581 0.238707246 0.276580447 0.239326894 0.168458193 0.254177533 0.197855649 0.209914123 0.233578857 0.297134447 -PA2878 0.165597209 0.086994127 0.183558781 0.225662624 0.217779847 0.162075941 0.138837332 0.251380591 0.164973227 0.171481415 0.17394288 -PA2879 0.483081676 0.399685527 0.453852529 0.490252774 0.481579679 0.331521667 0.269276265 0.236365099 0.210665197 0.311432924 0.219464359 -PA2880 0.082426226 0.120978635 0.07274809 0.092969773 0.084926276 0.089396544 0.100389224 0.106010339 0.136200534 0.069227409 0.115358938 -PA2881 0.131709243 0.170348664 0.073428195 0.226629192 0.182199963 0.138808655 0.072137264 0.103571912 0.086734583 0.093414539 0.044718808 -PA2882 0.137846647 0.087945148 0.09636502 0.167987793 0.175368881 0.223951466 0.160968082 0.228149366 0.181302853 0.209311797 0.228362598 -PA2883 0.097007807 0.26122449 0.295966518 0.681546791 0.68798609 0.870190249 0.757255129 0.922480786 0.776862863 0.845216669 0.762020198 -PA2884 0.307919994 0.414530671 0.331545248 0.481535809 0.47373241 0.373162547 0.284290127 0.414843508 0.34459939 0.246680658 0.206767381 -PA2885 0.335234624 0.403592393 0.603227834 0.952696291 0.92557415 0.26579041 0.262748673 0.302179132 0.360094451 0.351326612 0.332552001 -PA2886 0.19960124 0.144938242 0.200903204 0.637991969 0.672391285 0.087690636 0.015103534 0.14484837 0.067984258 0.084452092 0.211663457 -PA2887 0.151450272 0.177662514 0.229178288 0.514172006 0.497329076 0.192447135 0.09607723 0.151245427 0.079627679 0.089583 0.08251679 -PA2888 0.157102184 0.15221388 0.22812637 0.477171235 0.487036168 0.085284427 0.090993762 0.112895996 0.089123361 0.089266259 0.14093299 -PA2889 0.162649496 0.12648111 0.276482935 0.562193511 0.589748773 0.07448766 0.107212191 0.110017063 0.083608336 0.123807946 0.077940168 -PA2890 0.179813985 0.156679833 0.196134953 0.557171417 0.517689157 0.144423507 0.106807359 0.130539137 0.08848345 0.089041095 0.151418624 -PA2891 0.151938776 0.140772269 0.169302673 0.373108317 0.31016113 0.100262089 0.16229634 0.143966696 0.108065365 0.126333391 0.080956229 -PA2892 0.174728609 0.142075 0.272210677 0.365181962 0.432924843 0.079529082 0.040251628 0.11228132 0.044632862 0.085003285 0.050082488 -PA2893 0.148748041 0.044637533 0.184749171 0.329236179 0.293804295 0.237811257 0.231291513 0.384148527 0.274295315 0.201172263 0.310887465 -PA2894 0.516119951 0.474209242 0.514845532 0.508554328 0.580299997 0.347938882 0.362120465 0.530678486 0.45024169 0.405134832 0.467242427 -PA2895 0.276278533 0.401068423 0.210155356 0.285078936 0.30606876 0.258570736 0.152067475 0.343073564 0.260146051 0.306185103 0.170941806 -PA2896 0.322169983 0.323870185 0.286165822 0.406486657 0.387145863 0.286225005 0.236072797 0.331386128 0.20699588 0.258587235 0.241845092 -PA2897 0.401153298 0.504882012 0.44236813 0.770469825 0.740112639 0.566161495 0.470532239 0.596067322 0.42093139 0.539109904 0.516358899 -PA2898 0.138885096 0.179248115 0.167225267 0.219925279 0.185256452 0.176307766 0.172233826 0.189121225 0.170919632 0.127324075 0.205042201 -PA2899 0.497487185 0.269536441 0.606248754 0.597105015 0.572108055 0.272023014 0.391710608 0.212967752 0.380719519 0.216478995 0.362471105 -PA2900 0.628379249 0.394994902 0.900793078 0.859888507 0.912711344 0.497182012 0.538025377 0.412787333 0.665110652 0.533745926 0.617301871 -PA2901 0.718684147 0.600739423 0.686487972 0.640724652 0.629491977 0.310283953 0.495140089 0.164893324 0.336802703 0.297439087 0.440061961 -PA2902 0.677431184 0.403275173 0.455052075 0.513334413 0.453593278 0.33837729 0.563055357 0.339095273 0.518955667 0.414439124 0.584848468 -PA2903 0.721047181 0.421997046 0.108564557 0.225460274 0.222561774 0.363483276 0.378005932 0.371240137 0.454522387 0.540271575 0.538865821 -PA2904 0.886661856 0.655980882 0.174885004 0.299039621 0.419286246 0.435744006 0.399320835 0.317666899 0.491105555 0.409729189 0.460922255 -PA2905 0.763948297 0.697585251 0.170703003 0.210451753 0.233678878 0.390319363 0.41386325 0.445297647 0.385794374 0.430079797 0.34627138 -PA2906 0.919282956 0.721006958 0.246516083 0.211754821 0.277784294 0.265204989 0.232780307 0.043674014 0.236439913 0.16524477 0.267410435 -PA2907 0.871263993 0.762585091 0.768125237 0.535390664 0.550110337 0.224931553 0.249149584 0.245314923 0.318336686 0.053606715 0.354793202 -PA2908 0.673462995 0.491946234 0.675363382 0.367305389 0.349433498 0.383251612 0.267019961 0.298252756 0.252237044 0.337945885 0.233260652 -PA2909 0.562117556 0.32383664 0.48293734 0.364749638 0.35147991 0.45111264 0.459016152 0.314029562 0.461338516 0.461505719 0.408118721 -PA2910 0.173030257 0.100055809 0.199849973 0.243235396 0.2321016 0.316243407 0.324078178 0.300021751 0.269778158 0.224973703 0.268745577 -PA2911 0.675293573 0.386085011 0.815098433 0.243534525 0.189888121 0.154273915 0.33661161 0.242494025 0.355613499 0.14605975 0.351751648 -PA2912 0.461946294 0.384755978 0.516627452 0.199268456 0.123951989 0.190276483 0.238973322 0.305614272 0.254061687 0.256752996 0.256131457 -PA2913 0.661246927 0.415228159 0.71598217 0.222690391 0.217672061 0.299867906 0.338860913 0.251536512 0.387416364 0.30836477 0.269559399 -PA2914 0.205111353 0.205716335 0.190220481 0.196106528 0.143094391 0.243038327 0.31126558 0.350746124 0.31934963 0.264702229 0.310726352 -PA2915 0.265742902 0.399445227 0.479611019 0.896914421 0.908436592 0.213415153 0.214314198 0.249620417 0.189695652 0.219614463 0.267458458 -PA2916 0.123333211 0.10751046 0.157469639 0.270174931 0.355781094 0.33037667 0.326563076 0.288678347 0.307961826 0.308632037 0.326823283 -PA2917 0.16000574 0.208867941 0.177866 0.547191575 0.599856268 0.314811554 0.242954573 0.310600669 0.100171351 0.363942371 0.251134152 -PA2918 0.245516642 0.368302974 0.224948575 0.228401461 0.281917733 0.308940116 0.123435085 0.295696942 0.229834654 0.189593122 0.119729739 -PA2919 0.1099073 0.110663063 0.08522999 0.451595901 0.459838214 0.367662738 0.376279864 0.601022531 0.261823803 0.46573324 0.327015841 -PA2920 0.105340044 0.09445932 0.095609923 0.587619669 0.536590929 0.257937467 0.200709981 0.358915029 0.09077454 0.285844563 0.206031779 -PA2921 0.573068461 0.430329697 0.57777192 0.402685372 0.460008011 0.234270327 0.242539875 0.291349947 0.283532117 0.306296906 0.284884192 -PA2922 0.211215372 0.212135302 0.184068724 0.211570465 0.200629701 0.16214806 0.207089222 0.28461977 0.089379697 0.184191603 0.186047286 -PA2923 0.424001315 0.326281274 0.247877015 0.477376481 0.477312061 0.324104479 0.163216189 0.332267442 0.239672315 0.297936404 0.273140212 -PA2924 0.188635203 0.145898907 0.180593122 0.23846435 0.194292375 0.244777216 0.183956366 0.360919307 0.159678033 0.171557582 0.235671131 -PA2925 0.218706003 0.17947274 0.174744491 0.321297624 0.245830615 0.336214406 0.355392234 0.408536597 0.297126862 0.302988508 0.333166937 -PA2926 0.163296376 0.155575694 0.265485859 0.211926201 0.11697499 0.106965757 0.173187858 0.265514942 0.244820548 0.176054359 0.243058367 -PA2927 0.173188329 0.165661535 0.386578222 0.917056727 0.807361462 0.250599493 0.057198404 0.243381769 0.044948805 0.191103858 0.103041454 -PA2928 0.344752231 0.310197069 0.255612369 0.328693095 0.253348445 0.338832102 0.267992397 0.157685839 0.257445834 0.223183979 0.185762564 -PA2929 0.096611905 0.190125829 0.185142579 0.107285028 0.11065702 0.105522336 0.005545365 0.213531739 0.078480294 0.159503574 0.178736859 -PA2930 0.122971128 0.184323007 0.145195089 0.092131416 0.129002996 0.157694193 0.063523974 0.107544782 0.242453643 0.128108309 0.000912899 -PA2931 0.153087822 0.199770405 0.128201576 0.354799504 0.257340447 0.342045158 0.19973637 0.414645985 0.251321438 0.436413468 0.243135042 -PA2932 0.13881515 0.113218639 0.110002083 0.133798977 0.14789767 0.0443638 0.11058146 0.07236754 0.113130501 0.095652207 0.101474003 -PA2933 0.115199305 0.11823003 0.090079843 0.164075114 0.111873464 0.186455424 0.131717721 0.10265743 0.20580371 0.203877303 0.117657917 -PA2934 0.12680797 0.080510582 0.134515167 0.028033649 0.07490288 0.048982054 0.081837863 0.100397417 0.058856111 0.038086319 0.08877224 -PA2935 0.040441349 0.046374561 0.064586878 0.065461572 0.077806769 0.181195642 0.200200228 0.167108184 0.081106875 0.17040188 0.136659589 -PA2936 0.138747026 0.109044404 0.137586902 0.242612515 0.216118297 0.20037271 0.258961449 0.149486592 0.172734619 0.124482321 0.312370799 -PA2937 0.178584817 0.185215431 0.14655376 0.953519681 0.956288991 0.488299817 0.279452025 0.642602635 0.313631906 0.543364968 0.317668867 -PA2938 0.198762409 0.087714452 0.289158742 0.688619953 0.778089095 0.224124705 0.336737203 0.280080629 0.275139521 0.269418139 0.244998175 -PA2939 0.13335918 0.111317435 0.175149022 0.914494446 0.925763113 0.434362048 0.154059851 0.457345369 0.162481178 0.456555486 0.237891002 -PA2940 0.17388616 0.156034855 0.178005221 0.371259308 0.283046963 0.37298709 0.229045021 0.365168762 0.271976638 0.264298825 0.357058251 -PA2941 0.278926523 0.176418309 0.110851681 0.172846305 0.26654964 0.459172301 0.411569941 0.322114508 0.491232457 0.368128022 0.457003833 -PA2942 0.725823238 0.620353777 0.710331734 0.548616795 0.570198227 0.401362963 0.384184194 0.32641935 0.399586453 0.427522094 0.373425233 -PA2943 0.395686556 0.228679054 0.55174285 0.352276631 0.39725357 0.39366765 0.550721405 0.334437131 0.642370619 0.514963751 0.558757671 -PA2944 0.760860075 0.494683576 0.239190891 0.320489087 0.234697712 0.338183419 0.434670404 0.053315663 0.468066149 0.179915195 0.538844275 -PA2945 0.797301281 0.671154592 0.449969999 0.59385895 0.582072173 0.551581065 0.659361965 0.418075034 0.721552604 0.49370304 0.626084987 -PA2946 0.882897711 0.81782499 0.395750029 0.575062526 0.621811598 0.57673652 0.671618697 0.559581929 0.688785238 0.580532048 0.716641376 -PA2947 0.748194067 0.612963597 0.285049117 0.182270884 0.045036815 0.645912028 0.658064217 0.493514566 0.658844436 0.507815627 0.803784199 -PA2948 0.813947069 0.680884987 0.316920836 0.358872497 0.259095516 0.736044947 0.817165434 0.574937558 0.891609478 0.688956588 0.777685515 -PA2949 0.492160844 0.279880313 0.418477968 0.459492245 0.366919451 0.262989395 0.317330198 0.262102249 0.300912174 0.236726417 0.331775102 -PA2950 0.813589549 0.580593089 0.649279198 0.238874143 0.196921982 0.465980149 0.503161701 0.409727689 0.510887013 0.503314624 0.504463301 -PA2951 0.741732235 0.657115475 0.807425547 0.545572977 0.54476524 0.374290109 0.416445862 0.306869026 0.397936749 0.400175828 0.478269211 -PA2952 0.827310288 0.814169937 0.786256142 0.538614715 0.575065616 0.549502745 0.559871339 0.442642905 0.57346676 0.567596473 0.576354625 -PA2953 0.510283087 0.5178999 0.598837133 0.185034907 0.245038646 0.428813192 0.45375714 0.394333237 0.392883635 0.38391083 0.445278228 -PA2954 0.464847968 0.30439224 0.566655345 0.422409646 0.392044852 0.188445911 0.126283042 0.096936659 0.316379607 0.177658821 0.245794569 -PA2955 0.368920788 0.240877847 0.541055857 0.39153612 0.392486121 0.212784855 0.399394806 0.066203951 0.341612049 0.195320747 0.182105482 -PA2956 0.588130812 0.258492589 0.513214572 0.350715026 0.364135464 0.336741672 0.256491688 0.330905977 0.207351372 0.281353419 0.313640304 -PA2957 0.608308592 0.481234625 0.565381051 0.429738427 0.408136772 0.350106962 0.490323546 0.383369511 0.408604172 0.36147783 0.4268442 -PA2958 0.330719191 0.438203995 0.418053455 0.642601751 0.787462557 0.512601574 0.351348443 0.49900465 0.476461474 0.366159052 0.250103242 -PA2959 0.610792671 0.324481425 0.576665656 0.260506958 0.279016785 0.238496362 0.345657054 0.252094662 0.353799939 0.278679315 0.362469606 -PA2960 0.572914502 0.566872288 0.546288381 0.536659782 0.556631103 0.78464133 0.773975547 0.866193565 0.680054723 0.803328943 0.6934937 -PA2961 0.814891733 0.586325178 0.487143077 0.077091023 0.167812458 0.445043914 0.484512401 0.295847843 0.475972729 0.597005466 0.386992113 -PA2962 0.779935612 0.616069931 0.486572299 0.339825549 0.357632905 0.341891266 0.310838249 0.156338888 0.242683139 0.377436818 0.290156024 -PA2963 0.937682396 0.648973399 0.632918388 0.344483088 0.353324401 0.618799173 0.656404337 0.511453817 0.703222198 0.679065148 0.747824456 -PA2964 0.859967175 0.523533362 0.671500855 0.09615577 0.190429923 0.354124065 0.367234577 0.210384158 0.407023573 0.299573804 0.360751761 -PA2965 0.939449899 0.758113296 0.847180981 0.335350523 0.347966748 0.368838284 0.424602937 0.302804803 0.507753147 0.357328252 0.315048754 -PA2966 0.934267069 0.852699723 0.846795576 0.676453703 0.710933516 0.806099935 0.862134369 0.752975328 0.895187777 0.797599749 0.861600359 -PA2967 0.815543328 0.776820191 0.616233695 0.393674124 0.362081346 0.636318118 0.685666674 0.621028485 0.654425774 0.677677676 0.644640443 -PA2968 0.868567135 0.590775333 0.552134897 0.295135747 0.304412096 0.30527817 0.484453463 0.183125969 0.41432319 0.367999887 0.440094446 -PA2969 0.772638896 0.411668951 0.573369005 0.110518003 0.06245596 0.416591889 0.795248901 0.319686941 0.767999177 0.471513167 0.769606377 -PA2970 0.703195555 0.641031055 0.656155282 0.343726568 0.367174523 0.484277455 0.66983838 0.357587372 0.63398744 0.464045584 0.649764597 -PA2971 0.899531681 0.695082422 0.731403064 0.410271003 0.47209219 0.774691574 0.897536715 0.688098633 0.833008142 0.795866885 0.848495175 -PA2972 0.578965664 0.378788941 0.427481808 0.360824246 0.354715574 0.302607833 0.426079504 0.252552616 0.414981662 0.367970647 0.39221304 -PA2973 0.768402623 0.69810613 0.744759553 0.418566682 0.496764098 0.666584607 0.644539644 0.703916635 0.653066645 0.679040122 0.714384778 -PA2974 0.557241877 0.448137748 0.45525964 0.435287191 0.522923307 0.423371626 0.40734572 0.377117465 0.458532118 0.429459694 0.423488711 -PA2975 0.534213152 0.557319572 0.532746149 0.351909354 0.447715691 0.494950941 0.512975522 0.46066579 0.408855339 0.614190397 0.61995735 -PA2976 0.910340815 0.759996748 0.889731571 0.630568151 0.603591154 0.550181636 0.541397955 0.457179585 0.540290182 0.555329204 0.555409689 -PA2977 0.734928473 0.393882068 0.934722794 0.264391594 0.337152937 0.474383129 0.5014291 0.431832855 0.542243395 0.495744891 0.508844856 -PA2978 0.649904226 0.595098326 0.666545141 0.367210066 0.411617341 0.393133051 0.4138521 0.307252722 0.602256578 0.367316531 0.422108253 -PA2979 0.907335723 0.730012951 0.882394237 0.650742306 0.680854819 0.310137725 0.391495813 0.241178465 0.450805101 0.214172749 0.436689626 -PA2980 0.790159782 0.783317744 0.914048928 0.816596969 0.816142038 0.2210782 0.13586081 0.298588505 0.266623646 0.269704943 0.192272482 -PA2981 0.383767418 0.199660816 0.237978152 0.175546988 0.144587017 0.288776184 0.409244627 0.265739806 0.318358082 0.305934529 0.325640381 -PA2982 0.554761882 0.405167833 0.556100159 0.203903032 0.156364373 0.239151289 0.477554425 0.349845394 0.632293473 0.298810369 0.380210562 -PA2983 0.782627354 0.419025553 0.694127934 0.172861329 0.270971584 0.169797211 0.435649614 0.232530263 0.361948199 0.337994228 0.402973076 -PA2984 0.265913449 0.10164394 0.292672117 0.403044454 0.379554088 0.254498199 0.360320352 0.271981078 0.342431464 0.262359696 0.332853066 -PA2985 0.301783914 0.412138697 0.21900795 0.276258442 0.346317693 0.265690291 0.260925334 0.386786747 0.293322607 0.259916587 0.376889409 -PA2986 0.711348864 0.428898171 0.760907286 0.023431909 0.089036771 0.557086041 0.602933327 0.383002317 0.579117883 0.701869552 0.579884295 -PA2987 0.632582111 0.500112331 0.611985479 0.166356757 0.153323798 0.53591468 0.604368046 0.412397857 0.676111882 0.535923988 0.640859438 -PA2988 0.536598489 0.377800439 0.469941985 0.272021976 0.174230275 0.345597467 0.386392976 0.217347884 0.473633202 0.493701683 0.63900347 -PA2989 0.261866133 0.170979232 0.336341637 0.606011948 0.586283549 0.295234493 0.273829206 0.364310502 0.436349335 0.342951179 0.353730419 -PA2990 0.544785492 0.599398729 0.679522565 0.745006475 0.714317633 0.475289704 0.432510891 0.4119816 0.313138395 0.497160316 0.427550582 -PA2991 0.740723632 0.545802893 0.733717843 0.244766571 0.339090235 0.536593198 0.59996892 0.425195957 0.545015194 0.548961059 0.584489971 -PA2992 0.63536403 0.621528261 0.759680239 0.512882484 0.514670282 0.926764519 0.901081497 0.88502016 0.845050711 0.925916568 0.889285104 -PA2993 0.744830908 0.590310851 0.756707067 0.328158764 0.359269779 0.562421906 0.60727078 0.53823954 0.655842846 0.667756629 0.589366907 -PA2994 0.695541009 0.636843922 0.782682812 0.417679655 0.404803937 0.496035423 0.451301258 0.240210602 0.526223685 0.573376139 0.407917621 -PA2995 0.813958252 0.550374531 0.821102889 0.513875593 0.514259153 0.608100738 0.611147011 0.462412244 0.748610299 0.655533339 0.626094818 -PA2996 0.935890539 0.640133639 0.850930474 0.566312785 0.547528707 0.413333482 0.421280836 0.359946635 0.517636156 0.460324519 0.479288462 -PA2997 0.867287114 0.516272221 0.846264212 0.461717629 0.34991481 0.42307163 0.487030968 0.532289838 0.554910948 0.554024226 0.573084109 -PA2998 0.924006059 0.551439646 0.70513292 0.377899661 0.357923026 0.367247758 0.488882971 0.36239963 0.393036991 0.462605322 0.621535709 -PA2999 0.907362323 0.640727848 0.786071613 0.429350727 0.492127993 0.361652697 0.51716127 0.354345855 0.495978738 0.333257221 0.540754365 -PA3000 0.974694323 0.351922822 0.727390289 0.07783417 0.188728136 0.397870564 0.572990867 0.364859832 0.582599286 0.485321805 0.423155148 -PA3001 0.878619323 0.79313648 0.852640715 0.642150181 0.646110817 0.754139306 0.767797214 0.625536263 0.81334451 0.750005832 0.773505147 -PA3002 0.875791445 0.741394049 0.880773593 0.611352893 0.631401481 0.671076322 0.571366772 0.563906236 0.656528379 0.680602055 0.497692069 -PA3003 0.594279353 0.478835109 0.668179872 0.478502297 0.522677301 0.611501056 0.624056293 0.428072153 0.56056396 0.542848153 0.598684244 -PA3004 0.808024345 0.547995796 0.886417501 0.708652567 0.711646278 0.728545115 0.749702624 0.734961479 0.815770877 0.727856783 0.736446158 -PA3005 0.764222342 0.459173538 0.70829163 0.531964321 0.503284172 0.065124752 0.119542203 0.130024346 0.086380823 0.174566234 0.202615069 -PA3006 0.392256 0.542432689 0.384289118 0.214487664 0.229641829 0.506759493 0.622111645 0.39498711 0.586074687 0.49933515 0.548910232 -PA3007 0.550581737 0.526971942 0.43629991 0.442444282 0.496891406 0.288576819 0.438329096 0.270438628 0.409817957 0.301931441 0.387525967 -PA3008 0.350297954 0.27390106 0.29485031 0.4235197 0.438513858 0.308271756 0.40836807 0.213331072 0.40031982 0.30347425 0.428211618 -PA3009 0.483864897 0.536247506 0.49824284 0.395560844 0.446256832 0.985084375 0.873317127 0.959794421 0.884253817 0.970225387 0.865726186 -PA3010 0.456973798 0.255616123 0.638871244 0.537704655 0.500321861 0.353727568 0.423854442 0.332521595 0.421159088 0.347085254 0.408468202 -PA3011 0.879826417 0.707461239 0.782524714 0.41741685 0.403739119 0.529434707 0.449743539 0.567848166 0.447846744 0.564063234 0.466311759 -PA3012 0.500798335 0.339541022 0.463346102 0.644981343 0.623189383 0.535753397 0.43773277 0.424783681 0.563416227 0.507267494 0.42535132 -PA3013 0.443129903 0.413039574 0.449954762 0.328033995 0.335818259 0.140883721 0.19670361 0.187051708 0.202925341 0.204867785 0.168201067 -PA3014 0.479774351 0.513651238 0.488570126 0.403766878 0.404586358 0.291958021 0.332763403 0.251713031 0.315402565 0.310361047 0.30012201 -PA3015 0.461033915 0.410203583 0.545675691 0.45322962 0.535051629 0.258315552 0.485285816 0.279140685 0.383329038 0.42216832 0.246907775 -PA3016 0.403402129 0.294692226 0.342865785 0.330034674 0.287010793 0.42655494 0.158618075 0.318197648 0.305630558 0.291570682 0.269717598 -PA3017 0.173628232 0.224958845 0.26584949 0.678074482 0.681705101 0.366260026 0.233262726 0.385211832 0.134929564 0.305868685 0.135549625 -PA3018 0.347018392 0.67261841 0.354614462 0.255139868 0.21498053 0.509684603 0.565842769 0.505443131 0.409948759 0.422660353 0.502735871 -PA3019 0.859820669 0.422422027 0.70341488 0.289818986 0.310355856 0.371459216 0.493252101 0.270928753 0.425015548 0.441512303 0.504130373 -PA3020 0.616210338 0.626411208 0.654912176 0.787778858 0.762274821 0.654263085 0.552901493 0.857580049 0.453768464 0.573337697 0.52811933 -PA3021 0.568178204 0.623199968 0.542925874 0.581983598 0.588480622 0.497252071 0.496115583 0.595010704 0.465894943 0.583156539 0.496145285 -PA3022 0.381620315 0.248725807 0.388370827 0.501727144 0.481646664 0.256728427 0.230737821 0.310726034 0.273825845 0.25478273 0.179662546 -PA3023 0.058709375 0.1364172 0.154735678 0.402633987 0.45260205 0.1839438 0.146518679 0.163599989 0.269318378 0.184545019 0.118073701 -PA3024 0.13921679 0.082528112 0.106283524 0.172033533 0.142551378 0.118281713 0.139755488 0.190056252 0.150567675 0.10232979 0.163312163 -PA3025 0.132797098 0.046673978 0.172026145 0.132733244 0.122456252 0.105464826 0.096319528 0.086340349 0.085916252 0.094656585 0.099744047 -PA3026 0.277341259 0.205061983 0.248278567 0.295361452 0.295718563 0.233600017 0.218116274 0.200465901 0.166662943 0.178988348 0.200394472 -PA3027 0.653290488 0.488411983 0.828647674 0.48155947 0.365109457 0.399012859 0.311351942 0.245619618 0.545094271 0.425793752 0.452823001 -PA3028 0.630755171 0.489811226 0.57403214 0.330696525 0.367410467 0.286878312 0.312006886 0.154351416 0.351168201 0.242975648 0.341501023 -PA3029 0.759908344 0.75769797 0.69902732 0.622147535 0.624954757 0.45718606 0.358706972 0.209643889 0.463661626 0.300408356 0.205139503 -PA3030 0.564612439 0.656204193 0.727643005 0.467701844 0.567870227 0.195363142 0.370331733 0.069614453 0.500587736 0.166750759 0.525381983 -PA3031 0.645649793 0.749130279 0.78229944 0.776824916 0.802023459 0.94986861 0.892586792 0.919936573 0.891121984 0.961814083 0.863537351 -PA3032 0.104571824 0.099533745 0.048842398 0.761712212 0.694811715 0.225655021 0.146290586 0.320078948 0.190632382 0.246974334 0.160628873 -PA3033 0.539466873 0.359448595 0.42049563 0.409343337 0.459441963 0.851022155 0.764679911 0.84948236 0.747429177 0.793647548 0.648253382 -PA3034 0.408031966 0.437162851 0.531879281 0.40693703 0.516756159 0.432174115 0.391791772 0.515914487 0.46823885 0.514794193 0.435576908 -PA3035 0.310758373 0.24464028 0.163346253 0.206788518 0.225006095 0.104106296 0.170473856 0.11334038 0.119017913 0.08508796 0.167733427 -PA3036 0.271683331 0.155128915 0.159749447 0.169340925 0.133855074 0.248063367 0.161006198 0.238311334 0.233872375 0.303397283 0.202305214 -PA3037 0.271752744 0.156018608 0.132618195 0.27996748 0.203763664 0.194852124 0.127326161 0.1725579 0.237495182 0.114810956 0.199980668 -PA3038 0.477335088 0.284151127 0.654866102 0.291427101 0.28597426 0.363036434 0.400084244 0.32479787 0.40792142 0.336954436 0.42989716 -PA3039 0.238989263 0.33113834 0.287719396 0.286139385 0.34992203 0.198913603 0.168888497 0.302979602 0.16287998 0.150580081 0.26787338 -PA3040 0.413567117 0.64492207 0.513419952 0.985164308 1 0.522086183 0.290754994 0.551892909 0.278202032 0.507001623 0.236525446 -PA3041 0.264466004 0.494539697 0.537469929 0.989150797 1 0.417648691 0.334127899 0.449176542 0.345423799 0.458254669 0.283856909 -PA3042 0.225356235 0.512970744 0.314357325 0.894630658 0.888212773 0.16449283 0.233258055 0.22605916 0.152462019 0.279541147 0.254937453 -PA3043 0.507163464 0.554987491 0.720500938 0.668155485 0.702961776 0.35419517 0.290901374 0.417718323 0.198381773 0.312395869 0.173440064 -PA3044 0.377206533 0.329424704 0.177993806 0.391901876 0.333182669 0.396620959 0.438166957 0.550831607 0.387819871 0.395922139 0.353894844 -PA3045 0.103876145 0.068597532 0.042950194 0.094991089 0.093077977 0.195070823 0.201152857 0.279225105 0.162540499 0.228697189 0.146878524 -PA3046 0.649937521 0.756573809 0.612064789 0.532936509 0.542154929 0.603012028 0.760984635 0.598174189 0.698756455 0.645110204 0.686570809 -PA3047 0.68611956 0.598796708 0.570737785 0.191105399 0.07416434 0.967762086 0.722004396 0.857842464 0.766462759 0.918786831 0.800268082 -PA3048 0.600131792 0.39952889 0.343993499 0.228792799 0.214008165 0.278964749 0.438735708 0.281566703 0.320310177 0.339740138 0.284279785 -PA3049 0.041083625 0.057318509 0.510278785 0.842020308 0.841376187 0.799287401 0.750516678 0.828906245 0.811196297 0.844939554 0.790839319 -PA3050 0.743301743 0.52067229 0.791849021 0.364020063 0.340617742 0.615981997 0.67848317 0.571399714 0.729798766 0.583795706 0.768146975 -PA3051 0.366547895 0.295204258 0.569898964 0.691623143 0.74694138 0.854883558 0.615661678 0.828632551 0.607340432 0.995727235 0.677326294 -PA3052 0.579333016 0.621652751 0.629151873 0.586169104 0.503648473 0.22346699 0.382499768 0.060843284 0.271472634 0.145453193 0.24075262 -PA3053 0.591743378 0.513275102 0.805736973 0.496827085 0.58423892 0.31632539 0.543247091 0.332718236 0.402965673 0.383752188 0.501738349 -PA3054 0.47270573 0.663525628 0.486837007 0.362880117 0.377607642 0.419131042 0.305061661 0.463928076 0.39742769 0.509642192 0.425817466 -PA3055 0.582774074 0.688605063 0.651607994 0.432591852 0.462223881 0.374141566 0.31887011 0.500215657 0.263885771 0.546648335 0.42550449 -PA3056 0.356229261 0.323888451 0.390801599 0.464648007 0.461061705 0.623294397 0.491200142 0.605915395 0.703674935 0.563098657 0.595101802 -PA3057 0.052899722 0.082203668 0.193071049 0.103847033 0.120174307 0.01237508 0.027555079 0.024583412 0.042230713 0 0.092351247 -PA3058 0.42993424 0.326026198 0.327843002 0.358353537 0.234929902 0.444636089 0.349960039 0.391806179 0.412909481 0.445690234 0.509901778 -PA3059 0.407167306 0.295493397 0.128067222 0.276734194 0.243808596 0.473829226 0.391378467 0.32163151 0.298567812 0.272343759 0.256396418 -PA3060 0.392861317 0.320174317 0.179525011 0.387115089 0.317745199 0.41312634 0.270766441 0.496599223 0.428958185 0.439007661 0.369371195 -PA3061 0.376088859 0.179655752 0.132305009 0.18653891 0.217095679 0.306174215 0.152842287 0.234920381 0.109086811 0.081712486 0.226673707 -PA3062 0.331650844 0.237671875 0.173743121 0.221259164 0.232758133 0.23858124 0.237745063 0.27042215 0.357164526 0.193129977 0.207863778 -PA3063 0.318980909 0.287313732 0 0.206920511 0.191528158 0.143341663 0.184790916 0.328688169 0.20003536 0.106682397 0.238021934 -PA3064 0.353347109 0.207160023 0.167892795 0.250009555 0.241032205 0.346311992 0.318471842 0.527150104 0.282544019 0.322071629 0.400904153 -PA3065 0.184396131 0.228094903 0.177105974 0.203265469 0.181056274 0.453871199 0.268302773 0.396310796 0.400927243 0.355828714 0.388065966 -PA3066 0.384223918 0.457346758 0.384919013 0.337185361 0.292572216 0.54801579 0.453521073 0.460375704 0.538260108 0.390123164 0.511143675 -PA3067 0.237892147 0.452520394 0.209632299 0.291950104 0.26017953 0.293489815 0.304752274 0.390956767 0.31887709 0.304381553 0.353306494 -PA3068 0.733454645 0.643278556 0.5012046 0.600304646 0.589843385 0.419292307 0.264280374 0.417182389 0.352480193 0.434217566 0.325933643 -PA3069 0.446331059 0.733361053 0.40983929 0.529050296 0.601397019 0.701821266 0.738894611 0.711579587 0.70734603 0.602006241 0.735624919 -PA3070 0.798969065 0.78528189 0.850783301 0.752038955 0.813035213 0.634761847 0.622809949 0.721956977 0.699337809 0.660984941 0.652640531 -PA3071 0.731956366 0.706929623 0.793492587 0.504898285 0.651511 0.405303355 0.463208409 0.533773713 0.62164091 0.449551707 0.564415845 -PA3072 0.793747861 0.652717045 0.622990876 0.53560058 0.59091606 0.379748925 0.436683726 0.497267153 0.322913701 0.38949435 0.474005369 -PA3073 0.557488987 0.436477146 0.510942001 0.372507423 0.380041099 0.535144279 0.61142202 0.558230963 0.531675367 0.503501687 0.528810194 -PA3074 0.466050929 0.402312575 0.474921698 0.185855184 0.200653431 0.488542442 0.363973325 0.368165252 0.370809364 0.341762475 0.243493659 -PA3075 0.544894456 0.568283386 0.543524138 0.270070582 0.235369219 0.544830584 0.247143676 0.414657681 0.441502325 0.582647181 0.381867327 -PA3076 0.205724196 0.294785318 0.16949712 0.285789478 0.261650689 0.366692847 0.158435564 0.268169882 0.214908911 0.373163632 0.233279536 -PA3077 0.557227242 0.447619343 0.661869941 0.25122095 0.288692363 0.513970068 0.229312882 0.405039121 0.515720725 0.4932408 0.354178303 -PA3078 0.460870995 0.491828697 0.609117337 0.166116764 0.17726023 0.375322298 0.271516504 0.319969377 0.474139091 0.512693987 0.397361788 -PA3079 0.238655322 0.230450649 0.258690883 0.099155534 0.104121966 0.139644375 0.091881862 0.076685186 0.10895546 0.0701998 0.07846704 -PA3080 0.330730615 0.259016138 0.16386191 0.168890866 0.163849938 0.274614995 0.231522419 0.282003619 0.33214609 0.340011935 0.348963167 -PA3081 0.533602822 0.458933535 0.404225542 0.11689825 0.139696718 0.189832844 0.215172273 0.172458557 0.141192555 0.145496346 0.189958063 -PA3082 0.554904614 0.493930549 0.484921927 0.134173058 0.049086232 0.18386442 0.177845014 0.233314304 0.189170822 0.14674666 0.329467302 -PA3083 0.702847193 0.638768574 0.760659251 0.696748458 0.801925634 0.579737429 0.493009041 0.406530541 0.420369089 0.473709753 0.485611521 -PA3084 0.764121135 0.672084557 0.715212282 0.656455705 0.730957989 0.845376068 0.74702149 0.685146957 0.696454607 0.78601012 0.685947289 -PA3085 0.667805681 0.632294794 0.717545539 0.594165388 0.627100875 0.936279375 0.782155511 1 0.7019584 0.966466826 0.833088221 -PA3086 0.398722396 0.296661691 0.295300975 0.402727873 0.289611018 0.445827882 0.349776361 0.33908334 0.391267915 0.511431546 0.535133667 -PA3087 0.752998866 0.371211336 0.730865964 0.413453612 0.481492942 0.30014415 0.33749977 0.532380914 0.292765381 0.558727715 0.443811998 -PA3088 0.746034289 0.772461386 0.764503858 0.610547533 0.628508209 0.613628124 0.679767816 0.653746951 0.642362764 0.670519335 0.604171145 -PA3089 0.198053129 0.195023108 0.27828319 0.698764982 0.774366453 0.340226066 0.199828269 0.349671825 0.230810813 0.296169338 0.244222727 -PA3090 0.189421019 0.220873153 0.285799924 0.266265826 0.299009133 0.488746248 0.442536418 0.434268872 0.541997158 0.437899517 0.375395571 -PA3091 0.157645315 0.110037732 0.455529355 0.73220446 0.813911782 0.185783355 0.060151832 0.233197415 0.106445686 0.236980758 0.180943983 -PA3092 0.268630868 0.20921073 0.34679009 0.384773553 0.279647888 0.262934831 0.260976341 0.206926653 0.263209383 0.074222848 0.142864911 -PA3093 0.45180231 0.554810608 0.536022102 0.286436826 0.301379378 0.368109036 0.442625506 0.22858811 0.379100158 0.258206148 0.328857562 -PA3094 0.488654556 0.402845837 0.554335513 0.234115105 0.158016448 0.309334268 0.322904254 0.327057602 0.275594963 0.364816734 0.291682045 -PA3095 0.559799813 0.261235736 0.567141322 0.462024639 0.570850176 0.389373655 0.494483371 0.444334886 0.528361789 0.550861281 0.358117132 -PA3096 0.489015207 0.255073147 0.544099814 0.450005801 0.428691301 0.582654796 0.490637583 0.234661537 0.468263143 0.599766468 0.551233535 -PA3097 0.457999369 0.214466122 0.540004438 0.573385776 0.610298564 0.591689507 0.396341594 0.515629678 0.484896335 0.598754039 0.402839428 -PA3098 0.536291573 0.34046756 0.763258762 0.535807457 0.540488971 0.362818772 0.337637358 0.290881162 0.374967342 0.501965481 0.36715887 -PA3099 0.567385652 0.380041354 0.758606261 0.442101874 0.474048969 0.645843179 0.419906047 0.433678805 0.430453657 0.521993823 0.32712087 -PA3100 0.344807619 0.21538626 0.520418253 0.199470711 0.224357984 0.542558451 0.348304223 0.547808869 0.421159889 0.693429206 0.466971097 -PA3101 0.60268462 0.478944009 0.727750045 0.582059754 0.582922118 0.744099972 0.69447661 0.703183226 0.673584137 0.822354489 0.666262324 -PA3102 0.469887784 0.312428152 0.489784162 0.563709395 0.477196753 0.335826044 0.412082425 0.293729329 0.442390288 0.463984082 0.541455936 -PA3103 0.497136464 0.392615551 0.505781617 0.698131889 0.704089741 0.475023666 0.381686459 0.461269284 0.434125005 0.555402239 0.32454411 -PA3104 0.575973621 0.439902671 0.738458624 0.632730798 0.712652374 0.783586814 0.761498258 0.729112271 0.803255829 0.796179457 0.769459548 -PA3105 0.698380966 0.586525924 0.802315448 0.449935623 0.485499077 0.774170504 0.713060003 0.66821221 0.704995325 0.789156729 0.77343565 -PA3106 0.582185281 0.529106272 0.515222802 0.242444432 0.199512215 0.687909467 0.784328429 0.403703071 0.76828983 0.663593038 0.63152902 -PA3107 0.793784007 0.689788068 0.76799196 0.522604915 0.525887166 0.550003084 0.536494041 0.418220589 0.525426278 0.553982609 0.565954458 -PA3108 0.806924884 0.604542433 0.788497154 0.340203649 0.406933762 0.637840343 0.64208688 0.591452318 0.661321782 0.639048383 0.633303596 -PA3109 0.661354287 0.489763773 0.589812747 0.426872043 0.3838298 0.479396706 0.662841295 0.352870417 0.594566404 0.399809822 0.64606679 -PA3110 0.710722703 0.583739973 0.606560162 0.372424712 0.410035413 0.429876533 0.426630738 0.207699656 0.376453732 0.376867714 0.381500838 -PA3111 0.679732646 0.479635832 0.432056291 0.20408415 0.177554376 0.372523425 0.434786545 0.395946847 0.516000055 0.45305689 0.455518246 -PA3112 0.701972685 0.497106343 0.619760537 0.259386714 0.179140228 0.397854757 0.457868993 0.354080516 0.41745028 0.490914368 0.41571305 -PA3113 0.5631245 0.439401185 0.484043011 0.388962984 0.381071234 0.465711381 0.538622895 0.441424515 0.642304693 0.491462224 0.499043287 -PA3114 0.787752376 0.483634216 0.655120465 0.369206111 0.411263461 0.627349114 0.691867639 0.618512127 0.647681142 0.629406095 0.633174277 -PA3115 0.6658346 0.752831491 0.633303517 0.614368275 0.689918697 0.368790701 0.293313619 0.316890127 0.306804748 0.408097814 0.207761466 -PA3116 0.870512489 0.528114459 0.790945149 0.230610463 0.158590423 0.446433542 0.669560575 0.501477198 0.675494243 0.500610587 0.502486113 -PA3117 0.735993674 0.677923478 0.903005771 0.514613787 0.487866083 0.29860211 0.41148672 0.200026738 0.369020043 0.436016176 0.392136495 -PA3118 0.482717901 0.455730594 0.836258949 0.39719937 0.400153302 0.542091748 0.514388572 0.567584608 0.472972347 0.517504292 0.4093837 -PA3119 0.260180232 0.298865645 0.448114097 0.353542579 0.303196907 0.347946835 0.319375577 0.179420793 0.380315736 0.369074035 0.192192535 -PA3120 0.184717678 0.291793228 0.629293412 0.498664745 0.509142879 0.245773282 0.166220875 0.176520382 0.150698748 0.109098994 0.147736832 -PA3121 0.25571234 0.325646509 0.628778015 0.388797751 0.409335444 0.323730742 0.30589612 0.341022575 0.308911181 0.318856581 0.319180184 -PA3122 0.202807194 0.290669337 0.213625083 0.374641539 0.338209573 0.220537138 0.205790265 0.221689199 0.169894247 0.200736771 0.148891487 -PA3123 0.375608318 0.39594194 0.568714763 0.948799243 0.940875829 0.420045426 0.259673029 0.218935282 0.270154964 0.428535351 0.312615728 -PA3124 0.439250805 0.493850536 0.51697301 0.418477657 0.478767998 0.30458615 0.267460086 0.394035119 0.175538986 0.267900704 0.186055011 -PA3125 0.383759246 0.408204541 0.324948308 0.319488676 0.282308117 0.207795278 0.225993883 0.108665335 0.267539585 0.315919354 0.205063124 -PA3126 0.251419233 0.337086027 0.493332703 0.282925345 0.321467256 0.144975652 0.177030799 0.257362257 0.210927541 0.139380546 0.218230509 -PA3127 0.407991628 0.522889653 0.679680669 0.639407187 0.613826922 0.02396163 0.152364141 0.112162455 0.1478109 0.262091405 0.097373084 -PA3128 0.161881993 0.259786222 0.211932049 0.334163189 0.333455418 0.334283609 0.279215909 0.338693697 0.27763792 0.148384301 0.285168455 -PA3129 0.586390799 0.417263779 0.50163153 0.156907651 0.170877983 0.062155145 0.112713563 0.117936814 0.099218265 0.196938454 0.132337153 -PA3130 0.609814738 0.450687334 0.603791768 0.446159204 0.400751243 0.507746187 0.556177952 0.494756773 0.49674728 0.435320737 0.397418817 -PA3131 0.659738268 0.470736586 0.571463042 0.190450816 0.236967712 0.381980976 0.508123046 0.533034292 0.400047884 0.435888046 0.628132578 -PA3132 0.172334478 0.108972752 0.151497441 0.33642197 0.324811193 0.114467684 0.230206862 0.250822636 0.206823017 0.133212148 0.229386337 -PA3133 0.230162994 0.169875517 0.185676501 0.278848171 0.28305045 0.196358673 0.172697921 0.224987526 0.224869989 0.226941033 0.264431634 -PA3134 0.828785855 0.6134901 0.731415374 0.266848581 0.193541804 0.459876502 0.627731929 0.371147929 0.552221394 0.600232605 0.598572034 -PA3135 0.332529828 0.289296476 0.35587296 0.432611908 0.423426633 0.380186551 0.324443332 0.374969007 0.293290953 0.248506838 0.391113179 -PA3136 0.210551599 0.238701885 0.228355079 0.30059121 0.217346061 0.216288933 0.270207976 0.166238417 0.229357055 0.269884499 0.287597788 -PA3137 0.127616192 0.164355496 0.177288043 0.216477398 0.150255986 0.32666643 0.315537922 0.211416947 0.281800416 0.378248657 0.435781443 -PA3138 0.308693168 0.408392019 0.473388566 0.495897308 0.519549218 0.302329657 0.389053348 0.39204909 0.344543742 0.319631328 0.425664628 -PA3139 0.834743229 0.591027825 0.835087068 0.41614689 0.401462746 0.338942388 0.510765526 0.313149884 0.550597559 0.382129464 0.494590786 -PA3140 0.2981657 0.109603348 0.182313189 0.295934398 0.347567806 0.227511321 0.37229635 0.336130038 0.420233689 0.334742027 0.305302119 -PA3141 0.609046406 0.424305182 0.679069837 0.253074087 0.282646002 0.523082659 0.492256662 0.663406687 0.600787812 0.531721234 0.521914778 -PA3142 0.033872077 0.304819821 0.058388846 0.048017115 0.087438229 0.044774099 0.085515703 0.10459953 0.056470636 0.068457174 0.086601654 -PA3143 0.20198078 0.32968226 0.130452542 0.21589709 0.198827262 0.226881361 0.227799987 0.347602008 0.157480934 0.204821501 0.280267539 -PA3144 0.107473832 0.688688662 0.103982594 0.084894264 0.108236417 0.117747585 0.102200793 0.12376495 0.126750485 0.128048777 0.149702834 -PA3145 0.12392551 0.571754244 0.152638626 0.13294448 0.097130216 0.291299355 0.297996868 0.371017943 0.271976554 0.287730898 0.313644784 -PA3146 0.197432069 0.64912139 0.148688001 0.212946268 0.180385881 0.239813234 0.269748051 0.331177701 0.265945291 0.199172121 0.366291446 -PA3147 0.088084939 0.726082596 0.106473325 0.082763405 0.109019873 0.060386251 0.149571548 0.161131751 0.074760457 0.150651975 0.171837784 -PA3148 0.068724431 0.785982487 0.077030944 0.080439027 0.100258784 0.085720378 0.069339737 0.333490122 0.1625289 0.19878274 0.17445079 -PA3149 0.069604569 0.742201928 0.111196501 0.055020905 0.057697291 0.191830661 0.197889468 0.195969919 0.194208654 0.136432652 0.148907678 -PA3150 0.032374461 0.684637009 0.039019264 0.063131993 0.061631784 0.07694198 0.112617673 0.11301415 0.055290818 0.115397466 0.096443135 -PA3151 0.106631133 0.770739508 0.042970151 0.082311998 0.049208014 0.091498864 0.071686464 0.068088758 0.129038166 0.113800211 0.185132132 -PA3152 0.136597971 0.70648991 0.100885739 0.054563043 0.068263916 0.063398385 0.173030372 0.148716368 0.101299137 0.158896092 0.163521348 -PA3153 0.105214782 0.337627518 0.093569768 0.086496048 0.060746745 0.138801969 0.180650619 0.25160457 0.172048325 0.179171716 0.185453193 -PA3154 0.151262694 0.486930791 0.109854973 0.108674394 0.162473117 0.228084142 0.199829163 0.278357274 0.319633245 0.195348507 0.260950641 -PA3155 0.109014719 0.74528602 0.120447182 0.126211781 0.149245655 0.151670944 0.172234545 0.187604534 0.163537178 0.093362321 0.180084598 -PA3156 0.210346331 0.736055294 0.15521471 0.169822699 0.110153328 0.224688319 0.280772107 0.271481011 0.273465325 0.324484293 0.314793622 -PA3157 0.118396602 0.492358423 0.092021612 0.204298173 0.151498308 0.215292959 0.295612304 0.315311024 0.191594541 0.291134458 0.260858739 -PA3158 0.131077037 0.731308145 0.121069933 0.025968475 0.105460846 0.16102202 0.172418864 0.274314626 0.100501459 0.09875059 0.141318743 -PA3159 0.100437001 0.711097582 0.075871931 0.064577116 0.091941609 0.094915408 0.078845159 0.111366844 0.098433684 0.059744634 0.14625983 -PA3160 0.135687351 0.590605631 0.129706332 0.125569238 0.137755171 0.243817743 0.164408466 0.222625251 0.199456196 0.170990157 0.267749177 -PA3161 0.648130524 0.590745028 0.634576166 0.631880812 0.707378067 0.59855704 0.599855378 0.560205737 0.553489122 0.571206815 0.566373793 -PA3162 0.809906495 0.816399337 0.826405607 0.415589948 0.39011828 0.810462208 0.85666005 0.699816486 0.874246729 0.831632868 0.864102388 -PA3163 0.656295754 0.432911841 0.659159281 0.235853162 0.250479276 0.460265175 0.604440709 0.251191274 0.501041748 0.496531303 0.576617882 -PA3164 0.833758193 0.648661503 0.699713308 0.278999539 0.286265796 0.399461464 0.424852973 0.203556965 0.422486149 0.449772534 0.531512504 -PA3165 0.702099315 0.40691864 0.617986261 0.076045584 0.096286358 0.458451218 0.437033198 0.203260006 0.529801125 0.36779889 0.449799672 -PA3166 0.822648723 0.794620838 0.943331559 0.288363548 0.295163283 0.905908884 0.855063668 0.75559468 0.890793184 0.962129861 0.886556234 -PA3167 0.872291349 0.649669316 0.955879532 0.399455214 0.384582942 0.931318107 0.714867235 0.704306637 0.815504491 0.884886382 0.782870101 -PA3168 0.766656577 0.694143699 0.715991093 0.26898303 0.321321507 0.393558753 0.518539974 0.364085213 0.545020926 0.545543814 0.448970619 -PA3169 0.906630364 0.820714757 0.796706426 0.222955866 0.279800853 0.500272787 0.671545876 0.412839532 0.730024348 0.644724298 0.687887056 -PA3170 0.695184873 0.681418057 0.729233873 0.657925392 0.63743442 0.522609628 0.531913965 0.529349574 0.471098929 0.552657922 0.250565115 -PA3171 0.672092926 0.697067411 0.608176243 0.717559718 0.659135411 1 0.781991276 0.992451347 0.81648911 0.996389053 0.70419904 -PA3172 0.790308779 0.771656582 0.837776544 0.650489231 0.669134067 0.797284087 0.619107195 0.76365155 0.703483627 0.794022702 0.653041963 -PA3173 0.752797185 0.692834624 0.66673611 0.558822687 0.573092561 0.759749052 0.691844259 0.642823996 0.680159124 0.745381516 0.679169259 -PA3174 0.288895412 0.289954945 0.269672708 0.218835792 0.296490462 0.217286614 0.270497437 0.129028302 0.194260233 0.254863043 0.253624927 -PA3175 0.255942745 0.223841182 0.165107566 0.237896327 0.220141662 0.282763213 0.193761122 0.162489629 0.217992689 0.144714241 0.12086945 -PA3176 0.200163365 0.177938132 0.139584802 0.229626961 0.193919203 0.300141707 0.295719794 0.251306963 0.282474364 0.216693328 0.336680891 -PA3177 0.445628568 0.398346317 0.495076876 0.294816065 0.335583404 0.279102414 0.411805858 0.19811203 0.459808345 0.397226593 0.418412984 -PA3178 0.447811601 0.224563969 0.460671488 0.406142074 0.425127899 0.44336916 0.48056631 0.400290252 0.581960266 0.342802244 0.538632947 -PA3179 0.770163603 0.445838898 0.59568712 0.564916192 0.558316122 0.253962716 0.260884691 0.373891293 0.18822552 0.388082672 0.20454231 -PA3180 0.373019934 0.236070855 0.505078352 0.411891653 0.565707437 0.347489381 0.282996413 0.299516807 0.587780521 0.398977046 0.360778902 -PA3181 0.537689723 0.761629076 0.848142138 0.316903074 0.314200116 0.475093952 0.372644889 0.510563588 0.35694915 0.494271312 0.33668957 -PA3182 0.536440732 0.682145579 0.819477539 0.241074908 0.20468272 0.491567999 0.311595335 0.46442098 0.379505121 0.496537153 0.315545227 -PA3183 0.429528779 0.673112855 0.75198621 0.240151923 0.19721692 0.544725594 0.456924612 0.500675726 0.449010238 0.519601955 0.392538221 -PA3184 0.455433159 0.585588453 0.617859948 0.373287066 0.336368947 0.323987864 0.256902188 0.323475608 0.299586463 0.379244206 0.313724614 -PA3185 0.509391542 0.303438934 0.39555206 0.652088285 0.685116113 0.546015004 0.491851217 0.377384745 0.534859359 0.527963545 0.392526407 -PA3186 0.502824848 0.310136921 0.684964664 0.428383336 0.413655602 0.352719627 0.379582845 0.250938592 0.3858652 0.33638368 0.374067901 -PA3187 0.707008871 0.174677294 0.841730246 0.420175049 0.49903369 0.383008366 0.406639172 0.287741548 0.401127697 0.404522739 0.462914142 -PA3188 0.690131105 0.140172018 0.819507667 0.34719871 0.421570168 0.52312896 0.637024189 0.416584487 0.639375037 0.587767562 0.701311103 -PA3189 0.609564254 0.072383305 0.804952086 0.285398936 0.30801245 0.292244656 0.451086346 0.139549436 0.393594483 0.322389852 0.387007496 -PA3190 0.674662148 0.263098455 0.67032621 0.658434371 0.691235813 0.556118352 0.597859289 0.479197507 0.579347224 0.589723647 0.570353879 -PA3191 0.57871671 0.274183137 0.818482992 0.140299003 0.155410288 0.500852306 0.621125952 0.260699005 0.503479544 0.576818584 0.588300954 -PA3192 0.511690742 0.568933263 0.825331961 0.170866451 0.180238121 0.561924098 0.475128422 0.350987227 0.447185965 0.512619451 0.540364868 -PA3193 0.627029944 0.615415103 0.729688111 0.287750148 0.349722304 0.54312124 0.48273553 0.547469873 0.486842679 0.547391644 0.491724148 -PA3194 0.546158088 0.665727126 0.818750266 0.283051913 0.381301297 0.749678843 0.613897511 0.704333456 0.687023843 0.768251031 0.725142049 -PA3195 0.491414369 0.666012028 0.801653093 0.293532498 0.243960838 0.602980265 0.511229484 0.589617097 0.513211198 0.581933588 0.519326857 -PA3196 0.625647007 0.422651859 0.573359423 0.51701331 0.52985592 0.68017442 0.662620346 0.511312011 0.503679987 0.625916479 0.574580743 -PA3197 0.667683283 0.606201948 0.844790973 0.475926514 0.488937742 0.690545997 0.670460306 0.727985956 0.821223536 0.719166609 0.765794074 -PA3198 0.593618941 0.444892887 0.748786119 0.585852672 0.641671165 0.613129993 0.764001214 0.641740946 0.663923466 0.735084361 0.670950222 -PA3199 0.451778867 0.512614888 0.841637991 0.785382665 0.840777691 0.476577102 0.354658411 0.497107404 0.3964323 0.527814897 0.426317894 -PA3200 0.320412253 0.244437858 0.271628425 0.689216992 0.664759689 0.313030238 0.346456223 0.455455069 0.320367691 0.468630261 0.384641488 -PA3201 0.705807534 0.661969607 0.735741777 0.540121044 0.604504584 0.697009696 0.677995382 0.591123331 0.671727465 0.782958859 0.644571152 -PA3202 0.770567761 0.832722524 0.75044474 0.583093342 0.591582867 0.392022966 0.606994382 0.28404862 0.519721013 0.449062639 0.491617128 -PA3203 0.725456671 0.759890513 0.772428068 0.601167277 0.657977111 0.695832152 0.771867205 0.543229603 0.865789368 0.678443368 0.753712089 -PA3204 0.644377234 0.669035948 0.637997825 0.327109635 0.350780343 0.477873329 0.49593757 0.433674715 0.559608457 0.605970355 0.558751601 -PA3205 0.269262041 0.405074928 0.424646241 0.425778803 0.425591138 0.534236352 0.391504272 0.4421167 0.414595535 0.522620353 0.377373958 -PA3206 0.160552085 0.45060002 0.200129896 0.246072907 0.217899474 0.193535457 0.16608196 0.323089643 0.263004778 0.324061605 0.281715516 -PA3207 0.492387432 0.590965947 0.438798908 0.518620078 0.548949719 0.540170543 0.499071341 0.403827189 0.481409398 0.644629138 0.505944165 -PA3208 0.119536532 0.517295623 0.146774383 0.160737954 0.106431916 0.459962024 0.385199032 0.347909686 0.401492582 0.423516043 0.420748505 -PA3209 0.46281207 0.248008884 0.435112488 0.165778567 0.182664246 0.216321136 0.258786547 0.262095812 0.172522002 0.293142095 0.238146534 -PA3210 0.611375539 0.364333481 0.631875472 0.287175525 0.304927381 0.639560748 0.700973931 0.439742283 0.749227223 0.544759901 0.657648931 -PA3211 0.693663245 0.576796688 0.737696418 0.63133215 0.783601559 0.709380297 0.460921521 0.495797447 0.688844709 0.570203832 0.611383369 -PA3212 0.792000174 0.723401719 0.667225569 0.545828288 0.664713044 0.431976261 0.468199127 0.37642401 0.391993317 0.32319498 0.483528179 -PA3213 0.717583805 0.583413195 0.711769077 0.646104476 0.666098558 0.750147259 0.688632178 0.785749772 0.773669907 0.84201316 0.740502085 -PA3214 0.542106499 0.459383923 0.641317403 0.437540037 0.444284755 0.565329584 0.557049842 0.340615508 0.488063427 0.555104951 0.431947738 -PA3215 0.496180275 0.352086621 0.531593048 0.562288552 0.539783585 0.677266607 0.657258829 0.318962793 0.618620183 0.636541261 0.682252546 -PA3216 0.123300072 0.125894342 0.297232119 0.935529701 0.953527125 0.09882919 0.238394387 0.334458438 0.243060692 0.376755639 0.112596926 -PA3217 0.693098538 0.490630392 0.658325548 0.154773731 0.292680693 0.52874207 0.466625713 0.306415483 0.465874973 0.541022126 0.297684587 -PA3218 0.219619691 0.17936833 0.23220475 0.253384258 0.195112305 0.150396298 0.146764216 0.080506777 0.192755305 0.242201967 0.188311197 -PA3219 0.176206128 0.183195191 0.127155817 0.197001656 0.163903222 0.207278601 0.177515915 0.231900186 0.233234607 0.20835679 0.165140767 -PA3220 0.534145953 0.578840578 0.537456999 0.652728179 0.657429419 0.64114857 0.621164719 0.55031137 0.652047215 0.933805015 0.788178627 -PA3221 0.438623751 0.431411108 0.328402684 0.337403355 0.387331802 0.494818211 0.404519478 0.476114089 0.284065084 0.406068777 0.325383606 -PA3222 0.271996795 0.274191515 0.08189723 0.215309457 0.177210802 0.247484756 0.185844753 0.179931129 0.218070456 0.253094784 0.328785253 -PA3223 0.17539477 0.183789682 0.164457949 0.121538849 0.197879985 0.343840223 0.411026022 0.304141841 0.260578005 0.341196172 0.492423164 -PA3224 0.31761829 0.211524184 0.444592499 0.449780525 0.421402777 0.734624801 0.687914482 0.81357734 0.682677158 0.75403118 0.662676273 -PA3225 0.472754542 0.483720805 0.484874255 0.678700575 0.694599499 0.565112449 0.244313603 0.587212834 0.332127333 0.48554888 0.36883279 -PA3226 0.372575762 0.353919406 0.535576597 0.460513671 0.564068276 0.499684856 0.306759729 0.557688701 0.305813177 0.531751946 0.333552931 -PA3227 0.609339083 0.627609343 0.693872352 0.531166628 0.616209819 0.76087052 0.654509532 0.80899379 0.692029219 0.760481351 0.739294741 -PA3228 0.543571526 0.272179072 0.77678946 0.389666156 0.431973407 0.478858697 0.330897909 0.416989058 0.380625714 0.482664251 0.337398476 -PA3229 0.173945813 0.163908372 0.175805489 0.279810113 0.293476315 0.20309424 0.206688097 0.126688912 0.198184198 0.101325895 0.195263667 -PA3230 0.256437072 0.166731787 0.280871289 0.3123405 0.338326965 0.20850476 0.198732394 0.27824863 0.215415736 0.042273353 0.223214115 -PA3231 0.11603105 0.107884702 0.137939056 0.673832658 0.740331116 0.210187031 0.150963748 0.204939121 0.142505409 0.194719855 0.20505581 -PA3232 0.132027152 0.105750017 0.376002688 0.156844154 0.144874615 0.36422579 0.268235003 0.31271995 0.320776777 0.441248002 0.398026345 -PA3233 0.226408897 0.113216317 0.347606039 0.25918628 0.209670641 0.189458314 0.24305693 0.129860289 0.298348238 0.27706377 0.25868733 -PA3234 0.136204579 0.049280708 0.398676657 0.150638208 0.13684378 0.1973051 0.180047289 0.073481991 0.096235344 0.188003044 0.167633543 -PA3235 0.164476365 0.111226809 0.41424997 0.162826215 0.194581953 0.206815387 0.266043373 0.170792146 0.27815933 0.293873442 0.296628163 -PA3236 0.04824696 0.09501986 0.363232765 0.118759405 0.17010429 0.19924611 0.191171002 0.143290701 0.12823949 0.097650644 0.148405709 -PA3237 0.041083973 0.040620596 0.072446299 0.080108799 0.051989542 0.199366264 0.192421081 0.240540199 0.174268712 0.252204877 0.230320216 -PA3238 0.390313835 0.508946864 0.47617526 0.216327142 0.217635577 0.263701894 0.290191978 0.226258521 0.297178058 0.345664315 0.25285052 -PA3239 0.486211485 0.407568612 0.594858811 0.398905563 0.323565503 0.59619071 0.54477987 0.505377617 0.604596579 0.577183693 0.549666648 -PA3240 0.349839571 0.24932461 0.357196442 0.369099964 0.383543776 0.300742953 0.333996617 0.314892201 0.357815966 0.29007026 0.278373373 -PA3241 0.636214535 0.430654249 0.539416269 0.782482858 0.755896947 0.384268725 0.452208601 0.37956078 0.619989619 0.50050823 0.501294105 -PA3242 0.688534971 0.50534951 0.626412412 0.201240826 0.237419536 0.667524382 0.78945984 0.595732312 0.596976319 0.662009294 0.705013755 -PA3243 0.75929991 0.697672473 0.75558087 0.533894408 0.561410653 0.239397663 0.421472882 0.286609686 0.336345064 0.297441584 0.350094 -PA3244 0.723190406 0.647807508 0.697553698 0.558334057 0.505574417 0.438237992 0.593032559 0.412483823 0.630762426 0.474157486 0.624658599 -PA3245 0.560506647 0.416810797 0.583396072 0.302451979 0.330345648 0.415162896 0.645266007 0.383890501 0.68503687 0.433772342 0.578522681 -PA3246 0.970304317 0.718015506 0.767499999 0.244610671 0.276958283 0.183556842 0.314524925 0.206419411 0.312850763 0.14353728 0.314826705 -PA3247 0.822930136 0.707933788 0.749345252 0.554671605 0.561604293 0.535850333 0.500831619 0.571472193 0.392115519 0.541090569 0.521323118 -PA3248 0.155856273 0.283365477 0.2018246 0.413283467 0.380928166 0.321118597 0.466953783 0.326683716 0.182660483 0.245205382 0.496248018 -PA3249 0.325631824 0.188293382 0.190304275 0.641014743 0.540700573 0.201129593 0.30762383 0.477591372 0.289982413 0.265708573 0.14041452 -PA3250 0.144676121 0.233109951 0.195291548 0.715230532 0.736187138 0.388915259 0.182636121 0.423754674 0.256047547 0.462049062 0.223295874 -PA3251 0.185998721 0.214267576 0.276953741 0.6187084 0.653539913 0.238975146 0.111121463 0.352836842 0.085732668 0.198680843 0.208071313 -PA3252 0.181210865 0.233702328 0.247701554 0.577373798 0.488164616 0.393887784 0.23132794 0.485031665 0.226694747 0.290640603 0.254645458 -PA3253 0.135071218 0.056479357 0.130172839 0.302812528 0.32509119 0.317809289 0.217439697 0.331408613 0.239118561 0.26894933 0.305366877 -PA3254 0.248261599 0.26310794 0.336093683 0.474973236 0.53187766 0.45781622 0.263820076 0.374847032 0.370349758 0.264133841 0.196322421 -PA3255 0.613410141 0.48642091 0.562986405 0.478554346 0.478533321 0.422061869 0.48183872 0.450704015 0.598355249 0.50979218 0.587328963 -PA3256 0.222090238 0.158133998 0.34211203 0.497709899 0.380056793 0.287829621 0.391949757 0.304485722 0.286767078 0.331311662 0.308885502 -PA3257 0.581610891 0.715476642 0.699434261 0.586478527 0.587871435 0.961111659 0.875440123 0.947769171 0.86201183 0.928977632 0.72497012 -PA3258 0.244630649 0.24646228 0.253962026 0.25691721 0.201013539 0.243598061 0.29976301 0.25972952 0.261977266 0.327717769 0.29225768 -PA3259 0.391445828 0.409543557 0.364711251 0.714044089 0.726761241 0.341587733 0.273267524 0.21436848 0.278588183 0.183208774 0.302867218 -PA3260 0.3669377 0.355109988 0.448186003 0.796997659 0.84298202 0.297994479 0.177718948 0.160227904 0.228042011 0.292719815 0.218065619 -PA3261 0.150695372 0.133396071 0.177020043 0.519002181 0.476392158 0.258551325 0.250043472 0.381602359 0.238980622 0.299368795 0.309332073 -PA3262 0.808281335 0.820519285 0.830929863 0.459287584 0.462282585 0.200677915 0.552507047 0.222006484 0.652548854 0.344418756 0.52103723 -PA3263 0.930035716 0.865627627 0.755259995 0.253556437 0.25357532 0.440172033 0.528756912 0.270628086 0.574707053 0.530244656 0.605605514 -PA3264 0.372468847 0.279231642 0.327990453 0.214014393 0.278018165 0.235299696 0.330646474 0.188323761 0.202170572 0.158055662 0.235544233 -PA3265 0.255846505 0.199962721 0.205127045 0.20481816 0.166460479 0.207145103 0.232757114 0.252579314 0.203810179 0.155311935 0.306009211 -PA3266 0.245091352 0.386916116 0.117974035 0.256458169 0.222133614 0.36111279 0.393212749 0.325019222 0.427637163 0.396245976 0.44465585 -PA3267 0.409175698 0.300375272 0.272467966 0.20836952 0.20051921 0.506035309 0.504941851 0.424331661 0.519189105 0.404161472 0.427679237 -PA3268 0.600340249 0.311907655 0.708597394 0.233161317 0.217273401 0.123301384 0.238578507 0.297257113 0.339346797 0.153543447 0.380039779 -PA3269 0.346217477 0.316740014 0.484700777 0.262569532 0.269615982 0.151232044 0.450147321 0.454623 0.433483523 0.176615411 0.327384641 -PA3270 0.540765068 0.41633422 0.678872427 0.458080603 0.474709162 0.743508536 0.764069646 0.754065317 0.779734082 0.788337001 0.676355653 -PA3271 0.373847806 0.324027066 0.442091447 0.474982247 0.533843059 0.391046995 0.209954807 0.268332539 0.284386115 0.409616219 0.209685347 -PA3272 0.289998511 0.284409772 0.465387128 0.413762843 0.491236152 0.222937808 0.10946721 0.185959786 0.167223314 0.258522089 0.233232372 -PA3273 0.10997297 0.128761032 0.120179255 0.548630919 0.615625337 0.086025686 0.058914935 0.141364693 0.074607742 0.097480647 0.114731603 -PA3274 0.1239734 0.110160666 0.127238565 0.622975667 0.698071891 0.436127275 0.215481244 0.549725359 0.238669936 0.388244145 0.287538444 -PA3275 0.39300991 0.245893946 0.281361281 0.396054907 0.449264155 0.371204365 0.27227413 0.457626946 0.300981915 0.375994194 0.339700471 -PA3276 0.950317812 0.375580334 0.775462924 0.118163723 0.176865714 0.339200694 0.376351961 0.444451908 0.448757101 0.422169075 0.224392003 -PA3277 0.080098399 0.324671808 0.114398976 0.466935064 0.400933493 0.157853616 0.083702588 0.158370755 0.08986222 0.192089831 0.086576211 -PA3278 0.148180794 0.703264033 0.345648938 0.579889913 0.591846764 0.751699442 0.544081711 0.768329753 0.39507691 0.74707472 0.434599837 -PA3279 0.176437551 0.222270174 0.130753804 0.135537928 0.188351086 0.170816676 0.220809025 0.251462256 0.182928286 0.19521667 0.233595091 -PA3280 0.124235214 0.111744236 0.110282722 0.120551303 0.110100953 0.090360739 0.125677265 0.089362841 0.104629698 0.141089359 0.093209765 -PA3281 0.144439764 0.111886553 0.071135464 0.074234473 0.109549446 0.098216162 0.094120811 0.187324591 0.116209561 0.078521831 0.164028938 -PA3282 0.195176813 0.160356183 0.14823296 0.168949244 0.233702908 0.099033553 0.116399846 0.150307325 0.161411065 0.178392014 0.148236912 -PA3283 0.32215548 0.215953286 0.235301774 0.228700488 0.369932996 0.116594876 0.1544389 0.262782806 0.136558036 0.1035109 0.127278329 -PA3284 0.415683274 0.407728698 0.267875547 0.327164107 0.584889795 0.126227417 0.078508652 0.029671574 0.060503758 0.070451034 0.042680607 -PA3285 0.618041911 0.391476246 0.602597232 0.407350631 0.463327885 0.467857654 0.471738154 0.45439793 0.527089452 0.469948287 0.520866062 -PA3286 0.66372463 0.451776431 0.609433264 0.450653282 0.418502189 0.507713691 0.480891178 0.4685009 0.515153034 0.495535873 0.444798811 -PA3287 0.096009496 0.197828883 0.144605259 0.268259612 0.243631937 0.059302783 0.02497464 0.02805207 0.023033743 0 0.02234416 -PA3288 0.228670248 0.166869605 0.387675923 0.46030297 0.449491575 0.252496966 0.166012337 0.227478483 0.179683899 0.16808914 0.306707093 -PA3289 0.209303161 0.240099267 0.228071435 0.829608854 0.722383502 0.462938774 0.297584761 0.437942707 0.468558727 0.401541372 0.278333222 -PA3290 0.40835938 0.426311611 0.398180569 0.781801384 0.651126448 0.450585019 0.218767894 0.30026205 0.393358975 0.303006389 0.298928442 -PA3291 0.187757781 0.237297106 0.193392623 0.156232197 0.151077187 0.13066969 0.060509949 0.13911729 0.125778613 0.19794326 0.165662256 -PA3292 0.181648908 0.121700487 0.183475784 0.136691488 0.110740535 0.617579732 0.457597428 0.598830146 0.380413459 0.573200354 0.300048619 -PA3293 0.394259086 0.286449857 0.218975055 0.30778942 0.291599132 0.328906926 0.277466753 0.216869033 0.452788772 0.236740983 0.21850822 -PA3294 0.38203457 0.264624986 0.265578377 0.249382512 0.238521235 0.158235905 0.115973177 0.285981067 0.278552794 0.273802423 0.17435813 -PA3295 0.581453371 0.487737985 0.681666936 0.454656127 0.489088455 0.363842214 0.209520129 0.311494765 0.193592715 0.23199151 0.131291052 -PA3296 0.146006477 0.144663848 0.096653711 0.119245151 0.11591392 0.153101726 0.160786675 0.244966756 0.229158251 0.141024949 0.145916557 -PA3297 0.687715457 0.701775865 0.700617408 0.236403622 0.251061199 0.54480566 0.541129587 0.453378222 0.540296171 0.438801918 0.456997549 -PA3298 0.354870253 0.412469779 0.221121396 0.383515753 0.327772113 0.277514536 0.286766464 0.266927249 0.392625187 0.436208176 0.539924826 -PA3299 0.794377547 0.751635971 0.74121611 0.436344124 0.445256642 0.294431195 0.586170804 0.27364584 0.535988971 0.35744862 0.61504557 -PA3300 0.405771607 0.184752743 0.561113397 0.609050781 0.648438141 0.202351799 0.352341965 0.236826352 0.313648163 0.284833627 0.321208215 -PA3301 0.750847331 0.647962345 0.692449121 0.753957782 0.738347769 0.42248501 0.241147389 0.362111878 0.201494252 0.372605093 0.344402396 -PA3302 0.787436186 0.79858948 0.827246657 0.863114939 0.852974472 0.63397385 0.590637452 0.58342175 0.6041045 0.518092459 0.73793604 -PA3303 0.296586224 0.263985498 0.275633005 0.30463981 0.228498245 0.342877108 0.390852864 0.436700846 0.282522135 0.319736636 0.324600048 -PA3304 0.320463545 0.364802656 0.368887037 0.715836788 0.708154723 0.484310678 0.349904542 0.462354296 0.327775348 0.428351548 0.351135309 -PA3305 0.262831179 0.309342864 0.18112487 0.524751598 0.51077687 0.366642719 0.254515341 0.407194046 0.346164904 0.378504024 0.210376747 -PA3306 0.366503867 0.470451109 0.439255987 0.438758363 0.481900791 0.625238231 0.562104925 0.686766357 0.490803116 0.642050281 0.534167914 -PA3307 0.314132136 0.413461464 0.380892114 0.439640312 0.436689385 0.605516759 0.365107663 0.628943238 0.432485157 0.603116854 0.448346138 -PA3308 0.920142838 0.599611605 0.904915945 0.203719647 0.232591368 0.29090501 0.369811518 0.287530923 0.397880979 0.1713801 0.312015085 -PA3309 0.485677792 0.793846522 0.274243579 0.965326028 0.910131331 0.659873496 0.591458294 0.652336703 0.555358993 0.666820718 0.502767875 -PA3310 0.524868627 0.221625584 0.584416347 0.361775527 0.345188497 0.817535493 0.563499856 0.801965588 0.514925515 0.76690725 0.474148198 -PA3311 0.10009632 0.172901091 0.138929324 0.704413792 0.681269047 0.422523293 0.17256177 0.366185541 0.185755866 0.302120054 0.23258644 -PA3312 0.505642154 0.400369544 0.476412772 0.373464321 0.313039683 0.402352431 0.269666443 0.441856307 0.339659237 0.222355467 0.189408836 -PA3313 0.89714158 0.579910378 0.911044626 0.207674365 0.177742785 0.261327452 0.194665526 0.046981095 0.216212166 0.025347931 0.142076659 -PA3314 0.793385586 0.515522527 0.624251952 0.136406536 0.183739076 0.366273741 0.280703296 0.34692741 0.387745931 0.445043591 0.422379037 -PA3315 0.640974617 0.309708325 0.624911345 0.180208266 0.115039651 0.395033965 0.411653069 0.388932797 0.313904707 0.457727021 0.433344827 -PA3316 0.365220413 0.15745427 0.189407617 0.166741911 0.154597006 0.243859661 0.259809377 0.440749295 0.196774983 0.281608468 0.255204377 -PA3317 0.365028053 0.530890496 0.120436471 0.454429212 0.453705665 0.344574048 0.307567367 0.335278291 0.510783542 0.218861159 0.236311769 -PA3318 0.095709965 0.099478481 0.055435833 0.192362751 0.158266166 0.075831485 0.158117739 0.119461963 0.112379689 0.132133187 0.164038527 -PA3319 0.099791575 0.095934034 0.140751689 0.123989078 0.110000673 0.162980072 0.068459661 0.115163545 0.107407611 0.084015563 0.19352507 -PA3320 0.13784112 0.117802873 0.09455763 0.235581796 0.161038969 0.28206091 0.23503195 0.324204503 0.180933888 0.203133923 0.279314965 -PA3321 0.271026657 0.407887572 0.353774456 0.258592253 0.312189098 0.010319674 0.036418521 0.041266063 0.085573369 0.056488483 0.088079467 -PA3322 0.406474432 0.417807872 0.281755872 0.229595791 0.28961042 0.4011845 0.465838504 0.416406582 0.491030113 0.417892383 0.571260794 -PA3323 0.283678157 0.245054895 0.301800454 0.717012954 0.686808636 0.137885823 0.092609323 0.189284583 0.235928003 0.231626103 0.181978325 -PA3324 0.157779656 0.188769646 0.173635957 0.359003211 0.393821179 0.212128678 0.047320429 0.193482664 0.071387317 0.190723476 0.348641835 -PA3325 0.182464922 0.247264768 0.307956919 0.338893534 0.345621774 0.365999995 0.548044302 0.489049637 0.515394068 0.392160279 0.524594578 -PA3326 0.408851622 0.251173411 0.449403695 0.842195953 0.868789054 0.65502735 0.723728775 0.643242508 0.699069066 0.66001365 0.743001513 -PA3327 0.396205743 0.175123576 0.273696025 0.264331347 0.250002997 0.229308038 0.307226944 0.224020098 0.357593527 0.315031849 0.35503846 -PA3328 0.428965437 0.106643103 0.297614964 0.201770961 0.186024489 0.246854885 0.312530723 0.229485924 0.357347285 0.208906254 0.202890804 -PA3329 0.423670085 0.118483166 0.331448719 0.186649033 0.189938543 0.410470424 0.454830131 0.322838662 0.513579777 0.409384666 0.455821519 -PA3330 0.270887163 0.098650425 0.304952352 0.193216808 0.175644236 0.251498613 0.310136387 0.204150939 0.349001714 0.239662648 0.287217314 -PA3331 0.331601809 0.129670161 0.377375908 0.242488615 0.258105638 0.271380718 0.396512273 0.256558589 0.435337452 0.253700847 0.389462027 -PA3332 0.3413625 0.131135741 0.369769265 0.278596149 0.283798263 0.330608647 0.421434967 0.254663481 0.486583343 0.219151622 0.477730617 -PA3333 0.31716706 0.06718589 0.348313097 0.287268802 0.300790969 0.478787651 0.520446747 0.438962776 0.498472907 0.421366272 0.497387189 -PA3334 0.276654787 0.023094855 0.369485072 0.28619196 0.281995775 0.526928355 0.641806086 0.492383366 0.701554667 0.583254908 0.675111946 -PA3335 0.299846778 0.107331021 0.298034732 0.319423625 0.359181045 0.588458642 0.727770208 0.518924312 0.76651663 0.639276535 0.721209851 -PA3336 0.087012346 0.139015791 0.155759519 0.150924275 0.10106791 0.350339094 0.382873247 0.396395812 0.297110426 0.280952579 0.340304501 -PA3337 0.095097613 0.776578133 0.10497529 0.480148248 0.459900917 0.317611481 0.228076913 0.43618207 0.260370549 0.397956265 0.187740885 -PA3338 0.402089877 0.300839073 0.368214263 0.572978113 0.673271352 0.466089536 0.519390201 0.551468104 0.451428245 0.677187185 0.398092166 -PA3339 0.72667449 0.496968182 0.624460896 0.476368086 0.414201108 0.347273648 0.532530086 0.457860268 0.414493968 0.426163081 0.277120459 -PA3340 0.680815134 0.490159669 0.457143629 0.961262225 0.944264665 0.44084412 0.305551822 0.611042118 0.285514151 0.430465696 0.232895957 -PA3341 0.444089671 0.475797857 0.332876683 0.631315651 0.762433555 0.555826196 0.468006064 0.506252259 0.408965459 0.58877523 0.53200582 -PA3342 0.15793372 0.180615329 0.277761448 0.450211609 0.426293892 0.322627943 0.281193427 0.488019479 0.331471899 0.299569935 0.220755555 -PA3343 0.314881217 0.438419864 0.41538896 0.619874299 0.632988151 0.48145214 0.546202954 0.540705984 0.553161154 0.491308519 0.386619446 -PA3344 0.737319171 0.68246504 0.760046497 0.622064083 0.561086107 0.539463612 0.568879777 0.445101293 0.615509762 0.496060829 0.527499882 -PA3345 0.570941897 0.463719811 0.424099528 0.386071144 0.426433331 0.675809762 0.643261859 0.606918303 0.645408912 0.676664205 0.583394241 -PA3346 0.265587703 0.311580729 0.420862221 0.851130406 0.896107486 0.568958361 0.557921396 0.671696361 0.514231266 0.597896405 0.506986286 -PA3347 0.304467869 0.317850003 0.486747912 0.925833898 1 0.554835885 0.388651969 0.595354846 0.424715232 0.530303268 0.308356688 -PA3348 0.465615537 0.541183232 0.546531476 0.704136176 0.6829013 0.554271125 0.482349747 0.604120834 0.514455965 0.611330148 0.52663663 -PA3349 0.614987385 0.568475656 0.644620603 0.818573587 0.79908793 0.635102909 0.49984533 0.706669787 0.573556219 0.640963871 0.567395903 -PA3350 0.329286843 0.603654687 0.28131932 0.318923023 0.4309936 0.670731738 0.613687379 0.690354634 0.524875081 0.711682765 0.642217165 -PA3351 0.756924855 0.846546317 0.737569651 0.81811743 0.821683684 0.842346298 0.820561263 0.873193513 0.796636879 0.851986094 0.819009313 -PA3352 0.536033159 0.724582 0.619382635 0.61722445 0.625282982 0.657380765 0.648178966 0.705376122 0.602769119 0.641633161 0.623958927 -PA3353 0.532569146 0.593318657 0.60668599 0.382941416 0.386013579 0.240110495 0.299015859 0.20120863 0.32812897 0.297446636 0.236929881 -PA3354 0.084272725 0.195630044 0.215350226 0.738573074 0.645214448 0.492150924 0.451500948 0.549063931 0.503861114 0.32906182 0.410567009 -PA3355 0.19975327 0.187854224 0.249971066 0.237415061 0.323166391 0.303281665 0.258192761 0.379371019 0.430748041 0.34072397 0.393711965 -PA3356 0.364472506 0.500038838 0.220942751 0.575043617 0.594856757 0.336200908 0.236336476 0.311126561 0.141126081 0.295081445 0.168303158 -PA3357 0.761820153 0.627836878 0.806620564 0.561056405 0.5917155 0.345667957 0.332126781 0.327584989 0.465758553 0.417192037 0.414871055 -PA3358 0.227150755 0.238497559 0.211562318 0.136389843 0.094658632 0.377974858 0.261825937 0.207977938 0.348136244 0.221444036 0.355158852 -PA3359 0.145709751 0.10735739 0.170016496 0.17325878 0.140360187 0.206631406 0.358356252 0.251204266 0.256459049 0.282397965 0.369199232 -PA3360 0.220118752 0.201800951 0.231864013 0.294965347 0.297365294 0.152216507 0.168315161 0.180680754 0.346082286 0.191589988 0.173793578 -PA3361 0.096083276 0.106271668 0.050957435 0.510165918 0.472633375 0.471934223 0.322892862 0.562399883 0.40908662 0.504631217 0.342378967 -PA3362 0.148268436 0.205673013 0.108960011 0.206891149 0.159317334 0.542324692 0.561186887 0.617039149 0.506073879 0.550673817 0.504199756 -PA3363 0.119772689 0.081646424 0.117960689 0.155933457 0.081280681 0.167476335 0.163139898 0.184264195 0.109615954 0.090070363 0.133996476 -PA3364 0.224548835 0.119250263 0.18480238 0.111533866 0.155177304 0.080635605 0.214971624 0.184180667 0.253311114 0.16208398 0.183632193 -PA3365 0.1073982 0.121934921 0.11295604 0.133337488 0.099069365 0.076112943 0.038278462 0.047991248 0.066520028 0.10724576 0.022206628 -PA3366 0.139647757 0.168702573 0.10299548 0.145307295 0.218800018 0.229456043 0.341140997 0.308838245 0.199563201 0.240424807 0.321096378 -PA3367 0.348995238 0.283264632 0.280471234 0.367612337 0.261726599 0.248334066 0.351057786 0.362779899 0.368430753 0.23945756 0.331500887 -PA3368 0.119496962 0.128569402 0.18198284 0.234513938 0.257751177 0.204139724 0.099970915 0.223518082 0.084892365 0.095294405 0.155032308 -PA3369 0.14432195 0.093824176 0.374612213 0.65565118 0.642089849 0.258318934 0.252984888 0.454941084 0.209634086 0.318040753 0.168114969 -PA3370 0.129812732 0.102629818 0.311235875 0.626050085 0.607936193 0.116773309 0.133400717 0.301577738 0.100185586 0.198399235 0.154847486 -PA3371 0.199784716 0.134403252 0.387470288 0.677832332 0.681300592 0.237693286 0.171242174 0.465446865 0.157674635 0.297288353 0.167196336 -PA3372 0.293069197 0.195223498 0.394198969 0.468071853 0.469114652 0.291003018 0.227554648 0.457375906 0.19377754 0.208318231 0.242260777 -PA3373 0.46164475 0.321033889 0.534984595 0.814784194 0.770091061 0.426962193 0.289400287 0.348616306 0.270735767 0.438105889 0.37390039 -PA3374 0.27814562 0.236176903 0.267740778 0.357476195 0.346012746 0.316580701 0.178398695 0.297549979 0.200793781 0.271042056 0.356989303 -PA3375 0.195115098 0.217891788 0.103727496 0.303716356 0.236101581 0.176748921 0.08166026 0.3477417 0.136478082 0.13201584 0.085741649 -PA3376 0.135424065 0.135102552 0.167910161 0.191979996 0.167487025 0.245795264 0.15333976 0.24622006 0.148675889 0.199794158 0.191050282 -PA3377 0.171645339 0.18927849 0.188537014 0.228599895 0.187457241 0.110541613 0.115864606 0.167101676 0.13706283 0.08560579 0.130776373 -PA3378 0.142372368 0.133857814 0.112239447 0.175332954 0.119922586 0.197834529 0.117465583 0.142252381 0.092166934 0.075447339 0.133508558 -PA3379 0.254035912 0.181223727 0.15179536 0.281219823 0.18859999 0.292134483 0.19208103 0.345157031 0.256210011 0.224476598 0.309312777 -PA3380 0.205241167 0.183319734 0.214616983 0.221648126 0.214184749 0.213967133 0.150433383 0.196127988 0.193654931 0.186271312 0.14423271 -PA3381 0.232379258 0.253648773 0.201758352 0.303197672 0.241785223 0.097028053 0.094800838 0.096540831 0.136647188 0 0.208837731 -PA3382 0.194007512 0.16401669 0.147479152 0.207775189 0.158677605 0.231636828 0.244370502 0.132592744 0.243325466 0.192389724 0.205844641 -PA3383 0.144529182 0.157145473 0.110666579 0.165972689 0.128820512 0.219188147 0.176185702 0.175320183 0.174221899 0.20265919 0.191069955 -PA3384 0.16673883 0.183350907 0.144187834 0.227495918 0.255697407 0.168442798 0.222500778 0.193448254 0.200018714 0.257833306 0.31155149 -PA3385 0.569748528 0.726402436 0.775609266 0.709800588 0.770607201 0.787408612 0.742735381 0.787914455 0.756828791 0.772464009 0.73972705 -PA3386 0.211296975 0.251141307 0.291680919 0.164081198 0.222091898 0.398621358 0.383616246 0.363898032 0.423432591 0.403255863 0.339392754 -PA3387 0.184238176 0.372948127 0.290209025 0.275558105 0.278434256 0.396959744 0.380394494 0.56238226 0.491275198 0.468090599 0.427167134 -PA3388 0.586828108 0.456492716 0.470219262 0.266239981 0.250531475 0.361462618 0.228998791 0.155752393 0.19809689 0.082659955 0.18280225 -PA3389 0.209174075 0.188589835 0.215810287 0.172440352 0.199667701 0.473497555 0.758009274 0.523908262 0.46096077 0.487369932 0.429010758 -PA3390 0.12484361 0.154350652 0.131470489 0.25678685 0.330899201 0.332982661 0.24321395 0.144346398 0.251899663 0.166864841 0.242907438 -PA3391 0.098154775 0.180790435 0.073896036 0.833839114 0.859441195 0.907594995 0.867686646 0.961577984 0.843631208 0.915365998 0.845739078 -PA3392 0.112031668 0.174630831 0.138605679 0.86304394 0.812569191 0.803987045 0.769519478 0.805849308 0.785153872 0.786958715 0.753310119 -PA3393 0.220806341 0.220715854 0.179827383 0.707364666 0.745436437 0.796614862 0.689373616 0.816508717 0.762539766 0.837763039 0.701157898 -PA3394 0.187294501 0.164959315 0.101792242 0.623328122 0.603651309 0.624884124 0.493617292 0.615408885 0.542575658 0.663016707 0.555708339 -PA3395 0.217412537 0.132497193 0.143870633 0.556058731 0.598840414 0.728494376 0.63998047 0.735793457 0.665247273 0.732062826 0.590377602 -PA3396 0.153633778 0.163046024 0.104686119 0.676760031 0.691069483 0.454666654 0.489290764 0.447414579 0.571866205 0.487494767 0.472223794 -PA3397 0.702767506 0.582296548 0.662905213 0.378462816 0.437943104 0.539713951 0.738030724 0.413717899 0.713753082 0.510046356 0.685504231 -PA3398 0.511682008 0.214586309 0.591094983 0.484819196 0.523285973 0.374238795 0.210406111 0.229553979 0.382805156 0.447886574 0.289288483 -PA3399 0.328906489 0.36837259 0.299265833 0.675986189 0.558278985 0.55097576 0.581095104 0.646537008 0.554924623 0.588138613 0.436232564 -PA3400 0.417229573 0.308510328 0.342934205 0.15313112 0.1931385 0.443418608 0.404275704 0.302374208 0.486820388 0.318590892 0.523678062 -PA3401 0.409913903 0.295638571 0.319339564 0.216767957 0.183013135 0.222543147 0.181959069 0.204230671 0.300904282 0.168465278 0.300265692 -PA3402 0.30309669 0.312675196 0.216964342 0.057722745 0.059169786 0.072358057 0.197390361 0.061533645 0.032273654 0.049601461 0.186704088 -PA3403 0.390709868 0.341884727 0.20919663 0.203763636 0.100110348 0.248492858 0.345262211 0.268352794 0.245204862 0.275311577 0.357324306 -PA3404 0.293475411 0.283985271 0.097196715 0.361331463 0.353100144 0.31410033 0.153586571 0.347827251 0.364196056 0.3178021 0.292719085 -PA3405 0.188413726 0.183910757 0.0684378 0.180441943 0.178144106 0.186549043 0.116365692 0.161940439 0.153752343 0.088433093 0.162349457 -PA3406 0.189987826 0.205886328 0.144253806 0.203507937 0.172818031 0.196452145 0.185824412 0.292039855 0.190797475 0.240637038 0.162648538 -PA3407 0.087202742 0.071843815 0.170772469 0.124247269 0.075822673 0.152555738 0.197603844 0.158108486 0.210749381 0.145024251 0.160322864 -PA3408 0.242398707 0.225600923 0.198211469 0.229376621 0.229033948 0.114294163 0.166034711 0.123229219 0.186016763 0.138790221 0.239789471 -PA3409 0.265636329 0.192687019 0.138751568 0.282233072 0.259673607 0.294776345 0.296063884 0.332814406 0.18648119 0.270953743 0.187223616 -PA3410 0.323778017 0.17031827 0.24687435 0.114810172 0.121484922 0.183953819 0.189034954 0.240961607 0.097137394 0.118864256 0.272654632 -PA3411 0.491863493 0.340621084 0.306411158 0.301068862 0.261795026 0.404064979 0.416435315 0.370158299 0.432097359 0.298043617 0.44482399 -PA3412 0.065116733 0.062547422 0.071427632 0.178571557 0.188583759 0.049053578 0.155327231 0.086303036 0.19549102 0.153973192 0.235946567 -PA3413 0.411150245 0.530320799 0.406759631 0.426170314 0.489015178 0.311391246 0.5032872 0.372342155 0.526049688 0.432088174 0.484491685 -PA3414 0.333027834 0.307684429 0.187531539 0.559885889 0.522397645 0.200643738 0.20678203 0.233852935 0.203727998 0.206579735 0.193187247 -PA3415 0.250373138 0.262645686 0.208311356 0.932434486 0.945229097 0.273403992 0.20911884 0.434291891 0.286612647 0.300890607 0.165283979 -PA3416 0.144677586 0.150112101 0.086476886 0.977961886 0.960723017 0.323013453 0.131478329 0.317995965 0.081187304 0.213833627 0.098953814 -PA3417 0.111215543 0.064537218 0.116924577 0.947892648 0.941315548 0.262792859 0.111464847 0.341769597 0.166643496 0.247112758 0.213203124 -PA3418 0.090658775 0.205887198 0.336812712 1 0.976873313 0.279076909 0.194122751 0.447045636 0.220195461 0.2781145 0.133404297 -PA3419 0.247869249 0.386970689 0.486204699 0.771107469 0.880694613 0.274082701 0.372240956 0.367798897 0.104722492 0.199242955 0.268967465 -PA3420 0.27272761 0.345846681 0.233637767 0.481686935 0.48638956 0.324895174 0.228028015 0.313649094 0.274025417 0.260955035 0.272361147 -PA3421 0.066212142 0.071415715 0.111490063 0.248092634 0.286265348 0.118509135 0.127788123 0.1420776 0.08857538 0.137588169 0.088601599 -PA3422 0.155634804 0.161734798 0.166719662 0.266260093 0.279745863 0.395657375 0.378690887 0.449986131 0.361407211 0.483577019 0.335004732 -PA3423 0.544991009 0.419669557 0.524293155 0.271516749 0.367075899 0.231988424 0.262941416 0.225973122 0.180724941 0.138042647 0.31240145 -PA3424 0.385520168 0.468277694 0.356216173 0.478777582 0.535587123 0.476508132 0.45380068 0.506209365 0.398683675 0.400052686 0.410354106 -PA3425 0.171224532 0.235884468 0.138504904 0.567744598 0.618340667 0.209875322 0.117215956 0.223924365 0.144434888 0.204552106 0.122180249 -PA3426 0.237335554 0.137938704 0.262763467 0.746660003 0.626813543 0.198305893 0.11999524 0.118150606 0.236696101 0.32145945 0.114277355 -PA3427 0.195039375 0.371119542 0.242454099 0.576048412 0.606478822 0.362572445 0.243824771 0.314172803 0.2533363 0.460507846 0.331921499 -PA3428 0.170431317 0.112460208 0.10080277 0.496528687 0.521749733 0.248132158 0.30855663 0.317802517 0.231852552 0.26092866 0.313081995 -PA3429 0.189551522 0.208281808 0.062788752 0.725357077 0.7979182 0.205759181 0.213274759 0.192598092 0.24690861 0.221927638 0.264661831 -PA3430 0.218060215 0.225828001 0.201692585 1 0.932193143 0.172208697 0.047333737 0.258509615 0.108144037 0.165314782 0.065053494 -PA3431 0.210948953 0.312470338 0.165965469 0.245221081 0.251082332 0.170447101 0.209601648 0.172581954 0.234294382 0.206889274 0.231500464 -PA3432 0.242759817 0.254502503 0.132279276 0.249752319 0.305223439 0.018921586 0.07079832 0.08673433 0.103088912 0.069283826 0.079474386 -PA3433 0.417125908 0.388052705 0.230427203 0.365880511 0.313031691 0.275964564 0.355102237 0.303055102 0.28540655 0.538705833 0.491137948 -PA3435 0.829321768 0.751632316 0.8327509 0.597318586 0.645059061 0.397623851 0.390692917 0.549567567 0.341710763 0.374655781 0.345123235 -PA3436 0.52969129 1 0.217623686 0.29595957 0.215635671 0.338601885 0.374727675 0.287896708 0.170796481 0.31115451 0.408751974 -PA3437 0.697372187 0.599139517 0.417394581 0.297554362 0.341905128 0.781121184 0.728118806 0.875138774 0.716346584 0.688469824 0.820557021 -PA3438 0.629996158 0.526310809 0.655099925 0.45450855 0.548495707 0.422185537 0.547678657 0.560006115 0.497026786 0.554074925 0.520335397 -PA3439 0.620287529 0.561088119 0.774326405 0.643473968 0.658126168 0.729819592 0.679344658 0.665330223 0.598134928 0.717544538 0.664561738 -PA3440 0.77740677 0.769254702 0.869760369 0.663637414 0.697227409 0.701423599 0.661427315 0.635401305 0.703392971 0.667746162 0.687710426 -PA3441 0.074211032 0.072802845 0.261797131 0.019359334 0.045308317 0.114784747 0.233152488 0.069116412 0.312486258 0.096385074 0.218416515 -PA3442 0.148565632 0.122712464 0.315348862 0.091765426 0.11394455 0.106548614 0.116076383 0.185957527 0.161339472 0.065690416 0.18834018 -PA3443 0.079776373 0.079855181 0.243130377 0.131613715 0.099279615 0.176879548 0.163732552 0.13969118 0.100598347 0.095071721 0.198060971 -PA3444 0.048698337 0.068937401 0.29755745 0.107123054 0.080715049 0.107171995 0.086427942 0.070950943 0.095307718 0.0842745 0.114196857 -PA3445 0.105161752 0.138283449 0.298886057 0.129008502 0.119684022 0.123800588 0.119299465 0.206698398 0.092032079 0.117036235 0.179988651 -PA3446 0.071909329 0.131031583 0.366676829 0.081391206 0.034939982 0.149511436 0.116089901 0.11541631 0.155677925 0.06662574 0.113341433 -PA3447 0.111517991 0.127909356 0.065004232 0.115253832 0.124263023 0.099082658 0.094097446 0.123807537 0.116387645 0.080562144 0.173026363 -PA3448 0.098570723 0.064398224 0.067547069 0.112314782 0.08313898 0.164524386 0.262589878 0.195043418 0.246326281 0.187212483 0.192434601 -PA3449 0.056177123 0.077700628 0.07010997 0.077189646 0.08680744 0.134717541 0.104221171 0.251973028 0.172238219 0.120942002 0.078435749 -PA3450 0.036487214 0.222643794 0.309742482 0.190881403 0.266433479 0.270052121 0.243567378 0.153127405 0.266304332 0.249553218 0.251103566 -PA3451 0.029190593 0.038738942 0.038729903 0.525839618 0.523510011 0.73135079 0.466733203 0.767180814 0.43172414 0.716762029 0.402016118 -PA3452 0.582086223 0.609606683 0.424082147 0.067061141 0.094290252 0.377639382 0.653766123 0.294353407 0.623818953 0.44627915 0.660688577 -PA3453 0.70268443 0.628878796 0.555726276 0.227030847 0.264649974 0.251874748 0.174332755 0.192994008 0.336631276 0.352652781 0.399811973 -PA3454 0.163587094 0.190058291 0.200204982 0.206054128 0.183067668 0.238058116 0.125720376 0.276625227 0.077593626 0.359230966 0.015409345 -PA3455 0.419985971 0.72547365 0.520516334 0.871635638 0.88835774 0.524193749 0.432940796 0.627982654 0.412309716 0.414389034 0.295711139 -PA3456 0.60043558 0.405014201 0.50806638 0.590076871 0.596284353 0.238254936 0.126893893 0.086052819 0.150172262 0.035226052 0.038896879 -PA3457 0.590323479 0.375024639 0.332206201 0.53998476 0.501760018 0.38510176 0.379054929 0.381229604 0.374626923 0.383531611 0.383019037 -PA3458 0.263675641 0.789722962 0.284767979 0.622972173 0.639489804 0.453521565 0.275778516 0.473653426 0.318874636 0.380039975 0.179830261 -PA3459 0.122352884 0.266071366 0.278410777 0.441441964 0.490216632 0.380312936 0.196480427 0.340483314 0.254134656 0.348200179 0.211214436 -PA3460 0.131294258 0.282299524 0.409032974 0.49861735 0.581401992 0.405353783 0.175369451 0.438342742 0.209298564 0.423315339 0.23353753 -PA3461 0.154693216 0.225954429 0.396213647 0.510721892 0.623828305 0.332694532 0.184283704 0.346563317 0.17909171 0.357364044 0.173730574 -PA3462 0.342191326 0.330742146 0.245634672 0.608015425 0.608868238 0.22277963 0.347974885 0.5629824 0.261858906 0.218719837 0.306952207 -PA3463 0.627472065 0.566431874 0.663895748 0.52594998 0.577232727 0.31646256 0.071295114 0.297275654 0.346616851 0.074148737 0.029227214 -PA3464 0.173507 0.154292152 0.129019293 0.162126293 0.184337273 0.114723442 0.140357981 0.103202883 0.080612212 0.134299536 0.175803718 -PA3465 0.121038357 0.651786508 0.345414495 0.85917564 0.886644437 0.387775263 0.243665041 0.43203938 0.245531524 0.256271897 0.275187909 -PA3466 0.683159808 0.752778802 0.538618292 0.515082123 0.370596816 0.457918287 0.403661848 0.439481157 0.473419867 0.457486272 0.590844039 -PA3467 0.141799729 0.139159458 0.192854616 0.199260606 0.187288075 0.437492091 0.340926201 0.393875095 0.287386518 0.301151154 0.431893646 -PA3468 0.700458941 0.484912433 0.751017329 0.268829395 0.234027465 0.464934852 0.462983292 0.26712524 0.50500635 0.425298503 0.526493314 -PA3469 0.439216375 0.561401121 0.480273515 0.331637478 0.311210973 0.275604516 0.279322775 0.309580074 0.380819558 0.239010202 0.345827297 -PA3470 0.771969629 0.513349828 0.976280107 0.537441616 0.514354063 0.312048008 0.244848632 0.345152163 0.321809675 0.381787334 0.359023672 -PA3471 0.481128815 0.507631481 0.679491414 0.450699126 0.414553767 0.308954965 0.428073345 0.192090903 0.481732333 0.278284197 0.463486596 -PA3472 0.414931199 0.458106044 0.867015957 0.677192494 0.682822707 0.533413881 0.657958851 0.517052061 0.721992431 0.535794637 0.704697864 -PA3473 0.470890023 0.170506007 0.393850272 0.217695131 0.245225685 0.418604064 0.549227375 0.503557548 0.441233418 0.374765673 0.560449323 -PA3474 0.702644759 0.351145305 0.568769613 0.320254495 0.354963246 0.252821174 0.262295176 0.42332884 0.303116508 0.176045373 0.428223419 -PA3475 0.772442918 0.34856954 0.735041658 0.408505387 0.422685204 0.100018611 0.306658289 0.203281123 0.441044455 0.256801257 0.375186956 -PA3476 0.647001752 0.28984473 0.731636078 0.61512245 0.615617011 0.389982894 0.435330831 0.349333589 0.405457025 0.429427445 0.428831698 -PA3477 0.49036343 0.409812246 0.563708429 0.965860548 0.952281179 0.832700059 0.748815537 0.827961144 0.715518636 0.805890568 0.724078835 -PA3478 0.173329732 0.045532882 0.236338348 0.757529848 0.687900972 0.556951616 0.492750434 0.537422611 0.554145795 0.549120168 0.456331735 -PA3479 0.205741438 0.063036203 0.285346964 0.878039787 0.820083838 0.621254098 0.566282455 0.668409595 0.588083352 0.643755904 0.548850354 -PA3480 0.876913368 0.711658136 0.887906314 0.478941004 0.50990768 0.436925343 0.655804065 0.376157309 0.627195293 0.398110804 0.455274213 -PA3481 0.837189363 0.830838436 0.877248853 0.633927993 0.647469646 0.680401807 0.723402461 0.576665281 0.675241027 0.647580132 0.651754813 -PA3482 0.864466857 0.793136098 0.931410877 0.570351648 0.553495993 0.620843062 0.649797149 0.57588737 0.651167615 0.659352122 0.655732254 -PA3483 0.774145536 0.506357363 0.646159617 0.269430895 0.277203674 0.593888293 0.624315401 0.396880738 0.585331389 0.576217591 0.564569101 -PA3484 0.61678788 0.632995622 0.446235715 0.316259303 0.351680924 0.584506735 0.543335928 0.470706801 0.507459625 0.60401524 0.495291443 -PA3485 0.462399458 0.544871307 0.267656584 0.42270638 0.35051893 0.453489095 0.597255257 0.405193405 0.591520437 0.466141802 0.63326527 -PA3486 0.496011156 0.353678299 0.336449274 0.437947651 0.403672798 0.351802149 0.450969565 0.340282192 0.333962812 0.308843721 0.420728963 -PA3487 0.419922923 0.355291754 0.384282379 0.321163017 0.315341492 0.23430996 0.190903981 0.136609584 0.228670323 0.221635774 0.188073115 -PA3488 0.383717474 0.43457794 0.346591297 0.28717517 0.286944266 0.192648522 0.116100924 0.170476611 0.135903905 0.112981251 0.151616171 -PA3489 0.706376179 0.497854965 0.505883313 0.496114074 0.553086487 0.3619758 0.508543729 0.388161809 0.530956556 0.314373169 0.468849455 -PA3490 0.82961132 0.443038805 0.701020376 0.587586423 0.523111616 0.275887302 0.287941484 0.314180062 0.350723968 0.325434783 0.18392695 -PA3491 0.606325236 0.560418759 0.589729908 0.392652614 0.419868457 0.33826603 0.332825778 0.261194877 0.292543082 0.313839385 0.26958723 -PA3492 0.645653338 0.43002481 0.486406822 0.349558576 0.325269087 0.422580237 0.413889229 0.377039164 0.356490051 0.397760632 0.366775933 -PA3493 0.819651868 0.602521011 0.676710553 0.371369639 0.429484542 0.603170214 0.493275735 0.667098502 0.502013342 0.704612401 0.534319177 -PA3494 0.632780721 0.495894367 0.437046327 0.382818028 0.371753037 0.737232584 0.628852507 0.719365238 0.598772141 0.730993718 0.763802815 -PA3495 0.57822082 0.3270122 0.622581568 0.33565939 0.289466948 0.742063629 0.693488372 0.573949395 0.676641284 0.68361468 0.724040908 -PA3496 0.646311147 0.39859052 0.727511082 0.798830045 0.823992063 0.758535534 0.727187069 0.811395108 0.717158272 0.777610827 0.668327646 -PA3497 0.236779994 0.270647918 0.200358375 0.247804996 0.237700811 0.204500658 0.247936699 0.23535002 0.15599143 0.193353686 0.228563644 -PA3498 0.182516382 0.330601573 0.079000796 0.249433674 0.141752359 0.280471808 0.258988577 0.228710726 0.219384031 0.184550642 0.363817695 -PA3499 0.26459921 0.299544363 0.201189207 0.270914094 0.196892217 0.252777941 0.266718492 0.296892631 0.244080046 0.267238819 0.30982054 -PA3500 0.32476979 0.418381986 0.265074791 0.381332931 0.31301122 0.343145415 0.336901218 0.422969156 0.354848193 0.319488424 0.355466275 -PA3501 0.241639759 0.461373526 0.171511418 0.160727993 0.152454276 0.10578477 0.147919278 0.200004233 0.102458684 0.088799887 0.157136031 -PA3502 0.211276512 0.334805962 0.103150567 0.254326574 0.1020351 0.222534998 0.135243929 0.104649797 0.131895623 0.145292974 0.167438036 -PA3503 0.380332257 0.440364566 0.226049013 0.342665151 0.297101399 0.366975241 0.315734279 0.395997144 0.26062932 0.358506963 0.468901032 -PA3504 0.320837471 0.413930962 0.212372702 0.281357417 0.259105457 0.417091135 0.335434233 0.410837446 0.440069825 0.288008482 0.390020169 -PA3505 0.275458192 0.349607671 0.217331729 0.365869943 0.311914201 0.41183195 0.300871026 0.330132575 0.357691952 0.33535009 0.372978467 -PA3506 0.250105422 0.318855547 0.196526687 0.296138758 0.224052211 0.460216555 0.302428092 0.384785863 0.298731399 0.365069113 0.442774729 -PA3507 0.3528403 0.413787775 0.263535081 0.324324824 0.207678366 0.304625904 0.28062328 0.408784888 0.345393836 0.300159073 0.234287952 -PA3508 0.348532482 0.354658614 0.241372557 0.337209598 0.350705847 0.435502571 0.343846423 0.361244999 0.258095304 0.365728611 0.25796842 -PA3509 0.162372355 0.230057666 0.115411221 0.211380849 0.168845998 0.258433269 0.252805196 0.167518764 0.227349163 0.237099993 0.214760789 -PA3510 0.150268693 0.295090983 0.128338393 0.184272821 0.166764793 0.166692449 0.206279431 0.182979591 0.172718075 0.149592005 0.182463443 -PA3511 0.277509331 0.380430649 0.088775235 0.371538273 0.343218442 0.250361902 0.360896752 0.262107963 0.277687068 0.241452593 0.374281804 -PA3512 0.207589356 0.309605022 0.246157214 0.242549328 0.184337726 0.239614959 0.295209856 0.304151331 0.413924941 0.288434243 0.391122812 -PA3513 0.241514753 0.329417588 0.159140345 0.252708221 0.193643313 0.263639364 0.266739573 0.314995425 0.312536606 0.325743415 0.316629411 -PA3514 0.240338134 0.24061268 0.10144214 0.21434574 0.186934783 0.236598615 0.274243334 0.202114179 0.17782073 0.20661212 0.221993878 -PA3515 0.14248695 0.094067703 0.176189293 0.234333218 0.245536817 0.18252725 0.193550638 0.150380725 0.152766709 0.158829323 0.209389474 -PA3516 0.094073575 0.097417383 0.132341169 0.111419017 0.131616864 0.052382436 0.127094636 0.075323602 0.142665546 0.088067652 0.134639236 -PA3517 0.148059708 0.142750194 0.066734102 0.108554182 0.092609011 0.124603966 0.189442565 0.187673541 0.109048606 0.138316521 0.109671698 -PA3518 0.133824772 0.125837535 0.086237971 0.145107174 0.100295715 0.181299147 0.112169853 0.168237177 0.138101187 0.154567526 0.157912781 -PA3519 0.130379525 0.099270965 0.059254387 0.150930741 0.133369869 0.13995518 0.075566072 0.1950478 0.162765951 0.128617878 0.052802196 -PA3520 0.099175283 0.07346238 0.117065683 0.823258827 0.759284363 0.58851285 0.339842592 0.694080241 0.388775646 0.619653332 0.313994827 -PA3521 0.263594975 0.18210319 0.180489652 0.243572155 0.172599377 0.263631293 0.224063942 0.334550644 0.304825191 0.201872564 0.276594315 -PA3522 0.162875325 0.10522549 0.129073717 0.186491134 0.22624251 0.048736116 0.150016038 0.176531643 0.213633871 0.102966227 0.206180033 -PA3523 0.188149851 0.160098831 0.151640229 0.189434018 0.159586059 0.160087694 0.153251895 0.294436518 0.205339236 0.211327758 0.133372213 -PA3524 0.723710928 0.916501714 0.62608747 0.5686563 0.620256354 0.6805637 0.563716046 0.663941234 0.568705941 0.702682686 0.582307115 -PA3525 0.764390156 0.794132797 0.832662467 0.247750047 0.288212918 0.593007261 0.652059326 0.628004695 0.658449575 0.604083084 0.654542606 -PA3526 0.480199418 0.537516001 0.475385102 0.310445038 0.338710202 0.413874066 0.518849658 0.560889942 0.449446562 0.404305401 0.464746593 -PA3527 0.801441399 0.761156282 0.762392227 0.371482886 0.417627047 0.3612498 0.438360782 0.536344165 0.600437331 0.477732706 0.507520777 -PA3528 0.888397788 0.761481228 0.758401955 0.448677428 0.467548602 0.572183107 0.562237029 0.443154138 0.581794473 0.679000747 0.648562941 -PA3529 0.718414466 0.806286356 0.839278656 0.879246765 0.876892519 0.633292738 0.689001029 0.611800439 0.712478354 0.663983677 0.706349719 -PA3530 0.526993987 0.027475306 0.674978685 0.320199552 0.304294919 0.912403332 0.989532184 0.89564486 0.997649294 0.902525241 0.979055544 -PA3531 0.379598023 0.807222961 0.261981768 0.799877523 0.791714371 0.733739491 0.521275134 0.870495113 0.538094627 0.7683222 0.53659896 -PA3532 0.471739214 0.219380667 0.247609644 0.298720481 0.2335196 0.398289422 0.42211306 0.386130726 0.360843997 0.376168004 0.396449731 -PA3533 0.67863848 0.663791124 0.611758697 0.785523283 0.783508467 0.992073858 0.875316197 0.975205503 0.828025348 0.977382964 0.854894176 -PA3534 0.295872793 0.346078183 0.33465074 0.407334073 0.489699486 0.375018731 0.115298268 0.467239493 0.30198026 0.4102639 0.33167648 -PA3535 0.609025945 0.31934814 0.616040373 0.353536265 0.26223088 0.380500943 0.331409088 0.31846905 0.320693209 0.413755378 0.330303053 -PA3536 0.352415956 0.15110015 0.507758297 0.502125251 0.497145624 0.256020055 0.28875263 0.427849417 0.308433356 0.279279841 0.310697962 -PA3537 0.855780977 0.864774265 0.974821136 0.339875664 0.375058583 0.546862474 0.723365402 0.459183709 0.715521787 0.531537184 0.782871387 -PA3538 0.6574705 0.491738323 0.797243212 0.321330347 0.331037896 0.491834286 0.816649237 0.406967519 0.694020773 0.525526621 0.835954048 -PA3539 0.692781737 0.744841228 0.772705022 0.315750695 0.421183664 0.579684821 0.755998178 0.558118702 0.617522361 0.496407243 0.653348616 -PA3540 0.101536294 0.084174943 0.11393225 0.118234371 0.132065541 0.143689948 0.138526638 0.136468463 0.112250304 0.136506625 0.168244422 -PA3541 0.067956454 0.065409565 0.064750856 0.095116021 0.087626443 0.180787622 0.147350155 0.178019274 0.117673895 0.11119196 0.12311316 -PA3542 0.193629852 0.212467834 0.19509692 0.192121575 0.180132273 0.161969955 0.099244231 0.118428596 0.12288843 0.178228283 0.08514124 -PA3543 0.088186595 0.071842678 0.078181376 0.072464827 0.101963014 0.132196536 0.11675658 0.149722991 0.102191093 0.142559608 0.106462796 -PA3544 0.129512628 0.129549456 0.110468846 0.188763247 0.185428353 0.14007795 0.083842367 0.132577858 0.099150419 0.084174196 0.119514764 -PA3545 0.122275702 0.154464297 0.08250035 0.11518163 0.09443661 0.132610971 0.163055796 0.297896513 0.156961971 0.168138711 0.164806152 -PA3546 0.155110357 0.254801575 0.16254677 0.181295115 0.191350099 0.166675654 0.165891799 0.11667323 0.121755623 0.102655777 0.148860741 -PA3547 0.076144225 0.060811298 0.115238767 0.119659497 0.074872981 0.127187496 0.057862436 0.09271552 0.092395571 0.126316759 0.134935711 -PA3548 0.11110859 0.106351181 0.15288732 0.112206827 0.12377935 0.235863448 0.091209449 0.128560923 0.197706044 0.190647268 0.154130392 -PA3549 0.173358487 0.194085213 0.164314224 0.236900701 0.199807975 0.198023096 0.222837291 0.277170819 0.142041019 0.232765862 0.193225404 -PA3550 0.130009351 0.151721194 0.196071613 0.258047996 0.241338081 0.188529434 0.088802907 0.167401243 0.162498007 0.190942728 0.129625322 -PA3551 0.097365353 0.085814506 0.247009712 0.258708716 0.248868024 0.278144722 0.176632705 0.308137714 0.082168347 0.174225812 0.130157072 -PA3552 0.084690823 0.380323581 0.329592036 0.113164858 0.080071199 0.215245444 0.252341734 0.081882434 0.204677748 0.179516372 0.271162001 -PA3553 0.108833809 0.329708608 0.346940374 0.250681912 0.247732342 0.233943479 0.340685083 0.185344715 0.255775004 0.336978645 0.264651833 -PA3554 0.160090199 0.380332503 0.389525581 0.187014869 0.155599929 0.388440435 0.306538279 0.199711378 0.339247018 0.367427123 0.377113037 -PA3555 0.209556168 0.332001299 0.210646821 0.165773841 0.151657083 0.250556043 0.224306994 0.396277186 0.248858616 0.241890256 0.253325614 -PA3556 0.137930364 0.314091335 0.260666127 0.12706271 0.079384016 0.374417713 0.371315399 0.388120721 0.254437694 0.414580039 0.309198603 -PA3557 0.128210422 0.209480481 0.17379859 0.117735622 0.078399342 0.260556955 0.382317843 0.300926864 0.226854583 0.257539926 0.356136319 -PA3558 0.118999446 0.223443017 0.227154581 0.072553534 0.057621733 0.156601781 0.164812146 0.100953545 0.230680985 0.141479162 0.224448936 -PA3559 0.079418964 0.291782256 0.284087207 0.123194001 0.086389555 0.412813149 0.428578269 0.301776927 0.4054512 0.408736247 0.3655083 -PA3560 0.217340106 0.701681053 0.219360069 0.185584359 0.213041401 0.599252736 0.621624926 0.372038769 0.588440444 0.436835056 0.552206504 -PA3561 0.268622063 0.708059194 0.30914613 0.326963041 0.329267394 0.628012154 0.720148112 0.513434553 0.705385537 0.707388654 0.685753697 -PA3562 0.263612119 0.779481159 0.285248335 0.340341454 0.353106053 0.44295567 0.546598463 0.382568456 0.5463978 0.432792041 0.501617084 -PA3563 0.661716623 0.882631781 0.648019275 0.759334191 0.744687252 0.358683097 0.392911707 0.310743071 0.436783066 0.354306391 0.500664738 -PA3564 0.518292066 0.550042248 0.454261832 0.512828557 0.524888826 0.539020907 0.487677242 0.409698061 0.644334731 0.476942273 0.460540578 -PA3565 0.372682888 0.484036801 0.338316018 0.347216878 0.429280577 0.316671172 0.220147466 0.335807509 0.351506338 0.338996516 0.390314959 -PA3566 0.46693137 0.78861713 0.462582368 0.308739043 0.357311812 0.312113751 0.315189453 0.226789097 0.302976565 0.398464129 0.206677624 -PA3567 0.432780682 0.580592628 0.444485663 0.264790032 0.309047794 0.190491816 0.349478512 0.299548579 0.277127539 0.266035424 0.287890207 -PA3568 0.080151763 0.103800579 0.099591264 0.155083083 0.162942736 0.052746999 0.072475533 0.184725923 0.119809784 0.082543329 0.035577652 -PA3569 0.080519994 0.077056859 0.087895773 0.215189452 0.183322586 0.224735336 0.083910171 0.21529534 0.09359106 0.206358719 0.094140659 -PA3570 0.033754415 0.081263369 0.10312211 0.202557477 0.245152913 0.242934294 0.15776427 0.226578689 0.15200814 0.203425345 0.101542855 -PA3571 0.507421697 0.395461633 0.636522218 0.555381092 0.518105486 0.440450534 0.401496096 0.48691836 0.437764681 0.53364364 0.416499413 -PA3572 0.190846272 0.759771974 0.337840907 0.858160106 0.869740879 0.133293883 0.067853262 0.286091577 0.108285021 0.211904379 0.061489807 -PA3573 0.333002964 0.201635981 0.263915515 0.381186314 0.386456957 0.254157789 0.335720504 0.346952604 0.413103394 0.346131219 0.333610284 -PA3574 0.430684976 0.315730402 0.313907339 0.268854767 0.330192851 0.229315767 0.208438436 0.367839435 0.137775786 0.183189992 0.235344058 -PA3575 0.333320535 0.538995057 0.43724473 0.22068698 0.30865079 0.393306003 0.388556381 0.383901546 0.32752117 0.382856865 0.36158511 -PA3576 0.392525638 0.47928282 0.402495183 0.926036411 0.904325814 0.586710452 0.352781845 0.778929467 0.423244076 0.646677194 0.470893208 -PA3577 0.415005702 0.248076177 0.571755128 0.634625959 0.652995906 0.079679484 0.000921903 0.039949386 0.059466887 0.052910329 0.030120456 -PA3578 0.171475373 0.243411672 0.354161309 0.364807222 0.355598285 0.090578597 0.05885103 0.354983022 0.159855117 0.177193323 0.108643631 -PA3579 0.655749117 0.762852822 0.623321273 0.348868474 0.422076328 0.343319193 0.411268599 0.467522855 0.352696728 0.356252198 0.354851308 -PA3580 0.496487977 0.630320492 0.490608325 0.292169116 0.230921504 0.392139391 0.445983924 0.386562214 0.430060178 0.433246788 0.318575249 -PA3581 0.254713102 0.722885296 0.118638616 0.491645713 0.59685996 0.521636633 0.391194985 0.635058034 0.377023979 0.581698173 0.291491456 -PA3582 0.189608561 0.550898417 0.2163593 0.350609161 0.385329251 0.321111074 0.267605967 0.322225482 0.229920669 0.251246415 0.178674271 -PA3583 0.543190375 0.564502113 0.566094535 0.074476528 0.152490612 0.374555724 0.355947376 0.406783397 0.287249138 0.260130066 0.226973969 -PA3584 0.221538354 0.685213132 0.206483288 0.426232466 0.460467894 0.439105673 0.126781311 0.503019921 0.112095811 0.430381058 0.108553914 -PA3585 0.346457415 0.22336004 0.450940059 0.220270092 0.224404146 0.201011826 0.296873049 0.180935802 0.152875313 0.108804117 0.290754514 -PA3586 0.190590553 0.221574714 0.221354471 0.244285709 0.218516705 0.19172576 0.303437164 0.083850816 0.218235095 0.215596239 0.251417928 -PA3587 0.43635923 0.58593085 0.259316856 0.89900706 0.507426176 0.362318508 0.571952899 0.391122698 0.455283093 0.296776171 0.444112986 -PA3588 0.249227216 0.21034484 0.231906356 0.463576045 0.304589426 0.467469811 0.412780862 0.313884054 0.396544167 0.357927852 0.403058958 -PA3589 0.307426813 0.27485424 0.187194161 0.23626744 0.176705856 0.387074334 0.265382168 0.507206483 0.21711887 0.319356468 0.400289795 -PA3590 0.231275573 0.167920156 0.171143145 0.205012059 0.188431595 0.448973835 0.276714264 0.370996198 0.344885909 0.360922139 0.440282983 -PA3591 0.329729964 0.274017376 0.25748124 0.315006272 0.297838406 0.337264134 0.319992356 0.279805196 0.259464929 0.32062284 0.364502414 -PA3592 0.343514047 0.323905549 0.227988538 0.351680214 0.211398316 0.455670147 0.319258488 0.528121141 0.451397974 0.498284093 0.331530856 -PA3593 0.271019699 0.342484328 0.301859322 0.417177291 0.363619009 0.492188206 0.269352922 0.336860771 0.310785411 0.311958179 0.276246025 -PA3594 0.450700227 0.427451936 0.504875047 0.382283893 0.454231076 0.185590282 0.319733514 0.236071665 0.178451482 0.187264429 0.233804827 -PA3595 0.207398025 0.141682301 0.122410685 0.21341605 0.12150062 0.348485715 0.194377917 0.155624936 0.361298632 0.177550546 0.311967822 -PA3596 0.307726012 0.25024455 0.380371634 0.656715464 0.522826382 0.257503678 0.381059063 0.319973455 0.464149014 0.419598293 0.535004273 -PA3597 0.22869671 0.187942393 0.455593918 0.341969531 0.237274449 0.531092623 0.416306122 0.452358173 0.392959736 0.414169685 0.274619172 -PA3598 0.225276684 0.267902097 0.713511751 0.456869067 0.468686572 0.199521201 0.31858598 0.233980855 0.243731102 0.171766828 0.061653485 -PA3599 0.200703215 0.225430132 0.767391892 0.348307913 0.317263306 0.256871124 0.185923758 0.274321725 0.141732813 0.260629581 0.189276106 -PA3600 0.132276394 0.075992104 0.819246732 0.709181892 0.740157011 0.322811204 0.243292533 0.424717563 0.287830315 0.300726144 0.292914794 -PA3601 0.217049124 0.152713045 0.715415293 0.725518773 0.746040085 0.250452489 0.173262503 0.334521884 0.191163045 0.327295399 0.190938557 -PA3602 0.457278119 0.524561567 0.721197176 0.533928819 0.546491561 0.387274945 0.393184773 0.25678503 0.424448852 0.35133649 0.456494195 -PA3603 0.642154095 0.386495841 0.714440458 0.180531179 0.157554524 0.209674265 0.375236358 0.350041509 0.392660707 0.406092244 0.386218605 -PA3604 0.716245517 0.620963303 0.749650377 0.448761399 0.376657323 0.317948617 0.384104548 0.40973782 0.396667134 0.390364335 0.540089605 -PA3605 0.459977145 0.212678028 0.448787364 0.30221644 0.295171387 0.458904518 0.399016404 0.545673893 0.48956015 0.388186728 0.458568388 -PA3606 0.539498584 0.445288676 0.547009429 0.189130349 0.178404922 0.224336103 0.398784698 0.052386145 0.536999264 0.282202025 0.460348422 -PA3607 0.753830821 0.330759334 0.250709522 0.262067137 0.192559723 0.162541087 0.169418872 0.030814491 0.14519345 0.090612779 0.023779829 -PA3608 0.771375218 0.26336694 0.362210129 0.316751458 0.225510793 0.343274422 0.26463079 0.307320985 0.268035577 0.345204384 0.349806821 -PA3609 0.649551903 0.350804782 0.24839361 0.304198929 0.207295248 0.400827782 0.338467062 0.244540102 0.252330272 0.137591624 0.395502825 -PA3610 0.791218695 0.51319014 0.398221896 0.307241977 0.308685908 0.273690843 0.25168829 0.363329052 0.28737121 0.211943254 0.256547735 -PA3611 0.80509476 0.682906574 0.768607046 0.534057689 0.664835302 0.666088664 0.672010282 0.675307701 0.681619346 0.696340624 0.720824799 -PA3612 0.391990933 0.393526885 0.435528179 0.152985588 0.132068745 0.542046965 0.848813128 0.606339072 0.790103964 0.655996689 0.794103989 -PA3613 0.180838648 0.690739246 0.230547757 0.531084196 0.509476049 0.512820839 0.244065718 0.472828475 0.206870187 0.508892875 0.229581113 -PA3614 0.111875005 0.648369356 0.329677812 0.568410172 0.56600783 0.420724325 0.122955873 0.475431935 0.156734516 0.392664874 0.220021793 -PA3615 0.168096182 0.597989045 0.523380222 0.694576573 0.638679957 0.520719893 0.359528791 0.543139503 0.320703292 0.472619622 0.421430042 -PA3616 0.55583092 0.391875474 0.366018352 0.160825096 0.196402143 0.217070245 0.415308554 0.236686404 0.351403009 0.229941878 0.431329957 -PA3617 0.586742568 0.449496625 0.474565685 0.405687188 0.455784168 0.523535061 0.53837713 0.430784412 0.547607126 0.502274883 0.544670954 -PA3618 0.446207283 0.513339421 0.479671871 0.383131985 0.390205378 0.518737172 0.466384684 0.292947852 0.420300547 0.417325946 0.627302992 -PA3619 0.052051917 0.113065048 0.151948747 0.209918085 0.21586286 0.329346673 0.342903327 0.318612691 0.347103366 0.248243144 0.328609823 -PA3620 0.833677133 0.78253707 0.711538683 0.207627291 0.159914072 0.358003532 0.443483252 0.302128237 0.587084853 0.425988336 0.457736581 -PA3621 0.872705849 0.784368266 0.935034666 0.611913389 0.640656879 0.506131917 0.638718565 0.476333256 0.600587703 0.559271525 0.645865637 -PA3622 0.365425014 0.265365461 0.623193617 0.823212379 0.828363243 0.678525577 0.583434886 0.691495499 0.594106099 0.670345774 0.62035897 -PA3623 0.356302488 0.328027633 0.507118994 0.458819134 0.491919275 0.490524022 0.510644366 0.414223207 0.417183952 0.602132696 0.364681971 -PA3624 0.808857006 0.604613597 0.923413045 0.35864099 0.326256099 0.915237112 0.885185479 0.681161447 0.91837516 0.91221831 0.845269981 -PA3625 0.884448187 0.8827532 0.827585224 0.417955205 0.421236679 0.602707211 0.474731582 0.512839818 0.592894582 0.661238213 0.599243323 -PA3626 0.756099706 0.466894623 0.616299909 0.426237517 0.495151276 0.340803632 0.263123979 0.295570658 0.480592131 0.434351251 0.400353169 -PA3627 0.790136423 0.548745206 0.800158366 0.781367119 0.790504721 0.363765243 0.238254399 0.245412322 0.300030393 0.225493051 0.425971128 -PA3628 0.496817776 0.412886102 0.697106583 0.531751421 0.544944799 0.224686072 0.22673538 0.239856661 0.205006613 0.355279426 0.228423035 -PA3629 0.376028035 0.658403012 0.726168068 0.567964055 0.546972946 0.341707919 0.251119359 0.574782807 0.263294924 0.487370399 0.361068985 -PA3630 0.461840259 0.391536699 0.548033355 0.536069137 0.490968142 0.402632059 0.316414098 0.276559776 0.326210486 0.273986797 0.482007317 -PA3631 0.371281865 0.642921989 0.284388862 0.05898988 0.066538716 0.149788075 0.164839759 0.202386031 0.177937634 0.10855225 0.11258633 -PA3632 0.649473353 0.65919335 0.435282005 0.415320183 0.378101649 0.24891955 0.419368183 0.293744348 0.34701394 0.267660131 0.256444391 -PA3633 0.758294394 0.631799497 0.461822141 0.196739925 0.073553777 0.449595331 0.468194593 0.327667135 0.475232063 0.447866201 0.47635847 -PA3634 0.647485518 0.609824196 0.661283993 0.241590006 0.286510576 0.463003268 0.72169387 0.616814739 0.666843497 0.484578022 0.732192472 -PA3635 0.85035936 0.749465939 0.853183487 0.401612428 0.398250135 0.570443064 0.627473422 0.435861567 0.653066945 0.588543092 0.629030324 -PA3636 0.662218206 0.612305007 0.719114057 0.237690372 0.24639686 0.653951519 0.729846964 0.519309292 0.691251508 0.582365835 0.725100111 -PA3637 0.897110197 0.660037277 0.933335981 0.580994459 0.599276495 0.621854207 0.620048946 0.587943745 0.602162099 0.64692756 0.668361909 -PA3638 0.503773118 0.221131249 0.369787759 0.251921407 0.319662369 0.090202739 0.136173335 0.141836625 0.204291192 0.070286755 0.103411009 -PA3639 0.742979724 0.503687276 0.553297525 0.425788052 0.441605966 0.500443904 0.658762312 0.419834718 0.657064806 0.383676445 0.617188522 -PA3640 0.835432651 0.731801393 0.752037351 0.325630337 0.216958962 0.547911818 0.655629436 0.497565638 0.694615802 0.566963769 0.664552418 -PA3641 0.751671964 0.485059664 0.372891322 0.148024225 0.10025203 0.236462468 0.357445221 0.281740586 0.397083801 0.309421705 0.352854853 -PA3642 0.708928225 0.55540815 0.64699544 0.268460163 0.211409613 0.452601251 0.72912631 0.167785594 0.738928329 0.445884901 0.808229115 -PA3643 0.918523924 0.666290361 0.700076846 0.151948642 0.162869437 0.498013969 0.594745396 0.445087483 0.456946512 0.50254286 0.585648644 -PA3644 0.787879152 0.609252959 0.809317263 0.109688555 0.156882286 0.449136175 0.541959637 0.237808257 0.562232749 0.436597467 0.59055703 -PA3645 0.848050431 0.813503434 0.797008094 0.317131141 0.387747687 0.629726083 0.713294953 0.61290195 0.660456466 0.614836625 0.660159182 -PA3646 0.837163686 0.657523875 0.780696915 0.26477602 0.365906485 0.918994296 0.911143552 0.814360316 0.909841633 0.938160084 0.948519874 -PA3647 0.773827334 0.669975852 0.847507836 0.27067773 0.277670953 0.771354773 0.847704735 0.592039768 0.840639706 0.773585035 0.816985493 -PA3648 0.745699978 0.58509334 0.701377954 0.200813545 0.190273528 0.628456051 0.77181861 0.587644046 0.74422541 0.722337925 0.765598447 -PA3649 0.503722472 0.229899219 0.265547073 0.289627185 0.32558845 0.323958764 0.444477552 0.374383113 0.429972422 0.307163995 0.431822649 -PA3650 0.869523738 0.484422433 0.600447148 0.203303764 0.143545082 0.500061155 0.478374277 0.371148548 0.466396716 0.484696954 0.486672023 -PA3651 0.989830039 0.538925104 0.790780921 0.22003505 0.225253946 0.507262964 0.579379461 0.371963842 0.521478286 0.455463722 0.562130808 -PA3652 0.95106141 0.570720165 0.806630956 0.399762064 0.381669446 0.514660006 0.452790933 0.384159945 0.474323756 0.49818327 0.468916652 -PA3653 0.942957917 0.826758312 0.903460245 0.536107545 0.564682359 0.682897252 0.74692108 0.700216051 0.708079815 0.721310925 0.728202473 -PA3654 0.91834431 0.835165464 0.777177415 0.3737871 0.38078387 0.584374973 0.666771141 0.494331909 0.682621274 0.564857691 0.617837412 -PA3655 0.941273971 0.891132589 0.864182421 0.360555254 0.370754341 0.445494631 0.697955658 0.331598035 0.631287019 0.455269698 0.613144939 -PA3656 0.915535764 0.835350713 0.923379035 0.561982286 0.559974518 0.575674383 0.738421518 0.545171253 0.724399741 0.572400135 0.758351701 -PA3657 0.779010991 0.827117934 0.706275187 0.590235222 0.600700397 0.80570087 0.778850604 0.773094966 0.766027486 0.799351022 0.73532602 -PA3658 0.553355744 0.46782714 0.409173125 0.228522634 0.200193557 0.746670002 0.686732628 0.58897956 0.709631706 0.797877934 0.704161479 -PA3659 0.874940525 0.938560416 0.767941419 0.568712689 0.485314895 0.607237563 0.475205405 0.477387167 0.550943731 0.633049326 0.539197625 -PA3660 0.390080641 0.65313858 0.486775367 0.37985591 0.312686203 0.375422422 0.638511491 0.399217592 0.536430236 0.461191927 0.530347539 -PA3661 0.126185146 0.153807068 0.068992644 0.077475858 0.06042111 0.116423718 0.182265765 0.157216579 0.246291919 0.078807726 0.024280206 -PA3662 0.602497324 0.797192674 0.737818713 0.152257165 0.170146915 0.671607256 0.693857247 0.678312648 0.779342157 0.686172338 0.697389215 -PA3663 0.276621688 0.194531269 0.285472695 0.164338127 0.169836802 0.281068349 0.480544308 0.268597499 0.39506176 0.260941786 0.420857415 -PA3664 0.765884111 0.703520083 0.715182813 0.672374902 0.679486352 0.552988812 0.401096549 0.469959576 0.503497332 0.492860118 0.468709207 -PA3665 0.832176065 0.773871654 0.657951583 0.552437558 0.496171561 0.473922707 0.598112845 0.391425295 0.514351583 0.382055185 0.522425871 -PA3666 0.852716114 0.838538578 0.824192216 0.425106624 0.499336001 0.345320995 0.440254114 0.291677272 0.442208646 0.401067871 0.444034933 -PA3667 0.499919042 0.469769173 0.426342969 0.712089968 0.676945375 0.22879302 0.09295332 0.12252804 0.221061167 0.137893431 0.245973218 -PA3668 0.436499046 0.280346853 0.529232802 0.748719948 0.712617357 0.458094971 0.297264297 0.402902122 0.263445794 0.348240925 0.303963414 -PA3669 0.260348466 0.194851707 0.362692601 0.234737921 0.328920285 0.198836001 0.173628551 0.216233023 0.263233743 0.078484687 0.20879797 -PA3670 0.315157776 0.194891782 0.554515546 0.096152372 0.154558178 0.130311496 0.146867992 0.290460416 0.174879328 0.182716549 0.239642865 -PA3671 0.305205952 0.202207413 0.506047106 0.178508786 0.198191993 0.191622228 0.132681246 0.12774194 0.249616876 0.139909101 0.190739999 -PA3672 0.394409901 0.324996312 0.482070667 0.262290655 0.285477967 0.198071274 0.256034816 0.298719577 0.449622018 0.254929887 0.189814632 -PA3673 0.820747212 0.730703993 0.814439714 0.442455669 0.361927279 0.362356929 0.363429956 0.273138952 0.476872964 0.282735966 0.428142294 -PA3674 0.53734008 0.609187029 0.480335599 0.553628633 0.57903251 0.289946748 0.40808416 0.220071917 0.365670813 0.238982822 0.465380934 -PA3675 0.884239158 0.720463675 0.684809012 0.317227046 0.403548171 0.466203899 0.710132893 0.248666479 0.658685265 0.580668987 0.659105552 -PA3676 0.406220621 0.392825417 0.234376901 0.248762653 0.28790837 0.557159862 0.617208521 0.482580191 0.644108842 0.711578895 0.512903047 -PA3677 0.380012696 0.376035931 0.256472384 0.285678766 0.32934497 0.624772545 0.817650935 0.455608121 0.72161319 0.631579791 0.604102739 -PA3678 0.57363526 0.755144994 0.474828618 0.484974486 0.583533983 0.876873645 0.958650162 0.81517203 0.801347015 0.888754111 0.817482495 -PA3679 0.589308332 0.264267135 0.389692672 0.286736118 0.231574424 0.450541037 0.551656924 0.414290837 0.609570862 0.476990863 0.653886647 -PA3680 0.57703741 0.29810094 0.6423621 0.180683422 0.178253794 0.251653124 0.204647725 0.046673721 0.345389208 0.312004313 0.2502913 -PA3681 0.22293935 0.261541734 0.142869152 0.221896238 0.223294495 0.256490033 0.16572562 0.243199962 0.322540292 0.324854876 0.339316544 -PA3682 0.14135377 0.212988383 0.161993588 0.20433022 0.223066985 0.200966368 0.063676058 0.332761506 0.163929116 0.067845581 0.196731094 -PA3683 0.482609369 0.478819109 0.362070914 0.213491471 0.217561841 0.358498319 0.554473434 0.341505449 0.617890078 0.352175327 0.550497675 -PA3684 0.430329547 0.499669861 0.391813509 0.56668756 0.58470899 0.666262748 0.646670731 0.706445093 0.626757178 0.705534616 0.620351024 -PA3685 0.815149781 0.559787775 0.392280082 0.237743993 0.248728814 0.552602923 0.481574857 0.352892616 0.666148261 0.559073154 0.588245508 -PA3686 0.880804709 0.777461759 0.812010369 0.449336042 0.469240898 0.565755508 0.70489232 0.394793662 0.663025458 0.589329202 0.673889105 -PA3687 0.389116509 0.472751862 0.545706875 0.613284671 0.622174076 0.168819025 0.175908615 0.216476726 0.114843074 0.132515858 0.217347557 -PA3688 0.115513653 0.185534973 0.158261131 0.950929597 0.943912308 0.417364504 0.186503307 0.567093555 0.235777278 0.334077551 0.155963391 -PA3689 0.33289281 0.464876542 0.330324351 0.354919974 0.475381975 0.696940276 0.640864146 0.927978167 0.605041721 0.808795669 0.516100244 -PA3690 0.152981484 0.112709377 0.243138112 0.207859045 0.240198566 0.207096647 0.183490477 0.183837149 0.151107404 0.159032715 0.214195269 -PA3691 0.30162682 0.715195234 0.554806413 0.888975348 0.940394622 0.741057929 0.561032047 0.772022001 0.554666099 0.729493532 0.580226632 -PA3692 0.27305925 0.543550739 0.518490284 0.83208163 0.87249488 0.631253991 0.455146403 0.682654936 0.469389197 0.645942145 0.46954984 -PA3693 0.417485739 0.363064457 0.357634688 0.334143204 0.274524834 0.399595127 0.399957639 0.273893227 0.499833834 0.334808958 0.48321752 -PA3694 0.686715741 0.59596838 0.847711318 0.72465687 0.708627861 0.339227737 0.274034349 0.143524417 0.34150271 0.159391828 0.364536375 -PA3695 0.764487247 0.606911279 0.917140796 0.518632024 0.48838898 0.775421982 0.615576807 0.630658501 0.669558332 0.869150948 0.610221545 -PA3696 0.566369596 0.42486528 0.572332541 0.363495736 0.330861753 0.302420415 0.244999161 0.215621883 0.168661008 0.162757165 0.150346043 -PA3697 0.638922165 0.60100045 0.730057407 0.618205602 0.648411902 0.468633605 0.456325327 0.460775601 0.309007072 0.457541719 0.267897863 -PA3698 0.35898109 0.428658248 0.350781309 0.42512 0.432207125 0.402405682 0.419220347 0.400038785 0.297938356 0.281014482 0.342357022 -PA3699 0.884257913 0.642640374 0.993022242 0.646243013 0.643756736 0.462703898 0.493681586 0.40344457 0.559295166 0.450444776 0.51672723 -PA3700 0.900458578 0.734574401 0.859547369 0.356265117 0.363464117 0.549377292 0.672129717 0.384758063 0.645945306 0.558975412 0.660946898 -PA3701 0.803551379 0.741761751 0.792050633 0.515484716 0.551813823 0.608393796 0.712476639 0.57647268 0.666351456 0.576276831 0.683664766 -PA3702 0.481843315 0.356575134 0.560388721 0.621792737 0.650250417 0.525853706 0.466794737 0.705922358 0.519291331 0.595293439 0.341451029 -PA3703 0.472223513 0.388130719 0.649480178 0.721389618 0.691171526 0.669745436 0.64152345 0.721985795 0.656634879 0.764624599 0.770875767 -PA3704 0.544940044 0.470112498 0.670998079 0.490333916 0.479602494 0.482546566 0.479472346 0.58007469 0.375100745 0.444252193 0.473199335 -PA3705 0.67079326 0.647785773 0.761641832 0.628346885 0.639221266 0.350949472 0.138675661 0.372811851 0.133392679 0.291245749 0.228860763 -PA3706 0.386595787 0.264070737 0.541667054 0.497274569 0.443976131 0.384234856 0.286479737 0.356625297 0.213919515 0.30189484 0.321523312 -PA3707 0.330547083 0.294563645 0.2886434 0.385449223 0.393144019 0.298526724 0.227479975 0.212831407 0.241422063 0.261826163 0.202211494 -PA3708 0.352537264 0.322888739 0.35783836 0.418702246 0.406842253 0.307913108 0.307043945 0.428237193 0.272516932 0.345911748 0.261440542 -PA3709 0.179475857 0.114410614 0.079879425 0.099565535 0.177495016 0.218140742 0.2328074 0.223321955 0.244051205 0.244879232 0.329990921 -PA3710 0.121139002 0.136217224 0.07399318 0.22989351 0.2374905 0.244781021 0.306190114 0.217879103 0.23508074 0.34608251 0.254339569 -PA3711 0.27233646 0.145839045 0.180107559 0.217472371 0.23632043 0.283456824 0.150078858 0.271830899 0.270873175 0.228475696 0.255852299 -PA3712 0.043090472 0.409108259 0.197121234 0.505317149 0.537072093 0.335238196 0.124528565 0.292290478 0.161877972 0.294667472 0.123311399 -PA3713 0.451241009 0.379201805 0.515357431 0.12991794 0.133553549 0.12314534 0.10528942 0.131024399 0.12909009 0.059472999 0.160879603 -PA3714 0.460420099 0.304369974 0.423832189 0.550910894 0.552554395 0.308933827 0.357884049 0.243006396 0.23125281 0.193999142 0.378049161 -PA3715 0.366937265 0.308896917 0.355036804 0.814658529 0.756907904 0.277409872 0.322286918 0.293488917 0.255774723 0.194255223 0.252545486 -PA3716 0.663762673 0.560739469 0.474595531 0.483786696 0.533150063 0.179832585 0.160601603 0.080921993 0.207315572 0.073224062 0.124523342 -PA3717 0.821810312 0.43805519 0.983505153 0.332309501 0.356542331 0.338454491 0.57840621 0.251325167 0.63949193 0.310949723 0.640508379 -PA3718 0.154182409 0.07801043 0.186286038 0.155339146 0.125765501 0.267928042 0.271460888 0.267543772 0.202773474 0.315387947 0.18050649 -PA3719 0.217677946 0.18155693 0.204562726 0.126044025 0.054268602 0.279206259 0.20889035 0.173420028 0.245616194 0.22812144 0.231607132 -PA3720 0.22964128 0.220750698 0.216269584 0.047359459 0.038155277 0.283995313 0.226290719 0.199476405 0.153898655 0.207558116 0.211256378 -PA3721 0.187172996 0.21779944 0.24357664 0.105676133 0.080371888 0.321119193 0.324553352 0.20316928 0.29038322 0.298570345 0.265722793 -PA3722 0.864059658 0.688300791 0.740783045 0.452301213 0.479342189 0.490992528 0.477122371 0.501045292 0.43557059 0.459093622 0.39665873 -PA3723 0.110423858 0.183154966 0.237727776 0.918760345 0.915454525 0.43474033 0.304024855 0.573355786 0.278177951 0.460405713 0.254147107 -PA3724 0.314784094 0.079159696 0.402858474 0.810164883 0.732910483 0.693313579 0.484031023 0.624998235 0.550217911 0.714970816 0.516483771 -PA3725 0.523194959 0.406747126 0.277856157 0.190704362 0.048729661 0.495776525 0.496889449 0.254487389 0.451957963 0.330820023 0.477688762 -PA3726 0.785402937 0.624402165 0.472196187 0.212007076 0.198707104 0.568908692 0.541230763 0.6872506 0.520248706 0.614826537 0.725946585 -PA3727 0.392294626 0.419311869 0.230265537 0.193546289 0.17333875 0.440374481 0.523719095 0.34535719 0.470786019 0.420746519 0.41207841 -PA3728 0.312472205 0.360430035 0.181436281 0.0311967 0.042033646 0.294856607 0.475260038 0.207088277 0.316790593 0.2785058 0.318448159 -PA3729 0.619404404 0.659036874 0.52523731 0.336984809 0.331602433 0.479773686 0.488086976 0.322905322 0.515158891 0.421999205 0.43225484 -PA3730 0.304597089 0.274580475 0.160496644 0.067941857 0.104206655 0.211561756 0.263848827 0.274320026 0.287808765 0.197082511 0.344741929 -PA3731 0.502676961 0.480239231 0.48228002 0.319995221 0.31956196 0.529223436 0.538345931 0.507886606 0.58004459 0.527394806 0.530297958 -PA3732 0.524431392 0.586962871 0.456064718 0.265421997 0.254030861 0.400138649 0.289968861 0.342982209 0.370516524 0.392375468 0.271198119 -PA3733 0.387552506 0.339102907 0.384999103 0.383678352 0.409332693 0.342443906 0.380587307 0.381115524 0.424332338 0.396190798 0.489740913 -PA3734 0.073977753 0.142704164 0.133558902 0.746351845 0.690776447 0.468661421 0.350320811 0.747448096 0.265629406 0.422726465 0.298420532 -PA3735 0.920199094 0.785188984 0.926382706 0.282521097 0.352832678 0.470796024 0.449775606 0.424999326 0.55332703 0.463643163 0.504553178 -PA3736 0.976335407 0.778061895 0.889234541 0.317184571 0.316201644 0.752471959 0.711679246 0.721829117 0.73945114 0.693170788 0.726241104 -PA3737 0.582549016 0.558241745 0.533567221 0.294585134 0.333482348 0.624880654 0.503656073 0.497860222 0.603758382 0.574535708 0.568213448 -PA3738 0.806965922 0.769133727 0.633213907 0.230234745 0.187868147 0.433821509 0.424835977 0.340286348 0.399225351 0.53930223 0.506153924 -PA3739 0.252990236 0.293678905 0.411955378 0.366012942 0.31499208 0.63348709 0.348439229 0.602125917 0.553479038 0.631741597 0.369482059 -PA3740 0.288380918 0.236939957 0.360476356 0.575384063 0.586828792 0.574238957 0.470603656 0.706242187 0.533727907 0.587885092 0.498846183 -PA3741 0.785818008 0.402759629 0.575838621 0.185141497 0.098049131 0.575168919 0.62560236 0.523540232 0.64367032 0.384094193 0.579988834 -PA3742 0.852345074 0.813434765 0.784005761 0.402495564 0.45607983 0.280726616 0.44660978 0.244698289 0.452298507 0.232768146 0.414222116 -PA3743 0.860737791 0.644141016 0.741885055 0.146102058 0.185290377 0.462186954 0.755640526 0.289040413 0.692570743 0.452206188 0.71372803 -PA3744 0.769885512 0.573436607 0.669765219 0.246233034 0.297481159 0.357840779 0.668741573 0.216426905 0.566046944 0.399167382 0.606917954 -PA3745 0.900410366 0.709736477 0.773998716 0.399175078 0.407674731 0.617416709 0.818934492 0.541603191 0.786786914 0.619932029 0.78286087 -PA3746 0.82967231 0.676426631 0.773691993 0.358224733 0.294847386 0.579121595 0.778159673 0.439055803 0.722026879 0.532849008 0.800666905 -PA3747 0.74458363 0.787641071 0.598101204 0.065591406 0.084398808 0.621850219 0.532525928 0.674656147 0.635548635 0.691081027 0.618485409 -PA3748 0.702611411 0.677839872 0.619587591 0.421790256 0.446085159 0.567525611 0.796142587 0.674430692 0.776024628 0.628001821 0.740191574 -PA3749 0.24147236 0.188473981 0.536509798 0.078360853 0.130960436 0.411552602 0.359099107 0.393154964 0.353437398 0.36868225 0.444861831 -PA3750 0.471918329 0.302920576 0.293303801 0.077027734 0.123370071 0.405597524 0.514896527 0.356133914 0.441673486 0.355536073 0.393769453 -PA3751 0.745442927 0.606517134 0.541224374 0.273804218 0.211090924 0.50345472 0.433543168 0.343773163 0.733551578 0.586915264 0.589760244 -PA3752 0.673799316 0.618541612 0.635091389 0.243745885 0.342737906 0.321201322 0.560362358 0.438623151 0.450335681 0.456379583 0.459165773 -PA3753 0.634201717 0.657332302 0.757724759 0.664248444 0.729319835 0.721586505 0.758732931 0.679601326 0.723306536 0.748929342 0.725648115 -PA3754 0.597009638 0.587435528 0.598857399 0.513901921 0.594298312 0.558823502 0.382685178 0.607741681 0.341319547 0.567247117 0.407105846 -PA3755 0.386171811 0.423927572 0.37009194 0.344888383 0.412672182 0.476610207 0.595393212 0.617376523 0.51775174 0.500073794 0.649100657 -PA3756 0.591756962 0.544183228 0.648990063 0.691774437 0.695476288 0.792577751 0.809355284 0.832486064 0.846242823 0.794034177 0.849670234 -PA3757 0.40889697 0.306006412 0.351177976 0.254356306 0.122079791 0.114205622 0.184154122 0.095642694 0.125128647 0.231145795 0.066767902 -PA3758 0.355640898 0.322514512 0.360469746 0.199612579 0.219373218 0.170255925 0.135013989 0.066443999 0.109485396 0.18390424 0.090642377 -PA3759 0.327597168 0.285489517 0.314360982 0.163239021 0.153821772 0.160421235 0.187342751 0.01799458 0.122043675 0.068585215 0.090375087 -PA3760 0.20584487 0.202763771 0.191170818 0.181876476 0.143500566 0.221379864 0.139328105 0.187250813 0.201224112 0.135582609 0.250345607 -PA3761 0.313144373 0.1627528 0.218952921 0.138501403 0.101781422 0.203975177 0.254186621 0.436967156 0.282123478 0.308495953 0.235278662 -PA3762 0.281298636 0.442417382 0.457499731 0.564777031 0.580535072 0.290037636 0.496880414 0.232016099 0.463277874 0.3159619 0.372327264 -PA3763 0.894837157 0.704896533 0.794810436 0.244979773 0.257488351 0.403951551 0.411427163 0.303883568 0.543344882 0.381526718 0.479929456 -PA3764 0.664628277 0.658137747 0.741067495 0.235519713 0.341454014 0.809023836 0.861402047 0.752030251 0.883527155 0.823594246 0.865942205 -PA3765 0.232193592 0.186240428 0.226554816 0.175555421 0.306492992 0.029448344 0.092603117 0.150896651 0.158479645 0.049881176 0.221374863 -PA3766 0.528548174 0.286977833 0.122380443 0.245799963 0.18925177 0.286782176 0.504109607 0.383257258 0.495709503 0.32848122 0.396025912 -PA3767 0.595802352 0.356381966 0.67617785 0.573115117 0.671210082 0.38996595 0.447758262 0.374199928 0.560279198 0.566923377 0.658530624 -PA3768 0.660382065 0.712004947 0.684178325 0.107820301 0.053493485 0.696927633 0.621101931 0.730783248 0.65776474 0.763352066 0.62711412 -PA3769 0.911811146 0.771549474 0.829133032 0.336223677 0.324249054 0.623185329 0.682670689 0.567114446 0.677690182 0.637536662 0.744736174 -PA3770 0.864034652 0.705234107 0.864706047 0.528584352 0.488661692 0.438474028 0.517812288 0.415307312 0.528613378 0.427381054 0.560810632 -PA3771 0.103542585 0.207834756 0.177608672 0.309229912 0.275744598 0.517821873 0.323286191 0.646440667 0.384858517 0.444559707 0.359562926 -PA3772 0.204277857 0.198584646 0.10866071 0.502728122 0.29159034 0.181844296 0.206906895 0.261237367 0.151537366 0.085107816 0.198257051 -PA3773 0.246141638 0.259701344 0.162020883 0.229288081 0.210434944 0.302876903 0.322221602 0.279741446 0.286410257 0.317637256 0.331076204 -PA3774 0.212483725 0.245035332 0.198229633 0.364594613 0.315209304 0.267327638 0.296401406 0.313815235 0.293097291 0.280601669 0.383909906 -PA3775 0.187405246 0.144718038 0.138912532 0.150700937 0.157142009 0.205265926 0.218543039 0.223369174 0.240266058 0.258732952 0.260986211 -PA3776 0.393071261 0.251629832 0.283225137 0.308200915 0.253049545 0.141703834 0.173559173 0.44135016 0.191234287 0.28981434 0.284939082 -PA3777 0.693664737 0.521699505 0.747434677 0.453340731 0.447656848 0.396864991 0.509265403 0.257662239 0.464235788 0.355961909 0.462524465 -PA3778 0.520422293 0.363331115 0.474512098 0.273782117 0.166219188 0.205813997 0.438462981 0.182390347 0.370050377 0.087851548 0.200304853 -PA3779 0.454160386 0.308082049 0.372280296 0.6091515 0.64786184 0.273619384 0.184023865 0.319459863 0.200683837 0.187934563 0.112533373 -PA3780 0.516943959 0.148889779 0.437619647 0.127120707 0.164846907 0.203176808 0.322029692 0.131722409 0.339825598 0.184826865 0.2043793 -PA3781 0.372329221 0.240057507 0.43407896 0.072910425 0.13589566 0.158392985 0.115095153 0.213575709 0.218599126 0.096741285 0.159947124 -PA3782 0.334448756 0.257708213 0.460261528 0.447692828 0.530468135 0.465355731 0.543009159 0.218867921 0.573354072 0.440456372 0.510038611 -PA3783 0.23032999 0.295823806 0.305004386 0.398684592 0.384938837 0.260738323 0.216193033 0.140230763 0.206268039 0.266570162 0.227513158 -PA3784 0.258351317 0.233800845 0.140997059 0.64506897 0.63738033 0.232806642 0.180943511 0.175339156 0.194853339 0.268021839 0.160911177 -PA3785 0.310681394 0.319316494 0.133597191 0.662313218 0.689158344 0.168221229 0.213977755 0.146030941 0.18347735 0.11446631 0.233371396 -PA3786 0.253571871 0.349945213 0.125712185 0.623180636 0.659400482 0.315549838 0.135493337 0.422905806 0.271738342 0.34657534 0.216595265 -PA3787 0.406402492 0.475840593 0.408738735 1 0.989053424 0.335300952 0.37969108 0.489544819 0.344914995 0.39284627 0.331060714 -PA3788 0.106881001 0.46114527 0.082455702 0.627466725 0.691372665 0.09477659 0.138191964 0.191490961 0.192255259 0.11410479 0.192324206 -PA3789 0.119927927 0.105616286 0.171644994 0.124723414 0.101320358 0.178730182 0.084733139 0.274357942 0.273781978 0.158576798 0.315162573 -PA3790 0.233318645 0.184869605 0.27820775 0.225798464 0.17002305 0.350492719 0.352338567 0.378492115 0.454971787 0.364702991 0.416445014 -PA3791 0.232198382 0.256118098 0.396187088 0.619408754 0.66958703 0.388064046 0.433138754 0.297279495 0.489510935 0.371392259 0.421677244 -PA3792 0.544694003 0.586420639 0.726886975 0.54641755 0.556463785 0.460294202 0.462323714 0.370131668 0.446385245 0.430994275 0.51638994 -PA3793 0.617399713 0.603586251 0.442637977 0.283063074 0.277397327 0.867917753 0.776655735 0.978178578 0.772563138 0.914453174 0.703873905 -PA3794 0.614950098 0.495004234 0.435802562 0.224394794 0.218068472 0.25696344 0.273620278 0.280163656 0.281559854 0.160663147 0.313150266 -PA3795 0.217561564 0.474912438 0.573683631 0.686305226 0.641056827 0.495902893 0.368061817 0.596721147 0.425719783 0.61949981 0.397197941 -PA3796 0.290567992 0.302721249 0.431984982 0.87255631 0.848904925 0.208615484 0.220325852 0.144123584 0.278490897 0.24382754 0.289572442 -PA3797 0.516908192 0.434633451 0.492983489 0.72774278 0.687790919 0.243912376 0.198169043 0.256181395 0.205791647 0.143961501 0.253366094 -PA3798 0.594035321 0.556305762 0.633068001 0.242495653 0.188062258 0.145970169 0.287106562 0.004460279 0.171809244 0.100413337 0.316076408 -PA3799 0.907271709 0.68773309 0.71112974 0.437153624 0.388020884 0.73342889 0.72079947 0.762387612 0.657986713 0.768282181 0.705783596 -PA3800 0.800294797 0.752659374 0.745065391 0.411153274 0.435307044 0.503980637 0.530879734 0.336095887 0.541760081 0.494122168 0.487536412 -PA3801 0.897716732 0.867576774 0.922224689 0.598505916 0.613936916 0.744003808 0.711617683 0.595444173 0.684323441 0.692355846 0.723890857 -PA3802 0.905102841 0.807971036 0.880394753 0.397579561 0.409509297 0.459788751 0.469764115 0.34090132 0.496163268 0.583886747 0.506937544 -PA3803 0.909223541 0.871650451 0.867113238 0.587997168 0.603561113 0.600049239 0.606447871 0.434969125 0.551647466 0.578543645 0.567303744 -PA3804 0.763507754 0.638545328 0.83250497 0.534197401 0.524328414 0.6457084 0.584231878 0.490845306 0.610297292 0.620570512 0.601558123 -PA3805 0.769970369 0.523703649 0.769327724 0.481842845 0.451193252 0.581860159 0.693664258 0.613046357 0.603953784 0.616194982 0.705666814 -PA3806 0.9264564 0.587046518 0.892962774 0.586856997 0.587782981 0.484519221 0.757077153 0.428929143 0.755462937 0.591724217 0.714032137 -PA3807 0.925882148 0.876354199 0.849216383 0.719011709 0.728601174 0.574339178 0.648530651 0.466826658 0.704025301 0.600618046 0.631697628 -PA3808 0.50013822 0.408370367 0.396228507 0.532125849 0.516934372 0.677894713 0.874163062 0.587412805 0.825850818 0.70338047 0.853475472 -PA3809 0.557832269 0.543867 0.54607003 0.151970918 0.160408918 0.72338174 0.753327605 0.534659531 0.803980682 0.753711748 0.6940018 -PA3810 0.648681971 0.415949369 0.510515324 0.066747018 0.0688363 0.460579132 0.589726973 0.438467867 0.625129559 0.489303423 0.617617224 -PA3811 0.768009432 0.572111969 0.659163658 0.355370107 0.358511812 0.699668928 0.946641054 0.569459385 0.930338248 0.787845232 0.901077354 -PA3812 0.738792318 0.597029957 0.716010563 0.523355318 0.489298008 0.790929955 0.835149829 0.685986009 0.846509834 0.767551007 0.843945584 -PA3813 0.681491067 0.591854651 0.618555558 0.468465386 0.440558002 0.774400494 0.754487437 0.619631923 0.744540654 0.782582495 0.757356921 -PA3814 0.779423947 0.58225322 0.717567784 0.548310104 0.513903873 0.765823913 0.691642851 0.643209344 0.704850602 0.767218092 0.735298836 -PA3815 0.752650613 0.593947562 0.662792129 0.453647984 0.430127757 0.93029657 0.836982859 0.830205773 0.829029054 0.918743543 0.844625652 -PA3816 0.54617724 0.437616538 0.5120841 0.208089563 0.271743446 0.588621261 0.800596708 0.496603684 0.73186732 0.61826556 0.784516565 -PA3817 0.550116185 0.516880211 0.495991905 0.286142403 0.313076152 0.161412212 0.289215547 0.193132291 0.321950364 0.111254198 0.308259102 -PA3818 0.894569687 0.605987041 0.683820253 0.312784043 0.324972565 0.491408561 0.61534657 0.412261305 0.551060594 0.516886175 0.529555072 -PA3819 0.337467554 0.625829488 0.34997875 0.734826031 0.752580467 0.657158045 0.707842924 0.683761604 0.70043753 0.663663467 0.715328216 -PA3820 0.859281348 0.621520686 0.687431465 0.085235283 0.052137942 0.391334397 0.741877107 0.338147615 0.760672439 0.502108943 0.651052097 -PA3821 0.880994913 0.780908806 0.780391149 0.232930239 0.145465119 0.563924196 0.673838807 0.389197783 0.605371787 0.57287219 0.629619892 -PA3822 0.8460459 0.867624221 0.774539595 0.249171996 0.287322184 0.870565446 0.996370327 0.804762265 0.957132523 0.925880748 0.958270799 -PA3823 0.838473433 0.549985365 0.609923775 0.241528751 0.17643195 0.508416886 0.659492428 0.466020481 0.728370853 0.561504351 0.791701824 -PA3824 0.831003099 0.629014485 0.699277915 0.291859519 0.233940388 0.35961324 0.471801488 0.442616772 0.41089125 0.357268035 0.572510241 -PA3825 0.263223182 0.096049384 0.230340425 0.55125104 0.606132317 0.224636146 0.108172957 0.289243842 0.190847077 0.170220137 0.097163417 -PA3826 0.234549529 0.28400168 0.336132249 0.082243152 0.117692679 0.321529988 0.5232685 0.404184874 0.64076935 0.409099935 0.591605376 -PA3827 0.778137213 0.594751933 0.683202473 0.262425573 0.320473979 0.510452825 0.742578238 0.529470205 0.680355658 0.583957577 0.677380376 -PA3828 0.751217413 0.670111208 0.651717842 0.20722217 0.278791766 0.736136881 0.75078532 0.657781192 0.761961059 0.736779782 0.62818239 -PA3829 0.183693358 0.199893958 0.154624853 0.271098119 0.292276088 0.379596188 0.231494642 0.347756769 0.333503722 0.219253672 0.278818061 -PA3830 0.165048759 0.393071131 0.155897549 0.431393185 0.369470805 0.367618516 0.303114179 0.194896602 0.309086874 0.411990868 0.286739477 -PA3831 0.89741785 0.773518523 0.806519277 0.623744827 0.608129141 0.379401392 0.287002644 0.347400145 0.348814368 0.249044579 0.332872375 -PA3832 0.685695194 0.547588642 0.723052648 0.397524414 0.390158522 0.126081414 0.525911787 0.118953591 0.391568576 0.270181051 0.320100672 -PA3833 0.605292469 0.627647471 0.781559403 0.838238868 0.843579084 0.370537993 0.396829114 0.415631447 0.416910978 0.501413254 0.319847542 -PA3834 0.857792586 0.677981588 0.91351883 0.089947746 0.11168127 0.600184836 0.588153818 0.452299728 0.564412074 0.462809115 0.64629015 -PA3835 0.260745874 0.222907858 0.337675732 0.300096295 0.331552089 0.452815331 0.460213898 0.492104296 0.413828247 0.423467619 0.461532397 -PA3836 0.717821719 0.570507535 0.806132232 0.51195355 0.459482674 0.270715651 0.417233436 0.198605682 0.389665713 0.290541493 0.433499555 -PA3837 0.81592007 0.531093122 0.83731012 0.115800987 0.162115534 0.09512756 0.190427531 0.238571143 0.146769898 0.105687836 0.22507224 -PA3838 0.695392299 0.619840365 0.728172872 0.137019519 0.177602215 0.289938207 0.291983668 0.040256484 0.236870631 0.307938789 0.356550224 -PA3839 0.146400086 0.798307137 0.100758536 0.220094757 0.224428709 0.464487456 0.351163933 0.396534556 0.316943057 0.342363326 0.29910732 -PA3840 0.501504425 0.52969226 0.307696558 0.12521137 0.176741367 0.353739034 0.245862248 0.362505859 0.198022673 0.268707715 0.143918917 -PA3841 0.080180149 0.292704693 0.03275065 0.109454988 0.09239422 0.265257217 0.257913232 0.288540371 0.249792049 0.26071722 0.28448503 -PA3842 0.192750636 0.314725601 0.458980534 0.142342171 0.168002465 0.204515659 0.172946384 0.303724141 0.158063892 0.200969808 0.204768996 -PA3843 0.135599671 0.184586157 0.262066856 0.185862365 0.119367005 0.185130091 0.269740659 0.278413202 0.124661748 0.245511648 0.231733698 -PA3844 0.218460654 0.449387947 0.320077168 0.782176577 0.808148379 0.308563995 0.286253421 0.3981593 0.064124526 0.300106089 0.149721372 -PA3845 0.373860482 0.329956416 0.289161318 0.558063251 0.545747002 0.221814605 0.152981804 0.266477833 0.301825879 0.270366289 0.281862247 -PA3846 0.22779149 0.211670683 0.317110946 0.970983003 1 0.232630734 0.248103057 0.211459996 0.273813098 0.222424809 0.267577516 -PA3847 0.361227615 0.362458602 0.436955439 0.709845589 0.80460529 0.336482368 0.341883769 0.393427919 0.259263409 0.298603925 0.268897447 -PA3848 0.516193084 0.378544656 0.704683338 0.819164532 0.835670843 0.333585237 0.018215891 0.44750214 0.089526626 0.220040196 0.17906651 -PA3849 0.644232731 0.458813548 0.563805591 0.422851668 0.434837371 0.653649161 0.808912411 0.572016196 0.80059698 0.70991842 0.792263515 -PA3850 0.609784992 0.605853705 0.482486007 0.276626911 0.315456182 0.310578323 0.27025299 0.254651466 0.307519927 0.111554608 0.241300823 -PA3851 0.1513141 0.225864112 0.21238569 0.220426641 0.245886313 0.299575716 0.252735089 0.294882598 0.249015361 0.404937227 0.177887599 -PA3852 0.429217106 0.515371411 0.371053667 0.58335527 0.572532085 0.339429329 0.241559974 0.32633816 0.216266233 0.336879368 0.303587846 -PA3853 0.851654146 0.555659241 0.727876591 0.475056282 0.419129589 0.42371892 0.393641129 0.266683066 0.41415934 0.388666939 0.462322196 -PA3854 0.716421345 0.425680927 0.627044226 0.765774645 0.779274953 0.818788727 0.77412432 0.78536243 0.679741605 0.836234706 0.679633729 -PA3855 0.390519727 0.301992841 0.242582779 0.694346628 0.557574887 0.529429461 0.421288961 0.472415412 0.503442716 0.443046986 0.456600953 -PA3856 0.432096671 0.627848991 0.494657685 0.63833606 0.798342186 0.858176566 0.842768079 0.8385893 0.84259005 0.86477847 0.681693559 -PA3857 0.345966377 0.673073338 0.429570058 0.656005165 0.668054085 0.852678833 0.714563228 0.823771329 0.745193478 0.848347181 0.758119665 -PA3858 0.245038825 0.392047958 0.310988589 0.891171121 0.879098984 0.472912873 0.431192984 0.562652597 0.410883099 0.449254111 0.366469312 -PA3859 0.326443127 0.901075203 0.256245269 0.439693788 0.410824645 0.232388125 0.1802043 0.325919069 0.325106363 0.271255476 0.157928972 -PA3860 0.185402904 0.238494937 0.24333629 0.25763583 0.215673735 0.181678715 0.177225584 0.251362295 0.17148331 0.237896706 0.245272121 -PA3861 0.909645286 0.748354856 0.834955272 0.418278881 0.415595571 0.46988399 0.649792675 0.315069099 0.601250463 0.396756135 0.55260487 -PA3862 0.448091485 0.484406482 0.298816196 0.560425057 0.579055627 0.099386414 0.155699419 0.024646865 0.105852859 0.114189639 0.127535909 -PA3863 0.298779305 0.299064901 0.214174985 0.427753129 0.396792186 0.095854162 0.072597299 0.041239732 0.115528906 0.181653373 0.118843063 -PA3864 0.591315975 0.45085307 0.550413112 0.545070116 0.567270261 0.536350534 0.362053102 0.612492968 0.365012403 0.538669309 0.378072014 -PA3865 0.289470797 0.378347273 0.362017395 1 0.980915963 0.407283405 0.282948818 0.446638271 0.324267193 0.372138623 0.313444074 -PA3866 0.247660723 0.268524597 0.237113736 0.224829599 0.240472521 0.238907869 0.285476935 0.318150424 0.281839234 0.27792621 0.345197671 -PA3867 0.321938954 0.289841949 0.430852853 0.410927309 0.459092118 0.183272114 0.293978913 0.253902155 0.246630258 0.121535951 0.294291094 -PA3868 0.330492841 0.252066578 0.318662472 0.284852293 0.345355073 0.27286097 0.276426366 0.255519794 0.269743084 0.160502663 0.246675729 -PA3869 0.259866646 0.252609614 0.395255946 0.395440545 0.326012363 0.218238556 0.21159799 0.204690285 0.318368289 0.270070976 0.286660472 -PA3870 0.547087499 0.24764086 0.126833697 0.807824376 0.823133803 0.561363507 0.477957908 0.540768582 0.524486924 0.672681116 0.528950658 -PA3871 0.507061708 0.309146414 0.107303185 0.799541336 0.802508452 0.316073563 0.302529706 0.309223321 0.336516801 0.288461141 0.299356663 -PA3872 0.551214832 0.430303287 0.141473709 0.820665237 0.8022984 0.759430817 0.685633418 0.747894074 0.68636219 0.772328584 0.703663753 -PA3873 0.620036255 0.421460444 0.106429572 0.81843411 0.846032245 0.479079284 0.429121392 0.430755495 0.452386566 0.492446511 0.438137319 -PA3874 0.566937837 0.51574873 0.095452607 0.817696247 0.817968666 0.753163237 0.742871214 0.675152337 0.758255189 0.730381498 0.67957825 -PA3875 0.251912341 0.535844165 0.085277238 0.742323097 0.751277628 0.60529966 0.498431656 0.535057099 0.447525531 0.590027874 0.37451779 -PA3876 0.140919095 0.552326631 0.052372322 0.795991791 0.76283316 0.386653192 0.128603264 0.536760182 0.181504057 0.380485852 0.128423932 -PA3877 0.056000365 0.727559349 0.086204913 0.646597577 0.676854723 0.723198127 0.351131102 0.578786714 0.348644404 0.731857435 0.41688685 -PA3878 0.493124841 0.703679286 0.457369003 0.556053386 0.527092617 0.540132957 0.374276278 0.539917494 0.322369232 0.493160165 0.325186665 -PA3879 0.176468337 0.71042134 0.255572199 0.454520797 0.424956707 0.450404556 0.373746158 0.501147515 0.387963518 0.340447667 0.330430194 -PA3880 0.283525439 0.864175182 0.344211012 0.955645829 0.953310481 0.762551574 0.684496439 0.802854264 0.727725846 0.761984037 0.671974895 -PA3881 0.513896118 0.878329754 0.477631485 0.725094835 0.700700251 0.629705396 0.500532438 0.554096846 0.482884719 0.605694067 0.468961759 -PA3882 0.451439721 0.636833311 0.58612829 0.761917313 0.839483715 0.345309607 0.394378306 0.268454283 0.260538509 0.383066056 0.31572533 -PA3883 0.472895509 0.477399112 0.475754581 0.454563291 0.45860642 0.484624797 0.432974868 0.275810231 0.518513459 0.314594012 0.385005888 -PA3884 0.26696062 0.203234087 0.316171879 0.095578096 0.110656759 0.255380787 0.28125193 0.218737429 0.414385553 0.308799042 0.354841738 -PA3885 0.186890045 0.222642023 0.203607562 0.250008738 0.228301736 0.307546526 0.285719321 0.264684664 0.27786414 0.254583118 0.248091934 -PA3886 0.293837028 0.470412798 0.370409216 0.236427999 0.21978034 0.39137866 0.237628252 0.368734483 0.354161859 0.284922627 0.302904388 -PA3887 0.705538737 0.53868962 0.629310909 0.308686918 0.266162821 0.288970628 0.591302481 0.285837861 0.778908871 0.574188996 0.62564454 -PA3888 0.182782385 0.514979892 0.330950882 0.344803902 0.47001656 0.248037182 0.180616305 0.205905955 0.26963692 0.289440731 0.191535548 -PA3889 0.253431677 0.448966884 0.496049394 0.494727288 0.53478489 0.356118894 0.259103733 0.24280373 0.362294857 0.303806816 0.334479145 -PA3890 0.161298466 0.334067969 0.348836587 0.373392498 0.413973711 0.481689929 0.467763194 0.407805714 0.35555804 0.509557726 0.538481124 -PA3891 0.230884346 0.442847538 0.415202521 0.421369202 0.562276458 0.305696798 0.132819016 0.124293406 0.221379462 0.283929948 0.230644189 -PA3892 0.337093032 0.377172808 0.257199 0.34204645 0.225798737 0.353706568 0.303221416 0.346549062 0.32768239 0.406077456 0.362713236 -PA3893 0.50898871 0.395474914 0.334576736 0.370529883 0.217639231 0.399411072 0.390485062 0.448960243 0.358272814 0.367726489 0.25647556 -PA3894 0.435699113 0.343200655 0.239395026 0.185610778 0.125129239 0.273250375 0.170292046 0.180961956 0.162728262 0.162384823 0.211792242 -PA3895 0.803687658 0.710897085 0.735526456 0.478458659 0.500891164 0.461619072 0.531146105 0.243123458 0.401693716 0.417044746 0.418109614 -PA3896 0.587934152 0.612100489 0.55720329 0.105388433 0.108550267 0.340332581 0.397409253 0.400172386 0.285484802 0.270134933 0.267661602 -PA3897 0.181181188 0.152935971 0.126411105 0.144137909 0.158000139 0.221083932 0.230733749 0.342854244 0.306479201 0.251395989 0.197620498 -PA3898 0.380369653 0.391456029 0.382304555 0.364241936 0.394089236 0.411778723 0.28953355 0.284985139 0.311879188 0.221508681 0.276667053 -PA3899 0.328269807 0.141292671 0.443202051 0.123197962 0.103614314 0.132837543 0.278698615 0.226301793 0.435934581 0.190753786 0.357759999 -PA3900 0.282215811 0.222438214 0.319717189 0.299268113 0.246061388 0.214039974 0.328404509 0.224681805 0.375888606 0.270990394 0.43415434 -PA3901 0.165403851 0.491863192 0.208535146 0.142804954 0.082619066 0.228829776 0.244798779 0.200114765 0.299831516 0.266608762 0.273968135 -PA3902 0.379565185 0.530193547 0.427533469 0.426735883 0.460512153 0.474296968 0.487743678 0.362440795 0.510241721 0.485314925 0.459104015 -PA3903 0.892763517 0.780902138 0.873389033 0.281576232 0.355244471 0.2905028 0.562674338 0.259695181 0.574966147 0.403737173 0.458096812 -PA3904 0.963692224 0.712218164 0.751819501 0.812409704 0.851773543 0.386771004 0.399630245 0.111428745 0.492380855 0.337281025 0.326796549 -PA3905 0.898524784 0.387305698 0.616718664 0.45676515 0.439454646 0.345037855 0.355471892 0.287397974 0.35205834 0.372457645 0.223188401 -PA3906 0.987789376 0.512492274 0.610789359 0.541283569 0.530101136 0.488060586 0.487018324 0.430452566 0.546038183 0.455201665 0.498376068 -PA3907 0.933938547 0.516754871 0.675699794 0.43831322 0.481922588 0.590276581 0.505403403 0.496592043 0.517857643 0.524606225 0.732824475 -PA3908 0.77309466 0.432549364 0.496875822 0.469268854 0.414548873 0.480752999 0.471075424 0.256915508 0.469149967 0.51028107 0.41717676 -PA3909 0.163675486 0.137960695 0.144217193 0.211590654 0.18502485 0.158044623 0.106697003 0.124798415 0.142972985 0.097336128 0.165411753 -PA3910 0.160835448 0.126754383 0.096767071 0.239909208 0.218550977 0.27483032 0.317894073 0.323536645 0.319344151 0.283715747 0.299084739 -PA3911 0.196517792 0.463090485 0.110263106 0.80617164 0.848659018 0.869567674 0.70990848 0.816603769 0.748370265 0.873605044 0.717676195 -PA3912 0.263112006 0.477601625 0.121422578 0.928319339 0.946786436 0.651221506 0.494538765 0.599436757 0.49466795 0.728731808 0.428097568 -PA3913 0.182778518 0.558138403 0.122255977 1 0.990965392 0.804263139 0.612547461 0.7788162 0.633136584 0.810073084 0.520047287 -PA3914 0.112088796 0.310072602 0.073082104 0.880522586 0.896855304 0.569159541 0.279241984 0.652161305 0.241991415 0.59306047 0.285068196 -PA3915 0.157547911 0.629708959 0.136888841 0.996570226 1 0.72260921 0.264537266 0.712055382 0.28830837 0.729128111 0.173525689 -PA3916 0.449852916 0.512710622 0.403073824 1 0.972152025 0.610277436 0.300511002 0.535883575 0.267455993 0.595717432 0.272912904 -PA3917 0.410261907 0.529258208 0.407934801 1 0.969401131 0.800009574 0.425444162 0.7767869 0.361514122 0.81049153 0.36918591 -PA3918 0.399762995 0.471645858 0.299594003 1 0.996354299 0.542003604 0.169781629 0.592249285 0.154205534 0.546466182 0.089233327 -PA3919 0.125984898 0.508437947 0.253992553 0.509848799 0.518756402 0.527238498 0.252263534 0.663515679 0.258802522 0.564580052 0.212073705 -PA3920 0.260779962 0.263593611 0.05815645 0.440435425 0.351524768 0.211673039 0.139999733 0.292348142 0.158233454 0.229118405 0.137928401 -PA3921 0.257206 0.148861847 0.430984755 0.853975477 0.805904635 0.444478681 0.25307926 0.406274179 0.173800058 0.439478127 0.12836511 -PA3922 0.117880802 0.104027271 0.471490534 0.39100267 0.289098881 0.329174357 0.136239369 0.317945437 0.22044615 0.375395617 0.145185896 -PA3923 0.088897213 0.074636988 0.401361237 0.33235939 0.247204084 0.350727508 0.170455137 0.383939165 0.275711033 0.347945021 0.161298532 -PA3924 0.12762739 0.143510441 0.384547979 0.457286201 0.221456083 0.332273654 0.208017188 0.431493797 0.191387354 0.384384772 0.100213251 -PA3925 0.464523092 0.348249168 0.497967533 0.323422445 0.369498835 0.189393106 0.316638246 0.281919967 0.349800671 0.296589044 0.330227677 -PA3926 0.293223309 0.268427764 0.223751378 0.231658651 0.266957695 0.58754454 0.512098948 0.562384653 0.631027076 0.601513941 0.523494641 -PA3927 0.430511439 0.447710868 0.475528578 0.358539879 0.368017955 0.235250471 0.285075615 0.286716997 0.195974259 0.178623767 0.140851168 -PA3928 0.175462594 0.205457918 0.169313002 0.655052701 0.639225126 0.56859568 0.395910241 0.567637064 0.4577465 0.533963552 0.417712552 -PA3929 0.133407083 0.052579448 0.131525764 0.630524519 0.64083468 0.3332216 0.222390403 0.191752894 0.21601025 0.202702983 0.344493685 -PA3930 0.259699079 0.13707228 0.223470947 0.641744204 0.67129551 0.426380646 0.292427582 0.371833993 0.283232499 0.361788276 0.392829034 -PA3931 0.202784964 0.27475799 0.524740799 0.281786633 0.324647151 0.24340324 0.151839188 0.270130691 0.227582443 0.256987677 0.250855488 -PA3932 0.13610134 0.159548703 0.350279101 0.230321978 0.268525384 0.100278965 0.114237305 0.055444032 0.063342094 0.153971797 0.095503871 -PA3933 0.112803736 0.466644614 0.06626291 0.111491619 0.19688663 0.769724482 0.815728841 0.421362752 0.89159304 0.753412115 0.899399817 -PA3934 0.66169073 0.257377724 0.212428432 0.372892938 0.348035238 0.198230767 0.113609573 0.15376593 0.205542379 0.170359246 0.110995858 -PA3935 0.184796065 0.144517514 0.350592711 0.140166349 0.104053267 0.020625002 0.063121524 0.056139597 0.057989533 0.020957353 0.021310771 -PA3936 0.154602212 0.088648988 0.171175057 0.136467359 0.137669514 0.256458892 0.257525506 0.220136165 0.143963411 0.182425008 0.217536516 -PA3937 0.133937028 0.130147108 0.298996087 0.085061377 0.068152101 0.128502611 0.058379718 0.11793318 0.058292019 0.08470662 0.068266792 -PA3938 0.185692229 0.145214151 0.392643969 0.139446336 0.124649634 0.159297685 0.123567448 0.129791259 0.110430833 0.105710186 0.127014482 -PA3939 0.120871402 0.204826675 0.122813987 0.207378917 0.175169226 0.162808225 0.218563843 0.199155465 0.176163889 0.143817868 0.159085726 -PA3940 0.873291507 0.865443236 0.822150555 0.800918447 0.797212869 0.426019544 0.453051799 0.307258444 0.441873298 0.371823803 0.380627628 -PA3941 0.648380127 0.542004225 0.756820394 0.270763917 0.202822993 0.338944573 0.347162819 0.311113094 0.486783651 0.237144744 0.572665262 -PA3942 0.531939052 0.542364072 0.663161111 0.268715533 0.322559178 0.511452276 0.297366516 0.171897304 0.451839938 0.433072265 0.377313699 -PA3943 0.452189903 0.348400396 0.493031045 0.368179966 0.358495414 0.385124361 0.346241417 0.477902709 0.297477998 0.336523621 0.438836724 -PA3944 0.383857474 0.367928395 0.369414812 0.543267459 0.547839955 0.196540582 0.205947167 0.056049638 0.212985835 0.206359621 0.154620944 -PA3945 0.184146279 0.354794603 0.274723624 0.849689249 0.875360053 0.374501759 0.440919315 0.491962959 0.492822341 0.404485709 0.44991289 -PA3946 0.137060651 0.26280786 0.144060503 0.180560582 0.196077838 0.36816561 0.389426269 0.371759507 0.40527227 0.381757398 0.50198704 -PA3947 0.273673398 0.190310203 0.159296473 0.289818236 0.330531728 0.450258407 0.690850596 0.562112885 0.537803454 0.530641671 0.487872703 -PA3948 0.513301351 0.628663035 0.517665563 0.227054377 0.290654163 0.50873684 0.638277071 0.646450887 0.611587017 0.620165823 0.652210264 -PA3949 0.773366811 0.613006349 0.671290544 0.286643816 0.21030657 0.342899031 0.439867263 0.304302495 0.323356112 0.388623825 0.432849219 -PA3950 0.753747719 0.644574099 0.783689048 0.367193455 0.45269339 0.417609627 0.393143247 0.226097793 0.443234065 0.439575666 0.408879312 -PA3951 0.438498917 0.441997966 0.379476133 0 0.048852824 0.667541448 0.688018878 0.598166342 0.71891591 0.675547184 0.600246601 -PA3952 0.201009793 0.475518227 0.517648131 0.45038065 0.390941362 0.153767064 0.324002806 0.15711511 0.277185833 0.235279181 0.243475788 -PA3953 0.230972432 0.203273061 0.250340234 0.20377701 0.154105862 0.20746608 0.176546812 0.239583089 0.073024541 0.104641622 0.173074359 -PA3954 0.149694729 0.125630379 0.126947336 0.130145808 0.114878631 0.136403501 0.181258399 0.139281548 0.13365863 0.157809335 0.155416281 -PA3955 0.598475026 0.486346127 0.595445424 0.36385653 0.419666066 0.430475484 0.482233365 0.330725813 0.481391736 0.424662963 0.440468313 -PA3956 0.188964288 0.168461762 0.192229516 0.515699936 0.458622083 0.1011046 0.072845189 0.113668606 0.157373509 0.160926927 0.167628793 -PA3957 0.109251506 0.12696248 0.135197167 0.751356511 0.805902863 0.237135431 0.157907203 0.170284293 0.154846078 0.292138421 0.231120241 -PA3958 0.496650489 0.500581763 0.591656106 0.503295879 0.553766347 0.392823867 0.395981643 0.41286758 0.373217557 0.405926154 0.500677403 -PA3959 0.547890615 0.302694204 0.595543053 0.142166581 0.140896667 0.086942248 0.051779311 0.306247816 0.246272441 0.189867507 0.214540662 -PA3960 0.352026751 0.183068973 0.370730515 0.262063618 0.198593286 0.213138644 0.197314611 0.304176744 0.354733769 0.258177979 0.381405547 -PA3961 0.761344935 0.481064103 0.621284198 0.427604294 0.408895011 0.215294535 0.396199905 0.290378525 0.207680739 0.234743519 0.220607226 -PA3962 0.512459166 0.62791587 0.674337303 0.66042461 0.69941778 0.55835469 0.532563717 0.499107157 0.416614451 0.51491844 0.498170525 -PA3963 0.293030504 0.199894793 0.378708717 0.229660383 0.242724327 0.287651046 0.259439042 0.223848941 0.24177377 0.289125479 0.243834847 -PA3964 0.269391097 0.150808686 0.119336721 0.176087995 0.155754879 0.199945912 0.185362672 0.207776055 0.198351557 0.201198894 0.145133373 -PA3965 0.503322317 0.318950799 0.587194677 0.385237007 0.47623549 0.5978193 0.647278721 0.683474261 0.717938195 0.651119524 0.664606648 -PA3966 0.613568976 0.554116636 0.577262391 0.442395677 0.481959537 0.632850632 0.6329731 0.667054439 0.602591419 0.674393277 0.632021373 -PA3967 0.766615069 0.698038174 0.580086211 0.083695905 0 0.097864686 0.243049851 0.104448012 0.380453853 0.232723325 0.299953909 -PA3968 0.725415967 0.38387354 0.762622843 0.406215702 0.479073816 0.240035138 0.307788041 0.167596902 0.259368605 0.226053671 0.26286686 -PA3969 0.451348974 0.594846191 0.511396279 0.482799876 0.49297501 0.476200462 0.346516623 0.274804935 0.413606485 0.424721951 0.443394884 -PA3970 0.576228787 0.713127442 0.433430168 0.358173213 0.447947892 0.216857674 0.179848759 0.276876357 0.217637988 0.209120984 0.187564574 -PA3971 0.050563128 0.42695306 0.055371307 0.310981048 0.316152719 0.305965455 0.25802271 0.454869818 0.216932607 0.341937283 0.32065982 -PA3972 0.240541312 0.735846048 0.316049993 0.623719689 0.631846045 0.119281354 0.053576515 0.177987395 0.074421738 0.218745221 0.10736542 -PA3973 0.069894912 0.51015545 0.194457941 0.675149145 0.709561455 0.122236908 0.129503918 0.219204634 0.105009897 0.118729951 0.108739777 -PA3974 0.504688457 0.370718366 0.51068727 0.721809179 0.778751233 0.525108331 0.477423865 0.601527655 0.58738045 0.512687683 0.615853173 -PA3975 0.845757353 0.798261754 0.68714079 0.640205337 0.639052812 0.309518544 0.207319429 0.098529514 0.381917182 0.153908856 0.234313539 -PA3976 0.792591759 0.834695166 0.739929483 0.683204366 0.6494008 0.327608777 0.353211104 0.127278163 0.299876859 0.297765823 0.220709198 -PA3977 0.869854553 0.836540361 0.759638572 0.334182332 0.336748524 0.489792599 0.565940035 0.417699267 0.535964889 0.476116306 0.531336177 -PA3978 0.597291694 0.592285171 0.70985801 0.615218225 0.641047543 0.695188029 0.675197785 0.711975327 0.703704941 0.679180419 0.697367656 -PA3979 0.458002463 0.238783146 0.31021393 0.136160083 0.121816424 0.168462451 0.38035641 0.150958169 0.375073491 0.086312941 0.37116637 -PA3980 0.964623238 0.666951451 0.900529322 0.34235912 0.292626714 0.350695861 0.498048981 0.340474064 0.452650915 0.319674386 0.508086196 -PA3981 0.820743678 0.851550374 0.900842155 0.59486784 0.605667336 0.735293614 0.699392305 0.758514484 0.689790276 0.794245877 0.656450759 -PA3982 0.809652223 0.852855402 0.782315442 0.299688459 0.362104996 0.648460223 0.56622049 0.612251697 0.654185765 0.653620113 0.615516498 -PA3983 0.72370446 0.690332184 0.759151226 0.092758966 0.119537451 0.585544892 0.59832178 0.548965347 0.713987403 0.554827404 0.578273613 -PA3984 0.704669423 0.417342306 0.652011294 0.192429344 0.13369527 0.326605901 0.290611262 0.238431711 0.204989153 0.360835742 0.257429909 -PA3985 0.166466104 0.128646861 0.228298928 0.43841932 0.473707875 0.296411969 0.536370862 0.259779227 0.458752222 0.27222166 0.26890324 -PA3986 0.031854711 0.110408904 0.133245834 0.758463236 0.727902789 0.528434466 0.438828328 0.66422154 0.452144008 0.554604381 0.441173303 -PA3987 0.792109601 0.715776631 0.822651109 0.452876295 0.448896215 0.715921692 0.704509543 0.602124198 0.655543993 0.709498842 0.679648503 -PA3988 0.716113378 0.754002093 0.844683979 0.295940906 0.369443855 0.638399784 0.625710365 0.534262915 0.640158981 0.638321102 0.675588409 -PA3989 0.864426199 0.818054632 0.85355135 0.368435816 0.38883426 0.605079262 0.791333444 0.474660979 0.736487783 0.67789379 0.746994349 -PA3990 0.580708945 0.316926186 0.548858348 0.423016514 0.453197422 0.084895409 0.265142859 0.137334038 0.328950926 0.221582956 0.263812091 -PA3991 0.201697881 0.080146462 0.154980866 0.160970653 0.170514166 0.202776855 0.319116697 0.35092853 0.312992641 0.366231699 0.417508062 -PA3992 0.662239132 0.970445269 0.712002052 0.388888607 0.411002225 0.142126414 0.227670224 0.318935023 0.24765567 0.104606323 0.085011272 -PA3994 0.211847482 0.139355047 0.163984338 0.246678489 0.307872501 0.338124306 0.367202315 0.466338715 0.311006937 0.235701526 0.410104609 -PA3995 0.379586549 0.146673201 0.344128032 0.818502804 0.948165572 0.264107904 0.236732576 0.454714171 0.164711881 0.081014273 0.269063606 -PA3996 0.835709585 0.625141522 0.89406348 0.707589732 0.704178328 0.708645372 0.749534749 0.608113091 0.756101536 0.756015289 0.771954707 -PA3997 0.717703264 0.615451794 0.759954203 0.438167057 0.440704386 0.554042797 0.661444005 0.416606543 0.695771232 0.581399773 0.676637821 -PA3998 0.781222862 0.636555573 0.941153209 0.459059029 0.479262491 0.531939822 0.631871467 0.428230705 0.757415371 0.697549872 0.57106063 -PA3999 0.839076849 0.836564966 0.950161052 0.6067327 0.570303565 0.693432413 0.681049202 0.590186563 0.702611316 0.684285217 0.69225905 -PA4000 0.612309374 0.567593747 0.670641643 0.482486113 0.464574884 0.430875375 0.520934769 0.415502456 0.567784248 0.487738641 0.469252535 -PA4001 0.72142374 0.735528497 0.612007585 0.403121581 0.364985234 0.72317946 0.709846306 0.587617053 0.613383284 0.738734959 0.787325045 -PA4002 0.637445097 0.379239826 0.463469194 0.055299357 0.038406011 0.805842085 0.89609838 0.477222601 0.9289781 0.941005735 0.895682319 -PA4003 0.745129942 0.675035748 0.615583202 0.325148437 0.337367941 0.881116224 0.886495642 0.679771073 0.860742775 0.796412313 0.857959632 -PA4004 0.763156095 0.633120945 0.579511376 0.564822595 0.599354128 0.741922702 0.797282717 0.730990938 0.788567428 0.803945232 0.771973913 -PA4005 0.75355478 0.69711124 0.660651168 0.745678474 0.7387285 0.58202747 0.496026991 0.585087897 0.444573948 0.649186402 0.540822183 -PA4006 0.824583198 0.589762145 0.771598848 0.681550379 0.653877508 0.863981589 0.917083939 0.784768949 0.927956178 0.890915897 0.932658069 -PA4007 0.881024873 0.692472574 0.780500992 0.576956129 0.443954609 0.529928136 0.599823869 0.462200523 0.673118414 0.601455897 0.628342984 -PA4008 0.122216467 0.281544945 0.167644691 0.214355131 0.252913899 0.396288078 0.370881266 0.298186083 0.292000033 0.170928945 0.474056279 -PA4009 0.217324988 0.231033605 0.19469802 0.322639143 0.190640402 0.30709545 0.553015523 0.547758178 0.428136135 0.542012747 0.264508312 -PA4010 0.499281323 0.619498065 0.43719571 0.390343012 0.424435005 0.318728489 0.417962878 0.308476058 0.400970651 0.457471881 0.463204329 -PA4011 0.254056332 0.29076744 0.3381471 0.265203271 0.259895722 0.260032081 0.208133685 0.20052276 0.277098716 0.25080636 0.250538328 -PA4012 0.378673093 0.243310614 0.434621235 0.595173193 0.602796914 0.402259554 0.454406472 0.425395716 0.457625302 0.471172599 0.40144006 -PA4013 0.289870045 0.157818141 0.275454234 0.194482684 0.201083107 0.214813917 0.273778795 0.251206609 0.282603635 0.25498308 0.289179382 -PA4014 0.353838292 0.235109595 0.392617752 0.281858861 0.278829104 0.164356853 0.228137882 0.12808734 0.210838061 0.134337538 0.248469186 -PA4015 0.341471011 0.425701976 0.422063271 0.564777582 0.574425392 0.463759577 0.511214736 0.538982796 0.410330077 0.498558067 0.444021659 -PA4016 0.543005797 0.31688326 0.324675269 0.25669038 0.230414597 0.563562713 0.492002024 0.692571738 0.596535131 0.471466993 0.561966327 -PA4017 0.358764553 0.369682619 0.320135731 0.720778922 0.698450959 0.192031227 0.10957072 0.302645688 0.208306902 0.239467541 0.146650361 -PA4018 0.411273761 0.321349778 0.338380425 0.38745574 0.401455658 0.466597577 0.418760213 0.482921889 0.461138244 0.454988217 0.451695351 -PA4019 0.580392703 0.440930431 0.551954979 0.522305417 0.499174684 0.59221794 0.545061215 0.448486942 0.558638825 0.564819392 0.53828211 -PA4020 0.669187553 0.612854784 0.626734907 0.630321557 0.573703825 0.440250247 0.382812346 0.410234841 0.396553289 0.403559252 0.364311459 -PA4021 0.259545923 0.256920745 0.36875461 0.458072869 0.506954017 0.459709145 0.252720928 0.49015196 0.290198153 0.426166241 0.220070228 -PA4023 0.394577122 0.153385241 0.13834077 0.227841274 0.207610697 0.225419401 0.318424356 0.175592176 0.359968973 0.187419347 0.214983465 -PA4024 0.358856195 0.241938011 0.285130559 0.665553056 0.619631922 0.229786427 0.153610388 0.287501829 0.219804256 0.161584485 0.261848659 -PA4025 0.406707547 0.425111459 0.431536906 0.689089013 0.685186355 0.371869956 0.413929942 0.391954184 0.366970247 0.337849103 0.344571905 -PA4026 0.455133013 0.485610302 0.508972128 0.701041506 0.718024221 0.50877199 0.431267941 0.464752785 0.456362625 0.338613217 0.309476862 -PA4027 0.351692382 0.375351665 0.451185256 0.772196686 0.735398859 0.363537234 0.009399426 0.564398767 0.183100819 0.205933485 0.002921967 -PA4028 0.201540947 0.238770316 0.263699219 0.283455605 0.281816911 0.295767269 0.375902894 0.279673851 0.371507192 0.289712278 0.349445924 -PA4029 0.577981395 0.5725405 0.504426598 0.582446053 0.571360035 0.183981995 0.177826719 0.156747189 0.244015339 0.261989632 0.11560631 -PA4030 0.662831005 0.558758004 0.616152346 0.391551083 0.399509402 0.315822108 0.445097401 0.098671484 0.544847725 0.315322099 0.456535232 -PA4031 0.955537561 0.860990328 0.893156518 0.327970355 0.390144238 0.429732058 0.483591769 0.336781386 0.56819798 0.379479188 0.437475527 -PA4032 0.612528453 0.634642858 0.659212819 0.667757529 0.676337793 0.635277526 0.536640329 0.638263444 0.722872706 0.639868356 0.58236885 -PA4033 0.099735729 0.040672745 0.504391351 0.070956561 0.17896505 0.083261546 0.103302235 0.133069475 0.061739395 0.093804155 0.048936289 -PA4034 0.131086553 0.12616674 0.250021662 0.149878581 0.109626267 0.133116669 0.117076997 0.129137212 0.186942348 0.172178351 0.139331548 -PA4035 0.734545364 0.716925901 0.863686849 0.450569849 0.462629053 0.389122554 0.326652649 0.36639075 0.326697366 0.322650405 0.403926457 -PA4036 0.392585748 0.379518636 0.375249202 0.315898291 0.332247297 0.311973511 0.221924051 0.321265365 0.234667022 0.397094026 0.223439804 -PA4037 0.245713452 0.214803627 0.235754175 0.189903156 0.159157766 0.309833031 0.194535999 0.266209361 0.139892329 0.361181672 0.091454396 -PA4038 0.123478293 0.098439789 0.144474847 0.135439492 0.159123713 0.170262473 0.185475618 0.207917848 0.200751291 0.158002131 0.204058656 -PA4039 0.258232026 0.192769314 0.311745336 0.18070034 0.18563473 0.279962783 0.29045657 0.297087663 0.281882817 0.203713728 0.31649494 -PA4040 0.079776344 0.276113469 0.058557349 0.17205094 0.209165385 0.348911607 0.192502396 0.353841225 0.441317457 0.301673949 0.327353973 -PA4041 0.208396103 0.094458014 0.333134781 0.925375433 0.853232913 0.384483384 0.192725628 0.114828838 0.173597717 0.387345168 0.267631642 -PA4042 0.917900132 0.843811795 0.827810644 0.40016889 0.440867329 0.793611999 0.702909069 0.884297433 0.745735738 0.884718223 0.798699383 -PA4043 0.851636489 0.854000367 0.864087056 0.332550737 0.411279867 0.3077574 0.216994622 0.282141532 0.315630442 0.274879181 0.247062498 -PA4044 0.864527373 0.78137379 0.620192374 0.22927058 0.265002783 0.514337446 0.450016141 0.401560013 0.503466495 0.395345813 0.492656935 -PA4045 0.591424392 0.505381592 0.410019842 0.310072843 0.270331423 0.515850264 0.658934947 0.625922866 0.790663832 0.587664176 0.684953178 -PA4046 0.472541854 0.412296165 0.372294084 0.130974138 0.154506839 0.470408794 0.462067297 0.303798075 0.425684538 0.480382352 0.483286595 -PA4047 0.640824852 0.595869428 0.634160746 0.393243566 0.415148932 0.285790173 0.447821801 0.339609583 0.449359532 0.428046541 0.486902712 -PA4048 0.612330556 0.205341451 0.338286021 0.930216661 0.880179286 0.311417622 0.358438557 0.373948115 0.344828097 0.264187443 0.330380493 -PA4049 0.677448748 0.42060986 0.355653352 1 0.984862346 0.180856968 0.300157763 0.335426788 0.270033225 0.235178062 0.282068799 -PA4050 0.735613785 0.446422256 0.587127863 0.157302977 0.161445375 0.547282298 0.762014471 0.389338116 0.69399432 0.524328914 0.715303307 -PA4051 0.720762062 0.609827512 0.227635215 0.128250887 0.211999612 0.204924883 0.360763088 0.288386011 0.364525727 0.237980969 0.35673659 -PA4052 0.94224839 0.74855146 0.817625688 0.42852745 0.517547366 0.311381779 0.428428653 0.282398111 0.457428935 0.375758257 0.482976007 -PA4053 0.940605438 0.888450723 0.807655884 0.648548132 0.67254392 0.28063873 0.377208684 0.275682372 0.270592018 0.389656125 0.357852795 -PA4054 0.836785941 0.742860009 0.537667877 0.410579374 0.400173175 0.330156413 0.436691246 0.31239011 0.427772276 0.410715956 0.326876913 -PA4055 0.811348444 0.631302017 0.4067093 0.27469208 0.251287611 0.231824833 0.242216322 0.082406563 0.195068448 0.103304965 0.207895356 -PA4056 0.709733254 0.512405773 0.665744572 0.51537087 0.496231252 0.508055492 0.587776395 0.571544421 0.573291971 0.592909336 0.644167056 -PA4057 0.83902909 0.853657548 0.769056321 0.641633896 0.644532882 0.812511151 0.753768797 0.795642165 0.78166542 0.789988883 0.753157395 -PA4058 0.921241542 0.617793829 0.792566946 0.825453943 0.803789541 0.377408731 0.193201313 0.413741243 0.318593867 0.239297687 0.196301641 -PA4059 0.615238981 0.39090553 0.559716623 0.655998872 0.666079181 0.342970348 0.209849982 0.358512318 0.316054873 0.197146405 0.305883941 -PA4060 0.703977178 0.457977694 0.543932893 0.592755909 0.482816681 0.311759113 0.117626491 0.16639317 0.26130206 0.13986629 0.218089837 -PA4061 0.673266233 0.723098578 0.711015176 0.499353203 0.44183324 0.316588155 0.391111138 0.222370048 0.39000577 0.310093278 0.392898966 -PA4062 0.125027384 0.158743563 0.238479205 0.256401695 0.272937928 0.069022474 0.128845852 0.063833522 0.130586145 0.071143958 0.064499489 -PA4063 0.326522282 0.43981047 0.93229465 0.682218777 0.724428988 0.491577972 0.282338044 0.462756296 0.273965075 0.538298127 0.351318494 -PA4064 0.260885041 0.186309402 1 0.364974298 0.388310861 0.24269724 0.163484844 0.287352347 0.18966655 0.185591042 0.257413374 -PA4065 0.298624584 0.26065308 0.924990183 0.276695899 0.248888153 0.299863909 0.179433578 0.331104474 0.316033699 0.268146194 0.189830521 -PA4066 0.271141662 0.185490712 0.779622473 0.204262827 0.216631736 0.288195394 0.309514929 0.263245869 0.305463003 0.515687392 0.329301915 -PA4067 0.697184263 0.898383702 0.481697143 0.828767025 0.845284046 0.717554881 0.618623531 0.754198044 0.589416736 0.727266957 0.627047666 -PA4068 0.85707942 0.602670739 0.85776353 0.262519444 0.184243617 0.79585148 0.800475911 0.268553778 0.738124062 0.651226733 0.800710276 -PA4069 0.943654374 0.701501919 0.873304127 0.366366345 0.344254126 0.21406067 0.471514937 0.322464986 0.560217064 0.392084964 0.384358804 -PA4070 0.162850896 0.1521867 0.15744182 0.358517138 0.463128818 0.22318993 0.248637729 0.301593876 0.285002756 0.17707649 0.363917743 -PA4071 0.233639864 0.225985173 0.177866373 0.282496658 0.278027422 0.285541996 0.342839321 0.198878666 0.242498482 0.236183852 0.271377955 -PA4072 0.101081421 0.102934666 0.122014482 0.151018492 0.160183607 0.407411546 0.217383983 0.358693985 0.260514277 0.284371061 0.322570917 -PA4073 0.147933477 0.149305556 0.120254923 0.221832857 0.180822466 0.1564746 0.206926662 0.234605109 0.125734868 0.199214185 0.173221502 -PA4074 0.37598178 0.342903438 0.324805605 0.647654587 0.516054653 0.563915093 0.448844003 0.457975638 0.375917131 0.489920469 0.390148813 -PA4075 0.481042084 0.318292356 0.542132612 0.579172214 0.532119796 0.432457812 0.423926206 0.351877049 0.336849278 0.452327881 0.381289818 -PA4076 0.17737376 0.203788931 0.144828141 0.130266449 0.157764221 0.221018523 0.212848627 0.233967648 0.259279245 0.224118227 0.287285354 -PA4077 0.321971829 0.45368935 0.263298783 0.217014474 0.234586888 0.516955127 0.646190044 0.477174668 0.765861867 0.563690111 0.726264714 -PA4078 0.08612998 0.099572296 0.153012734 1 0.900831359 0.28093859 0.118504768 0.37991292 0.195012512 0.322243953 0.158657063 -PA4079 0.232030488 0.377011799 0.270350801 0.823372008 0.703677551 0.356877129 0.300512728 0.401132658 0.280714098 0.400027727 0.256741107 -PA4080 0.231394001 0.200631934 0.35825972 0.712578134 0.625613866 0.84088338 0.733357099 0.663507933 0.685572326 0.887577144 0.670986967 -PA4081 0.283538331 0.232165658 0.28100648 0.3809452 0.305493831 0.26201909 0.292051621 0.277748516 0.203857917 0.186091598 0.286656252 -PA4082 0.133096563 0.105748995 0.180622303 0.17725995 0.140670789 0.185173773 0.15882131 0.185935017 0.208565149 0.200873253 0.198694998 -PA4083 0.247779822 0.263570199 0.140588549 0.176283486 0.211054875 0.316400025 0.261706333 0.269391638 0.338424218 0.285423409 0.323927677 -PA4084 0.207706284 0.156090918 0.137502904 0.243575984 0.225780075 0.376635093 0.208187692 0.330978533 0.340393722 0.150302701 0.339938221 -PA4085 0.252070563 0.220558506 0.135819533 0.213414497 0.171177631 0.336758021 0.213773457 0.294255745 0.221123414 0.213914378 0.279898587 -PA4086 0.147260336 0.214454709 0.185506767 0.197705403 0.149237998 0.170213349 0.079392824 0.167258623 0.200652733 0.057352809 0.17998019 -PA4087 0.172633923 0.17784614 0.092777812 0.206163007 0.20294886 0.295931561 0.268472651 0.255534459 0.178236196 0.207073029 0.258477548 -PA4088 0.333141911 0.243787601 0.207536331 0.293337439 0.294025493 0.351770477 0.391965863 0.151779943 0.325893999 0.37371858 0.352585929 -PA4089 0.184089137 0.178733155 0.188436836 0.18793181 0.1638015 0.219689821 0.194671938 0.285074949 0.180355479 0.16495041 0.125256859 -PA4090 0.57986481 0.578794137 0.627642515 0.340467968 0.410847516 0.499798254 0.446427869 0.433467238 0.566644452 0.517954069 0.466022299 -PA4091 0.211988999 0.18604453 0.19653333 0.152841138 0.116745335 0.182430427 0.134801067 0.265551238 0.166678203 0.213466772 0.208229396 -PA4092 0.12355021 0.109305338 0.11467851 0.115997902 0.121362837 0.177679843 0.214854917 0.110341364 0.179239521 0.074457473 0.040417698 -PA4093 0.24936185 0.28984716 0.221296757 0.299845749 0.227902821 0.508398018 0.469613366 0.401180468 0.383204978 0.398730976 0.454269672 -PA4094 0.281971495 0.300113848 0.508553785 0.323788488 0.383115253 0.243569731 0.275148663 0.422015544 0.237983471 0.326573347 0.276965935 -PA4095 0.24114697 0.259219142 0.198337127 0.325554889 0.229367194 0.264368384 0.166774834 0.24263951 0.309405742 0.155450797 0.162819248 -PA4096 0.196531687 0.110863097 0.187296644 0.202895455 0.168783999 0.281261188 0.349216568 0.370987129 0.268819127 0.249769148 0.290310671 -PA4097 0.249363147 0.28716382 0.197800787 0.348746624 0.266808946 0.352863054 0.316780203 0.264959795 0.405463475 0.332586202 0.378171013 -PA4098 0.357145474 0.362877027 0.339721881 0.300923732 0.445324423 0.440015627 0.491572507 0.522196246 0.501162618 0.378992973 0.573365463 -PA4099 0.21306817 0.197725636 0.110252506 0.170568463 0.186030173 0.181541099 0.26834631 0.326623238 0.277696051 0.137783136 0.292174539 -PA4100 0.227927106 0.216095876 0.176867067 0.235181018 0.1980851 0.309126346 0.354636952 0.414608398 0.591138171 0.279995508 0.440553409 -PA4101 0.091532351 0.223240495 0.055617924 0.159696866 0.097011366 0.697612068 0.662320244 0.646435366 0.707949411 0.70738452 0.668445583 -PA4102 0.167774732 0.279666763 0.128344392 0.182792415 0.177512499 0.656503249 0.700853367 0.598527742 0.743628012 0.666687524 0.635074125 -PA4103 0.08492871 0.107236707 0.086392685 0.115641312 0.0949353 0.885765281 0.884079381 0.790477513 0.929504077 0.886804074 0.927548472 -PA4104 0.165624023 0.201373249 0.056661944 0.058951479 0.091027791 0.550671809 0.680182037 0.51713254 0.713216313 0.583029055 0.611421694 -PA4105 0.172788775 0.155181326 0.08431837 0.213029827 0.10833892 0.466229888 0.410114168 0.268738013 0.482010758 0.433567681 0.311708227 -PA4106 0.110955391 0.147203566 0.088930996 0.191439018 0.136131649 0.435228471 0.372023158 0.427145049 0.515963358 0.406622065 0.392275459 -PA4107 0.075052135 0.118493018 0.066201637 0.07570228 0.05431326 0.843836693 0.851639953 0.810498964 0.866678881 0.840150086 0.85180493 -PA4108 0.132056993 0.407105823 0.140010038 0.552254536 0.4384225 0.398721745 0.499563401 0.726246876 0.435735271 0.560821478 0.404199451 -PA4109 0.74177819 0.597529926 0.624902624 0.674076487 0.730916756 0.516237908 0.38923443 0.568209386 0.473476235 0.362355383 0.447285256 -PA4110 0.147605529 0.129557234 0.182748319 0.193730847 0.163716668 0.40381952 0.261529001 0.356084087 0.303545115 0.4069333 0.180485979 -PA4111 0.304397225 0.36541207 0.404880248 0.508230057 0.506569981 0.484022628 0.381197761 0.515508126 0.391166201 0.53085018 0.305915994 -PA4112 0.196870448 0.142922023 0.186926158 0.713534171 0.583280551 0.531670074 0.2040184 0.502117152 0.342975808 0.467162934 0.363265844 -PA4113 0.511553582 0.33099488 0.220526411 0.269058558 0.1847768 0.388183884 0.390107701 0.40422497 0.297124467 0.433075013 0.234495433 -PA4114 0.299765368 0.338788697 0.417694613 0.670344599 0.746584225 0.462508365 0.381912045 0.405490822 0.457307661 0.416326794 0.543856515 -PA4115 0.559047442 0.995952054 0.504465908 0.563385365 0.618529608 0.477927645 0.362735345 0.51755836 0.393192569 0.455977451 0.418917858 -PA4116 0.58750814 0.791954166 0.370114525 0.38744925 0.382551966 0.429525127 0.321524125 0.483788034 0.377473023 0.419289241 0.486799381 -PA4117 0.637312443 0.591785166 0.689533511 0.736166291 0.729791646 0.811402365 0.684134547 0.772795627 0.70246558 0.827568801 0.722156208 -PA4118 0.883356702 0.608758593 0.878390048 0.416626573 0.487516679 0.507233052 0.540121544 0.581086551 0.523311045 0.525462535 0.530092472 -PA4119 0.665639359 0.365901154 0.652546729 0.268476046 0.367418011 0.528598701 0.349485775 0.469217849 0.536237395 0.26846369 0.452263705 -PA4120 0.210253181 0.243933274 0.246050675 0.288276936 0.295225242 0.203526246 0.189985726 0.180054473 0.172421185 0.105345499 0.189821252 -PA4121 0.125010014 0.120238115 0.139104477 0.171163881 0.15618271 0.089734328 0.059822139 0.096910508 0.054709273 0.056758012 0.067773916 -PA4122 0.129871625 0.132038927 0.080104453 0.122268996 0.141463359 0.101614533 0.122413696 0.237382285 0.095323367 0.114072203 0.181267471 -PA4123 0.130997483 0.127871508 0.116789506 0.170375213 0.185528939 0.149438663 0.08059872 0.150125549 0.103519643 0.157531522 0.170307074 -PA4124 0.148081218 0.14393043 0.141650015 0.160977349 0.178640993 0.136406233 0.185751594 0.257178308 0.182019512 0.231825092 0.177799258 -PA4125 0.142516328 0.130545598 0.144354573 0.08824496 0.155175639 0.14434858 0.098679655 0.100894702 0.112999022 0.194913604 0.118427099 -PA4126 0.201075933 0.124705853 0.068605575 0.270906197 0.216470636 0.276732364 0.342627933 0.399135989 0.37579569 0.232153404 0.310767211 -PA4127 0.125234974 0.117218821 0.102387802 0.152681428 0.103896586 0.292112377 0.153143373 0.231726721 0.256153675 0.274470398 0.220083649 -PA4128 0.136141933 0.150445051 0.135993592 0.455661166 0.39248415 0.409718039 0.399206556 0.445198236 0.377050698 0.39175963 0.347000918 -PA4129 0.372939054 0.161928253 0.151767621 0.800460364 0.797119926 0.711933761 0.578662645 0.603730712 0.585051178 0.699746271 0.581327494 -PA4130 0.47985418 0.176091511 0.157715076 0.830424046 0.846081388 0.701498626 0.57897097 0.646013674 0.60515785 0.671342565 0.566889324 -PA4131 0.670861608 0.246630035 0.13505975 0.775033955 0.743485081 0.617181301 0.585295888 0.540344289 0.602692102 0.58266668 0.576581131 -PA4132 0.616521999 0.242903917 0.233702042 0.686051094 0.617082794 0.624134392 0.662267174 0.561680857 0.715374211 0.670445623 0.653995697 -PA4133 0.531694642 0.185929056 0.202327524 0.752896007 0.756161251 0.766246629 0.6949651 0.759247427 0.725259149 0.75504254 0.696256937 -PA4134 0.341215899 0.157551226 0.313295355 0.547325516 0.589209258 0.634119997 0.475028584 0.424116011 0.601584077 0.584901291 0.507382681 -PA4135 0.558844947 0.357258029 0.62827132 0.197944682 0.21208673 0.507766969 0.491081026 0.60210782 0.547469521 0.556980115 0.484474593 -PA4136 0.307871679 0.215653871 0.287211689 0.270775127 0.358325703 0.301684506 0.332286739 0.317107154 0.298378305 0.336371969 0.331958679 -PA4137 0.168501144 0.132250054 0.236079894 0.16599403 0.197829302 0.249209942 0.144459351 0.121108479 0.252005386 0.263724312 0.247149467 -PA4138 0.424125753 0.377986033 0.365201001 0.381112992 0.431389446 0.307387596 0.176550854 0.337925429 0.274058538 0.27459064 0.216674595 -PA4139 0.364323723 0.180795332 0.429713168 0.270754349 0.295614947 0.89485592 0.882338347 0.900102891 0.870900188 0.93796446 0.892610592 -PA4140 0.325095264 0.193792705 0.238751642 0.21713601 0.191007471 0.236501346 0.299320985 0.21688075 0.277839204 0.305311767 0.21015493 -PA4141 0.298581342 0.362771285 0.328571671 0.559992669 0.521170911 0.860119776 0.806760076 0.883904867 0.837255639 0.875663351 0.800758204 -PA4142 0.255468179 0.138122227 0.231456227 0.435912365 0.388494379 0.372200205 0.252451721 0.459618793 0.357151593 0.402599707 0.191959686 -PA4143 0.322959531 0.232578874 0.271400687 0.375459044 0.303366551 0.626100151 0.410033878 0.441023064 0.475276154 0.517078975 0.378915219 -PA4144 0.222506514 0.202737856 0.299359521 0.257334665 0.25434002 0.460213646 0.239522911 0.383819878 0.356153533 0.416251122 0.414171926 -PA4145 0.419628692 0.508580556 0.569650492 0.448949871 0.418885571 0.440462998 0.36502905 0.576918002 0.408795416 0.54583023 0.294732318 -PA4146 0.25286957 0.216705687 0.302834451 0.255951135 0.288728566 0.133201953 0.114081065 0.17252885 0.095646748 0.138749539 0.140456779 -PA4147 0.150746238 0.160745094 0.15533009 0.265483398 0.322109472 0.203143204 0.208428149 0.208151482 0.226455018 0.200095674 0.220339711 -PA4148 0.080149389 0.088442595 0.102269459 0.112151887 0.118512288 0.145920499 0.150630135 0.165972757 0.133236077 0.103834231 0.142880457 -PA4149 0.08696244 0.116994106 0.074767033 0.14757072 0.131622286 0.101954675 0.114222314 0.108195856 0.084264502 0.080789305 0.118657976 -PA4150 0.156994513 0.162690617 0.129257242 0.160168242 0.157551549 0.157293254 0.173607665 0.161853778 0.266931779 0.217923492 0.20272458 -PA4151 0.078940936 0.071431665 0.07289715 0.121322092 0.093316354 0.122241227 0.120276943 0.11786569 0.058510043 0.073675211 0.099387281 -PA4152 0.098152747 0.09507032 0.085934831 0.148843519 0.101109869 0.188585244 0.134358575 0.127847319 0.213711608 0.131509373 0.241457487 -PA4153 0.107903191 0.086244958 0.094823395 0.092758726 0.110907408 0.109459836 0.150004536 0.14497687 0.157248749 0.07866906 0.239035033 -PA4154 0.242869513 0.401488092 0.366373013 0.161005404 0.121133791 0.259298976 0.427921772 0.304506463 0.334871356 0.338530094 0.336236658 -PA4155 0.171137581 0.162048998 0.144563703 0.139962797 0.156040725 0.204464752 0.123665406 0.167047971 0.210157804 0.182850592 0.136643775 -PA4156 0.1891843 0.091904291 0.193692267 0.162194768 0.122036085 0.247853939 0.244056846 0.268489299 0.112304027 0.189846901 0.105687141 -PA4157 0.687689069 0.547740001 0.684039692 0.489417136 0.445990531 0.446192009 0.417898204 0.458351179 0.507290812 0.233702034 0.342893143 -PA4158 0.296789098 0.201433402 0.285958076 0.323991975 0.207855272 0.267525631 0.409060988 0.350047525 0.372012663 0.343220948 0.380260207 -PA4159 0.257867263 0.268960213 0.197520072 0.210991234 0.198625694 0.335496868 0.263808485 0.371786051 0.383362399 0.198041952 0.459797406 -PA4160 0.285833738 0.189902127 0.210929217 0.225640789 0.216690459 0.167518052 0.239703599 0.25091145 0.234470505 0.299696466 0.171875469 -PA4161 0.199375441 0.204702592 0.212377897 0.210860771 0.214206639 0.339658489 0.315717156 0.570104418 0.35507072 0.311442741 0.289930328 -PA4162 0.322806103 0.391884836 0.295303459 0.440791466 0.388033181 0.316382514 0.380421271 0.338916985 0.263659286 0.354426411 0.402389876 -PA4163 0.864509695 0.772477972 0.925146342 0.633646002 0.639881779 0.18554268 0.123324491 0.172588919 0.137922042 0.185124762 0.223200859 -PA4164 0.824152131 0.65053283 0.917118011 0.526164544 0.63253792 0.469311331 0.278116921 0.340165499 0.347160632 0.41767622 0.215115826 -PA4165 0.418706593 0.491152021 0.430665703 0.349033749 0.359342685 0.469935864 0.413851093 0.44374192 0.493679088 0.446456635 0.339556233 -PA4166 0.315309915 0.321708321 0.242643319 0.336895979 0.263925036 0.443292195 0.329690786 0.54388963 0.290169551 0.25149824 0.318003479 -PA4167 0.120664761 0.116329119 0.069631737 0.156116113 0.106241441 0.120518575 0.184095793 0.208022515 0.116987585 0.118954914 0.179398952 -PA4168 0.248727848 0.174843392 0.334303793 0.230162131 0.2200368 0.239167412 0.228661898 0.191174642 0.238100719 0.165828857 0.173629524 -PA4169 0.297928442 0.195573715 0.544621846 0.31722395 0.359112117 0.519967026 0.504326742 0.625543901 0.534139292 0.548683087 0.543296854 -PA4170 0.244548553 0.322348378 0.974245991 0.133677498 0.301744776 0.259578031 0.362907664 0.129702458 0.221421332 0.270793181 0.254967928 -PA4171 0.152332704 0.234118372 0.677527022 0.773938561 0.815325024 0.397341822 0.27627037 0.437887206 0.244310249 0.490738722 0.214652955 -PA4172 0.195028353 0.188182769 0.512161708 0.59281218 0.693844989 0.24926849 0.140029578 0.286572375 0.171692635 0.344996893 0.216965013 -PA4173 0.135645123 0.109821056 0.046251592 0.181609903 0.275273835 0.117651778 0.060100115 0.117807248 0.096175742 0.131716912 0.132088321 -PA4174 0.508955892 0.379386681 0.405734036 0.628751365 0.73294354 0.524468664 0.229665393 0.419042913 0.421467647 0.383335256 0.808531855 -PA4175 0.2525388 0.198938153 0.305219174 0.590412561 0.585687113 0.211084343 0.168316271 0.246306635 0.107870267 0.235133188 0.159861908 -PA4176 0.633752871 0.789972702 0.528362288 0.577261316 0.594953576 0.541650376 0.500681091 0.557402498 0.512907957 0.599212788 0.546476328 -PA4177 0.265597557 0.253470998 0.191522778 0.218671917 0.189830801 0.340999566 0.243945747 0.368989279 0.361950059 0.379829937 0.352867249 -PA4178 0.340856446 0.193985281 0.211510631 0.263404411 0.248493418 0.260234348 0.313140646 0.268747084 0.311542478 0.285709173 0.469904013 -PA4179 0.319443457 0.300877439 0.336192684 0.25269324 0.216268664 0.279818802 0.317096387 0.30757255 0.183377073 0.353766038 0.278840042 -PA4180 0.585606406 0.641289815 0.62092631 0.564325318 0.565363107 0.523478808 0.430688152 0.539343786 0.489363014 0.55309799 0.469904756 -PA4181 0.341575436 0.380387522 0.301434421 0.50301421 0.540278505 0.09602649 0.20630902 0.25544494 0.211421205 0.217614876 0.215325159 -PA4182 0.425137993 0.429900572 0.387207722 0.573418818 0.610751331 0.186884154 0.17988328 0.244678262 0.207936678 0.207862174 0.186137103 -PA4183 0.343715483 0.257595881 0.442702279 0.300513799 0.294374908 0.363542082 0.443383459 0.451925616 0.503201948 0.423655053 0.489827991 -PA4184 0.556839186 0.448736373 0.630949725 0.465391827 0.443397338 0.151619025 0.284972414 0.271771045 0.44088885 0.265081754 0.391126833 -PA4185 0.615234645 0.576172139 0.701432028 0.429442525 0.425425377 0.52705568 0.440957951 0.48851171 0.558013865 0.549079979 0.525612721 -PA4186 0.296925539 0.20641003 0.34405912 0.244816137 0.269733882 0.337395492 0.294280997 0.265215761 0.300709202 0.302879226 0.320749472 -PA4187 0.339905858 0.264432198 0.25765251 0.327967043 0.263443534 0.189072441 0.315970019 0.397422595 0.167740037 0.309108126 0.184285617 -PA4188 0.307412273 0.201806415 0.312626829 0.246309914 0.196665719 0.304302732 0.35661718 0.379199566 0.333499521 0.346294575 0.372489793 -PA4189 0.292204789 0.303637093 0.404632953 0.361067487 0.215846834 0.295651937 0.269813001 0.21933878 0.273957566 0.232052293 0.182217587 -PA4190 0.540744665 0.52649959 0.673426779 0.325063724 0.435320247 0.443998096 0.443841944 0.345049042 0.506981329 0.554277412 0.45870107 -PA4191 0.166033239 0.131807221 0.11882253 0.147377926 0.193413832 0.256981593 0.264376761 0.321702068 0.213918033 0.219570681 0.15960801 -PA4192 0.080880923 0.118131035 0.10463172 0.058992896 0.044944004 0.134270461 0.115264229 0.253816746 0.171404904 0.183943806 0.1858756 -PA4193 0.105684787 0.139624572 0.045135689 0.119033032 0.127035707 0.221341558 0.219192229 0.335001509 0.259627653 0.181647096 0.249507658 -PA4194 0.185966228 0.183476309 0.078362289 0.214307101 0.217261325 0.176372156 0.282935584 0.284335783 0.155944808 0.172544125 0.272200567 -PA4195 0.191176187 0.262454777 0.147514097 0.172644752 0.147099951 0.239569114 0.199623579 0.34154062 0.249899208 0.228336739 0.223507554 -PA4196 0.242603352 0.210456141 0.316215188 0.47017472 0.468445801 0.373829982 0.246063625 0.20965485 0.385870054 0.237300919 0.218717029 -PA4197 0.364302765 0.410837157 0.35740555 0.360544652 0.329863457 0.254409753 0.137523018 0.285676645 0.14271697 0.272064623 0.220077734 -PA4198 0.294149313 0.263164621 0.275012023 0.143228672 0.149339511 0.082544063 0.059392778 0.130570897 0.001731727 0.13149497 0.041111531 -PA4199 0.440742371 0.421479694 0.500179491 0.415191496 0.414450789 0.358509123 0.222485866 0.34432725 0.209376358 0.273194894 0.19869074 -PA4200 0.324974213 0.639709848 0.45223089 0.282525255 0.292237593 0.234608733 0.186130639 0.174962909 0.237114945 0.223930414 0.247599869 -PA4201 0.360272203 0.504311427 0.352237589 0.322096864 0.342105134 0.397400691 0.328239022 0.369785426 0.387943306 0.540972477 0.530549995 -PA4202 0.188283832 0.335751139 0.226037988 0.172596967 0.195512845 0.110297794 0.097803885 0.164165435 0.042123486 0.026808978 0 -PA4203 0.196666609 0.228529255 0.154195511 0.09475013 0.132064635 0.083546003 0.088513729 0.105821324 0.121863502 0.075376929 0.057487042 -PA4204 0.177594762 0.529878531 0.397921028 0.393086325 0.375292376 0.462839532 0.333531464 0.499322213 0.442862185 0.40392187 0.281963015 -PA4205 0.149530173 0.136556133 0.17609219 0.306222004 0.231143767 0.568636459 0.457151716 0.423361591 0.375457473 0.581561764 0.448578497 -PA4206 0.207583495 0.141270906 0.250008192 0.251533825 0.195837238 0.68953588 0.492671265 0.577313419 0.59443802 0.682558413 0.520373148 -PA4207 0.121568409 0.132097493 0.188080396 0.129795015 0.068424325 0.641354833 0.509835938 0.396747746 0.517105214 0.637604676 0.358931294 -PA4208 0.172899733 0.181337829 0.208937028 0.147687785 0.150810445 0.558896224 0.382666046 0.366994699 0.483987168 0.551001785 0.388230229 -PA4209 0.142265372 0.048480012 0.138822698 0.423568052 0.435345452 0.479647594 0.563513999 0.328659766 0.544546964 0.550255604 0.573602888 -PA4210 0.135693829 0.167211109 0.095214189 0.313465942 0.224205747 0.693373644 0.674244015 0.657828996 0.660252582 0.735963745 0.675651644 -PA4211 0.187083982 0.042822419 0.203774361 0.578857802 0.484732074 0.798060226 0.696202183 0.767008747 0.733404571 0.808763514 0.714972129 -PA4217 0.223734123 0.079438966 0.114879961 0.297542346 0.313680898 0.441109356 0.415713817 0.334533906 0.417070525 0.504037124 0.423245223 -PA4218 0.263394394 0.122658399 0.310181637 0.141863263 0.056127264 0.206298495 0.162444485 0.093759018 0.160495719 0.0907441 0.153416804 -PA4219 0.212054243 0.122590964 0.220574005 0.135742311 0.088814317 0.146574176 0.219414992 0.205700516 0.24453253 0.121173152 0.17352906 -PA4220 0.326375126 0.141622595 0.354108913 0.16657287 0.112235881 0.137734104 0.200969579 0.219169059 0.117440831 0.091848235 0.220790049 -PA4221 0.417882127 0.133454275 0.447212398 0.181629564 0.15481228 0.187177028 0.217411573 0.159209458 0.223075181 0.169744072 0.215397482 -PA4222 0.289513385 0.1819958 0.243160148 0.132444786 0.122404566 0.163994468 0.098819086 0.181967687 0.088609896 0.17036911 0.132614586 -PA4223 0.312203502 0.131190129 0.324815025 0.157801714 0.109215501 0.133769764 0.134595922 0.134498993 0.093469088 0.106201791 0.225415296 -PA4224 0.33930722 0.170680469 0.340074153 0.160667447 0.170340331 0.120665248 0.160392913 0.178530411 0.157434482 0.118139974 0.183624303 -PA4225 0.214369337 0.122499803 0.280989498 0.138819763 0.166426546 0.210998199 0.159996372 0.110792592 0.126761198 0.084831829 0.087360562 -PA4226 0.280616391 0.059489349 0.312953627 0.141479853 0.09701804 0.110487328 0.125741439 0.121685495 0.097682328 0.06771938 0.140731831 -PA4227 0.326439629 0.097092386 0.473538942 0.239279987 0.041549947 0.130423689 0.122838314 0.103883301 0.142951128 0.160679277 0.195460248 -PA4228 0.250652543 0.078227433 0.430614429 0.144443423 0.082066147 0.101510506 0.02483508 0.099001038 0.055684985 0.050072339 0.108306587 -PA4229 0.343123134 0.164823621 0.435892357 0.196971785 0.13502839 0.104212203 0.069219456 0.117196701 0.105294792 0.090054258 0.179926989 -PA4230 0.294607233 0.046258604 0.487312844 0.229094156 0.102139554 0.130971371 0.068098927 0.15085014 0.061257437 0.100226997 0.07108799 -PA4231 0.318416094 0.12580398 0.385184598 0.222295075 0.180842368 0.203812376 0.200696071 0.195046989 0.25472285 0.153513903 0.226489403 -PA4232 0.914085617 0.8559226 0.95238663 0.787896856 0.797667433 0.528706145 0.605015214 0.394218759 0.610988293 0.485725117 0.557970524 -PA4233 0.662875214 0.363741669 0.479754804 0.19846823 0.14754308 0.16270517 0.23025101 0.163477697 0.305573064 0.245918415 0.295442951 -PA4234 0.895249574 0.851840533 0.928417896 0.258901951 0.271927484 0.450820055 0.638733353 0.504642916 0.637285393 0.526677706 0.648299794 -PA4235 0.538493768 0.779699201 0.455665 0.855038918 0.850897637 0.90390512 0.869575746 0.957730739 0.794060194 0.915967371 0.834390194 -PA4236 0.277532435 0.671494121 0.340402589 0.610383126 0.60663091 0.595234796 0.39047227 0.624080155 0.402435376 0.568447752 0.420050906 -PA4237 0.838896234 0.689229069 0.825210903 0.319998032 0.363815054 0.44784749 0.589825311 0.398913625 0.596486268 0.469141773 0.463443008 -PA4238 0.94451072 0.942270774 0.941416496 0.465535583 0.482822518 0.626633672 0.789948757 0.598804362 0.792121808 0.713617078 0.815842848 -PA4239 0.889451671 0.858760457 0.887007057 0.409561652 0.410149491 0.579102582 0.715516135 0.561995511 0.673897406 0.609413842 0.691917327 -PA4240 0.940717822 0.91371763 0.918686224 0.441641534 0.44363595 0.404164986 0.501236803 0.263887594 0.479263028 0.398720499 0.536772421 -PA4241 0.837932562 0.862243494 0.85319078 0.389127563 0.397031895 0.779047523 0.841788027 0.727848018 0.843468232 0.780090271 0.868970587 -PA4242 0.847784332 0.738352405 0.922268449 0.576312776 0.567321454 0.879030033 0.904760565 0.821984673 0.875811057 0.89612072 0.861272825 -PA4243 0.893028436 0.718639716 0.878165471 0.358101504 0.341561762 0.493849847 0.618543745 0.367559314 0.623748308 0.424442515 0.666977181 -PA4244 0.937323065 0.793147002 0.895664051 0.488670083 0.470552111 0.457005103 0.633084092 0.324859751 0.642286382 0.448440354 0.621536496 -PA4245 0.872106354 0.839867674 0.852157229 0.540061969 0.532120529 0.614723781 0.680516624 0.502343312 0.611255532 0.595381467 0.691003097 -PA4246 0.966198432 0.894867642 0.934658252 0.618734113 0.586894745 0.750948319 0.804554676 0.69172523 0.790284764 0.759091018 0.791926491 -PA4247 0.935974569 0.865690185 0.941202971 0.543894867 0.53101436 0.548402968 0.665981747 0.524653591 0.699882948 0.545449123 0.661219697 -PA4248 0.975216333 0.895073826 0.911963195 0.572289798 0.580990052 0.556707499 0.696301037 0.498273674 0.746650864 0.575903231 0.676193509 -PA4249 0.955692705 0.933081931 0.912780596 0.589077103 0.602121095 0.74933679 0.812794347 0.753559766 0.808768903 0.710155049 0.821954481 -PA4250 0.923137211 0.906184513 0.821401557 0.377913371 0.380314971 0.47257093 0.652210884 0.494209231 0.656132197 0.472827146 0.668171774 -PA4251 0.93198215 0.974394996 0.907005582 0.458850172 0.4714132 0.587049337 0.663206015 0.495625092 0.679449338 0.570243268 0.668723151 -PA4252 0.837650051 0.896309781 0.902226039 0.319631293 0.330641484 0.657935367 0.729660922 0.575372754 0.737512768 0.659358802 0.750744964 -PA4253 0.913522847 0.914776152 0.907475811 0.49325013 0.462755327 0.655335711 0.712583657 0.622051523 0.651380986 0.652920532 0.726325023 -PA4254 0.947869258 0.939523402 0.933686907 0.484279066 0.480610551 0.809355761 0.831165597 0.76669601 0.832285409 0.808793833 0.856139565 -PA4255 0.79716999 0.835240659 0.824416613 0.238960949 0.24529923 0.719311371 0.744681546 0.643482483 0.721700248 0.715610449 0.768304521 -PA4256 0.906032685 0.934551828 0.832255077 0.314252383 0.334434511 0.686104473 0.752019155 0.564425951 0.735667381 0.676998624 0.780333074 -PA4257 0.865374186 0.918853801 0.875902586 0.191001021 0.241791954 0.634070908 0.722188969 0.526690215 0.656941982 0.656503396 0.729769164 -PA4258 0.887848397 0.879779333 0.87593123 0.339929049 0.337399634 0.802963908 0.763102731 0.739422908 0.730893338 0.800689615 0.792149214 -PA4259 0.86642695 0.899551225 0.896232011 0.379596936 0.317653796 0.752194864 0.755125571 0.748714851 0.701699884 0.808459371 0.727305926 -PA4260 0.93476737 0.942592092 0.855525354 0.322170919 0.307281417 0.480364544 0.552166857 0.433928954 0.537045062 0.516657029 0.57475853 -PA4261 0.913407097 0.857324569 0.901462361 0.297053081 0.321879463 0.611972407 0.704964776 0.592659508 0.671834277 0.675233678 0.707808365 -PA4262 0.951381678 0.863767085 0.920374715 0.388810246 0.358213561 0.622945775 0.720696981 0.533827103 0.732092916 0.64370844 0.689235327 -PA4263 0.928834708 0.874661675 0.906406976 0.439159621 0.395307066 0.592752472 0.745936469 0.542691397 0.7129691 0.576651163 0.66709995 -PA4264 0.940016859 0.941334881 0.926198597 0.535987627 0.545865951 0.782002997 0.82336796 0.759592747 0.825261369 0.791215157 0.833295885 -PA4265 0.873042945 0.756974942 0.91472927 0.617063207 0.631461712 0.565441244 0.678161632 0.471893341 0.720222745 0.536384456 0.72043507 -PA4266 0.937682289 0.903789754 0.896987009 0.480143078 0.558778115 0.579436235 0.700923891 0.54100885 0.691764919 0.616633556 0.68500285 -PA4267 0.90775834 0.937661837 0.917453172 0.660417693 0.650487939 0.808804532 0.812040128 0.747374437 0.781756184 0.812750311 0.801720076 -PA4268 0.907295541 0.905967232 0.931885399 0.684643425 0.725574842 0.725229984 0.795003155 0.678764092 0.768478929 0.774610977 0.757535281 -PA4269 0.977379026 0.83536447 0.917796585 0.230072651 0.256709124 0.487061611 0.511804159 0.327174012 0.470237049 0.477210772 0.483910064 -PA4270 0.943722097 0.826619796 0.951287328 0.223162306 0.262181709 0.595923483 0.621531818 0.471831507 0.650567302 0.655728492 0.620063544 -PA4271 0.931922954 0.833364145 0.942926503 0.33827814 0.407445856 0.680784471 0.823878606 0.595419736 0.819760826 0.692045506 0.814238833 -PA4272 0.964233563 0.954635198 0.937923954 0.397057014 0.445673285 0.7751166 0.817279274 0.680755409 0.806312025 0.785612434 0.850189123 -PA4273 0.966536405 0.871183085 0.914882172 0.48585521 0.49356125 0.659503471 0.76370884 0.586182012 0.764461584 0.645138761 0.777624836 -PA4274 0.953502329 0.922787687 0.906100745 0.531923171 0.52583025 0.633655408 0.703520171 0.499378208 0.700510095 0.68328521 0.704378272 -PA4275 0.786606675 0.664641287 0.753239641 0.266134377 0.301253951 0.886667488 0.922543135 0.876935633 0.918471798 0.89472619 0.944051891 -PA4276 0.889030286 0.826632909 0.824206758 0.368275834 0.438966578 0.901221227 0.998728636 0.869489622 0.979339008 0.937927266 0.985536776 -PA4278 0.580096086 0.356452365 0.709662243 0.268406078 0.337387546 0.514393155 0.435149306 0.40578151 0.458710751 0.578003376 0.46513013 -PA4279 0.744859274 0.438782366 0.744801527 0.342440597 0.393059353 0.451952932 0.535857635 0.509152619 0.601121801 0.537293672 0.493587666 -PA4280 0.658031097 0.392149737 0.497117072 0.131586956 0.109007584 0.234720241 0.476526316 0.261070414 0.341108453 0.281404683 0.350702802 -PA4281 0.542672754 0.884154619 0.54758206 0.412436564 0.452481611 0.3503142 0.278806008 0.363718699 0.311657618 0.353913158 0.328554482 -PA4282 0.484858671 0.608338581 0.480374213 0.253583611 0.16427004 0.567806385 0.431567332 0.350989405 0.306259857 0.47096327 0.47501357 -PA4283 0.611851301 0.504479953 0.43116674 0.501661949 0.48355317 0.332542033 0.472324854 0.316421773 0.41194124 0.292023932 0.404027466 -PA4284 0.649284855 0.622733013 0.634236434 0.483436644 0.482884074 0.486798884 0.338856131 0.587782521 0.235154204 0.429083199 0.265486406 -PA4285 0.796631708 0.546674682 0.646574903 0.618495471 0.544124391 0.426709479 0.418540576 0.464472671 0.43665863 0.487545369 0.481746777 -PA4286 0.754743707 0.629286559 0.719051508 0.757283683 0.736123086 0.54470059 0.470365344 0.421688838 0.444900779 0.440867362 0.425267421 -PA4287 0.180316438 0.238771337 0.124180634 0.24430951 0.215820068 0.369165391 0.213750012 0.314298897 0.300961538 0.227967485 0.230059348 -PA4288 0.195931038 0.194737985 0.225082168 0.241159015 0.197559237 0.260857653 0.250957343 0.285132414 0.244805196 0.19472437 0.156899699 -PA4289 0.314387607 0.351742149 0.350383885 0.45374193 0.448142423 0.362167018 0.408598031 0.324063549 0.38714458 0.246462724 0.329334033 -PA4290 0.269451883 0.245796112 0.408644395 0.458947309 0.432965336 0.328964121 0.359809606 0.270348997 0.376296972 0.325781122 0.353766863 -PA4291 0.55918482 0.414142835 0.477298433 0.384878715 0.420667077 0.706587986 0.881740811 0.775355703 0.867066967 0.840194109 0.89906427 -PA4292 0.817802529 0.56255767 0.689276764 0.289854615 0.242227705 0.484796151 0.58984902 0.473561095 0.692339137 0.475737236 0.657211266 -PA4293 0.079215201 0.11521468 0.076845855 0.961525055 0.933545299 0.095097803 0.129307651 0.238343417 0.091650794 0.112483434 0.127676848 -PA4294 0.182656771 0.150567321 0.152437652 0.870002748 0.86541984 0.196569837 0.161208171 0.302885633 0.165155583 0.251226951 0.146905242 -PA4295 0.119429872 0.091958924 0.204604334 0.245298692 0.322465517 0.367766292 0.243650908 0.454512405 0.189400998 0.284732014 0.221215072 -PA4296 0.215944875 0.221225326 0.462417112 0.882274003 0.883508198 0.35696622 0.102096833 0.678149138 0.230467006 0.487911602 0.182373098 -PA4297 0.14782268 0.117011606 0.199767548 0.40642047 0.429908401 0.422370102 0.278466446 0.464533691 0.260871853 0.526798919 0.245147008 -PA4298 0.06358264 0.078103543 0.127587353 0.313895086 0.40556169 0.120301729 0.039830141 0.110109233 0.082962494 0.116584239 0.031707659 -PA4299 0.109298231 0.158337217 0.196214374 0.471553642 0.514150326 0.229685948 0.104164218 0.309331371 0.18102643 0.239306604 0.129886145 -PA4300 0.090083915 0.094674935 0.077419415 0.44452722 0.539714742 0.28352217 0.134504193 0.364224431 0.161030499 0.251124457 0.129518707 -PA4301 0.162395674 0.12962526 0.040772305 0.358815017 0.420654309 0.302688889 0.204049735 0.351371414 0.225216153 0.342785196 0.234929522 -PA4302 0.072252365 0.113276095 0.120223675 0.419864425 0.484371719 0.231752689 0.10061843 0.178134728 0.084030736 0.261743345 0.109931673 -PA4303 0.174625412 0.111511324 0.173835779 0.419421133 0.391197981 0.299004179 0.239811323 0.361301862 0.182069871 0.376370745 0.304769753 -PA4304 0.095679478 0.153647161 0.200052124 0.744464523 0.754837218 0.274795302 0.120432599 0.343531745 0.164365263 0.282921131 0.206700159 -PA4305 0.146696819 0.155040298 0.115015848 0.737663753 0.717101288 0.222707121 0.125367115 0.306221925 0.097099855 0.160259129 0.153920959 -PA4306 0.095297904 0.102495374 0.19262577 0.840925221 0.789781852 0.617663621 0.24588556 0.719270425 0.286357695 0.65415315 0.279949881 -PA4307 0.305614815 0.576499451 0.676853804 0.177659404 0.249538581 0.238435289 0.32093729 0.312083175 0.316082041 0.260798729 0.261648174 -PA4308 0.68271499 0.485377312 0.567879872 0.688062257 0.65092974 0.464806339 0.474272578 0.470776074 0.417436409 0.450824234 0.344641525 -PA4309 0.387184027 0.529104297 0.636153994 0.29024618 0.320206772 0.37939616 0.357821985 0.591125689 0.433441466 0.473269155 0.408103179 -PA4310 0.796817675 0.802758291 0.833593266 0.421905621 0.443481403 0.615466828 0.5691658 0.633291395 0.581324309 0.683025938 0.603130541 -PA4311 0.143435894 0.310063937 0.300086198 0.969522073 1 0.423521079 0.293275582 0.502250625 0.309195206 0.541770188 0.334774512 -PA4312 0.453433769 0.389109573 0.541883323 0.964223957 0.987711791 0.506771657 0.446928176 0.594218006 0.367541838 0.551686989 0.460605979 -PA4313 0.268032259 0.123482808 0.458651508 0.456030129 0.471115623 0.426795072 0.468170226 0.628982857 0.459658226 0.491334444 0.421211768 -PA4314 0.82725524 0.529390618 0.745524052 0.261900524 0.251096998 0.243184782 0.502610211 0.126981294 0.496899758 0.328906782 0.580159884 -PA4315 0.833095514 0.856310733 0.873689763 0.900096494 0.934590669 0.924919451 0.926373852 0.978174671 0.939716063 0.951360533 0.897427288 -PA4316 0.77846732 0.78464677 0.954472045 0.769563226 0.750661032 0.634624854 0.707874043 0.479084293 0.583137175 0.448155195 0.766551533 -PA4317 0.805030541 0.830375818 0.521288611 0.370053358 0.383785512 0.427893455 0.601950169 0.253472941 0.620246657 0.389479033 0.591252514 -PA4318 0.805285637 0.7009747 0.345487028 0.070645317 0.110525932 0.24358551 0.283127621 0.108345249 0.374399731 0.397161016 0.350408549 -PA4319 0.552078649 0.465743126 0.224211172 0.122825204 0.08086106 0.396333493 0.353910137 0.164666671 0.458566113 0.115217724 0.528281995 -PA4320 0.595738837 0.467994879 0.330294115 0.009033052 0.04755925 0.228449084 0.355364101 0.192936205 0.290937129 0.37729698 0.381877592 -PA4321 0.706636082 0.626740163 0.385791533 0.241241493 0.198279187 0.549391363 0.431079993 0.359985745 0.533667577 0.520954435 0.41123335 -PA4322 0.814605568 0.789694551 0.418068827 0.196073 0.143857693 0.325051318 0.240851766 0.142310746 0.328592392 0.318319565 0.35027074 -PA4323 0.624507584 0.517968753 0.385721128 0.318693249 0.204108084 0.372358145 0.442811945 0.412029572 0.405379763 0.444701783 0.613675725 -PA4324 0.434405993 0.59554423 0.651075204 0.179224353 0.213570725 0.570849241 0.668765475 0.550180458 0.657682965 0.568257579 0.646417762 -PA4325 0.480747514 0.347842821 0.696618902 0.486607628 0.531757376 0.456147803 0.726398022 0.518131701 0.721516772 0.554784163 0.818838125 -PA4326 0.369363599 0.366519255 0.461627865 0.53112244 0.560911661 0.60059775 0.491881878 0.666697168 0.496719577 0.656701291 0.527797837 -PA4327 0.2410466 0.351845039 0.357764873 0.474634384 0.426818778 0.378509909 0.298512376 0.493914282 0.440471821 0.369274483 0.488713716 -PA4328 0.063048912 0.831812101 0.320140803 0.870967651 0.840115393 0.531112559 0.31836873 0.628785941 0.301805571 0.562123606 0.210416316 -PA4329 0.905006507 0.844355706 0.9082313 0.644119021 0.653116461 0.500362255 0.38316282 0.544957161 0.371530046 0.499635405 0.351674643 -PA4330 0.438586134 0.265821991 0.544562202 0.233345677 0.221656488 0.005392916 0.208513202 0.095599724 0.20493423 0.072895835 0.065201263 -PA4331 0.571093836 0.342971846 0.558250164 0.414771743 0.457736233 0.420000548 0.365997308 0.323701537 0.475159261 0.313054348 0.30895027 -PA4332 0.463573537 0.296781655 0.327959167 0.382594152 0.415674499 0.309462769 0.366979759 0.276261426 0.172678339 0.349291656 0.258298147 -PA4333 0.83154106 0.829328519 0.841146707 0.271178827 0.278720052 0.075646584 0.244444239 0.059105283 0.275277353 0.058667847 0.285077292 -PA4334 0.181704423 0.249989284 0.303260298 0.193276483 0.200798839 0.36870302 0.381315345 0.321446011 0.481207977 0.327321348 0.380485321 -PA4335 0.115943627 0.316823859 0.602252816 0.424509411 0.463115226 0.318245937 0.380970277 0.3774424 0.416224803 0.310931186 0.240827062 -PA4336 0.274038084 0.558647394 0.65882719 0.659043467 0.658535721 0.725888001 0.59737376 0.708351982 0.57494432 0.728586711 0.498923991 -PA4337 0.207408574 0.256680761 0.275856111 0.45087363 0.413557207 0.475490403 0.483972688 0.323409592 0.369728695 0.410763107 0.424129917 -PA4338 0.061256107 0.212058432 0.210145666 0.230991681 0.359686847 0.29502295 0.319721669 0.332055935 0.428417324 0.302544522 0.335021693 -PA4339 0.607501692 0.428910108 0.820901771 0.470097372 0.37830011 0.540554296 0.358583838 0.436467799 0.3111844 0.324151094 0.49825229 -PA4340 0.698092896 0.816795486 0.650519522 0.685860556 0.712210702 0.117957161 0.217186039 0.163936785 0.264762975 0.315742318 0.272719994 -PA4341 0.179333404 0.172383024 0.190611221 0.281240081 0.275245947 0.317136721 0.158365018 0.299458137 0.297412973 0.373807415 0.278693384 -PA4342 0.353356803 0.302906749 0.247735674 0.296033632 0.37523943 0.303648138 0.326879093 0.23254454 0.374678915 0.231257386 0.2050482 -PA4343 0.226035757 0.165526004 0.034955342 0.218174508 0.197847028 0.382743517 0.28736242 0.495305687 0.376473153 0.413367228 0.384855807 -PA4344 0.136711876 0.166801366 0.169766244 0.281862149 0.369853397 0.390959566 0.164613685 0.278853251 0.219814405 0.232086828 0.202614626 -PA4345 0.044665734 0.272107093 0.286746075 0.475573435 0.551736215 0.281688782 0.310324869 0.401472831 0.337024572 0.328735957 0.148206214 -PA4346 0.203879888 0.421520362 0.211491656 0.343697415 0.283158095 0.482754464 0.205941193 0.354981077 0.241700262 0.380920666 0.172269445 -PA4347 0.351004981 0.637674589 0.239476638 0.375123926 0.349866767 0.332844271 0.21308346 0.288667902 0.46536901 0.415082383 0.11408953 -PA4348 0.308281664 0.916380062 0.346179163 0.61838489 0.662562383 0.379305242 0.282235977 0.538935148 0.293582407 0.442752621 0.218265352 -PA4349 0.138417062 0.307265717 0.172797131 0.601574887 0.591789885 0.357577192 0.293482444 0.308280895 0.286311021 0.308088981 0.271324785 -PA4350 0.137147014 0.130130544 0.140191809 0.335912244 0.341918911 0.418685909 0.25701081 0.427234107 0.284192167 0.428767088 0.219266723 -PA4351 0.0743558 0.178418925 0.090985697 0.683320677 0.557845535 0.31917903 0.274947236 0.387213379 0.217886081 0.376504167 0.241662735 -PA4352 0.168175394 0.71390739 0.245602981 0.863805218 0.856007983 0.62775155 0.445138521 0.694147557 0.399542795 0.619356968 0.38186393 -PA4353 0.381915831 0.499363202 0.232274799 0.43915165 0.432874617 0.380378442 0.456384737 0.444803314 0.423707785 0.458575504 0.372372851 -PA4354 0.374515939 0.269955855 0.322591543 0.268658135 0.264497719 0.21851367 0.214072081 0.196082642 0.136759091 0.163161646 0.1263761 -PA4355 0.289509497 0.252911342 0.200978768 0.215620646 0.236998836 0.207882142 0.160707471 0.180744744 0.152652897 0.22705029 0.171101065 -PA4356 0.409678001 0.430460711 0.314468458 0.205264566 0.158862878 0.310687638 0.312467881 0.226989564 0.236528906 0.300723745 0.270738444 -PA4357 0.24873559 0.295547186 0.303324363 0.352855584 0.276197331 0.475967591 0.499613037 0.387651295 0.528537423 0.483325452 0.509906434 -PA4358 0.216350961 0.246797014 0.421273545 0.247064833 0.202499493 0.529554552 0.515854458 0.493487044 0.513711629 0.414457696 0.476545722 -PA4359 0.211946532 0.309045391 0.486841725 0.17409971 0.168560712 0.494392455 0.446473705 0.476483503 0.359241536 0.469643234 0.317092687 -PA4360 0.80272344 0.725191828 0.806934378 0.490098546 0.465584431 0.810573563 0.73508545 0.839016662 0.747921864 0.818606154 0.751228716 -PA4361 0.230766113 0.242082169 0.243845644 0.519768295 0.503580525 0.36671164 0.444803211 0.246710333 0.391414644 0.313787681 0.446296829 -PA4362 0.144101684 0.261215247 0.303418975 0.988203397 1 0.335362637 0.091476754 0.343991323 0.227709136 0.3389155 0.217761797 -PA4363 0.373288605 0.275288623 0.2885337 0.477884598 0.702977439 0.078676772 0.209468778 0.226890102 0.185702765 0.110311453 0 -PA4364 0.134586811 0.172043315 0.060769189 0.522096508 0.591062265 0.089224552 0.157785811 0.155851307 0.053260822 0.090302547 0.178336016 -PA4365 0.221163012 0.201533514 0.133023664 0.514304045 0.62525007 0.251101067 0.325216587 0.333839645 0.278109916 0.192972064 0.23783562 -PA4366 0.77066968 0.889429829 0.851626609 0.81753838 0.863968436 0.728640743 0.717281613 0.71670005 0.723482413 0.71670005 0.670931467 -PA4367 0.515625873 0.663991325 0.660958755 0.73487548 0.757787072 0.631151918 0.64680696 0.672679552 0.709650162 0.759231448 0.738716098 -PA4368 0.17804469 0.265880342 0.235028978 0.646138741 0.735429316 0.270215911 0.297832805 0.233519673 0.14501514 0.23288947 0.194582118 -PA4369 0.207963703 0.454247831 0.367757615 0.826310404 0.821579639 0.356758752 0.328989911 0.623978636 0.39712608 0.365112396 0.421325443 -PA4370 0.83746472 0.579518569 0.897736637 0.241534821 0.177445862 0.30510873 0.50466621 0.252417323 0.591052965 0.342684714 0.575415647 -PA4371 0.875849601 0.239790897 0.816750959 0.214566163 0 0.295075865 0.512632601 0.247044962 0.485766994 0.359504383 0.48558861 -PA4372 0.853622662 0.590359466 0.834252323 0.413898604 0.404102925 0.326380853 0.445816365 0.314087471 0.513806577 0.219068032 0.443744918 -PA4373 0.844192488 0.364092918 0.91857118 0.208698208 0.131414213 0.238180767 0.578761491 0.07822949 0.452764222 0.225572951 0.469249868 -PA4374 0.625613417 0.55326604 0.580583679 0.371832837 0.263243761 0.471120875 0.591328393 0.617781134 0.581344685 0.53254498 0.706670734 -PA4375 0.411505956 0.209250705 0.453927631 0.297412828 0.205088184 0.44054935 0.599978877 0.529905646 0.454415473 0.395549415 0.492234558 -PA4376 0.759046548 0.794402638 0.619156172 0.55999883 0.544930005 0.541986365 0.498929062 0.508696946 0.40004321 0.527312941 0.518081699 -PA4377 0.174529118 0.108092556 0.279009382 0.861346352 0.887494456 0.396276069 0.523792192 0.415246139 0.413828936 0.39284374 0.339348669 -PA4378 0.170987361 0.139259155 0.298369932 0.237286982 0.251574857 0.444803115 0.436966737 0.458737644 0.385329452 0.470113879 0.396549961 -PA4379 0.344881205 0.284635629 0.416613006 0.360295987 0.406011914 0.405961725 0.417184211 0.441409346 0.531782318 0.502193036 0.437235109 -PA4380 0.37870558 0.297240213 0.264081142 0.313976777 0.366861604 0.594588869 0.694760366 0.350527405 0.601459508 0.517038385 0.526829945 -PA4381 0.461917493 0.28386447 0.51391006 0.687767713 0.676136711 0.351931819 0.430515502 0.434533587 0.34056988 0.485656389 0.339005317 -PA4382 0.122513759 0.072695185 0.11461895 0.352908495 0.274697132 0.33099749 0.332609121 0.389390022 0.283428227 0.346378002 0.293728178 -PA4383 0.227711171 0.183656222 0.36886514 0.480943667 0.495431705 0.344585952 0.310305838 0.283043146 0.272467436 0.231357392 0.273422725 -PA4384 0.458162232 0.406764355 0.492584077 0.676657894 0.713119891 0.463560202 0.392977925 0.57199532 0.419910543 0.496452495 0.455758992 -PA4385 0.781345898 0.924538505 0.933692762 0.536410778 0.546186874 0.452026534 0.406555671 0.467774953 0.520684887 0.488324097 0.492580505 -PA4386 0.78056348 0.906783826 0.922473727 0.515545042 0.52414773 0.50174063 0.490411846 0.545983033 0.550209951 0.494150744 0.475835754 -PA4387 0.382715985 0.54673366 0.421463989 0.263708612 0.246212429 0.083724421 0.059308255 0.164241745 0.089239312 0.041113893 0.102794495 -PA4388 0.59321795 0.71786279 0.711111097 0.47302455 0.483887992 0.422455879 0.521160535 0.365909043 0.405408762 0.22596825 0.558621662 -PA4389 0.600049058 0.618442315 0.665775657 0.342978584 0.380538331 0.493337197 0.44005232 0.353233148 0.558361114 0.506681182 0.555560135 -PA4390 0.438954969 0.243505398 0.475996535 0.412350332 0.414286561 0.379498723 0.541768623 0.340168958 0.553386425 0.478258593 0.448522552 -PA4391 0.629140479 0.3189788 0.639226896 0.403262785 0.306502837 0.441780124 0.592579085 0.447444004 0.620179387 0.492667785 0.528995551 -PA4392 0.313002517 0.34176439 0.497506016 0.544312487 0.480110904 0.496897353 0.587551343 0.425451297 0.57063889 0.426915698 0.542897877 -PA4393 0.57811885 0.320286884 0.501562769 0.312870149 0.26938859 0.438293521 0.590319432 0.440441321 0.516683972 0.52563138 0.536015752 -PA4394 0.5548021 0.520987877 0.344148594 0.388440168 0.448379883 0.478774213 0.365515168 0.484850946 0.453240155 0.495260977 0.385902493 -PA4395 0.588894197 0.492432011 0.568820739 0.45701707 0.47498707 0.603744097 0.673414002 0.560989099 0.648286946 0.591929771 0.69049829 -PA4396 0.543013389 0.456974165 0.965709482 0.379734769 0.374626648 0.206078631 0.263814968 0.271345417 0.432292794 0.223295604 0.206935954 -PA4397 0.484781596 0.482690109 0.559792101 0.907204603 0.932983863 0.449126075 0.305629651 0.443543098 0.352275065 0.365896498 0.317190778 -PA4398 0.489926029 0.423113752 0.470932946 0.290072572 0.263055546 0.514270219 0.299377572 0.417765982 0.371176741 0.399908971 0.44528182 -PA4399 0.598064629 0.656140318 0.784669989 0.621743833 0.612036897 0.404936028 0.25987933 0.222582162 0.412505782 0.349116469 0.264517223 -PA4400 0.613273583 0.434613297 0.773702069 0.544346089 0.487873518 0.334153239 0.462588933 0.279020489 0.52765156 0.534163616 0.517716131 -PA4401 0.740796678 0.382177268 0.775506836 0.707019345 0.69798938 0.286574895 0.359900736 0.360263769 0.374949121 0.345942541 0.438756055 -PA4402 0.832151308 0.528891957 0.921144918 0.255964915 0.178485679 0.568003544 0.564927176 0.580363625 0.563838457 0.576142113 0.686889685 -PA4403 0.751087926 0.813236205 0.832117952 0.436550493 0.382470483 0.825309796 0.855425388 0.719135224 0.866074649 0.845810589 0.891680038 -PA4404 0.785810758 0.450891655 0.738627284 0.195032009 0.165767668 0.462093078 0.557085376 0.430947683 0.647267345 0.457679502 0.598860051 -PA4405 0.255521719 0.175378912 0.251521546 0.301614012 0.337421264 0.333563465 0.596638774 0.316684461 0.488790063 0.33855593 0.584303371 -PA4406 0.680843732 0.526292593 0.666935169 0.490033146 0.515282029 0.555804981 0.661840558 0.54609209 0.686564767 0.550311747 0.70447758 -PA4407 0.807343732 0.758797929 0.854380697 0.81933045 0.848835781 0.763468194 0.687669706 0.772387344 0.65593594 0.760517473 0.714888075 -PA4408 0.632410506 0.623683214 0.558986944 0.61241441 0.63032135 0.74464011 0.722067657 0.804844249 0.752135114 0.741757248 0.719527923 -PA4409 0.604537505 0.52963829 0.492074907 0.518204596 0.553032993 0.843314997 0.642271368 0.747173569 0.693408991 0.818302208 0.668083926 -PA4410 0.676022268 0.522363721 0.582721344 0.614765706 0.625877509 0.686623477 0.552977258 0.647381867 0.698045444 0.724313719 0.677986403 -PA4411 0.74289401 0.670371119 0.588649475 0.474352381 0.502353549 0.854400725 0.813154294 0.828302682 0.808574377 0.875080678 0.791427445 -PA4412 0.657834114 0.611694833 0.386820958 0.510684244 0.569549982 0.308916629 0.411927665 0.504173483 0.412323934 0.396582911 0.368328482 -PA4413 0.674548668 0.525880718 0.61342898 0.691269466 0.762658189 0.726392664 0.563439005 0.666896685 0.659037225 0.725317893 0.596448101 -PA4414 0.734364413 0.556022761 0.58508407 0.725474723 0.735202466 0.624984742 0.488482033 0.714150919 0.52792744 0.633625779 0.549210621 -PA4415 0.484964797 0.561499264 0.433139845 0.563135633 0.55589742 0.741505789 0.651093619 0.716208724 0.594582202 0.687953044 0.612583982 -PA4416 0.67323937 0.592284392 0.591656889 0.647075111 0.666910806 0.567653964 0.485830028 0.521927997 0.481332855 0.561315608 0.452406473 -PA4417 0.581978619 0.577108841 0.580235328 0.629452437 0.729889059 0.495947544 0.515696871 0.520308693 0.426616 0.47287246 0.389717657 -PA4418 0.485755226 0.425480449 0.43240521 0.454705116 0.566649861 0.767308687 0.764344563 0.922726311 0.695231427 0.805769505 0.750319809 -PA4419 0.434343034 0.384361224 0.354811483 0.526505925 0.490467895 0.327481976 0.485218141 0.442930926 0.405848746 0.332987019 0.498429556 -PA4420 0.665616736 0.578901176 0.491150936 0.654118895 0.675331253 0.582031804 0.613794909 0.548093905 0.583906975 0.584829951 0.620727534 -PA4421 0.722286776 0.64780513 0.564819532 0.687196471 0.757343595 0.955296541 0.900393543 0.980757462 0.873387247 0.969131758 0.863426565 -PA4422 0.683369793 0.614798957 0.626900988 0.403001058 0.39368286 0.650580579 0.624137628 0.482541788 0.607666042 0.430177752 0.616733011 -PA4423 0.727003755 0.724801136 0.782211161 0.42645955 0.376164943 0.687965393 0.667640516 0.671139544 0.626583384 0.64688027 0.642155306 -PA4424 0.837908628 0.757451888 0.819122226 0.652030125 0.674432923 0.84619532 0.843547511 0.838857118 0.786559521 0.87397278 0.835513831 -PA4425 0.851022289 0.864281717 0.952565666 0.674285564 0.712037205 0.697442605 0.751377648 0.648451709 0.787720518 0.727612118 0.759051637 -PA4426 0.65427829 0.604738511 0.748677274 0.597921704 0.606452451 0.575155986 0.65668474 0.550531327 0.703637183 0.582011772 0.649724848 -PA4427 0.850803584 0.607266051 0.836147953 0.492337957 0.47637929 0.513177039 0.793284645 0.525584317 0.735561659 0.562160295 0.665550747 -PA4428 1 0.78177506 0.841555088 0.519954878 0.554953806 0.509736887 0.648103438 0.394987391 0.736162001 0.422729177 0.645940443 -PA4429 0.900129305 0.714892676 0.771525998 0.847872114 0.81191138 0.770787042 0.884353405 0.676057071 0.889928296 0.807628095 0.849871035 -PA4430 0.874101027 0.729649497 0.825738925 0.566270701 0.59347952 0.524285066 0.595725812 0.400457062 0.629448629 0.539193746 0.59388718 -PA4431 0.910530648 0.800244975 0.82816446 0.629456055 0.674543782 0.49009669 0.58282148 0.460748503 0.568722065 0.430673375 0.600261877 -PA4432 0.777721635 0.709734097 0.762088795 0.382435392 0.34498281 0.280876024 0.677446126 0.400879398 0.649806495 0.409734236 0.644584389 -PA4433 0.934293484 0.883587032 0.933930794 0.531977037 0.523808131 0.470871593 0.725942371 0.42362388 0.729481851 0.493745776 0.730828037 -PA4434 0.554742884 0.61297436 0.661501109 0.573988711 0.578511485 0.50831399 0.476504548 0.306828745 0.480337039 0.400246263 0.439058333 -PA4435 0.137926714 0.14055461 0.181426977 0.353341595 0.348911207 0.387334408 0.236343286 0.279898052 0.275031498 0.388988876 0.261078178 -PA4436 0.574656941 0.357766489 0.635537048 0.43490103 0.346989954 0.377532447 0.508003621 0.399923671 0.451613425 0.305281358 0.53017481 -PA4437 0.320978748 0.224016226 0.248288237 0.257929034 0.245976971 0.235628386 0.144643446 0.219305839 0.285636182 0.206279626 0.13856967 -PA4438 0.925525825 0.727237461 0.676646059 0.24181106 0.215449731 0.463486544 0.68146785 0.334947793 0.642847044 0.454733544 0.632354778 -PA4439 0.789249203 0.675806145 0.685008199 0.290339518 0.3615025 0.510286333 0.547351043 0.61670181 0.638498664 0.572427982 0.568799464 -PA4440 0.764947727 0.871549325 0.930334979 0.341480923 0.353172834 0.769297226 0.724849296 0.68465245 0.825762353 0.771777107 0.71581538 -PA4441 0.763758064 0.765263857 0.664757565 0.521811491 0.527481612 0.472900185 0.621191919 0.51581596 0.608126367 0.434886053 0.539205095 -PA4442 0.51336812 0.332317512 0.859495886 0.201380695 0.227743173 0.177888207 0.309687563 0.028626036 0.234695085 0.142265901 0.195391636 -PA4443 0.490202718 0.517904484 0.891931834 0.171803102 0.220084201 0.252632473 0.375184495 0.172631074 0.248405079 0.220857796 0.326375941 -PA4444 0.215735451 0.346027113 0.451791492 0.446784007 0.441046717 0.498904811 0.421239221 0.681725597 0.548653995 0.416084146 0.400930778 -PA4445 0.572031176 0.325291786 0.510501294 0.420002461 0.444658463 0.411279554 0.509325868 0.499922417 0.566195288 0.568769348 0.501008768 -PA4446 0.83848319 0.649269415 0.860609567 0.647699044 0.644953506 0.808616775 0.942851301 0.774010657 0.914947018 0.88561405 0.882158939 -PA4447 0.54015346 0.494348648 0.591912649 0.323921748 0.271451119 0.414509938 0.479250537 0.24550051 0.475992499 0.492090155 0.461374957 -PA4448 0.614462635 0.465860529 0.48558049 0.246926384 0.255661936 0.335991537 0.470096855 0.456054985 0.45968969 0.408303262 0.508623729 -PA4449 0.857726482 0.652978461 0.779835926 0.217098913 0.247135886 0.805351968 0.896173671 0.687664938 0.938434786 0.89075094 0.866971479 -PA4450 0.948685779 0.860771667 0.847430573 0.440581076 0.41939161 0.684582312 0.857267404 0.592057377 0.870194018 0.762608108 0.834387272 -PA4451 0.874812929 0.801584458 0.783107283 0.45392178 0.492812539 0.835872225 0.820053615 0.790536839 0.75977158 0.853469435 0.781081937 -PA4452 0.435459202 0.720022991 0.423756187 0.563853528 0.557374574 0.543117896 0.805238653 0.474212001 0.777366029 0.618894814 0.772831055 -PA4453 0.630043974 0.784829289 0.632973485 0.680965027 0.640502518 0.76936303 0.896198854 0.677669181 0.890682307 0.772079895 0.827242399 -PA4454 0.42683965 0.521647343 0.500109039 0.395266366 0.424345208 0.831038621 0.84041567 0.774011052 0.868667779 0.773827364 0.897520685 -PA4455 0.479093284 0.569921182 0.492449043 0.059266948 0.045477688 0.625798805 0.717782184 0.620861144 0.766129189 0.684237807 0.723547574 -PA4456 0.488995015 0.562973034 0.389356428 0.1228746 0.146010207 0.530673306 0.741227032 0.50330502 0.7045533 0.642073486 0.711385528 -PA4457 0.731792793 0.819261865 0.712924944 0.574852258 0.582655914 0.78583552 0.875494961 0.771319313 0.881508611 0.825527297 0.912420306 -PA4458 0.722708229 0.726158076 0.558448712 0.522714493 0.595807865 0.790234525 0.780965153 0.798022885 0.795454237 0.761109277 0.758575861 -PA4459 0.527178905 0.537796689 0.572356125 0.430110137 0.459796606 0.76533604 0.854085866 0.745568696 0.84974194 0.821529823 0.834718576 -PA4460 0.815827317 0.79382433 0.78193269 0.684352392 0.646626116 0.829634958 0.92164533 0.761367744 0.869852555 0.791539413 0.904826414 -PA4461 0.744756082 0.705644922 0.805017501 0.506671783 0.514068011 0.647003395 0.684010939 0.540943295 0.764898693 0.617821242 0.716785695 -PA4462 0.627117625 0.562679833 0.811562516 0.566880894 0.533018152 0.481221031 0.469327895 0.433119814 0.526534272 0.43410212 0.479630562 -PA4463 0.511505216 0.840039421 0.673294535 0.830840002 0.872889875 0.884128515 0.818870868 0.892119493 0.813264244 0.877008147 0.845228334 -PA4464 0.704741182 0.891458514 0.757700938 0.646733574 0.66933648 0.523531465 0.535052857 0.600946835 0.459808722 0.56226463 0.588663651 -PA4465 0.673660274 0.832443506 0.771212111 0.423961047 0.498572766 0.776451195 0.766548444 0.742176974 0.780054597 0.753009633 0.774736671 -PA4466 0.604948851 0.749198052 0.652891316 0.29859115 0.357242637 0.94921448 0.982156718 0.898600514 0.938893701 0.953739682 0.990442409 -PA4467 0.11183245 0.08638168 0.16537932 0.129771176 0.100003745 0.169128121 0.221939061 0.138100489 0.244320626 0.067954148 0.230054945 -PA4468 0.105235817 0.080387916 0.283144677 0.197767643 0.18901191 0.214412367 0.248354877 0.254969637 0.244258557 0.161952767 0.232885737 -PA4469 0.131081003 0.135936754 0.232865106 0.176787437 0.204305967 0.172837384 0.135858639 0.22009788 0.157984894 0.206058259 0.168771583 -PA4470 0.132937789 0.104720805 0.218114089 0.080875552 0.10822917 0.139347861 0.133242086 0.163300509 0.049337104 0.146305814 0.17777965 -PA4471 0.137115587 0.078999693 0.155579534 0.144223251 0.109217996 0.153695201 0.071147842 0.22890184 0.202010478 0.131128966 0.058798961 -PA4472 0.539768174 0.489987588 0.594345794 0.836611363 0.820945918 0.534641808 0.513790682 0.5515137 0.518586039 0.459354473 0.471359615 -PA4473 0.70720526 0.567227002 0.650663176 0.64346931 0.644262415 0.478901205 0.41376556 0.447064698 0.423057208 0.450771894 0.296753237 -PA4474 0.357180859 0.342236599 0.420677366 0.639153455 0.576609175 0.150364798 0.163529007 0.326801857 0.259486842 0.196314723 0.121127198 -PA4475 0.27584645 0.564452181 0.104725653 0.286920446 0.356361978 0.437961306 0.373879193 0.454244378 0.24811036 0.349637393 0.325927989 -PA4476 0.476082535 0.571855932 0.37738033 0.576816886 0.654423509 0.89573352 0.738755187 0.590015178 0.71003637 0.691590794 0.719383519 -PA4477 0.507816021 0.623987907 0.545809663 0.89654883 0.814636296 0.493761416 0.509209498 0.463415625 0.469753196 0.554864209 0.538337238 -PA4478 0.57030382 0.621246408 0.28127366 1 0.91164845 0.432094333 0.585226065 0.412947437 0.459623144 0.411395245 0.519276814 -PA4479 0.783069405 0.642884478 0.676242983 0.130100822 0.09634688 0.374331467 0.569056477 0.261489563 0.694327023 0.381533951 0.533552917 -PA4480 0.899202198 0.730211874 0.66925848 0.175487006 0.132608028 0.54277275 0.782192733 0.381005853 0.812979583 0.630510762 0.833475382 -PA4481 0.9318327 0.734318236 0.782776244 0.142041359 0.222965122 0.402271014 0.762338439 0.297102725 0.709472779 0.434566301 0.81747458 -PA4482 0.833456581 0.901863104 0.760489275 0.510503399 0.536591905 0.568639462 0.691716773 0.519438976 0.619546318 0.640266325 0.596031121 -PA4483 0.876534432 0.776555516 0.814599477 0.379392473 0.369721478 0.682542136 0.655777154 0.678925169 0.633755065 0.696855388 0.603064454 -PA4484 0.874051238 0.879984164 0.848091369 0.361741265 0.333940549 0.598411228 0.600081585 0.44212891 0.549274223 0.549992957 0.541662666 -PA4485 0.626785824 0.408642911 0.425644052 0.044673312 0.05929556 0.15394404 0.172697907 0.105060638 0.267385868 0.143783674 0.267825548 -PA4486 0.846707259 0.57518013 0.861995717 0.417279388 0.450732299 0.314682746 0.461371496 0.149578064 0.502954156 0.427979964 0.565242832 -PA4487 0.583918794 0.512082265 0.257623397 0.085144687 0.077800748 0.497274308 0.579426004 0.431935073 0.534983567 0.473379216 0.637862018 -PA4488 0.532295489 0.450891643 0.183008713 0.189602618 0.189067486 0.428950456 0.553965287 0.622063669 0.65461879 0.596713988 0.510137047 -PA4489 0.695229671 0.678944213 0.459292879 0.296037296 0.348014994 0.322347349 0.452917282 0.431713518 0.436050066 0.485733456 0.38926022 -PA4490 0.647436031 0.715143872 0.396949929 0.199540672 0.278234062 0.502566905 0.480785748 0.51964258 0.661253231 0.61439038 0.521843275 -PA4491 0.645100301 0.720382929 0.323586633 0.325576383 0.393236229 0.303443447 0.352217086 0.370279286 0.490050824 0.365775667 0.45200716 -PA4492 0.737303862 0.719038815 0.539903855 0.571668538 0.608416696 0.682559068 0.716128557 0.704448768 0.69564603 0.578165826 0.584230899 -PA4493 0.604814725 0.78415224 0.505676958 0.381430875 0.37747664 0.64828704 0.746615451 0.603237173 0.683120876 0.64350542 0.701926595 -PA4494 0.512117482 0.877507492 0.339595878 0.118668116 0.217087115 0.622119623 0.581371555 0.609914007 0.595609654 0.698110297 0.489318634 -PA4495 0.467052624 0.520068942 0.327185177 0.723299685 0.73496973 0.476011316 0.45457493 0.522049992 0.428107416 0.397343053 0.327947318 -PA4496 0.366930453 0.328667732 0.500612692 0.498535661 0.537362203 0.502066359 0.341080571 0.469315324 0.404252717 0.487495498 0.36132817 -PA4497 0.276006312 0.334762107 0.278468531 0.292593023 0.367401901 0.231433499 0.199749356 0.228987412 0.182896695 0.29612306 0.183569582 -PA4498 0.337351696 0.274440231 0.248154863 0.507476809 0.634437546 0.234821371 0.176709264 0.270188483 0.141650249 0.193233558 0.172325222 -PA4499 0.49514577 0.541596409 0.482458562 0.553962079 0.541899642 0.740772191 0.682696087 0.704194287 0.625649282 0.653885505 0.712616034 -PA4500 0.735025554 0.384273981 0.711019607 0.427672369 0.559706855 0.264119291 0.306508871 0.152648392 0.30437984 0.280122495 0.206396549 -PA4501 0.472924947 0.24264176 0.264643573 0.207461987 0.168022497 0.1258386 0.100980687 0.14777444 0.169239656 0.129241929 0.151872618 -PA4502 0.652733667 0.42638001 0.580668153 0.413294606 0.412348831 0.269202153 0.132674182 0.32118262 0.208010264 0.24529401 0.116751289 -PA4503 0.251552185 0.425426937 0.152371104 0.192214861 0.180198914 0.174523093 0.179877146 0.1699735 0.185539714 0.24055956 0.220603533 -PA4504 0.616197718 0.391693184 0.506954058 0.252686284 0.324039665 0.137389098 0.074905462 0.168326003 0.065925279 0.123516199 0.109572862 -PA4505 0.712404524 0.515347978 0.393835232 0.459286016 0.419596279 0.395978754 0.317181366 0.29611984 0.178869624 0.240316757 0.306754658 -PA4506 0.72576272 0.409130354 0.590879678 0.429497722 0.402184164 0.398068946 0.192480899 0.20190618 0.221331252 0.361837817 0.200626478 -PA4507 0.342716359 0.224914505 0.187316275 0.185321383 0.323790231 0.297800515 0.239105124 0.270557398 0.276888385 0.235117169 0.252341921 -PA4508 0.565698535 0.288240399 0.607515812 0.471503541 0.414992097 0.426995177 0.403967479 0.505699712 0.510386109 0.39850115 0.369475419 -PA4509 0.272793111 0.296162146 0.237281506 0.266608395 0.206933947 0.27722265 0.400049841 0.458182413 0.291122684 0.246781972 0.319125392 -PA4510 0.393330549 0.326358502 0.481093002 0.348421171 0.315492533 0.413029922 0.481429466 0.325430677 0.305818447 0.265718615 0.381541398 -PA4511 0.621875159 0.628064199 0.68077594 0.782734055 0.755348855 0.462139545 0.508400386 0.402128854 0.496669913 0.433497145 0.527158395 -PA4512 0.537122094 0.488245403 0.515449615 0.114371859 0 0.506290371 0.665355524 0.599678468 0.704934611 0.635683542 0.665117607 -PA4513 0.337081138 0.173655945 0.411454502 0.105807125 0.122278738 0.113110372 0.185660618 0.299653626 0.190203411 0.028504231 0.19132228 -PA4514 0.581098965 0.209071129 0.900399692 0.15406472 0.146334137 0.260437353 0.166901903 0.27660014 0.275813563 0.200258054 0.338369019 -PA4515 0.6461126 0.162621128 0.831240924 0.051826125 0.013271225 0.293544896 0.43758885 0.220320617 0.458695578 0.260852494 0.459686678 -PA4516 0.392049523 0.203215634 0.554330268 0.208706364 0.156549327 0.256529581 0.473567014 0.158083724 0.591358065 0.360516705 0.536554276 -PA4517 0.20493933 0.13418611 0.170220345 0.244231657 0.192074774 0.445711251 0.419533887 0.33793202 0.453289848 0.393822684 0.454058653 -PA4518 0.261822304 0.285084508 0.149819227 0.332497578 0.381977131 0.228998099 0.298791776 0.121204823 0.266235293 0.107829822 0.218220078 -PA4519 0.687045168 0.344464174 0.764033428 0.530933105 0.541953267 0.423701705 0.394157123 0.469647095 0.386043951 0.459342227 0.414161397 -PA4520 0.368351695 0.224375667 0.397710005 0.25221271 0.318246597 0.307009689 0.354768098 0.285753061 0.339097221 0.295917299 0.408600131 -PA4521 0.261175222 0.282080252 0.248871665 0.447583584 0.453754708 0.378600429 0.34406911 0.41695813 0.293369415 0.282660446 0.379796063 -PA4522 0.243990902 0.587732281 0.407118881 0.623389553 0.712545015 0.431681963 0.258716672 0.39826404 0.15466258 0.40053546 0.3394085 -PA4523 0.132622966 0.466140312 0.561750344 0.730187813 0.772058565 0.485804827 0.455509069 0.618186395 0.414876986 0.57570725 0.356637294 -PA4524 0.600768481 0.547053864 0.64841367 0.475337806 0.415958796 0.454290293 0.400087807 0.300892137 0.547703265 0.320287022 0.631640609 -PA4525 0.016961308 0.883088137 0.044709055 0.027295597 0.078589942 0.126628583 0.126483538 0.158650142 0.12819525 0.130143402 0.136499223 -PA4526 0.52147885 0.901575478 0.547675654 0.490393142 0.45876941 0.328509981 0.259474527 0.226396211 0.410909098 0.259538441 0.307502581 -PA4527 0.250090621 0.924519044 0.109910952 0.295813896 0.16421237 0.337071336 0.324586351 0.409692731 0.329105595 0.369442403 0.379013493 -PA4528 0.535318589 0.688776594 0.568932419 0.300243929 0.324077158 0.33465939 0.585055417 0.205093978 0.59799684 0.486679021 0.574431804 -PA4529 0.632326822 0.682744647 0.618118583 0.614755416 0.624764052 0.43134376 0.488149984 0.446207026 0.504743905 0.545549143 0.430588959 -PA4530 0.862640325 0.835650137 0.782118403 0.70448608 0.673689905 0.398015598 0.453275517 0.415719269 0.474239128 0.401073617 0.396779017 -PA4531 0.481277609 0.616605935 0.675889969 0.560155068 0.563900815 0.484868803 0.661379357 0.6319721 0.562743546 0.501769472 0.599273559 -PA4532 0.309964723 0.165946516 0.497174545 0.511158035 0.542728849 0.348977021 0.269346402 0.341417269 0.3156584 0.383853977 0.413793208 -PA4533 0.366693392 0.303066711 0.328693811 0.603494298 0.609413258 0.261539894 0.413347658 0.344857182 0.302310812 0.332681816 0.339320062 -PA4534 0.236630201 0.220348697 0.320652818 0.717659694 0.678329539 0.526132447 0.54038793 0.318630755 0.520632693 0.543804891 0.472947102 -PA4535 0.40375565 0.528752267 0.478744129 0.816444081 0.806695985 0.177445805 0.127633765 0.293385859 0.088934395 0.271747803 0.113977485 -PA4536 0.457965621 0.562334117 0.457445193 0.647050454 0.646690678 0.554482605 0.367122661 0.648894223 0.39856861 0.542689113 0.361700099 -PA4537 0.767394562 0.68783124 0.818376002 0.936627236 0.974007006 0.453120923 0.520494571 0.412037332 0.472856828 0.468291465 0.375745003 -PA4538 0.746573647 0.791710924 0.698258776 0.693477383 0.67315889 0.477390084 0.286128839 0.442496259 0.358577462 0.419193393 0.394266286 -PA4539 0.412612704 0.226162455 0.467007459 0.123387409 0.189862957 0.197663537 0.504187172 0.434955497 0.682399153 0.22092481 0.382686729 -PA4540 0.338777627 0.317918597 0.315390457 0.327150105 0.325680516 0.535579003 0.609193784 0.489112745 0.537063299 0.44395654 0.639987263 -PA4541 0.443167262 0.46605657 0.403396273 0.443855012 0.483394983 0.37208196 0.412839703 0.501453359 0.428309134 0.374894759 0.50357366 -PA4542 0.229689847 0.463904907 0.592195602 0.251264563 0.295490622 0.380931551 0.228312472 0.489741694 0.253164584 0.372158628 0.246409744 -PA4543 0.620039156 0.261788074 0.437648968 0.1549034 0.160307814 0.696487934 0.845408337 0.605275495 0.770431469 0.874974572 0.740157738 -PA4544 0.698305968 0.639452488 0.643843576 0.340000527 0.430787594 0.412706073 0.510957289 0.42733406 0.512246351 0.367380779 0.483937195 -PA4545 0.761336343 0.733554067 0.727799776 0.35766544 0.324515345 0.753106951 0.92514871 0.750700448 0.949020448 0.792352095 0.828741857 -PA4546 0.616283852 0.398303749 0.577556735 0.193500469 0.262681469 0.872747168 0.75753567 1 0.861266402 0.848787624 0.873548986 -PA4547 0.739338852 0.674241584 0.852066868 0.725076028 0.78489054 0.597402904 0.476042539 0.577691712 0.495911656 0.508293133 0.457827809 -PA4548 0.780491171 0.537646797 0.633835142 0.608525397 0.574041262 0.547825767 0.407537816 0.463765413 0.562607056 0.455412823 0.465924871 -PA4549 0.162145206 0.189171849 0.188059988 0.22472244 0.19491207 0.143536503 0.2312426 0.280424513 0.209909318 0.192294825 0.316347734 -PA4550 0.090522275 0.453205748 0.084332534 0.125217911 0.098893446 0.594865091 0.537301189 0.527403856 0.540126224 0.593239323 0.53380965 -PA4551 0.161440312 0.586906466 0.141593049 0.117357242 0.14256537 0.355272186 0.373780938 0.389765375 0.420489369 0.337734978 0.448938439 -PA4552 0.171165245 0.550412877 0.13478915 0.136134703 0.144864715 0.496664941 0.461277258 0.517418824 0.450640094 0.504763901 0.493815517 -PA4553 0.226695374 0.46458401 0.170467241 0.21295006 0.217409321 0.537566784 0.453668538 0.482123767 0.476810211 0.527881224 0.449769121 -PA4554 0.223298503 0.577445513 0.133856037 0.216108567 0.220169025 0.468848556 0.401616638 0.542615765 0.529762607 0.524337407 0.459958135 -PA4555 0.164411924 0.589591504 0.095709389 0.122672937 0.124651443 0.634887639 0.580281847 0.597051812 0.681156849 0.621989622 0.626991126 -PA4556 0.298163175 0.580635198 0.240280151 0.378924533 0.33005694 0.71039287 0.553681858 0.686586587 0.605704648 0.731106748 0.560346708 -PA4557 0.770751421 0.714547776 0.806672213 0.373547761 0.331440336 0.523677388 0.662281719 0.237709732 0.572301012 0.53565247 0.529676583 -PA4558 0.95230211 0.825137782 0.888204445 0.318760035 0.304745823 0.882410333 0.935803917 0.712748899 0.916148133 0.839883125 0.942810111 -PA4559 0.708889523 0.517373121 0.701031096 0.111989675 0.131777234 0.648279359 0.651288306 0.495216416 0.686841301 0.720253599 0.676023895 -PA4560 0.874456835 0.764843957 0.791978156 0.29046742 0.266387378 0.481151798 0.501535614 0.267234943 0.507490432 0.449489574 0.499696619 -PA4561 0.745954282 0.747750234 0.574265278 0.337508019 0.35247713 0.445120093 0.569490223 0.558659021 0.615776615 0.508269679 0.623405029 -PA4562 0.571640668 0.242821383 0.342139665 0.280780482 0.171247074 0.178515247 0.257588504 0.256291972 0.469415038 0.268159756 0.299869786 -PA4563 0.879435611 0.679800754 0.847192707 0.420792906 0.453056839 0.798070194 0.828836282 0.77978859 0.817752578 0.781805059 0.832613089 -PA4564 0.494491713 0.387609675 0.678613845 0.43830854 0.433823951 0.574763574 0.793944894 0.344307569 0.629453517 0.561309634 0.6966664 -PA4565 0.810117033 0.485578757 0.823664178 0.44283349 0.397355598 0.670640703 0.646823272 0.657548458 0.657881451 0.641955841 0.665176931 -PA4566 0.72317426 0.517373561 0.533831564 0.390093487 0.411708666 0.48669675 0.514145741 0.409509475 0.508163794 0.457369059 0.468708693 -PA4567 0.809117606 0.728328084 0.769674021 0.562821076 0.543479876 0.487532849 0.669123977 0.385383922 0.622204306 0.477926711 0.647074424 -PA4568 0.934498691 0.904347515 0.935307273 0.700751894 0.688765891 0.976799337 0.978704985 0.945687263 0.96044896 0.97270108 0.984593097 -PA4569 0.885917088 0.859364414 0.808107622 0.345600955 0.393768438 0.320405185 0.471639711 0.272764865 0.555812274 0.439637404 0.445645433 -PA4570 0.242957825 0.113642104 0.214265286 0.107575801 0.088882169 0.230123778 0.315782831 0.310910694 0.356436791 0.288215912 0.226100498 -PA4571 0.392040269 0.861790372 0.203801124 0.452592667 0.447858146 0.414080213 0.313609577 0.472385522 0.269337607 0.374925463 0.339193973 -PA4572 0.803879116 0.704839025 0.455599773 0.833348893 0.794856965 0.412663477 0.414132323 0.539936983 0.344836008 0.420280094 0.435243381 -PA4573 0.225209094 0.076888375 0.149008048 0.803552646 0.734343841 0.480067067 0.31460539 0.586706868 0.340899589 0.505720222 0.285290001 -PA4574 0.705992353 0.400757644 0.622227593 0.187931 0.217298408 0.273023924 0.614908141 0.327964177 0.545585491 0.041313467 0.444479809 -PA4575 0.287817625 0.307402608 0.222254234 0.471983527 0.521537449 0.412639657 0.563213181 0.454525675 0.557448109 0.520111444 0.470429985 -PA4576 0.772060828 0.709644239 0.759739083 0.424650909 0.454623211 0.334059611 0.402081208 0.446709923 0.494610121 0.507694975 0.305174324 -PA4577 0.111400696 0.758052584 0.173313566 0.938087522 0.932252741 0.538070257 0.399400931 0.593465231 0.373381332 0.563026248 0.391098617 -PA4578 0.840268891 0.874418861 0.881242563 0.700087342 0.700476954 0.630334897 0.702447804 0.601675 0.730678938 0.633279881 0.736089362 -PA4579 0.606938449 0.669448534 0.734633147 0.256850137 0.210812054 0.389518753 0.323360057 0.272977466 0.366532444 0.383274445 0.399603718 -PA4580 0.632017962 0.603697485 0.459548009 0.494785762 0.493750118 0.574830442 0.795155583 0.54993545 0.643012786 0.610841308 0.702884879 -PA4581 0.333568699 0.271982299 0.303692474 0.28372908 0.266928259 0.40285859 0.341133818 0.363780841 0.173649554 0.235158797 0.131897281 -PA4582 0.218708668 0.25870577 0.125895314 0.123076004 0.169776322 0.109779893 0.103153556 0.172334981 0.129874954 0.146049697 0.166659471 -PA4583 0.379311941 0.295045152 0.23981935 0.226710481 0.210973788 0.187050743 0.047380651 0.210737617 0.091616846 0.21994066 0.136214471 -PA4584 0.38970269 0.307707147 0.284106536 0.293906107 0.271444197 0.402321727 0.421307653 0.392980391 0.410816931 0.399485027 0.367911422 -PA4585 0.427743596 0.250297739 0.229565781 0.311681769 0.314045478 0.072433044 0.124743731 0.170669378 0.084859819 0.060770171 0.053725601 -PA4586 0.368978605 0.373881245 0.285157612 0.349947817 0.303017578 0.42712427 0.339425332 0.273576866 0.461011372 0.30725221 0.358195392 -PA4587 0.490275156 0.789197196 0.194435236 0.684277877 0.671098027 0.538878026 0.375192155 0.540747917 0.348812059 0.5327191 0.250525832 -PA4588 0.46887034 0.291208669 0.936482847 0.123217301 0.156625528 0.264665655 0.35698032 0.241603151 0.301355858 0.437705769 0.366531299 -PA4589 0.212293751 0.147114997 0.265076956 0.216233075 0.13492826 0.187237297 0.10080947 0.155835288 0.051482806 0.194907459 0.195056436 -PA4590 0.379504112 0.080108631 0.500121983 0.643466729 0.641870237 0.405147648 0.477964539 0.408480159 0.3813377 0.443638555 0.382326295 -PA4591 0.432826879 0.284881273 0.407065473 0.285050916 0.368217041 0.393949225 0.27587654 0.342992302 0.309043403 0.373333611 0.281726243 -PA4592 0.443817685 0.267011481 0.50906195 0.336212576 0.282549288 0.469911016 0.43744818 0.355520269 0.325234622 0.426420261 0.300197964 -PA4593 0.445962504 0.266243868 0.36686599 0.258290685 0.290663581 0.394670704 0.320929697 0.525274567 0.350225944 0.310593546 0.443786553 -PA4594 0.505185813 0.317901771 0.503707631 0.600549912 0.644686891 0.459503189 0.45793067 0.487484362 0.51499995 0.544806438 0.382095513 -PA4595 0.771772561 0.815401066 0.717056227 0.52152408 0.56324844 0.527614316 0.40446637 0.517159099 0.439886275 0.467242639 0.413770343 -PA4596 0.259639702 0.690657944 0.243170552 0.241353469 0.20716067 0.623945919 0.351217732 0.462463102 0.360828369 0.592481045 0.280544156 -PA4597 0.246699904 0.230438099 0.183528966 0.215160963 0.154838802 0.170611703 0.158583322 0.148101803 0.14379562 0.19238246 0.149695982 -PA4598 0.259577697 0.104992533 0.166685972 0.148617067 0.144018825 0.168095567 0.228096952 0.196416374 0.148337115 0.204734407 0.295520052 -PA4599 0.259947499 0.15096254 0.213568608 0.117433203 0.146429246 0.142309974 0.109679662 0.149816126 0.154350484 0.148004067 0.145501409 -PA4600 0.44101244 0.394766971 0.407937609 0.2313156 0.266060201 0.246441379 0.358238522 0.300198023 0.366095353 0.295250934 0.30662114 -PA4601 0.401845696 0.412297909 0.305988143 0.061208523 0.08159229 0.436490267 0.32005203 0.427623502 0.32161915 0.426384733 0.345475622 -PA4602 0.699446535 0.642515027 0.668139938 0.275819898 0.327698347 0.4850385 0.591172298 0.323495012 0.674299257 0.446010611 0.589191257 -PA4603 0.490189701 0.283559593 0.488704135 0.869234001 0.854625514 0.370494491 0.70983768 0.512882618 0.633644847 0.462280489 0.438607654 -PA4604 0.596590158 0.473866706 0.667043755 0.95836146 1 0.512818197 0.618174607 0.627325925 0.573434511 0.61044348 0.549622281 -PA4605 0.444090407 0.301053934 0.560412846 0.890194512 0.857816601 0.550817583 0.42998255 0.601742599 0.483746743 0.523443191 0.493745142 -PA4606 0.585377612 0.481094728 0.726628717 0.82723509 0.898453108 0.486323265 0.384757808 0.584810758 0.428715775 0.476456087 0.375328016 -PA4607 0.181680134 0.255225638 0.375735738 0.944755811 0.933950503 0.480969413 0.337403397 0.594523485 0.33833853 0.475914755 0.367846094 -PA4608 0.232251545 0.357245168 0.269470235 0.954586148 0.94360401 0.51656577 0.44880465 0.663929198 0.453179355 0.622504792 0.42547498 -PA4609 0.647051254 0.318495785 0.585016642 0.432928227 0.443049535 0.334634493 0.448678953 0.604687939 0.412163466 0.281763496 0.327143355 -PA4610 0.053688203 0.536478068 0.054552184 0.945804698 0.898411185 0.377697399 0.380337963 0.407161022 0.37641653 0.423190524 0.329392319 -PA4611 0.204689089 0.748686927 0.389065852 0.797908939 0.792087448 0.681471896 0.639302049 0.755814703 0.542506169 0.690680622 0.595563856 -PA4612 0.085952089 0.159337811 0.07695243 0.122774192 0.181808157 0.109627486 0.248162827 0.134671071 0.246115926 0.088104793 0.209667833 -PA4613 0.20136448 0.195062703 0.235841718 0.120931457 0.117240888 0.158281411 0.143178814 0.250888364 0.143857771 0.066601971 0.23849331 -PA4614 0.242383504 0.425170529 0.380097722 0.841377787 0.891316852 0.776161244 0.648323697 0.823879904 0.605134017 0.786067283 0.649277157 -PA4615 0.401061986 0.542919018 0.316857677 0.501375715 0.526671668 0.145395795 0.122327711 0.092063012 0.148055738 0.164488312 0.220568541 -PA4616 0.686538328 0.454049745 0.578531285 0.156585139 0.201725714 0.215360066 0.286899131 0.27388731 0.32744133 0.269826947 0.287318969 -PA4617 0.495516487 0.482099237 0.461170581 0.35366902 0.33646013 0.366219832 0.238667364 0.299711701 0.338604473 0.313650533 0.335385298 -PA4618 0.210910225 0.341868528 0.273122092 0.290476369 0.274014543 0.267450538 0.293583006 0.249018811 0.228776414 0.230639562 0.33156819 -PA4619 0.352700541 0.578079872 0.2598237 0.231690481 0.225346095 0.555295366 0.3920079 0.507949996 0.339369053 0.533191325 0.262165491 -PA4620 0.337525559 0.571476063 0.41286708 0.219675175 0.22633811 0.449076675 0.36768889 0.341030642 0.290023131 0.546253874 0.392040197 -PA4621 0.317132082 0.548546485 0.260819858 0.316409764 0.14660768 0.279903386 0.436117471 0.248585535 0.265093365 0.367476212 0.301909643 -PA4622 0.535180087 0.454660518 0.416758011 0.2686493 0.283712671 0.348050682 0.333223534 0.408781307 0.210157268 0.312176027 0.511108094 -PA4623 0.165316754 0.157152582 0.104902704 0.186321624 0.185733772 0.25578998 0.193962792 0.252077591 0.166317954 0.262617863 0.207292204 -PA4624 0.165603479 0.112608945 0.086311988 0.559318514 0.51699113 0.168880654 0.068604059 0.131032558 0.153222358 0.16934751 0.141294704 -PA4625 0.25627545 0.130273216 0.136468594 0.174891785 0.145031461 0.275557005 0.236465884 0.210475507 0.227994781 0.287859796 0.296160242 -PA4626 0.856767002 0.745009917 0.79195781 0.528489085 0.455414351 0.127906233 0.21972501 0.255798188 0.222614403 0.361233999 0.155276971 -PA4627 0.870782464 0.739568798 0.860915025 0.101885012 0.066802459 0.187991622 0.366565911 0.125529953 0.444118289 0.168336776 0.320567844 -PA4628 0.896433846 0.674013215 0.550429742 0.119829214 0.115853628 0.376893849 0.620647627 0.392688152 0.652137818 0.367319487 0.613789211 -PA4629 0.41543346 0.395638516 0.411985007 0.068574857 0.078871225 0.170698772 0.310381851 0.314406458 0.230256555 0.256669813 0.265560613 -PA4630 0.124273766 0.081207322 0.26658582 0.276440947 0.307746293 0.209585552 0.256383899 0.187810969 0.355179204 0.186351047 0.260844453 -PA4631 0.670373828 0.554527573 0.536542071 0.457057278 0.483702122 0.431850616 0.405536667 0.275015903 0.463510064 0.355349086 0.473037859 -PA4632 0.895677049 0.799077551 0.754146785 0.543117274 0.509943455 0.282114075 0.352296909 0.338366104 0.346147219 0.25387074 0.316091444 -PA4633 0.430187149 0.443706492 0.582796017 0.375359794 0.374575718 0.405396386 0.424497091 0.527785842 0.41629649 0.497360159 0.415580861 -PA4634 0.326714728 0.295245748 0.21915722 0.251298047 0.256267247 0.424300867 0.388027165 0.370385903 0.332118574 0.32573458 0.373447701 -PA4635 0.107083906 0.104951997 0.098311129 0.165087404 0.117420383 0.13378098 0.195996369 0.174172328 0.177631642 0.14803896 0.180682145 -PA4636 0.837040857 0.643028746 0.737592488 0.307297608 0.302346184 0.284663038 0.399283938 0.344817558 0.451514143 0.368545822 0.431765159 -PA4637 0.216465202 0.187016529 0.195933001 0.060681287 0.046559428 0.383789423 0.221631572 0.418049448 0.533118247 0.410344611 0.257148553 -PA4638 0.25364986 0.07851132 0.315289623 0.510577911 0.440667282 0.966564345 0.698499128 0.970622453 0.711574351 1 0.7464063 -PA4639 0.747423069 0.780800451 0.662875208 0.556986664 0.53137121 0.527539872 0.439078735 0.462995069 0.445021653 0.520797268 0.477852847 -PA4640 0.857084799 0.619407586 0.79651915 0.375575108 0.338300787 0.226041154 0.309814609 0.057938239 0.327477743 0.22882369 0.369781527 -PA4641 0.364976835 0.097612613 0.261097424 0.895259577 0.901361317 0.297557764 0.218999037 0.392192649 0.104836988 0.240822013 0.205391081 -PA4642 0.721796422 0.692921111 0.686342252 0.468613609 0.540078928 0.671676207 0.655301682 0.683459171 0.725717679 0.665297023 0.630274015 -PA4643 0.621714677 0.70828452 0.572646577 0.387996148 0.435735638 0.590061989 0.604344009 0.615809775 0.782074256 0.699440233 0.691616512 -PA4644 0.701677467 0.357474414 0.420404783 0.575324673 0.554009348 0.195759391 0.501362385 0.425310419 0.447384673 0.256501393 0.572292239 -PA4645 0.867140169 0.567456743 0.599704408 0.640714396 0.603106577 0.504451896 0.518804075 0.485941139 0.448760375 0.3442467 0.413901659 -PA4646 0.918066048 0.758417986 0.751563553 0.833913368 0.928115911 0.479686764 0.469201094 0.531770409 0.335242568 0.608819764 0.390045808 -PA4647 0.694448019 0.490180356 0.521868146 0.588437846 0.634809258 0.442474072 0.590925091 0.687699626 0.57178779 0.535734895 0.609809074 -PA4648 0.17704666 0.041950594 0.109719922 0.953836968 0.995817203 0.395186484 0.106249925 0.512654671 0.178381972 0.32145048 0.166970984 -PA4649 0.234316516 0.212391995 0.145374749 0.835625448 0.836286439 0.15434039 0.174304092 0.187302894 0.148550812 0.154463859 0.119216091 -PA4650 0.223908925 0.147359668 0.160459107 0.616851947 0.70358964 0.314772616 0.290210389 0.621126303 0.239791478 0.334943902 0.356351927 -PA4651 0.13229488 0.133476557 0.068915537 0.662880223 0.698553028 0.264121077 0.166376275 0.378715402 0.070687878 0.174897327 0.107683952 -PA4652 0.210147005 0.173086409 0.151940658 0.454569014 0.371925346 0.411006711 0.203474131 0.41231079 0.226571906 0.353328919 0.322445515 -PA4653 0.146541913 0.098928223 0.135628194 0.37934722 0.390254074 0.324232284 0.377097942 0.44414988 0.304457551 0.398657796 0.286213748 -PA4654 0.18830634 0.128433378 0.113237356 0.178153786 0.233857444 0.194273149 0.171589063 0.228961662 0.191290824 0.177852734 0.212143561 -PA4655 0.614474044 0.737289669 0.552733231 0.733170857 0.711229571 0.366748504 0.325465401 0.357859737 0.401029978 0.303547706 0.314430311 -PA4656 0.599311405 0.689352254 0.354665607 0.884450503 0.873523026 0.305195215 0.342255199 0.458701006 0.323623142 0.333260075 0.259348742 -PA4657 0.303941119 0.494834229 0.41921558 0.807770271 0.764061334 0.518444141 0.427594548 0.628367557 0.411429018 0.510089178 0.388179849 -PA4658 0.309712135 0.780261818 0.084017811 0.50788444 0.540042898 0.113382778 0.166135805 0.149020975 0.197533526 0.096848048 0.138243983 -PA4659 0.378387327 0.692189627 0.180099641 0.52369696 0.5076853 0.148453387 0.120426925 0.169742939 0.122382507 0.236591536 0.054386427 -PA4660 0.450958857 0.682060053 0.205559168 0.607312771 0.566037993 0.199712861 0.190953489 0.262711514 0.239526211 0.119070595 0.166927883 -PA4661 0.662669836 0.64453938 0.644901614 0.702197647 0.76185888 0.651809202 0.550643173 0.699059406 0.529145813 0.643300214 0.475888382 -PA4662 0.76634207 0.431244438 0.638380682 0.343829845 0.402866891 0.604632095 0.800168816 0.468377892 0.768501952 0.627103837 0.866922667 -PA4663 0.660828749 0.475927739 0.56985529 0.520702786 0.587828798 0.414032166 0.617655723 0.476615752 0.705164834 0.500244991 0.497111874 -PA4664 0.817982806 0.573886371 0.70509672 0.179662685 0.106247761 0.659697895 0.720779834 0.484490227 0.834219481 0.685660336 0.696346169 -PA4665 0.902692857 0.702074219 0.834284127 0.140497214 0.114818519 0.607984213 0.687758104 0.548866257 0.643795027 0.542645235 0.699529777 -PA4666 0.716624762 0.585046112 0.609112937 0.237822822 0.24540751 0.383339743 0.592612226 0.26546291 0.656519662 0.454625015 0.538828748 -PA4667 0.77118681 0.857791251 0.74510304 0.374918063 0.358865503 0.615152319 0.600534371 0.517904981 0.721178554 0.726299167 0.634998484 -PA4668 0.720495242 0.754764224 0.644395566 0.150455583 0.181506645 0.548292889 0.558140708 0.467774323 0.552771226 0.581061705 0.571644593 -PA4669 0.565940982 0.52389314 0.625382122 0.062374382 0.052403969 0.714103578 0.771971196 0.527478785 0.787463919 0.699072968 0.754078785 -PA4670 0.874769734 0.69378883 0.812429199 0.248306145 0.280215083 0.148061924 0.467554803 0.073432104 0.451772621 0.147674829 0.447749747 -PA4671 0.863413907 0.804787919 0.807200382 0.280354515 0.281359123 0.468768321 0.644767971 0.525492493 0.654163408 0.531533637 0.719916928 -PA4672 0.894262334 0.599126199 0.692333728 0.141915104 0.153138193 0.090854778 0.301530682 0.180367046 0.317656847 0.153223456 0.279348388 -PA4673 0.877007509 0.687264991 0.74018496 0.049950884 0.037111461 0.209631638 0.429959072 0.14999061 0.423704932 0.123345885 0.421986885 -PA4674 0.234418808 0.233871025 0.331997932 0.386651307 0.499535912 0.67293909 0.616179287 0.718410173 0.62165545 0.693013161 0.609765516 -PA4675 0.717315951 0.221699105 0.763314296 0.230540749 0.253358254 0.348339982 0.384114366 0.292711591 0.381047219 0.270812749 0.37095706 -PA4676 0.856538006 0.690909529 0.852072263 0.685530064 0.739731394 0.311893944 0.431369885 0.303293682 0.509278061 0.457289213 0.36748984 -PA4677 0.59799296 0.451396864 0.726366767 0.801173547 0.803623894 0.31900905 0.17818056 0.229566546 0.244281835 0.335009933 0.304124363 -PA4678 0.595603203 0.343943563 0.47180137 0.164913787 0.160903702 0.477664231 0.814730435 0.572503493 0.771270394 0.499118423 0.788849804 -PA4679 0.758274403 0.614148568 0.741971682 0.324752808 0.411998193 0.611515296 0.752270808 0.47527796 0.76918575 0.519486609 0.702442515 -PA4680 0.136396258 0.137990348 0.056884798 0.34406355 0.336385568 0.268776949 0.182297068 0.111644263 0.200125093 0.103768802 0.193604842 -PA4681 0.152388106 0.178424112 0.124001487 0.263222789 0.28058332 0.19079624 0.26937341 0.186705155 0.212089807 0.176607395 0.22868976 -PA4682 0.279624489 0.386135538 0.197474451 0.461164946 0.470486774 0.451692096 0.317232512 0.434250287 0.413091964 0.414101246 0.345746223 -PA4683 0.463573593 0.817684233 0.387742784 0.268612514 0.272090603 0.390404651 0.41369788 0.504837687 0.46007097 0.40841084 0.517083243 -PA4684 0.726622435 0.513109976 0.681889801 0.291862628 0.146139792 0.304169671 0.489488432 0.278253301 0.486470179 0.266646912 0.43227645 -PA4685 0.887289686 0.763534691 0.802128206 0.269090869 0.249898178 0.459015849 0.485295073 0.322853574 0.547979905 0.500937026 0.481654371 -PA4686 0.756038948 0.716136065 0.748985866 0.143804013 0.192941025 0.584562073 0.574791798 0.363577193 0.529024589 0.612626911 0.640568213 -PA4687 0.798785079 0.577151771 0.791169871 0.174599485 0.105868204 0.305579153 0.391479112 0.269447379 0.419157175 0.463539821 0.384977516 -PA4688 0.722060661 0.310961448 0.796555044 0.144653949 0.099667515 0.258989325 0.259854883 0.202120488 0.283379886 0.132860479 0.181116001 -PA4689 0.604327657 0.319017177 0.498431393 0.384835726 0.494228748 0.604395199 0.613297613 0.567159806 0.602916041 0.627375441 0.572699567 -PA4690 0.551479794 0.238307203 0.43165017 0.534467121 0.678050688 0.806783248 0.763556379 0.849438959 0.791038427 0.768414891 0.801995064 -PA4691 0.077403862 0.05534041 0.144383071 0.150826092 0.231365349 0.350508639 0.390801283 0.384097897 0.353821808 0.350077655 0.368492287 -PA4692 0.269439867 0.348378004 0.178141112 0.276233134 0.384919739 0.340664406 0.367360546 0.340026772 0.386656079 0.403498441 0.402965556 -PA4693 0.579258443 0.532706041 0.598972148 0.185080304 0.232757935 0.632516331 0.900087135 0.540785572 0.831392885 0.703247941 0.969516462 -PA4694 0.737654032 0.67530319 1 0.612222469 0.606058401 0.638016916 0.705399072 0.53600933 0.732462639 0.649946388 0.638630448 -PA4695 0.700427195 0.643150283 0.893168748 0.420940437 0.511589938 0.5501763 0.650078632 0.391227881 0.594353098 0.538649446 0.67164455 -PA4696 0.549361857 0.512791635 0.821643992 0.30794195 0.331702227 0.43950212 0.507408349 0.325417699 0.443701457 0.34002798 0.466071354 -PA4697 0.638756681 0.681252799 0.590143931 0.727268666 0.744260579 0.502683613 0.367106905 0.513524646 0.409840859 0.435334413 0.380544779 -PA4698 0.652913936 0.599881879 0.724583755 0.654311478 0.686814919 0.475987618 0.560346605 0.270959661 0.564749234 0.475243445 0.598800628 -PA4699 0.649101316 0.713130104 0.661400432 0.686664197 0.693220652 0.545297969 0.453897035 0.340351695 0.507031101 0.485623062 0.458482418 -PA4700 0.791928669 0.655542151 0.670904093 0.271597769 0.284199399 0.62150854 0.794169355 0.523093822 0.805971829 0.519084989 0.722954573 -PA4701 0.727811589 0.750074636 0.822902658 0.660039408 0.584877992 0.615165335 0.580893758 0.425334295 0.703757541 0.682720147 0.706195297 -PA4702 0.277446878 0.193075376 0.187316933 0.963953224 1 0.364320338 0.327619111 0.366889789 0.327929159 0.356597273 0.411247008 -PA4703 0.130311353 0.20871301 0.286307577 0.854026509 0.881677409 0.517955183 0.389009665 0.747752673 0.41919222 0.658929183 0.380774316 -PA4704 0.328822785 0.236955906 0.409833966 0.654466135 0.714310814 0 0.217499805 0.114739514 0.166844687 0.061476331 0.163800482 -PA4705 0.250939286 0.137080952 0.392968165 0.272552551 0.231316982 0.238432575 0.072720341 0.091468627 0.303178665 0.218121913 0.225502073 -PA4706 0.279596854 0.186783905 0.35765464 0.225825063 0.225566637 0.264163945 0.193948131 0.300168522 0.28867129 0.285174851 0.238432498 -PA4707 0.305248474 0.239307664 0.286658239 0.224750371 0.202016054 0.191034074 0.052524899 0.211235017 0.246346167 0.12043116 0.242573564 -PA4708 0.240499612 0.305022489 0.295788911 0.183497582 0.237393108 0.149826633 0.159141766 0.293388779 0.192004622 0.177017691 0.145753021 -PA4709 0.247339265 0.131064946 0.19482101 0.165266526 0.154758976 0.264469711 0.154875559 0.258687969 0.152287856 0.236531933 0.080704334 -PA4710 0.240901566 0.169374112 0.391221563 0.203669511 0.176386334 0.168239449 0.252352523 0.165454781 0.209038078 0.21778995 0.230969929 -PA4711 0.448237368 0.454948962 0.431578077 0.450631101 0.45612114 0.346468201 0.326733631 0.368820548 0.286339391 0.370667569 0.45520061 -PA4712 0.263509144 0.266209337 0.179115096 0.578286321 0.484383445 0.692667438 0.938649113 0.767110258 0.806524013 0.548763503 0.837031172 -PA4713 0.094721146 0.152514256 0.314473982 0.862442951 0.912238041 0.577236308 0.686316393 0.608730767 0.769428968 0.630666026 0.679026213 -PA4714 0.320709204 0.426050503 0.308341978 0.795658204 0.83676238 0.152841253 0.135780456 0.136565704 0.185680768 0.186199214 0.146161216 -PA4715 0.431448142 0.24000923 0.432971719 0.395744385 0.452333295 0.27098912 0.227761707 0.263007165 0.224889102 0.254456102 0.294326584 -PA4716 0.417411226 0.433240997 0.433768887 0.514769596 0.524498207 0.654213246 0.528578658 0.53813284 0.551253441 0.381192187 0.550654376 -PA4717 0.316725765 0.305407942 0.314276745 0.601504115 0.622860028 0.460973507 0.478426419 0.50957482 0.430664338 0.449701242 0.465861679 -PA4718 0.382712341 0.413793656 0.381261856 0.373793724 0.336945026 0.386340724 0.420876245 0.442511556 0.387827723 0.451573245 0.416993133 -PA4719 0.727027755 0.415790383 0.426904908 0.445088759 0.476538562 0.320504623 0.40514943 0.338329532 0.482059301 0.174474378 0.311648833 -PA4720 0.952241701 0.620331344 0.672765157 0.650768077 0.624426739 0.63162094 0.639010209 0.472160589 0.626504078 0.642557009 0.626152967 -PA4721 0.582023179 0.451242996 0.518413231 0.200410843 0.177170197 0.417841029 0.632222151 0.35617282 0.687460472 0.404069784 0.580428829 -PA4722 0.877996818 0.774693653 0.812965105 0.515099133 0.467736931 0.549348874 0.404430463 0.67124637 0.621201484 0.586908241 0.533529237 -PA4723 0.838287634 0.841106019 0.742433039 0.645662558 0.654749054 0.421682211 0.611723407 0.393679835 0.608244907 0.466932948 0.616087868 -PA4724 0.779126703 0.461710555 0.586283487 0.245204233 0.247048852 0.272022079 0.387516235 0.24188335 0.49116576 0.26864037 0.465166096 -PA4725 0.632286255 0.46199372 0.449369355 0.294887279 0.420693476 0.54676656 0.459072862 0.606057525 0.664390028 0.762438561 0.910226625 -PA4726 0.660039397 0.799719318 0.700872713 0.764161518 0.781336692 0.567631144 0.663029703 0.573174503 0.597642009 0.572220263 0.569422884 -PA4727 0.908466994 0.826224786 0.925893188 0.54430833 0.559517938 0.472146119 0.383448042 0.49157917 0.410976181 0.521844141 0.361898815 -PA4728 0.840172182 0.742944554 0.927822657 0.435395722 0.413531964 0.464570043 0.440858797 0.444439876 0.46213041 0.450347085 0.468072054 -PA4729 0.872619911 0.797910991 0.893726096 0.447368722 0.472100664 0.273915502 0.33018215 0.191887879 0.3179085 0.257631134 0.295424924 -PA4730 0.893333212 0.732704058 0.942136036 0.41932656 0.393990869 0.549880867 0.429843056 0.54983853 0.496283458 0.520859539 0.507198609 -PA4731 0.6592964 0.546075272 0.734236752 0.281000582 0.243164928 0.548141321 0.591379401 0.443084602 0.583187359 0.587620939 0.541613952 -PA4732 0.759193143 0.793962794 0.733620354 0.581987164 0.564381227 0.706062762 0.801671117 0.692415636 0.740076379 0.802823973 0.748642903 -PA4733 0.351453548 0.271530402 0.557770171 0.800296217 0.830715569 0.166088422 0.027963704 0.189815007 0.082704639 0.097814348 0.037811216 -PA4734 0.544341673 0.564160697 0.497565468 0.56865473 0.606589274 0.512302409 0.490468912 0.454685974 0.485419311 0.418816594 0.580490194 -PA4735 0.589301586 0.763324861 0.515328732 0.851188379 0.853399079 0.80749574 0.700289353 0.898139538 0.788398593 0.853344725 0.768461377 -PA4736 0.609694681 0.894915204 0.547588026 0.957473293 1 0.439519787 0.620022986 0.454515341 0.55912961 0.595530134 0.545414887 -PA4737 0.26359719 0.501575963 0.31040205 0.381224853 0.587062478 0.820986527 1 0.659338166 0.963225558 0.861202308 0.914537303 -PA4738 0.16456853 0.095169485 0.415872569 0.534112695 0.509347335 0.699114633 0.530781195 0.776232811 0.594620192 0.710407849 0.570444713 -PA4739 0.357579125 0.096843288 0.653841423 0.77851731 0.768461912 0.79536285 0.558595917 0.779670324 0.639445716 0.791629492 0.594880717 -PA4740 0.881358476 0.87459367 0.840195547 0.104540909 0.134344699 0.597205104 0.678112744 0.465653135 0.712595832 0.602709136 0.671195656 -PA4741 0.746036622 0.6975773 0.638043034 0.260058396 0.263304574 0.326880419 0.537024812 0.296365958 0.554233571 0.3982408 0.522204872 -PA4742 0.999516963 0.728988501 0.793318079 0.079171091 0.132526647 0.542254046 0.690462041 0.395983746 0.657815296 0.488229466 0.677174835 -PA4743 0.964136706 0.756503392 0.783600978 0.258419842 0.247976692 0.502677216 0.510784555 0.417422561 0.464889466 0.556069862 0.505069485 -PA4744 0.938454272 0.827721261 0.861910321 0.204908507 0.266452654 0.380084588 0.558133264 0.24059128 0.487892555 0.371748223 0.534382304 -PA4745 0.889214389 0.703460014 0.870609318 0.445135157 0.475741217 0.654549166 0.811520506 0.664630032 0.775263105 0.69911353 0.867055711 -PA4746 0.709929419 0.498205687 0.629893494 0.314545829 0.308412507 0.761297255 0.994462473 0.722538177 0.903698936 0.771231798 0.939075267 -PA4747 0.450701074 0.381368557 0.483030646 0.283115478 0.283965853 0.631248311 0.761626485 0.604510512 0.737238751 0.653284556 0.759630082 -PA4748 0.807478516 0.579984015 0.68482669 0.09422567 0.171593125 0.576983956 0.883107348 0.488447115 0.861306295 0.583129756 0.833146882 -PA4749 0.845526034 0.798345354 0.844624535 0.332556153 0.361733215 0.494079865 0.56498657 0.433412181 0.680952883 0.461595879 0.648986139 -PA4750 0.716565827 0.561123253 0.698740054 0.151379524 0.187305986 0.515996769 0.518467757 0.526604084 0.639552548 0.539818376 0.598491096 -PA4751 0.701827894 0.784413514 0.766479537 0.692276279 0.687283829 0.6389743 0.660846598 0.625028397 0.644299688 0.668961006 0.620154961 -PA4752 0.794848381 0.697482967 0.87586214 0.44641725 0.482225647 0.342096016 0.601234873 0.354590492 0.362422315 0.457307003 0.554552549 -PA4753 0.556346666 0.629647466 0.458590413 0.196498316 0.276792121 0.936614012 0.966753397 0.919008621 0.952794765 0.943990882 1 -PA4754 0.604008403 0.455220354 0.57656396 0.085891968 0.135618065 0.196302242 0.360549724 0.11654945 0.352427572 0.212771461 0.377939952 -PA4755 0.694914352 0.492649128 0.812206537 0.241493283 0.28138646 0.2759772 0.512362674 0.164020606 0.497405907 0.384059813 0.538932352 -PA4756 0.954613815 0.848481842 0.910581113 0.165960691 0.201071995 0.369174124 0.361513944 0.308410873 0.444916285 0.425986377 0.35021627 -PA4757 0.878158569 0.717880464 0.911890577 0.19576053 0.208473275 0.624859 0.556344191 0.60035021 0.601596993 0.633812565 0.548507055 -PA4758 0.901007854 0.75926413 0.835746674 0.177258615 0.208756037 0.274711989 0.246554209 0.18057044 0.211857278 0.271951538 0.187212199 -PA4759 0.434570586 0.468396647 0.75613469 0.215650571 0.207236445 0.179496655 0.15644207 0.236850075 0.126198127 0.230550992 0.099961966 -PA4760 0.519735704 0.467296555 0.775313809 0.232100168 0.209894969 0.342176325 0.208444796 0.284113752 0.191522477 0.270929563 0.197145963 -PA4761 0.614877162 0.772468942 0.855069013 0.444111694 0.490091366 0.305720085 0.251490196 0.361095604 0.203066094 0.321429238 0.256070624 -PA4762 0.68611015 0.830021932 0.807478781 0.466113345 0.480355732 0.328003792 0.265575207 0.315815917 0.338272174 0.257664578 0.308581883 -PA4763 0.416958756 0.443977605 0.416486332 0.397500543 0.409388079 0.41629272 0.419561776 0.372301851 0.452153411 0.438163056 0.421901347 -PA4764 0.383557612 0.344344072 0.41089547 0.520714961 0.558534896 0.626643854 0.791788429 0.641595276 0.780777622 0.649198028 0.74376637 -PA4765 0.813313503 0.871778705 0.764782569 0.492992035 0.523030149 0.849202097 0.879812756 0.802311121 0.901303531 0.825188031 0.844877562 -PA4766 0.293409527 0.229195263 0.289008352 0.5512505 0.513984781 0.389052783 0.654616209 0.505250958 0.485134131 0.305830422 0.578039053 -PA4767 0.543514305 0.402865697 0.439799981 0.784375696 0.743060014 0.462069644 0.568010507 0.591427673 0.504955522 0.427974737 0.398840053 -PA4768 0.784923275 0.623996979 0.772484729 0.295036397 0.320647928 0.248185406 0.617663289 0.318221528 0.67969084 0.290109891 0.628463322 -PA4769 0.502116981 0.283330354 0.619289526 0.531786875 0.575266653 0.437376745 0.572299555 0.475335563 0.537077117 0.354144402 0.568568596 -PA4770 0.929988632 0.618278213 0.154990357 0.196228648 0.16739411 0.132356798 0.145115742 0.132562175 0.138811311 0.155526576 0.163470337 -PA4771 0.991494482 0.66826908 0.200177545 0.279633418 0.284120345 0.16982077 0.143585018 0.15551827 0.072882218 0.160909321 0.206585415 -PA4772 0.905575969 0.649804263 0.261804322 0.168864486 0.157499306 0.185098015 0.163281618 0.298456357 0 0.236202857 0.222675222 -PA4773 0.257270256 0.330891121 0.5068668 0.252633728 0.268093302 0.257941127 0.262219291 0.151350201 0.353521479 0.275209918 0.267288481 -PA4774 0.233642619 0.21779463 0.57307293 0.155431618 0.194404225 0.276462271 0.333617602 0.238404416 0.318990049 0.257613799 0.286909042 -PA4775 0.197705189 0.233719426 0.376427639 0.183340622 0.197700008 0.20793265 0.230786655 0.196952796 0.252857219 0.202034803 0.257566745 -PA4776 0.303497025 0.266762716 0.583822395 0.50437031 0.494247887 0.24482225 0.329637723 0.151580253 0.261861682 0.261974034 0.206872985 -PA4777 0.158604378 0.116564639 0.266576423 0.209961061 0.152985364 0.149374207 0.290704201 0.194289312 0.251208696 0.214378548 0.22430755 -PA4778 0.54516364 0.409976539 0.657958696 0.741453765 0.730997066 0.574238859 0.615109795 0.633020111 0.619734587 0.598347039 0.650208573 -PA4779 0.24033951 0.203348795 0.409052985 0.19711312 0.231737746 0.218840976 0.527099811 0.265487154 0.371474624 0.468127124 0.479882249 -PA4780 0.442622242 0.325537209 0.405650257 0.454158171 0.44697592 0.343818005 0.36813252 0.340278267 0.336708914 0.398155064 0.372544197 -PA4781 0.080428981 0.089281346 0.191964802 0.721862624 0.671845098 0.206397768 0.159152225 0.279433066 0.212329571 0.161917942 0.088497162 -PA4782 0.24986719 0.400392398 0.51274742 0.226490218 0.206006393 0.573381557 0.559725101 0.493044133 0.5393289 0.547837357 0.549463747 -PA4783 0.312372339 0.328600503 0.188133139 0.127160455 0.119776415 0.300902976 0.198292476 0.164780382 0.179781883 0.152123658 0.226988696 -PA4784 0.427169343 0.389917772 0.47539715 0.391237405 0.398750589 0.204566603 0.16331741 0.339997735 0.103738542 0.174444049 0.209423241 -PA4785 0.225604273 0.275591029 0.282164519 0.444173439 0.386660819 0.421932414 0.299429959 0.436048876 0.361570354 0.432156426 0.343977841 -PA4786 0.237918348 0.367337839 0.418727939 0.573794573 0.516058067 0.179132442 0.160826405 0.23796439 0.121155459 0.213408793 0.270254309 -PA4787 0.570358213 0.421290145 0.646989193 0.739249927 0.780849734 0.155707126 0.186377696 0.13641446 0.214958736 0.209964231 0.124976885 -PA4788 0.265857604 0.411746498 0.424181144 0.57097459 0.564523608 0.415406479 0.308750704 0.435048189 0.1681675 0.388973495 0.241012669 -PA4789 0.957661303 0.701043686 0.958505984 0.620184005 0.640582035 0.523232688 0.423799656 0.545819501 0.399693611 0.544662072 0.572237413 -PA4790 0.637074551 0.427652929 0.557578008 0.44407294 0.438758093 0.299493097 0.326057778 0.401856922 0.4048646 0.326123709 0.396359925 -PA4791 0.396541372 0.361796 0.406570613 0.683309617 0.589554153 0.358815241 0.379701473 0.50326048 0.39345462 0.473492969 0.517022024 -PA4792 0.320692854 0.350848608 0.242749024 0.383020569 0.366066315 0.233449396 0.207866773 0.134674209 0.196618088 0.189314036 0.144097672 -PA4793 0.446187069 0.676789802 0.545034042 0.717706709 0.760712132 0.482949652 0.408215884 0.580125487 0.388422798 0.495439973 0.335486256 -PA4794 0.326194451 0.581186973 0.446031662 0.379872272 0.43103043 0.275640318 0.302759788 0.309257943 0.256046546 0.445631013 0.313669988 -PA4795 0.512377169 0.583790845 0.660799435 0.34619367 0.362723144 0.394413083 0.391285138 0.422849584 0.357026313 0.43220218 0.289789595 -PA4796 0.28589817 0.297114611 0.184736745 0.234272474 0.163886707 0.249564314 0.255157129 0.245658953 0.231287944 0.313084415 0.133179116 -PA4798 0.318994518 0.482779136 0.364242994 0.225932036 0.147516098 0.339667886 0.35525577 0.411372892 0.3684649 0.330025662 0.330628404 -PA4799 0.363366708 0.191951889 0.340063701 0.2125632 0.206644928 0.324949967 0.374586333 0.261931591 0.27754761 0.298500186 0.316484405 -PA4800 0.936651772 0.307361659 0.685349329 0.27542974 0.281640723 0.324658347 0.46983538 0.370387198 0.412563078 0.31141798 0.357491564 -PA4801 0.745338659 0.233563247 0.680232864 0.217642481 0.231049408 0.225975718 0.445160542 0.26407928 0.215441525 0.323574136 0.228072432 -PA4802 0.42801523 0.594550283 0.306305454 0.459539046 0.424685022 0.305145473 0.421397938 0.431423804 0.392963095 0.426140095 0.487710434 -PA4803 0.199050864 0.254977813 0.213511212 0.290716779 0.297800347 0.16262893 0.084600788 0.250283204 0.169993916 0.216210148 0.208903672 -PA4804 0.183166176 0.342041546 0.21008929 0.363120267 0.292420696 0.482645669 0.516529359 0.594290238 0.612637246 0.428781445 0.446548376 -PA4805 0.333955812 0.379934731 0.323227775 0.343310832 0.39131925 0.257994014 0.408419004 0.356406951 0.295965854 0.357894971 0.228280176 -PA4806 0.274115835 0.248951631 0.200144051 0.209056188 0.25813415 0.262289703 0.507215796 0.41906466 0.410188552 0.253605497 0.313139825 -PA4807 0.600453318 0.694926428 0.498719276 0.60427222 0.53163765 0.459476321 0.664791239 0.562611851 0.694670902 0.630703689 0.640428101 -PA4808 0.703959989 0.693157168 0.676999411 0.669580263 0.653873818 0.455362552 0.423084798 0.478336874 0.404743545 0.297841655 0.368042246 -PA4809 0.388193678 0.495330426 0.198843633 0.578037907 0.625871095 0.401836497 0.470254386 0.325025043 0.468538256 0.358409321 0.477674968 -PA4810 0.307460553 0.756192574 0.301791819 0.897063421 0.976131686 0.501307459 0.632478154 0.487116023 0.614924807 0.51054579 0.647034726 -PA4811 0.218829381 0.674912111 0.304451316 0.86097603 0.908152387 0.710782002 0.748982898 0.709940682 0.694846115 0.694431183 0.708069901 -PA4812 0.392635623 0.837300257 0.447630205 0.898857462 0.936098879 0.584943095 0.593342662 0.552107421 0.562799322 0.624392172 0.544857096 -PA4813 0.122645894 0.144061088 0.116292565 0.205934128 0.210020127 0.162088614 0.190857913 0.166934784 0.177598321 0.203657577 0.21617949 -PA4814 0.285907073 0.257774777 0.111308446 0.283834583 0.199197304 0.278238508 0.299223585 0.389102218 0.290915191 0.236389456 0.149121446 -PA4815 0.632052459 0.390191332 0.692696895 0.17378853 0.324110298 0.427097132 0.449136861 0.57007864 0.516575924 0.555739743 0.478210246 -PA4816 0.58650082 0.556559654 0.51558307 0.608746446 0.645479822 0.506311233 0.457590312 0.497966426 0.454539926 0.412800216 0.427195583 -PA4817 0.527647324 0.416496786 0.523511889 0.224047722 0.221329195 0.153173715 0.336808871 0.222878289 0.293259127 0.132049211 0.166792808 -PA4818 0.239543067 0.22060848 0.205884761 0.229436307 0.162682495 0.547642006 0.382832691 0.312091734 0.462528607 0.45926289 0.413635851 -PA4819 0.151132654 0.242828527 0.124355681 0.194750111 0.233427437 0.167143404 0.085430662 0.210137628 0.125536595 0.072074558 0.134167472 -PA4820 0.137632049 0.102798991 0.116518514 0.194557057 0.164461836 0.221426566 0.361003201 0.308921812 0.219310179 0.132555792 0.177160704 -PA4821 0.355912017 0.192509741 0.306192981 0.270825553 0.240205776 0.31217495 0.335758852 0.254117774 0.369995306 0.253690089 0.394813632 -PA4822 0.148709045 0.114650137 0.134681641 0.163101744 0.138799896 0.148538666 0.175223539 0.153648783 0.204523245 0.172217929 0.189471263 -PA4823 0.141386377 0.08502485 0.11427165 0.105793926 0.0800766 0.045875304 0.081211657 0.077547761 0.173335876 0.077249722 0.056621307 -PA4824 0.156116578 0.144749581 0.09144968 0.180341256 0.167988678 0.162864891 0.158868459 0.160510976 0.150570046 0.120160681 0.203585922 -PA4825 0.135186691 0.054185177 0.079989281 0.058083742 0.075125302 0.071740686 0.074546144 0.101549527 0.087788749 0.065673497 0.043151128 -PA4826 0.397707665 0.207718144 0.195996126 0.221693385 0.184215263 0.102349055 0.139539105 0.104149019 0.100915938 0.079928192 0.141069256 -PA4827 0.280678273 0.207535032 0.448415806 0.434387917 0.350739886 0.298980772 0.181817087 0.183065359 0.214945096 0.173945974 0.327575686 -PA4828 0.159156839 0.115017898 0.234340955 0.400204628 0.409240795 0.23432314 0.177788575 0.258251847 0.201345679 0.264176764 0.242093244 -PA4829 0.069535863 0.036499532 0.175680765 0.420104203 0.395687375 0.219763218 0.075353723 0.168711325 0.166663725 0.124794126 0.161026489 -PA4830 0.187885431 0.193163912 0.151093996 0.183665879 0.194468891 0.222872973 0.074544632 0.182588491 0.162554178 0.276741146 0.207738558 -PA4831 0.350121458 0.426067246 0.303764125 0.301754538 0.332988684 0.294453748 0.184812556 0.319409653 0.326331737 0.385375018 0.106456662 -PA4832 0.184196102 0.053984296 0.28804441 0.237242073 0.202412117 0.117386248 0.07372142 0.177816721 0.155801343 0.18423371 0.116870047 -PA4833 0.192924169 0.218798491 0.361370317 0.579904167 0.603677793 0.300732338 0.34012227 0.287255302 0.222272726 0.261534516 0.236500565 -PA4834 0.085598121 0.043195528 0.569525785 0.110444445 0.095268688 0.136299635 0.068972876 0.150379874 0.166126748 0.101192391 0.136146873 -PA4835 0.099653471 0.11955454 0.653081677 0.162970884 0.142119548 0.114880917 0.103992875 0.060287405 0.075846678 0.065465408 0.139978855 -PA4836 0.148158215 0.140533756 0.874280389 0.150272235 0.120477688 0.080336743 0.062662186 0.091569683 0.096012734 0.125024631 0.151112799 -PA4837 0.181543612 0.209954772 0.854492879 0.19872286 0.140499073 0.240438349 0.193479474 0.238465753 0.171218808 0.254022721 0.173435324 -PA4838 0.339875523 0.292071461 0.804502919 0.213755663 0.223662263 0.251701228 0.267724397 0.320745379 0.315636132 0.316430746 0.389996062 -PA4839 0.760907307 0.482261532 0.628324423 0.339529459 0.355087332 0.295539533 0.265998383 0.363511977 0.264160087 0.224276346 0.232703333 -PA4840 0.596629937 0.344849151 0.633390082 0.167123032 0.226390413 0.344729709 0.450902756 0.540234542 0.468141164 0.145617034 0.420953119 -PA4841 0.500289043 0.643835722 0.586861585 0.351818784 0.381766863 0.347674563 0.316266685 0.271511193 0.412706297 0.16644954 0.402285951 -PA4842 0.468158968 0.7992944 0.692041997 0.570745656 0.582474814 0.49017749 0.512853542 0.484474253 0.479407962 0.477977851 0.577341283 -PA4843 0.586797021 0.521264485 0.592643294 0.203535461 0.201336766 0.67111951 0.74878116 0.711001387 0.718707563 0.729322012 0.756417547 -PA4844 0.133301929 0.230027321 0.199940545 0.134258938 0.10711106 0.163956571 0.074355893 0.126324966 0.191277098 0.135511318 0.144407606 -PA4845 0.536791357 0.408854012 0.447721056 0.17527754 0.030882158 0.481616071 0.683646499 0.3093141 0.603185512 0.521221883 0.644616759 -PA4846 0.861139329 0.723585844 0.837903336 0.294583088 0.293117941 0.701086971 0.813629651 0.745219601 0.79646355 0.786476474 0.810508001 -PA4847 0.886235907 0.826532539 0.809721624 0.418862007 0.43239978 0.475214234 0.513387067 0.240224758 0.551231349 0.47890427 0.524448836 -PA4848 0.922676758 0.751125385 0.830098319 0.438426958 0.442289595 0.525534324 0.645548599 0.470747578 0.64574441 0.492514435 0.628998453 -PA4849 0.525143891 0.419525455 0.278630871 0.203831414 0.225995604 0.345053052 0.314350765 0.389784236 0.316372118 0.292149724 0.301901101 -PA4850 0.932286502 0.718640248 0.710851293 0.275019525 0.293887218 0.316145258 0.327488501 0.329192813 0.372019693 0.393495696 0.327620346 -PA4851 0.94524842 0.769055528 0.691911264 0.283646826 0.306546547 0.481024858 0.531980348 0.405221429 0.67864284 0.502323576 0.62995574 -PA4852 0.891092354 0.610663271 0.81125615 0.462445957 0.441634569 0.616140786 0.650687407 0.505700501 0.646639575 0.557918712 0.648930888 -PA4853 0.839270027 0.707272833 0.9066761 0.467989369 0.472140473 0.636092763 0.713872906 0.664271303 0.775262668 0.62991551 0.718581078 -PA4854 0.867800213 0.651340345 0.802347411 0.171221178 0.102699484 0.439651041 0.565009473 0.161878457 0.59442229 0.421504478 0.452362399 -PA4855 0.916593476 0.746913278 0.711653928 0.166332669 0.165754801 0.356739412 0.328928662 0.201030061 0.557488368 0.384758975 0.352026808 -PA4856 0.666470839 0.538592014 0.513708837 0.62675382 0.676267879 0.468963388 0.466745477 0.506925898 0.481536785 0.556005217 0.390969431 -PA4857 0.237645166 0.194683441 0.320686278 0.347363933 0.328355716 0.230010891 0.220681779 0.407399168 0.344884302 0.188739497 0.343000108 -PA4858 0.207504514 0.317072134 0.223257946 0.190410981 0.202609984 0.235707787 0.214240444 0.294918042 0.265751092 0.330980063 0.325248455 -PA4859 0.260510188 0.29965582 0.198795609 0.340671878 0.286314645 0.416065539 0.354480583 0.392261241 0.337337185 0.405958786 0.442159956 -PA4860 0.269832878 0.375161725 0.224812254 0.28426269 0.216315263 0.270009472 0.231907075 0.289901009 0.223441243 0.257650966 0.258777648 -PA4861 0.284104899 0.299512943 0.271063505 0.176177229 0.243866689 0.394257572 0.395711566 0.513450419 0.390502604 0.330383781 0.433112948 -PA4862 0.262530913 0.24024012 0.110518614 0.194454629 0.174005934 0.265153042 0.346888767 0.354264856 0.19280085 0.216781366 0.323396908 -PA4863 0.551099588 0.613863111 0.681525203 0.540027457 0.557545043 0.530695357 0.521543503 0.666874415 0.508862638 0.615227629 0.396089514 -PA4864 0.504620772 0.41404315 0.560672186 0.273895246 0.203408831 0.191077152 0.087670645 0.026985023 0.009208457 0.214622913 0.10291114 -PA4865 0.7076675 0.663665828 0.671747904 0.352731631 0.374368025 0.262431251 0.010197564 0.123932316 0.100013086 0.152960367 0.061361018 -PA4866 0.600127139 0.501415563 0.582510575 0.238233041 0.222523623 0.357047181 0.264874427 0.31717745 0.213296834 0.339558872 0.4459797 -PA4867 0.517709944 0.397360978 0.701421209 0.37738015 0.322520348 0.598008739 0.208938345 0.329287764 0.422605405 0.477715967 0.257550148 -PA4868 0.296575187 0.285660384 0.375123199 0.204286166 0.143145601 0.401375933 0.271703375 0.336965971 0.338304006 0.43401603 0.361969168 -PA4869 0.275013585 0.163332673 0.199891446 0.094019778 0.074072845 0.136700356 0.163421359 0.295191315 0.165210923 0.149562269 0.197799542 -PA4870 0.18428127 0.312792345 0.331670266 0.35203842 0.486403711 0.359634043 0.313653817 0.305708375 0.365144406 0.290654663 0.299222666 -PA4871 0.384494159 0.30553098 0.18128775 0.118323953 0.120389324 0.238954278 0.45115748 0.354911038 0.252808276 0.32014796 0.479589077 -PA4872 0.803451739 0.724181285 0.894682125 0.357554351 0.403206683 0.429369878 0.555618807 0.422982036 0.433130459 0.384394843 0.395133783 -PA4873 0.909917125 0.568920436 0.594934119 0.492434333 0.491317569 0.350073287 0.372979135 0.327475534 0.287385918 0.240259444 0.296228593 -PA4874 0.382766219 0.442865684 0.47949305 0.741067862 0.777378929 0.491656585 0.348204031 0.561789742 0.29722616 0.485451782 0.35316906 -PA4875 0.282394321 0.372089291 0.340089338 0.956162789 0.961044292 0.226491045 0.234657108 0.263288879 0.021715767 0.337986953 0.080648791 -PA4876 0.185807003 0.247183059 0.455701867 0.832898892 0.848271827 0.638446368 0.619098391 0.686752539 0.567065845 0.645657403 0.63726336 -PA4877 0.150183155 0.218126414 0.378536121 0.739245413 0.793121886 0.387763542 0.222844148 0.381330733 0.304727055 0.403380808 0.284134578 -PA4878 0.313516936 0.292578202 0.339474309 0.350836298 0.352698278 0.513607864 0.321348347 0.752578073 0.384272346 0.575352993 0.385230258 -PA4879 0.213522323 0.371263029 0.276278484 0.524287335 0.503600744 0.354754239 0.301294314 0.415518696 0.288342429 0.387945531 0.221568889 -PA4880 0.223927919 0.584470143 0.500348818 0.674015552 0.722288512 0.749925184 0.603264426 0.806769163 0.58894817 0.751801544 0.644942247 -PA4881 0.116574047 0.185723205 0.160878014 0.091569322 0.077711498 0.133529296 0.081080462 0.031206848 0.083771316 0.172510453 0.054509661 -PA4882 0.21650441 0.228586109 0.234964838 0.293690391 0.271184028 0.308316685 0.458306735 0.416235233 0.383550124 0.35101603 0.600028889 -PA4883 0.280382345 0.240761514 0.160761134 0.252285235 0.242828283 0.366475385 0.355800879 0.496567953 0.337446827 0.359120573 0.224852658 -PA4884 0.25537626 0.266761741 0.182087354 0.241532493 0.209705168 0.178842447 0.239265773 0.29024407 0.145336268 0.111849909 0.16577395 -PA4885 0.389730308 0.32569995 0.451473685 0.391029335 0.44002284 0.036546978 0.091874591 0.146719658 0.151097199 0.006526769 0.188856026 -PA4886 0.427673256 0.252001924 0.233924506 0.281220556 0.33683677 0.389246522 0.360214028 0.463255759 0.484087091 0.422441284 0.200435881 -PA4887 0.600182751 0.465909692 0.383642573 0.335312428 0.245412913 0.567824098 0.58686083 0.493598514 0.652373651 0.429779185 0.585924221 -PA4888 0.644582477 0.579405093 0.290021863 0.124854072 0.07900837 0.60009429 0.558155237 0.395823904 0.643110967 0.624541931 0.603577374 -PA4889 0.717372308 0.744744414 0.319740932 0.073266051 0.124285932 0.32439409 0.294484936 0.290241044 0.362974016 0.302033102 0.332511793 -PA4890 0.815375836 0.902129194 0.69156821 0.319095347 0.340280448 0.426001007 0.534399435 0.389200469 0.485112484 0.465303519 0.651067522 -PA4891 0.324030452 0.569377978 0.290406915 0.226115039 0.283238014 0.068326442 0.235718218 0.253545433 0.161805247 0.164820928 0.156937598 -PA4892 0.527745899 0.694734887 0.410946169 0.500966819 0.462845584 0.178231573 0.129632768 0.158951665 0.227571833 0.137712312 0.167547922 -PA4893 0.580389987 0.565075781 0.558556444 0.466946936 0.469141758 0.174833154 0.209104471 0.341517651 0.234373856 0.235053492 0.198587159 -PA4894 0.596681818 0.450603218 0.474662416 0.424005637 0.462294445 0.336774061 0.381800141 0.367362763 0.34432853 0.287441804 0.41378302 -PA4895 0.17646864 0.159501935 0.178090677 0.13601234 0.121053729 0.172780236 0.104035215 0.13666443 0.024271377 0.168125928 0.115714527 -PA4896 0.124150226 0.120243802 0.120707282 0.116068224 0.108859567 0.122433655 0.078807608 0.128395258 0.083614593 0.084731663 0.018290949 -PA4897 0.156528393 0.187163703 0.191559735 0.126434749 0.164685925 0.216455807 0.181471892 0.156136169 0.198788732 0.160865879 0.192166117 -PA4898 0.24745893 0.277222345 0.231779784 0.309933315 0.296023005 0.320664627 0.275410861 0.272079689 0.185928018 0.239986009 0.260886398 -PA4899 0.239487567 0.170257001 0.140037465 0.36928313 0.449463878 0.266253958 0.236874129 0.284664987 0.112827244 0.197513715 0.332799494 -PA4900 0.158754162 0.145512208 0.193149359 0.194507175 0.17740232 0.257268047 0.297151998 0.278018752 0.221683286 0.229552459 0.244055652 -PA4901 0.264984311 0.25613502 0.190603403 0.222127061 0.231280635 0.289047814 0.420201481 0.378115575 0.316498121 0.107163862 0.332292158 -PA4902 0.468593996 0.259657957 0.438724963 0.3180904 0.340949846 0.224544423 0.243104553 0.210397382 0.236036543 0.209948678 0.312673909 -PA4903 0.221897964 0.28984539 0.121010614 0.214262636 0.244490323 0.373173099 0.348779022 0.295223649 0.395794233 0.366456352 0.36524178 -PA4904 0.183178975 0.12678674 0.111055054 0.178756571 0.184608647 0.151936864 0.089264032 0.175193399 0.223332732 0.203098161 0.260654542 -PA4905 0.19167016 0.223643342 0.187872575 0.416485517 0.396923384 0.231855957 0.291329442 0.221663565 0.316475577 0.225587612 0.265048775 -PA4906 0.519205126 0.432329036 0.496432097 0.432372492 0.404313872 0.279416069 0.444292369 0.203013732 0.201516788 0.094346042 0.398405677 -PA4907 0.701685233 0.890060813 0.733273877 0.473252284 0.471575879 0.355239944 0.385307538 0.328036675 0.390293552 0.384041319 0.38932078 -PA4908 0.116738159 0.21957967 0.27740045 0.249186524 0.276134693 0.191261437 0.12316196 0.21991744 0.19254822 0.19415379 0.24104317 -PA4909 0.071260353 0.08217048 0.177479993 0.113933032 0.14911827 0.042065413 0.194989415 0.212405971 0.07757935 0.102317826 0.090380543 -PA4910 0.08905474 0.042717107 0.182965689 0.16358791 0.176094595 0.150798848 0.094628255 0.133909655 0.111238506 0.08791967 0.122840744 -PA4911 0.102462513 0.136632262 0.166961288 0.084400668 0.143970925 0.242214457 0.20758096 0.190149767 0.146927633 0.240026448 0.272640826 -PA4912 0.112532289 0.070997697 0.155954212 0.242964787 0.179581088 0.199913757 0.230493036 0.273406066 0.246956759 0.239138619 0.233228919 -PA4913 0.094201495 0.148238972 0.140730925 0.400855 0.333587593 0.153853023 0.007644092 0.162579843 0.065367973 0.107008893 0.079961797 -PA4914 0.346136926 0.373226479 0.428556304 0.456822831 0.438549808 0.371443363 0.300962994 0.417975584 0.253884137 0.33560065 0.307543023 -PA4915 0.227328259 0.207403347 0.43421968 0.897014699 0.888274328 0.458065484 0.289662122 0.595900551 0.356320968 0.494282815 0.277175393 -PA4916 0.341459622 0.782656958 0.661946729 0.810720849 0.782115834 0.322693719 0.256934296 0.39745894 0.230937718 0.349947425 0.074825933 -PA4917 0.251003423 0.52038997 0.379201156 0.475980452 0.46766512 0.068391694 0.042033336 0.12096099 0.14822018 0.141994976 0.171897626 -PA4918 0.1991381 0.664182413 0.278802963 0.159225169 0.181232542 0.147985757 0.080793069 0.238894433 0.188443511 0.025595415 0.057072672 -PA4919 0.262084102 0.850819221 0.311978242 0.222819885 0.263466242 0.351004683 0.281985905 0.299170575 0.278646904 0.317494695 0.250654753 -PA4920 0.428543702 0.931632292 0.593800179 0.535460341 0.525384865 0.298236044 0.25172077 0.295495058 0.321914106 0.267483206 0.317557813 -PA4921 0.216450089 0.61985469 0.311139856 0.255426397 0.195206822 0.124519586 0.225719837 0.078395876 0.223584368 0.135792731 0.183900208 -PA4922 0.72865298 0.911243282 0.726892031 0.888619341 0.912914266 0.60941356 0.690235266 0.651737562 0.652019751 0.639052917 0.695178845 -PA4923 0.454736934 0.512501718 0.358666753 0.066351732 0.087984435 0.161779235 0.197015308 0.119867596 0.222287813 0.233502551 0.103126731 -PA4924 0.593680741 0.490992481 0.474251717 0.708005858 0.724493792 0.722815993 0.537120165 0.818976056 0.702435422 0.723548809 0.529518435 -PA4925 0.025128413 0.107596115 0.168065459 0.806776155 0.764469103 0.367125581 0.17444713 0.558180363 0.10826558 0.387025614 0.237192662 -PA4926 0.178535459 0.203812037 0.224888161 0.354671111 0.298919931 0.406292953 0.344159869 0.361300238 0.449505434 0.266219437 0.222663067 -PA4927 0.111633921 0.167731692 0.039567451 0.16962481 0.205105563 0.248444198 0.162680557 0.28352603 0.31352114 0.320069009 0.186981978 -PA4928 0.839555389 0.432308453 0.847597473 0.22224564 0.226180187 0.132984222 0.169116961 0.126520086 0.326840033 0.168087294 0.362210446 -PA4929 0.130162871 0.100330659 0.219670951 0.205848176 0.182258219 0.312184835 0.190042135 0.354828058 0.246725632 0.261617867 0.30301101 -PA4930 0.348637465 0.294792532 0.187333145 0.14024914 0.14534869 0.126595981 0.182941654 0.107963351 0.225022939 0.074921876 0.197157049 -PA4931 0.832740144 0.613657594 0.828953275 0.481693377 0.492517683 0.322634508 0.584032383 0.46497747 0.50856644 0.336519538 0.54300648 -PA4932 0.907135323 0.714966555 0.80434284 0.268628183 0.240983285 0.207741087 0.261612701 0.1308258 0.325393377 0.177672985 0.221003763 -PA4933 0.868288144 0.680492665 0.681147008 0.279410899 0.293751394 0.368556263 0.571702528 0.337814257 0.532380703 0.386916449 0.562654327 -PA4934 0.901943378 0.829644394 0.8384242 0.459950106 0.418092187 0.316200004 0.582170764 0.301903101 0.53199709 0.391641936 0.561007894 -PA4935 0.895958699 0.876723363 0.841012899 0.428631627 0.418696941 0.496217484 0.683019136 0.401573771 0.634739646 0.509398026 0.70287646 -PA4936 0.54293448 0.619544203 0.446007247 0.365776885 0.385163709 0.553767064 0.538327517 0.558436741 0.538663058 0.594267455 0.534836833 -PA4937 0.683277983 0.907720144 0.62204721 0.499019953 0.546997767 0.576814498 0.586475686 0.547496977 0.527848767 0.561152713 0.529855121 -PA4938 0.946660623 0.807950917 0.78963038 0.608891904 0.609366223 0.529319235 0.580164198 0.452115691 0.574566026 0.524814774 0.563663617 -PA4939 0.8518671 0.493640358 0.796919338 0.394701772 0.328773308 0.25304214 0.50807192 0.142891086 0.6202502 0.335279932 0.555830225 -PA4940 0.814668619 0.677240239 0.67016098 0.485967263 0.489539101 0.639729941 0.684988302 0.569333126 0.660454964 0.656317691 0.668893496 -PA4941 0.588540817 0.500801406 0.699603247 0.43840294 0.430504867 0.707786632 0.656718013 0.662221931 0.746675247 0.764993566 0.652211724 -PA4942 0.838127356 0.775092086 0.772967017 0.589699864 0.602882442 0.570034857 0.521466508 0.510637729 0.680215736 0.599904083 0.582498383 -PA4943 0.659939561 0.623828813 0.634210838 0.37466566 0.403726421 0.431984018 0.359926242 0.393122564 0.36790599 0.411352024 0.343264842 -PA4944 0.656936409 0.70531758 0.676282695 0.673821867 0.699200229 0.631742129 0.649694162 0.620920094 0.630823714 0.65055055 0.62083673 -PA4945 0.189671827 0.236792632 0.130784235 0.190537409 0.18702748 0.311893586 0.348287969 0.347722719 0.329640661 0.344159797 0.342124159 -PA4946 0.301366782 0.309964646 0.287106946 0.188210349 0.260988233 0.334208025 0.297012263 0.291126496 0.315985045 0.339351921 0.333951555 -PA4947 0.811410041 0.737774206 0.78864091 0.908459902 0.933789701 0.695314497 0.618066737 0.739032373 0.541700826 0.646085415 0.659196392 -PA4948 0.474622251 0.448894946 0.410213966 0.464318516 0.511295896 0.292704999 0.381678186 0.296148503 0.400905252 0.322161528 0.515136408 -PA4949 0.475612611 0.286474542 0.483966878 0.50437524 0.452684166 0.594007492 0.716754242 0.444601899 0.41541019 0.389862664 0.685439507 -PA4950 0.410027453 0.349452138 0.395690722 0.214318899 0.239150431 0.479602478 0.530969677 0.480309352 0.525648639 0.455845163 0.47650212 -PA4951 0.658959442 0.688818729 0.610590897 0.917714821 0.942179643 0.55036308 0.522921948 0.627914672 0.462676064 0.573716237 0.521354881 -PA4952 0.541428433 0.413348331 0.423730923 0.22448973 0.19416394 0.407740478 0.650741469 0.373838588 0.610577862 0.503515821 0.586523643 -PA4953 0.677818677 0.760930727 0.679387588 0.614814016 0.542125203 0.731148773 0.705013808 0.794105819 0.7495986 0.788386339 0.762748932 -PA4954 0.419652338 0.493804849 0.354316052 0.460031618 0.482262287 0.485856189 0.413732205 0.460118787 0.417984621 0.506759295 0.438512851 -PA4955 0.58862965 0.565366726 0.590196873 0.714592456 0.662551817 0.405224646 0.396725392 0.38344792 0.385858138 0.540519199 0.381476202 -PA4956 0.84892491 0.87416882 0.736008598 0.556660412 0.572647469 0.277991255 0.271232952 0.264250887 0.283683339 0.31307063 0.107668931 -PA4957 0.736519133 0.701161657 0.723739937 0.393132918 0.3919558 0.21723722 0.23088451 0.276900039 0.23602962 0.197122524 0.390949609 -PA4958 0.696981566 0.722212005 0.811793205 0.948115087 0.895850499 0.695413977 0.547616803 0.647729649 0.552226772 0.644297546 0.451169746 -PA4959 0.88939342 0.645670324 0.797158079 0.495987345 0.545797561 0.594445209 0.6879669 0.699137934 0.687096833 0.756950619 0.631011848 -PA4960 0.800648158 0.727255732 0.678023759 0.228527084 0.27769745 0.652273946 0.780005795 0.731278316 0.705323809 0.706386095 0.769785109 -PA4961 0.768750024 0.655131154 0.641109701 0.144463328 0.266802209 0.63084472 0.788084582 0.589351856 0.943819311 0.675159845 0.858240118 -PA4962 0.507221642 0.251588976 0.25180633 0.163403352 0.101374861 0.367592593 0.493847311 0.258025403 0.419007943 0.352874612 0.508546204 -PA4963 0.672869061 0.459508189 0.593516802 0.739929851 0.67504044 0.759186466 0.903774062 0.808061148 0.900481368 0.799605599 0.851992043 -PA4964 0.854161276 0.759837241 0.904392334 0.27449984 0.193296222 0.584889404 0.508177019 0.374589553 0.468261544 0.583643089 0.517777929 -PA4965 0.797713709 0.572366767 0.756641899 0.288205856 0.259332826 0.937651923 0.865441268 0.769922991 0.886571043 0.935381509 0.906697901 -PA4966 0.702903991 0.523134511 0.553203537 0.140025917 0.130258311 0.228845904 0.283764451 0.178190719 0.315261152 0.162697172 0.200411606 -PA4967 0.435491798 0.350664055 0.353264947 0 0.010664224 0.34449751 0.361322873 0.207393605 0.338883086 0.361040692 0.303889544 -PA4968 0.623537817 0.7968323 0.514852664 0.184525177 0.233355257 0.519617303 0.575445668 0.552327838 0.666605302 0.510786783 0.669697143 -PA4969 0.432534664 0.36178943 0.476454208 0.266938346 0.310261314 0.263581913 0.347948737 0.295495973 0.369473903 0.196169744 0.454950893 -PA4970 0.57465882 0.798319814 0.479695962 0.457231773 0.458258678 0.779497224 0.656100281 0.656886485 0.860270702 0.693526921 0.763405695 -PA4971 0.581913019 0.670407878 0.723109277 0.523976024 0.599917155 0.426048177 0.57020712 0.214740027 0.305907078 0.324974892 0.422706775 -PA4972 0.660206494 0.878237341 0.669477873 0.677003956 0.61048488 0.817876763 0.867206415 0.822696279 0.847520921 0.862935697 0.892959406 -PA4973 0.76488649 0.234696923 0.282937471 0.26044622 0.305270889 0.407388436 0.295791459 0.335217865 0.325259971 0.446118747 0.390184651 -PA4974 0.848421952 0.733238887 0.924390384 0.601968874 0.669067822 0.410541526 0.480451217 0.396771741 0.587075223 0.428114239 0.612561573 -PA4975 0.214088892 0.208658519 0.325895196 0.408239995 0.400317596 0.263184601 0.379927894 0.061234178 0.506231229 0.321868929 0.451207454 -PA4976 0.36976873 0.44383534 0.40358087 0.69553512 0.73437042 0.229917383 0.333031223 0.258790548 0.31867341 0.203289388 0.265223112 -PA4977 0.300531558 0.265033516 0.424552401 0.37044059 0.375059522 0.246986457 0.285090504 0.364826701 0.248713279 0.224541893 0.22598467 -PA4978 0.212185898 0.205638862 0.10726993 0.211828599 0.249193801 0.200439908 0.139032235 0.174755212 0.186449 0.129063939 0.194095366 -PA4979 0.19440966 0.183916849 0.182023646 0.104212838 0.112776832 0.125164272 0.163182613 0.213013424 0.095652466 0.146910365 0.104946661 -PA4980 0.340339225 0.344393692 0.229274877 0.247373966 0.239804652 0.252490032 0.158623472 0.148539805 0.129532827 0.337643686 0.178343958 -PA4981 0.120895083 0.137812799 0.16005583 0.233711325 0.198928637 0.173609821 0.27464186 0.267939379 0.265541934 0.188755923 0.297327039 -PA4982 0.294142961 0.230951903 0.133635416 0.170192665 0.142391846 0.387106515 0.405809971 0.264661991 0.327580543 0.261744805 0.448147559 -PA4983 0.564433346 0.422868828 0.782365022 0.8091197 0.83640314 0.183153742 0.343098198 0.397142603 0.42278029 0.258188989 0.411944654 -PA4984 0.317173682 0.375856338 0.186234341 0.451049025 0.489996294 0.298095553 0.479482926 0.384156922 0.25713915 0.276545495 0.203263053 -PA4985 0.313221799 0.206945711 0.118587215 0.191985321 0.214243426 0.274739224 0.239878455 0.245348244 0.260309925 0.227527004 0.24194089 -PA4986 0.453747651 0.325152823 0.273567231 0.330691764 0.42704032 0.436052779 0.422597436 0.482846623 0.383904209 0.500820373 0.350175797 -PA4987 0.316199494 0.236122589 0.33439393 0.151030671 0.167258738 0.108809523 0.225086473 0.169919339 0.277449508 0.118511415 0.20808868 -PA4988 0.6347878 0.476449353 0.424409537 0.443923949 0.414925465 0.25076906 0.183732265 0.199837581 0.215370867 0.29405725 0.320743128 -PA4989 0.204324109 0.285762304 0.088047828 0.223126714 0.274097067 0.052903561 0.170709181 0.073398981 0.192248151 0.09422384 0.198530284 -PA4990 0.221975474 0.325498193 0.228649626 0.200836585 0.194331848 0.476208624 0.296067837 0.302536862 0.375640703 0.35382403 0.29976283 -PA4991 0.995445732 0.883260337 0.683782968 0.291025178 0.233480133 0.395685312 0.011739635 0.158988876 0.148609126 0.30234869 0.228469968 -PA4992 0.601677492 0.478860702 0.452295276 0.139867948 0.146394223 0.457012307 0.421355299 0.665435106 0.473121154 0.387008556 0.324819936 -PA4993 0.345285702 0.395810078 0.560917007 0.54245241 0.507236991 0.395665983 0.216021674 0.255245779 0.283766224 0.446791418 0.306965372 -PA4994 0.202519955 0.189098611 0.253519384 0.221561211 0.264707912 0.261296178 0.207404277 0.321363709 0.27080371 0.256041944 0.23432193 -PA4995 0.238787751 0.200944089 0.111465534 0.198121489 0.130926648 0.18731036 0.145885366 0.271554283 0.196293796 0.197269275 0.330240122 -PA4996 0.794637261 0.824026357 0.659995585 0.604159425 0.597170721 0.742749592 0.728330038 0.566221987 0.766314823 0.734458838 0.673300871 -PA4997 0.629088292 0.606941822 0.529586502 0.025119456 0.020605566 0.514205241 0.634994248 0.441161462 0.589414779 0.47884067 0.59491655 -PA4998 0.848668203 0.800711251 0.748155876 0.291423067 0.373166892 0.492828185 0.575109484 0.39174181 0.645490051 0.551209592 0.512152346 -PA4999 0.142796691 0.789653835 0.119450539 0.082018856 0.123184665 0.405132574 0.611797246 0.491476809 0.763900515 0.36279815 0.745636766 -PA5000 0.571862156 0.403917739 0.545089312 0.532437057 0.550114155 0.568814439 0.688924616 0.625240699 0.655793642 0.669939163 0.708679167 -PA5001 0.812716423 0.657962465 0.742032355 0.516204585 0.542742584 0.720255662 0.90718951 0.703013633 0.875323017 0.735412859 0.980788396 -PA5002 0.522729063 0.563359866 0.488026089 0.128432243 0.098143521 0.426119911 0.488277721 0.301706514 0.589681494 0.448861147 0.470113541 -PA5003 0.719455199 0.52240508 0.607295223 0.18656927 0.180565935 0.317287791 0.57976063 0.269693919 0.631200122 0.478364983 0.523514359 -PA5004 0.754841438 0.587763734 0.660182412 0.340276405 0.420937187 0.545203956 0.631103549 0.426172937 0.622451527 0.571527548 0.670249181 -PA5005 0.881852151 0.758769608 0.835315765 0.341960635 0.385628831 0.530738671 0.483747285 0.436610372 0.514599628 0.456660438 0.533250362 -PA5006 0.994132045 0.555725421 0.853206713 0.293305099 0.399012609 0.817788039 0.615397565 0.513180239 0.578976378 0.601679793 0.475041063 -PA5007 0.82245072 0.689164537 0.882104141 0.22275583 0.313224309 0.551635646 0.579970026 0.413669086 0.628458353 0.585855314 0.508699857 -PA5008 0.85597854 0.69625305 0.796841086 0.361534299 0.450516171 0.519233318 0.50647987 0.371419385 0.619934023 0.636316611 0.486631316 -PA5009 0.976186227 0.617959619 0.888137558 0.144779487 0.222964383 0.650417537 0.614524693 0.673912966 0.50175351 0.695983591 0.52012185 -PA5010 0.954741225 0.832738132 0.855104929 0.276687671 0.328824228 0.55230973 0.539123669 0.310041152 0.537697758 0.533651088 0.513515578 -PA5011 0.885481313 0.663065469 0.903921896 0.564034556 0.550588953 0.445155821 0.466267829 0.39671746 0.484904486 0.477670431 0.453889916 -PA5012 0.9861457 0.616010953 0.941734395 0.529346002 0.488928011 0.513884627 0.399404799 0.347939283 0.595940882 0.540972939 0.458037567 -PA5013 0.635169408 0.674435983 0.630818988 0.534483888 0.550784076 0.726734294 0.76145839 0.622376635 0.673808279 0.758663307 0.761232761 -PA5014 0.639648092 0.44299783 0.453032357 0.477087032 0.401203459 0.532064083 0.381359253 0.431100388 0.653181172 0.640958082 0.480997264 -PA5015 0.841226711 0.866852761 0.827453549 0.561918059 0.560924285 0.478796923 0.523668828 0.402025132 0.463974058 0.45950069 0.452437851 -PA5016 0.812639939 0.834990576 0.852886281 0.484212965 0.512514367 0.378387657 0.439575867 0.376103347 0.437610074 0.455143679 0.450991143 -PA5017 0.539403224 0.623942447 0.629688225 0.488844898 0.538374656 0.606814877 0.389119684 0.683412643 0.300085374 0.55940318 0.398726788 -PA5018 0.623729157 0.752535815 0.498128284 0.731272521 0.729340224 0.457221826 0.323312225 0.421611643 0.365822931 0.404969426 0.331834197 -PA5019 0.333240694 0.36552972 0.348748093 0.789158255 0.711703096 0.424810276 0.384770736 0.391852626 0.418264408 0.424455309 0.313437415 -PA5020 0.194665988 0.27367144 0.119518669 0.294374677 0.375389161 0.25434473 0.203981111 0.317895522 0.162248212 0.309978486 0.242204997 -PA5021 0.601979744 0.57705609 0.431057293 0.150328556 0.141098502 0.238332637 0.283677438 0.107622865 0.218486687 0.082041113 0.241866224 -PA5022 0.845713224 0.561077244 0.659156312 0.231681768 0.307225478 0.793188118 0.507667295 0.606851257 0.557115209 0.656479521 0.686988726 -PA5023 0.390803487 0.244490099 0.239198812 0.463332279 0.415524449 0.543677116 0.440429975 0.487985013 0.592147834 0.534223918 0.412393737 -PA5024 0.207615616 0.103419315 0.876136419 0.143766188 0.162079385 0.217989903 0.145266156 0.297871783 0.265809545 0.121525185 0.133360141 -PA5025 0.345459622 0.624003028 0.48950302 0.508585331 0.43597472 0.258893792 0.259266668 0.320252017 0.270274634 0.282468677 0.385173159 -PA5026 0.308039603 0.599074154 0.343863465 0.52754987 0.579513519 0.366725352 0.18658236 0.326154188 0.23611847 0.276384704 0.188599352 -PA5027 0.093112397 0.652316824 0.144981731 0.644748273 0.626274568 0.618579713 0.28640011 0.661785111 0.243856934 0.591794912 0.265458495 -PA5028 0.479138608 0.472318864 0.623134189 0.698034557 0.643422429 0.799312153 0.680156357 0.845818077 0.682207044 0.843384434 0.621855129 -PA5029 0.428257879 0.411952711 0.335877564 0.222424155 0.336832168 0.335840397 0.24964809 0.380512701 0.203013857 0.232309277 0.339961954 -PA5030 0.210761572 0.230059027 0.180044212 0.117146008 0.288882126 0.357455695 0.234580872 0.369256242 0.276348185 0.199752653 0.250897119 -PA5031 0.177038365 0.212842616 0.157488949 0.353198805 0.336977018 0.258800791 0.27295781 0.249220597 0.299819487 0.211042329 0.21262502 -PA5032 0.063216848 0.150269213 0.138545704 0.236572118 0.267498385 0.097135257 0.125802308 0.272835923 0.09972282 0.075694777 0.125080197 -PA5033 0.411020869 0.230902277 0.320788141 0.454472318 0.40724126 0.434392641 0.338885903 0.405097373 0.305019924 0.248582341 0.425211465 -PA5034 0.516845541 0.377457517 0.483039871 0.167878364 0.203546018 0.281768417 0.377047052 0.5305755 0.358331467 0.233001958 0.349875844 -PA5035 0.375038665 0.286539873 0.633335327 0.317207696 0.2646601 0.400944405 0.431774156 0.311664176 0.295302167 0.376566226 0.375730387 -PA5036 0.573943304 0.566374248 0.800307928 0.215656875 0.290243086 0.508999534 0.504632867 0.325176209 0.527661923 0.505464478 0.552926418 -PA5037 0.82151239 0.871996138 0.782898003 0.514069668 0.483394758 0.304198672 0.460639356 0.321178003 0.491382389 0.415843775 0.449991472 -PA5038 0.830238005 0.648854454 0.842445315 0.50164489 0.553560257 0.720359592 0.684968339 0.550530399 0.741050358 0.671650742 0.654966809 -PA5039 0.639767713 0.52703984 0.622100403 0.482382136 0.5404095 0.573665321 0.715927763 0.603293348 0.740004897 0.5653069 0.662234641 -PA5040 0.500600026 0.700243545 0.521550768 0.3393802 0.329526006 0.604342554 0.533116759 0.561172361 0.498421387 0.518156545 0.540040687 -PA5041 0.251236629 0.765370245 0.282233003 0.227823865 0.202734111 0.613524679 0.436496351 0.579973398 0.402476043 0.645614717 0.480435454 -PA5042 0.506674013 0.653259587 0.507773298 0.339821107 0.350665857 0.569310609 0.517830779 0.659995603 0.505185478 0.602539382 0.60553769 -PA5043 0.502330097 0.595214768 0.456396838 0.184164562 0.25835613 0.433750132 0.475059927 0.552188953 0.489571346 0.50402993 0.460748421 -PA5044 0.564261196 0.691868857 0.545832154 0.409798488 0.451448637 0.458741869 0.444282098 0.455227037 0.47549772 0.473538059 0.471295842 -PA5045 0.699529853 0.565231294 0.721269294 0.247885665 0.264528474 0.820346279 0.957464671 0.783050099 0.953416809 0.858664914 0.962521143 -PA5046 0.922749873 0.922912651 0.872571497 0.581665662 0.590864873 0.374111511 0.546423266 0.288745281 0.499441471 0.38455943 0.481128813 -PA5047 0.304636615 0.298521204 0.283313251 0.740780472 0.767980154 0.357632865 0.374619805 0.458638708 0.304002632 0.245798703 0.345434037 -PA5048 0.622841185 0.451631386 0.495944638 0.444822232 0.409674426 0.516670034 0.538206529 0.479338599 0.558003546 0.324648749 0.505441524 -PA5049 0.777039781 0.616624424 0.590215911 0.518194536 0.531965292 0.622246548 0.689841362 0.512440798 0.675133416 0.595513763 0.669317971 -PA5050 0.746913546 0.538504258 0.745965875 0.500153691 0.438861174 0.448004074 0.373434697 0.370388367 0.345551387 0.270724676 0.350749432 -PA5051 0.755824433 0.889786307 0.757469293 0.920953897 0.925299092 0.603328763 0.550759058 0.622084947 0.570875041 0.551571327 0.593657806 -PA5052 0.87466573 0.922911499 0.91066837 0.772293882 0.800750895 0.646139523 0.576688071 0.620274235 0.602356569 0.534803928 0.644956023 -PA5053 0.562635846 0.763358161 0.620254942 0.230854268 0.263763107 0.435070694 0.352127382 0.345092258 0.354507281 0.380235881 0.340663698 -PA5054 0.589180309 0.754047008 0.834125894 0.33157894 0.322115541 0.332864149 0.302295547 0.325935719 0.25236438 0.250136232 0.293387404 -PA5055 0.582677765 0.697726323 0.70761611 0.375039168 0.422172296 0.462122633 0.591045834 0.443400026 0.497007579 0.536051377 0.44198543 -PA5056 0.384434718 0.359121995 0.631218435 0.715663667 0.731566725 0.52388096 0.413482023 0.515482067 0.509908658 0.536335137 0.450967084 -PA5057 0.235078659 0.235200083 0.461694496 0.539947361 0.585959344 0.392098981 0.301569474 0.476340538 0.329454737 0.510613451 0.30322758 -PA5058 0.093457941 0.106439709 0.263164152 0.776094569 0.738702064 0.361547708 0.109568987 0.419855598 0.069704508 0.332469108 0.157848596 -PA5059 0.200510112 0.217765749 0.334937251 0.783115153 0.802208894 0.46686288 0.353498384 0.460979682 0.340256295 0.413538017 0.376073984 -PA5060 0.549512958 0.827372249 0.652019626 0.909966185 0.915630691 0.525801397 0.548423527 0.57796833 0.532056528 0.571119859 0.498473245 -PA5061 0.220162799 0.355145833 0.369302918 0.877036446 0.827669524 0.302696545 0.359494697 0.324369229 0.315978537 0.28120964 0.31554288 -PA5062 0.491496235 0.478892203 0.549748976 0.307695237 0.415828043 0.762247518 0.694963964 0.70633162 0.772011238 0.699473639 0.737113506 -PA5063 0.830862039 0.773180792 0.807671827 0.794336175 0.816647075 0.385870876 0.605872018 0.345946162 0.563142951 0.460357398 0.440605483 -PA5064 0.684939905 0.723010547 0.718731815 0.524704743 0.512294159 0.549925874 0.514652429 0.394130843 0.54390218 0.471290887 0.501303261 -PA5065 0.735264231 0.778483881 0.651016167 0.259996173 0.192055704 0.813805532 0.842819491 0.700051602 0.871425345 0.827448211 0.928209807 -PA5066 0.616519428 0.731203363 0.588429738 0.498429929 0.550985599 0.630565914 0.625851032 0.605601667 0.613198457 0.617864705 0.617166429 -PA5067 0.722362969 0.842018101 0.698135202 0.66371591 0.678569468 0.709682474 0.615906728 0.666388603 0.635989684 0.677109913 0.61283887 -PA5068 0.748547362 0.829572419 0.722084238 0.729311959 0.736761104 0.839267797 0.810182606 0.832673086 0.761998313 0.8606114 0.808382551 -PA5069 0.790374817 0.910682393 0.883657139 0.730445792 0.752837115 0.44163667 0.615137563 0.547174424 0.631233872 0.474861998 0.518051734 -PA5070 0.817845578 0.637342648 0.7796483 0.284731479 0.342764676 0.529485615 0.68225506 0.624624721 0.879871382 0.60236641 0.781511097 -PA5071 0.654480394 0.506864343 0.416597836 0.155279355 0.244744845 0.290688565 0.584880725 0.31481979 0.721904397 0.49096593 0.594015871 -PA5072 0.592679748 0.520751012 0.744490494 0.44951986 0.290725476 0.163981877 0.149396995 0.090753256 0.187100075 0.210002776 0.152629198 -PA5073 0.367283319 0.400804202 0.360187023 0.387609553 0.393127839 0.349614658 0.342999621 0.354641893 0.2553508 0.313441488 0.281287067 -PA5074 0.803012372 0.408518547 0.790824446 0.07724198 0.002866305 0.453199973 0.457069634 0.215292839 0.499448611 0.385710244 0.329904721 -PA5075 0.796148956 0.3766285 0.776407377 0.178959824 0.146260902 0.204760932 0.221994647 0.18710029 0.189999863 0.128742392 0.268462284 -PA5076 0.582964621 0.406185572 0.685582355 0.161369725 0.15024088 0.388807011 0.441350307 0.313846248 0.357760792 0.395119698 0.414136317 -PA5077 0.651866209 0.446827119 0.536457544 0.141766566 0.127669013 0.467044508 0.316620759 0.162901783 0.47547873 0.443719781 0.250822623 -PA5078 0.795360004 0.846503422 0.850860628 0.393799761 0.448243341 0.692390023 0.697121347 0.661737026 0.73256599 0.734902772 0.683834105 -PA5079 0.522575356 0.17002936 0.61963014 0.334687288 0.383102286 0.407320842 0.330877369 0.257023103 0.341293099 0.369488781 0.207865731 -PA5080 0.809795469 0.397459769 0.825222549 0.695580515 0.750293407 0.542675025 0.37301871 0.463314755 0.386995837 0.3635629 0.427436639 -PA5081 0.556626543 0.3772739 0.430267236 0.561006804 0.515387772 0.460877025 0.591330468 0.693243184 0.550273374 0.601749557 0.571144523 -PA5082 0.175315012 0.078616148 0.214486921 0.136999258 0.148960098 0.205392118 0.249613979 0.308689008 0.226207531 0.379083826 0.322044596 -PA5083 0.131471776 0.162127919 0.124907717 0.129011543 0.102461285 0.156755313 0.128381914 0.117616468 0.117050798 0.108200583 0.121086297 -PA5084 0.118926027 0.197336156 0.134397882 0.082994233 0.097230627 0.088449 0.081698396 0.013328001 0.102979216 0.077666607 0.157268199 -PA5085 0.503689683 0.522915854 0.48034783 0.373179871 0.418462324 0.302781372 0.369287997 0.25717028 0.418997767 0.378157679 0.403810038 -PA5086 0.367391069 0.409005658 0.286691288 0.17966943 0.218388021 0.460842498 0.472485032 0.280238992 0.4303583 0.569803321 0.468773069 -PA5087 0.121655877 0.200043222 0.302049245 0.125932426 0.104468361 0.30637618 0.326590148 0.315159516 0.216653198 0.36147889 0.284427962 -PA5088 0.093382638 0.148780802 0.127766528 0.061491163 0.095279803 0.092522619 0.096009003 0.045215437 0.09408892 0.112213204 0.126977422 -PA5089 0.423880084 0.223956007 0.503472327 0.328333129 0.305713894 0.243897804 0.276783885 0.250456226 0.373868592 0.305732384 0.442573319 -PA5090 0.330514158 0.283865639 0.345366472 0.314161379 0.131147333 0.160815656 0.102841484 0.258051719 0 0.173599776 0.054234608 -PA5091 0.247327278 0.256183253 0.321207221 0.488834632 0.501884877 0.112141455 0.069016179 0.25620627 0.182563531 0.17225548 0.128314292 -PA5092 0.185857245 0.185930632 0.262719489 0.450308861 0.44090354 0.194029084 0.131445905 0.081279005 0.117581912 0.104821416 0.135501198 -PA5093 0.18300621 0.208175113 0.203053091 0.490430314 0.471143515 0.095275993 0.117940347 0.223474824 0.151147864 0.081098458 0.086207575 -PA5094 0.194380002 0.212164194 0.369204912 0.615005042 0.594163713 0.145266329 0.129979372 0.267035052 0.083269067 0.228116159 0.104088638 -PA5095 0.137097114 0.13189843 0.224203336 0.539095136 0.510561451 0.187460947 0.152291396 0.23873478 0.220426919 0.135141585 0.113510947 -PA5096 0.101486171 0.105443116 0.131765432 0.184958152 0.197084516 0.311908202 0.088748398 0.12105658 0.125889448 0.180062444 0.116630047 -PA5097 0.154132974 0.097508797 0.103541827 0.125272621 0.145255003 0.070943054 0.219498558 0.264570166 0.174944513 0.140193749 0.204695722 -PA5098 0.123070992 0.101415994 0.073014788 0.134365551 0.151936797 0.118430386 0.105700451 0.080537596 0.109413048 0.0784334 0.084822587 -PA5099 0.089114572 0.083480663 0.086580734 0.242318837 0.252024665 0.281608572 0.232480725 0.277906427 0.210712905 0.254055818 0.27485898 -PA5100 0.127475183 0.154741392 0.022844349 0.301118347 0.378188314 0.12410921 0.077450703 0.173317673 0.130094619 0.142135975 0.073426694 -PA5101 0.088015239 0.047865689 0.136533999 0.727335429 0.690524695 0.23765555 0.043059993 0.370912674 0.172707727 0.198408666 0.107155727 -PA5102 0.259268868 0.279304079 0.165879061 0.292245114 0.300361255 0.223717747 0.296950302 0.371027923 0.243022439 0.26549057 0.267058469 -PA5103 0.137878769 0.18832178 0.296412742 0.545586187 0.495401636 0.081250299 0.033801814 0.231785818 0.140503967 0.123702882 0.074713525 -PA5104 0.268821991 0.257964227 0.217807701 0.648247474 0.677348228 0.239130454 0.076697055 0.38486717 0.22588182 0.130762578 0.230161649 -PA5105 0.29826245 0.312101059 0.295813607 0.72837494 0.800473041 0.28135848 0.204815033 0.469992398 0.260164165 0.295884203 0.305364875 -PA5106 0.0844441 0.177208599 0.151149171 0.495046574 0.531512177 0.178743034 0.079493356 0.258946914 0.152743179 0.098748039 0.10591049 -PA5107 0.31745804 0.380396756 0.169860936 0.547906511 0.51658143 0.495939229 0.544988133 0.514425076 0.53419427 0.562226529 0.524503402 -PA5108 0.346963183 0.414245387 0.302793618 0.558567199 0.508201099 0.53017525 0.471203124 0.479505181 0.518905601 0.403362878 0.248684632 -PA5109 0.677224949 0.771488293 0.532984691 0.298457794 0.312479799 0.801101125 0.776033799 0.587994268 0.878191092 0.717601865 0.794502267 -PA5110 0.752765633 0.886451522 0.708778416 0.307169017 0.397939758 0.421852833 0.502044258 0.455978828 0.432350895 0.449063582 0.518117342 -PA5111 0.369745112 0.475291305 0.511266245 0.465651299 0.507060017 0.14555677 0.271448979 0.230721708 0.343046082 0.22639592 0.275931659 -PA5112 0.468794615 0.509965894 0.534163173 0.657857749 0.651760719 0.278946368 0.325314444 0.372760723 0.293859869 0.335176369 0.280256166 -PA5113 0.655123348 0.61399573 0.273329536 0.514511965 0.595101141 0.146905884 0.208163817 0.080925417 0.221194513 0.222726469 0.185400786 -PA5114 0.52380887 0.570406473 0.289984045 0.446690065 0.438013878 0.182294977 0.161370441 0.170126914 0.279389344 0.209457298 0.18110193 -PA5115 0.417510519 0.332957732 0.398369565 0.952440442 1 0.264930335 0.263073581 0.368660632 0.304954183 0.374414639 0.246911249 -PA5116 0.309567835 0.15055282 0.514757102 0.512696944 0.579411567 0.097739943 0.079761398 0.109762371 0.145548101 0.078574977 0.068267332 -PA5117 0.934557702 0.8211387 0.715122383 0.011462034 7.22E-05 0.496909833 0.661158431 0.285124246 0.567826822 0.474981429 0.612758878 -PA5118 0.856753704 0.638035261 0.642429707 0.326778956 0.23750303 0.518566357 0.739837722 0.505748788 0.656440958 0.538517144 0.807923496 -PA5119 0.791359566 0.994572457 0.805117753 0.709802882 0.737494411 0.626514088 0.643571777 0.629561684 0.691585807 0.629228395 0.597531398 -PA5120 0.683369966 0.581151377 0.53924775 0.388053231 0.38063073 0.579065794 0.637118091 0.586810031 0.574459576 0.610090627 0.598161177 -PA5121 0.334075476 0.320153321 0.297325948 0.177886647 0.192981712 0.22576267 0.3767005 0.368391297 0.363313306 0.174834841 0.177861996 -PA5122 0.609067735 0.628117438 0.782100893 0.850058724 0.853371279 0.632067291 0.573858775 0.691645534 0.654314133 0.659161198 0.654929843 -PA5123 0.442341072 0.595787076 0.640745082 0.29647335 0.335342193 0.523642592 0.493180037 0.434444651 0.476866197 0.512220534 0.488469426 -PA5124 0.267931503 0.437920908 0.381878977 0.183329843 0.196609 0.204418792 0.217634734 0.299623504 0.143730713 0.296162612 0.205848948 -PA5125 0.339163618 0.743074836 0.416203301 0.249447355 0.225226721 0.437162159 0.300773552 0.44978193 0.289090404 0.396780569 0.342282467 -PA5126 0.528078703 0.245400711 0.319110616 0.318166904 0.360300171 0.453216303 0.457133228 0.529382079 0.398867109 0.345507463 0.519731459 -PA5127 0.608455364 0.188772905 0.578350453 0.212147109 0.224522291 0.316270935 0.404420178 0.370414144 0.487773918 0.418405405 0.413620995 -PA5128 0.905318674 0.939500614 0.909421912 0.24286476 0.305393101 0.585520059 0.806632767 0.538924702 0.763755696 0.62738696 0.794732888 -PA5129 0.887463915 0.785565277 0.860942241 0.357977003 0.361266598 0.752578544 0.876045197 0.673910997 0.861035328 0.744860516 0.909603307 -PA5130 0.805422887 0.703904402 0.7484898 0.14634897 0.207699935 0.529015534 0.728116228 0.482432744 0.706506378 0.568803637 0.715599881 -PA5131 0.951465566 0.842586848 0.794153986 0.333061585 0.380682779 0.398002234 0.512535824 0.333456669 0.521528673 0.357638767 0.399857827 -PA5132 0.407991551 0.359040771 0.223297034 0.274016427 0.245737348 0.12582914 0.158430726 0.187409714 0.186603682 0.094861088 0.236283122 -PA5133 0.822269566 0.810774045 0.681561775 0.333410572 0.402027319 0.495327539 0.580204092 0.479979924 0.547490069 0.551710034 0.542755648 -PA5134 0.802251929 0.808084554 0.772155078 0.418674086 0.444334676 0.677884457 0.656911258 0.648949576 0.752803015 0.634032232 0.765331595 -PA5135 0.722724206 0.789991046 0.752473982 0.135906709 0.125765162 0.531938797 0.474121985 0.486455393 0.522300727 0.586768025 0.308709785 -PA5136 0.894568184 0.654173803 0.618865201 0.444447451 0.365245582 0.442630073 0.483381048 0.351361616 0.475664712 0.452264954 0.494608256 -PA5137 0.399295869 0.358403567 0.472489815 0.257741724 0.185805999 0.354137295 0.522820308 0.365933462 0.56598757 0.448663243 0.414843325 -PA5138 0.556093536 0.510354731 0.396005225 0.100714303 0.102561869 0.179679756 0.335221274 0.202525171 0.328350479 0.251575309 0.30272947 -PA5139 0.59035536 0.405557499 0.515479208 0.177953686 0.094531881 0.209877071 0.210888047 0.15935573 0.241744538 0.118597409 0.253463411 -PA5140 0.898693348 0.591318619 0.696410339 0.137775984 0.130397186 0.506559633 0.720163829 0.367782782 0.631565144 0.477465232 0.848445238 -PA5141 0.916159111 0.702349328 0.815841356 0.387475233 0.372562774 0.605420912 0.661313277 0.44788985 0.588328894 0.477127276 0.590025466 -PA5142 0.806380535 0.669630151 0.669437911 0.50969271 0.575463991 0.725419581 0.882980007 0.593278975 0.847736616 0.739396924 0.852800889 -PA5143 0.840140477 0.827970985 0.833185057 0.634943947 0.618544902 0.575136683 0.629025927 0.611408293 0.648773674 0.612318823 0.578204638 -PA5144 0.301277812 0.338020084 0.227472477 0.297189405 0.292529471 0.27473427 0.350640052 0.212745345 0.220767029 0.259819885 0.276455817 -PA5145 0.49019861 0.455888183 0.49342425 0.457765542 0.468530067 0.239384849 0.237107382 0.252195409 0.240868833 0.197499307 0.352919928 -PA5146 0.629747599 0.746238247 0.69311847 0.477695797 0.447922663 0.526566511 0.656176094 0.506945378 0.722729979 0.676669151 0.724354673 -PA5147 0.807991593 0.829102568 0.843908591 0.604033381 0.538358235 0.507651044 0.591128068 0.477618464 0.453925548 0.652848061 0.675757958 -PA5148 0.910913182 0.89626939 0.945292713 0.774555794 0.801044567 0.735802803 0.575334571 0.591425321 0.74753983 0.72149005 0.624670439 -PA5149 0.515245335 0.422636773 0.386200609 0.145864846 0.177860422 0.215474754 0.278959318 0.232504637 0.256304717 0.065107912 0.380318621 -PA5150 0.167584308 0.150016249 0.078445282 0.182956749 0.143913703 0.282787349 0.182559679 0.176592779 0.197099835 0.215235884 0.263520225 -PA5151 0.31860157 0.327508617 0.161964186 0.241188729 0.279676312 0.289899474 0.350647903 0.320228458 0.292789454 0.408751146 0.398321165 -PA5152 0.639385608 0.579251476 0.543407774 0.384825872 0.408791488 0.472623368 0.575351158 0.41362105 0.507657692 0.492877209 0.498185153 -PA5153 0.502433169 0.486200518 0.47453578 0.372414148 0.362357875 0.664930516 0.595130989 0.626352003 0.586950897 0.669755036 0.618855407 -PA5154 0.491567986 0.334769543 0.36081014 0.069906492 0.079146042 0.033471291 0.066222212 0.096387359 0 0.080658113 0.090311719 -PA5155 0.33630987 0.224580071 0.341725333 0.098654366 0.091441234 0.067724206 0.124247899 0.076159717 0.149458499 0.085938651 0.148370448 -PA5156 0.652814007 0.423809246 0.436119761 0.311543549 0.301829038 0.285331346 0.343946256 0.434334766 0.424987542 0.259507923 0.385854216 -PA5157 0.450764589 0.172614831 0.388280881 0.287016568 0.429325373 0.258698465 0.176999092 0.189154675 0.272268099 0.316541713 0.219759392 -PA5158 0.572803695 0.372727529 0.639453441 0.464954883 0.510764063 0.314389253 0.294112351 0.272488377 0.40162829 0.357273733 0.221331633 -PA5159 0.369633843 0.295799484 0.488608423 0.287042793 0.314518269 0.507777501 0.451246456 0.518878123 0.464559251 0.377593053 0.470075877 -PA5160 0.395252657 0.270623032 0.392263166 0.258794631 0.342452031 0.357379627 0.334866783 0.393383463 0.105586152 0.438163925 0.291713125 -PA5161 0.721258526 0.711985846 0.613447486 0.788027299 0.718197116 0.626074464 0.499170383 0.532482311 0.515296502 0.589452143 0.482400108 -PA5162 0.508676152 0.592551388 0.432152912 0.549874338 0.479939623 0.709798624 0.575900681 0.8140026 0.600600004 0.716718716 0.559014448 -PA5163 0.783427512 0.726709366 0.665143209 0.557820109 0.511729155 0.608871451 0.544872631 0.610233301 0.574122768 0.642461305 0.507698226 -PA5164 0.752443307 0.653290128 0.610195562 0.610221613 0.568092406 0.68450148 0.595171236 0.694880215 0.577721983 0.687774036 0.562702693 -PA5165 0.502901708 0.599616726 0.453831189 0.307070873 0.264160407 0.942222879 0.75693309 0.939671313 0.850937432 0.876952717 0.813749723 -PA5166 0.777560512 0.896953502 0.853015713 0.549870789 0.52666946 0.725853957 0.485623246 0.616267838 0.56237914 0.582410887 0.637607419 -PA5167 0.510417997 0.392380324 0.264163923 0.34140239 0.357148037 0.332753998 0.320779369 0.404774806 0.318695243 0.383789353 0.391240985 -PA5168 0.248395043 0.233210409 0.098077257 0.048689417 0.07579545 0.163169354 0.114173614 0.194811979 0.103303794 0.057560856 0.147457269 -PA5169 0.053060675 0.171785811 0.004648852 0.148214216 0.063938873 0.081569086 0.031027036 0.069791147 0.098528923 0.110040477 0.13571855 -PA5170 0.085316625 0.934122478 0.109616343 0.788245827 0.760733851 0.58580997 0.240197089 0.657272921 0.236793353 0.599785589 0.205375929 -PA5171 0.722766139 0.944701763 0.283864618 0.924952581 0.914811466 0.593717893 0.355591275 0.695468682 0.330208316 0.609744207 0.375837969 -PA5172 0.741236573 0.891426653 0.190645568 0.915954921 0.898668518 0.593477684 0.351156201 0.613856022 0.309904696 0.570595003 0.421154738 -PA5173 0.632602582 0.837792114 0.072630612 0.712900596 0.705630726 0.445492919 0.299274841 0.51292352 0.262481888 0.472096586 0.284745967 -PA5174 0.767259169 0.560244685 0.686977253 0.252734557 0.254992258 0.398994367 0.552570377 0.428729167 0.559251287 0.459291637 0.517886519 -PA5175 0.285905654 0.325763132 0.33444488 0.284488989 0.295409769 0.551130772 0.689129596 0.558157686 0.621172459 0.545892993 0.772727686 -PA5176 0.546154874 0.519961793 0.500939642 0.466154709 0.397883389 0.284924371 0.352021255 0.35337767 0.468919258 0.216229801 0.418648881 -PA5177 0.690328021 0.518313908 0.777090496 0.652072326 0.608507296 0.637955243 0.591466381 0.611813765 0.617081588 0.612249023 0.557434016 -PA5178 0.45233627 0.568282647 0.503644844 0.866603048 0.850235957 0.779340336 0.812284163 0.775754996 0.82000806 0.778285252 0.772299993 -PA5179 0.300798117 0.41864829 0.35762281 0.437170942 0.413111854 0.336227863 0.582671399 0.496306629 0.359349148 0.486045144 0.252888716 -PA5180 0.15324006 0.282619233 0.395541013 0.285729589 0.239075294 0.265539547 0.260532869 0.314804862 0.275332741 0.275494893 0.286934478 -PA5181 0.208086901 0.295662013 0.446597383 0.191387446 0.136379035 0.146853246 0.236223126 0.337196491 0.182160892 0.122936959 0.153874054 -PA5182 0.445202284 0.647009226 0.395951501 0.579228487 0.558812245 0.487839347 0.589618066 0.524762789 0.601876176 0.54479892 0.578952804 -PA5183 0.294292513 0.287470447 0.409367821 0.275018491 0.263851991 0.469432043 0.492376295 0.549737892 0.611620695 0.539855242 0.428522894 -PA5184 0.724159779 0.79473957 0.604644008 0.546784618 0.600060428 0.516064915 0.554118346 0.387851527 0.363474845 0.459238334 0.50150323 -PA5185 0.212187113 0.114958742 0.378793444 0.381548966 0.479722403 0.515221189 0.652139623 0.541679446 0.608642792 0.516338932 0.823475413 -PA5186 0.185069408 0.345839997 0.141870096 0.494641183 0.602725747 0.210039981 0.180316462 0.262329092 0.259734089 0.234555886 0.252394671 -PA5187 0.395611788 0.349333391 0.388796445 0.545352179 0.525171975 0.336389008 0.314575234 0.334826351 0.277129064 0.250784072 0.385800108 -PA5188 0.305781039 0.275720495 0.115133962 0.256591355 0.350609708 0.191702364 0.282647924 0.189113706 0.383368073 0.266639702 0.084258087 -PA5189 0.294540838 0.218307347 0.28271902 0.234522414 0.274684854 0.196221084 0.17216563 0.107757723 0.298898622 0.240454654 0.302341747 -PA5190 0.942681994 0.59334335 0.759977569 0.498297611 0.533175892 0.192766404 0.257841533 0.305314902 0.209708564 0.436212742 0.39825283 -PA5191 0.434091199 0.445041032 0.633478353 0.97479879 0.993615019 0.221888824 0.348215155 0.314193333 0.289072702 0.252608882 0.309659958 -PA5192 0.786894061 0.73098533 0.769068851 0.211653171 0.211429586 0.404557802 0.576961922 0.272827246 0.598243814 0.372313157 0.578435501 -PA5193 0.689051373 0.638630772 0.76590896 0.21812923 0.230001227 0.420203772 0.664846069 0.284947859 0.425530276 0.298526604 0.495081675 -PA5194 0.893728732 0.401367706 0.812409145 0.282648403 0.316969738 0.373837964 0.311081204 0.307726959 0.407397835 0.349535378 0.343096776 -PA5195 0.595976709 0.577687193 0.671352505 0.519078813 0.458081235 0.42794895 0.444718136 0.484516255 0.307158889 0.379931552 0.247553949 -PA5196 0.482029095 0.369068001 0.586461866 0.661210037 0.729181882 0.375970554 0.389998105 0.547538226 0.489967311 0.279550119 0.47507663 -PA5197 0.408663187 0.35017438 0.577502763 0.156740763 0.118362671 0.505153549 0.293956801 0.511936467 0.348369467 0.537203219 0.399169752 -PA5198 0.67236433 0.707694186 0.592075302 0.353024939 0.363858297 0.33291242 0.289610418 0.390499819 0.222867585 0.31387009 0.360425496 -PA5199 0.44345986 0.425313703 0.524050073 0.122509537 0.121902766 0.433452261 0.379053595 0.447001365 0.461948476 0.593151658 0.530848665 -PA5200 0.705616552 0.829455226 0.709916585 0.596523153 0.546680892 0.342856408 0.324062898 0.066828585 0.327005979 0.374637415 0.300293441 -PA5201 0.905677949 0.728964978 0.817072513 0.467669049 0.439953677 0.373263422 0.308490349 0.27989695 0.378450605 0.207853544 0.40441956 -PA5202 0.530545453 0.399919285 0.543271619 0.104101453 0.144904532 0.238711113 0.438779888 0.251700195 0.318780669 0.367114241 0.374553457 -PA5203 0.770079707 0.702538339 0.765157676 0.375273734 0.431235772 0.396691348 0.442150453 0.38416031 0.496956561 0.38565738 0.295676985 -PA5204 0.387657547 0.276795978 0.458285193 0.174780775 0.092981848 0.117897148 0.339119886 0.293824948 0.255949632 0.239796693 0.252632871 -PA5205 0.325027513 0.063175051 0.550530178 0.238370255 0.242001505 0.358930933 0.338378052 0.435155735 0.450989994 0.391756223 0.423569546 -PA5206 0.362824376 0.522810648 0.661564973 0.661954882 0.693308715 0.666874539 0.647746507 0.622990909 0.660605408 0.62908005 0.577286192 -PA5207 0.135709703 0.624012091 0.108947734 0.198176005 0.236370259 0.371544854 0.423682041 0.480849237 0.294592584 0.487658211 0.434398826 -PA5208 0.147170244 0.65527054 0.243227395 0.58908122 0.549166831 0.450141705 0.362050919 0.678185055 0.375836209 0.47198291 0.409084157 -PA5209 0.678439906 0.563536219 0.574520405 0.327689647 0.425322625 0.402165704 0.344611913 0.316665019 0.385304367 0.358477709 0.351857604 -PA5210 0.465089021 0.478104322 0.589131581 1 0.986389779 0.590975933 0.378818616 0.588291545 0.433606191 0.554305615 0.444842417 -PA5211 0.204472294 0.219745037 0.266864503 0.595432615 0.626185486 0.149658677 0.187938244 0.164691266 0.241148981 0.21573585 0.143653885 -PA5212 0.547271719 0.724329589 0.667557945 0.808763485 0.844560517 0.592777959 0.426095017 0.565395676 0.44754085 0.596896695 0.446404514 -PA5213 0.281200816 0.154574283 0.250543187 0.943519665 0.927769064 0.435337766 0.334041431 0.398672413 0.27705265 0.372373251 0.132084738 -PA5214 0.687047391 0.660963706 0.638830365 0.722123753 0.670086282 0.478608022 0.356607655 0.410718575 0.410025184 0.473098692 0.31276274 -PA5215 0.565736398 0.420297891 0.541679809 0.53878301 0.509553314 0.301919605 0.357242236 0.31901803 0.304702009 0.1681514 0.428186251 -PA5216 0.366264827 0.198704045 0.246702971 0.190606185 0.108826936 0.43766611 0.519191036 0.38593337 0.51219815 0.460530359 0.567621973 -PA5217 0.497596709 0.363050584 0.553891615 0.154900202 0.136041443 0.295956734 0.402509069 0.306854987 0.445459215 0.317178088 0.39496016 -PA5218 0.323007147 0.408200022 0.130081023 0.475440139 0.451263038 0.135575121 0.197637543 0.218930635 0.25623609 0.231435498 0.221613699 -PA5219 0.315469551 0.285541964 0.233797236 0.476477682 0.420477668 0.411625518 0.233366254 0.376935793 0.474843964 0.304000352 0.355668517 -PA5220 0.350042767 0.149505782 0.265823729 0.594626797 0.555185307 0.321022024 0.239764878 0.159156459 0.208027548 0.247183299 0.313555144 -PA5221 0.500070795 0.535301366 0.392232844 0.278402756 0.338150672 0.466946716 0.310090814 0.246368694 0.429415019 0.326983797 0.343612321 -PA5222 0.710299615 0.578086029 0.603968848 0.258269346 0.352773466 0.615309907 0.709421578 0.462178876 0.821991166 0.713247058 0.737038044 -PA5223 0.756510924 0.608325658 0.79491275 0.734124034 0.785245135 0.46898339 0.375265335 0.480078047 0.397844866 0.404198142 0.433935201 -PA5224 0.740339938 0.6706376 0.811098736 0.697196454 0.671309782 0.649585945 0.647654273 0.582390695 0.747075763 0.705280058 0.707650611 -PA5225 0.727181887 0.671121462 0.576625332 0.601549614 0.599997452 0.26851139 0.526553364 0.458592118 0.46557413 0.34324471 0.361218143 -PA5226 0.58962931 0.650053867 0.635725282 0.617378299 0.666612778 0.765191793 0.787993867 0.795592045 0.796665625 0.772098549 0.790493589 -PA5227 0.606307744 0.657613448 0.671675308 0.633416133 0.641717702 0.632841437 0.656106428 0.63623485 0.684424115 0.632952426 0.732411461 -PA5228 0.251135696 0.338495319 0.264906755 0.163434852 0.126012685 0.392963014 0.4568974 0.204919658 0.403925343 0.363492019 0.485078381 -PA5229 0.4865849 0.600093713 0.501288955 0.471158896 0.459413836 0.958353552 0.799020031 0.944030988 0.871833116 0.955585401 0.8361662 -PA5230 0.341691701 0.578786588 0.271982606 0.500677199 0.509615397 0.782861672 0.568710866 0.720694663 0.662359546 0.764955166 0.564633943 -PA5231 0.458745949 0.810227422 0.378602563 0.371427075 0.421937478 0.631088764 0.435786198 0.672789157 0.445170597 0.645748989 0.461097031 -PA5232 0.410803515 0.766879433 0.347631141 0.397488596 0.39831622 0.642183648 0.464938983 0.707012943 0.434035784 0.640065026 0.425732635 -PA5233 0.699087213 0.680019516 0.6767497 0.829341039 0.81343588 0.789900223 0.674374777 0.85891218 0.707659373 0.827143058 0.588675669 -PA5234 0.386689931 0.425424307 0.445643941 0.549226281 0.660725286 0.304227046 0.371762748 0.370729495 0.376781328 0.386385064 0.108126456 -PA5235 0.61183666 0.570412982 0.504670767 0.390028448 0.337704206 0.48798411 0.472156385 0.349203507 0.426881362 0.382837954 0.516450883 -PA5236 0.761269216 0.501065021 0.562908817 0.119755849 0.234835395 0.506296832 0.382302359 0.338318122 0.463980649 0.439562891 0.616440886 -PA5237 0.877839052 0.747490828 0.644948153 0.274900388 0.279163072 0.494453638 0.57063327 0.452543323 0.471158176 0.520861836 0.534808656 -PA5238 0.21585123 0.254642706 0.203688819 0.177325945 0.241250764 0.179947507 0.279098377 0.202444313 0.231873317 0.206138474 0.260123399 -PA5239 0.73682357 0.741630219 0.653090784 0.152117947 0.280021467 0.687907006 0.829207279 0.594664717 0.840318483 0.716380688 0.822742046 -PA5240 0.807085313 0.726556422 0.721785059 0.590619608 0.608179524 0.837724051 0.878671779 0.807876629 0.88128468 0.809420178 0.867487537 -PA5241 0.810371743 0.702401032 0.735923766 0.413383311 0.471603037 0.702097966 0.804570301 0.655849536 0.745580332 0.747801767 0.774525966 -PA5242 0.629633987 0.83648539 0.808019308 0.703116667 0.737916812 0.77275247 0.869544729 0.897791539 0.806920201 0.923986477 0.885432012 -PA5243 0.561099175 0.775138028 0.590218221 0.680886766 0.696993039 0.552891793 0.51097264 0.566409837 0.524478897 0.635270129 0.50360994 -PA5244 0.504465424 1 0.394305808 0.239200442 0.38519034 0.72522173 0.661411272 0.581539398 0.645983259 0.654226585 0.48600019 -PA5245 0.589070658 0.664056528 0.612307376 0.80074648 0.829488513 0.529808438 0.489824631 0.582989772 0.444603332 0.561130018 0.521713359 -PA5246 0.316341252 0.261293886 0.247306534 0.185957056 0.229622724 0.352730958 0.567516023 0.53912424 0.516250042 0.401994054 0.489400592 -PA5247 0.688269779 0.488651927 0.609930512 0.561393668 0.574278231 0.597333851 0.630705171 0.506268523 0.645373275 0.574255843 0.680866172 -PA5248 0.678184879 0.284033737 0.680595464 0.199668167 0.126527538 0.367377648 0.49481227 0.380709936 0.577877959 0.472301636 0.613191963 -PA5249 0.271604869 0.350789121 0.161687082 0.398871963 0.394195569 0.452419288 0.444865109 0.4460182 0.54091839 0.430171204 0.503921048 -PA5250 0.649753991 0.429403334 0.846531896 0.588297757 0.556773969 0.709250354 0.747404203 0.650009868 0.901668552 0.700638522 0.785036236 -PA5251 0.681986634 0.399871073 0.444399943 0.244128131 0.301739787 0.700023849 0.523192121 0.471667084 0.620691331 0.728246542 0.595117827 -PA5252 0.677396678 0.533958213 0.51480512 0.253284459 0.141010264 0.364567176 0.244744839 0.237439643 0.397800518 0.334516412 0.435992655 -PA5253 0.708529571 0.850541943 0.840919309 0.891888495 0.912605755 0.563787149 0.564837853 0.596767893 0.599672347 0.5588654 0.531644073 -PA5254 0.247720654 0.14369908 0.453710587 0.390122319 0.442151526 0.171032006 0.489653385 0.612273481 0.416659906 0.357250195 0.362539342 -PA5255 0.504049321 0.639776009 0.62893165 0.665265757 0.661770642 0.512809614 0.59241959 0.53920005 0.567806932 0.552087767 0.533284619 -PA5256 0.679226596 0.317738307 0.649526592 0.029414368 0.140355484 0.333946066 0.515216343 0.191445953 0.472172945 0.350682278 0.361514555 -PA5257 0.581237797 0.441451468 0.512556903 0.559802982 0.586563648 0.360844369 0.430635544 0.418879936 0.418544368 0.515625568 0.354840772 -PA5258 0.603863752 0.519293911 0.505311232 0.499006011 0.619741665 0.541158356 0.531896839 0.566528768 0.505816761 0.60534413 0.53430688 -PA5259 0.435833178 0.337579562 0.398568136 0.465955147 0.555173336 0.26833003 0.320227067 0.272219647 0.248904917 0.25698853 0.260525967 -PA5260 0.691110319 0.697277664 0.475065417 0.653529948 0.705190981 0.558565949 0.494182792 0.503578719 0.489735719 0.576057033 0.422676309 -PA5261 0.288109889 0.52157051 0.291109436 0.734745404 0.735331774 0.443673417 0.4017966 0.466827279 0.413799888 0.383668462 0.426538053 -PA5262 0.314520927 0.434179814 0.560807094 0.613710309 0.642638721 0.695001905 0.813831697 0.765578547 0.764245134 0.671196744 0.727202713 -PA5263 0.737487825 0.735133417 0.764636836 0.380749481 0.403240453 0.546670526 0.61689836 0.550143402 0.643503382 0.615915797 0.629674522 -PA5264 0.085337524 0.376014792 0.113280295 0.176248325 0.130795002 0.623681234 0.692847514 0.583018486 0.718762045 0.67827447 0.703777791 -PA5265 0.208677033 0.278284887 0.139366826 0.268086901 0.217898781 0.502750693 0.650509049 0.73188522 0.607727023 0.596493446 0.57038057 -PA5266 0.268150146 0.198366818 0.275729406 0.371343775 0.333099785 0.327945679 0.327474513 0.49745469 0.319650653 0.289083656 0.413129678 -PA5268 0.44738402 0.334504987 0.565996273 0.387796918 0.426743398 0.500196417 0.600774705 0.424204119 0.548587013 0.393755551 0.513721083 -PA5269 0.583803174 0.750769264 0.528840353 0.664846495 0.702036555 0.61039308 0.635399396 0.564105275 0.548692184 0.573590855 0.57529509 -PA5270 0.63650594 0.662635334 0.736051379 0.417728566 0.430912427 0.544464345 0.514451943 0.623429872 0.547882151 0.577238612 0.529121844 -PA5271 0.532546936 0.647741887 0.63585798 0.930990315 0.908708934 0.741567929 0.544771167 0.871707083 0.564772572 0.767126865 0.56356747 -PA5272 0.463325867 0.607847041 0.851059256 0.287622891 0.290959906 0.521053965 0.366848843 0.454221264 0.307424694 0.629306268 0.349437294 -PA5273 0.430181464 0.329540106 0.330914715 0.389230786 0.355551899 0.632503987 0.718987228 0.461997963 0.662565719 0.598953076 0.651843561 -PA5274 0.85601786 0.799490919 0.674747362 0.406791231 0.39383121 0.757529575 0.852961377 0.748581033 0.87029431 0.79120008 0.864416793 -PA5275 0.409500401 0.474303349 0.192097979 0.39189539 0.508962453 0.676800477 0.675904448 0.707529262 0.771518563 0.728367253 0.656349624 -PA5276 0.826259758 0.843052214 0.774722923 0.787241315 0.823398608 0.686669936 0.513120899 0.655082145 0.559011969 0.671706392 0.509342611 -PA5277 0.935290718 0.796292709 0.753895854 0.637800943 0.646501264 0.718781931 0.750358181 0.660021494 0.774399189 0.74679218 0.752834733 -PA5278 0.749349265 0.487468467 0.698134866 0.370845743 0.394048624 0.543883052 0.596879212 0.328590287 0.609390669 0.56891392 0.54964249 -PA5279 0.93730533 0.764452194 0.789113386 0.554287884 0.600055154 0.636300807 0.702648165 0.596908163 0.774608536 0.754352824 0.765335472 -PA5280 0.68815849 0.541104609 0.573802739 0.267764097 0.202174003 0.509913372 0.281036534 0.409901926 0.462566573 0.421839364 0.353064692 -PA5281 0.565214155 0.495215733 0.511544226 0.175511365 0.221224879 0.277089175 0.3723088 0.46541437 0.317480417 0.54283507 0.537254986 -PA5282 0.211255216 0.20859854 0.20270032 0.256146429 0.198792064 0.42712168 0.492022378 0.577341834 0.346903964 0.262105574 0.447380004 -PA5283 0.314006449 0.419140642 0.30147981 0.656713606 0.766236995 0.313238544 0.279116617 0.249794312 0.244079176 0.187660451 0.194051816 -PA5284 0.414274534 0.262870985 0.282747229 0.234608415 0.204793564 0.352803884 0.267910717 0.40920924 0.359679621 0.309651026 0.224386177 -PA5285 0.802661576 0.660080132 0.683119382 0.788764566 0.763576152 0.510230385 0.527451056 0.502118683 0.528909686 0.507022582 0.483097381 -PA5286 0.817031114 0.377986575 0.606294526 0.485212322 0.505531788 0.095249278 0.371548398 0.103010917 0.296294059 0.163236154 0.448846558 -PA5287 0.34782995 0.319330516 0.208869594 0.199802691 0.214250221 0.27144716 0.226223346 0.155081481 0.22558985 0.270365353 0.303984546 -PA5288 0.627267175 0.711032089 0.572914671 0.806644193 0.806644193 0.795471933 0.817016998 0.805238428 0.853983052 0.837407599 0.815584371 -PA5289 0.428486145 0.969207801 0.22684165 0.435376664 0.445987862 0.510076927 0.54137532 0.512224846 0.477646528 0.404079135 0.503337166 -PA5290 0.37422322 0.453719229 0.203170127 0.398718172 0.407972359 0.103299276 0.127411146 0.149696335 0.228772284 0.115265237 0.195585964 -PA5291 0.442266296 0.262943124 0.293935624 0.329850016 0.300443791 0.356133362 0.411296264 0.421503559 0.4950423 0.61583776 0.602019044 -PA5292 0.226830892 0.218857904 0.347885886 0.237846442 0.272255917 0.228509212 0.152455985 0.219028779 0.221481333 0.170050406 0.224287769 -PA5293 0.28469039 0.2420479 0.13943743 0.261002339 0.240556965 0.246984211 0.22980802 0.34375715 0.285165716 0.114453766 0.365664012 -PA5294 0.237320737 0.295686205 0.162238319 0.2127305 0.225775145 0.350885785 0.267662808 0.377020707 0.325507649 0.298292668 0.395484962 -PA5295 0.538803001 0.373938171 0.363096571 0.261036709 0.340409581 0.274890178 0.275557162 0.209035624 0.335719808 0.374570343 0.347111161 -PA5296 0.800006129 0.643178419 0.819293894 0.170037929 0.167370647 0.2162784 0.367279867 0.303176878 0.479755887 0.340177984 0.427688218 -PA5297 0.279569514 0.449033555 0.25013893 0.34437802 0.423022609 0.400622896 0.341767348 0.460642868 0.363854112 0.418707897 0.464500183 -PA5298 0.73643362 0.631776852 0.745424554 0.334988701 0.343477278 0.511397491 0.616761243 0.549173622 0.595810805 0.592137183 0.631290312 -PA5299 0.342601634 0.207119518 0.301473476 0.486981413 0.514458967 0.339856053 0.233917376 0.114246949 0.146360997 0.097117079 0.35941134 -PA5300 0.647937652 0.651105979 0.534372115 0.531706287 0.546238491 0.817262722 0.930818905 0.830546484 0.920004556 0.830295184 0.90263483 -PA5301 0.694640445 0.575647464 0.685996902 0.701429288 0.763395183 0.764490516 0.822434173 0.733492575 0.7104606 0.875738857 0.716930841 -PA5302 0.767268445 0.793952279 0.186298473 0.528222605 0.560012639 0.508649122 0.18871165 0.42757995 0.231241203 0.514994659 0.349509024 -PA5303 0.773569353 0.883129794 0.188037997 0.687388069 0.714821152 0.715809365 0.314700209 0.670266588 0.437316297 0.718312993 0.379501874 -PA5304 0.720747894 0.833656713 0.161634125 0.757979693 0.779535758 0.661859393 0.321260457 0.590957456 0.307898893 0.647771339 0.257859452 -PA5305 0.424374641 0.60916972 0.433047456 0.800176997 0.763853165 0.164192181 0.254260379 0.266105357 0.209106607 0.15018344 0.278543112 -PA5306 0.617977245 0.801226617 0.714044336 0.949865723 0.944465017 0.799694307 0.627040072 0.786806915 0.640422553 0.828667063 0.704511878 -PA5307 0.30706628 0.369939653 0.357142918 0.522979544 0.514673015 0.451923206 0.301773444 0.448627764 0.337008852 0.38352592 0.2252024 -PA5308 0.550693365 0.624594585 0.538293087 0.138332522 0.135245835 0.468006773 0.594185522 0.447603486 0.563470265 0.468533032 0.556698693 -PA5309 0.55692301 0.448266013 0.424441587 0.287812485 0.431618784 0.438102686 0.587630184 0.217123478 0.377577145 0.309812965 0.573070658 -PA5310 0.409056632 0.364063513 0.297434594 0.354178604 0.423607484 0.172004994 0.122702615 0.218547875 0.117534636 0.192761854 0.020108033 -PA5311 0.256173562 0.222675867 0.176522808 0.261434051 0.330192924 0.369545584 0.400528897 0.382580923 0.245524502 0.218391926 0.312018054 -PA5312 0.470001418 0.649459892 0.379805911 0.742363976 0.791602832 0.432549471 0.492815724 0.459809587 0.409671589 0.500987051 0.51729379 -PA5313 0.203758062 0.29368927 0.036809445 0.644361042 0.75959422 0.174727894 0.1766873 0.206705511 0.143536454 0.246725644 0.181470999 -PA5314 0.184276815 0.105427226 0.101811371 0.439047653 0.518607086 0.275313979 0.268686451 0.254706246 0.360026127 0.389790993 0.2970851 -PA5315 0.523590101 0.337150853 0.555096157 0.243803018 0.25659175 0.610697806 0.74874149 0.566417466 0.711902478 0.636589433 0.737948281 -PA5316 0.865652996 0.751734453 0.803660009 0.562071696 0.54247622 0.915773276 0.936986236 0.860285727 0.903796022 0.941337767 0.91954084 -PA5317 0.508802689 0.579464141 0.550821016 0.637092197 0.547566919 0.441689249 0.422691188 0.461220517 0.41785298 0.561629942 0.568758807 -PA5318 0.109718244 0.366939967 0.077399784 0.165733566 0.117731484 0.385910456 0.442348885 0.412150336 0.383769826 0.240822096 0.437990679 -PA5319 0.456514682 0.429653582 0.454978377 0.706144986 0.732616038 0.270719631 0.423518785 0.254219868 0.507644273 0.310204615 0.397453157 -PA5320 0.853113421 0.869800676 0.897866207 0.477294391 0.52002382 0.72874137 0.794405276 0.687151183 0.763157289 0.71422155 0.783525998 -PA5321 0.777509323 0.755303273 0.714886254 0.332099314 0.385726969 0.354044817 0.49675825 0.264337527 0.362900924 0.498630872 0.407750205 -PA5322 0.575983905 0.62650597 0.535934954 0.144885945 0.139602162 0.625066609 0.646871087 0.430588705 0.602463879 0.600100117 0.550336886 -PA5323 0.610197407 0.571387006 0.680117172 0.293953943 0.261950056 0.703059391 0.682625786 0.579189906 0.739971152 0.735856904 0.664937417 -PA5324 0.315289581 0.218842034 0.450382648 0.405310137 0.41338921 0.383227654 0.449405532 0.25041938 0.350047447 0.206568254 0.409700784 -PA5325 0.119857982 0.131438603 0.132010832 0.208811868 0.199514819 0.128905323 0.127344593 0.098725873 0.13562384 0.136614381 0.16402094 -PA5326 0.181930789 0.28329032 0.151006129 0.254602942 0.223101289 0.208023346 0.25256605 0.282992536 0.134128146 0.234145294 0.208897492 -PA5327 0.197519998 0.247886775 0.138145508 0.261435117 0.225821155 0.233966973 0.22487447 0.269310137 0.2042769 0.271274196 0.290444443 -PA5328 0.17577232 0.137355537 0.212614209 0.231397687 0.187724463 0.226593689 0.180446091 0.195268883 0.223351915 0.196410949 0.209785457 -PA5329 0.370985776 0.359942833 0.575069143 0.7761703 0.767683726 0.66684752 0.635554428 0.584456975 0.688982274 0.635610055 0.57703359 -PA5330 0.468569429 0.57205847 0.530251526 0.747356477 0.718359612 0.602200219 0.829836685 0.636624973 0.864072165 0.723136577 0.766989343 -PA5331 0.803677507 0.689273664 0.769490362 0.759657141 0.725076367 0.506335345 0.710530963 0.52219498 0.690701558 0.501458461 0.659793806 -PA5332 0.78443428 0.856407299 0.740278671 0.752344555 0.764012106 0.945906593 0.985066809 0.945727171 0.996096625 0.947294949 0.973421815 -PA5333 0.551260168 0.334467455 0.460867321 0.428405489 0.524700451 0.279435055 0.498336434 0.198224285 0.39272572 0.220855984 0.379053119 -PA5334 0.718705169 0.66287787 0.587225327 0.50173143 0.520461598 0.463958757 0.576300206 0.51275983 0.647585764 0.485549666 0.491376873 -PA5335 0.84484932 0.751441335 0.759994133 0.658957877 0.653390406 0.415102977 0.419827152 0.313937308 0.440061311 0.420585341 0.489555763 -PA5336 0.780342696 0.729912606 0.625160911 0.382815531 0.398459404 0.391990859 0.507343112 0.317016004 0.51427855 0.375185731 0.505696949 -PA5337 0.867060997 0.774403737 0.794609653 0.694039407 0.725323358 0.702814348 0.819908534 0.695476303 0.844344328 0.761570492 0.852186735 -PA5338 0.843174332 0.610186686 0.82628767 0.423131185 0.420870244 0.719218615 0.775084258 0.693682283 0.822514744 0.711932504 0.756970947 -PA5339 0.73904958 0.844719094 0.803143313 0.527739495 0.557038249 0.604097628 0.729999701 0.417302325 0.766733199 0.60188856 0.735922069 -PA5340 0.866780478 0.884197649 0.897349977 0.407703248 0.425798778 0.690540695 0.814147861 0.535086266 0.801873519 0.675191197 0.821351798 -PA5341 0.215271194 0.15276338 0.144089738 0.145134824 0.087400611 0.137902754 0.296820138 0.185644846 0.225066502 0.199926886 0.33866916 -PA5342 0.657034919 0.45177912 0.382362306 0.282936206 0.375288896 0.233380045 0.367404038 0.497534586 0.355904637 0.288105239 0.405411138 -PA5343 0.683769501 0.569345952 0.710817056 0.530359043 0.533591351 0.180459501 0.429440564 0.2190191 0.479392695 0.215208414 0.183508797 -PA5344 0.773932368 0.911015514 0.892927553 0.740571135 0.72832617 0.687782866 0.672447652 0.728394629 0.704204516 0.65518841 0.60449804 -PA5345 0.714718685 0.674462164 0.689432365 0.418015355 0.442536035 0.520021754 0.427018352 0.430833163 0.530696526 0.428035337 0.384567906 -PA5346 0.552305539 0.646675925 0.498604442 0.655679818 0.66029425 0.541211887 0.559894943 0.533773781 0.59569012 0.472826431 0.582642117 -PA5347 0.555822141 0.354141955 0.627357053 0.744954479 0.722241127 0.493085016 0.636177587 0.467312079 0.634971803 0.621118833 0.680205115 -PA5348 0.582256399 0.5715491 0.61401596 0.68922419 0.686920166 0.654232854 0.704059895 0.703735282 0.70971252 0.658205302 0.705397077 -PA5349 0.501557744 0.439238567 0.427534789 0.604320273 0.550443184 0.328277166 0.129717101 0.366483341 0.142673001 0.369726733 0.261862157 -PA5350 0.694332368 0.705048127 0.659820473 0.76428726 0.726457647 0.650563269 0.686015424 0.715983768 0.652453103 0.619183832 0.665754213 -PA5351 0.686975798 0.545024365 0.517889008 0.329255261 0.319539093 0.433726419 0.610428258 0.237873376 0.619488278 0.424820943 0.502889094 -PA5352 0.209672788 0.240903383 0.20699306 0.182944955 0.175710842 0.456676777 0.338770733 0.316025268 0.185891873 0.226019275 0.309110408 -PA5353 0.132053749 0.231909203 0.127218009 0.200143793 0.240083848 0.354902588 0.275394287 0.327367587 0.217901031 0.330343198 0.26307233 -PA5354 0.055276653 0.138430002 0.032474469 0.108958103 0.122585101 0.213115481 0.239810513 0.28653773 0.244383393 0.241774876 0.202987485 -PA5355 0.103566848 0.149767929 0.043380884 0.046123735 0.155371634 0.180115093 0.275224654 0.208014712 0.253988178 0.253745989 0.280087802 -PA5356 0.36186608 0.361848974 0.385811597 0.543313457 0.582032193 0.429812086 0.382138065 0.379360336 0.374226655 0.390903361 0.385527772 -PA5357 0.41979227 0.417871651 0.235905133 0.338424447 0.372504354 0.305508907 0.433911082 0.22308698 0.336237194 0.281701855 0.343148226 -PA5358 0.343315727 0.322410932 0.366630695 0.532537672 0.519366632 0.372631549 0.322679219 0.414581219 0.281489812 0.415653456 0.297950762 -PA5359 0.175134714 0.186882282 0.196450458 0.849879708 0.849591826 0.244945929 0.17786772 0.254915041 0.125845235 0.172999245 0.16726626 -PA5360 0.405467695 0.350803208 0.374371455 0.321403026 0.334086525 0.190044501 0.325743065 0.18945527 0.337689664 0.163869546 0.282504683 -PA5361 0.23120548 0.157063706 0.212017827 0.105659324 0.159716567 0.123924977 0.198038033 0.178777481 0.172878949 0.022068557 0.144265064 -PA5362 0.602196792 0.736172518 0.521812759 0.142464528 0.148023134 0.656624392 0.508129775 0.493754407 0.627663469 0.591636649 0.618096827 -PA5363 0.301162674 0.382060166 0.302174048 0.584090403 0.527115736 0.219352506 0.176218344 0.147019664 0.157669702 0.140278361 0.11912047 -PA5364 0.666641958 0.861444122 0.578035035 0.814338534 0.851412102 0.256622012 0.238104129 0.2871312 0.255802037 0.288530128 0.315981611 -PA5365 0.39451311 0.317458802 0.371665645 0.329265883 0.341234486 0.344940207 0.35481186 0.323353569 0.289946581 0.337611269 0.342097231 -PA5366 0.352749643 0.261862167 0.342245124 0.175057763 0.204464216 0.220598766 0.247002807 0.261615192 0.319510592 0.198744538 0.337030509 -PA5367 0.345733053 0.251091649 0.265914615 0.136628566 0.116779094 0.209996274 0.188813108 0.246143217 0.227783295 0.234531693 0.246914413 -PA5368 0.340600365 0.221804069 0.28642387 0.173485432 0.116347064 0.152642466 0.142235126 0.171446869 0.183428248 0.220398167 0.20010817 -PA5369 0.325221818 0.316280014 0.41586256 0.138881454 0.169090075 0.092123745 0.220592355 0.220695957 0.240947912 0.128335009 0.217969259 -PA5370 0.484560205 0.282169382 0.649120228 0.118139082 0.070962721 0.228929373 0.480867263 0.252858298 0.351494843 0.407612241 0.377120989 -PA5371 0.352196345 0.35932126 0.299570949 0.479411167 0.475814161 0.227736573 0.311953439 0.21356637 0.255562863 0.217024795 0.304863732 -PA5372 0.211903162 0.543967488 0.231965478 0.190492252 0.197634814 0.329114431 0.586316915 0.197002867 0.498599087 0.232413129 0.514486215 -PA5373 0.366118058 0.786504375 0.39909058 0.32935736 0.329962109 0.536721636 0.737104967 0.36950334 0.664576631 0.531510139 0.546900255 -PA5374 0.38353524 0.804500664 0.408958672 0.273836813 0.256672031 0.57371346 0.749034896 0.48217919 0.67141309 0.59640635 0.664511852 -PA5375 0.147295638 0.22177464 0.163261324 0.105184608 0.107120187 0.19398047 0.195842738 0.155419915 0.228940764 0.212893032 0.233776417 -PA5376 0.137710055 0.13752701 0.351431012 0.240790957 0.221581133 0.302459656 0.196598669 0.240774135 0.249889816 0.271389115 0.224158965 -PA5377 0.164006383 0.319788225 0.289050865 0.240482647 0.218968504 0.066497099 0.058971383 0.112648532 0.060286835 0.05159913 0.028942699 -PA5378 0.136043806 0.299743521 0.344972881 0.323937673 0.330145165 0.374991664 0.323023407 0.403482728 0.329313677 0.338782885 0.379688555 -PA5379 0.088969485 0.104586927 0.243712361 0.176314761 0.16192948 0.221982944 0.170660042 0.15082556 0.133351898 0.155714317 0.195113982 -PA5380 0.373039219 0.311504357 0.486224044 0.488701419 0.492635066 0.312576879 0.28489349 0.29553348 0.287498641 0.296516371 0.271034145 -PA5381 0.205574358 0.188665455 0.228852008 0.28341465 0.2551155 0.232122945 0.100924821 0.154223429 0.279883712 0.273058056 0.221612777 -PA5382 0.462338668 0.384133615 0.412625464 0.321636951 0.372463888 0.304970034 0.149439984 0.27491505 0.289100351 0.149252799 0.374268011 -PA5383 0.206002047 0.214358228 0.148674321 0.159776661 0.150832692 0.246664243 0.256040485 0.337488846 0.219607075 0.232390493 0.332333617 -PA5384 0.297278454 0.268455403 0.187525064 0.228930019 0.260299536 0.455569956 0.414450473 0.370658694 0.393446656 0.308593159 0.453467 -PA5385 0.152953235 0.139781042 0.185858891 0.529916747 0.456327995 0.217454419 0.211742359 0.400282994 0.388739489 0.229584391 0.27967036 -PA5386 0.319775669 0.233945286 0.182957594 0.603021478 0.561061076 0.382806188 0.204422428 0.377478805 0.390517557 0.246562515 0.343673309 -PA5387 0.19562204 0.26064248 0.150203109 0.6794996 0.670176215 0.097213753 0.088106638 0.351648292 0.132518827 0.162465361 0.173868696 -PA5388 0.174826279 0.240936126 0.133505086 0.819158883 0.836212993 0.316432713 0.296000143 0.372430187 0.328811819 0.284377245 0.31801104 -PA5389 0.17860675 0.259778209 0.307166573 0.469728107 0.388119513 0.204277997 0.163492437 0.114944788 0.223301157 0.087249677 0.138490668 -PA5390 0.252877002 0.128330445 0.148389173 0.178342902 0.251797138 0.382317838 0.35975669 0.164544076 0.295258401 0.321620151 0.306907179 -PA5391 0.324066466 0.239811925 0.272444674 0.158959696 0.210628392 0.280087344 0.268900252 0.350786653 0.325263898 0.252347851 0.176658317 -PA5392 0.307525008 0.170471791 0.292101239 0.279354321 0.296488659 0.267977777 0.241664277 0.277422248 0.1713262 0.251230421 0.257021873 -PA5393 0.320980182 0.317677924 0.259197278 0.32879509 0.233192409 0.227173839 0.267088301 0.188463727 0.200624873 0.208168297 0.272689291 -PA5394 0.473252272 0.373256531 0.361924237 0.60736208 0.618782059 0.313691298 0.356214945 0.371563724 0.27174254 0.349017476 0.355938227 -PA5395 0.223615918 0.308773568 0.27888515 0.586052944 0.65710379 0.234348251 0.187843737 0.240054019 0.201083139 0.259337123 0.268759125 -PA5396 0.113243611 0.117612321 0.392242444 0.227987308 0.218869695 0.285135317 0.319950091 0.325663689 0.295038665 0.264391581 0.244983943 -PA5397 0.137204779 0.166210383 0.358122991 0.18972991 0.166864677 0.183138549 0.189093382 0.20386385 0.154635493 0.219617357 0.209685932 -PA5398 0.034021564 0.061759319 0.285883196 0.09537975 0.086545873 0.143712941 0.036454768 0.183762374 0.135227111 0.074510802 0.04480578 -PA5399 0.137382798 0.159337596 0.284379997 0.220824308 0.188743926 0.122087625 0.086677434 0.108912817 0.087248369 0.082142468 0.133511157 -PA5400 0.144253503 0.14729675 0.277972459 0.118857754 0.103845386 0.049039279 0.136162435 0.210801398 0.125904275 0.152995634 0.135050204 -PA5401 0.140583481 0.131043467 0.198198144 0.139222728 0.077415774 0.187253035 0.148520305 0.170093769 0.108145965 0.151533815 0.171717441 -PA5402 0.383599428 0.170612345 0.375442128 0.150202067 0.227917765 0.271864049 0.287635452 0.168788998 0.356779165 0.279606946 0.365386922 -PA5403 0.293176144 0.247106454 0.231501346 0.059894621 0.125526212 0.547254727 0.561407115 0.50106751 0.587577054 0.538085473 0.566236848 -PA5404 0.453813661 0.257157737 0.190435858 0.145097355 0.164805558 0.033251524 0.074594881 0.172274589 0.070297616 0.163993091 0.12067405 -PA5405 0.260175991 0.393351178 0.188318245 0.262125938 0.208866664 0.236679608 0.080741388 0.23925706 0.252562467 0.216080577 0.171227673 -PA5406 0.483153487 0.499051606 0.354457356 0.230262198 0.232159552 0.285886205 0.488565321 0.407877448 0.48031969 0.326663376 0.477145056 -PA5407 0.368496667 0.374997359 0.148666416 0.159280917 0.187519098 0.49394507 0.433328314 0.502667832 0.432499845 0.484741259 0.432156668 -PA5408 0.32431194 0.440090858 0.444009224 0.80514385 0.796910225 0.350589326 0.299816495 0.405790325 0.246435303 0.19582681 0.298881961 -PA5409 0.088726636 0.271066709 0.181349106 0.624188722 0.6527019 0.220855658 0.227363241 0.26165497 0.256626729 0.166001284 0.266334162 -PA5410 0.069339691 0.073394119 0.487608816 0.156294181 0.10061226 0.090822666 0.105879169 0.064742056 0.058862576 0.068239311 0.095446525 -PA5411 0.132279219 0.105793327 0.44337939 0.161541189 0.161624829 0.189715079 0.212839123 0.13824681 0.159417461 0.136799258 0.256901456 -PA5412 0.338883938 0.288248245 0.167680106 0.244483251 0.135337238 0.17260604 0.140068675 0.173202458 0.16882352 0.212588779 0.245426157 -PA5413 0.645553578 0.712894601 0.715109055 0.531438006 0.459214392 0.405460758 0.309046617 0.294496594 0.325053409 0.295964576 0.295798486 -PA5414 0.949546521 0.895779015 0.957054583 0.450732173 0.453972856 0.378347351 0.431982235 0.469664852 0.431797654 0.475268216 0.25557433 -PA5415 0.331101124 0.351897455 0.391708366 0.342411281 0.345532009 0.170948135 0.190002845 0.106517598 0.120731975 0.159970916 0.148794244 -PA5416 0.114076439 0.127958813 0.388619852 0.147075151 0.135632532 0.13316893 0.150596226 0.156106764 0.155642852 0.170246959 0.114183492 -PA5417 0.088341472 0.079004773 0.367299738 0.117041068 0.109113426 0.178348215 0.102847646 0.140136768 0.081554301 0.070762602 0.086724023 -PA5418 0.079479077 0.144766975 0.276021551 0.117117391 0.07062251 0.115502687 0.168738364 0.123668751 0.111686864 0.119441321 0.011818075 -PA5419 0.173396767 0.172810189 0.469573457 0.233391998 0.208902041 0.124918395 0.116205694 0.15178795 0.109085748 0.131496102 0.128281935 -PA5420 0.093503713 0.087851695 0.403795565 0.147653147 0.108322573 0.241630059 0.161788487 0.19018159 0.128004661 0.226354312 0.186020524 -PA5421 0.166865298 0.091948359 0.360238833 0.238338643 0.249303307 0.184759162 0.142991552 0.201813039 0.17400729 0.148674597 0.145061272 -PA5422 0.488593518 0.788769366 0.550811809 0.645987971 0.599597577 0.66436077 0.586790549 0.728179426 0.678868167 0.68601897 0.613698296 -PA5423 0.502028505 0.631224948 0.493761505 0.780506927 0.835276634 0.555971337 0.496148674 0.515513694 0.533534234 0.475008845 0.539946864 -PA5424 0.341612192 0.435867324 0.417072314 0.718665863 0.743578086 0.428803739 0.485079709 0.421546282 0.478602572 0.352516955 0.341402832 -PA5425 0.85907516 0.482902982 0.87282145 0.341958456 0.231631939 0.203675397 0.314953964 0.189516383 0.392398356 0.36478138 0.300566188 -PA5426 0.826455432 0.642150386 0.930988122 0.393847881 0.347200342 0.397100078 0.514026564 0.308608679 0.429363692 0.393478135 0.471879505 -PA5427 0.184555606 0.777768611 0.244273641 0.686568668 0.667552332 0.340190538 0.250275657 0.415527882 0.211980914 0.411041333 0.217505837 -PA5428 0.337741714 0.477306492 0.322529407 0.849910591 0.821812433 0.520726496 0.309355166 0.498508779 0.458312989 0.527296039 0.430749422 -PA5429 0.704445116 0.490401691 0.335923112 0.787436497 0.773558347 0.464161591 0.588763046 0.642756976 0.599510935 0.463442181 0.586214491 -PA5430 0.339880637 0.319834582 0.503599059 0.325247179 0.288764233 0.035485678 0.124043549 0.09848947 0.194123057 0.024161037 0.049732568 -PA5431 0.441680898 0.373045662 0.307462827 0.323019609 0.309430785 0.284301403 0.086793336 0.363172909 0.244248527 0.397886439 0.137440501 -PA5432 0.559635727 0.554723526 0.500848902 0.739916491 0.710915994 0.391803254 0.391372567 0.439201649 0.40568548 0.480501935 0.370980111 -PA5433 0.324629487 0.288846126 0.160254935 0.277473428 0.315558554 0.230382956 0.265282833 0.00686503 0.302983253 0 0.274099192 -PA5434 0.784943435 0.350815209 0.693263664 0.273750303 0.189404836 0.405615272 0.347856484 0.538649 0.421657852 0.383972287 0.474757817 -PA5435 0.667862934 0.164268563 0.784950335 0.081752949 0.047755871 0.345968696 0.210079853 0.205777335 0.162760687 0.233393209 0.250774437 -PA5436 0.744081505 0.411263741 0.918960823 0.385235296 0.327964673 0.274270605 0.184321689 0.223676309 0.228273872 0.322314918 0.294225947 -PA5437 0.59358041 0.371392176 0.558964849 0.053388308 0.091313294 0.193651304 0.381109078 0.093721443 0.381459908 0.23044676 0.191077941 -PA5438 0.654992637 0.760713446 0.611664552 0.619130942 0.666800551 0.722907806 0.682922941 0.602462939 0.686427173 0.650368001 0.695246202 -PA5439 0.422627075 0.369033539 0.310730186 0.554173728 0.580054732 0.451009111 0.27759111 0.454516925 0.254328498 0.373398392 0.355199477 -PA5440 0.230462462 0.580292986 0.216220879 0.15289233 0.172568264 0.248609049 0.23938834 0.329569679 0.17782677 0.352696817 0.191719422 -PA5441 0.82454966 0.783155761 0.514983232 0.391440463 0.37989167 0.433673174 0.466535535 0.366327188 0.467951128 0.271747661 0.400354902 -PA5442 0.504756411 0.323570186 0.34350334 0.297302495 0.239297089 0.248251685 0.370894138 0.199131494 0.327595674 0.209551349 0.451157506 -PA5443 0.880542722 0.701562293 0.678297363 0.277044488 0.276949229 0.497712684 0.443594089 0.30939795 0.575529106 0.489871208 0.376144575 -PA5444 0.338796094 0.342710993 0.145864554 0.751605247 0.666916304 0.427452635 0.404314497 0.287651338 0.317805265 0.313131302 0.300336303 -PA5445 0.502558831 0.327033258 0.606217601 0.230032801 0.213442019 0.278838371 0.395272871 0.227662064 0.334652229 0.282017149 0.395997519 -PA5446 0.599321854 0.840139511 0.429659615 0.905076775 0.893862106 0.490587629 0.357067848 0.645257462 0.326295454 0.516663795 0.220448756 -PA5447 0.524203495 0.300463061 0.626533596 0.596903344 0.575782534 0.401910227 0.490990682 0.241596598 0.334527567 0.490954965 0.314064866 -PA5448 0.528448462 0.162257363 0.53962285 0.17889402 0.072135884 0.334414483 0.310343658 0.35661245 0.250831349 0.372145638 0.320098618 -PA5449 0.543288278 0.19534315 0.647010808 0.114961957 0.11878473 0.617680616 0.40193486 0.308583516 0.398833625 0.484254392 0.504014234 -PA5450 0.620150836 0.22497277 0.737544724 0.291617609 0.248897752 0.591462619 0.523492095 0.564481329 0.594085903 0.694690074 0.609022458 -PA5451 0.428478842 0.184180996 0.564824002 0.298468133 0.300895459 0.589996458 0.535144124 0.406643927 0.570077692 0.497218499 0.440444802 -PA5452 0.450431363 0.141660922 0.557665687 0.158328021 0.156898618 0.285374857 0.405248965 0.378342771 0.382651999 0.324277435 0.393991222 -PA5453 0.497138145 0.400636088 0.564078901 0.43494063 0.366650924 0.250048846 0.110474428 0.252717632 0.27653348 0.251652621 0.211177433 -PA5454 0.472053356 0.471229005 0.539896158 0.534933104 0.60633891 0.606153886 0.548936287 0.520113956 0.630246054 0.576886336 0.527055784 -PA5455 0.650659655 0.635862767 0.73184238 0.24443862 0.268119487 0.207963487 0.343379664 0.328599057 0.353435088 0.525915376 0.324825789 -PA5456 0.796440243 0.652138755 0.79437224 0.212788002 0.233629166 0.589915317 0.552227526 0.440705407 0.50776991 0.527382899 0.481118701 -PA5457 0.401798685 0.414125779 0.434417522 0.110820139 0.019111852 0.593704138 0.52858601 0.408626361 0.50854707 0.50325954 0.527465958 -PA5458 0.593710548 0.426026169 0.533902644 0.222342256 0.299501653 0.461273697 0.466000743 0.499828855 0.48806586 0.46184069 0.322009931 -PA5459 0.714861237 0.602097695 0.77125793 0.234816453 0.21081031 0.24615334 0.177335078 0.140311432 0.227730939 0.302317855 0.306604007 -PA5460 0.134891655 0.26118834 0.189922443 0.315361492 0.354863614 0.057272908 0.052448818 0.158152942 0 0.058658843 0.062005855 -PA5461 0.826822363 0.77735429 0.688080698 0.676630152 0.70487806 0.089183331 0.220520699 0.173011613 0.156897126 0.185352556 0.150986112 -PA5462 0.803833174 0.920507117 0.733705002 0.239948669 0.252666378 0.4388664 0.511339958 0.441440057 0.52822052 0.514855073 0.442648277 -PA5463 0.738072453 0.816140457 0.673277048 0.36222383 0.448632282 0.341305873 0.382702161 0.122435965 0.38114752 0.307019295 0.364067835 -PA5464 0.758955788 0.596348363 0.49776592 0.155740795 0.177378843 0.332574703 0.326836326 0.248176912 0.460721695 0.330836778 0.497733501 -PA5465 0.366533265 0.394651719 0.449937473 0.569475333 0.651220222 0.406514607 0.576560688 0.479187267 0.526247595 0.418759426 0.543832153 -PA5466 0.444112871 0.583027946 0.438748648 0.504681792 0.538271777 0.254650609 0.19820292 0.328983726 0.371464204 0.281102128 0.414684992 -PA5467 0.298259635 0.339156415 0.281243934 0.262864029 0.283310064 0.462780147 0.523571715 0.427648852 0.550533895 0.391515983 0.550009011 -PA5468 0.061558615 0.051699745 0.099247063 0.084182397 0.102947277 0.127762124 0.189061691 0.117191632 0.248716484 0.091457069 0.228781146 -PA5469 0.098888736 0.069476418 0.088935204 0.074298188 0.063061116 0.109463055 0.300493706 0.147869601 0.277953497 0.069901913 0.198922052 -PA5470 0.201043992 0.145725574 0.192242789 0.059927191 0.071086729 0.085708145 0.211777639 0.084669074 0.187387316 0.11842077 0.146284583 -PA5471 0.16721125 0.15167759 0.136827477 0.050869128 0.081001846 0.128661273 0.141929158 0.085221359 0.038634771 0.033403563 0.040276377 -PA5472 0.326784533 0.209251829 0.248533311 0.102557525 0.136275019 0.128850747 0.197559355 0.141484953 0.237278914 0.109891725 0.240088354 -PA5473 0.172360544 0.507602882 0.186296174 0.767334297 0.813666629 0.391904487 0.350321455 0.585251051 0.281568688 0.463640801 0.394592594 -PA5474 0.372407195 0.431902377 0.51463577 0.776586774 0.746363341 0.389138608 0.440978036 0.643328174 0.689994356 0.819660852 0.757881783 -PA5475 0.132385591 0.710150557 0.248271016 0.710476 0.680647833 0.625751646 0.491327578 0.638916084 0.490406764 0.608372754 0.488291545 -PA5476 0.292580894 0.063796425 0.337418922 0.331058493 0.272003088 0.515050041 0.474926712 0.294043738 0.497254991 0.517519573 0.497170799 -PA5477 0.447047166 0.245213526 0.368279966 0.243099417 0.26448988 0.285215354 0.398977444 0.346742705 0.300288387 0.311534418 0.341186499 -PA5478 0.370728636 0.298238873 0.316327036 0.266165768 0.281643748 0.355304323 0.400210042 0.37645876 0.410316685 0.4242419 0.346848834 -PA5479 0.538108235 0.404882763 0.302249863 0.11610963 0.100582939 0.343612072 0.486118984 0.418292642 0.567407504 0.436868271 0.505243792 -PA5480 0.08275113 0.023779536 0.111189252 0.156877193 0.142466198 0.301790946 0.340378717 0.570163465 0.31738183 0.397819452 0.22844588 -PA5481 0.199787887 0.119585386 0.467993533 0.603282739 0.573373046 0.449711772 0.368683649 0.597634937 0.433828033 0.48823559 0.38284 -PA5482 0.204002191 0.058726014 0.50500913 0.728244308 0.745466802 0.756739682 0.506071595 0.822198034 0.597649176 0.740895965 0.553844483 -PA5483 0.498109563 0.668464188 0.658949354 0.384441011 0.495788019 0.39811975 0.251186312 0.303025673 0.356886292 0.23846592 0.27616883 -PA5484 0.369111263 0.367860928 0.504067043 0.106030866 0.190924876 0.437786476 0.451268744 0.360417563 0.487913216 0.468641466 0.397099199 -PA5485 0.581804669 0.48135065 0.401223961 0.377922029 0.418528863 0.170422238 0.182881077 0.159877798 0.25695384 0.278401771 0.333791391 -PA5486 0.397890019 0.359940327 0.471587207 0.377589886 0.405509271 0.24000822 0.329645817 0.325970298 0.379122464 0.331185044 0.407716392 -PA5487 0.747912099 0.680387693 0.670177828 0.650292153 0.694588692 0.871710645 0.770680576 0.788754272 0.799732281 0.802854422 0.839557042 -PA5488 0.743692976 0.696312394 0.786608878 0.764426983 0.762385118 0.555613948 0.610540463 0.601497854 0.582957901 0.509453407 0.561935243 -PA5489 0.81152851 0.786194226 0.72243496 0.844552822 0.890079411 0.615871551 0.736600077 0.65190207 0.767103391 0.675917588 0.745966714 -PA5490 0.81638808 0.718761776 0.83077446 0.606875707 0.601757028 0.496294131 0.70552729 0.548710246 0.710134147 0.549847895 0.600791631 -PA5491 0.886705764 0.593922697 0.748328787 0.387105153 0.420796478 0.598008962 0.80270336 0.515105532 0.842788916 0.668024087 0.783588454 -PA5492 0.755904668 0.751387437 0.750087185 0.807364089 0.838629888 0.662985163 0.723746473 0.626117185 0.732265487 0.660864907 0.783519439 -PA5493 0.741327038 0.831744863 0.603589085 0.433333212 0.443993108 0.776801697 0.835868648 0.774797754 0.830362853 0.848813208 0.837540767 -PA5494 0.45963534 0.814560416 0.524289196 0.724692404 0.753332465 0.917658639 0.693159138 0.980546367 0.669612037 0.937313221 0.71762603 -PA5495 0.522320811 0.837520876 0.448332501 0.566991318 0.543062646 0.446988672 0.493804029 0.460518192 0.471320605 0.482915552 0.438415448 -PA5496 0.301348092 0.533423609 0.312431805 0.914404302 0.850301136 0.435174481 0.468062234 0.436932381 0.414553906 0.547221 0.446735751 -PA5497 0.166519563 0.511238181 0.27773353 0.74761082 0.753693124 0.270919832 0.189548272 0.272063722 0.124241041 0.320037994 0.209480065 -PA5498 0.39727517 0.431614697 0.686354016 0.709650288 0.719617351 0.278623243 0.272643277 0.319163996 0.355988828 0.35967622 0.397375311 -PA5499 0.571286526 0.588430592 0.78517161 0.902760546 0.920643105 0.590018246 0.407334462 0.630364418 0.460128511 0.580870303 0.444877914 -PA5500 0.453789385 0.467047991 0.831757463 0.71114682 0.72488123 0.714625392 0.559707483 0.669728516 0.575273649 0.704816721 0.550243046 -PA5501 0.505711882 0.61791829 0.694258052 0.633142243 0.558784243 0.340103558 0.502867078 0.273039046 0.527126356 0.356416411 0.387979148 -PA5502 0.432992039 0.479184437 0.466917991 0.199825972 0.290447043 0.320717348 0.349427788 0.305920819 0.411889418 0.372793388 0.375191656 -PA5503 0.861871575 0.692258114 0.927586334 0.327782158 0.31263554 0.527535422 0.635226711 0.520526425 0.612693588 0.442997888 0.612844468 -PA5504 0.836683257 0.729296171 0.829284151 0.228345436 0.204755798 0.340827572 0.592706515 0.299890105 0.567790852 0.341474491 0.55733948 -PA5505 0.816093857 0.840635452 0.88908274 0.49073878 0.481065048 0.662552172 0.771306766 0.621427277 0.766339355 0.680390895 0.829274459 -PA5506 0.419664945 0.82487276 0.22201055 0.449125194 0.487684384 0.222226525 0.269953745 0.228858585 0.191414441 0.214766921 0.161760618 -PA5507 0.351628064 0.742744701 0.31198493 0.440666649 0.45426979 0.044899179 0.129424406 0.044971353 0.095575225 0 0.135439626 -PA5508 0.260742525 0.606081274 0.327464429 0.38836889 0.328245233 0.152685433 0.175452448 0.170382012 0.048692148 0.159091261 0.169453399 -PA5509 0.23906548 0.504283962 0.181968631 0.218715304 0.18416765 0.107929411 0.20191649 0.09893928 0.169960056 0.146078777 0.081746372 -PA5510 0.241090206 0.313257186 0.199636413 0.268835623 0.263356637 0.389212183 0.474431464 0.329981276 0.238983664 0.300232174 0.456438547 -PA5511 0.41859773 0.526370795 0.473321623 0.284381879 0.263358744 0.83246908 1 0.861394405 0.89912732 0.760545283 0.930241992 -PA5512 0.558452756 0.418708447 0.400269821 0.241351997 0.185758381 0.596141576 0.515745624 0.430020581 0.480983206 0.393963345 0.341562941 -PA5513 0.463557114 0.45300917 0.375288345 0.316642732 0.275642635 0.421725594 0.408740006 0.336191017 0.36658081 0.3033939 0.205707899 -PA5514 0.364567833 0.250847081 0.266185718 0.516644667 0.489699888 0.370106995 0.560974174 0.317079234 0.468284236 0.327445003 0.621252433 -PA5515 0.425279292 0.474752468 0.388104175 0.5968691 0.538926169 0.31769185 0.441385795 0.194256436 0.426021225 0.324950575 0.404249111 -PA5516 0.554409697 0.603180428 0.392886437 0.000716021 0.158671461 0.443123195 0.504061445 0.627930933 0.371114741 0.492498856 0.640041 -PA5517 0.330868816 0.278550576 0.321642023 0.082757025 0.077635435 0.244069512 0.390974383 0.364158254 0.364089311 0.322927879 0.435327927 -PA5518 0.257249681 0.313620787 0.296551225 0.192677 0.143495339 0.280191394 0.399593015 0.253998336 0.362631175 0.337142107 0.29777171 -PA5519 0.560913875 0.468648382 0.588997377 0.60607868 0.571887887 0.417846812 0.423855891 0.426090848 0.366880353 0.464581263 0.386017947 -PA5520 0.134994451 0.206622302 0.267595602 0.321536086 0.320629816 0.185176904 0.138503029 0.146775607 0.391245769 0.124277987 0.256346366 -PA5521 0.325457075 0.360330933 0.456877273 0.573650802 0.526291493 0.383367036 0.373577767 0.44600167 0.346392986 0.455545855 0.34429004 -PA5522 0.18920266 0.14808007 0.072555434 0.282408493 0.388927756 0.060148923 0.166051505 0.17878071 0.125479632 0.140643254 0.108728091 -PA5523 0.264267293 0.309991624 0.21079154 0.353394978 0.425909968 0.212526572 0.119109129 0.140039886 0.224945676 0.166134363 0.172484929 -PA5524 0.278377377 0.391630508 0.299685725 0.276297475 0.297921613 0.271336885 0.269527508 0.280818774 0.400581294 0.376499995 0.315175964 -PA5525 0.220205247 0.297634818 0.206905938 0.331915201 0.256336731 0.332399617 0.516135427 0.283300613 0.522521769 0.359353329 0.482854402 -PA5526 0.301454632 0.536142435 0.469342565 0.476995472 0.596065112 0.537831589 0.568255187 0.677598512 0.607937048 0.61197088 0.6121711 -PA5527 0.487226909 0.352586833 0.463102735 0.624578341 0.631745195 0.360398337 0.243622018 0.516725357 0.256977521 0.406325432 0.264487674 -PA5528 0.442087221 0.582468001 0.438385876 0.324794549 0.312181099 0.224463133 0.224617713 0.166128186 0.342708237 0.143757305 0.296084701 -PA5529 0.112922195 0.588873137 0.171735783 0.276843126 0.205129676 0.608462927 0.574067701 0.520443061 0.667192523 0.614788336 0.757188265 -PA5530 0.382152797 0.141683216 0.135724623 0.07869496 0.070493938 0.201101681 0.322796815 0.211374428 0.280903729 0.144643796 0.350127419 -PA5531 0.630912959 0.267178843 0.750459967 0.225886302 0.233884931 0.457007357 0.603544691 0.438615454 0.664777372 0.431734531 0.569239877 -PA5532 0.113348782 0.051541617 0.622395967 0.392929309 0.455637238 0.017613439 0.021285888 0.071148588 0.17567927 0.110349392 0.074889762 -PA5533 0.509259441 0.479375713 0.959111083 0.788899991 0.738244731 0.714041891 0.814265855 0.729596747 0.917270069 0.88808018 0.896953704 -PA5534 0.143822865 0.124418615 0.760026324 0.584807646 0.628841771 0.310552223 0.340454393 0.277182636 0.370198142 0.164942208 0.183471496 -PA5535 0.090802394 0.106947997 0.970993227 0.881225787 0.88190651 0.091603517 0.110450972 0.126445853 0.050511889 0.037984279 0.173787909 -PA5536 0.149092746 0.149970289 0.908744503 0.882010593 0.933122411 0.274537631 0.226243048 0.117898008 0.203301257 0.249904795 0.262109422 -PA5537 0.272140133 0.205890404 0.728396231 0.932000689 0.951141192 0.416177008 0.319067302 0.561789872 0.379295423 0.410360729 0.275165377 -PA5538 0.141606375 0.106715626 0.747912897 0.897335761 0.918112294 0.198396259 0.196605816 0.20105036 0.257428685 0.164226066 0.182221695 -PA5539 0.13922617 0.095205746 0.711470435 0.743648592 0.760182681 0.170693004 0.230481205 0.206495017 0.196572624 0.185761608 0.210500563 -PA5540 0.201382797 0.140166499 1 0.793986612 0.853190498 0.246623494 0.318658263 0.276768175 0.2020574 0.236734663 0.293022856 -PA5541 0.165578393 0.154822737 0.962429197 0.745931009 0.787266491 0.075245772 0.245873965 0.211904436 0.184079053 0.172981057 0.231839126 -PA5542 0.241626103 0.093118923 0.383459357 0.237595669 0.239919613 0.21603302 0.072362131 0.200386105 0.158409642 0.067475934 0.183829599 -PA5543 0.187420083 0.074782051 0.368383012 0.124369754 0.21971048 0.124572697 0.149829851 0.249991135 0.265087546 0.163358744 0.444559489 -PA5544 0.266183807 0.267062533 0.334718285 0.195051291 0.151562233 0.338168246 0.548007134 0.530711002 0.386671161 0.440239001 0.511872095 -PA5545 0.340721228 0.357262411 0.387434858 0.432023834 0.470486429 0.242274074 0.208950764 0.309955968 0.197300067 0.263926123 0.219629313 -PA5546 0.126133511 0.368269261 0.391627125 0.78976217 0.805785482 0.392665122 0.291403515 0.44073721 0.254286805 0.364794068 0.39036343 -PA5547 0.680499784 0.680493545 0.731785225 0.553785236 0.639404936 0.394430967 0.492042138 0.502208314 0.433669574 0.329575265 0.363172056 -PA5548 0.189086819 0.184767745 0.167491904 0.107362172 0.153662571 0.452183492 0.284909203 0.347967016 0.383049959 0.472714382 0.329720383 -PA5549 0.68729564 0.488685112 0.548172647 0.08096264 0.080084531 0.187868399 0.229828719 0.132131369 0.204660019 0.194358109 0.122969264 -PA5550 0.771906446 0.401201196 0.467123207 0.126157325 0.190793897 0.142581622 0.321862793 0.199692391 0.319538975 0.166793663 0.319640466 -PA5551 0.935621696 0.450658007 0.535068539 0.207115121 0.288048448 0.300387848 0.313356138 0.360397624 0.339874038 0.281115892 0.339891299 -PA5552 1 0.688998659 0.789554164 0.476044069 0.528938263 0.357251943 0.447211411 0.226060554 0.474182387 0.347126422 0.416361777 -PA5553 0.704742158 0.5337942 0.585100106 0.390597286 0.406618152 0.296664815 0.466409456 0.396200857 0.527433834 0.315842404 0.42880182 -PA5554 0.894538573 0.925446715 0.874170147 0.641441218 0.576302009 0.409909575 0.494084146 0.299018194 0.579171153 0.382258869 0.464110099 -PA5555 0.919641298 0.837505398 0.913634064 0.565912818 0.554560679 0.737176961 0.795255235 0.635182749 0.7980317 0.73398175 0.808413277 -PA5556 0.974853113 0.912673866 0.834155732 0.67611344 0.689778922 0.408390627 0.569469359 0.328458699 0.407210359 0.41202136 0.473804231 -PA5557 0.938253607 0.844405971 0.812030401 0.581549353 0.599773128 0.464032826 0.600260114 0.393033117 0.597139421 0.438996032 0.614644407 -PA5558 0.980279777 0.908168823 0.853754156 0.719461526 0.703264923 0.646198921 0.766650384 0.548936541 0.763425571 0.651732326 0.777692177 -PA5559 0.9121824 0.854671756 0.842566323 0.745620527 0.731985734 0.572883236 0.703877293 0.53379502 0.69520642 0.586506112 0.722179156 -PA5560 0.851904608 0.756978112 0.711455464 0.574984728 0.525977026 0.561047607 0.775559154 0.566301088 0.773680076 0.578690929 0.788594509 -PA5561 0.466870739 0.352019711 0.3924048 0.398307766 0.407800906 0.491161046 0.754845129 0.466138535 0.77533764 0.560889393 0.672846711 -PA5562 0.702785035 0.694386901 0.700352441 0.419574203 0.478697273 0.565150554 0.71112576 0.545103948 0.653142101 0.654797218 0.627984567 -PA5563 0.790965246 0.733186343 0.773422054 0.593954696 0.571459853 0.595824467 0.58927869 0.487957313 0.64220451 0.493961434 0.541293992 -PA5564 0.893248523 0.639074254 0.79111808 0.527203097 0.473054201 0.382988573 0.542699259 0.330582806 0.550935143 0.454765569 0.466289897 -PA5565 0.789939464 0.68120366 0.931584649 0.70652385 0.66964322 0.352267593 0.591066179 0.419138589 0.565531569 0.464733498 0.606895482 -PA5566 0.164156644 0.110301181 0.172569567 0.205509876 0.155548057 0.25090494 0.421389237 0.328478018 0.458622305 0.456465075 0.333367664 -PA5567 0.970470154 0.619553707 0.797147596 0.504766777 0.562926516 0.362160951 0.392671169 0.29849283 0.426766598 0.348577354 0.350236484 -PA5568 0.88747179 0.747655583 0.753784563 0.105662 0.049738113 0.487777004 0.686055353 0.254059275 0.701313711 0.503229181 0.707673064 -PA5569 0.900484365 0.749892936 0.85625322 0.363408967 0.388931332 0.729434041 0.911163049 0.588305462 0.886073914 0.718768149 0.884961447 -PA5570 0.880011746 0.805374483 0.811099487 0.54478005 0.548813793 0.483383602 0.585208304 0.406311441 0.556363347 0.474649256 0.599753809 diff --git a/Pseudomonas_tests/data/metadata/experiment_ids.txt b/Pseudomonas_tests/data/metadata/experiment_ids.txt deleted file mode 100644 index 9241616..0000000 --- a/Pseudomonas_tests/data/metadata/experiment_ids.txt +++ /dev/null @@ -1,6 +0,0 @@ - experiment_id -0 E-MEXP-1051 -1 E-MEXP-1591 -2 E-MEXP-2593 -3 E-MEXP-2867 -4 E-MEXP-3764 diff --git a/Pseudomonas_tests/data/metadata/sample_annotations.tsv b/Pseudomonas_tests/data/metadata/sample_annotations.tsv deleted file mode 100644 index 07b4cce..0000000 --- a/Pseudomonas_tests/data/metadata/sample_annotations.tsv +++ /dev/null @@ -1,1218 +0,0 @@ -experiment sample_name ml_data_source description nucleic_acid medium genotype od growth_setting_1 growth_setting_2 strain temperature treatment additional_notes variant_phenotype abx_marker biotic_int_lv_2 biotic_int_lv_1 -E-GEOD-46947 GSM1141730 1 GSM1141730_PA01_ZnO_PZO_.CEL Pseudomonas aeruginosa PAO1 LB aerated 5 h with ZnO nanoparticles RNA LB planktonic aerated PAO1 37 1 mM ZnO nanoparticles Grown for 5h -E-GEOD-46947 GSM1141729 1 GSM1141729_PA01_none_PC_.CEL Pseudomonas aeruginosa PAO1 LB aerated 5 h RNA LB planktonic aerated PAO1 37 Grown for 5h -E-GEOD-65882 GSM1608059 1 GSM1608059_Planktonic_1.CEL PAO1 WT. Planktonic. Rep1 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65882 GSM1608060 1 GSM1608060_Planktonic_2.CEL PAO1 WT. Planktonic. Rep2 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65882 GSM1608061 1 GSM1608061_Planktonic_3.CEL PAO1 WT. Planktonic. Rep3 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65882 GSM1608062 1 GSM1608062_Planktonic_4.CEL PAO1 WT. Planktonic. Rep4 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65882 GSM1608067 1 GSM1608067_Biofilm+12hrcipro_rep1.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 1" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65882 GSM1608068 1 GSM1608068_Biofilm+12hrcipro_rep2.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 2" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65882 GSM1608069 1 GSM1608069_Biofilm+12hrcipro_rep3.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 3" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65882 GSM1608070 1 GSM1608070_Biofilm+12hrtobra_rep1.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 1" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65882 GSM1608071 1 GSM1608071_Biofilm+12hrtobra_rep2.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 2" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65882 GSM1608072 1 GSM1608072_Biofilm+12hrtobra_rep3.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 3" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608067 1 GSM1608067_Biofilm+12hrcipro_rep1.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 1" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608068 1 GSM1608068_Biofilm+12hrcipro_rep2.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 2" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608069 1 GSM1608069_Biofilm+12hrcipro_rep3.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 1.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 3" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with ciprofloxacin at 1.0 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608070 1 GSM1608070_Biofilm+12hrtobra_rep1.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 1" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608071 1 GSM1608071_Biofilm+12hrtobra_rep2.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 2" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65870 GSM1608072 1 GSM1608072_Biofilm+12hrtobra_rep3.CEL "P. aeruginosa PAO1, cells grown 72 hours in a drip flow reactor and then treated with 10.0 μg/ml ciprofloxacin for 12 hours in the reactor, replicate 3" RNA PBM supplemented with 0.2 g/L glucose WT Biofilm drip-flow biofilm reactor PAO1 37 12h treatment with tobramycin at 10 μg/ml 12 hours; stainless steel slides; 10o incline; 60 ml/hr flow rate -E-GEOD-65869 GSM1608059 1 GSM1608059_Planktonic_1.CEL PAO1 WT. Planktonic. Rep1 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65869 GSM1608060 1 GSM1608060_Planktonic_2.CEL PAO1 WT. Planktonic. Rep2 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65869 GSM1608061 1 GSM1608061_Planktonic_3.CEL PAO1 WT. Planktonic. Rep3 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-65869 GSM1608062 1 GSM1608062_Planktonic_4.CEL PAO1 WT. Planktonic. Rep4 RNA PBM plus 1 g / L glucose. WT 0.26 Planktonic Aerated PAO1 37 Grown shaking at 200rpm -E-GEOD-54245 GSM1310895 1 GSM1310895_PA14_wild-type.CEL PA14 wild-type without H2O2 RNA LB WT 1.5 Planktonic Aerated PA14 37 -E-GEOD-54245 GSM1310896 1 GSM1310896_PA14_lasR_rhlR.CEL PA14 lasR rhlR without H2O2. RNA LB ∆lasR∆rhR 1.5 Planktonic Aerated PA14 37 -E-GEOD-54245 GSM1310897 1 GSM1310897_PA14_wild-type_+H2O2.CEL PA14 wild-type with H2O2. RNA LB WT 1.5 Planktonic Aerated PA14 37 80 mM H2O2 30 min exposure -E-GEOD-54245 GSM1310898 1 GSM1310898_PA14_lasR_rhlR_+H2O2.CEL PA14 lasR rhlR with H2O2. RNA LB ∆lasR∆rhR 1.5 Planktonic Aerated PA14 37 80 mM H2O2 30 min exposure -E-MTAB-2540 Overhage13001 Overhage13001_(Pae_G1a).CEL "PA14 wt 1 was spotted on BM2-swarm plates containing 0.1% (wt/vol) CAA and 0.5% (wt/vol) agar) and incubated for 20 h at 37 °C, replicate 1" RNA BM2 WT 20 hours Swarm swarm plates PA14 37 BM2-swarm plates containing 0.1 % (wt/vol) casaminoacids and 0.5 % (wt/vol) agar -E-MTAB-2540 Overhage13002 Overhage13002_(Pae_G1a).CEL "PA14 wt 2 was spotted on BM2-swarm plates containing 0.1% (wt/vol) CAA and 0.5% (wt/vol) agar) and incubated for 20 h at 37 °C, replicate 2" RNA BM2 WT 20 hours Swarm swarm plates PA14 37 BM2-swarm plates containing 0.1 % (wt/vol) casaminoacids and 0.5 % (wt/vol) agar -E-MTAB-2540 Overhage13003 Overhage13003_(Pae_G1a).CEL "PA14 PA4398 mutant strain was spotted on BM2-swarm plates containing 0.1% (wt/vol) CAA and 0.5% (wt/vol) agar) and incubated for 20 h at 37 °C, replicate 1" RNA BM2 ΔPA4398 20 hours Swarm swarm plates PA14 37 BM2-swarm plates containing 0.1 % (wt/vol) casaminoacids and 0.5 % (wt/vol) agar -E-MTAB-2540 Overhage13004 Overhage13004_(Pae_G1a).CEL "PA14 PA4398 mutant strain was spotted on BM2-swarm plates containing 0.1% (wt/vol) CAA and 0.5% (wt/vol) agar) and incubated for 20 h at 37 °C, replicate 2" RNA BM2 ΔPA4398 20 hours Swarm swarm plates PA14 37 BM2-swarm plates containing 0.1 % (wt/vol) casaminoacids and 0.5 % (wt/vol) agar -E-GEOD-51491 GSM1246481 1 GSM1246481_PA14bvlR_pME6032_rep1.CEL PAO1 ∆bvlR plus empty vector. Planktonic. Rep1 RNA LB bvlR::tn5 pME6032 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-51491 GSM1246482 1 GSM1246482_PA14bvlR_pME6032_rep2.CEL PAO1 ∆bvlR plus empty vector. Planktonic. Rep2 RNA LB bvlR::tn5 pME6032 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-51491 GSM1246483 1 GSM1246483_PA14bvlR_pME6032_rep3.CEL PAO1 ∆bvlR plus empty vector. Planktonic. Rep3 RNA LB bvlR::tn5 pME6032 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-51491 GSM1246484 1 GSM1246484_PA14bvlR_pMEbvlR_rep1.CEL PAO1 ∆bvlR plus bvlR expression construct. Planktonic. Rep1 RNA LB bvlR::tn5 pMEbvlR 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-51491 GSM1246485 1 GSM1246485_PA14bvlR_pMEbvlR_rep2.CEL PAO1 ∆bvlR plus bvlR expression construct. Planktonic. Rep2 RNA LB bvlR::tn5 pMEbvlR 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-51491 GSM1246486 1 GSM1246486_PA14bvlR_pMEbvlR_rep3.CEL PAO1 ∆bvlR plus bvlR expression construct. Planktonic. Rep3 RNA LB bvlR::tn5 pMEbvlR 0.7 Planktonic Aerated PA14 37 Grown shaking at 150rpm -E-GEOD-47173 GSM1146022 1 GSM1146022_pJN105_1.CEL PAO1 pJN105; control; replicate 1 RNA MOPS + 0.5% CAA + 0.5% glucose WT 1 Planktonic PAO1 37 pH 7.2; exponential phase cells -E-GEOD-47173 GSM1146023 1 GSM1146023_pJN105_2.CEL PAO1 pJN105; control; replicate 2 RNA MOPS + 0.5% CAA + 0.5% glucose WT 1 Planktonic PAO1 37 pH 7.2; exponential phase cells -E-GEOD-47173 GSM1146024 1 GSM1146024_phaF_1.CEL PAO1 pJN105-phaF; replicate 1 RNA MOPS + 0.5% CAA + 0.5% glucose phaF OE 1 Planktonic PAO1 37 pH 7.2; exponential phase cells -E-GEOD-47173 GSM1146025 1 GSM1146025_phaF_2.CEL PAO1 pJN105-phaF; replicate 2 RNA MOPS + 0.5% CAA + 0.5% glucose phaF OE 1 Planktonic PAO1 37 pH 7.2; exponential phase cells -E-GEOD-58862 GSM1420990 1 GSM1420990_PAO1_control1.CEL "Gene expression data from microaerobically grown P. aeruginosa PAO1ut before exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 WT 0.3 Planktonic 1 l jar fermenter PAO1 37 -E-GEOD-58862 GSM1420991 1 GSM1420991_PAO1_control2.CEL "Gene expression data from microaerobically grown P. aeruginosa PAO1ut before exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 WT 0.3 Planktonic 1 l jar fermenter PAO1 37 -E-GEOD-58862 GSM1420992 1 GSM1420992_PAO1_NO1.CEL "Gene expression data from microaerobically grown P. aeruginosa PAO1ut after exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 WT 0.3 Planktonic 1 l jar fermenter PAO1 37 20 μM NO was added -E-GEOD-58862 GSM1420993 1 GSM1420993_PAO1_NO2.CEL "Gene expression data from microaerobically grown P. aeruginosa PAO1ut after exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 WT 0.3 Planktonic 1 l jar fermenter PAO1 37 20 μM NO was added -E-GEOD-58862 GSM1420994 1 GSM1420994_anr_control1.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant before exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr 0.3 Planktonic 1 l jar fermenter Rmanr (PAO1) 37 -E-GEOD-58862 GSM1420995 1 GSM1420995_anr_control2.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant before exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr 0.3 Planktonic 1 l jar fermenter Rmanr (PAO1) 37 -E-GEOD-58862 GSM1420996 1 GSM1420996_anr_NO1.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant after exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr 0.3 Planktonic 1 l jar fermenter Rmanr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1420997 1 GSM1420997_anr_NO2.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant after exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr 0.3 Planktonic 1 l jar fermenter Rmanr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1420998 1 GSM1420998_dnr_control1.CEL "Gene expression data from microaerobically grown P. aeruginosa dnr mutant before exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆dnr 0.3 Planktonic 1 l jar fermenter RMdnr (PAO1) 37 -E-GEOD-58862 GSM1420999 1 GSM1420999_dnr_control2.CEL "Gene expression data from microaerobically grown P. aeruginosa dnr mutant before exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆dnr 0.3 Planktonic 1 l jar fermenter RMdnr (PAO1) 37 -E-GEOD-58862 GSM1421000 1 GSM1421000_dnr_NO1.CEL "Gene expression data from microaerobically grown P. aeruginosa dnr mutant after exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆dnr 0.3 Planktonic 1 l jar fermenter RMdnr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1421001 1 GSM1421001_dnr_NO2.CEL "Gene expression data from microaerobically grown P. aeruginosa dnr mutant after exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆dnr 0.3 Planktonic 1 l jar fermenter RMdnr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1421002 1 GSM1421002_EXdnr_control1.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant expressing DNR before exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr +dnr 0.3 Planktonic 1 l jar fermenter RManrEXdnr (PAO1) 37 -E-GEOD-58862 GSM1421003 1 GSM1421003_EXdnr_control2.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant expressing DNR before exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr +dnr 0.3 Planktonic 1 l jar fermenter RManrEXdnr (PAO1) 37 -E-GEOD-58862 GSM1421004 1 GSM1421004_EXdnr_NO1.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant expressing DNR after exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr +dnr 0.3 Planktonic 1 l jar fermenter RManrEXdnr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1421005 1 GSM1421005_EXdnr_NO2.CEL "Gene expression data from microaerobically grown P. aeruginosa anr mutant expressing DNR after exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆anr +dnr 0.3 Planktonic 1 l jar fermenter RManrEXdnr (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1421006 1 GSM1421006_fhpR_control1.CEL "Gene expression data from microaerobically grown P. aeruginosa fhpR mutant before exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆fhpR 0.3 Planktonic 1 l jar fermenter PDM2665 (PAO1) 37 -E-GEOD-58862 GSM1421007 1 GSM1421007_fhpR_control2.CEL "Gene expression data from microaerobically grown P. aeruginosa fhpR mutant before exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆fhpR 0.3 Planktonic 1 l jar fermenter PDM2665 (PAO1) 37 -E-GEOD-58862 GSM1421008 1 GSM1421008_fhpR_NO1.CEL "Gene expression data from microaerobically grown P. aeruginosa fhpR mutant after exposure to nitric oxide. It is the first of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆fhpR 0.3 Planktonic 1 l jar fermenter PDM2665 (PAO1) 37 20 μM NO was added -E-GEOD-58862 GSM1421009 1 GSM1421009_fhpR_NO2.CEL "Gene expression data from microaerobically grown P. aeruginosa fhpR mutant after exposure to nitric oxide. It is the second of two biological replicates used in this experiment, each from separate cultures." RNA LB with a constant supply of 98% N2 and 2% O2 ∆fhpR 0.3 Planktonic 1 l jar fermenter PDM2665 (PAO1) 37 20 μM NO was added -E-GEOD-63588 GSM1553187 1 GSM1553187_Persisters_C1.CEL PAO1 WT; persister cells; control; replicate 1 RNA PBS WT Planktonic Aerated PAO1 37 1 hour; 200 rpm; stationary phase cells Persister cell -E-GEOD-63588 GSM1553188 1 GSM1553188_Persisters_T1.CEL PAO1 WT; persister cells; GM-CSF; replicate 1 RNA PBS WT Planktonic Aerated PAO1 37 0.17 pM GM-CSF 1 hour; 200 rpm; stationary phase cells Persister cell -E-GEOD-63588 GSM1553189 1 GSM1553189_Persisters_C2.CEL PAO1 WT; persister cells; control; replicate 2 RNA PBS WT Planktonic Aerated PAO1 37 1 hour; 200 rpm; stationary phase cells Persister cell -E-GEOD-63588 GSM1553190 1 GSM1553190_Persisters_T2.CEL PAO1 WT; persister cells; GM-CSF; replicate 2 RNA PBS WT Planktonic Aerated PAO1 37 0.17 pM GM-CSF 1 hour; 200 rpm; stationary phase cells Persister cell -E-GEOD-63588 GSM1553191 1 GSM1553191_Normal_C1.CEL PAO1 WT; control; replicate 1 RNA PBS WT Planktonic Aerated PAO1 37 1 hour; 200 rpm; stationary phase cells -E-GEOD-63588 GSM1553192 1 GSM1553192_Normal_T1.CEL PAO1 WT; GM-CSF; replicate 1 RNA PBS WT Planktonic Aerated PAO1 37 0.17 pM GM-CSF 1 hour; 200 rpm; stationary phase cells -E-GEOD-63588 GSM1553193 1 GSM1553193_Normal_C2.CEL PAO1 WT; control; replicate 2 RNA PBS WT Planktonic Aerated PAO1 37 1 hour; 200 rpm; stationary phase cells -E-GEOD-63588 GSM1553194 1 GSM1553194_Normal_T2.CEL PAO1 WT; GM-CSF; replicate 2 RNA PBS WT Planktonic Aerated PAO1 37 0.17 pM GM-CSF 1 hour; 200 rpm; stationary phase cells -E-MTAB-2160 Pseudomonas aeruginosa cbrA (1) Overhage3004_(Pae_G1a).CEL "Overnight cultures of Pseudomonas aeruginosa cbrA mutant grown in LB medium at 37 degrees C and 170 rpm were washed twice and resuspended in PBS buffer and adjusted to an optical density of OD600 of 2.0. Of these bacterial cell suspensions, 10 ul were mixed with washed amoeba cells of 2-days old D. discoideum cultures in a ratio of 3:1 bacteria to amoebae. These mixtures were subsequently plated on M9 agar plates and incubated for 48 h at 22.5 degrees C, replicate 1" RNA M9 agar ∆cbrA colony lawn on plate PA14 22.5 Dictyostelium discoideum amoeba -E-MTAB-2160 Pseudomonas aeruginosa cbrA (2) Overhage3006_(Pae_G1a).CEL "Overnight cultures of Pseudomonas aeruginosa cbrA mutant grown in LB medium at 37 degrees C and 170 rpm were washed twice and resuspended in PBS buffer and adjusted to an optical density of OD600 of 2.0. Of these bacterial cell suspensions, 10 ul were mixed with washed amoeba cells of 2-days old D. discoideum cultures in a ratio of 3:1 bacteria to amoebae. These mixtures were subsequently plated on M9 agar plates and incubated for 48 h at 22.5 degrees C, replicate 2" RNA M9 agar ∆cbrA colony lawn on plate PA14 22.5 Dictyostelium discoideum amoeba -E-MTAB-2160 Pseudomonas aeruginosa PA14 (1) Overhage3002_(Pae_G1a).CEL "Overnight cultures of Pseudomonas aeruginosa PA14 wild type grown in LB medium at 37 degrees C and 170 rpm were washed twice and resuspended in PBS buffer and adjusted to an optical density of OD600 of 2.0. Of these bacterial cell suspensions, 10 ul were mixed with washed amoeba cells of 2-days old D. discoideum cultures in a ratio of 3:1 bacteria to amoebae. These mixtures were subsequently plated on M9 agar plates and incubated for 48 h at 22.5 degrees C, replicate 1" RNA M9 agar WT colony lawn on plate PA14 22.5 Dictyostelium discoideum amoeba -E-MTAB-2160 Pseudomonas aeruginosa PA14 (2) Overhage3005_(Pae_G1a).CEL "Overnight cultures of Pseudomonas aeruginosa PA14 wild type grown in LB medium at 37 degrees C and 170 rpm were washed twice and resuspended in PBS buffer and adjusted to an optical density of OD600 of 2.0. Of these bacterial cell suspensions, 10 ul were mixed with washed amoeba cells of 2-days old D. discoideum cultures in a ratio of 3:1 bacteria to amoebae. These mixtures were subsequently plated on M9 agar plates and incubated for 48 h at 22.5 degrees C, replicate 2" RNA M9 agar WT colony lawn on plate PA14 22.5 Dictyostelium discoideum amoeba -E-MTAB-1983 Source_1 120330-10978D_22_(Pae_G1a).CEL MPAO1 bfms mutant grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 1 RNA minimal media with 0.2% glucose bfms mutant 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-MTAB-1983 Source_2 120330-10978D_23_(Pae_G1a).CEL MPAO1 bfms mutant grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 2 RNA minimal media with 0.2% glucose bfms mutant 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-MTAB-1983 Source_3 120330-10978D_24_(Pae_G1a).CEL MPAO1 bfms mutant grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 3 RNA minimal media with 0.2% glucose bfms mutant 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-MTAB-1983 Source_4 120330-10978D_M1_(Pae_G1a).CEL MPAO1 WT grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 1 RNA minimal media with 0.2% glucose WT 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-MTAB-1983 Source_5 120330-10978D_M3_(Pae_G1a).CEL MPAO1 WT grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 2 RNA minimal media with 0.2% glucose WT 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-MTAB-1983 Source_6 120330-10978D_M4_(Pae_G1a).CEL MPAO1 WT grown planktonically in minimal medium with 0.2% glucose with shaking for 48 hours to an OD of 1.0 at 37C; replicate 3 RNA minimal media with 0.2% glucose WT 1 planktonic aerated MPAO1 37 "minimal medium (6g Na2HPO4, 3g KH2PO4, 0.5g NaCl, 0.24g MgSO4, 0.5g Glutamate per liter; pH7.4) " -E-GEOD-61925 GSM1517347 1 GSM1517347_MK-1.CEL PAO1 WT. Planktonic plus mouse fascia homogenate. Rep1 RNA TY WT Planktonic PAO1 37 Fascia homogenate Mouse -E-GEOD-61925 GSM1517348 1 GSM1517348_MK-2.CEL PAO1 WT. Planktonic plus mouse fascia homogenate. Rep2 RNA TY WT Planktonic PAO1 37 Fascia homogenate Mouse -E-GEOD-61925 GSM1517349 1 GSM1517349_MK-3.CEL PAO1 WT. Planktonic plus mouse fascia homogenate. Rep3 RNA TY WT Planktonic PAO1 37 Fascia homogenate Mouse -E-GEOD-61925 GSM1517350 1 GSM1517350_MK-4.CEL PAO1 WT. Planktonic. Rep1 RNA TY WT Planktonic PAO1 37 -E-GEOD-61925 GSM1517351 1 GSM1517351_MK-5.CEL PAO1 WT. Planktonic. Rep2 RNA TY WT Planktonic PAO1 37 -E-GEOD-61925 GSM1517352 1 GSM1517352_MK-6.CEL PAO1 WT. Planktonic. Rep3 RNA TY WT Planktonic PAO1 37 -E-GEOD-32572 GSM807322 1 GSM807322.CEL NCTC8626; control; replicate 1 RNA MHB WT Planktonic NCTC8626 37 4 hours -E-GEOD-32572 GSM807323 1 GSM807323.CEL NCTC8626; control; replicate 2 RNA MHB WT Planktonic NCTC8626 37 4 hours -E-GEOD-32572 GSM807324 1 GSM807324.CEL NCTC8626; control; replicate 3 RNA MHB WT Planktonic NCTC8626 37 4 hours -E-GEOD-32572 GSM807325 1 GSM807325.CEL NCTC8626 ; honey treated; replicate 1 RNA MHB WT Planktonic NCTC8626 37 10 % manuka honey 4 hours -E-GEOD-32572 GSM807326 1 GSM807326.CEL NCTC8626 ; honey treated; replicate 2 RNA MHB WT Planktonic NCTC8626 37 10 % manuka honey 4 hours -E-GEOD-32572 GSM807327 1 GSM807327.CEL NCTC8626 ; honey treated; replicate 3 RNA MHB WT Planktonic NCTC8626 37 10 % manuka honey 4 hours -E-GEOD-58758 GSM1419138 1 GSM1419138_PAO.CEL PAO1 WT. Planktonic. Rep1 RNA LB WT 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419139 1 GSM1419139_PAO2.CEL PAO1 WT. Planktonic. Rep2 RNA LB WT 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419140 1 GSM1419140_PAO3.CEL PAO1 WT. Planktonic. Rep3 RNA LB WT 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419141 1 GSM1419141_BC.CEL PAO1 ∆creBC. Planktonic. Rep1 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419142 1 GSM1419142_BC2.CEL PAO1 ∆creBC. Planktonic. Rep2 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419143 1 GSM1419143_BC3.CEL PAO1 ∆creBC. Planktonic. Rep3 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 Grown shaking in baffled flask (10 mL culture in 50 mL flask) -E-GEOD-58758 GSM1419144 1 GSM1419144_PAO_FOX.CEL PAO1 WT. Planktonic plus cefoxitin. Rep1 RNA LB WT 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419145 1 GSM1419145_PAO2_FOX.CEL PAO1 WT. Planktonic plus cefoxitin. Rep2 RNA LB WT 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419146 1 GSM1419146_PAO3_FOX.CEL PAO1 WT. Planktonic plus cefoxitin. Rep3 RNA LB WT 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419147 1 GSM1419147_BC_FOX.CEL PAO1 ∆creBC. Planktonic plus cefoxitin. Rep1 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419148 1 GSM1419148_BC2_FOX.CEL PAO1 ∆creBC. Planktonic plus cefoxitin. Rep2 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419149 1 GSM1419149_BC3_FOX.CEL PAO1 ∆creBC. Planktonic plus cefoxitin. Rep3 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 50 μg/ml cefoxitin "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419150 1 GSM1419150_PAO_CAZ.CEL PAO1 WT. Planktonic plus ceftazidime. Rep1 RNA LB WT 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419151 1 GSM1419151_PAO2_CAZ.CEL PAO1 WT. Planktonic plus ceftazidime. Rep2 RNA LB WT 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419152 1 GSM1419152_PAO3_CAZ.CEL PAO1 WT. Planktonic plus ceftazidime. Rep3 RNA LB WT 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419153 1 GSM1419153_BC_CAZ.CEL PAO1 ∆creBC. Planktonic plus ceftazidime Rep1 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419154 1 GSM1419154_BC2_CAZ.CEL PAO1 ∆creBC. Planktonic plus ceftazidime Rep2 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-GEOD-58758 GSM1419155 1 GSM1419155_BC3_CAZ.CEL PAO1 ∆creBC. Planktonic plus ceftazidime Rep3 RNA LB creBC::lox 1 Planktonic Aerated PAO1 37 0.5 µg/ml ceftazidime "Grown shaking in baffled flask (10 mL culture in 50 mL flask) , 3 h exposure" -E-MTAB-2536 20mM_KT2440 20mM_KT2440.CEL P. putida KT2440. Planktonic plus 20 mM ammonium chloride. RNA M9 plus 2mM glucose Planktonic Aerated P. putida KT2440 30 20 mM ammonium chloride Grown shaking at 160rpm -E-MTAB-2536 2mM_KT2440 2mM_KT2440.CEL P. putida KT2440. Planktonic plus 2 mM ammonium chloride. RNA M9 plus 2mM glucose Planktonic Aerated P. putida KT2440 30 2 mM ammonium chloride Grown shaking at 160rpm -E-MTAB-2535 20mM_CF600 20mM_CF600.CEL "Pseudomonas putida CF600_grown in M9 plus 20 mM ammonium chloride as nitrogen source, rep1" RNA M9 with 20 mM ammonium chloride WT Planktonic shaking CF600 30 unpublished data -E-MTAB-2535 2mM_CF600 2mM_CF600.CEL "Pseudomonas putida CF600_grown in M9 plus 2 mM ammonium chloride as nitrogen source, rep1" RNA M9 with 2 mM ammonium chloride WT Planktonic shaking CF600 30 -E-GEOD-29879 GSM740019 1 GSM740019.CEL PA14 WT; biofilm; control RNA LB WT Biofilm Shaking- glass wool PA14 37 7 hours; shaking at 250 rpm -E-GEOD-29879 GSM740020 1 GSM740020.CEL ΔPA2444; biofilm RNA LB ΔPA2444 (glyA2) Biofilm Shaking- glass wool PA14 37 7 hours; shaking at 250 rpm RSCV phenotype -E-MTAB-2528 0.1_12hr_CSV86 0.1_12hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 0.1% NH4NO3, 12 hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 0.1% NH4N03 -E-MTAB-2528 0.1_2hr_CSV86 0.1_2hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 0.1% NH4NO3, 2hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 0.1% NH4N03 -E-MTAB-2528 0.1_6hr_CSV86 0.1_6hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 0.1% NH4NO3, 6hr" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 0.1% NH4N03 -E-MTAB-2528 0.1_7hr_CSV86 0.1_7hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 0.1% NH4NO3, 7hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 0.1% NH4N03 -E-MTAB-2528 0.1_9h_CSV86 0.1_9hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 0.1% NH4NO3, 9hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 0.1% NH4N03 -E-MTAB-2528 1_12hr_CSV86 1_12hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 1% NH4NO3, 12 hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 1% NH4NO3 -E-MTAB-2528 1_2hr_CSV86 1_2hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 1% NH4NO3, 2hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 1% NH4NO3 -E-MTAB-2528 1_6hr_CSV86 1_6hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 1% NH4NO3, 6hr" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 1% NH4NO3 -E-MTAB-2528 1_7hr_CSV86 1_7hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 1% NH4NO3, 7hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 1% NH4NO3 -E-MTAB-2528 1_9h_CSV86 1_9hr_CSV86(Pae_G1a).CEL "Pseudomonas putida in mineral salt medium (MSM) + 1% NH4NO3, 9hrs" RNA mineral salt medium (MSM) WT Planktonic Shaking CSV86 30 1% NH4NO3 -E-MTAB-2528 Glu_6hr_CSV86 Glu_6Hour_(Pae_G1a).CEL Pseudomonas putida in 1XLB + 0.25% glucose RNA LB+ 0.25% glucose WT Planktonic Shaking CSV86 30 -E-GEOD-54032 GSM1306125 1 GSM1306125_Nomura_PAO1_NS-1_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) control treatment, replicate 1" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 Grown shaking at 200rpm -E-GEOD-54032 GSM1306126 1 GSM1306126_Nomura_PAO1_NS-2_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) control treatment, replicate 2" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 Grown shaking at 200rpm -E-GEOD-54032 GSM1306127 1 GSM1306127_Nomura_PAO1_NS-3_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) control treatment, replicate 3" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 Grown shaking at 200rpm -E-GEOD-54032 GSM1306128 1 GSM1306128_Nomura_PAO1_KG-1_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) and induced with 20 mM 2-oxoglutarate. At 30 min post induction, replicate 1" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 20 mM 2-oxoglutarate Grown shaking at 200rpm -E-GEOD-54032 GSM1306129 1 GSM1306129_Nomura_PAO1_KG-2_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) and induced with 20 mM 2-oxoglutarate. At 30 min post induction, replicate 2" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 20 mM 2-oxoglutarate Grown shaking at 200rpm -E-GEOD-54032 GSM1306130 1 GSM1306130_Nomura_PAO1_KG-3_Pae_G1a_.CEL "P. aeruginosa PAO1 was grown in nutrient broth (Oxoid number 2) and induced with 20 mM 2-oxoglutarate. At 30 min post induction, replicate 3" RNA nutrient broth no. 2 (Oxoid) WT 0.3 Planktonic Shaking PAO1 37 20 mM 2-oxoglutarate Grown shaking at 200rpm -E-GEOD-47031 GSM1143375 1 GSM1143375_A1_Pae_G1a_.CEL "PAO1 PAO1161 RifR parA1-39::smh (parAnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 1" RNA LB PAO1161 RifR parA1-39::smh (parAnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143376 1 GSM1143376_A2_Pae_G1a_.CEL "PAO1 PAO1161 RifR parA1-39::smh (parAnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 2" RNA LB PAO1161 RifR parA1-39::smh (parAnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143377 1 GSM1143377_A3_Pae_G1a_.CEL "PAO1 PAO1161 RifR parA1-39::smh (parAnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 3" RNA LB PAO1161 RifR parA1-39::smh (parAnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143378 1 GSM1143378_B1_Pae_G1a_.CEL "PAO1 PAO1161 RifR parB1-18::TcR (parBnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 1" RNA LB PAO1161 RifR parB1-18::TcR (parBnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143379 1 GSM1143379_B2_Pae_G1a_.CEL "PAO1 PAO1161 RifR parB1-18::TcR (parBnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 2" RNA LB PAO1161 RifR parB1-18::TcR (parBnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143380 1 GSM1143380_B3_Pae_G1a_.CEL "PAO1 PAO1161 RifR parB1-18::TcR (parBnull) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 3" RNA LB PAO1161 RifR parB1-18::TcR (parBnull) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143381 1 GSM1143381_WT1_Pae_G1a_.CEL "PAO1 WT (PAO1161) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 1" RNA LB WT (PAO1161) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143382 1 GSM1143382_WT2_Pae_G1a_.CEL "PAO1 WT (PAO1161) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 2" RNA LB WT (PAO1161) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-47031 GSM1143383 1 GSM1143383_WT3_Pae_G1a_.CEL "PAO1 WT (PAO1161) grown planktonically in LB with aeration at 37 degrees to an OD of 0.5, replicate 3" RNA LB WT (PAO1161) 0.5 Planktonic aerated PAO1 37 Rifampin -E-GEOD-39867 GSM980539 1 GSM980539_MHH1372.CEL "P. aeruginosa TBCF10839nrtR mutant cells harvested at late exponential phase, 37°C LB, replicate 1" RNA LB TBCF10839nrtR::Tn5 Planktonic Shaking TBCF10839 37 late exponential phase -E-GEOD-39867 GSM980540 1 GSM980540_MHH1373.CEL "P. aeruginosa TBCF10839 nrtR mutant cells harvested at late exponential phase, 37°C LB, replicate 2" RNA LB TBCF10839nrtR::Tn5 Planktonic Shaking TBCF10839 37 late exponential phase -E-GEOD-39867 GSM980541 1 GSM980541_MHH1376.CEL "P. aeruginosa TBCF10839 cells harvested at late exponential phase, 37°C LB, replicate 1" RNA LB WT Planktonic Shaking TBCF10839 37 late exponential phase -E-GEOD-39867 GSM980542 1 GSM980542_MHH1377.CEL "P. aeruginosa TBCF10839 cells harvested at late exponential phase, 37°C LB, replicate 2" RNA LB WT Planktonic Shaking TBCF10839 37 late exponential phase -E-GEOD-51409 GSM1244967 1 GSM1244967_PAO1-22-replicate-01.CEL "PAO1 WT grown at 22C in LB with shaking to mid-log phase, replicate 1" RNA LB WT 0.5 planktonic aerated PAO1 22 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51409 GSM1244968 1 GSM1244968_PAO1-22-replicate-02.CEL "PAO1 WT grown at 22C in LB with shaking to mid-log phase, replicate 2" RNA LB WT 0.5 planktonic aerated PAO1 22 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51409 GSM1244969 1 GSM1244969_PAO1-22-replicate-03.CEL "PAO1 WT grown at 22C in LB with shaking to mid-log phase, replicate 3" RNA LB WT 0.5 planktonic aerated PAO1 22 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51409 GSM1244970 1 GSM1244970_PAO1-37-replicate-01.CEL "PAO1 WT grown at 37C in LB with shaking to mid-log phase, replicate 1" RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51409 GSM1244971 1 GSM1244971_PAO1-37-replicate-02.CEL "PAO1 WT grown at 37C in LB with shaking to mid-log phase, replicate 2" RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51409 GSM1244972 1 GSM1244972_PAO1-37-replicate-03.CEL "PAO1 WT grown at 37C in LB with shaking to mid-log phase, replicate 3" RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) -E-GEOD-51076 GSM1237734 1 GSM1237734_M9_H103_2_51059600653056031211409890238138.CEL H103 (PAO1) WT; control; replicate 1 RNA M9 minimal medium + 0.2% glucose WT 0.4 Planktonic Aerated H103 (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-GEOD-51076 GSM1237735 1 GSM1237735_M9_H103_3_51059600653061050411410396750551.CEL H103 (PAO1) WT; control; replicate 2 RNA M9 minimal medium + 0.2% glucose WT 0.4 Planktonic Aerated H103 (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-GEOD-51076 GSM1237736 1 GSM1237736_M9_H103_4_51059600653061050411410396750502.CEL H103 (PAO1) WT; control; replicate 3 RNA M9 minimal medium + 0.2% glucose WT 0.4 Planktonic Aerated H103 (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-GEOD-51076 GSM1237737 1 GSM1237737_M9_PAOSX_1_51059600653060050411410396750419.CEL PAOSX (PAO1) ΔsigX; replicate 1 RNA M9 minimal medium + 0.2% glucose ΔsigX 0.4 Planktonic Aerated PAOSX (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-GEOD-51076 GSM1237738 1 GSM1237738_M9_PAOSX_3_51059600653060050411410396750359.CEL PAOSX (PAO1) ΔsigX; replicate 2 RNA M9 minimal medium + 0.2% glucose ΔsigX 0.4 Planktonic Aerated PAOSX (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-GEOD-51076 GSM1237739 1 GSM1237739_M9_PAOSX_4_51059600653061050411410396750526.CEL PAOSX (PAO1) ΔsigX; replicate 3 RNA M9 minimal medium + 0.2% glucose ΔsigX 0.4 Planktonic Aerated PAOSX (PAO1) 37 OD580; mid log phase cells; 180 rpm -E-MEXP-3970 Treated_1 Overhage11002_Pae_G1a.CEL PAO1 WT; LL-37; replicate 1 RNA MHB WT Planktonic Aerated H103 (PAO1) 37 20 ug/ml LL-37 2 hours; mid log phase cells; 170 rpm -E-MEXP-3970 Treated_2 Overhage5002_Pae_G1a.CEL PAO1 WT; LL-37; replicate 2 RNA MHB WT Planktonic Aerated H103 (PAO1) 37 20 ug/ml LL-37 2 hours; mid log phase cells; 170 rpm -E-MEXP-3970 Untreated_1 Overhage11001_Pae_G1a.CEL PAO1 WT; control; replicate 1 RNA MHB WT Planktonic Aerated H103 (PAO1) 37 2 hours; mid log phase cells; 170 rpm -E-MEXP-3970 Untreated_2 Overhage5001_Pae_G1a.CEL PAO1 WT; control; replicate 2 RNA MHB WT Planktonic Aerated H103 (PAO1) 37 2 hours; mid log phase cells; 170 rpm -E-GEOD-33871 GSM838206 1 GSM838206_OXYR-LB-1_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in LB for 12 hours at 37 degrees, replicate 1" RNA LB ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838207 1 GSM838207_OXYR-LB-2_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in LB for 12 hours at 37 degrees, replicate 2" RNA LB ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838208 1 GSM838208_OXYR-LB-4_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in LB for 12 hours at 37 degrees, replicate 3" RNA LB ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838209 1 GSM838209_OXYR-PM-1_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 1" RNA King's A Medium ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838210 1 GSM838210_OXYR-PM-3_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 2" RNA King's A Medium ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838211 1 GSM838211_OXYR-PM-4_Pae_G1a.CEL "PAO1 ΔoxyR grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 3" RNA King's A Medium ΔoxyR 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838212 1 GSM838212_PAO1-LB-1_Pae_G1a.CEL "PAO1 WT grown planktonically in LB for 12 hours at 37 degrees, replicate 1" RNA LB WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838213 1 GSM838213_PAO1-LB-2_Pae_G1a.CEL "PAO1 WT grown planktonically in LB for 12 hours at 37 degrees, replicate 2" RNA LB WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838214 1 GSM838214_PAO1-LB-3_Pae_G1a.CEL "PAO1 WT grown planktonically in LB for 12 hours at 37 degrees, replicate 3" RNA LB WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838215 1 GSM838215_PAO1-PM-1_Pae_G1a.CEL "PAO1 WT grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 1" RNA King's A Medium WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838216 1 GSM838216_PAO1-PM-3_Pae_G1a.CEL "PAO1 WT grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 2" RNA King's A Medium WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838217 1 GSM838217_PAO1-PM-4_Pae_G1a.CEL "PAO1 WT grown planktonically in King's A medium for 12 hours at 37 degrees, replicate 3" RNA King's A Medium WT 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838218 1 GSM838218_PAO1-5344-1_Pae_G1a.CEL "PAO1 oxyR overexpression strain grown planktonically in LB for 12 hours at 37 degrees, replicate 1s" RNA LB oxyR overexpression 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838219 1 GSM838219_PAO1-5344-3_Pae_G1a.CEL "PAO1 oxyR overexpression strain grown planktonically in LB for 12 hours at 37 degrees, replicate 2" RNA LB oxyR overexpression 12 hrs Planktonic PAO1 37 -E-GEOD-33871 GSM838220 1 GSM838220_PAO1-5344-4_Pae_G1a.CEL "PAO1 oxyR overexpression strain grown planktonically in LB for 12 hours at 37 degrees, replicate 3" RNA LB oxyR overexpression 12 hrs Planktonic PAO1 37 -E-GEOD-24038 GSM591496 1 GSM591496.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 1" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24038 GSM591601 1 GSM591601.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 2" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24038 GSM591602 1 GSM591602.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 3" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24038 GSM591624 1 GSM591624.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 1" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-24038 GSM591625 1 GSM591625.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 2" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-24038 GSM591627 1 GSM591627.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 3" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-52445 GSM1267086 1 GSM1267086_HZI1981_G1a.CEL PAO1 WT. Planktonic. 0 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 0 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267087 1 GSM1267087_HZI1950_Pae_G1a.CEL PAO1 WT. Planktonic. 5 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 5 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267088 1 GSM1267088_HZI1951_Pae_G1a.CEL PAO1 WT. Planktonic. 10 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 10 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267089 1 GSM1267089_HZI1952_Pae_G1a.CEL PAO1 WT. Planktonic. 15 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 15 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267090 1 GSM1267090_HZI1953a_Pae_G1a.CEL PAO1 WT. Planktonic. 20 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 20 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267091 1 GSM1267091_HZI1954_Pae_G1a.CEL PAO1 WT. Planktonic. 25 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 25 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267092 1 GSM1267092_HZI1955_Pae_G1a.CEL PAO1 WT. Planktonic. 30 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 30 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267093 1 GSM1267093_HZI1956_Pae_G1a.CEL PAO1 WT. Planktonic. 35 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 35 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267094 1 GSM1267094_HZI1958_Pae_G1a.CEL PAO1 WT. Planktonic. 40 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 40 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267095 1 GSM1267095_HZI1959_Pae_G1a.CEL PAO1 WT. Planktonic. 50 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 50 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267096 1 GSM1267096_HZI1960a_Pae_G1a.CEL PAO1 WT. Planktonic. 60 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 60 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267097 1 GSM1267097_HZI1961_Pae_G1a.CEL PAO1 WT. Planktonic. 70 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 70 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267098 1 GSM1267098_HZI1962_Pae_G1a.CEL PAO1 WT. Planktonic. 80 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 80 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267099 1 GSM1267099_HZI1963_Pae_G1a.CEL PAO1 WT. Planktonic. 90 mins after the high (100%)- to low (0.5%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 90 mins during the high- to low-oxygen transition -E-GEOD-52445 GSM1267100 1 GSM1267100_HZI1966_Pae_G1a.CEL PAO1 WT. Planktonic. 0 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 0 min during the low- to high-oxygen transition -E-GEOD-52445 GSM1267101 1 GSM1267101_HZI1967_Pae_G1a.CEL PAO1 WT. Planktonic. 5 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 5 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267102 1 GSM1267102_HZI1968_Pae_G1a.CEL PAO1 WT. Planktonic. 10 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 10 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267103 1 GSM1267103_HZI1969_Pae_G1a.CEL PAO1 WT. Planktonic. 15 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 15 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267104 1 GSM1267104_HZI1970_Pae_G1a.CEL PAO1 WT. Planktonic. 20 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 20 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267105 1 GSM1267105_HZI1971_Pae_G1a.CEL PAO1 WT. Planktonic. 25 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 25 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267106 1 GSM1267106_HZI1972_Pae_G1a.CEL PAO1 WT. Planktonic. 30 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 30 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267107 1 GSM1267107_HZI1973_Pae_G1a.CEL PAO1 WT. Planktonic. 35 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 35 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267108 1 GSM1267108_HZI1974_G1a.CEL PAO1 WT. Planktonic. 40 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 40 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267109 1 GSM1267109_HZI1975_G1a.CEL PAO1 WT. Planktonic. 50 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 50 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267110 1 GSM1267110_HZI1976_G1a.CEL PAO1 WT. Planktonic. 60 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 60 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267111 1 GSM1267111_HZI1977_G1a.CEL PAO1 WT. Planktonic. 70 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 70 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267112 1 GSM1267112_HZI1978_G1a.CEL PAO1 WT. Planktonic. 80 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 80 mins during the low- to high-oxygen transition -E-GEOD-52445 GSM1267113 1 GSM1267113_HZI1979_G1a.CEL PAO1 WT. Planktonic. 90 mins after the low (0.5%)- to high (100%)-oxygen transition. RNA "Medium C (per liter, 1.5 g glucose, 6 g of yeast extract, 0.6 g of (NH4)2SO4, 2 g of Na2HPO4, 0.3 g of MgSO4 7H2O, and pH adjusted to 7.0 with 1 M NaOH)." WT Planktonic Stirred bioreactor PAO1 37 Stirred bioreactor at 90 mins during the low- to high-oxygen transition -E-GEOD-48982 GSM1191066 1 GSM1191066_sphR-pyr-1.CEL Pseudomonas aeruginosa sphR mutant in MOPS pyruvate RNA MOPS 20mM pyruvate ∆sphR Planktonic aerated PAO1 37 18 h -E-GEOD-48982 GSM1191067 1 GSM1191067_sphR-pyr-2.CEL Pseudomonas aeruginosa sphR mutant in MOPS pyruvate RNA MOPS 20mM pyruvate ∆sphR Planktonic aerated PAO1 37 18 h -E-GEOD-48982 GSM1191068 1 GSM1191068_sphR-surf-1.CEL Pseudomonas aeruginosa sphR mutant in MOPS pyruvate plus lung surfactant RNA MOPS 20mM pyruvate ∆sphR Planktonic aerated PAO1 37 Survanta 18 h -E-GEOD-48982 GSM1191069 1 GSM1191069_sphR-surf-2.CEL Pseudomonas aeruginosa sphR mutant in MOPS pyruvate plus lung surfactant RNA MOPS 20mM pyruvate ∆sphR Planktonic aerated PAO1 37 Survanta 18 h -E-GEOD-48982 GSM1191070 1 GSM1191070_WT-pyr-1.CEL Pseudomonas aeruginosa WT in MOPS pyruvate RNA MOPS 20mM pyruvate WT Planktonic aerated PAO1 37 18 h -E-GEOD-48982 GSM1191071 1 GSM1191071_WT-pyr-2.CEL Pseudomonas aeruginosa WT in MOPS pyruvate RNA MOPS 20mM pyruvate WT Planktonic aerated PAO1 37 18 h -E-GEOD-48982 GSM1191072 1 GSM1191072_WT-surf-1.CEL Pseudomonas aeruginosa WT in MOPS pyruvate plus lung surfactant RNA MOPS 20mM pyruvate WT Planktonic aerated PAO1 37 Survanta 18 h -E-GEOD-48982 GSM1191073 1 GSM1191073_WT-surf-2.CEL Pseudomonas aeruginosa WT in MOPS pyruvate plus lung surfactant RNA MOPS 20mM pyruvate WT Planktonic aerated PAO1 37 Survanta 18 h -E-GEOD-49759 GSM1206643 1 GSM1206643_WT-PYR-1.CEL "PA14 WT; control, replicate 1" RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 4 hours; horizontal shaker -E-GEOD-49759 GSM1206644 1 GSM1206644_WT-PYR-2.CEL "PA14 WT; control, replicate 2" RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 4 hours; horizontal shaker -E-GEOD-49759 GSM1206645 1 GSM1206645_WT-CHO-1.CEL PA14 WT; choline; replicate 1 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM choline 4 hours; horizontal shaker -E-GEOD-49759 GSM1206646 1 GSM1206646_WT-CHO-2.CEL PA14 WT; choline; replicate 2 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM choline 4 hours; horizontal shaker -E-GEOD-49759 GSM1206647 1 GSM1206647_WT-DTC-1.CEL PA14 WT; diethylcholine; replicate 1 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM diethylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206648 1 GSM1206648_WT-DTC-2.CEL PA14 WT; diethylcholine; replicate 2 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM diethylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206649 1 GSM1206649_WT-ETC-1.CEL PA14 WT; ethylcholine; replicate 1 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM ethylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206650 1 GSM1206650_WT-ETC-2.CEL PA14 WT; ethylcholine; replicate 2 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM ethylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206651 1 GSM1206651_WT-PRC-1.CEL PA14 WT; choline and propargylcholine; replicate 1 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM choline + 250 uM propargylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206652 1 GSM1206652_WT-PRC-2.CEL PA14 WT; choline and propargylcholine; replicate 2 RNA MOPS + 20 mM pyruvate WT 0.45 Planktonic Aerated PA14 37 250 uM choline + 250 uM propargylcholine 4 hours; horizontal shaker -E-GEOD-49759 GSM1206653 1 GSM1206653_dgcA-CHO-1.CEL PA14 ΔdgcA; choline; replicate 1 RNA MOPS + 20 mM pyruvate ΔdgcA 0.45 Planktonic Aerated PA14 37 250 uM choline 4 hours; horizontal shaker -E-GEOD-49759 GSM1206654 1 GSM1206654_dgcA-CHO-2.CEL PA14 ΔdgcA; choline; replicate 2 RNA MOPS + 20 mM pyruvate ΔdgcA 0.45 Planktonic Aerated PA14 37 250 uM choline 4 hours; horizontal shaker -E-GEOD-48587 GSM1181847 1 GSM1181847_gc_WT1_1.CEL Gene expression data from WT strain PAO1 grown under cyanogenic conditions_rep1 RNA synthetic glycine minimal medium (MMC) WT 1 Planktonic shaking PAO1 37 under oxygen limitation -E-GEOD-48587 GSM1181848 1 GSM1181848_gc_WT2_3.CEL Gene expression data from WT strain PAO1 grown under cyanogenic conditions_rep2 RNA synthetic glycine minimal medium (MMC) WT 1 Planktonic shaking PAO1 37 under oxygen limitation -E-GEOD-48587 GSM1181849 1 GSM1181849_gc_Delta1_2.CEL Gene expression data from HCN mutant strain PAO6344 grown under cyanogenic conditions_rep1 RNA synthetic glycine minimal medium (MMC) ΔhcnB 1 Planktonic shaking PAO6344 (PAO1) 37 under oxygen limitation -E-GEOD-48587 GSM1181850 1 GSM1181850_gc_Delta2_4.CEL Gene expression data from HCN mutant strain PAO6344 grown under cyanogenic conditions_rep2 RNA synthetic glycine minimal medium (MMC) ΔhcnB 1 Planktonic shaking PAO6344 (PAO1) 37 under oxygen limitation -E-MEXP-3764 Control_Aerobic_1 control1aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic control, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 aerobic control -E-MEXP-3764 Control_Aerobic_2 control2aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic control, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 aerobic control -E-MEXP-3764 Control_Aerobic_3 control3aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic control, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 aerobic control -E-MEXP-3764 Control_Anaerobic_1 control1_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic control, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 anaerobic control -E-MEXP-3764 Control_Anaerobic_2 control2_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic control, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 anaerobic control -E-MEXP-3764 Control_Anaerobic_3 control3_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic control, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 anaerobic control -E-MEXP-3764 Fos_Aerobic_1 fos1aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 Fos_Aerobic_2 fos2aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 Fos_Aerobic_3 Fos3_aerobic_wdh_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 Fos_Anaerobic_1 fos1_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 Fos_Anaerobic_2 fos2_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 Fos_Anaerobic_3 fos3_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin was added" -E-MEXP-3764 FT_Aerobic_1 FT1aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 FT_Aerobic_2 FT2_aerobic_wdh_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 FT_Aerobic_3 FT3aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 FT_Anaerobic_1 FT1_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 FT_Anaerobic_2 FT2_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 FT_Anaerobic_3 FT3_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 1 mg/l fosfomycin and 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Aerobic_1 Tob1_aerobic_wdh_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 0.25 mg/l tobramycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Aerobic_2 Tob2_aerobic_wdh_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 0.25 mg/l tobramycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Aerobic_3 Tob3aerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, aerobic, 0.25 mg/l tobramycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "aerobic, 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Anaerobic_1 Tob1_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 0.25 mg/l tobramycin was added, rep1" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Anaerobic_2 Tob2_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 0.25 mg/l tobramycin was added, rep2" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 0.25 mg/l tobramycin was added" -E-MEXP-3764 Tob_Anaerobic_3 Tob3_anaerobic_Pae_G1a.CEL "Pseudomonas aeruginosa clinical isolate CM6, anaerobic, 0.25 mg/l tobramycin was added, rep3" RNA MHB plus 1% (100 mM) potassium nitrate (KNO3) clinical isolate 0.4 Planktonic shaking CM6 37 "anaerobic, 0.25 mg/l tobramycin was added" -E-GEOD-48429 GSM1177842 1 GSM1177842_PAO1-1.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar. Rep1 RNA PIA WT Biofilm Colony biofilm PAO1 37 18 h colony biofilms -E-GEOD-48429 GSM1177843 1 GSM1177843_PAO1-2.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar. Rep2 RNA PIA WT Biofilm Colony biofilm PAO1 37 18 h colony biofilms -E-GEOD-48429 GSM1177844 1 GSM1177844_PAO1-3.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar. Rep3 RNA PIA WT Biofilm Colony biofilm PAO1 37 18 h colony biofilms -E-GEOD-48429 GSM1177845 1 GSM1177845_PAO1-AMV-1.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar plus ammonium metavanadate. Rep1 RNA PIA WT Biofilm Colony biofilm PAO1 37 Ammonium metavanadate 18 h colony biofilms -E-GEOD-48429 GSM1177846 1 GSM1177846_PAO1-AMV-2.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar plus ammonium metavanadate. Rep2 RNA PIA WT Biofilm Colony biofilm PAO1 37 Ammonium metavanadate 18 h colony biofilms -E-GEOD-48429 GSM1177847 1 GSM1177847_PAO1-AMV-3.CEL PAO1 WT colony biofilm on Pseudomonas isolation agar plus ammonium metavanadate. Rep3 RNA PIA WT Biofilm Colony biofilm PAO1 37 Ammonium metavanadate 18 h colony biofilms -E-GEOD-33160 GSM821084 1 GSM821084_HZI0139_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_AUM_rep 1 RNA artificial urine medium 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821085 1 GSM821085_HZI0140_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_AUM_rep 2 RNA artificial urine medium 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821086 1 GSM821086_HZI0141_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_AUM_rep 3 RNA artificial urine medium 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821087 1 GSM821087_HZI0142_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_10-fold diluted LB_rep 1 RNA 10% LB 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821088 1 GSM821088_HZI0143_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_10-fold diluted LB_rep 2 RNA 10% LB 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821089 1 GSM821089_HZI0144_Pae_G1a.CEL P. aeruginosa PAO1_aerobic_10-fold diluted LB_rep 3 RNA 10% LB 18 hrs Colony biofilms Oxic PAO1 37 aerobically grown -E-GEOD-33160 GSM821090 1 GSM821090_HZI0145_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_AUM_rep 1 RNA artificial urine medium 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-33160 GSM821091 1 GSM821091_HZI0146_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_AUM_rep 2 RNA artificial urine medium 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-33160 GSM821092 1 GSM821092_HZI0148_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_10-fold diluted LB_rep 1 RNA 10% LB 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-33160 GSM821093 1 GSM821093_HZI0149_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_10-fold diluted LB_rep 2 RNA 10% LB 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-33160 GSM821094 1 GSM821094_HZI0147_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_AUM_rep 3 RNA artificial urine medium 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-33160 GSM821095 1 GSM821095_HZI0150_Pae_G1a.CEL P. aeruginosa PAO1_anaerobic_10-fold diluted LB_rep 3 RNA 10% LB 2 days Colony biofilms Anaerobic PAO1 37 50 mM KNO3 anaerobically grown -E-GEOD-46603 GSM1133186 1 GSM1133186_Weiqing_He_L-Glu-1_021810.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM L-Glutamate, replicate 1" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM L-Glutamate Grown shaking -E-GEOD-46603 GSM1133187 1 GSM1133187_Weiqing_He_L-Arg-1_021810.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM L-Arginine, replicate 1" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM L-Arginine Grown shaking -E-GEOD-46603 GSM1133188 1 GSM1133188_Weiqing_He_D-Glu-1_021810.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM D-Glutamate, replicate 1" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM D-Glutamate Grown shaking -E-GEOD-46603 GSM1133189 1 GSM1133189_Weiqing_He_L-Glu-2_022410.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM L-Glutamate, replicate 2" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM L-Glutamate Grown shaking -E-GEOD-46603 GSM1133190 1 GSM1133190_Weiqing_He_L-Arg-2_022410.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM L-Arginine, replicate 2" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM L-Arginine Grown shaking -E-GEOD-46603 GSM1133191 1 GSM1133191_Weiqing_He_D-Glu-2_022410.CEL "P. aeruginosa PAO1 cultures were grown aerobically in pyruvate minimal medium P in the presence of 10 mM D-Glutamate, replicate 2" RNA Pyruvate minimal media. WT 0.5 Planktonic Aerated PAO1 37 10mM D-Glutamate Grown shaking -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6_1 Van_Delden_Kohler_0311_BAL6_1.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_untreated_rep1 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30072 2 Planktonic shaking BAL6 (PAO1) 37 -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6_2 Van_Delden_Kohler_0311_BAL6_2.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_untreated_rep2 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30073 2 Planktonic shaking BAL6 (PAO1) 37 -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6_3 Van_Delden_Kohler_0311_BAL6_3.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_untreated_rep3 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30074 2 Planktonic shaking BAL6 (PAO1) 37 -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6+_1 Van_Delden_Kohler_0311_BAL6+_1.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_treated with 4mg/l BAL30072_rep1 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30075 2 Planktonic shaking BAL6 (PAO1) 37 4 mg/l Siderophore Monosulfactam BAL30072 -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6+_2 Van_Delden_Kohler_0311_BAL6+_2.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_treated with 4mg/l BAL30072_rep2 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30076 2 Planktonic shaking BAL6 (PAO1) 37 4 mg/l Siderophore Monosulfactam BAL30072 -E-MTAB-1381 Pseudomonas_aeruginosa_BAL6+_3 Van_Delden_Kohler_0311_BAL6+_3.CEL Pseudomonas aeruginosa BAL6 (BAL30072 resistant PT5)_treated with 4mg/l BAL30072_rep3 RNA LB selected for growth on 4 mg/l Siderophore Monosulfactam BAL30077 2 Planktonic shaking BAL6 (PAO1) 37 4 mg/l Siderophore Monosulfactam BAL30072 -E-MTAB-1381 Pseudomonas_aeruginosa_PT5_1 Van_Delden_Kohler_0311_PT5_1.CEL Pseudomonas aeruginosa PT5 (mexT nonfunctional PAO1)_untreated_rep1 RNA LB mexT nonfunctional 2 Planktonic shaking PT5 (PAO1) 37 -E-MTAB-1381 Pseudomonas_aeruginosa_PT5_2 Van_Delden_Kohler_0311_PT5_2.CEL Pseudomonas aeruginosa PT5 (mexT nonfunctional PAO1)_untreated_rep2 RNA LB mexT nonfunctional 2 Planktonic shaking PT5 (PAO1) 37 -E-MTAB-1381 Pseudomonas_aeruginosa_PT5_3 Van_Delden_Kohler_0311_PT5_3.CEL Pseudomonas aeruginosa PT5 (mexT nonfunctional PAO1)_untreated_rep3 RNA LB mexT nonfunctional 2 Planktonic shaking PT5 (PAO1) 37 -E-GEOD-45695 GSM1112046 1 GSM1112046_PGAS_25_1A.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 25C_rep1" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 25 -E-GEOD-45695 GSM1112047 1 GSM1112047_PGAS_25_2A.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 25C_rep2" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 25 -E-GEOD-45695 GSM1112048 1 GSM1112048_PGAS_25_4A.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 25C_rep3" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 25 -E-GEOD-45695 GSM1112049 1 GSM1112049_PGAS_37_1B.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 37C_rep1" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 37 -E-GEOD-45695 GSM1112050 1 GSM1112050_PGAS_37_2B.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 37C_rep2" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 37 -E-GEOD-45695 GSM1112051 1 GSM1112051_PGAS_37_3A.CEL "P. aeruginosa PAO1, gene expression data from cells growth in PPGAS media at 37C_rep3" RNA PPGAS media WT 1.5 Planktonic shaking PAO1 37 -E-GEOD-28194 GSM698080 1 GSM698080.CEL P. aeruginosa PAO1 in LB for 7h biofilm cells RNA LB WT Biofilm shaking - glass wool PAO1 37 -E-GEOD-28194 GSM698081 1 GSM698081.CEL P. aeruginosa PAO1 LB 1% Streptomyces 230 for 7h biofilm cells RNA LB WT Biofilm shaking - glass wool PAO1 37 Streptomyces 230 strain culture media was added in at 1% Streptomyces 230 strain supernatant Bacteria -E-GEOD-43641 GSM1067456 1 GSM1067456_PAO1_CK_1.CEL PAO1 WT; control; replicate 1 RNA LB + 7.5 mM nitriloacetic acid WT 1.5 Planktonic Aerated PAO1 37 4 hours; 260 rpm -E-GEOD-43641 GSM1067457 1 GSM1067457_PAO1_PAA_1.CEL PAO1 WT; treated; replicate 1 RNA LB + 7.5 mM nitriloacetic acid WT 1.5 Planktonic Aerated PAO1 37 1 mM Phenylacetic acid 4 hours; 260 rpm -E-GEOD-43641 GSM1067458 1 GSM1067458_PAO1_CK_2.CEL PAO1 WT; control; replicate 2 RNA LB + 7.5 mM nitriloacetic acid WT 1.5 Planktonic Aerated PAO1 37 4 hours; 260 rpm -E-GEOD-43641 GSM1067459 1 GSM1067459_PAO1_PAA_2.CEL PAO1 WT; treated; replicate 2 RNA LB + 7.5 mM nitriloacetic acid WT 1.5 Planktonic Aerated PAO1 37 1 mM Phenylacetic acid 4 hours; 260 rpm -E-GEOD-35632 GSM871963 1 GSM871963.CEL "P. aeruginosa PAO1 with empty vector, grown in LB to mid-exponential phase_rep1" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO1 37 Grown shaking at 200rpm GentR -E-GEOD-35632 GSM871964 1 GSM871964.CEL "P. aeruginosa PAO1 with empty vector, grown in LB to mid-exponential phase_rep2" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO1 37 Grown shaking at 200rpm GentR -E-GEOD-35632 GSM871965 1 GSM871965.CEL "P. aeruginosa PAO1 with empty vector, grown in LB to mid-exponential phase_rep3" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO1 37 Grown shaking at 200rpm GentR -E-GEOD-35632 GSM871966 1 GSM871966.CEL "P. aeruginosa PAO1 with empty vector, grown in LB to mid-exponential phase_rep4" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO1 37 Grown shaking at 200rpm GentR -E-GEOD-35632 GSM871967 1 GSM871967.CEL "P. aeruginosa PAO1 with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep1" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO1 37 IPTG induced RpoN molecular roadblock GentR -E-GEOD-35632 GSM871968 1 GSM871968.CEL "P. aeruginosa PAO1 with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep2" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO1 37 IPTG induced RpoN molecular roadblock GentR -E-GEOD-35632 GSM871969 1 GSM871969.CEL "P. aeruginosa PAO1 with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep3" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO1 37 IPTG induced RpoN molecular roadblock GentR -E-GEOD-35632 GSM871970 1 GSM871970.CEL "P. aeruginosa PAO1 with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep4" RNA LB supplemented with 30 mg/L gentamicin WT + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO1 37 IPTG induced RpoN molecular roadblock GentR -E-GEOD-35632 GSM871971 1 GSM871971.CEL "P. aeruginosa PAO6359 (ΔrpoN) with empty vector, grown in LB to mid-exponential phase_rep1" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO6359 (PAO1) 37 Grown shaking at 200rpm Km + GentR -E-GEOD-35632 GSM871972 1 GSM871972.CEL "P. aeruginosa PAO6359 (ΔrpoN) with empty vector, grown in LB to mid-exponential phase_rep2" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO6359 (PAO1) 37 Grown shaking at 200rpm Km + GentR -E-GEOD-35632 GSM871973 1 GSM871973.CEL "P. aeruginosa PAO6359 (ΔrpoN) with empty vector, grown in LB to mid-exponential phase_rep3" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO6359 (PAO1) 37 Grown shaking at 200rpm Km + GentR -E-GEOD-35632 GSM871974 1 GSM871974.CEL "P. aeruginosa PAO6359 (ΔrpoN) with empty vector, grown in LB to mid-exponential phase_rep4" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL344 (empty plasmid) 0.2 Planktonic shaking PAO6359 (PAO1) 37 Grown shaking at 200rpm Km + GentR -E-GEOD-35632 GSM871975 1 GSM871975.CEL "P. aeruginosa PAO6359 (ΔrpoN) with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep1" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO6359 (PAO1) 37 IPTG induced RpoN molecular roadblock Km + GentR -E-GEOD-35632 GSM871976 1 GSM871976.CEL "P. aeruginosa PAO6359 (ΔrpoN) with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep2" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO6359 (PAO1) 37 IPTG induced RpoN molecular roadblock Km + GentR -E-GEOD-35632 GSM871977 1 GSM871977.CEL "P. aeruginosa PAO6359 (ΔrpoN) with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep3" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO6359 (PAO1) 37 IPTG induced RpoN molecular roadblock Km + GentR -E-GEOD-35632 GSM871978 1 GSM871978.CEL "P. aeruginosa PAO6359 (ΔrpoN) with plasmid expressing RpoN molecular roadblock (IPTG induced), grown in LB to mid-exponential phase_rep4" RNA LB supplemented with 30 mg/L gentamicin ΔrpoN + pBRL348 (RpoN*) 0.2 Planktonic shaking PAO6359 (PAO1) 37 IPTG induced RpoN molecular roadblock Km + GentR -E-GEOD-41926 GSM1027584 1 GSM1027584_062508WT.CEL "PAO1 WT in MOPS lung surfactant, 37 C" RNA MOPS defined medium WT 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-41926 GSM1027585 1 GSM1027585_071008WT.CEL "PAO1 WT in MOPS lung surfactant, 37 C" RNA MOPS defined medium WT 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-41926 GSM1027586 1 GSM1027586_062508plcHR.CEL "PAO1 ∆plcHR in MOPS lung surfactant, 37 C" RNA MOPS defined medium ∆plcHR 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-41926 GSM1027587 1 GSM1027587_071008plcHR.CEL "PAO1 ∆plcHR in MOPS lung surfactant, 37 C" RNA MOPS defined medium ∆plcHR 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-41926 GSM1027588 1 GSM1027588_062508gbdR.CEL "PAO1 ∆gbdR in MOPS lung surfactant, 37 C" RNA MOPS defined medium ∆gbdR 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-41926 GSM1027589 1 GSM1027589_071008gbdR.CEL "PAO1 ∆gbdR in MOPS lung surfactant, 37 C" RNA MOPS defined medium ∆gbdR 0.4 Planktonic aerated PAO1 37 3% Survanta 4 hours; mid exponential phase cells; shaking -E-GEOD-23367 GSM573322 1 GSM573322.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 mutant strain, grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 1" RNA M9 2% glucose PA2206::Tn5 mutant 0.5 Planktonic Shaking PAO1 37 H2O2_10mins TetR -E-GEOD-23367 GSM573323 1 GSM573323.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 mutant strain, grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 2" RNA M9 2% glucose PA2206::Tn5 mutant 0.5 Planktonic Shaking PAO1 37 H2O2_10mins TetR -E-GEOD-23367 GSM573324 1 GSM573324.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 strain complemented with pBR1-pa2206c grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 1" RNA M9 2% glucose PA2206 complemented strain 0.5 Planktonic Shaking PAO1 37 H2O2_10mins "Tet, Gent" -E-GEOD-23367 GSM573325 1 GSM573325.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 strain complemented with pBR1-pa2206c grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 2" RNA M9 2% glucose PA2206 complemented strain 0.5 Planktonic Shaking PAO1 37 H2O2_10mins "Tet, Gent" -E-GEOD-23367 GSM573326 1 GSM573326.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 strain complemented with pBR1-pa2206c grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 3" RNA M9 2% glucose PA2206 complemented strain 0.5 Planktonic Shaking PAO1 37 H2O2_10mins "Tet, Gent" -E-GEOD-23367 GSM573327 1 GSM573327.CEL "Pseudomonas aeruginosa PAO1 PA2206::Tn5 mutant strain, grown shaking to OD 0.5 then exposed to H2O2 for ten minutes, replicate 3" RNA M9 2% glucose PA2206::Tn5 mutant 0.5 Planktonic Shaking PAO1 37 H2O2_10mins TetR -E-GEOD-25945 GSM637573 1 GSM637573.CEL In vitro P. aeruginosa gene expression from sessile growth p10 LB 1 HZI1050 p10_LB_a.CEL Re-analysis of Sample GSM567666 RNA LB early stationary Planktonic static p10 -E-GEOD-25945 GSM637574 1 GSM637574.CEL In vitro P. aeruginosa gene expression from sessile growth p10 LB 2 HZI1052 p10_LB_b.CEL Re-analysis of Sample GSM567667 RNA LB early stationary Planktonic static p10 -E-GEOD-25945 GSM637575 1 GSM637575.CEL In vitro P. aeruginosa gene expression from sessile growth p11 LB 1 GBF0928 p11_LB_a.CEL Re-analysis of Sample GSM567676 RNA LB early stationary Planktonic static p11 -E-GEOD-25945 GSM637576 1 GSM637576.CEL In vitro P. aeruginosa gene expression from sessile growth p11 LB 2 GBF0929 p11_LB_b.CEL Re-analysis of Sample GSM567677 RNA LB early stationary Planktonic static p11 -E-GEOD-25945 GSM637577 1 GSM637577.CEL In vitro P. aeruginosa gene expression from sessile growth p17 LB 1 HZI1548 p17_lb_a.CEL Re-analysis of Sample GSM567686 RNA LB early stationary Planktonic static p17 -E-GEOD-25945 GSM637578 1 GSM637578.CEL In vitro P. aeruginosa gene expression from sessile growth p17 LB 2 HZI1549 p17_lb_b.CEL Re-analysis of Sample GSM567687 RNA LB early stationary Planktonic static p17 -E-GEOD-25945 GSM637579 1 GSM637579.CEL In vitro P. aeruginosa gene expression from sessile growth CF1-4 LB 1 HZI1733_Pae_G1a.CEL RNA LB early stationary Planktonic static "CF1, CF2, CF3, CF4" -E-GEOD-25945 GSM637580 1 GSM637580.CEL In vitro P. aeruginosa gene expression from sessile growth CF1-4 LB 2 HZI1737_Pae_G1a.CEL RNA LB early stationary Planktonic static "CF1, CF2, CF3, CF4" -E-GEOD-25945 GSM637581 1 GSM637581.CEL In vitro P. aeruginosa gene expression from sessile growth CFCZ LB 1 HZI2436_Pae_G1a.CEL RNA LB early stationary Planktonic static CFCZ -E-GEOD-25945 GSM637582 1 GSM637582.CEL In vitro P. aeruginosa gene expression from sessile growth CFCZ LB 2 HZI2437_Pae_G1a.CEL RNA LB early stationary Planktonic static CFCZ -E-GEOD-25945 GSM637583 1 GSM637583.CEL Ex vivo P. aeruginosa gene expression from burn wound p10 burn 1 HZI1051 p10_clinical_a.CEL Re-analysis of Sample GSM567668 RNA Ex vivo p10 37 Burn wound human -E-GEOD-25945 GSM637584 1 GSM637584.CEL Ex vivo P. aeruginosa gene expression from burn wound p10 burn 2 HZI1053 p10_clinical_b.CEL Re-analysis of Sample GSM567669 RNA Ex vivo p10 37 Burn wound human -E-GEOD-25945 GSM637585 1 GSM637585.CEL Ex vivo P. aeruginosa gene expression from burn wound p11 burn 1 GBF0930 p11_clinical_a.CEL Re-analysis of Sample GSM567678 RNA Ex vivo p11 37 Burn wound human -E-GEOD-25945 GSM637586 1 GSM637586.CEL Ex vivo P. aeruginosa gene expression from burn wound p11 burn 2 GBF0931 p11_clinical_b.CEL Re-analysis of Sample GSM567679 RNA Ex vivo p11 37 Burn wound human -E-GEOD-25945 GSM637587 1 GSM637587.CEL Ex vivo P. aeruginosa gene expression from burn wound p17 burn 1 HZI1544 p17_clinicA.CEL Re-analysis of Sample GSM567688 RNA Ex vivo p17 37 Burn wound human -E-GEOD-25945 GSM637588 1 GSM637588.CEL Ex vivo P. aeruginosa gene expression from burn wound p17 burn 2 HZI1545 p17_clinic_B.CEL Re-analysis of Sample GSM567689 RNA Ex vivo p17 37 Burn wound human -E-GEOD-25945 GSM637589 1 GSM637589.CEL Ex vivo P. aeruginosa gene expression from CF lung infection CF1-4 CF 1 HZI1734_Pae_G1a.CEL RNA Ex vivo "CF1, CF2, CF3, CF4" 37 "Lung, CF sputum" human -E-GEOD-25945 GSM637590 1 GSM637590.CEL Ex vivo P. aeruginosa gene expression from CF lung infection CF1-4 CF 2 HZI1738_Pae_G1a.CEL RNA Ex vivo "CF1, CF2, CF3, CF4" 37 "Lung, CF sputum" human -E-GEOD-25945 GSM637591 1 GSM637591.CEL Ex vivo P. aeruginosa gene expression from CF lung infection CFCZ CF 1 HZI2391_Pae_G1a.CEL RNA Ex vivo CFCZ 37 "Lung, CF sputum" human -E-GEOD-25945 GSM637592 1 GSM637592.CEL Ex vivo P. aeruginosa gene expression from CF lung infection CFCZ CF 2 HZI2392_Pae_G1a.CEL RNA Ex vivo CFCZ 37 "Lung, CF sputum" human -E-GEOD-25945 GSM637593 1 GSM637593.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p10 tumor 1 p10T23_Pae_G1a.CEL Re-analysis of Sample GSM567672 RNA Ex vivo 24 hrs p10 37 tumor mouse -E-GEOD-25945 GSM637594 1 GSM637594.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p10 tumor 2 p10T23a_Pae_G1a.CEL Re-analysis of Sample GSM567673 RNA Ex vivo 24 hrs p10 37 tumor mouse -E-GEOD-25945 GSM637595 1 GSM637595.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p11 tumor 1 HZI1558 p11_tumor_a.CEL Re-analysis of Sample GSM567682 RNA Ex vivo 24 hrs p11 37 tumor mouse -E-GEOD-25945 GSM637596 1 GSM637596.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p11 tumor 2 HZI1559 p11_tumor_b.CEL Re-analysis of Sample GSM567683 RNA Ex vivo 24 hrs p11 37 tumor mouse -E-GEOD-25945 GSM637597 1 GSM637597.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p17 tumor 1 p17T34_Pae_G1a.CEL Re-analysis of Sample GSM567692 RNA Ex vivo 24 hrs p17 37 tumor mouse -E-GEOD-25945 GSM637598 1 GSM637598.CEL Ex vivo P. aeruginosa gene expression from murine tumor infection p17 tumor 2 p17T34a_Pae_G1a.CEL Re-analysis of Sample GSM567693 RNA Ex vivo 24 hrs p17 37 tumor mouse -E-GEOD-39044 GSM954576 1 GSM954576_Nomura_PA01-1_Pae_G1a_.CEL "PAO1 WT grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 1" RNA Peptone browth WT (PAO1-UW) 0.5 planktonic aerated PAO1 37 -E-GEOD-39044 GSM954577 1 GSM954577_Nomura_PA01-2_Pae_G1a_.CEL "PAO1 WT grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 2" RNA Peptone browth WT (PAO1-UW) 0.5 planktonic aerated PAO1 37 -E-GEOD-39044 GSM954578 1 GSM954578_Nomura_PA01-3_Pae_G1a_.CEL "PAO1 WT grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 3" RNA Peptone browth WT (PAO1-UW) 0.5 planktonic aerated PAO1 37 -E-GEOD-39044 GSM954579 1 GSM954579_Nomura_PA01-4_Pae_G1a_.CEL "PAO1 WT grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 3" RNA Peptone browth WT (PAO1-UW) 0.5 planktonic aerated PAO1 37 -E-GEOD-39044 GSM954580 1 GSM954580_Nomura_PA2449-1_Pae_G1a_.CEL "PAO1 PA2449-E03::ISphoA/hah (PW5126) grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 1" RNA Peptone browth PA2449-E03::ISphoA/hah (PW5126) 0.5 planktonic aerated PAO1 37 Gentamicin -E-GEOD-39044 GSM954581 1 GSM954581_Nomura_PA2449-2_Pae_G1a_.CEL "PAO1 PA2449-E03::ISphoA/hah (PW5126) grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 2" RNA Peptone browth PA2449-E03::ISphoA/hah (PW5126) 0.5 planktonic aerated PAO1 37 Gentamicin -E-GEOD-39044 GSM954582 1 GSM954582_Nomura_PA2449-3_Pae_G1a_.CEL "PAO1 PA2449-E03::ISphoA/hah (PW5126) grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 3" RNA Peptone browth PA2449-E03::ISphoA/hah (PW5126) 0.5 planktonic aerated PAO1 37 Gentamicin -E-GEOD-39044 GSM954583 1 GSM954583_Nomura_PA2449-4_Pae_G1a_.CEL "PAO1 PA2449-E03::ISphoA/hah (PW5126) grown planktonically in peptone broth with aeration to an OD of 0.5 at 37 degrees, replicate 4" RNA Peptone browth PA2449-E03::ISphoA/hah (PW5126) 0.5 planktonic aerated PAO1 37 Gentamicin -E-GEOD-40461 GSM994496 1 GSM994496_PAO1-replicate-01.CEL PAO1 WT. Planktonic. Rep1 RNA LB WT Planktonic Aerated PAO1 37 Grown shaking -E-GEOD-40461 GSM994497 1 GSM994497_PAO1-replicate-02.CEL PAO1 WT. Planktonic. Rep2 RNA LB WT Planktonic Aerated PAO1 37 Grown shaking -E-GEOD-40461 GSM994498 1 GSM994498_PAO1-replicate-03.CEL PAO1 WT. Planktonic. Rep3 RNA LB WT Planktonic Aerated PAO1 37 Grown shaking -E-GEOD-40461 GSM994499 1 GSM994499_HM4-replicate-01.CEL PAHM4 WT. Planktonic. Rep1 RNA LB WT Planktonic Aerated PAHM4 37 Grown shaking -E-GEOD-40461 GSM994500 1 GSM994500_HM4-replicate-02.CEL PAHM4 WT. Planktonic. Rep2 RNA LB WT Planktonic Aerated PAHM4 37 Grown shaking -E-GEOD-40461 GSM994501 1 GSM994501_HM4-replicate-03.CEL PAHM4 WT. Planktonic. Rep3 RNA LB WT Planktonic Aerated PAHM4 37 Grown shaking -E-GEOD-36647 GSM897995 1 GSM897995_MHH0094_Pae_G1a.CEL TBCF10839; replicate 1 RNA LB 1.5 Planktonic TBCF10839 37 early exponential phase cells -E-GEOD-36647 GSM897996 1 GSM897996_MHH0095_Pae_G1a.CEL TBCF10839; replicate 2 RNA LB 1.5 Planktonic TBCF10839 37 early exponential phase cells -E-GEOD-36647 GSM897997 1 GSM897997_MHH0106_Pae_G1a.CEL TBCF121838; replicate 1 RNA LB 1.5 Planktonic TBCF121838 37 early exponential phase cells -E-GEOD-36647 GSM897998 1 GSM897998_MHH0107_Pae_G1a.CEL TBCF121838; replicate 2 RNA LB 1.5 Planktonic TBCF121838 37 early exponential phase cells -E-GEOD-36647 GSM897999 1 GSM897999_MHH0110_Pae_G1a.CEL TBCF10839; replicate 1 RNA LB 3 Planktonic TBCF10839 37 late exponential phase cells -E-GEOD-36647 GSM898000 1 GSM898000_MHH0111_Pae_G1a.CEL TBCF10839; replicate 2 RNA LB 3 Planktonic TBCF10839 37 late exponential phase cells -E-GEOD-36647 GSM898001 1 GSM898001_MHH0122_Pae_G1a.CEL TBCF121838; replicate 1 RNA LB 3 Planktonic TBCF121838 37 late exponential phase cells -E-GEOD-36647 GSM898002 1 GSM898002_MHH0123_Pae_G1a.CEL TBCF121838; replicate 2 RNA LB 3 Planktonic TBCF121838 37 late exponential phase cells -E-GEOD-34836 GSM856031 1 GSM856031_PA01.CEL "PAO1 WT anaerobically grown in LB with 1% KNO3 for 12 hours, single replicate" RNA LBN (LB+1% KNO3) WT 12 hrs Planktonic PAO1 37 anaerobic growth -E-GEOD-34836 GSM856032 1 GSM856032_PA01+V12.CEL "PAO1 WT anaerobically grown in LB with 1% KNO3 and 1 μM vitamin B12 for 12 hours, single replicate" RNA LBN (LB+1% KNO3) with 1 μ vitamin B12 WT 12 hrs Planktonic PAO1 37 anaerobic growth -E-MEXP-3117 pak1 MBU_PAER_pak1.CEL P. aeruginosa PAO1 delta pppA-ppkA control replicate 1 RNA M9 ΔpppA-ppkA 0.8 Planktonic PAO1 37 -E-MEXP-3117 pak2 MBU_PAER_pak2.CEL P. aeruginosa PAO1 delta pppA-ppkA control replicate 2 RNA M9 ΔpppA-ppkA 0.8 Planktonic PAO1 37 -E-MEXP-3117 pakA1 MBU_JGOLD_pakA1.CEL P. aeruginosa PAO1 delta pppA-ppkA + H2O2 for 15 min replicate 1 RNA M9 ΔpppA-ppkA 0.8 Planktonic PAO1 37 10mM H2O2 -E-MEXP-3117 pakA2 MBU_JGOLD_pakA2.CEL P. aeruginosa PAO1 delta pppA-ppkA + H2O2 for 15 min replicate 2 RNA M9 ΔpppA-ppkA 0.8 Planktonic PAO1 37 10mM H2O2 -E-MEXP-3117 PAO11 MBU_JGOLD_PAO11.CEL P. aeruginosa PAO1 WT + H2O2 for 15 min replicate 1 RNA M9 WT 0.8 Planktonic PAO1 37 10mM H2O2 -E-MEXP-3117 PAO12 MBU_JGOLD_PAO12.CEL P. aeruginosa PAO1 WT + H2O2 for 15 min replicate 2 RNA M9 WT 0.8 Planktonic PAO1 37 10mM H2O2 -E-MEXP-3117 PT51 MBU_PAER_PT51.CEL P. aeruginosa PAO1 WT control replicate 1 RNA M9 WT 0.8 Planktonic PAO1 37 -E-MEXP-3117 PT52 MBU_PAER_PT52.CEL P. aeruginosa PAO1 WT control replicate 2 RNA M9 WT 0.8 Planktonic PAO1 37 -E-GEOD-27674 GSM685447 1 GSM685447.CEL "P. aeruginosa, MPAO1_treated with 125μM Protoanemonin_rep1" RNA ABT minimal medium + 0.5% casamino acids WT 2 Planktonic shaking MPAO1 37 125μM Protoanemonin Grown shaking at 250rpm -E-GEOD-27674 GSM685448 1 GSM685448.CEL "P. aeruginosa, MPAO1_treated with 125μM Protoanemonin_rep2" RNA ABT minimal medium + 0.5% casamino acids WT 2 Planktonic shaking MPAO1 37 125μM Protoanemonin Grown shaking at 250rpm -E-GEOD-27674 GSM685449 1 GSM685449.CEL "P. aeruginosa, MPAO1_untreated control_rep1" RNA ABT minimal medium + 0.5% casamino acids WT 2 Planktonic shaking MPAO1 37 Grown shaking at 250rpm -E-GEOD-27674 GSM685450 1 GSM685450.CEL "P. aeruginosa, MPAO1_untreated control_rep2" RNA ABT minimal medium + 0.5% casamino acids WT 2 Planktonic shaking MPAO1 37 Grown shaking at 250rpm -E-GEOD-29665 GSM735748 1 GSM735748_PA14_WT.CEL P. aeruginosa PA14 WT in LB grown for 7 hr in a static biofilm RNA LB WT Biofilm Static biofilm PA14 37 -E-GEOD-29665 GSM735749 1 GSM735749_PA14_WT_adenosine.CEL "P. aeruginosa PA14 WT in LB with 10 mM adenosine, grown for 7 hr in a static biofilm" RNA LB WT Biofilm Static biofilm PA14 37 10 mM adenosine -E-GEOD-29946 GSM741203 1 GSM741203.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY, replicate 1" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 -E-GEOD-29946 GSM741204 1 GSM741204.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY, replicate 2" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 -E-GEOD-29946 GSM741205 1 GSM741205.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY, replicate 3" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 -E-GEOD-29946 GSM741206 1 GSM741206.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate and 200uM of U50,488 (kappa opioid), replicate 1" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "25mM potassium phosphate and 200 uM U-50,488" -E-GEOD-29946 GSM741207 1 GSM741207.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate and 200uM of U50,488 (kappa opioid), replicate 2" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "25mM potassium phosphate and 200 uM U-50,488" -E-GEOD-29946 GSM741208 1 GSM741208.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate and 200uM of U50,488 (kappa opioid), replicate 3" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "25mM potassium phosphate and 200 uM U-50,488" -E-GEOD-29946 GSM741209 1 GSM741209.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 200 uM U-50,488 (kappa opioid) replicate 1" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "200 uM U-50,488" -E-GEOD-29946 GSM741210 1 GSM741210.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 200 uM U-50,488 (kappa opioid) replicate 2" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "200 uM U-50,488" -E-GEOD-29946 GSM741211 1 GSM741211.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 200 uM U-50,488 (kappa opiod) replicate 3" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 "200 uM U-50,488" -E-GEOD-29946 GSM741212 1 GSM741212.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate, replicate 1" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 25mM potassium phosphate -E-GEOD-29946 GSM741213 1 GSM741213.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate, replicate 2" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 25mM potassium phosphate -E-GEOD-29946 GSM741214 1 GSM741214.CEL "P. aeruginosa PAO1 WT grown for 7 hrs at 37 in 0.1xTY + 25 mM potassium phosphate, replicate 3" RNA TY (0.1x) WT 0.25 Planktonic Shaking MPAO1 37 25mM potassium phosphate -E-GEOD-34762 GSM854792 1 GSM854792.CEL PAO1 WT; top 50 um; replicate 1 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854793 1 GSM854793.CEL PAO1 WT; bottom 50 um; replicate 1 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854794 1 GSM854794.CEL PAO1 WT; top 50 um; replicate 2 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854795 1 GSM854795.CEL PAO1 WT; bottom 50 um; replicate 2 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854796 1 GSM854796.CEL PAO1 WT; top 50 um; replicate 3 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854797 1 GSM854797.CEL PAO1 WT; bottom 50 um; replicate 3 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854798 1 GSM854798.CEL PAO1 WT; top 50 um; replicate 4 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854799 1 GSM854799.CEL PAO1 WT; bottom 50 um; replicate 4 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854800 1 GSM854800.CEL PAO1 WT; top 50 um; replicate 5 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-34762 GSM854801 1 GSM854801.CEL PAO1 WT; bottom 50 um; replicate 5 RNA TSA WT Colony Biofilm PAO1 37 52 hours; polycarbonate membrane; 50 um of biofilm -E-GEOD-35286 GSM717419 1 GSM717419.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep1" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-35286 GSM717420 1 GSM717420.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep2" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-35286 GSM717421 1 GSM717421.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep3" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-35286 GSM865129 1 GSM865129_schurr_5511_Pae_G1a_.CEL PAO1 ΔmifR grown as a biofilm in a flow cell with single flow through minimal media with 10 mM glutamate grown for 6 days at room temperature RNA minimal media with 10mM glutamate ΔmifR (PA5511) 6 days biofilm flow cell PAO1 25 -E-GEOD-35286 GSM865130 1 GSM865130_schurr_5511_1_Pae_G1a_.CEL PAO1 ΔmifR grown as a biofilm in a flow cell with single flow through minimal media with 10 mM glutamate grown for 6 days at room temperature RNA minimal media with 10mM glutamate ΔmifR (PA5511) 6 days biofilm flow cell PAO1 25 -E-GEOD-35286 GSM865131 1 GSM865131_schurr_5511_3_Pae_G1a_.CEL PAO1 ΔmifR grown as a biofilm in a flow cell with single flow through minimal media with 10 mM glutamate grown for 6 days at room temperature RNA minimal media with 10mM glutamate ΔmifR (PA5511) 6 days biofilm flow cell PAO1 25 -E-GEOD-32032 GSM794226 1 GSM794226_A27.CEL "P. aeruginosa PA14 WT cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 1" RNA M63 + 0.4% arginine and 1 mM MgSO4 WT Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-32032 GSM794227 1 GSM794227_A28.CEL "P. aeruginosa PA14 WT cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 2" RNA M63 + 0.4% arginine and 1 mM MgSO4 WT Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-32032 GSM794228 1 GSM794228_A29.CEL "P. aeruginosa PA14 WT cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 3" RNA M63 + 0.4% arginine and 1 mM MgSO4 WT Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-32032 GSM794229 1 GSM794229_A30.CEL "P. aeruginosa PA14 ndvB knockout cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 1" RNA M63 + 0.4% arginine and 1 mM MgSO4 ΔndvB Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-32032 GSM794230 1 GSM794230_A31.CEL "P. aeruginosa PA14 ndvB knockout cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 2" RNA M63 + 0.4% arginine and 1 mM MgSO4 ΔndvB Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-32032 GSM794231 1 GSM794231_A32.CEL "P. aeruginosa PA14 ndvB knockout cells were grown in Kadouri drip-fed biofilms on polystyrene plates in M63 medium supplemented with 0.4% arginine for 48 hours, replicate 3" RNA M63 + 0.4% arginine and 1 mM MgSO4 ΔndvB Biofilm Kadouri drip-fed PA14 37 48 hours -E-GEOD-33245 GSM822689 1 GSM822689_wtBSM_A.CEL PAO1 WT; control; replicate 1 RNA BSM w/ 40 mM succinate WT 1.6 Planktonic Aerated PAO1 37 40 mM succinate shaking -E-GEOD-33245 GSM822690 1 GSM822690_wtBSM_B.CEL PAO1 WT; control; replicate 2 RNA BSM w/ 40 mM succinate WT 1.6 Planktonic Aerated PAO1 37 40 mM succinate shaking -E-GEOD-33245 GSM822691 1 GSM822691_delta_crcBSM_A.CEL PAO1 Δcrc; replicate 1 RNA BSM w/ 40 mM succinate Δcrc (PAO6673) 1.6 Planktonic Aerated PAO6673 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822692 1 GSM822692_delta_crcBSM_B.CEL PAO1 Δcrc; replicate 2 RNA BSM w/ 40 mM succinate Δcrc (PAO6673) 1.6 Planktonic Aerated PAO6673 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822693 1 GSM822693_delta_cbrBBSM_A.CEL PAO1 ΔcbrB; replicate 1 RNA BSM w/ 40 mM succinate ΔcbrB (PAO66711) 1.6 Planktonic Aerated PAO66711 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822694 1 GSM822694_delta_cbrBBSM_B.CEL PAO1 ΔcbrB; replicate 2 RNA BSM w/ 40 mM succinate ΔcbrB (PAO66711) 1.6 Planktonic Aerated PAO66711 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822695 1 GSM822695_delta_crcZBSM_A.CEL PAO1 ΔcbcZ; replicate 1 RNA BSM w/ 40 mM succinate ΔcrcZ (PAO6679) 1.6 Planktonic Aerated PAO6679 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822696 1 GSM822696_delta_crcZBSM_B.CEL PAO1 ΔcbcZ; replicate 2 RNA BSM w/ 40 mM succinate ΔcrcZ (PAO6679) 1.6 Planktonic Aerated PAO6679 (PAO1) 37 40 mM succinate shaking -E-GEOD-33245 GSM822708 1 GSM822708_wtLB_A.CEL "PAO1 WT grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 1" RNA LB WT 1.6 Planktonic aerated PAO1 37 -E-GEOD-33245 GSM822709 1 GSM822709_wtLB_B.CEL "PAO1 WT grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 2" RNA LB WT 1.6 Planktonic aerated PAO1 37 -E-GEOD-33245 GSM822710 1 GSM822710_delta_crcLB_A.CEL "PAO1 Δcrc grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 1" RNA LB Δcrc (PAO6673) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33245 GSM822711 1 GSM822711_delta_crcLB_B.CEL "PAO1 Δcrc grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 2" RNA LB Δcrc (PAO6673) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33245 GSM822712 1 GSM822712_delta_cbrBLB_A.CEL "PAO1 ΔcbrB grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 1" RNA LB ΔcbrB (PAO66711) 1.6 Planktonic aerated PAO1 37 There is a typo in GEO. PAO6711 is labeled PAO66711 -E-GEOD-33245 GSM822713 1 GSM822713_delta_cbrBLB_B.CEL "PAO1 ΔcbrB grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 2" RNA LB ΔcbrB (PAO66711) 1.6 Planktonic aerated PAO1 37 There is a typo in GEO. PAO6711 is labeled PAO66711 -E-GEOD-33245 GSM822714 1 GSM822714_delta_crcZLB_A.CEL "PAO1 ΔcrcZ grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 1" RNA LB ΔcrcZ (PAO6679) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33245 GSM822715 1 GSM822715_delta_crcZLB_B.CEL "PAO1 ΔcrcZ grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 2" RNA LB ΔcrcZ (PAO6679) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33275 GSM823341 1 GSM823341.CEL P. aeruginosa isolate CJ-1d grown on Nematode Growth Medium (NGM) (replicate A) RNA NGM agar colony lawn on plate CF clinical isolate 25 No information provided to tie Samples to any run. -E-GEOD-33275 GSM823342 1 GSM823342.CEL P. aeruginosa isolate CJ-1d grown on Nematode Growth Medium (NGM) (replicate B) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823343 1 GSM823343.CEL P. aeruginosa isolate CJ-2009a grown on Nematode Growth Medium (NGM) (replicate A) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823344 1 GSM823344.CEL P. aeruginosa isolate CJ-2009a grown on Nematode Growth Medium (NGM) (replicate B) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823345 1 GSM823345.CEL P. aeruginosa isolate BBa grown on Nematode Growth Medium (NGM) (replicate A) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823346 1 GSM823346.CEL P. aeruginosa isolate BBa grown on Nematode Growth Medium (NGM) (replicate B) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823347 1 GSM823347.CEL P. aeruginosa isolate BB2009a grown on Nematode Growth Medium (NGM) (replicate A) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33275 GSM823348 1 GSM823348.CEL P. aeruginosa isolate BB2009a grown on Nematode Growth Medium (NGM) (replicate B) RNA NGM agar colony lawn on plate CF clinical isolate 25 -E-GEOD-33244 GSM822708 1 GSM822708_wtLB_A.CEL "PAO1 WT grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 1" RNA LB WT 1.6 Planktonic aerated PAO1 37 -E-GEOD-33244 GSM822709 1 GSM822709_wtLB_B.CEL "PAO1 WT grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 2" RNA LB WT 1.6 Planktonic aerated PAO1 37 -E-GEOD-33244 GSM822710 1 GSM822710_delta_crcLB_A.CEL "PAO1 Δcrc grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 1" RNA LB Δcrc (PAO6673) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33244 GSM822711 1 GSM822711_delta_crcLB_B.CEL "PAO1 Δcrc grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 2" RNA LB Δcrc (PAO6673) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33244 GSM822712 1 GSM822712_delta_cbrBLB_A.CEL "PAO1 ΔcbrB grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 1" RNA LB ΔcbrB (PAO66711) 1.6 Planktonic aerated PAO1 37 There is a typo in GEO. PAO6711 is labeled PAO66711 -E-GEOD-33244 GSM822713 1 GSM822713_delta_cbrBLB_B.CEL "PAO1 ΔcbrB grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 2" RNA LB ΔcbrB (PAO66711) 1.6 Planktonic aerated PAO1 37 There is a typo in GEO. PAO6711 is labeled PAO66711 -E-GEOD-33244 GSM822714 1 GSM822714_delta_crcZLB_A.CEL "PAO1 ΔcrcZ grown planktonicall with aeration at 37 degrees to an OD of 1.6 inLB, replicate 1" RNA LB ΔcrcZ (PAO6679) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33244 GSM822715 1 GSM822715_delta_crcZLB_B.CEL "PAO1 ΔcrcZ grown planktonicall with aeration at 37 degrees to an OD of 1.6 in LB, replicate 2" RNA LB ΔcrcZ (PAO6679) 1.6 Planktonic aerated PAO1 37 -E-GEOD-33241 GSM822689 1 GSM822689_wtBSM_A.CEL PAO1 WT; control; replicate 1 RNA BSM w/ 40 mM succinate WT 1.6 Planktonic Aerated PAO1 37 40 mM succinate shaking -E-GEOD-33241 GSM822690 1 GSM822690_wtBSM_B.CEL PAO1 WT; control; replicate 2 RNA BSM w/ 40 mM succinate WT 1.6 Planktonic Aerated PAO1 37 40 mM succinate shaking -E-GEOD-33241 GSM822691 1 GSM822691_delta_crcBSM_A.CEL PAO1 Δcrc; replicate 1 RNA BSM w/ 40 mM succinate Δcrc (PAO6673) 1.6 Planktonic Aerated PAO6673 (PAO1) 37 40 mM succinate shaking -E-GEOD-33241 GSM822692 1 GSM822692_delta_crcBSM_B.CEL PAO1 Δcrc; replicate 2 RNA BSM w/ 40 mM succinate Δcrc (PAO6673) 1.6 Planktonic Aerated PAO6673 (PAO1) 37 40 mM succinate shaking -E-GEOD-33241 GSM822693 1 GSM822693_delta_cbrBBSM_A.CEL PAO1 ΔcbrB; replicate 1 RNA BSM w/ 40 mM succinate ΔcbrB (PAO66711) 1.6 Planktonic Aerated PAO66711 (PAO1) 37 40 mM succinate shaking -E-GEOD-33241 GSM822694 1 GSM822694_delta_cbrBBSM_B.CEL PAO1 ΔcbrB; replicate 2 RNA BSM w/ 40 mM succinate ΔcbrB (PAO66711) 1.6 Planktonic Aerated PAO66711 (PAO1) 37 40 mM succinate shaking -E-GEOD-33241 GSM822695 1 GSM822695_delta_crcZBSM_A.CEL PAO1 ΔcbcZ; replicate 1 RNA BSM w/ 40 mM succinate ΔcrcZ (PAO6679) 1.6 Planktonic Aerated PAO6679 (PAO1) 37 40 mM succinate shaking -E-GEOD-33241 GSM822696 1 GSM822696_delta_crcZBSM_B.CEL PAO1 ΔcbcZ; replicate 2 RNA BSM w/ 40 mM succinate ΔcrcZ (PAO6679) 1.6 Planktonic Aerated PAO6679 (PAO1) 37 40 mM succinate shaking -E-GEOD-33188 GSM821495 1 GSM821495.CEL "P. aeruginosa PAO1, gene expression data from wild type cells unexposed to ß-lactams_rep1" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821496 1 GSM821496.CEL "P. aeruginosa PAO1, gene expression data from wild type cells unexposed to ß-lactams_rep2" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821497 1 GSM821497.CEL "P. aeruginosa PAO1, gene expression data from wild type cells unexposed to ß-lactams_rep3" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821498 1 GSM821498.CEL "P. aeruginosa PAO1, gene expression data from wild type cells exposed to sub-MIC ß-lactams_rep1" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821499 1 GSM821499.CEL "P. aeruginosa PAO1, gene expression data from wild type cells exposed to sub-MIC ß-lactams_rep2" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821500 1 GSM821500.CEL "P. aeruginosa PAO1, gene expression data from wild type cells exposed to sub-MIC ß-lactams_rep3" RNA LB WT 0.6 Planktonic Aerated PAO1 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821501 1 GSM821501.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells unexposed to ß-lactams_rep1" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821502 1 GSM821502.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells unexposed to ß-lactams_rep2" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821503 1 GSM821503.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells unexposed to ß-lactams_rep3" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821504 1 GSM821504.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells exposed to sub-MIC ß-lactams_rep1" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821505 1 GSM821505.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells exposed to sub-MIC ß-lactams_rep2" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-33188 GSM821506 1 GSM821506.CEL "P. aeruginosa PKM315 (ΔampR), gene expression data from mutant cells exposed to sub-MIC ß-lactams_rep3" RNA LB ΔampR 0.6 Planktonic Aerated PKM315 (PAO1) 37 2-hour ß-lactam (100μg/ml penicillin G potassium salt) exposure 2 hours; baffled flask; mid log pahse cells; 300 rpm -E-GEOD-36753 GSM900177 1 GSM900177_F1_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with 1 μg/mL of BF8 (Furanone) for 1 hour before harvesting, replicate 1" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-36753 GSM900178 1 GSM900178_C1_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with the equivalent of 1 μg/mL EtOH as a control for 1 hour before harvesting, replicate 1" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-36753 GSM900179 1 GSM900179_F2_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with 1 μg/mL of BF8 (Furanone) for 1 hour before harvesting, replicate 2" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-36753 GSM900180 1 GSM900180_C2_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with the equivalent of 1 μg/mL EtOH as a control for 1 hour before harvesting, replicate 2" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-36753 GSM900181 1 GSM900181_F3_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with 1 μg/mL of BF8 (Furanone) for 1 hour before harvesting, replicate 3" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-36753 GSM900182 1 GSM900182_C3_Pae_G1a_.CEL "PAO1 WT grown planktonically at 37 degrees in LB then treated with Ciprofloxacin to isolate persister cells. Persister cells were treated with the equivalent of 1 μg/mL EtOH as a control for 1 hour before harvesting, replicate 3" RNA LB WT 18 hrs planktonic aerated PAO1 37 200 μg/mL Ciprofloxacin Ciprofloxacin treatment used to isolate persister cells persister cells -E-GEOD-35248 GSM864516 1 GSM864516.CEL Pseudomonas aeruginosa PAO1 ΔkinB grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep1 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB colony streaked on plate PAO1 37 GentR -E-GEOD-35248 GSM864517 1 GSM864517.CEL Pseudomonas aeruginosa PAO1 ΔkinB grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep2 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB colony streaked on plate PAO1 37 GentR -E-GEOD-35248 GSM864518 1 GSM864518.CEL Pseudomonas aeruginosa PAO1 ΔkinB grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep3 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB colony streaked on plate PAO1 37 GentR -E-GEOD-35248 GSM864519 1 GSM864519.CEL Pseudomonas aeruginosa PAO1 ΔkinB ΔrpoN grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep1 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB ΔrpoN colony streaked on plate PAO1 37 GentR -E-GEOD-35248 GSM864520 1 GSM864520.CEL Pseudomonas aeruginosa PAO1 ΔkinB ΔrpoN grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep2 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB ΔrpoN colony streaked on plate PAO1 37 GentR -E-GEOD-35248 GSM864521 1 GSM864521.CEL Pseudomonas aeruginosa PAO1 ΔkinB ΔrpoN grown 16 hrs on PIA supplemented with 150 µg/ml gentamicin at 37°C_rep3 RNA PIA supplemented with 150 µg/ml gentamicin ΔkinB ΔrpoN colony streaked on plate PAO1 37 GentR -E-MEXP-3459 Fe02 A Pae_Fe02_13.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl2 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen); replicate 1" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(II) 30 min exposure -E-MEXP-3459 Fe02 B Pae_Fe02_14.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl2 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen) replicate 2" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(II) 30 min exposure -E-MEXP-3459 Fe02 C Pae_Fe02_15.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl2 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen); replicate 3" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(II) 30 min exposure -E-MEXP-3459 Fe03 A Pae_Fe03_16.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl3 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen); replicate 1" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(III) 30 min exposure -E-MEXP-3459 Fe03 B Pae_Fe03_17.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl3 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen); replicate 2" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(III) 30 min exposure -E-MEXP-3459 Fe03 C Pae_Fe03_18.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). ?M FeCl3 was added to the cultures. Iron concentrations were calculated by weight, assuming 100% purity of) stocks. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen) replicate 3" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 100 µM Fe(III) 30 min exposure -E-MEXP-3459 noFe A Pae_noFe_10.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). Water was added to the cultures. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen; ); replicate 1" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 30 min exposure -E-MEXP-3459 noFe B Pae_noFe_11.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). Water was added to the cultures. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen; ); replicate 2" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 30 min exposure -E-MEXP-3459 noFe C Pae_noFe_12.CEL "P. aeruginosa PA14 was grown anaerobically in MMM (minimal metal medium) at 37 °C until they reached exponential phase (OD500 of 0.3), at which time they were removed from the incubator and were taken into the anaerobic chamber containing a gas mix of 5% H2 and 95% N2 (Coy Laboratory Products). Water was added to the cultures. The cultures were vortexed every 5 min over a 30 min period, after which 5 mL of culture was removed and mixed with 10 mL of Bacterial RNAprotect (Qiagen; ); replicate 3" RNA "Minimal metal medium with 50 mM glutamate, 1% glycerol, 100 mM KNO3" WT 0.3 Planktonic anaerobic PA14 37 30 min exposure -E-GEOD-24036 GSM591496 1 GSM591496.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 1" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24036 GSM591601 1 GSM591601.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 2" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24036 GSM591602 1 GSM591602.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB, no treatment control, replicate 3" RNA LB WT 2 Planktonic Shaking PA14 37 no treatment -E-GEOD-24036 GSM591603 1 GSM591603.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB with 2-AA (3mM), replicate 1" RNA LB WT 2 Planktonic Shaking PA14 37 2-AA (3mM) -E-GEOD-24036 GSM591622 1 GSM591622.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB with 2-AA (3mM), replicate 2" RNA LB WT 2 Planktonic Shaking PA14 37 2-AA (3mM) -E-GEOD-24036 GSM591623 1 GSM591623.CEL "Pseudomonas aeruginosa PA14 WT, grown in LB with 2-AA (3mM), replicate 3" RNA LB WT 2 Planktonic Shaking PA14 37 2-AA (3mM) -E-GEOD-24036 GSM591624 1 GSM591624.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 1" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM591625 1 GSM591625.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 2" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM591627 1 GSM591627.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB, no treatment control, replicate 3" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 no treatment Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM597216 1 GSM597216.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB with 2-AA (3mM), replicate 1" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 2-AA (3mM) Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM597217 1 GSM597217.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB with 2-AA (3mM), replicate 2" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 2-AA (3mM) Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM597218 1 GSM597218.CEL "Pseudomonas aeruginosa PA14 topA mutant, grown in LB with 2-AA (3mM), replicate 3" RNA LB topA::TnM 2 Planktonic Shaking PA14 37 2-AA (3mM) Lacks Topoisomerase I Gentamicin -E-GEOD-24036 GSM597219 1 GSM597219.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB, no treatment control, replicate 1" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 no treatment No HAQs production -E-GEOD-24036 GSM597220 1 GSM597220.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB, no treatment control, replicate 2" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 no treatment No HAQs production -E-GEOD-24036 GSM597221 1 GSM597221.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB, no treatment control, replicate 3" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 no treatment No HAQs production -E-GEOD-24036 GSM597329 1 GSM597329.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB with 2-AA (3mM), replicate 1" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 2-AA (3mM) No HAQs production -E-GEOD-24036 GSM597330 1 GSM597330.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB with 2-AA (3mM), replicate 2" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 2-AA (3mM) No HAQs production -E-GEOD-24036 GSM597331 1 GSM597331.CEL "Pseudomonas aeruginosa PA14 pqsA mutant, grown in LB with 2-AA (3mM), replicate 3" RNA LB ΔpqsA 2 Planktonic Shaking PA14 37 2-AA (3mM) No HAQs production -E-GEOD-28719 GSM711446 1 GSM711446.CEL PAO1 ΔPA1006; control; replicate 1 RNA NY ΔPA1006 1.2 Planktonic Aerated PAO1 37 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711447 1 GSM711447.CEL PAO1 ΔPA1006; control; replicate 2 RNA NY ΔPA1006 1.2 Planktonic Aerated PAO1 37 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711448 1 GSM711448.CEL PAO1 WT; control; replicate 1 RNA NY WT 1.2 Planktonic Aerated PAO1 37 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711449 1 GSM711449.CEL PAO1 WT; control; replicate 2 RNA NY WT 1.2 Planktonic Aerated PAO1 37 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711450 1 GSM711450.CEL PAO1 ΔPA1006; 100 mM KNO3; replicate 1 RNA NY ΔPA1006 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711451 1 GSM711451.CEL PAO1 ΔPA1006; 100 mM KNO3; replicate 2 RNA NY ΔPA1006 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711452 1 GSM711452.CEL PAO1 ΔPA1006; 100 mM KNO3; replicate 3 RNA NY ΔPA1006 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711453 1 GSM711453.CEL PAO1 WT; 100 mM KNO3; replicate 1 RNA NY WT 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711454 1 GSM711454.CEL PAO1 WT; 100 mM KNO3; replicate 2 RNA NY WT 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-28719 GSM711455 1 GSM711455.CEL PAO1 WT; 100 mM KNO3; replicate 3 RNA NY WT 1.2 Planktonic Aerated PAO1 37 100 mM KNO3 Early stationary phase cells; shaking at 250 rpm -E-GEOD-34141 GSM842839 1 GSM842839_Wright_1_WT-log-1_Pae_G1a.CEL PAO1 WT; control; replicate 1 RNA Iron poor CAA WT Planktonic PAO1 37 24 hours; early stationary phase cells -E-GEOD-34141 GSM842840 1 GSM842840_Wright_2_WT-log-2_Pae_G1a.CEL PAO1 WT; control; replicate 2 RNA Iron poor CAA WT Planktonic PAO1 37 24 hours; early stationary phase cells -E-GEOD-34141 GSM842841 1 GSM842841_Wright_3_WT-log-3_Pae_G1a.CEL PAO1 WT; control; replicate 3 RNA Iron poor CAA WT Planktonic PAO1 37 24 hours; early stationary phase cells -E-GEOD-34141 GSM842842 1 GSM842842_Wright_4_WT-stat-1_Pae_G1a.CEL PAO1 WT; control; replicate 1 RNA Iron poor CAA WT Planktonic PAO1 37 48 hours; late stationary phase cells -E-GEOD-34141 GSM842843 1 GSM842843_Wright_5_WT-stat-2_Pae_G1a.CEL PAO1 WT; control; replicate 2 RNA Iron poor CAA WT Planktonic PAO1 37 48 hours; late stationary phase cells -E-GEOD-34141 GSM842844 1 GSM842844_Wright_6_WT-stat-3_Pae_G1a.CEL PAO1 WT; control; replicate 3 RNA Iron poor CAA WT Planktonic PAO1 37 48 hours; late stationary phase cells -E-GEOD-34141 GSM842845 1 GSM842845_Wright_7_4203-log-1_Pae_G1a.CEL PAO-SCV; replicate 1 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 24 hours; early stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-34141 GSM842846 1 GSM842846_Wright_8_4203-log-2_Pae_G1a.CEL PAO-SCV; replicate 2 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 24 hours; early stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-34141 GSM842847 1 GSM842847_Wright_9_4203-log-3_Pae_G1a.CEL PAO-SCV; replicate 3 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 24 hours; early stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-34141 GSM842848 1 GSM842848_Wright_10_4203-stat-1_Pae_G1a.CEL PAO-SCV; replicate 1 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 48 hours; late stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-34141 GSM842849 1 GSM842849_Wright_11_4203-stat-2_Pae_G1a.CEL PAO-SCV; replicate 2 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 48 hours; late stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-34141 GSM842850 1 GSM842850_Wright_12_4203-stat-3_Pae_G1a.CEL PAO-SCV; replicate 3 RNA Iron poor CAA PAO-SCV Planktonic PAO1 37 48 hours; late stationary phase cells "SCV, QS + motility defective" GentR -E-GEOD-26932 GSM663165 1 GSM663165_Mix_label_cDNA_5-13-08_s2.CEL E. coli MG1655 and P. aeruginosa PAO1 culture rep1 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking E. coli MG1655 37 "mixed with P. aeruginosa PA01, ratio 1:1" analyzed with Affymetrix E. coli Genome 2.0 Array P. aeruginosa PA01 Bacteria -E-GEOD-26932 GSM663166 1 GSM663166_BM-Mix-Ec2_6-6-08_s1.CEL E. coli MG1655 and P. aeruginosa PAO1 culture rep2 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking E. coli MG1655 37 "mixed with P. aeruginosa PA01, ratio 1:1" analyzed with Affymetrix E. coli Genome 2.0 Array P. aeruginosa PA01 Bacteria -E-GEOD-26932 GSM663167 1 GSM663167_Ec_label_cDNA_5-13-08_s2.CEL E. coli MG1655 culture rep1 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking E. coli MG1655 37 analyzed with Affymetrix E. coli Genome 2.0 Array -E-GEOD-26932 GSM663168 1 GSM663168_BM-Mix-Pa_1_6-6-08_s1.CEL P. aeruginosa PAO1 and E. coli MG1655 culture rep1 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking PAO1 37 "mixed with E. coli MG1655, ratio 1:1" E. coli MG1655 Bacteria -E-GEOD-26932 GSM663169 1 GSM663169_BM-Mix-Pa_2_6-6-08_s1.CEL P. aeruginosa PAO1 and E. coli MG1655 culture rep2 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking PAO1 37 "mixed with E. coli MG1655, ratio 1:1" E. coli MG1655 Bacteria -E-GEOD-26932 GSM663170 1 GSM663170_Pa_label_cDNA_5-13-08_s2.CEL P. aeruginosa PAO1 pure culture rep1 RNA MOPS minimal media with N-acetyl glucosamine WT 0.5 Planktonic shaking PAO1 37 -E-GEOD-26142 GSM641845 1 GSM641845.CEL "Pseudomonas aeruginosa, MPAO1 (PA3726::ISlacZ/hah)_untreated_rep1" RNA M63 + 0.5% casamino acids and 0.3% glucose PA3726::lacZ (UW-14479) 0.3 Planktonic shaking MPAO1 [SAH108] 37 -E-GEOD-26142 GSM641846 1 GSM641846.CEL "Pseudomonas aeruginosa, MPAO1 (PA3726::ISlacZ/hah)_untreated_rep2" RNA M63 + 0.5% casamino acids and 0.3% glucose PA3726::lacZ (UW-14479) 0.3 Planktonic shaking MPAO1 [SAH108] 37 -E-GEOD-26142 GSM641847 1 GSM641847.CEL "Pseudomonas aeruginosa, MPAO1 (WT [SAH502])_untreated_rep1" RNA M63 + 0.5% casamino acids and 0.3% glucose WT 0.3 Planktonic shaking MPAO1 [SAH502] 37 -E-GEOD-26142 GSM641848 1 GSM641848.CEL "Pseudomonas aeruginosa, MPAO1 (WT [SAH087])_untreated_rep1" RNA M63 + 0.5% casamino acids and 0.3% glucose WT 0.3 Planktonic shaking MPAO1 [SAH087] 37 -E-GEOD-26142 GSM641849 1 GSM641849.CEL "Pseudomonas aeruginosa, MPAO1 (PA0311::phoA)_untreated_rep1" RNA M63 + 0.5% casamino acids and 0.3% glucose PA0311::phoA (UW-50363) 0.3 Planktonic shaking MPAO1 [SAH084] 37 "allegedly a WT, but in strain list not declared as WT" -E-GEOD-26931 GSM663157 1 GSM663157_02_mix_2w1_e_coli_5-10-07_S2.CEL E. coli ZK126 and P. aeruginosa PAO1 culture rep1 RNA LB WT 0.3 Planktonic shaking E.coli ZK126 37 "mixed with P. aeruginosa PA01, ratio 1:1" analyzed with Affymetrix E. coli Genome 2.0 Array P. aeruginosa PA01 Bacteria -E-GEOD-26931 GSM663158 1 GSM663158_E_coli_mix2_5-22-07_S2.CEL E. coli ZK126 and P. aeruginosa PAO1 culture rep2 RNA LB WT 0.3 Planktonic shaking E. coli ZK126 37 "mixed with P. aeruginosa PA01, ratio 1:1" analyzed with Affymetrix E. coli Genome 2.0 Array P. aeruginosa PA01 Bacteria -E-GEOD-26931 GSM663159 1 GSM663159_01_e_coli_5-10-07_S2.CEL E. coli ZK126 pure culture rep1 RNA LB WT 0.3 Planktonic shaking E.coli ZK126 37 analyzed with Affymetrix E. coli Genome 2.0 Array -E-GEOD-26931 GSM663160 1 GSM663160_E_coli_5-22-07_S2.CEL E. coli ZK126 pure culture rep2 RNA LB WT 0.3 Planktonic shaking E. coli ZK126 37 analyzed with Affymetrix E. coli Genome 2.0 Array -E-GEOD-26931 GSM663161 1 GSM663161_03_mix_1wP_Pae_5-10-07_S2.CEL P. aeruginosa PAO1 and E. coli ZK126 culture rep1 RNA LB WT 0.3 Planktonic shaking PAO1 37 "mixed with E. coli ZK126, ratio 1:1" E. coli ZK126 Bacteria -E-GEOD-26931 GSM663162 1 GSM663162_Pae-Mix-1_5-22-07_S2.CEL P. aeruginosa PAO1 and E. coli ZK126 culture rep2 RNA LB WT 0.3 Planktonic shaking PAO1 37 "mixed with E. coli ZK126, ratio 1:1" E. coli ZK126 Bacteria -E-GEOD-26931 GSM663163 1 GSM663163_04_Pae_5-10-07_S2.CEL P. aeruginosa PAO1 pure culture rep1 RNA LB WT 0.3 Planktonic shaking PAO1 37 -E-GEOD-26931 GSM663164 1 GSM663164_Pae_5-22-07_S2.CEL P. aeruginosa PAO1 pure culture rep2 RNA LB WT 0.3 Planktonic shaking PAO1 37 -E-GEOD-25481 GSM625973 1 GSM625973.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient I, isolate I1NM, mutidrug resistant" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking I1NM 37 amikacin and ticarcillin resistant "Non-mucoid, mutator" -E-GEOD-25481 GSM625974 1 GSM625974.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient I, isolate I2M1, mutidrug resistant" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking I2M1 37 "ciprofloxacin, amikacin and ticarcillin resistant" "Mucoid, mutator, " -E-GEOD-25481 GSM625975 1 GSM625975.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient I, isolate I3M1" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking I3M1 37 amikacin resistant Mucoid -E-GEOD-25481 GSM625976 1 GSM625976.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient I, isolate I3M2, mutidrug resistant" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking I3M2 37 "ciprofloxacin, amikacin and ticarcillin resistant" Mucoid -E-GEOD-25481 GSM625977 1 GSM625977.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient I, isolate I4NM, mutidrug resistant" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking I4NM 37 amikacin and ticarcillin resistant Non-mucoid -E-GEOD-25481 GSM625978 1 GSM625978.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient M, isolate M1M" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking M1M 37 Mucoid -E-GEOD-25481 GSM625979 1 GSM625979.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient M, isolate M2NM" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking M2NM 37 Non-mucoid -E-GEOD-25481 GSM625980 1 GSM625980.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient M, isolate M3M1" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking M3M2 37 Mucoid -E-GEOD-25481 GSM625981 1 GSM625981.CEL "Pseudomonas aeruginosa clinical isolate from the CF lung, Patient M, isolate M3M1" DNA Pseudomonas F broth Clinical isolate Stationary Planktonic Shaking M3M1 37 Mucoid -E-GEOD-25481 GSM625982 1 GSM625982.CEL PA01 control strain DNA Pseudomonas F broth WT Stationary Planktonic Shaking PAO1 37 -E-GEOD-29789 GSM738261 1 GSM738261.CEL PAO1 WT; pH 6.0; replicate 1 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 6.0 20 hours -E-GEOD-29789 GSM738262 1 GSM738262.CEL PAO1 WT; pH 6.0; replicate 2 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 6.0 20 hours -E-GEOD-29789 GSM738263 1 GSM738263.CEL PAO1 WT; pH 6.0; replicate 3 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 6.0 20 hours -E-GEOD-29789 GSM738264 1 GSM738264.CEL PAO1 WT; pH 7.5; replicate 1 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 7.5 20 hours -E-GEOD-29789 GSM738265 1 GSM738265.CEL PAO1 WT; pH 7.5; replicate 2 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 7.5 20 hours -E-GEOD-29789 GSM738266 1 GSM738266.CEL PAO1 WT; pH 7.5; replicate 3 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 pH 7.5 20 hours -E-GEOD-24262 GSM596626 1 GSM596626.CEL RNA extracted from planktonic cells of PA14_WT after 2 hr growth after adding 50uM C30 in QSM (OS minimal medium + 0.1% Adenosine as carbon source) when OD600 reaches 0.25. RNA QSM medium (OS minimal medium + 0.1% Adenosine as carbon source) WT 0.25 Planktonic Shaking PA14 37 C30 50 µM_2hrs -E-GEOD-24262 GSM596819 1 GSM596819.CEL RNA extracted from planktonic cells of PA14_mexR after 2 hr growth after adding 50uM C30 in QSM (OS minimal medium + 0.1% Adenosine as carbon source) when OD600 reaches 0.25. RNA QSM medium (OS minimal medium + 0.1% Adenosine as carbon source) mexR mutant 0.25 Planktonic Shaking PA14 37 C30 50 µM_2hrs gent -E-GEOD-23007 GSM567666 1 GSM567666.CEL PBCLOp10. Planktonic in LB. Rep1 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp10 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567667 1 GSM567667.CEL PBCLOp10. Planktonic in LB. Rep2 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp10 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567668 1 GSM567668.CEL PBCLOp10. Sample directly from human burn wound. Rep1 RNA Human tissue WT Clinical isolate PBCLOp10 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567669 1 GSM567669.CEL PBCLOp10. Sample directly from human burn wound. Rep2 RNA Human tissue WT Clinical isolate PBCLOp10 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567670 1 GSM567670.CEL PBCLOp10. Biofilm on plastic. Rep1 RNA 10% LB WT Clinical isolate PBCLOp10 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567671 1 GSM567671.CEL PBCLOp10. Biofilm on plastic. Rep2 RNA 10% LB WT Clinical isolate PBCLOp10 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567672 1 GSM567672.CEL PBCLOp10. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep1 RNA Mouse tumor tissue WT Clinical isolate PBCLOp10 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567673 1 GSM567673.CEL PBCLOp10. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep2 RNA Mouse tumor tissue WT Clinical isolate PBCLOp10 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567674 1 GSM567674.CEL PBCLOp10. Lettuce mid-ribs. Rep1 RNA Plant intracellular fluid WT Clinical isolate PBCLOp10 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-23007 GSM567675 1 GSM567675.CEL PBCLOp10. Lettuce mid-ribs. Rep2 RNA Plant intracellular fluid WT Clinical isolate PBCLOp10 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-23007 GSM567676 1 GSM567676.CEL PBCLOp11. Planktonic in LB. Rep1 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp11 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567677 1 GSM567677.CEL PBCLOp11. Planktonic in LB. Rep2 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp11 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567678 1 GSM567678.CEL PBCLOp11. Sample directly from human burn wound. Rep1 RNA Human tissue WT Clinical isolate PBCLOp11 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567679 1 GSM567679.CEL PBCLOp11. Sample directly from human burn wound. Rep2 RNA Human tissue WT Clinical isolate PBCLOp11 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567680 1 GSM567680.CEL PBCLOp11. Biofilm on plastic. Rep1 RNA 10% LB WT Clinical isolate PBCLOp11 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567681 1 GSM567681.CEL PBCLOp11. Biofilm on plastic. Rep2 RNA 10% LB WT Clinical isolate PBCLOp11 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567682 1 GSM567682.CEL PBCLOp11. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep1 RNA Mouse tumor tissue WT Clinical isolate PBCLOp11 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567683 1 GSM567683.CEL PBCLOp11. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep2 RNA Mouse tumor tissue WT Clinical isolate PBCLOp11 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567684 1 GSM567684.CEL PBCLOp11. Lettuce mid-ribs. Rep1 RNA Plant intracellular fluid WT Clinical isolate PBCLOp11 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-23007 GSM567685 1 GSM567685.CEL PBCLOp11. Lettuce mid-ribs. Rep2 RNA Plant intracellular fluid WT Clinical isolate PBCLOp11 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-23007 GSM567686 1 GSM567686.CEL PBCLOp17. Planktonic in LB. Rep1 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp17 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567687 1 GSM567687.CEL PBCLOp17. Planktonic in LB. Rep2 RNA LB WT 0.6 Planktonic Aerated Clinical isolate PBCLOp17 37 Grown shaking at 160rpm -E-GEOD-23007 GSM567688 1 GSM567688.CEL PBCLOp17. Sample directly from human burn wound. Rep1 RNA Human tissue WT Clinical isolate PBCLOp17 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567689 1 GSM567689.CEL PBCLOp17. Sample directly from human burn wound. Rep2 RNA Human tissue WT Clinical isolate PBCLOp17 RNA was harvested from liquid exudates taken from burn wound surface prior to cleaning. Burn wound Human -E-GEOD-23007 GSM567690 1 GSM567690.CEL PBCLOp17. Biofilm on plastic. Rep1 RNA 10% LB WT Clinical isolate PBCLOp17 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567691 1 GSM567691.CEL PBCLOp17. Biofilm on plastic. Rep2 RNA 10% LB WT Clinical isolate PBCLOp17 37 Biofilms grown on plastic. 24 h -E-GEOD-23007 GSM567692 1 GSM567692.CEL PBCLOp17. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep1 RNA Mouse tumor tissue WT Clinical isolate PBCLOp17 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567693 1 GSM567693.CEL PBCLOp17. Mouse CT26 colon adenocarcinoma abdominal tumor. Rep2 RNA Mouse tumor tissue WT Clinical isolate PBCLOp17 Mice bearing tumors of approximately 4–6 mm diameter in size were intravenously injected with 5x10e6 CFU of P. aeruginosa suspended in PBS. Three days post-infection mice were necrotized and bacterial RNA was harvested from infected tumors. CT26 colon adenocarcinoma abdominal tumor Mouse -E-GEOD-23007 GSM567694 1 GSM567694.CEL PBCLOp17. Lettuce mid-ribs. Rep1 RNA Plant intracellular fluid WT Clinical isolate PBCLOp17 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-23007 GSM567695 1 GSM567695.CEL PBCLOp17. Lettuce mid-ribs. Rep2 RNA Plant intracellular fluid WT Clinical isolate PBCLOp17 "Lettuce mid-ribs were inoculated with 10 ml of bacterial suspension at a concentration of 1x10e8 CFU/ml by injecting the end of the plastic pipette tip into the rib. 5 days post-infection, RNA was harvested from a 2x2 cm square piece excised from the original place of injection. " Lettuce leaf mid-rib Plant -E-GEOD-31227 GSM774085 1 GSM774085_CF30-1979a.CEL CF30 patient 1979 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF30-1979 37 -E-GEOD-31227 GSM774086 1 GSM774086_CF30-1979b.CEL CF30 patient 1979 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF30-1979 37 -E-GEOD-31227 GSM774087 1 GSM774087_CF30-1979c.CEL CF30 patient 1979 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF30-1979 37 -E-GEOD-31227 GSM774088 1 GSM774088_CF43-1973a.CEL CF43 patient 1973 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF43-1973 37 -E-GEOD-31227 GSM774089 1 GSM774089_CF43-1973b.CEL CF43 patient 1973 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF43-1973 37 -E-GEOD-31227 GSM774090 1 GSM774090_CF43-1973c.CEL CF43 patient 1973 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF43-1973 37 -E-GEOD-31227 GSM774091 1 GSM774091_CF66-1973a.CEL CF66 patient 1973 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF66-1973 37 -E-GEOD-31227 GSM774092 1 GSM774092_CF66-1973b.CEL CF66 patient 1973 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF66-1973 37 -E-GEOD-31227 GSM774093 1 GSM774093_CF66-1973c.CEL CF66 patient 1973 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF66-1973 37 -E-GEOD-31227 GSM774094 1 GSM774094_CF66-1992a.CEL CF66 patient 1992 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF66-1992 37 -E-GEOD-31227 GSM774095 1 GSM774095_CF66-1992b.CEL CF66 patient 1992 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF66-1992 37 -E-GEOD-31227 GSM774096 1 GSM774096_CF66-1992c.CEL CF66 patient 1992 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF66-1992 37 -E-GEOD-31227 GSM774097 1 GSM774097_CF66-2008a.CEL CF66 patient 2008 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF66-2008 37 -E-GEOD-31227 GSM774098 1 GSM774098_CF66-2008b.CEL CF66 patient 2008 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF66-2008 37 -E-GEOD-31227 GSM774099 1 GSM774099_CF66-2008c.CEL CF66 patient 2008 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF66-2008 37 -E-GEOD-31227 GSM774100 1 GSM774100_CF105-1973a.CEL CF105 patient 1973 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF105-1973 37 -E-GEOD-31227 GSM774101 1 GSM774101_CF105-1973b.CEL CF105 patient 1973 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF105-1973 37 -E-GEOD-31227 GSM774102 1 GSM774102_CF105-1973c.CEL CF105 patient 1973 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF105-1973 37 -E-GEOD-31227 GSM774103 1 GSM774103_CF114-1973a.CEL CF114 patient 1973 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF114-1973 37 -E-GEOD-31227 GSM774104 1 GSM774104_CF114-1973b.CEL CF114 patient 1973 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF114-1973 37 -E-GEOD-31227 GSM774105 1 GSM774105_CF114-1973c.CEL CF114 patient 1973 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF114-1973 37 -E-GEOD-31227 GSM774106 1 GSM774106_CF173-1984a.CEL CF173 patient 1984 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF173-1984 37 -E-GEOD-31227 GSM774107 1 GSM774107_CF173-1984b.CEL CF173 patient 1984 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF173-1984 37 -E-GEOD-31227 GSM774108 1 GSM774108_CF173-1984c.CEL CF173 patient 1984 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF173-1984 37 -E-GEOD-31227 GSM774109 1 GSM774109_CF173-2002a.CEL CF173 patient 2002 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF173-2002 37 -E-GEOD-31227 GSM774110 1 GSM774110_CF173-2002b.CEL CF173 patient 2002 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF173-2002 37 -E-GEOD-31227 GSM774111 1 GSM774111_CF173-2002c.CEL CF173 patient 2002 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF173-2002 37 -E-GEOD-31227 GSM774112 1 GSM774112_CF173-2005a.CEL CF173 patient 2005 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF173-2005 37 -E-GEOD-31227 GSM774113 1 GSM774113_CF173-2005b.CEL CF173 patient 2005 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF173-2005 37 -E-GEOD-31227 GSM774114 1 GSM774114_CF173-2005c.CEL CF173 patient 2005 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF173-2005 37 -E-GEOD-31227 GSM774115 1 GSM774115_CF243-2002a.CEL CF243 patient 2002 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF243-2002 37 -E-GEOD-31227 GSM774116 1 GSM774116_CF243-2002b.CEL CF243 patient 2002 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF243-2002 37 -E-GEOD-31227 GSM774117 1 GSM774117_CF243-2002c.CEL CF243 patient 2002 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF243-2002 37 -E-GEOD-31227 GSM774118 1 GSM774118_CF333-1991a.CEL CF333 patient 1991 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF333-1991 37 -E-GEOD-31227 GSM774119 1 GSM774119_CF333-1991b.CEL CF333 patient 1991 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF333-1991 37 -E-GEOD-31227 GSM774120 1 GSM774120_CF333-1991c.CEL CF333 patient 1991 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF333-1991 37 -E-GEOD-31227 GSM774121 1 GSM774121_CF333-1997a.CEL CF333 patient 1997 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF333-1997 37 -E-GEOD-31227 GSM774122 1 GSM774122_CF333-1997b.CEL CF333 patient 1997 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF333-1997 37 -E-GEOD-31227 GSM774123 1 GSM774123_CF333-1997c.CEL CF333 patient 1997 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF333-1997 37 -E-GEOD-31227 GSM774124 1 GSM774124_CF333-2003a.CEL CF333 patient 2003 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF333-2003 37 -E-GEOD-31227 GSM774125 1 GSM774125_CF333-2003b.CEL CF333 patient 2003 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF333-2003 37 -E-GEOD-31227 GSM774126 1 GSM774126_CF333-2003c.CEL CF333 patient 2003 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF333-2003 37 -E-GEOD-31227 GSM774127 1 GSM774127_CF333-2005a.CEL CF333 patient 2005 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF333-2005 37 -E-GEOD-31227 GSM774128 1 GSM774128_CF333-2005b.CEL CF333 patient 2005 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF333-2005 37 -E-GEOD-31227 GSM774129 1 GSM774129_CF333-2005c.CEL CF333 patient 2005 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF333-2005 37 -E-GEOD-31227 GSM774130 1 GSM774130_CF333-2007a.CEL CF333 patient 2007 isolate. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated CF333-2007 37 -E-GEOD-31227 GSM774131 1 GSM774131_CF333-2007b.CEL CF333 patient 2007 isolate. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated CF333-2007 37 -E-GEOD-31227 GSM774132 1 GSM774132_CF333-2007c.CEL CF333 patient 2007 isolate. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated CF333-2007 37 -E-GEOD-31227 GSM774133 1 GSM774133_B6-0_1.CEL B6 patient isolate at month 0. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B6-0 37 -E-GEOD-31227 GSM774134 1 GSM774134_B6-0_2.CEL B6 patient isolate at month 0. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B6-0 37 -E-GEOD-31227 GSM774135 1 GSM774135_B6-0_3.CEL B6 patient isolate at month 0. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B6-0 37 -E-GEOD-31227 GSM774136 1 GSM774136_B6-4_1.CEL B6 patient isolate at month 4. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B6-4 37 -E-GEOD-31227 GSM774137 1 GSM774137_B6-4_2.CEL B6 patient isolate at month 4. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B6-4 37 -E-GEOD-31227 GSM774138 1 GSM774138_B6-4_3.CEL B6 patient isolate at month 4. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B6-4 37 -E-GEOD-31227 GSM774139 1 GSM774139_B12-0_1.CEL B12 patient isolate at month 0. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B12-0 37 -E-GEOD-31227 GSM774140 1 GSM774140_B12-0_2.CEL B12 patient isolate at month 0. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B12-0 37 -E-GEOD-31227 GSM774141 1 GSM774141_B12-0_3.CEL B12 patient isolate at month 0. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B12-0 37 -E-GEOD-31227 GSM774142 1 GSM774142_B12-4_1.CEL B12 patient isolate at month 4. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B12-4 37 -E-GEOD-31227 GSM774143 1 GSM774143_B12-4_2.CEL B12 patient isolate at month 4. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B12-4 37 -E-GEOD-31227 GSM774144 1 GSM774144_B12-4_3.CEL B12 patient isolate at month 4. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B12-4 37 -E-GEOD-31227 GSM774145 1 GSM774145_B12-7_1.CEL B12 patient isolate at month 7. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B12-7 37 -E-GEOD-31227 GSM774146 1 GSM774146_B12-7_2.CEL B12 patient isolate at month 7. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B12-7 37 -E-GEOD-31227 GSM774147 1 GSM774147_B12-7_3.CEL B12 patient isolate at month 7. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B12-7 37 -E-GEOD-31227 GSM774148 1 GSM774148_B38-1_1.CEL B38 patient isolate at month 1. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B38-1 37 -E-GEOD-31227 GSM774149 1 GSM774149_B38-1_2.CEL B38 patient isolate at month 1. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B38-1 37 -E-GEOD-31227 GSM774150 1 GSM774150_B38-1_3.CEL B38 patient isolate at month 1. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B38-1 37 -E-GEOD-31227 GSM774151 1 GSM774151_B38-2M_1.CEL B38 patient mucoid isolate at month 2. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B38-2M 37 Mucoid -E-GEOD-31227 GSM774152 1 GSM774152_B38-2M_2.CEL B38 patient mucoid isolate at month 2. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B38-2M 37 Mucoid -E-GEOD-31227 GSM774153 1 GSM774153_B38-2M_3.CEL B38 patient mucoid isolate at month 2. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B38-2M 37 Mucoid -E-GEOD-31227 GSM774154 1 GSM774154_B38-2NM_1.CEL Non-mucoid mutant derived from B38 patient mucoid isolate at month 2. Planktonic. Rep1 RNA LB #NAME? 0.5 Planktonic Aerated B38-2NM 37 Allelic replacement of mucA in the B38-2M background. -E-GEOD-31227 GSM774155 1 GSM774155_B38-2NM_2.CEL Non-mucoid mutant derived from B38 patient mucoid isolate at month 2. Planktonic. Rep1 RNA LB #NAME? 0.5 Planktonic Aerated B38-2NM 37 Allelic replacement of mucA in the B38-2M background. -E-GEOD-31227 GSM774156 1 GSM774156_B38-2NM_3.CEL Non-mucoid mutant derived from B38 patient mucoid isolate at month 2. Planktonic. Rep1 RNA LB #NAME? 0.5 Planktonic Aerated B38-2NM 37 Allelic replacement of mucA in the B38-2M background. -E-GEOD-31227 GSM774157 1 GSM774157_B38-6M_1.CEL B38 patient mucoid isolate at month 6. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated B38-6M 37 Mucoid -E-GEOD-31227 GSM774158 1 GSM774158_B38-6M_2.CEL B38 patient mucoid isolate at month 6. Planktonic. Rep2 RNA LB WT 0.5 Planktonic Aerated B38-6M 37 Mucoid -E-GEOD-31227 GSM774159 1 GSM774159_B38-6M_3.CEL B38 patient mucoid isolate at month 6. Planktonic. Rep3 RNA LB WT 0.5 Planktonic Aerated B38-6M 37 Mucoid -E-GEOD-31227 GSM774160 1 GSM774160_PAO1a.CEL Lab wild-type strain. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated PAO1 37 -E-GEOD-31227 GSM774161 1 GSM774161_PAO1b.CEL Lab wild-type strain. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated PAO1 37 -E-GEOD-31227 GSM774162 1 GSM774162_PAO1c.CEL Lab wild-type strain. Planktonic. Rep1 RNA LB WT 0.5 Planktonic Aerated PAO1 37 -E-GEOD-30967 GSM767700 1 GSM767700.CEL PAO1 WT; 25 mM phosphate; replicate 1 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-30967 GSM767701 1 GSM767701.CEL PAO1 WT; 25 mM phosphate; replicate 2 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-30967 GSM767702 1 GSM767702.CEL PAO1 WT; 25 mM phosphate; replicate 3 RNA NGM + 25 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-30967 GSM767703 1 GSM767703.CEL PAO1 WT; <0.1 mM phosphate; replicate 1 RNA NGM + <0.1 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-30967 GSM767704 1 GSM767704.CEL PAO1 WT; <0.1 mM phosphate; replicate 2 RNA NGM + <0.1 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-30967 GSM767705 1 GSM767705.CEL PAO1 WT; <0.1 mM phosphate; replicate 3 RNA NGM + <0.1 mM phosphate WT Colony Lawn PAO1 37 20 hours -E-GEOD-5887 GSE5887GSM136932 "P. aeruginosa PAO1 on poplar root, 1 x hrp + 0.25 % sucrose 48 hr biofilm cells_rep1" RNA 1× HRP minimal medium with 0.25% sucrose WT Biofilm shaking - on poplar root PAO1 25 Poplar Plant -E-GEOD-5887 GSE5887GSM136934 "P. aeruginosa PAO1 on glasswool, 1 x hrp + 0.25 % sucrose 48 hr biofilm cells_rep1" RNA 1× HRP minimal medium with 0.25% sucrose WT Biofilm shaking - glass wool PAO1 25 -E-GEOD-5887 GSE5887GSM136936 Poplar in 1 x hrp + 0.25 % sucrose no bacteria_rep12 RNA 1× HRP minimal medium with 0.25% sucrose Biofilm shaking Poplar 25 analyzed with Affymetrix Poplar Genome Array -E-GEOD-5887 GSE5887GSM136938 Poplar contacted with P. aeruginosa PAO1 in 1 x hrp + 0.25 % sucrose_rep1 RNA 1× HRP minimal medium with 0.25% sucrose Biofilm shaking Poplar 25 analyzed with Affymetrix Poplar Genome Array Pseudomonas aeruginosa Bacteria -E-MEXP-2812 H_1 H_1.CEL 7NR. Biofilms on plant roots. 330 mM phosphate. Rep1 RNA Plant root exudate Biofilm 7NR 21 330 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-MEXP-2812 H_3 H_3.CEL 7NR. Biofilms on plant roots. 330 mM phosphate. Rep2 RNA Plant root exudate Biofilm 7NR 21 330 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-MEXP-2812 H_5 H_5.CEL 7NR. Biofilms on plant roots. 330 mM phosphate. Rep3 RNA Plant root exudate Biofilm 7NR 21 330 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-MEXP-2812 L_12 L_12.CEL 7NR. Biofilms on plant roots. 3-6 mM phosphate. Rep1 RNA Plant root exudate Biofilm 7NR 21 3-6 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-MEXP-2812 L_13 L_13.CEL 7NR. Biofilms on plant roots. 3-6 mM phosphate. Rep2 RNA Plant root exudate Biofilm 7NR 21 3-6 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-MEXP-2812 L_14 L_14.CEL 7NR. Biofilms on plant roots. 3-6 mM phosphate. Rep3 RNA Plant root exudate Biofilm 7NR 21 3-6 uM phosphate "Inoculated seedlings (five per microcosm) were then planted into the sand and were incubated for 28 days under controlled conditions (14 h light / 10 h dark, 21 C, PAR 590-640 umol.m-2.s-1 at plant level)." Rifampicin Lolium perenne roots Plant -E-GEOD-22684 GSM424832 1 GSM424832.CEL PAO1 RWV vertical; replicate 1 RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic Aerated PAO1 28 Normal gravity (25 rpm) 24 hours; 25 rpm (control); bioreactor GentR -E-GEOD-22684 GSM424833 1 GSM424833.CEL PAO1 RWV vertical; replicate 2 RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic Aerated PAO1 28 Normal gravity (25 rpm) 24 hours; 25 rpm (control); bioreactor GentR -E-GEOD-22684 GSM560754 1 GSM560754.CEL "Pseudomonas aeruginosa, PAO1, Ground Sample - biological replicate 1" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 GentR -E-GEOD-22684 GSM560755 1 GSM560755.CEL "Pseudomonas aeruginosa, PAO1, Ground Sample - biological replicate 2" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 GentR -E-GEOD-22684 GSM560756 1 GSM560756.CEL "Pseudomonas aeruginosa, PAO1, Ground Sample - biological replicate 3" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 GentR -E-GEOD-22684 GSM560757 1 GSM560757.CEL "Pseudomonas aeruginosa, PAO1, Space flight Sample - biological replicate 1" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 "Zero gravity, experiment started and performed in space" GentR -E-GEOD-22684 GSM560758 1 GSM560758.CEL "Pseudomonas aeruginosa, PAO1, Space flight Sample - biological replicate 2" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 "Zero gravity, experiment started and performed in space" GentR -E-GEOD-22684 GSM560759 1 GSM560759.CEL "Pseudomonas aeruginosa, PAO1, Space flight Sample - biological replicate 3" RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic fluid-processing apparatus (FPA) PAO1 23 "Zero gravity, experiment started and performed in space" GentR -E-GEOD-25595 GSM629176 1 GSM629176.CEL "Pseudomonas aeruginosa phrS deletion strain with parental vector pJT19, was grown to OD 1 then treated with 2mM toluate for 30 min, replicate B" RNA LB ΔphrS+PJT19 (parental vector) 1 Planktonic Shaking PAO1 37 2 mM toluate Kanamycin -E-GEOD-25595 GSM629177 1 GSM629177.CEL "Pseudomonas aeruginosa phrS deletion strain with parental vector pJT19, was grown to OD 1 then treated with 2mM toluate for 30 min, replicate A" RNA LB ΔphrS+PJT19 (parental vector) 1 Planktonic Shaking PAO1 37 2 mM toluate Kanamycin -E-GEOD-25595 GSM629178 1 GSM629178.CEL "Pseudomonas aeruginosa phrS deletion strain with inducible phrS overexpression plasmid, pJTphrS, was grown to OD 1 then induced with 2mM toluate for 30 min, replicate B" RNA LB ΔphrS+PJTphrS 1 Planktonic Shaking PAO1 37 2 mM toluate Kanamycin -E-GEOD-25595 GSM629179 1 GSM629179.CEL "Pseudomonas aeruginosa phrS deletion strain with inducible phrS overexpression plasmid, pJTphrS, was grown to OD 1 then induced with 2mM toluate for 30 min, replicate A" RNA LB ΔphrS+PJTphrS 1 Planktonic Shaking PAO1 37 2 mM toluate Kanamycin -E-GEOD-30021 GSM743001 1 GSM743001_PAO1-PC4-a.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 4 hours_rep1 RNA LB WT 0.3 Planktonic shaking PAO1 37 no treatment_4 hours planktonic -E-GEOD-30021 GSM743002 1 GSM743002_PAO1-PC4-b.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 4 hours_rep2 RNA LB WT 0.3 Planktonic shaking PAO1 37 no treatment_4 hours planktonic -E-GEOD-30021 GSM743003 1 GSM743003_PAO1-PC4-c.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 4 hours_rep3 RNA LB WT 0.3 Planktonic shaking PAO1 37 no treatment_4 hours planktonic -E-GEOD-30021 GSM743004 1 GSM743004_PAO1-PC24-a.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 24 hours_rep1 RNA LB WT 5 Planktonic shaking PAO1 37 no treatment_24 hours planktonic -E-GEOD-30021 GSM743005 1 GSM743005_PAO1-PC24-b.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 24 hours_rep2 RNA LB WT 5 Planktonic shaking PAO1 37 no treatment_24 hours planktonic -E-GEOD-30021 GSM743006 1 GSM743006_PAO1-PC24-c.CEL Planktonic P. aeruginosa PAO1 cells cultivated for 24 hours_rep3 RNA LB WT 5 Planktonic shaking PAO1 37 no treatment_24 hours planktonic -E-GEOD-30021 GSM743007 1 GSM743007_PAO1-SC24-a.CEL Biofilm (sessile) P. aeruginosa PAO1 cells cultivated for 24 hours_rep1 RNA LB WT Biofilm (sessile) shaking - glass wool PAO1 37 no treatment_24 hours biofilm -E-GEOD-30021 GSM743008 1 GSM743008_PAO1-SC24-b.CEL Biofilm (sessile) P. aeruginosa PAO1 cells cultivated for 24 hours_rep2 RNA LB WT Biofilm (sessile) shaking - glass wool PAO1 37 no treatment_24 hours biofilm -E-GEOD-30021 GSM743009 1 GSM743009_PAO1-SC24-c.CEL Biofilm (sessile) P. aeruginosa PAO1 cells cultivated for 24 hours_rep3 RNA LB WT Biofilm (sessile) shaking - glass wool PAO1 37 no treatment_24 hours biofilm -E-GEOD-28953 GSM717419 1 GSM717419.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep1" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-28953 GSM717420 1 GSM717420.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep2" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-28953 GSM717421 1 GSM717421.CEL "P. aeruginosa PAO1 grown in a flow-through bioflm, rep3" RNA 1/20 diluted LB and/or VBMM w/citrate WT 6 days Biofilm flow-through system PAO1 22 -E-GEOD-28953 GSM717422 1 GSM717422.CEL "P. aeruginosa delta PA4101 (∆bfmR) grown in a flow-through bioflm, rep1" RNA 1/20 diluted LB and/or VBMM w/citrate ∆bfmR Biofilm flow-through system PAO1 22 -E-GEOD-28953 GSM717423 1 GSM717423.CEL "P. aeruginosa delta PA4101 (∆bfmR) grown in a flow-through bioflm, rep2" RNA 1/20 diluted LB and/or VBMM w/citrate ∆bfmR Biofilm flow-through system PAO1 22 -E-GEOD-28953 GSM717424 1 GSM717424.CEL "P. aeruginosa delta PA4101 (∆bfmR) grown in a flow-through bioflm, rep3" RNA 1/20 diluted LB and/or VBMM w/citrate ∆bfmR Biofilm flow-through system PAO1 22 -E-GEOD-24784 GSE17296GSM432866 GSM432866.CEL WT. Planktonic. Early stationary phase. Rep1 RNA LB WT 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-24784 GSE17296GSM432867 GSM432867.CEL WT. Planktonic. Early stationary phase. Rep2 RNA LB WT 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-24784 GSM610406 1 GSM610406.CEL "Pseudomonas aeruginosa, PAO1, pellicle #1" RNA LB WT 1.4 Planktonic static PAO1 37 24 hours; static; pellicle cells -E-GEOD-24784 GSM610407 1 GSM610407.CEL "Pseudomonas aeruginosa, PAO1, pellicle #2" RNA LB WT 1.4 Planktonic static PAO1 37 24 hours; static; pellicle cells -E-GEOD-21508 GSM537320 1 GSM537320.CEL P. aeruginosa PAO1 wild type after 5 h of growth in LB and 0.1 % DMSO at 37oC RNA LB WT Planktonic Shaking PAO1 37 5 h at 0.1% DMSO -E-GEOD-21508 GSM537321 1 GSM537321.CEL P. aeruginosa PAO1 wild type after 5 h of growth in LB and 0.1mg/ml of IAN (plant auxin 3-indolylacetonitrile) at 37oC RNA LB WT Planktonic Shaking PAO1 37 5 h at 0.1 mg/ml IAN -E-GEOD-22999 GSM567541 1 GSM567541.CEL "PAO1 grown 6 hours in LB with 1mM Lyngbyoic acid extract at 37 degrees with shaking, replicate 1" RNA LB WT 6 hrs Planktonic aerated PAO1 37 1 mM Lyngbyoic acid extract "Cultures (1 mL) of PAO1 were grown either in the presence or absence of 1 mM Lyngbyoic acid (added as 10 mL of a 100 mM stock solution in EtOH), for 6 h at 37 1C with shaking in 15 mm diameter glass tubes." -E-GEOD-22999 GSM567542 1 GSM567542.CEL "PAO1 grown 6 hours in LB with 1% EtOH as control at 37 degrees with shaking, replicate 2" RNA LB WT 6 hrs Planktonic aerated PAO1 37 1% EtOH control "Cultures (1 mL) of PAO1 were grown either in the presence or absence of 1 mM Lyngbyoic acid (added as 10 mL of a 100 mM stock solution in EtOH), for 6 h at 37 1C with shaking in 15 mm diameter glass tubes." -E-GEOD-22999 GSM567543 1 GSM567543.CEL "PAO1 grown 6 hours in LB with 1mM Lyngbyoic acid extract at 37 degrees with shaking, replicate 1" RNA LB WT 6 hrs Planktonic aerated PAO1 37 1 mM Lyngbyoic acid extract "Cultures (1 mL) of PAO1 were grown either in the presence or absence of 1 mM Lyngbyoic acid (added as 10 mL of a 100 mM stock solution in EtOH), for 6 h at 37 1C with shaking in 15 mm diameter glass tubes." -E-GEOD-22999 GSM567544 1 GSM567544.CEL "PAO1 grown 6 hours in LB with 1% EtOH as control at 37 degrees with shaking, replicate 2" RNA LB WT 6 hrs Planktonic aerated PAO1 37 1% EtOH control "Cultures (1 mL) of PAO1 were grown either in the presence or absence of 1 mM Lyngbyoic acid (added as 10 mL of a 100 mM stock solution in EtOH), for 6 h at 37 1C with shaking in 15 mm diameter glass tubes." -E-MEXP-2867 Glucose and vitamins- Rep 2 glu_plus_nt_2_8-25-09_s2.CEL PA14 WT grown in MOPS with 20 mM glucose at 37C to an OD of 0.5; replicate 1 RNA MOPS WT 0.5 planktonic aerated PA14 37 20 mM glucose -E-MEXP-2867 Glucose and vitamins-Rep 1 AKGlu_plus_nt_7-8-09_s1.CEL PA14 WT grown in MOPS with 20 mM glucose at 37C to an OD of 0.5; replicate 2 RNA MOPS WT 0.5 planktonic aerated PA14 37 20 mM glucose -E-MEXP-2867 N-acetylglucosamine and vitamins- Rep 1 Nag_cDNA_1-30-09_S2.CEL PA14 WT grown in MOPS with 20 mM N-acetylglucosamine at 37C to an OD of 0.5; replicate 1 RNA MOPS WT 0.5 planktonic aerated PA14 37 20 mM N-acetylglucosamine -E-MEXP-2867 N-acetylglucosamine and vitamins- Rep 2 Nag_cDNA_2-26-09_s1.CEL PA14 WT grown in MOPS with 20 mM N-acetylglucosamine at 37C to an OD of 0.5; replicate 2 RNA MOPS WT 0.5 planktonic aerated PA14 37 20 mM N-acetylglucosamine -E-GEOD-22164 GSM551147 1 GSM551147.CEL "Pseudomonas aeruginosa, PAO1, 0hr ctrl, baseline, rep1" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 baseline control at 72hrs -E-GEOD-22164 GSM551148 1 GSM551148.CEL "Pseudomonas aeruginosa, PAO1, 0hr ctrl, baseline, rep2" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 baseline control at 72hrs -E-GEOD-22164 GSM551149 1 GSM551149.CEL "Pseudomonas aeruginosa, PAO1, 0hr ctrl, baseline, rep3" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 baseline control at 72hrs -E-GEOD-22164 GSM551150 1 GSM551150.CEL "Pseudomonas aeruginosa, PAO1, 12hr ctrl, rep1" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 no treatment for 12 hours past baseline -E-GEOD-22164 GSM551151 1 GSM551151.CEL "Pseudomonas aeruginosa, PAO1, 12hr ctrl, rep2" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 no treatment for 12 hours past baseline -E-GEOD-22164 GSM551152 1 GSM551152.CEL "Pseudomonas aeruginosa, PAO1, 12hr ctrl, rep3" RNA PBM w/ 0.2 g/l glucose WT Biofilm Drip-flow reactor PAO1 37 no treatment for 12 hours past baseline -E-GEOD-25130 GSM617286 1 GSM617286.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 1 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25130 GSM617287 1 GSM617287.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 2 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25130 GSM617288 1 GSM617288.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 3 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25130 GSM617289 1 GSM617289.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 1 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25130 GSM617290 1 GSM617290.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 2 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25130 GSM617291 1 GSM617291.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 3 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25130 GSM617292 1 GSM617292.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 1" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25130 GSM617293 1 GSM617293.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 2" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25130 GSM617294 1 GSM617294.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 3" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25130 GSM617295 1 GSM617295.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 1" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-25130 GSM617296 1 GSM617296.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 2" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-25130 GSM617297 1 GSM617297.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 3" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-25130 GSM617298 1 GSM617298.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA85, replicate 1" DNA LB Clinical isolate UUPA85 QS- -E-GEOD-25130 GSM617299 1 GSM617299.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA85, replicate 2" DNA LB Clinical isolate UUPA85 QS- -E-GEOD-25130 GSM617300 1 GSM617300.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA38, replicate 1" DNA LB Clinical isolate UUPA38 QS+ -E-GEOD-25130 GSM617301 1 GSM617301.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA38, replicate 2" DNA LB Clinical isolate UUPA38 QS+ -E-GEOD-25129 GSM617298 1 GSM617298.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA85, replicate 1" DNA LB Clinical isolate UUPA85 QS- -E-GEOD-25129 GSM617299 1 GSM617299.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA85, replicate 2" DNA LB Clinical isolate UUPA85 QS- -E-GEOD-25129 GSM617300 1 GSM617300.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA38, replicate 1" DNA LB Clinical isolate UUPA38 QS+ -E-GEOD-25129 GSM617301 1 GSM617301.CEL "Comparative genomic hybridisation data from P. aeruginosa isolate UUPA38, replicate 2" DNA LB Clinical isolate UUPA38 QS+ -E-GEOD-25128 GSM617286 1 GSM617286.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 1 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25128 GSM617287 1 GSM617287.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 2 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25128 GSM617288 1 GSM617288.CEL A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 3 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA85 22 QS- -E-GEOD-25128 GSM617289 1 GSM617289.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 1 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25128 GSM617290 1 GSM617290.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 2 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25128 GSM617291 1 GSM617291.CEL A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB as a biofilm in 1 m flow-through tube cultures (bore=5 mm; flow rate=0.5 ml/min) replicate 3 RNA LB Clinical isolate 5 days Biofilm Flow through tube UUPA38 22 QS+ -E-GEOD-25128 GSM617292 1 GSM617292.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 1" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25128 GSM617293 1 GSM617293.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 2" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25128 GSM617294 1 GSM617294.CEL "A QS- P. aeruginosa clinical isolate UUPA85 from the CF lung was grown in LB to stationary phase, replicate 3" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA85 37 QS- -E-GEOD-25128 GSM617295 1 GSM617295.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 1" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-25128 GSM617296 1 GSM617296.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 2" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-25128 GSM617297 1 GSM617297.CEL "A QS+ P. aeruginosa clinical isolate UUPA38 from the CF lung was grown in LB to stationary phase, replicate 3" RNA LB Clinical isolate stationary phase planktonic Shaking UUPA38 37 QS+ -E-GEOD-10065 GSM177216 1 GSM177216.CEL Pseudomonas aeruginosa PAO1 biofilm + 500 uM 7-hydroxyindole RNA LB WT Biofilm on glass wool batch with aeration PAO1 37 500 uM 7-hydroxyindole 7 h -E-GEOD-10065 GSM177218 1 GSM177218.CEL Pseudomonas aeruginosa PAO1 biofilm control RNA LB WT Biofilm on glass wool batch with aeration PAO1 37 DMF vehicle control 7 h -E-GEOD-10065 GSM254432 1 GSM254432.CEL Pseudomonas aeruginosa PAO1 biofilm + 1 mM indole RNA LB WT Biofilm on glass wool batch with aeration PAO1 37 1mM indole 7 h -E-GEOD-10065 GSM307134 1 GSM307134.CEL Pseudomonas aeruginosa PAO1 biofilm control RNA LB WT Biofilm on glass wool batch with aeration PAO1 37 DMF vehicle control 7 h -E-GEOD-10065 GSM307135 1 GSM307135.CEL Pseudomonas aeruginosa PAO1 biofilm + 1 mM IAA RNA LB WT Biofilm on glass wool batch with aeration PAO1 37 1 mM indole acetic acid 7 h -E-GEOD-22665 GSM562109 1 GSM562109_PAK_GI_colonization_2_6-9-04.CEL "PAK from infected mice ceca, pooled from 8 mice, at 7 DPI, 3 replicates" RNA in vivo growth WT in vivo Mouse GI PAK 37 Pa isolated from infected C3H/HeN adult mice ceca Cecum Mouse -E-GEOD-22665 GSM562110 1 GSM562110_PAK_GI_colonization_4_6-9-04.CEL "PAK from infected mice ceca, pooled from 8 mice, at 7 DPI, 3 replicates" RNA in vivo growth WT in vivo Mouse GI PAK 37 Pa isolated from infected C3H/HeN adult mice ceca Cecum Mouse -E-GEOD-22665 GSM562111 1 GSM562111_PAK_GI_colonization_5-12-04.CEL "PAK from infected mice ceca, pooled from 8 mice, at 7 DPI, 3 replicates" RNA in vivo growth WT in vivo Mouse GI PAK 37 Pa isolated from infected C3H/HeN adult mice ceca Cecum Mouse -E-GEOD-22665 GSM562112 1 GSM562112_Koh_PAK_H2O_1.CEL "PAK isolated from mouse drinking water inoculated with PAK for the purpose of inoculating mice, 3 replicates" RNA Water with 1500 Units penicillin G/mL WT planktonic static PAK 24 Pa isolated from inoculated drinking water for mice -E-GEOD-22665 GSM562113 1 GSM562113_Koh_PAK_H2O_2.CEL "PAK isolated from mouse drinking water inoculated with PAK for the purpose of inoculating mice, 3 replicates" RNA Water with 1500 Units penicillin G/mL WT planktonic static PAK 24 Pa isolated from inoculated drinking water for mice -E-GEOD-22665 GSM562114 1 GSM562114_Koh_PAK_H2O_3.CEL "PAK isolated from mouse drinking water inoculated with PAK for the purpose of inoculating mice, 3 replicates" RNA Water with 1500 Units penicillin G/mL WT planktonic static PAK 24 Pa isolated from inoculated drinking water for mice -E-GEOD-16970 GSM424829 1 GSM424829.CEL PAO1 RWV horizontal; replicate 1 RNA LB WT Planktonic Aerated PAO1 28 Microgravity (25 rpm) 24 hours; 25 rpm; bioreactor -E-GEOD-16970 GSM424830 1 GSM424830.CEL PAO1 RWV horizontal; replicate 2 RNA LB WT Planktonic Aerated PAO1 28 Microgravity (25 rpm) 24 hours; 25 rpm; bioreactor -E-GEOD-16970 GSM424831 1 GSM424831.CEL PAO1 RWV horizontal; replicate 3 RNA LB WT Planktonic Aerated PAO1 28 Microgravity (25 rpm) 24 hours; 25 rpm; bioreactor -E-GEOD-16970 GSM424832 1 GSM424832.CEL PAO1 RWV vertical; replicate 1 RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic Aerated PAO1 28 Normal gravity (25 rpm) 24 hours; 25 rpm (control); bioreactor GentR -E-GEOD-16970 GSM424833 1 GSM424833.CEL PAO1 RWV vertical; replicate 2 RNA LB medium containing 25 μg/ml gentamicin WT w/ GentR at attB site Planktonic Aerated PAO1 28 Normal gravity (25 rpm) 24 hours; 25 rpm (control); bioreactor GentR -E-GEOD-16970 GSM424834 1 GSM424834.CEL PAO1 RPM; replicate 1 RNA LB WT Planktonic Aerated PAO1 28 Randomized gravity (10 rpm) 24 hours; 10 rpm; bioreactor -E-GEOD-16970 GSM424835 1 GSM424835.CEL PAO1 RPM; replicate 2 RNA LB WT Planktonic Aerated PAO1 28 Randomized gravity (10 rpm) 24 hours; 10 rpm; bioreactor -E-GEOD-16970 GSM424836 1 GSM424836.CEL PAO1 RPM; replicate 3 RNA LB WT Planktonic Aerated PAO1 28 Randomized gravity (10 rpm) 24 hours; 10 rpm; bioreactor -E-GEOD-17179 GSM429472 1 GSM429472.CEL "Pseudomonas aeruginosa, PAO1, aerobic, replicate1" RNA modified AB minimal medium WT 0.3 Planktonic shaking PAO1 37 aerobic -E-GEOD-17179 GSM429475 1 GSM429475.CEL "Pseudomonas aeruginosa, PAO1, aerobic, replicate2" RNA modified AB minimal medium WT 0.3 Planktonic shaking PAO1 37 aerobic -E-GEOD-17179 GSM429476 1 GSM429476.CEL "Pseudomonas aeruginosa, PAO1, anaerobic, replicate1" RNA modified AB minimal medium WT 0.3 Planktonic static PAO1 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-17179 GSM429477 1 GSM429477.CEL "Pseudomonas aeruginosa, PAO1, anaerobic, replicate2" RNA modified AB minimal medium WT 0.3 Planktonic static PAO1 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-17179 GSM429478 1 GSM429478.CEL "Pseudomonas aeruginosa strain PAO6261, anr mutant, anaerobic, replicate1" RNA modified AB minimal medium ∆anr 0.3 Planktonic static PAO6261 (PAO1) 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-17179 GSM429479 1 GSM429479.CEL "Pseudomonas aeruginosa strain PAO6261, anr mutant, anaerobic, replicate2" RNA modified AB minimal medium ∆anr 0.3 Planktonic static PAO6261 (PAO1) 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-17179 GSM429480 1 GSM429480.CEL "Pseudomonas aeruginosa strain RM536, dnr mutant, anaerobic, replicate1" RNA modified AB minimal medium ∆dnr 0.3 Planktonic static RM536 (PAO1) 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-17179 GSM429481 1 GSM429481.CEL "Pseudomonas aeruginosa strain RM536, dnr mutant, anaerobic, replicate2" RNA modified AB minimal medium ∆dnr 0.3 Planktonic static RM536 (PAO1) 37 anaerobic (130 ml of the respective aerobic culture were transferred to a 135 ml sealed serum flask) -E-GEOD-21966 GSM546244 1 GSM546244.CEL Classical; initial isolate (A); replicate 1 RNA SCFM 0.5 Planktonic Aerated C2773C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546245 1 GSM546245.CEL Classical; initial isolate (A); replicate 2 RNA SCFM 0.5 Planktonic Aerated C2773C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546246 1 GSM546246.CEL Classical; 570 days post isolation (A); replicate 1 RNA SCFM 0.5 Planktonic Aerated C3470C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546247 1 GSM546247.CEL Classical; 570 days post isolation (A); replicate 2 RNA SCFM 0.5 Planktonic Aerated C3470C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546248 1 GSM546248.CEL Mucoid; 703 days post isolation (A); replicate 1 RNA SCFM 0.5 Planktonic Aerated C3639M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546249 1 GSM546249.CEL Mucoid; 703 days post isolation (A); replicate 2 RNA SCFM 0.5 Planktonic Aerated C3639M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546250 1 GSM546250.CEL SCV; 703 days post isolation (A); replicate 1 RNA SCFM 0.5 Planktonic Aerated C3640D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546251 1 GSM546251.CEL SCV; 703 days post isolation (A); replicate 2 RNA SCFM 0.5 Planktonic Aerated C3640D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546252 1 GSM546252.CEL Mucoid; 1194 days post isolation (A); replicate 1 RNA SCFM 0.5 Planktonic Aerated C4278M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546253 1 GSM546253.CEL Mucoid; 1194 days post isolation (A); replicate 2 RNA SCFM 0.5 Planktonic Aerated C4278M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546254 1 GSM546254.CEL Classical; initial isolate (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C1913C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546255 1 GSM546255.CEL Classical; initial isolate (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C1913C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546256 1 GSM546256.CEL Classical; 1669 days post isolation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C4218C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546257 1 GSM546257.CEL Classical; 1669 days post isolation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C4218C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546258 1 GSM546258.CEL SCV; 1669 days post isolation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C4219D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546259 1 GSM546259.CEL SCV; 1669 days post isolation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C4219D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546260 1 GSM546260.CEL Mucoid; 1669 days post isolation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C4220M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546261 1 GSM546261.CEL Mucoid; 1669 days post isolation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C4220M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546262 1 GSM546262.CEL Mucoid; 2790 days post isolation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C5912M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546263 1 GSM546263.CEL Mucoid; 2790 days post isolation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C5912M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546264 1 GSM546264.CEL Classical; 2790 days post islation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C5913C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546265 1 GSM546265.CEL Classical; 2790 days post islation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C5913C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546266 1 GSM546266.CEL Mucoid; 2790 days post isolation (B); replicate 1 RNA SCFM 0.5 Planktonic Aerated C5914M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546267 1 GSM546267.CEL Mucoid; 2790 days post isolation (B); replicate 2 RNA SCFM 0.5 Planktonic Aerated C5914M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546268 1 GSM546268.CEL Classical; initial isolate (Ca); replicate 1 RNA SCFM 0.5 Planktonic Aerated C0324C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546269 1 GSM546269.CEL Classical; initial isolate (Ca); replicate 2 RNA SCFM 0.5 Planktonic Aerated C0324C 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546270 1 GSM546270.CEL Mucoid; 91 days post isolation (Ca); replicate 1 RNA SCFM 0.5 Planktonic Aerated C0476M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546271 1 GSM546271.CEL Mucoid; 91 days post isolation (Ca); replicate 2 RNA SCFM 0.5 Planktonic Aerated C0476M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546272 1 GSM546272.CEL Mucoid; 1523 days post isolation (Cb); replicate 1 RNA SCFM 0.5 Planktonic Aerated C2159M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546273 1 GSM546273.CEL Mucoid; 1523 days post isolation (Cb); replicate 2 RNA SCFM 0.5 Planktonic Aerated C2159M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546274 1 GSM546274.CEL SCV; 2548 days post isolation (Cb); replicate 1 RNA SCFM 0.5 Planktonic Aerated C3488D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546275 1 GSM546275.CEL SCV; 2548 days post isolation (Cb); replicate 2 RNA SCFM 0.5 Planktonic Aerated C3488D 37 Exponential phase cells; 250 rpm SCV -E-GEOD-21966 GSM546276 1 GSM546276.CEL Mucoid; 4068 days post isolation (Cb); replicate 1 RNA SCFM 0.5 Planktonic Aerated C5623M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546277 1 GSM546277.CEL Mucoid; 4068 days post isolation (Cb); replicate 2 RNA SCFM 0.5 Planktonic Aerated C5623M 37 Exponential phase cells; 250 rpm Mucoid -E-GEOD-21966 GSM546278 1 GSM546278.CEL Classical; control; replicate 1 RNA SCFM WT 0.5 Planktonic Aerated PA14 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546279 1 GSM546279.CEL Classical; control; replicate 2 RNA SCFM WT 0.5 Planktonic Aerated PA14 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546280 1 GSM546280.CEL Classical; control; replicate 1 RNA SCFM WT 0.5 Planktonic Aerated PAO1 37 Exponential phase cells; 250 rpm -E-GEOD-21966 GSM546281 1 GSM546281.CEL Classical; control; replicate 2 RNA SCFM WT 0.5 Planktonic Aerated PAO1 37 Exponential phase cells; 250 rpm -E-GEOD-18594 GSM462061 1 GSM462061.CEL WT. Biofilm in ASMDM media. Rep1 RNA ASMDM WT UCBPP-PA14 1.1 planktonic aerated PA14 37 Grown statically in ASMDM media. Harvest at 72 h -E-GEOD-18594 GSM462062 1 GSM462062.CEL WT. Biofilm in ASMDM media. Rep2 RNA ASMDM WT UCBPP-PA14 1.1 planktonic aerated PA14 37 Grown shaking at 50rpm. -E-GEOD-18594 GSM462063 1 GSM462063.CEL WT. Planktonic in LB. Stationary phase. Rep1 RNA LB WT UCBPP-PA14 1.1 planktonic aerated PA14 37 Grown shaking at 50rpm -E-GEOD-18594 GSM462064 1 GSM462064.CEL WT. Planktonic in LB. Stationary phase. Rep2 RNA LB WT UCBPP-PA14 1.1 planktonic aerated PA14 37 Grown shaking at 250rpm. -E-GEOD-18594 GSM462352 1 GSM462352.CEL WT. Planktonic in MOPS-glucose. Exponential phase. Rep1 RNA MOPS-Glucose WT UCBPP-PA14 0.15 planktonic aerated PA14 37 Grown shaking at 250rpm. -E-GEOD-18594 GSM462353 1 GSM462353.CEL WT. Planktonic in MOPS-glucose. Exponential phase. Rep2 RNA MOPS-Glucose WT UCBPP-PA14 0.15 planktonic aerated PA14 37 Grown shaking at 250rpm. -E-GEOD-18594 GSM462354 1 GSM462354.CEL WT. Planktonic in ASMDM. Exponential phase. Rep1 RNA ASMDM WT UCBPP-PA14 0.15 planktonic aerated PA14 37 Grown shaking at 250rpm. -E-GEOD-18594 GSM462355 1 GSM462355.CEL WT. Planktonic in ASMDM. Exponential phase. Rep2 RNA ASMDM WT UCBPP-PA14 0.15 planktonic aerated PA14 37 Grown shaking at 250rpm. -E-GEOD-21704 GSM541640 1 GSM541640.CEL WT. Planktonic in LB plus H2O2. Rep1 RNA LB WT Planktonic Aerated Clinical isolate TBCF10839 37 H2O2 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB with 10 mM hydrogen peroxide. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." -E-GEOD-21704 GSM541641 1 GSM541641.CEL WT. Planktonic in LB plus H2O2. Rep2 RNA LB WT Planktonic Aerated Clinical isolate TBCF10839 37 H2O2 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB with 10 mM hydrogen peroxide. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." -E-GEOD-21704 GSM541642 1 GSM541642.CEL "WT. Planktonic in RPMI 1640, exposed to PMN exoproducts. Rep1" RNA RPMI 1640 WT Planktonic Aerated Clinical isolate TBCF10839 37 PMN exoproducts "Stationary phase-grown bacterial cultures (1x10e10 cells) were pelleted and resuspended in 2 ml of RPMI 1640 medium, placed into a dialysis bag (300 kDa) and incubated in presence of 1x10e7 PMNs in 15 ml RPMI 1640 medium containing 10 % (v/v) human AB blood serum, at 200 rpm on a rotary shaker for 2 h (37°C)." Polymorphonuclear neutrophils Human -E-GEOD-21704 GSM541643 1 GSM541643.CEL "WT. Planktonic in RPMI 1640, exposed to PMN exoproducts. Rep2" RNA RPMI 1640 WT Planktonic Aerated Clinical isolate TBCF10839 37 PMN exoproducts "Stationary phase-grown bacterial cultures (1x10e10 cells) were pelleted and resuspended in 2 ml of RPMI 1640 medium, placed into a dialysis bag (300 kDa) and incubated in presence of 1x10e7 PMNs in 15 ml RPMI 1640 medium containing 10 % (v/v) human AB blood serum, at 200 rpm on a rotary shaker for 2 h (37°C)." Polymorphonuclear neutrophils Human -E-GEOD-21704 GSM541644 1 GSM541644.CEL nadK1::tn5. Planktonic in LB plus H2O2. Rep1 RNA LB nadK1::tn5 Planktonic Aerated Clinical isolate TBCF10839 37 H2O2 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB with 10 mM hydrogen peroxide. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." KanR -E-GEOD-21704 GSM541645 1 GSM541645.CEL nadK1::tn5. Planktonic in LB plus H2O2. Rep2 RNA LB nadK1::tn5 Planktonic Aerated Clinical isolate TBCF10839 37 H2O2 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB with 10 mM hydrogen peroxide. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." KanR -E-GEOD-21704 GSM541646 1 GSM541646.CEL "nadK1::tn5. Planktonic in RPMI 1640, exposed to PMN exoproducts. Rep1" RNA RPMI 1640 nadK1::tn5 Planktonic Aerated Clinical isolate TBCF10839 37 PMN exoproducts "Stationary phase-grown bacterial cultures (1x10e10 cells) were pelleted and resuspended in 2 ml of RPMI 1640 medium, placed into a dialysis bag (300 kDa) and incubated in presence of 1x10e7 PMNs in 15 ml RPMI 1640 medium containing 10 % (v/v) human AB blood serum, at 200 rpm on a rotary shaker for 2 h (37°C)." KanR Polymorphonuclear neutrophils Human -E-GEOD-21704 GSM541647 1 GSM541647.CEL "nadK1::tn5. Planktonic in RPMI 1640, exposed to PMN exoproducts. Rep2" RNA RPMI 1640 nadK1::tn5 Planktonic Aerated Clinical isolate TBCF10839 37 PMN exoproducts "Stationary phase-grown bacterial cultures (1x10e10 cells) were pelleted and resuspended in 2 ml of RPMI 1640 medium, placed into a dialysis bag (300 kDa) and incubated in presence of 1x10e7 PMNs in 15 ml RPMI 1640 medium containing 10 % (v/v) human AB blood serum, at 200 rpm on a rotary shaker for 2 h (37°C)." KanR Polymorphonuclear neutrophils Human -E-GEOD-21704 GSM541648 1 GSM541648.CEL WT. Planktonic in LB. Rep1 RNA LB WT Planktonic Aerated Clinical isolate TBCF10839 37 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." -E-GEOD-21704 GSM541649 1 GSM541649.CEL WT. Planktonic in LB. Rep2 RNA LB WT Planktonic Aerated Clinical isolate TBCF10839 37 "Stationary phase-grown cultures (3x10e10 cells) were resuspended in LB and kept in a dialysis tube (14-kDa cutoff, 25 mm) with an effective length of 6 cm for the exchange of fluids. The dialysis tube was resuspended in a 1-liter Erlenmeyer flask containing 600 ml of LB. The flasks were incubated at 37°C and 200 rpm on a rotary shaker for 2 h." -E-MEXP-2606 bphO-1 TUBS0091.CEL PAO1 ΔbphO; replicate 1 RNA LB ΔbphO 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 bphO-2 TUBS0092.CEL PAO1 ΔbphO; replicate 2 RNA LB ΔbphO 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 bphO-3 TUBS0093.CEL PAO1 ΔbphO; replicate 3 RNA LB ΔbphO 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 bphP-1 TUBS0094.CEL PAO1 ΔbphP; replicate 1 RNA LB ΔbphP 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 bphP-2 TUBS0095.CEL PAO1 ΔbphP; replicate 2 RNA LB ΔbphP 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 bphP-3 TUBS0096.CEL PAO1 ΔbphP; replicate 3 RNA LB ΔbphP 3.5 Planktonic PAO1 37 OD578; stationary phase cells GentR -E-MEXP-2606 WT-1 TUBS0088.CEL PAO1 WT; control; replicate 1 RNA LB WT 3.5 Planktonic PAO1 37 OD578; stationary phase cells -E-MEXP-2606 WT-2 TUBS0089.CEL PAO1 WT; control; replicate 2 RNA LB WT 3.5 Planktonic PAO1 37 OD578; stationary phase cells -E-MEXP-2606 WT-3 TUBS0090.CEL PAO1 WT; control; replicate 3 RNA LB WT 3.5 Planktonic PAO1 37 OD578; stationary phase cells -E-MEXP-2593 PA14 SCFM 1 PA14_3-23-07_s2.CEL PA14 WT grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 1 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 PA14 SCFM 2 05_PA14000-4-2_5-10-07_S2.CEL PA14 WT grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 2 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 PA14 SCFM 3 PA14_cDNA_labeled_4-09-08_S2.CEL PA14 WT grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 3 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 PA14 SCFM 4 HH-PA14_7-6-09_7-8-09_s1.CEL PA14 WT grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 4 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 PA14 SCFM no aromatic amino acids 1 PA14-Aro_10-5-07_s2.CEL PA14 WT cells grown planktonically in synthetic CF sputum medium without aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 1 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 No aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 PA14 SCFM no aromatic amino acids 2 KP_PA14_5-28_5-30-08_s2.CEL PA14 WT cells grown planktonically in synthetic CF sputum medium without aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 2 RNA Synthetic CF sputum WT 0.35-0.45 Planktonic aerated PA14 37 No aromatic amino acids Grown shaking at 250rpm -E-MEXP-2593 phhR mutant SCFM 1 GPphhRminus_11-4-09_s2.CEL PA14 phhR mutant cells grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 1 RNA Synthetic CF sputum phhR::Mariner 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm Gentamicin -E-MEXP-2593 phhR mutant SCFM 2 GPphhRminus_11-30-09_12-3-09_s1.CEL PA14 phhR mutant cells grown planktonically in synthetic CF sputum medium with aromatic amino acids at 37C with aeration to an OD of 0.35 to 0.45; replicate 2 RNA Synthetic CF sputum phhR::Mariner 0.35-0.45 Planktonic aerated PA14 37 with aromatic amino acids Grown shaking at 250rpm Gentamicin -E-GEOD-13252 GSE13252GSM334310 GSM334310.CEL Pseudomonas aeruginosa PAO1_untreated control_rep1 RNA MH WT 0.8 Planktonic shaking PAO1 37 Shaking at 180 rpm -E-GEOD-13252 GSE13252GSM334311 GSM334311.CEL Pseudomonas aeruginosa PAO1 0.15µg/ml colistin treated rep1 RNA MH WT 0.8 Planktonic shaking PAO1 37 0.15 µg/ml colistin Shaking at 180 rpm -E-GEOD-13252 GSE13252GSM334312 GSM334312.CEL Pseudomonas aeruginosa PAO1_untreated control_rep2 RNA MH WT 0.8 Planktonic shaking PAO1 37 Shaking at 180 rpm -E-GEOD-13252 GSE13252GSM334313 GSM334313.CEL Pseudomonas aeruginosa PAO1 0.15µg/ml colistin treated rep2 RNA MH WT 0.8 Planktonic shaking PAO1 37 0.15 µg/ml colistin Shaking at 180 rpm -E-GEOD-13252 GSE13252GSM334314 GSM334314.CEL Pseudomonas aeruginosa PAO1 0.15µg/ml colistin treated rep3 RNA MH WT 0.8 Planktonic shaking PAO1 37 0.15 µg/ml colistin Shaking at 180 rpm -E-GEOD-13252 GSE13252GSM334315 GSM334315.CEL Pseudomonas aeruginosa PAO1_untreated control_rep3 RNA MH WT 0.8 Planktonic shaking PAO1 37 Shaking at 180 rpm -E-GEOD-13326 GSM335182 1 GSM335182.CEL RNA extracted from suspension cells of Pseudomonas aeruginosa PA14 WT untreated (control for 500uM NE expt) for 7 hours in serum-RPMI medium at 37ºC RNA serum-RPMI 0.5 planktonic aeration PA14 37 control 7 h -E-GEOD-13326 GSM335183 1 GSM335183.CEL RNA extracted from suspension cells of Pseudomonas aeruginosa PA14 WT treated with 500 uM norepinephrine for 7 hours in serum-RPMI medium at 37ºC RNA serum-RPMI 1.5 planktonic aeration PA14 37 500 uM norepinephrine 7 h -E-GEOD-13326 GSM366976 1 GSM366976.CEL RNA extracted from suspension cells of Pseudomonas aeruginosa PA14 WT untreated (control 50 uM NE expt) for 7 hours in serum-RPMI medium at 37ºC RNA serum-RPMI 1.1 planktonic aeration PA14 37 50 uM norepinephrine 7 h -E-GEOD-13326 GSM366977 1 GSM366977.CEL RNA extracted from suspension cells of Pseudomonas aeruginosa PA14 WT treated with 50 uM norepinephrine for 7 hour in serum-RPMI medium at 37ºC RNA serum-RPMI 0.5 planktonic aeration PA14 37 control 7 h -E-GEOD-17296 GSE17296GSM432860 GSM432860.CEL WT. Planktonic. Exponential phase. Rep1 RNA LB WT 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432861 GSM432861.CEL WT. Planktonic. Exponential phase. Rep2 RNA LB WT 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432862 GSM432862.CEL ∆roxSR. Planktonic. Exponential phase. Rep1 RNA LB ∆roxSR 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432863 GSM432863.CEL ∆roxSR. Planktonic. Exponential phase. Rep2 RNA LB ∆roxSR 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432864 GSM432864.CEL ∆anr. Planktonic. Exponential phase. Rep1 RNA LB ∆anr 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432865 GSM432865.CEL ∆anr. Planktonic. Exponential phase. Rep2 RNA LB ∆anr 0.3 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432866 GSM432866.CEL WT. Planktonic. Early stationary phase. Rep1 RNA LB WT 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432867 GSM432867.CEL WT. Planktonic. Early stationary phase. Rep2 RNA LB WT 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432868 GSM432868.CEL ∆roxSR. Planktonic. Early stationary phase. Rep1 RNA LB ∆roxSR 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432869 GSM432869.CEL ∆roxSR. Planktonic. Early stationary phase. Rep2 RNA LB ∆roxSR 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432870 GSM432870.CEL ∆anr. Planktonic. Early stationary phase. Rep1 RNA LB ∆anr 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-17296 GSE17296GSM432871 GSM432871.CEL ∆anr. Planktonic. Early stationary phase. Rep2 RNA LB ∆anr 1.4 Planktonic Aerated PAO1 37 Grown shaking. -E-GEOD-6769 GSM156153 1 GSM156153.CEL PAO1 WT. Flow cell biofilm. Rep1 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days. -E-GEOD-6769 GSM156154 1 GSM156154.CEL PAO1 WT. Flow cell biofilm plus PMNs. Rep1 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. Polymorphonuclear neutrophils Human -E-GEOD-6769 GSM156155 1 GSM156155.CEL PAO1 WT. Flow cell biofilm. Rep2 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days. -E-GEOD-6769 GSM156156 1 GSM156156.CEL PAO1 WT. Flow cell biofilm plus PMNs. Rep2 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. Polymorphonuclear neutrophils Human -E-GEOD-6769 GSM156157 1 GSM156157.CEL PAO1 WT. Flow cell biofilm plus PMNs. Rep3 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. Polymorphonuclear neutrophils Human -E-GEOD-6769 GSM156158 1 GSM156158.CEL PAO1 WT. Flow cell biofilm. Rep3 RNA ABT media plus 0.5% glucose WT Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days. -E-GEOD-6769 GSM156172 1 GSM156172.CEL PAO1 ∆lasR ∆rhlR. Flow cell biofilm plus PMNs. Rep1 RNA ABT media plus 0.5% glucose ∆lasR ∆rhlR Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. Polymorphonuclear neutrophils Human -E-GEOD-6769 GSM156173 1 GSM156173.CEL PAO1 ∆lasR ∆rhlR. Flow cell biofilm plus PMNs. Rep1 RNA ABT media plus 0.5% glucose ∆lasR ∆rhlR Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days. -E-GEOD-6769 GSM156174 1 GSM156174.CEL PAO1 ∆lasR ∆rhlR. Flow cell biofilm plus PMNs. Rep2 RNA ABT media plus 0.5% glucose ∆lasR ∆rhlR Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. Polymorphonuclear neutrophils Human -E-GEOD-6769 GSM156175 1 GSM156175.CEL PAO1 ∆lasR ∆rhlR. Flow cell biofilm plus PMNs. Rep2 RNA ABT media plus 0.5% glucose ∆lasR ∆rhlR Biofilm Flow cell PAO1 37 Biofilms were allowed to grow and develop in the biofilm flow chambers for 3 days before challenge with PMNs. -E-GEOD-10362 GSE10362GSM261915 GSM261915.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261917 and GSM261916" RNA LB Clinical isolate 3.5 Planktonic Shaking M1-1 37 -E-GEOD-10362 GSE10362GSM261916 GSM261916.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261917 and GSM261915" RNA LB Clinical isolate 3.5 Planktonic Shaking M1-2 37 -E-GEOD-10362 GSE10362GSM261917 GSM261917.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261916 and GSM261915" RNA LB Clinical isolate 3.5 Planktonic Shaking M1-3 37 -E-GEOD-10362 GSE10362GSM261918 GSM261918.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261920 and GSM261919" RNA LB Clinical isolate 3.5 Planktonic Shaking M9-1 37 ceftazidime resistant Mucoid -E-GEOD-10362 GSE10362GSM261919 GSM261919.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261920 and GSM261918" RNA LB Clinical isolate 3.5 Planktonic Shaking M9-2 37 ceftazidime resistant Mucoid -E-GEOD-10362 GSE10362GSM261920 GSM261920.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261918 and GSM261919" RNA LB Clinical isolate 3.5 Planktonic Shaking M9-3 37 ceftazidime resistant Mucoid -E-GEOD-10362 GSE10362GSM261921 GSM261921.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator, mucoid strain, replicate of GSM261922 and GSM261923" RNA LB Clinical isolate 3.5 Planktonic Shaking M11-1 37 ceftazidime and ciprofloxacin resistant Mucoid -E-GEOD-10362 GSE10362GSM261922 GSM261922.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator, mucoid strain, replicate of GSM261923 and GSM261921" RNA LB Clinical isolate 3.5 Planktonic Shaking M11-2 37 ceftazidime and ciprofloxacin resistant Mucoid -E-GEOD-10362 GSE10362GSM261923 GSM261923.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator, mucoid strain, replicate of GSM261922 and GSM261921" RNA LB Clinical isolate 3.5 Planktonic Shaking M11-3 37 ceftazidime and ciprofloxacin resistant Mucoid -E-GEOD-10362 GSE10362GSM261924 GSM261924.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261926 and GSM261925" RNA LB Clinical isolate 3.5 Planktonic Shaking M13-1 37 Mutator -E-GEOD-10362 GSE10362GSM261925 GSM261925.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261924 and GSM261926" RNA LB Clinical isolate 3.5 Planktonic Shaking M13-2 37 Mutator -E-GEOD-10362 GSE10362GSM261926 GSM261926.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261924 and GSM261925" RNA LB Clinical isolate 3.5 Planktonic Shaking M13-3 37 Mutator -E-GEOD-10362 GSE10362GSM261927 GSM261927.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261928 and GSM261929" RNA LB Clinical isolate 3.5 Planktonic Shaking M22-1 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator Trp -E-GEOD-10362 GSE10362GSM261928 GSM261928.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261929 and GSM261927" RNA LB Clinical isolate 3.5 Planktonic Shaking M22-2 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator Trp -E-GEOD-10362 GSE10362GSM261929 GSM261929.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261928 and GSM261927" RNA LB Clinical isolate 3.5 Planktonic Shaking M22-3 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator Trp -E-GEOD-10362 GSE10362GSM261930 GSM261930.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain replicate of GSM261932 and GSM261931" RNA LB Clinical isolate 3.5 Planktonic Shaking M23-1 37 ceftazidime resistant -E-GEOD-10362 GSE10362GSM261931 GSM261931.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain, replicate of GSM261932 and GSM261930" RNA LB Clinical isolate 3.5 Planktonic Shaking M23-2 37 ceftazidime resistant -E-GEOD-10362 GSE10362GSM261932 GSM261932.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, non-mutator strain, replicate of GSM261931 and GSM261930" RNA LB Clinical isolate 3.5 Planktonic Shaking M23-3 37 ceftazidime resistant -E-GEOD-10362 GSE10362GSM261933 GSM261933.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261934" RNA LB Clinical isolate 3.5 Planktonic Shaking M25-1 37 Mutator Trp -E-GEOD-10362 GSE10362GSM261934 GSM261934.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261933" RNA LB Clinical isolate 3.5 Planktonic Shaking M25-2 37 Mutator Trp -E-GEOD-10362 GSE10362GSM261935 GSM261935.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain, replicate of GSM261934 and GSM261933" RNA LB Clinical isolate 3.5 Planktonic Shaking M25-3 37 Mutator Trp -E-GEOD-10362 GSE10362GSM261936 GSM261936.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261938 and GSM261937" RNA LB Clinical isolate 3.5 Planktonic Shaking M26-1 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator "Met, Trp" -E-GEOD-10362 GSE10362GSM261937 GSM261937.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261938 and GSM261936" RNA LB Clinical isolate 3.5 Planktonic Shaking M26-2 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator "Met, Trp" -E-GEOD-10362 GSE10362GSM261938 GSM261938.CEL "Pseudomonas aeruginosa, clinical isolate from patient M, mutator strain replicate of GSM261938 and GSM261937" RNA LB Clinical isolate 3.5 Planktonic Shaking M26-3 37 "ceftazidime, fosfomycin, meropenem resistant" Mutator "Met, Trp" -E-GEOD-13871 GSM349042 1 GSM349042.CEL "RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14 wild type after 7 hours of growth at 37C in LB with glasswool, replicate 1" RNA LB WT Biofilm shaking with submerged glass wool PA14 37 no treatment 7 hours biofilm -E-GEOD-13871 GSM349045 1 GSM349045.CEL RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14_tpbA mutant after 7 hours of growth at 37C in LB with glasswool replicate 1 RNA LB ΔtpbA Biofilm shaking with submerged glass wool PA14 37 no treatment 7 hours biofilm -E-GEOD-13871 GSM349047 1 GSM349047.CEL RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14 wild type after 7 hours of growth at 37C in LB with glasswool replicate 2 RNA LB WT Biofilm shaking with submerged glass wool PA14 37 no treatment 7 hours biofilm -E-GEOD-13871 GSM349048 1 GSM349048.CEL "RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14_tpbA mutant after 7 hours of growth at 37C in LB with glasswool, replicate 2" RNA LB ΔtpbA Biofilm shaking with submerged glass wool PA14 37 no treatment 7 hours biofilm -E-GEOD-13871 GSM375702 1 GSM375702.CEL RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14 WT after 4 hours of growth at 37C in LB with glasswool RNA LB WT Biofilm shaking with submerged glass wool PA14 37 no treatment 4 hours biofilm -E-GEOD-13871 GSM375703 1 GSM375703.CEL RNA extracted from biofilm cells of Pseudomonas aeruginosa PA14_tpA mutant after 4 hours of growth at 37C in LB with glasswool RNA LB ΔtpbA Biofilm shaking with submerged glass wool PA14 37 no treatment 4 hours biofilm -E-GEOD-15697 GSE9657GSM244065 GSM244065.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMMB67EH (Empty vector), grown with 25 µg/ml piperacillin, replicate 1" RNA LB WT + pMMB67EH (empty plasmid) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-15697 GSE9657GSM244066 GSM244066.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMMB67EH (Empty vector), grown with 25 µg/ml piperacillin, replicate 2" RNA LB WT + pMMB67EH (empty plasmid) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-15697 GSM393044 1 GSM393044.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMUM3 (overexpressing the PA0675 ECF sigma factor), grown with 25 µg/ml piperacillin, replicate 1" RNA LB WT + pMUM3 (PA0675 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin IPTG induced overexpression of PA0675 (vreI) AmpR -E-GEOD-15697 GSM393045 1 GSM393045.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMUM3 (overexpressing the PA0675 ECF sigma factor), grown with 25 µg/ml piperacillin, replicate 2" RNA LB WT + pMUM3 (PA0675 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin IPTG induced overexpression of PA0675 (vreI) AmpR -E-GEOD-14253 GSE14253GSM356953 GSM356953.CEL Pseudomonas aeruginosa PAO1 WT Control RNA LB WT 0.8 planktonic aeration PAO1 37 control -E-GEOD-14253 GSE14253GSM356954 GSM356954.CEL Pseudomonas aeruginosa PAO1 WT Control RNA LB WT 0.8 planktonic aeration PAO1 37 control -E-GEOD-14253 GSE14253GSM356955 GSM356955.CEL Pseudomonas aeruginosa PAO1 WT Control RNA LB WT 0.8 planktonic aeration PAO1 37 control -E-GEOD-14253 GSE14253GSM356956 GSM356956.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_10min_replicate1 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 10 min exposure -E-GEOD-14253 GSE14253GSM356957 GSM356957.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_10min_replicate2 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 10 min exposure -E-GEOD-14253 GSE14253GSM356958 GSM356958.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_10min_replicate3 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 10 min exposure -E-GEOD-14253 GSE14253GSM356959 GSM356959.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_60min_replicate1 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 60 min exposure -E-GEOD-14253 GSE14253GSM356960 GSM356960.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_60min_replicate2 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 60 min exposure -E-GEOD-14253 GSE14253GSM356961 GSM356961.CEL Pseudomonas aeruginosa PAO1 Chlorhexidine diacetate_60min_replicate3 RNA LB WT 0.8 planktonic aeration PAO1 37 8 µM clorhexidine 60 min exposure -E-GEOD-9592 GSE9592GSM242671 GSM242671.CEL PA14 WT. Biofilm on glass wool. RNA LB WT Biofilm Glass wool PA14 37 Biofilms grown on glass wool in shaking (25rpm) culture for 7 h. -E-GEOD-9592 GSE9592GSM242676 GSM242676.CEL PA14 ∆pyrF. Biofilms on glass wool. RNA LB pyrF::Mariner Biofilm Glass wool PA14 37 Biofilms grown on glass wool in shaking (25rpm) culture for 7 h. Gentamicin -E-GEOD-9592 GSE9592GSM242677 GSM242677.CEL PA14 ∆pyrF. Biofilms on glass wool. Plus 1 mM uricil. RNA LB pyrF::Mariner Biofilm Glass wool PA14 37 1 mM uracil Biofilms grown on glass wool in shaking (25rpm) culture for 7 h. Gentamicin -E-GEOD-9592 GSE9592GSM318716 GSM318716.CEL PA14 WT. Biofilm on glass wool. Plus 10 mM uracil. RNA LB WT Biofilm Glass wool PA14 37 10 mM uracil Biofilms grown on glass wool in shaking (25rpm) culture for 7 h. -E-GEOD-12207 GSE12207GSM307112 GSM307112.CEL Planktonic. Late exponential phase. Rep1 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 3 hrs. Late exponential phase. -E-GEOD-12207 GSE12207GSM307113 GSM307113.CEL Planktonic. Late exponential phase. Rep2 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 3 hrs. Late exponential phase. -E-GEOD-12207 GSE12207GSM307114 GSM307114.CEL Planktonic. Late exponential phase. Rep3 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 3 hrs. Late exponential phase. -E-GEOD-12207 GSE12207GSM307115 GSM307115.CEL Planktonic. Early stationary phase. Rep1 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 9 hrs. Early stationary phase. -E-GEOD-12207 GSE12207GSM307116 GSM307116.CEL Planktonic. Early stationary phase. Rep2 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 9 hrs. Early stationary phase. -E-GEOD-12207 GSE12207GSM307117 GSM307117.CEL Planktonic. Early stationary phase. Rep3 RNA AGSY WT Planktonic Aerated PAO1 37 Vigorous shaking. Harvest at 9 hrs. Early stationary phase. -E-GEOD-12207 GSE12207GSM307118 GSM307118.CEL Colony biofilm. 15 hrs. Rep1 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 15 hrs. -E-GEOD-12207 GSE12207GSM307119 GSM307119.CEL Colony biofilm. 15 hrs. Rep2 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 15 hrs. -E-GEOD-12207 GSE12207GSM307120 GSM307120.CEL Colony biofilm. 15 hrs. Rep3 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 15 hrs. -E-GEOD-12207 GSE12207GSM307121 GSM307121.CEL Colony biofilm. 40 hrs. Rep1 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 40 hrs. -E-GEOD-12207 GSE12207GSM307122 GSM307122.CEL Colony biofilm. 40 hrs. Rep2 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 40 hrs. -E-GEOD-12207 GSE12207GSM307123 GSM307123.CEL Colony biofilm. 40 hrs. Rep3 RNA AGSY WT Biofilm Colony biofilm PAO1 37 Agar plate. 40 hrs. -E-GEOD-12207 GSE12207GSM307124 GSM307124.CEL Flow cell biofilm. 3 days. Rep1 RNA AGSY WT Biofilm Flow cell PAO1 37 Continuous flow system. 3 days. -E-GEOD-12207 GSE12207GSM307125 GSM307125.CEL Flow cell biofilm. 3 days. Rep2 RNA AGSY WT Biofilm Flow cell PAO1 37 Continuous flow system. 3 days. -E-GEOD-12207 GSE12207GSM307126 GSM307126.CEL Flow cell biofilm. 3 days. Rep3 RNA AGSY WT Biofilm Flow cell PAO1 37 Continuous flow system. 3 days. -E-GEOD-3836 GSE3836GSM87345 "P. aeruginosa PAO1 WT grown in BHI to early log phase (5hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 early log phase cells; 180 rpm; 5 hours -E-GEOD-3836 GSE3836GSM87346 "P. aeruginosa PAO1 WT grown in BHI to early log phase (5hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 early log phase cells; 180 rpm; 5 hours -E-GEOD-3836 GSE3836GSM87347 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to early log phase (5hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS early log phase cells; 180 rpm; 5 hours -E-GEOD-3836 GSE3836GSM87348 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to early log phase (5hr), replicate 2" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS early log phase cells; 180 rpm; 5 hours -E-GEOD-3836 GSE3836GSM87349 "P. aeruginosa PAO1 WT grown in BHI to mid log phase (11hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 late log phase cells; 180 rpm; 11 hours -E-GEOD-3836 GSE3836GSM87350 "P. aeruginosa PAO1 WT grown in BHI to mid log phase (11hr), replicate 2" RNA BHI WT Planktonic Shaking PAO1 37 late log phase cells; 180 rpm; 11 hours -E-GEOD-3836 GSE3836GSM87352 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to mid log phase (11hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS late log phase cells; 180 rpm; 11 hours -E-GEOD-3836 GSE3836GSM87353 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to mid log phase (11hr), replicate 2" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS late log phase cells; 180 rpm; 11 hours -E-GEOD-3836 GSE3836GSM87354 "P. aeruginosa PAO1 WT grown in BHI to late stationary phase (20hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 stationary phase cells; 180 rpm; 20 hours -E-GEOD-3836 GSE3836GSM87355 "P. aeruginosa PAO1 WT grown in BHI to late stationary phase (20hr), replicate 2" RNA BHI WT Planktonic Shaking PAO1 37 stationary phase cells; 180 rpm; 20 hours -E-GEOD-3836 GSE3836GSM87356 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to late stationary phase (20hr), replicate 1" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS stationary phase cells; 180 rpm; 20 hours -E-GEOD-3836 GSE3836GSM87357 "P. aeruginosa PAO1 WT grown in BHI + 40uM PQS to late stationary phase (20hr), replicate 2" RNA BHI WT Planktonic Shaking PAO1 37 40uM PQS stationary phase cells; 180 rpm; 20 hours -E-GEOD-11544 GSE11544GSM290747 GSM290747.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in resistant cultivar tobacco plant leaves, replicate 1" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Xanthi nc [NN] Rifampin Leaf Plant (Nicotiana tabacum cv. Xanthi) -E-GEOD-11544 GSE11544GSM290748 GSM290748.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in resistant cultivar tobacco plant leaves, replicate 2" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Xanthi nc [NN] Rifampin Leaf Plant (Nicotiana tabacum cv. Xanthi) -E-GEOD-11544 GSE11544GSM290749 GSM290749.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in resistant cultivar tobacco plant leaves, replicate 3" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Xanthi nc [NN] Rifampin Leaf Plant (Nicotiana tabacum cv. Xanthi) -E-GEOD-11544 GSE11544GSM290750 GSM290750.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in susceptible cultivar tobacco plant leaves, replicate 1" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Samsun nn Rifampin Leaf Plant (Nicotiana tabacum cv. Samsung) -E-GEOD-11544 GSE11544GSM290751 GSM290751.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in susceptible cultivar tobacco plant leaves, replicate 2" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Samsun nn Rifampin Leaf Plant (Nicotiana tabacum cv. Samsung) -E-GEOD-11544 GSE11544GSM290752 GSM290752.CEL "Pseudomonas aeruginosa PAO1 24 hour growth of Pa in susceptible cultivar tobacco plant leaves, replicate 3" RNA Plant intracellular fluid WT 24 hours in vivo PAO1 30 24 h; Nicotiana tabacum cultivars Samsun nn Rifampin Leaf Plant (Nicotiana tabacum cv. Samsung) -E-GEOD-9991 GSE9991GSM252559 GSM252559.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells, replicate 1" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 -E-GEOD-9991 GSE9991GSM252560 GSM252560.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells, replicate 2" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 -E-GEOD-9991 GSE9991GSM252561 GSM252561.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells treated with Tobramycin, replicate 1" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 5 μg/mL Tobramycin -E-GEOD-9991 GSE9991GSM252562 GSM252562.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells treated with Tobramycin, replicate 2" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 5 μg/mL Tobramycin -E-GEOD-7968 GSE7968GSM197237 GSM197237.CEL PAO1 WT grown as static biofilm on glass wool at 30C for 7 hours in LB; 1 replicate RNA LB WT 7 hours Biofilm Static PAO1 30 Biofilm grown on glass wool -E-GEOD-7968 GSE7968GSM197238 GSM197238.CEL PA2663 mutant grown as static biofilm on glass wool at 30C for 7 hours in LB; 1 replicate RNA LB PA2663 mutant 7 hours Biofilm Static PAO1 30 Biofilm grown on glass wool -E-GEOD-10030 GSE9989GSM252496 GSM252496.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 1" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9989GSM252501 GSM252501.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 2" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9989GSM252505 GSM252505.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 3" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9989GSM252506 GSM252506.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 1" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9989GSM252507 GSM252507.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 2" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9989GSM252508 GSM252508.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 3" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-10030 GSE9991GSM252559 GSM252559.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells, replicate 1" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 -E-GEOD-10030 GSE9991GSM252560 GSM252560.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells, replicate 2" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 -E-GEOD-10030 GSE9991GSM252561 GSM252561.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells treated with Tobramycin, replicate 1" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 5 μg/mL Tobramycin -E-GEOD-10030 GSE9991GSM252562 GSM252562.CEL "Pseudomonas aeruginosa PA14 WT planktonic cells treated with Tobramycin, replicate 2" RNA "MEM, 2% LB" WT mid-exponential Planktonic PA14 37 5 μg/mL Tobramycin -E-GEOD-9989 GSE9989GSM252496 GSM252496.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 1" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9989 GSE9989GSM252501 GSM252501.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 2" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9989 GSE9989GSM252505 GSM252505.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs, replicate 3" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 9.5 h biofilms Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9989 GSE9989GSM252506 GSM252506.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 1" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9989 GSE9989GSM252507 GSM252507.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 2" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9989 GSE9989GSM252508 GSM252508.CEL "Pseudomonas aeruginosa 9.5 hour static coculture with human CFBEs treated with tobramycin, replicate 3" RNA "MEM, 0.4% arginine" WT 9.5 hours Biofilm Static PA14 37 500 μg/mL Tobramycin "9.5 h biofilms, 30 min exposure" Lung epithelial cells (CFBE41o- cells) Human -E-GEOD-9926 GSE9926GSM251201 GSM251201.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate at 37C with shaking to an OD of 0.5-0.6; replicate 1 RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20 mM glutamate -E-GEOD-9926 GSE9926GSM251202 GSM251202.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate and 20mM putrescine at 37C with shaking to an OD of 0.5-0.6; replicate 1 RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20mM glutamate + 20mM putrescine -E-GEOD-9926 GSE9926GSM251203 GSM251203.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate and 20mM agmatate at 37C with shaking to an OD of 0.5-0.6; replicate 2 RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20mM glutamate + 20mM agmatine -E-GEOD-9926 GSE9926GSM251204 GSM251204.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate and 20mM agmatate at 37C with shaking to an OD of 0.5-0.6; replicate 1 RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20mM glutamate + 20mM agmatine -E-GEOD-9926 GSE9926GSM251205 GSM251205.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate and 20mM GABA at 37C with shaking to an OD of 0.5-0.6; 1 replicate RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20mM glutamate + 20mM GABA -E-GEOD-9926 GSE9926GSM251206 GSM251206.CEL PAO1 WT grown planktonically in minimal medium P (MMP) with 20mM glutamate and 20mM putrescine at 37C with shaking to an OD of 0.5-0.6; replicate 2 RNA MMP WT 0.5-0.6 Planktonic aerated PAO1 37 20mM glutamate + 20mM putrescine -E-GEOD-9657 GSE9657GSM244065 GSM244065.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMMB67EH (Empty vector), grown with 25 µg/ml piperacillin, replicate 1" RNA LB WT + pMMB67EH (empty plasmid) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244066 GSM244066.CEL "Pseudomonas aeruginosa PAO25 containing the plasmid pMMB67EH (Empty vector), grown with 25 µg/ml piperacillin, replicate 2" RNA LB WT + pMMB67EH (empty plasmid) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244067 GSM244067.CEL "Pseudomonas aeruginosa PAO25 containing the pMMB67EH carrying the 1.5 kb SacI-XhoI insert from pUCMA1 containing the PA4896 gene, grown with 25 µg/ml piperacillin, replicate 1" RNA LB pMMB-PA4896 (PA4896 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244068 GSM244068.CEL "Pseudomonas aeruginosa PAO25 containing the pMMB67EH carrying the 1.5 kb SacI-XhoI insert from pUCMA1 containing the PA4896 gene, grown with 25 µg/ml piperacillin, replicate 2" RNA LB pMMB-PA4896 (PA4896 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244069 GSM244069.CEL "Pseudomonas aeruginosa PAO25 containing the pMMB67EH carrying the 958 bp BamHI-SphI insert from pUCMA2 containing the PA0149 gene, grown with 25 µg/ml piperacillin, replicate 1" RNA LB pMMB-PA0149 (PA0149 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244070 GSM244070.CEL "Pseudomonas aeruginosa PAO25 containing the pMMB67EH carrying the 958 bp BamHI-SphI insert from pUCMA2 containing the PA0149 gene, grown with 25 µg/ml piperacillin, replicate 2" RNA LB pMMB-PA0149 (PA0149 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244071 GSM244071.CEL "Pseudomonas aeruginosa PAO25 containing the, pMMB67EH carrying the 964 bp SacI-XhoI insert from pUCMA4 containing the PA2050 gene, grown with 25 µg/ml piperacillin." RNA LB pMMB-PA2050 (PA2050 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9657 GSE9657GSM244072 GSM244072.CEL "Pseudomonas aeruginosa PAO25 containing the, pMMB67EH carrying a 936 bp EcoRI-XbaI PCR fragment containing the PA2093 gene grown with 25 µg/ml piperacillin." RNA LB pMMB-PA2093 (PA2093 overexpression) 0.7-0.8 Planktonic Shaking PAO25 37 25 µg/ml piperacillin Induced with 1mM IPTG for 45 minutes before harvest AmpR -E-GEOD-9621 GSE9621GSM243221 GSM243221.CEL "Pseudomonas aeruginosa mucoid clinical isolate from an individual CF patient, grown to mid-log phase, replicate 1" RNA LB Clinical isolate 0.5 Planktonic Aerated Cystic fibrosis C.I. 2192 37 Grown shaking at 200rpm Mucoid -E-GEOD-9621 GSE9621GSM243222 GSM243222.CEL "Pseudomonas aeruginosa mucoid clinical isolate from an individual CF patient, grown to mid-log phase, replicate 2" RNA LB Clinical isolate 0.5 Planktonic Aerated Cystic fibrosis C.I. 2192 37 Grown shaking at 200rpm Mucoid -E-GEOD-9621 GSE9621GSM243223 GSM243223.CEL "Pseudomonas aeruginosa non-mucoid clinical isolate from an individual CF patient, grown to mid-log phase, replicate 1" RNA LB Clinical isolate 0.5 Planktonic Aerated Cystic fibrosis C.I. 383 37 Grown shaking at 200rpm -E-GEOD-9621 GSE9621GSM243224 GSM243224.CEL "Pseudomonas aeruginosa non-mucoid clinical isolate from an individual CF patient, grown to mid-log phase, replicate 2" RNA LB Clinical isolate 0.5 Planktonic Aerated Cystic fibrosis C.I. 383 37 Grown shaking at 200rpm -E-GEOD-8408 GSE8408GSM208602 GSM208602.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. These cells were then used to inoculate the starter culture needed for RNA preparation. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208603 GSM208603.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. These cells were then used to inoculate the starter culture needed for RNA preparation. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208604 GSM208604.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. These cells were then used to inoculate the starter culture needed for RNA preparation. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 3" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208605 GSM208605.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208606 GSM208606.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208607 GSM208607.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 3" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208608 GSM208608.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208609 GSM208609.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 25 ug/ml LS174T mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208610 GSM208610.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 25 ug/ml LS174T mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208611 GSM208611.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 25 ug/ml LS174T mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 3" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208612 GSM208612.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with a combination of 500 uM cyclamate (sodium cyclohexylsulfamate) and 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with the same mixture of cyclamate and mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) and 25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208613 GSM208613.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with a combination of 500 uM cyclamate (sodium cyclohexylsulfamate) and 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with the same mixture of cyclamate and mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) and 25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208614 GSM208614.CEL "Pseudomonas aeruginosa E601 clinical isolate 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. The cells were then grown for at least 12 generations with a combination of 500 uM cyclamate (sodium cyclohexylsulfamate) and 25 ug/ml human colon cell line mucin LS174T as sulfur source.These cells were then used to inoculate the starter culture needed for RNA preparation, grown with the same mixture of cyclamate and mucin as S source). For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 3" RNA succinate-based minimal medium Clinical isolate 0.2 Planktonic Shaking Cystic fibrosis C.I. E601 37 500 uM cyclamate (sodium cyclohexylsulfamate) +25 ug/ml human colon cell line mucin LS174T 5 ml culture grown in 50 ml flasks shaking at 220rpm Mucin sulfatase activity -E-GEOD-8408 GSE8408GSM208615 GSM208615.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations, For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208616 GSM208616.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations, For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208617 GSM208617.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations, For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 3" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM Sulfate 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208618 GSM208618.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. They were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as S source. These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208619 GSM208619.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. They were then grown for at least 12 generations with 500 uM cyclamate (sodium cyclohexylsulfamate) as S source. These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate as S source. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208620 GSM208620.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. They wer then grown for at least 12 generations with 500 uM sulfate and 500 uM cyclamate (sodium cyclohexylsulfamate) as S source. These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate/500 uM sulfate as S source. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 1" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM Sulfate + 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-8408 GSE8408GSM208621 GSM208621.CEL "Pseudomonas aeruginosa PAO1 5 ml cultures of cells were grown aerobically in succinate-based minimal medium in 50 ml flasks shaken with 220 rpm at 37 C. Cells were grown with 500 uM Sulfate in repeated batch cultures for at least 20 generations. They wer then grown for at least 12 generations with 500 uM sulfate and 500 uM cyclamate (sodium cyclohexylsulfamate) as S source. These cells were then used to inoculate the starter culture needed for RNA preparation, grown with 500 uM cyclamate/500 uM sulfate as S source. For the preparation of RNA a 5 ml culture was started with 100 ul of a freshly grown culture. and grown to an OD600 of 0.2, replicate 2" RNA succinate-based minimal medium WT 0.2 Planktonic Shaking PAO1 37 500 uM Sulfate + 500 uM cyclamate (sodium cyclohexylsulfamate) 5 ml culture grown in 50 ml flasks shaking at 220rpm -E-GEOD-7704 GSE7704GSM187265 GSM187265.CEL PAO1 WT; citrate; replicate 1 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 20 mM citrate OD540; 225 rpm -E-GEOD-7704 GSE7704GSM187266 GSM187266.CEL PAO1 WT; citrate; replicate 2 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 20 mM citrate OD540; 225 rpm -E-GEOD-7704 GSE7704GSM187267 GSM187267.CEL PAO1 WT; citrate; replicate 3 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 20 mM citrate OD540; 225 rpm -E-GEOD-7704 GSE7704GSM187270 GSM187270.CEL CF sputum pooled isolate; citrate; replicate 1 RNA M9 minimal medium + 0.2% Brij 58 Clinical 0.6 Planktonic Aerated CF sputum pool isolate 37 20 mM citrate OD540; 225 rpm; in vitro -E-GEOD-7704 GSE7704GSM187281 GSM187281.CEL CF sputum pooled isolate; citrate; replicate 2 RNA M9 minimal medium + 0.2% Brij 58 Clinical 0.6 Planktonic Aerated CF sputum pool isolate 37 20 mM citrate OD540; 225 rpm; in vitro -E-GEOD-7704 GSE7704GSM187282 GSM187282.CEL CF sputum pooled isolate; citrate; replicate 3 RNA M9 minimal medium + 0.2% Brij 58 Clinical 0.6 Planktonic Aerated CF sputum pool isolate 37 20 mM citrate OD540; 225 rpm; in vitro -E-GEOD-7704 GSE7704GSM187283 GSM187283.CEL CF sputum isolate; control; replicate 1 RNA CF sputum Clinical CF sputum isolate 37 Direct RNA extraction from CF sputum; in vivo Lung Human -E-GEOD-7704 GSE7704GSM187284 GSM187284.CEL CF sputum isolate; control; replicate 2 RNA CF sputum Clinical CF sputum isolate 37 Direct RNA extraction from CF sputum; in vivo Lung Human -E-GEOD-7704 GSE7704GSM198186 GSM198186.CEL PAO1 WT; palmitic acid; replicate 1 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% palmitic acid OD540; 225 rpm -E-GEOD-7704 GSE7704GSM198187 GSM198187.CEL PAO1 WT; palmitic acid; replicate 2 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% palmitic acid OD540; 225 rpm -E-GEOD-7704 GSE7704GSM198188 GSM198188.CEL PAO1 WT; palmitic acid; replicate 3 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% palmitic acid OD540; 225 rpm -E-GEOD-7704 GSE7704GSM198189 GSM198189.CEL PAO1 WT; phosphatidylcholine; replicate 1 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% phosphatidylcholine OD540; 225 rpm -E-GEOD-7704 GSE7704GSM198190 GSM198190.CEL PAO1 WT; phosphatidylcholine; replicate 2 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% phosphatidylcholine OD540; 225 rpm -E-GEOD-7704 GSE7704GSM198191 GSM198191.CEL PAO1 WT; phosphatidylcholine; replicate 3 RNA M9 minimal medium + 0.2% Brij 58 WT 0.6 Planktonic Aerated PAO1 37 0.4% phosphatidylcholine OD540; 225 rpm -E-GEOD-7402 GSE7402GSM178564 PAO1 WT grown planktonically in LB with 4.4 mM sodium hypochlorite at 37C with shaking; replicate 1 RNA LB WT 0.8 Planktonic Aerated PAO1 37 4.4 mM sodium hypochlorite -E-GEOD-7402 GSE7402GSM178565 PAO1 WT grown planktonically in LB with 4.4 mM sodium hypochlorite at 37C with shaking; replicate 2 RNA LB WT 0.8 Planktonic Aerated PAO1 37 4.4 mM sodium hypochlorite -E-GEOD-7402 GSE7402GSM178566 PAO1 WT grown planktonically in LB with 4.4 mM sodium hypochlorite at 37C with shaking; replicate 3 RNA LB WT 0.8 Planktonic Aerated PAO1 37 4.4 mM sodium hypochlorite -E-GEOD-7402 GSE7402GSM178567 PAO1 WT grown planktonically in LB with 4.4 mM sodium hypochlorite at 37C with shaking; replicate 4 RNA LB WT 0.8 Planktonic Aerated PAO1 37 4.4 mM sodium hypochlorite -E-GEOD-7402 GSE7402GSM178568 PAO1 WT grown planktonically in LB with 4.4 mM sodium hypochlorite at 37C with shaking; replicate 5 RNA LB WT 0.8 Planktonic Aerated PAO1 37 4.4 mM sodium hypochlorite 20 m exposure -E-GEOD-7402 GSE7402GSM68692 PAO1 WT grown planktonically in LB at 37C with shaking; replicate 1 RNA LB WT 0.8 Planktonic Aerated PAO1 37 20 m exposure -E-GEOD-7402 GSE7402GSM68693 PAO1 WT grown planktonically in LB at 37C with shaking; replicate 2 RNA LB WT 0.8 Planktonic Aerated PAO1 37 20 m exposure -E-GEOD-7402 GSE7402GSM68694 PAO1 WT grown planktonically in LB at 37C with shaking; replicate 3 RNA LB WT 0.8 Planktonic Aerated PAO1 37 20 m exposure -E-GEOD-7402 GSE7402GSM68695 PAO1 WT grown planktonically in LB at 37C with shaking; replicate 4 RNA LB WT 0.8 Planktonic Aerated PAO1 37 20 m exposure -E-GEOD-7266 GSE7266GSM175247 GSM175247.CEL "Pseudomonas aeruginosa PAO1 suspended cells were collected from a reverse osmosis unit after 20 hours of growth and biofouling of the membrane. A defined media was used, resembeling secondary wastewaters." RNA "Synthetic wastewater (1.16 mm sodium citrate, 0.94 mm NH4Cl, 0.45 mm KH2PO4, 0.5 mm CaCl2·2H2O, 0.5 mm NaHCO3, 2.0 mm NaCl and 0.6 mm MgSO4·7H2O. In addition, 1 ml of LB broth was added per 1 L of solution)" WT Planktonic Flow cell PAO1 25 Planktonic cells not attached to reverse osmosis membrane. RNA collected at 20 h -E-GEOD-7266 GSE7266GSM175248 GSM175248.CEL "Pseudomonas aeruginosa PAO1 were collected from a reverse osmosis membrane after 20 hours of growth and biofouling of the membrane. A defined media was used, resembeling secondary wastewaters." RNA "Synthetic wastewater (1.16 mm sodium citrate, 0.94 mm NH4Cl, 0.45 mm KH2PO4, 0.5 mm CaCl2·2H2O, 0.5 mm NaHCO3, 2.0 mm NaCl and 0.6 mm MgSO4·7H2O. In addition, 1 ml of LB broth was added per 1 L of solution)" WT Biofilm Flow cell PAO1 25 Biofilms grown on reverse osmosis membrane. RNA collected at 20 h. -E-GEOD-6741 GSE6741GSM155231 GSM155231.CEL PAO1 WT. Planktonic. Anaerobic plus 100 mM nitrate. Rep1 RNA CF synthetic sputum WT 0.8 Planktonic Anaerobic PAO1 37 0% oxygen + 100mM nitrate Grown in a stirred sealed flask connected to a gas mixer. Anaerobic plus nitrate. -E-GEOD-6741 GSE6741GSM155239 GSM155239.CEL PAO1 WT. Planktonic. Anaerobic plus 100 mM nitrate. Rep2 RNA CF synthetic sputum WT 0.8 Planktonic Anaerobic PAO1 37 0% oxygen + 100mM nitrate Grown in a stirred sealed flask connected to a gas mixer. Anaerobic plus nitrate. -E-GEOD-6741 GSE6741GSM155240 GSM155240.CEL PAO1 WT. Planktonic. 0.4% oxygen. Rep1 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 0.4% oxygen Grown in a stirred sealed flask connected to a gas mixer. 0.4% oxygen. -E-GEOD-6741 GSE6741GSM155241 GSM155241.CEL PAO1 WT. Planktonic. 0.4% oxygen. Rep2 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 0.4% oxygen Grown in a stirred sealed flask connected to a gas mixer. 0.4% oxygen. -E-GEOD-6741 GSE6741GSM155242 GSM155242.CEL PAO1 WT. Planktonic. 2% oxygen. Rep1 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 2% oxygen Grown in a stirred sealed flask connected to a gas mixer. 2% oxygen. -E-GEOD-6741 GSE6741GSM155243 GSM155243.CEL PAO1 WT. Planktonic. 2% oxygen. Rep2 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 2% oxygen Grown in a stirred sealed flask connected to a gas mixer. 2% oxygen. -E-GEOD-6741 GSE6741GSM155244 GSM155244.CEL PAO1 WT. Planktonic. 20% oxygen. Rep1 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 20% oxygen Grown in a stirred sealed flask connected to a gas mixer. 20% oxygen. -E-GEOD-6741 GSE6741GSM155245 GSM155245.CEL PAO1 WT. Planktonic. 20% oxygen. Rep2 RNA CF synthetic sputum WT 0.8 Planktonic Aerated PAO1 37 20% oxygen Grown in a stirred sealed flask connected to a gas mixer. 20% oxygen. -E-GEOD-5604 GSE5604GSM130787 "P. aeruginosa PA01 rpoS mutant, grown in chemostat without Pentachlorophenol (PCP) (0 hours), replicate 1" RNA Minimal medium with acetate as carbon source rpoS- 12 h doubling time Planktonic chemostat PAO1 20 -E-GEOD-5604 GSE5604GSM130788 "P. aeruginosa PA01 rpoS mutant, grown in chemostat in the presence of Pentachlorophenol (PCP) for 6.5 h, replicate 1" RNA Minimal medium with acetate as carbon source rpoS- 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 6.5 h exposure -E-GEOD-5604 GSE5604GSM130789 "P. aeruginosa PA01 rpoS mutant, grown in chemostat in the presence of Pentachlorophenol (PCP) for 13 h, replicate 1" RNA Minimal medium with acetate as carbon source rpoS- 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 13 h exposure -E-GEOD-5604 GSE5604GSM130790 "P. aeruginosa PA01 rpoS mutant, grown in chemostat in the presence of Pentachlorophenol (PCP) for 26 h, replicate 1" RNA Minimal medium with acetate as carbon source rpoS- 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 25 h exposure -E-GEOD-5604 GSE5604GSM130791 "P. aeruginosa PA01 WT, grown in chemostat without Pentachlorophenol (PCP) (0 hours), replicate 1" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 12 h doubling time -E-GEOD-5604 GSE5604GSM130792 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 6.5 h, replicate 1" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 6.5 h exposure -E-GEOD-5604 GSE5604GSM130793 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 13 h, replicate 1" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 13 h exposure -E-GEOD-5604 GSE5604GSM130794 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 26 h, replicate 1" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 25 h exposure -E-GEOD-5604 GSE5604GSM130795 "P. aeruginosa PA01 WT, grown in chemostat without Pentachlorophenol (PCP) (0 hours), replicate 2" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 12 h doubling time -E-GEOD-5604 GSE5604GSM130796 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 6.5 h, replicate 2" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 6.5 h exposure -E-GEOD-5604 GSE5604GSM130797 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 13 h, replicate 2" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 13 h exposure -E-GEOD-5604 GSE5604GSM130798 "P. aeruginosa PA01 WT, grown in chemostat in the presence of Pentachlorophenol (PCP) for 26 h, replicate 2" RNA Minimal medium with acetate as carbon source WT 12 h doubling time Planktonic chemostat PAO1 20 25 mg/L pentachlorophenol 25 h exposure -E-GEOD-4026 GSE4026GSM92164 GSM92164.CEL YL113 (PAO1) RNA LB + 50 mM MOPS qscR OE 3.5 Planktonic Aerated YL113 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92165 GSM92165.CEL YL113 (PAO1) RNA LB + 50 mM MOPS qscR OE 2 Planktonic Aerated YL113 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92166 GSM92166.CEL YL113 (PAO1) RNA LB + 50 mM MOPS qscR OE 1.4 Planktonic Aerated YL113 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92167 GSM92167.CEL YL113 (PAO1) RNA LB + 50 mM MOPS qscR OE 0.8 Planktonic Aerated YL113 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92168 GSM92168.CEL YL113 (PAO1) RNA LB + 50 mM MOPS qscR OE 0.5 Planktonic Aerated YL113 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92169 GSM92169.CEL YL117 (PAO1) RNA LB + 50 mM MOPS ΔqscR 3' 3.5 Planktonic Aerated YL117 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92170 GSM92170.CEL YL117 (PAO1) RNA LB + 50 mM MOPS ΔqscR 3' 2 Planktonic Aerated YL117 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92171 GSM92171.CEL YL117 (PAO1) RNA LB + 50 mM MOPS ΔqscR 3' 1.4 Planktonic Aerated YL117 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92172 GSM92172.CEL YL117 (PAO1) RNA LB + 50 mM MOPS ΔqscR 3' 0.8 Planktonic Aerated YL117 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92173 GSM92173.CEL YL117 (PAO1) RNA LB + 50 mM MOPS ΔqscR 3' 0.5 Planktonic Aerated YL117 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92174 GSM92174.CEL PAO1 WT; OD600= 3.5; replicate 1 RNA LB + 50 mM MOPS WT 3.5 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92175 GSM92175.CEL PAO1 WT; OD600= 3.5; replicate 2 RNA LB + 50 mM MOPS WT 3.5 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92176 GSM92176.CEL PAO-R3; OD600= 3.5; replicate 1 RNA LB + 50 mM MOPS ΔqscR 3.5 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92177 GSM92177.CEL PAO-R3; OD600= 3.5; replicate 2 RNA LB + 50 mM MOPS ΔqscR 3.5 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92178 GSM92178.CEL PAO1 WT; OD600= 2.0; replicate 1 RNA LB + 50 mM MOPS WT 2 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92179 GSM92179.CEL PAO1 WT; OD600= 2.0; replicate 2 RNA LB + 50 mM MOPS WT 2 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92180 GSM92180.CEL PAO-R3; OD600= 2.0; replicate 1 RNA LB + 50 mM MOPS ΔqscR 2 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92181 GSM92181.CEL PAO-R3; OD600= 2.0; replicate 2 RNA LB + 50 mM MOPS ΔqscR 2 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92182 GSM92182.CEL PAO1 WT; OD600= 1.4; replicate 1 RNA LB + 50 mM MOPS WT 1.4 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92183 GSM92183.CEL PAO1 WT; OD600= 1.4; replicate 2 RNA LB + 50 mM MOPS WT 1.4 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92184 GSM92184.CEL PAO-R3; OD600= 1.4; replicate 1 RNA LB + 50 mM MOPS ΔqscR 1.4 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92185 GSM92185.CEL PAO-R3; OD600= 1.4; replicate 2 RNA LB + 50 mM MOPS ΔqscR 1.4 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92186 GSM92186.CEL PAO1 WT; OD600= 0.8; replicate 1 RNA LB + 50 mM MOPS WT 0.8 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92187 PAO1 WT; OD600= 0.8; replicate 2 RNA LB + 50 mM MOPS WT 0.8 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92188 GSM92188.CEL PAO-R3; OD600= 0.8; replicate 1 RNA LB + 50 mM MOPS ΔqscR 0.8 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92189 GSM92189.CEL PAO-R3; OD600= 0.8; replicate 2 RNA LB + 50 mM MOPS ΔqscR 0.8 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92190 GSM92190.CEL PAO1 WT; OD600= 0.5; replicate 1 RNA LB + 50 mM MOPS WT 0.5 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92191 GSM92191.CEL PAO1 WT; OD600= 0.5; replicate 2 RNA LB + 50 mM MOPS WT 0.5 Planktonic Aerated PAO1 37 pH 7; 0.2% L-arabinose; 250 rpm -E-GEOD-4026 GSE4026GSM92192 GSM92192.CEL PAO-R3; OD600= 0.5; replicate 1 RNA LB + 50 mM MOPS ΔqscR 0.5 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-4026 GSE4026GSM92193 GSM92193.CEL PAO-R3; OD600= 0.5; replicate 2 RNA LB + 50 mM MOPS ΔqscR 0.5 Planktonic Aerated PAO-R3 (PAO1) 37 pH 7; 0.2% L-arabinose; 250 rpm GentR -E-GEOD-2430 GSE2430GSM45588 GSM45588.CEL "Pseudomonas aeruginosa grown in brain heart infusion grown to early stationary phase, replicate 1" RNA BHI WT (DSM 1707) 2.8 Planktonic aerated PAO1 37 Early stationary phase cells; shaking -E-GEOD-2430 GSE2430GSM45589 GSM45589.CEL "Pseudomonas aeruginosa grown in brain heart infusion grown to early stationary phase, replicate 2" RNA BHI WT (DSM 1707) 2.8 Planktonic aerated PAO1 37 Early stationary phase cells; shaking -E-GEOD-2430 GSE2430GSM45590 GSM45590.CEL "Pseudomonas aeruginosa grown in brain heart infusion grown to early stationary phase with 2 μg/mL Azithromycin, replicate 1" RNA BHI WT (DSM 1707) 2.8 Planktonic aerated PAO1 37 2 μg/mL Azithromycin Early stationary phase cells; shaking -E-GEOD-2430 GSE2430GSM45591 GSM45591.CEL "Pseudomonas aeruginosa grown in brain heart infusion grown to early stationary phase with 2 μg/mL Azithromycin, replicate 2" RNA BHI WT (DSM 1707) 2.8 Planktonic aerated PAO1 37 2 μg/mL Azithromycin Early stationary phase cells; shaking -E-GEOD-10604 GSE10604GSM267248 GSM267248.CEL "Pseudomonas aeruginosa, no treatment_0min_replicate1" RNA LB WT 0.8 Planktonic Shaking PAO1 37 no treatment time 0 Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267249 GSM267249.CEL "Pseudomonas aeruginosa, no treatment_0min_replicate2" RNA LB WT 0.8 Planktonic Shaking PAO1 37 no treatment time 0 Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267250 GSM267250.CEL "Pseudomonas aeruginosa, no treatment_0min_replicate3" RNA LB WT 0.8 Planktonic Shaking PAO1 37 no treatment time 0 Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267251 GSM267251.CEL "Pseudomonas aeruginosa, no treatment_0min_replicate4" RNA LB WT 0.8 Planktonic Shaking PAO1 37 no treatment time 0 Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267252 GSM267252.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_20min_replicate1" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 20min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267253 GSM267253.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_20min_replicate2" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 20min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267254 GSM267254.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_20min_replicate3" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 20min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267255 GSM267255.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_20min_replicate4" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 20min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267256 GSM267256.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_60min_replicate1" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 60min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267257 GSM267257.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_60min_replicate2" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 60min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267258 GSM267258.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_60min_replicate3" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 60min Shaking at 250rpm -E-GEOD-10604 GSE10604GSM267259 GSM267259.CEL "Pseudomonas aeruginosa, Ortho-Phenylphenol_60min_replicate4" RNA LB WT 0.8 Planktonic Shaking PAO1 37 Ortho-Phenylphenol 60min Shaking at 250rpm -E-MEXP-1591 pycR mutant PAO1-1 54375-4-05.CEL PAO1 ΔpycR; replicate 1 RNA TSB ΔpycR 0.4 Planktonic Aerated PAO1 37 Shaking; early exponential phase cells -E-MEXP-1591 pycR mutant PAO1-2 dPA54375-18-05.CEL PAO1 ΔpycR; replicate 2 RNA TSB ΔpycR 0.4 Planktonic Aerated PAO1 37 Shaking; early exponential phase cells -E-MEXP-1591 wild-type PAO1-1 WT12935-4-05.CEL PAO1 WT; control; replicate 1 RNA TSB WT 0.4 Planktonic Aerated PAO1 37 Shaking; early exponential phase cells -E-MEXP-1591 wild-type PAO1-2 WT12935-18-05.CEL PAO1 WT; control; replicate 2 RNA TSB WT 0.4 Planktonic Aerated PAO1 37 Shaking; early exponential phase cells -E-GEOD-9255 GSE9255GSM234928 GSM234928.CEL PAO1 WT grown as static biofilm on glass wool at 30C for 24 hours in LB; 1 replicate RNA LB WT 24 hours Biofilm Static PAO1 30 Biofilm grown on glass wool -E-GEOD-9255 GSE9255GSM234929 GSM234929.CEL PA2663 mutant grown as static biofilm on glass wool at 30C for 24 hours in LB; 1 replicate RNA LB PA2663 mutant 24 hours Biofilm Static PAO1 30 Biofilm grown on glass wool -E-GEOD-8083 GSE8083GSM199982 GSM199982.CEL Pseudomonas aeruginosa PAO1 LB replicate1 RNA LB WT 0.6 Planktonic shaking PAO1 37 -E-GEOD-8083 GSE8083GSM199983 GSM199983.CEL Pseudomonas aeruginosa PAO1 LB replicate2 RNA LB WT 0.6 Planktonic shaking PAO1 37 -E-GEOD-8083 GSE8083GSM199984 GSM199984.CEL Pseudomonas aeruginosa ∆psrA::Tn (PAO1 background) LB replicate1 RNA LB ∆psrA 0.6 Planktonic shaking PAO1 37 -E-GEOD-8083 GSE8083GSM199985 GSM199985.CEL Pseudomonas aeruginosa ∆psrA::Tn (PAO1 background) LB replicate2 RNA LB ∆psrA 0.6 Planktonic shaking PAO1 37 -E-GEOD-8083 GSE8083GSM199986 GSM199986.CEL Pseudomonas aeruginosa ∆psrA::Tn (PAO1 background) LB replicate3 RNA LB ∆psrA 0.6 Planktonic shaking PAO1 37 -E-GEOD-4152 GSE4152GSM94619 PAO1 WT; adapted; treated; replicate 1 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 10 mM CuSO4 6 hours; early log phase cells; pH 6.95 -E-GEOD-4152 GSE4152GSM94620 PAO1 WT; adapted; control; replicate 1 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 6 hours; early log phase cells; pH 7 (1 M HCl) -E-GEOD-4152 GSE4152GSM94621 PAO1 WT; adapted; treated; replicate 2 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 10 mM CuSO4 6 hours; early log phase cells; pH 6.95 -E-GEOD-4152 GSE4152GSM94622 PAO1 WT; adapted; control; replicate 2 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 6 hours; early log phase cells; pH 7 (1 M HCl) -E-GEOD-4152 GSE4152GSM94623 PAO1 WT; shock; treated; replicate 1 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 10 mM CuSO4 grown to OD=0.2 before 45 min. treatment; pH 6.95 -E-GEOD-4152 GSE4152GSM94624 PAO1 WT; shock; control; replicate 1 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 grown to OD=0.2 before 45 min. treatment; pH 7 (1 M HCl) -E-GEOD-4152 GSE4152GSM94625 PAO1 WT; shock; treated; replicate 2 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 10 mM CuSO4 grown to OD=0.2 before 45 min. treatment; pH 6.95 -E-GEOD-4152 GSE4152GSM94626 PAO1 WT; shock; control; replicate 2 RNA LB + 100 mM MOPS WT 0.2 Planktonic PAO1 37 grown to OD=0.2 before 45 min. treatment; pH 7 (1 M HCl) -E-GEOD-5443 GSE5443GSM124823 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 30 minutes following ciprofloxacin treatment; replicate 1 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 30 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124814 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 0 minutes following ciprofloxacin treatment; replicate 1 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 0 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124815 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 30 minutes following ciprofloxacin treatment; replicate 1 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 30 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124816 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 1 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124817 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 0 minutes following ciprofloxacin treatment; replicate 2 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 0 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124818 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 30 minutes following ciprofloxacin treatment; replicate 2 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 30 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124819 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 2 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124820 PAO1 lexA mutant grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 3 RNA LB LexA mutant 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124821 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 0 minutes following ciprofloxacin treatment; replicate 1 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 0 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124822 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 0 minutes following ciprofloxacin treatment; replicate 2 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 0 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124824 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 30 minutes following ciprofloxacin treatment; replicate 2 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 30 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124825 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 1 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124826 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 2 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-5443 GSE5443GSM124827 PAO1 WT grown planktonically with shaking at 37C to mid-log phase in LB and treatment with 1ug/mL ciprofloxacin; RNA harvested 120 minutes following ciprofloxacin treatment; replicate 3 RNA LB WT 0.5 planktonic aerated PAO1 37 ciprofloxacin (1 ug/ml;~8x MIC) Collected 120 minutes following drug treatment -E-GEOD-2885 GSE2885GSM63125 PAO1 ΔPA2384; replicate 1 RNA Iron limited minimal medium C ΔPA2384 0.2 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63145 PAO1 WT; replicate 1 RNA Iron limited minimal medium C WT 0.2 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63147 PAO1 ΔPA2384; replicate 1 RNA Iron limited minimal medium C ΔPA2384 1.3 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63149 PAO1 WT; replicate 1 RNA Iron limited minimal medium C WT 1.3 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63150 PAO1 ΔPA2384; replicate 1 RNA Iron limited minimal medium C ΔPA2384 2.1 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63152 PAO1 WT; replicate 1 RNA Iron limited minimal medium C WT 2.1 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63153 PAO1 ΔPA2384; replicate 2 RNA Iron limited minimal medium C ΔPA2384 0.2 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63154 PAO1 WT; replicate 2 RNA Iron limited minimal medium C WT 0.2 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63155 PAO1 ΔPA2384; replicate 2 RNA Iron limited minimal medium C ΔPA2384 1.3 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63157 PAO1 WT; replicate 2 RNA Iron limited minimal medium C WT 1.3 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63158 PAO1 ΔPA2384; replicate 2 RNA Iron limited minimal medium C ΔPA2384 2.1 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-GEOD-2885 GSE2885GSM63162 PAO1 WT; replicate 2 RNA Iron limited minimal medium C WT 2.1 Planktonic Aerated PAO1 37 Bioreactor system; 500 rpm; pH 7.0 -E-MEXP-1183 MSC_01 MSC_01.CEL "Pseudomonas aeruginosa PAO1 WT, no acyl-HSL, rep1" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid WT Planktonic shaking PAO1 37 -E-MEXP-1183 MSC_02 MSC_02.CEL "Pseudomonas aeruginosa PAO1 WT, no acyl-HSL, rep2" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid WT Planktonic shaking PAO1 37 -E-MEXP-1183 MSC_03 MSC_03.CEL "Pseudomonas aeruginosa PAO1 WT, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, rep1" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL WT Planktonic shaking PAO1 37 -E-MEXP-1183 MSC_04 MSC_04.CEL "Pseudomonas aeruginosa PAO1 WT, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, rep2" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL WT Planktonic shaking PAO1 37 -E-MEXP-1183 MSC_05 MSC_05.CEL "Pseudomonas aeruginosa PAO1 ∆lasR ∆rhlR, chromosomal pBAD lasR, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep1" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆lasR ∆rhlR Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-MEXP-1183 MSC_06 MSC_06.CEL "Pseudomonas aeruginosa PAO1 ∆lasR ∆rhlR, chromosomal pBAD lasR, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep2" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆lasR ∆rhlR Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-MEXP-1183 MSC_07 MSC_07.CEL "Pseudomonas aeruginosa PAO1 ∆lasR ∆rhlR chromosomal pBAD rhlR, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep1" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆lasR ∆rhlR Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-MEXP-1183 MSC_08 MSC_08.CEL "Pseudomonas aeruginosa PAO1 ∆lasR ∆rhlR chromosomal pBAD rhlR, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep2" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆lasR ∆rhlR Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-MEXP-1183 MSC_09 MSC_09.CEL "Pseudomonas aeruginosa PAO1 ∆rpoS chromosomal pBAD rpoS, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep1" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆rpoS Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-MEXP-1183 MSC_10 MSC_10.CEL "Pseudomonas aeruginosa PAO1 ∆rpoS chromosomal pBAD rpoS, plus 2 μM 3OC12-HSL and 10 μM C4-HSL, plus unknown L-arabinose induction, rep2" RNA LB buffered with 50 mM 3-(N-morpholino) propanesulphonic acid plus 2 μM 3OC12-HSL and 10 μM C4-HSL ∆rpoS Planktonic shaking PAO1 37 unknown L- arabinose treatment -E-GEOD-3090 GSE3090GSM68687 "PAO1 with 10 mM H2O2 for 20 min, Rep1" RNA LB WT 0.8 Planktonic Aeration PAO1 37 1 mM hydrogen peroxide Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68688 "PAO1 with 10 mM H2O2 for 20 min, Rep2" RNA LB WT 0.8 Planktonic Aeration PAO1 37 1 mM hydrogen peroxide Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68689 "PAO1 with 10 mM H2O2 for 20 min, Rep3" RNA LB WT 0.8 Planktonic Aeration PAO1 37 1 mM hydrogen peroxide Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68690 "PAO1 with 10 mM H2O2 for 20 min, Rep4" RNA LB WT 0.8 Planktonic Aeration PAO1 37 1 mM hydrogen peroxide Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68691 "PAO1 with 10 mM H2O2 for 20 min, Rep5" RNA LB WT 0.8 Planktonic Aeration PAO1 37 1 mM hydrogen peroxide Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68692 PAO1 WT. Planktonic. Rep1 RNA LB WT 0.8 Planktonic Aeration PAO1 37 Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68693 PAO1 WT. Planktonic. Rep2 RNA LB WT 0.8 Planktonic Aeration PAO1 37 Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68694 PAO1 WT. Planktonic. Rep3 RNA LB WT 0.8 Planktonic Aeration PAO1 37 Grown shaking at 250rpm. 20 m exposure -E-GEOD-3090 GSE3090GSM68695 PAO1 WT. Planktonic. Rep4 RNA LB WT 0.8 Planktonic Aeration PAO1 37 Grown shaking at 250rpm. 20 m exposure -E-MEXP-1051 aerobic_NO3_1 aerobic_NO3_1.CEL "PA14 WT grown planktonically with aeration in MOPS with 10% lyophilized CF sputum and 100mM KNO3 to an OD of 0.1, replicate 1" RNA MOPS with 10% CF sputum and 100mM KNO3 WT 0.1 Planktonic aerated PA14 37 -E-MEXP-1051 aerobic_NO3_2 aerobic_NO3_2.CEL "PA14 WT grown planktonically with aeration in MOPS with 10% lyophilized CF sputum and 100mM KNO3 to an OD of 0.1, replicate 2" RNA MOPS with 10% CF sputum and 100mM KNO3 WT 0.1 Planktonic aerated PA14 37 -E-MEXP-1051 anaerobic_NO3_1 anaerobic_NO3_1.CEL "PA14 WT grown planktonically under anaerobic conditions in MOPS with 10% lyophilized CF sputum and 100mM KNO3 to an OD of 0.1, replicate 1" RNA MOPS with 10% CF sputum and 100mM KNO3 WT 0.1 Planktonic anaerobic PA14 37 anaerobic growth -E-MEXP-1051 anaerobic_NO3_2 anaerobic_NO3_2.CEL "PA14 WT grown planktonically under anaerobic conditions in MOPS with 10% lyophilized CF sputum and 100mM KNO3 to an OD of 0.1, replicate 2" RNA MOPS with 10% CF sputum and 100mM KNO3 WT 0.1 Planktonic anaerobic PA14 37 anaerobic growth -E-MEXP-87 Pseudomonas aeruginosa DC2.CEL PAO1 biofilm in minimal medium with glutamate RNA Minimal medium with 1.8 mM glutamate Planktonic Dispersed from biofilm PAO1 22 -E-MEXP-87 Pseudomonas aeruginosa__S:BioSource:MEXP:168319 DB1.CEL PAO1 planktonic dispersed from biofilm (high glutamate) RNA Minimal medium with 19.8 mM glutamate Biofilm Flow in tubing PAO1 22 -E-MEXP-87 Pseudomonas aeruginosa__S:BioSource:MEXP:168323 DC3.CEL PAO1 planktonic dispersed from biofilm (high glutamate) RNA Minimal medium with 1.8 mM glutamate Planktonic Dispersed from biofilm PAO1 22 -E-MEXP-87 Pseudomonas aeruginosa__S:BioSource:MEXP:168320 DB3.CEL PAO1 biofilm in minimal medium with glutamate RNA Minimal medium with 19.8 mM glutamate Biofilm Flow in tubing PAO1 22 -E-MEXP-87 Pseudomonas aeruginosa__S:BioSource:MEXP:168321 DC1.CEL PAO1 planktonic dispersed from biofilm (high glutamate) RNA Minimal medium with 19.8 mM glutamate Planktonic Dispersed from biofilm PAO1 22 diff --git a/README.md b/README.md index 7a6e333..4bc1522 100644 --- a/README.md +++ b/README.md @@ -16,6 +16,31 @@ pip install ponyo ``` ## How to use -This method has been used in [simulate-expression-compendia repo](https://github.com/greenelab/simulate-expression-compendia) - -Example analysis notebooks using ponyo can be found in [Human_tests](Human_tests/) and [Pseudomonas_tests](Pseudomonas_tests/). +Example notebooks using ponyo on test data can be found in [human_tests](https://github.com/greenelab/ponyo/tree/master/human_tests) + +Additionally, this method has been used in [simulate-expression-compendia](https://github.com/greenelab/simulate-expression-compendia) repository. + +## Configuration file + +The tables lists the core parameters required to generate simulated data using modules from [ponyo](https://github.com/greenelab/ponyo). Those marked with * indicate those parameters that will vary depending on the type of approach . + +| Name | Description | +| :--- | :---------- | +| local_dir| str: Parent directory on local machine to store intermediate results| +| scaler_transform_file| str: File to store mapping from normalized to raw gene expression range| +| dataset_name| str: Name for analysis directory containing notebooks using ponyo| +| simulation_type | str: Name of simulation approach directory to store results locally| +| NN_architecture | str: Name of neural network architecture to use. Format 'NN__'| +| learning_rate| float: Step size used for gradient descent. In other words, it's how quickly the methods is learning| +| batch_size | str: Training is performed in batches. So this determines the number of samples to consider at a given time| +| epochs | int: Number of times to train over the entire input dataset| +| kappa | float: How fast to linearly ramp up KL loss| +| intermediate_dim| int: Size of the hidden layer| +| latent_dim | int: Size of the bottleneck layer| +| epsilon_std | float: Standard deviation of Normal distribution to sample latent space| +| validation_frac | float: Fraction of input samples to use to validate for VAE training| +| num_simulated_samples* | int: If using random sampling approach, simulate a compendia with these many samples| +| num_simulated_experiments*| int: If using latent-transformation approach, simulate a compendia with these many experiments| +| num_simulated*| int: If using template-based approach, simulate these many experiments| +| project_id*| int: If using template-based approach, experiment id to use as template experiment| +| metadata_colname | str: Column header that contains sample id that maps expression data and metadata| diff --git a/configs/config_test_Pa_experiment_limma.tsv b/configs/config_test_Pa_experiment_limma.tsv deleted file mode 100644 index 42cc6b4..0000000 --- a/configs/config_test_Pa_experiment_limma.tsv +++ /dev/null @@ -1,20 +0,0 @@ -local_dir "../Batch_effects_test/" -dataset_name "Pseudomonas_tests" -simulation_type "experiment_lvl_sim" -NN_architecture "NN_2500_30" -learning_rate 0.001 -batch_size 10 -epochs 5 -kappa 0.01 -intermediate_dim 2500 -latent_dim 30 -epsilon_std 1.0 -num_simulated_experiments 50 -lst_num_partitions [1, 5, 50] -use_pca True -num_PCs 10 -correction_method 'limma' -metadata_colname 'ml_data_source' -iterations range(5) -num_cores 5 -validation_frac 0.1 \ No newline at end of file diff --git a/configs/config_test_Pa_sample_combat.tsv b/configs/config_test_Pa_sample_combat.tsv deleted file mode 100644 index ed5d607..0000000 --- a/configs/config_test_Pa_sample_combat.tsv +++ /dev/null @@ -1,20 +0,0 @@ -local_dir "../Batch_effects_test/" -dataset_name "Pseudomonas_tests" -simulation_type "sample_lvl_sim" -NN_architecture "NN_2500_30" -learning_rate 0.001 -batch_size 10 -epochs 5 -kappa 0.01 -intermediate_dim 2500 -latent_dim 30 -epsilon_std 1.0 -num_simulated_samples 50 -lst_num_experiments [1, 5, 40] -use_pca True -num_PCs 10 -correction_method 'combat' -metadata_colname 'ml_data_source' -iterations range(5) -num_cores 5 -validation_frac 0.1 \ No newline at end of file diff --git a/configs/config_test_Pa_sample_limma.tsv b/configs/config_test_Pa_sample_limma.tsv deleted file mode 100644 index 42cdcef..0000000 --- a/configs/config_test_Pa_sample_limma.tsv +++ /dev/null @@ -1,20 +0,0 @@ -local_dir "../Batch_effects_test/" -dataset_name "Pseudomonas_tests" -simulation_type "sample_lvl_sim" -NN_architecture "NN_2500_30" -learning_rate 0.001 -batch_size 10 -epochs 5 -kappa 0.01 -intermediate_dim 2500 -latent_dim 30 -epsilon_std 1.0 -num_simulated_samples 50 -lst_num_experiments [1, 5, 50] -use_pca True -num_PCs 10 -correction_method 'limma' -metadata_colname 'ml_data_source' -iterations range(5) -num_cores 5 -validation_frac 0.1 \ No newline at end of file diff --git a/configs/config_test_human_experiment_limma.tsv b/configs/config_test_human_experiment_limma.tsv deleted file mode 100644 index c387999..0000000 --- a/configs/config_test_human_experiment_limma.tsv +++ /dev/null @@ -1,20 +0,0 @@ -local_dir "../Batch_effects_test/" -dataset_name "Human_tests" -simulation_type "experiment_lvl_sim" -NN_architecture "NN_2500_30" -learning_rate 0.001 -batch_size 5 -epochs 5 -kappa 0.01 -intermediate_dim 2500 -latent_dim 30 -epsilon_std 1.0 -num_simulated_experiments 6 -lst_num_partitions [1, 2, 6] -use_pca True -num_PCs 10 -correction_method 'limma' -metadata_colname 'run' -iterations range(5) -num_cores 5 -validation_frac 0.1 \ No newline at end of file diff --git a/configs/config_test_human_sample_limma.tsv b/configs/config_test_human_sample_limma.tsv deleted file mode 100644 index 7930c2f..0000000 --- a/configs/config_test_human_sample_limma.tsv +++ /dev/null @@ -1,20 +0,0 @@ -local_dir "../Batch_effects_test/" -dataset_name "Human_tests" -simulation_type "sample_lvl_sim" -NN_architecture "NN_2500_30" -learning_rate 0.001 -batch_size 5 -epochs 10 -kappa 0.01 -intermediate_dim 2500 -latent_dim 30 -epsilon_std 1.0 -num_simulated_samples 50 -lst_num_experiments [1, 5, 50] -use_pca True -num_PCs 10 -correction_method 'limma' -metadata_colname 'run' -iterations range(5) -num_cores 5 -validation_frac 0.1 \ No newline at end of file diff --git a/environment.yml b/environment.yml index fe5867e..a8b54e7 100644 --- a/environment.yml +++ b/environment.yml @@ -1,12 +1,7 @@ -name: simulate_expression_compendia +name: test_ponyo channels: - conda-forge -- r -- bioconda dependencies: -- r::r-base=3.6.0 -- bioconda::bioconductor-limma -- bioconda::bioconductor-sva - conda-forge::python=3.7 - conda-forge::keras - conda-forge::tensorflow=1 @@ -21,6 +16,7 @@ dependencies: - conda-forge::ipykernel=5.1.1 - conda-forge::nb_conda_kernels - conda-forge::gxx_linux-64 +- conda-forge::rpy2 - conda-forge::libiconv=1.15 - conda-forge::joblib=0.13.2 - anaconda::protobuf @@ -29,5 +25,4 @@ dependencies: - torch>=0.4.0 - matplotlib==3.0.0 - pillow - - requests - - rpy2 \ No newline at end of file + - requests \ No newline at end of file diff --git a/human_tests/Human_latent_transform_simulation.ipynb b/human_tests/Human_latent_transform_simulation.ipynb new file mode 100644 index 0000000..252fb92 --- /dev/null +++ b/human_tests/Human_latent_transform_simulation.ipynb @@ -0,0 +1,631 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test simulating compendia by latent transformation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import os\n", + "import sys\n", + "import pandas as pd\n", + "import numpy as np\n", + "import random\n", + "import umap\n", + "import glob\n", + "from keras.models import load_model\n", + "from sklearn.decomposition import PCA\n", + "from plotnine import (ggplot,\n", + " labs, \n", + " geom_point,\n", + " aes, \n", + " ggsave, \n", + " theme_bw,\n", + " theme,\n", + " facet_wrap,\n", + " scale_color_manual,\n", + " guides, \n", + " guide_legend,\n", + " element_blank,\n", + " element_text,\n", + " element_rect,\n", + " element_line,\n", + " coords)\n", + "\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore')\n", + "\n", + "from ponyo import utils, train_vae_modules, simulate_expression_data\n", + "\n", + "np.random.seed(123)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Read in config variables\n", + "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", + "config_file = os.path.abspath(os.path.join(base_dir,\n", + " \"human_tests\", \n", + " \"config_test_human.tsv\"))\n", + "params = utils.read_config(config_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load parameters\n", + "local_dir = params[\"local_dir\"]\n", + "dataset_name = params['dataset_name']\n", + "analysis_name = params[\"simulation_type\"]\n", + "NN_architecture = params['NN_architecture']\n", + "sample_id_colname = params['metadata_colname']\n", + "num_simulated_experiments = params['num_simulated_experiments']\n", + "\n", + "NN_dir = os.path.join(\n", + " base_dir, \n", + " dataset_name, \n", + " \"models\", \n", + " NN_architecture)\n", + "\n", + "metadata_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"metadata\",\n", + " \"recount2_metadata.tsv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Input files\n", + "rpkm_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_RPKM_data_test.tsv\")\n", + "assert os.path.exists(rpkm_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup directories" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "utils.setup_dir(config_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-process data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Output file\n", + "normalized_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_normalized_data_test.tsv.xz\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input: dataset contains 50 samples and 5000 genes\n", + "Output: normalized dataset contains 50 samples and 5000 genes\n" + ] + } + ], + "source": [ + "train_vae_modules.normalize_expression_data(base_dir,\n", + " config_file,\n", + " rpkm_data_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Output file\n", + "experiment_id_file = os.path.join(\n", + " base_dir, \n", + " dataset_name,\n", + " \"data\",\n", + " \"metadata\", \n", + " \"experiment_ids.txt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 3219 experiments in the compendium\n", + "There are 6 experiments with gene expression data\n", + "6 experiment ids saved to file\n" + ] + } + ], + "source": [ + "utils.create_experiment_id_file(metadata_file,\n", + " normalized_data_file,\n", + " experiment_id_file,\n", + " config_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train VAE" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Directory containing log information from VAE training\n", + "vae_log_dir = os.path.join(\n", + " base_dir, \n", + " dataset_name,\n", + " \"logs\",\n", + " NN_architecture)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input dataset contains 50 samples and 5000 genes\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "tracking beta\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Train on 45 samples, validate on 5 samples\n", + "Epoch 1/10\n", + "45/45 [==============================] - 4s 88ms/step - loss: 2466.1158 - val_loss: 2732.4883\n", + "Epoch 2/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1671.1998 - val_loss: 2180.0183\n", + "Epoch 3/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1566.8178 - val_loss: 1799.2496\n", + "Epoch 4/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1481.5816 - val_loss: 1730.1412\n", + "Epoch 5/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1577.6224 - val_loss: 1477.2603\n", + "Epoch 6/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1444.6422 - val_loss: 1510.6864\n", + "Epoch 7/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1475.2912 - val_loss: 1676.2584\n", + "Epoch 8/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1398.2218 - val_loss: 1403.8243\n", + "Epoch 9/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1352.8320 - val_loss: 1309.4790\n", + "Epoch 10/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1411.7664 - val_loss: 1252.2395\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAESCAYAAADe2fNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VuX5+PHPlQ1kkQGZ7BlGQoiAInuIKKAW/YlbW6nW1lXboh22+rVVa63aqlWrVq2VUlEBBSkqQ6pswwyQsCSDLCCDELLu3x/nJASEJCRPcp4k1/v1Oi+e3M957nMltrlybzHGoJRSSrmKh9MBKKWUals0sSillHIpTSxKKaVcShOLUkopl9LEopRSyqU0sSillHIpTSxKKaVcyrHEIiKxIrJSRHaJyE4Ruc8uTxCRdSKSLCKbRGSEXS4i8oKIpInINhFJrFXXrSKSal+3OvU9KaWUAnFqgaSIRAKRxpgtIhIAbAauAp4D/myMWSYi04GfG2PG269/AkwHRgLPG2NGikgIsAlIAoxdz3BjzDEHvi2llGr3vJx6sDEmC8iyXxeJSAoQjZUcAu3bgoBM+/Us4G1jZcJ1IhJsJ6fxwApjzFEAEVkBTAPeO9+zw8LCTI8ePVz+PSmlVFu2efPmPGNMeH33OZZYahORHsAwYD1wP7BcRJ7B6qq7xL4tGjhc62Ppdtn5ys9+xlxgLkC3bt3YtGmTS78HpZRq60TkUEPuc3zwXkT8gYXA/caYQuBu4AFjTCzwAPC6K55jjHnVGJNkjEkKD6834SqllGokRxOLiHhjJZV3jTEf2MW3AtWv/wOMsF9nALG1Ph5jl52vXCmllAOcnBUmWK2RFGPMs7XeygTG2a8nAqn268XALfbssFFAgT1OsxyYKiKdRaQzMNUuU0op5QAnx1hGAzcD20Uk2S57BLgTeF5EvIBS7HERYCnWjLA0oAS4HcAYc1REHgc22vc9Vj2Qr5RyD+Xl5aSnp1NaWup0KKoB/Pz8iImJwdvbu1Gfd2y6sZOSkpKMDt4r1XIOHDhAQEAAoaGhWJ0Vyl0ZY8jPz6eoqIiePXue8Z6IbDbGJNVXh+OD90qptq+0tFSTSishIoSGhjapdamJRSnVIjSptB5N/W/VPhNLQTpUnHI6CqWUapPaZ2I5kQtb3nY6CqVUC8nPzychIYGEhAQiIiKIjo6u+bqsrKxBddx+++3s2bOnzntefPFF3n33XVeEzKWXXkpycnL9N7oht1h53+J8/OHLP8Gwm8Hbz+lolFLNLDQ0tOaX9G9/+1v8/f156KGHzrjHGIMxBg+Pc/+9/eabb9b7nHvuuafpwbYB7bPFEhAJRVmw5S2nI1FKOSgtLY24uDhuvPFGBg0aRFZWFnPnziUpKYlBgwbx2GOP1dxb3YKoqKggODiYefPmER8fz8UXX0xOTg4Av/rVr3juuedq7p83bx4jRoygf//+fPXVVwCcOHGC733ve8TFxTF79mySkpLqbZn885//ZMiQIQwePJhHHnkEgIqKCm6++eaa8hdeeAGAP//5z8TFxTF06FBuuukml//MGqJ9tlh8/aH7pVarJfEW8O7gdERKtRu/W7KTXZmFLq0zLiqQR2cMatRnd+/ezdtvv01SkjWL9sknnyQkJISKigomTJjA7NmziYuLO+MzBQUFjBs3jieffJIHH3yQN954g3nz5n2nbmMMGzZsYPHixTz22GN8+umn/OUvfyEiIoKFCxeydetWEhMTv/O52tLT0/nVr37Fpk2bCAoKYvLkyXz88ceEh4eTl5fH9u3bATh+/DgATz/9NIcOHcLHx6emrKW1zxYLwISHoTgbNtXfvFVKtV29e/euSSoA7733HomJiSQmJpKSksKuXbu+85kOHTpw+eWXAzB8+HAOHjx4zrqvueaa79yzdu1arr/+egDi4+MZNKjuhLh+/XomTpxIWFgY3t7e3HDDDaxZs4Y+ffqwZ88e7r33XpYvX05QUBAAgwYN4qabbuLdd99t9ALHpmqfLRaAHpdCjzGw9s8w/Dbw6eh0REq1C41tWTSXTp061bxOTU3l+eefZ8OGDQQHB3PTTTedcz2Hj49PzWtPT08qKirOWbevr2+99zRWaGgo27ZtY9myZbz44ossXLiQV199leXLl7N69WoWL17M73//e7Zt24anp6dLn12f9ttiAZjwCJzIgU1vOB2JUsoNFBYWEhAQQGBgIFlZWSxf7vptB0ePHs2CBQsA2L59+zlbRLWNHDmSlStXkp+fT0VFBfPnz2fcuHHk5uZijOHaa6/lscceY8uWLVRWVpKens7EiRN5+umnycvLo6SkxOXfQ33ab4sFoPsl0HMc/O85SLodfDrV/xmlVJuVmJhIXFwcAwYMoHv37owePdrlz/jJT37CLbfcQlxcXM1V3Y11LjExMTz++OOMHz8eYwwzZszgiiuuYMuWLXz/+9/HGIOI8NRTT1FRUcENN9xAUVERVVVVPPTQQwQEBLj8e6iP7hX27Tp44zKY8jiMvtfZwJRqo1JSUhg4cKDTYbiFiooKKioq8PPzIzU1lalTp5KamoqXl3v9nX+u/2YN3SvMvb4TJ3QbBb0mwP+eh4u+r60WpVSzKi4uZtKkSVRUVGCM4ZVXXnG7pNJUbeu7aawJj8DrU2DDa3Dp/U5Ho5Rqw4KDg9m8ebPTYTSr9j14Xy12BPSeBF+9AKeKnY5GKaVaNU0s1SY8AiX5sOFVpyNRSqlWTRNLtZgk6DPFbrUUOR2NUkq1Wk6eeR8rIitFZJeI7BSR+2q99xMR2W2XP12r/GERSRORPSJyWa3yaXZZmoh8d1+FhprwMJw8ButfaXQVSinV3jnZYqkAfmqMiQNGAfeISJyITABmAfHGmEHAMwAiEgdcDwwCpgEviYiniHgCLwKXA3HAHPveCxc9HPpNg6/+AqUFTfz2lFLuYsKECd9Z7Pjcc89x99131/k5f39/ADIzM5k9e/Y57xk/fjz1HXX+3HPPnbFQcfr06S7Zx+u3v/0tzzzzTJPrcTXHEosxJssYs8V+XQSkANHA3cCTxphT9ns59kdmAfONMaeMMQeANGCEfaUZY/YbY8qA+fa9jTN+HpQe11aLUm3InDlzmD9//hll8+fPZ86cOQ36fFRUFO+//36jn392Ylm6dCnBwcGNrs/ducUYi4j0AIYB64F+wBgRWS8iq0XkIvu2aOBwrY+l22XnK2+cqGHQfzp8/Vc46czOoEop15o9ezaffPJJzaFeBw8eJDMzkzFjxtSsK0lMTGTIkCEsWrToO58/ePAggwcPBuDkyZNcf/31DBw4kKuvvpqTJ0/W3Hf33XfXbLn/6KOPAvDCCy+QmZnJhAkTmDBhAgA9evQgLy8PgGeffZbBgwczePDgmi33Dx48yMCBA7nzzjsZNGgQU6dOPeM555KcnMyoUaMYOnQoV199NceOHat5fvU2+tWbX65evbrmoLNhw4ZRVOTacWXH17GIiD+wELjfGFMoIl5ACFb32EXAAhHp5YLnzAXmAnTr1q3um8fPg1fGwvq/Wa+VUq6zbB4c2e7aOiOGwOVPnvftkJAQRowYwbJly5g1axbz58/nuuuuQ0Tw8/Pjww8/JDAwkLy8PEaNGsXMmTPPe+77yy+/TMeOHUlJSWHbtm1nbHv/xBNPEBISQmVlJZMmTWLbtm3ce++9PPvss6xcuZKwsLAz6tq8eTNvvvkm69evxxjDyJEjGTduHJ07dyY1NZX33nuP1157jeuuu46FCxfWeb7KLbfcwl/+8hfGjRvHb37zG373u9/x3HPP8eSTT3LgwAF8fX1rut+eeeYZXnzxRUaPHk1xcTF+fq498NDRFouIeGMllXeNMR/YxenAB8ayAagCwoAMILbWx2PssvOVn8EY86oxJskYkxQeHl53YJHxMOBK+PolbbUo1UbU7g6r3Q1mjOGRRx5h6NChTJ48mYyMDLKzs89bz5o1a2p+wQ8dOpShQ4fWvLdgwQISExMZNmwYO3furHeDybVr13L11VfTqVMn/P39ueaaa/jyyy8B6NmzJwkJCUDdW/ODdT7M8ePHGTduHAC33nora9asqYnxxhtv5J///GfNCv/Ro0fz4IMP8sILL3D8+HGXr/x3rMUi1p8DrwMpxphna731ETABWCki/QAfIA9YDPxLRJ4FooC+wAZAgL4i0hMroVwP3NDkAMfPg90fw7qXrDUuSinXqKNl0ZxmzZrFAw88wJYtWygpKWH48OEAvPvuu+Tm5rJ582a8vb3p0aPHObfKr8+BAwd45pln2LhxI507d+a2225rVD3VqrfcB2vb/fq6ws7nk08+Yc2aNSxZsoQnnniC7du3M2/ePK644gqWLl3K6NGjWb58OQMGDGh0rGdzssUyGrgZmCgiyfY1HXgD6CUiO7AG4m+1Wy87gQXALuBT4B5jTKUxpgL4MbAcawLAAvvepokYAgNnwLqXrSnISqlWzd/fnwkTJnDHHXecMWhfUFBAly5d8Pb2ZuXKlRw6dKjOesaOHcu//vUvAHbs2MG2bdsAa8v9Tp06ERQURHZ2NsuWLav5TEBAwDnHMcaMGcNHH31ESUkJJ06c4MMPP2TMmDEX/L0FBQXRuXPnmtbOO++8w7hx46iqquLw4cNMmDCBp556ioKCAoqLi9m3bx9DhgzhF7/4BRdddBG7d+++4GfWxbEWizFmLVZr41zO2ZFojHkCeOIc5UuBpa6LzjZuHqQsga9fhIm/cnn1SqmWNWfOHK6++uozZojdeOONzJgxgyFDhpCUlFTvX+533303t99+OwMHDmTgwIE1LZ/4+HiGDRvGgAEDiI2NPWPL/blz5zJt2jSioqJYuXJlTXliYiK33XYbI0aMAOAHP/gBw4YNq7Pb63zeeust7rrrLkpKSujVqxdvvvkmlZWV3HTTTRQUFGCM4d577yU4OJhf//rXrFy5Eg8PDwYNGlRzGqar6Lb59VlwC6R9Afdvg44hzRuYUm2Ubpvf+jRl23y3mG7s1sbNg7Jia/qxUkqpemliqU/XOBh0lbVg8kS+09EopZTb08TSEOPmQdkJ+PovTkeiVKvVHrvdW6um/rfSxNIQXQbA4O/B+lfhRJ7T0SjV6vj5+ZGfn6/JpRUwxpCfn9+kRZOOr7xvNcb9AnZ+YB1hPPVxp6NRqlWJiYkhPT2d3Nxcp0NRDeDn50dMTEyjP6+JpaHC+8Hg2bDx73DJveBfz+p9pVQNb29vevbs6XQYqoVoV9iFGPcLqCiF/z3ndCRKKeW2NLFciLA+MOQ62Pg6FJ1/LyGllGrPNLFcqHE/h8oya6xFKaXUd2hiuVChvWHo/4NNr0PREaejUUopt9MuE0uTZzyO+xlUlsNaHWtRSqmztcvEsiurkEP5JxpfQUgviJ8Dm96AwizXBaaUUm1Au0wsVcawODmzaZWMfQhMJaz9s2uCUkqpNqJdJpZOPl4s2prZtFXAIT2tVsvmf0BhE5OUUkq1Ie0ysQR39CYtp5iUrO8evHNBxv7MarV8+Wz99yqlVDvRLhNLYAdvvDyERVszmlZR5+6QcCNseQsK0l0TnFJKtXLtMrF4eQhj+4WzJDmTqqomThEb+5A1zezLP7kmOKWUauUcSywiEisiK0Vkl4jsFJH7znr/pyJiRCTM/lpE5AURSRORbSKSWOveW0Uk1b5ubcjzZ8ZHkVlQyuZvm3iefXA3SLwZtrwDx79tWl1KKdUGONliqQB+aoyJA0YB94hIHFhJB5gK1P5NfTnQ177mAi/b94YAjwIjgRHAoyLSub6HT4nrip+3B4uSm9gdBjDmpyCirRallMLBxGKMyTLGbLFfFwEpQLT99p+BnwO1+6lmAW8byzogWEQigcuAFcaYo8aYY8AKYFp9z+/k68WUuAg+2ZZFeWVV076ZoBhIvAW++SccO9S0upRSqpVzizEWEekBDAPWi8gsIMMYs/Ws26KBw7W+TrfLzlder5nxURwrKWdtqgsO77r0QRAP+PKZptellFKtmOOJRUT8gYXA/VjdY48Av2mG58wVkU0isqn6sKFx/cIJ6uDN4q0uWIcSFA3Db4Pkf8Gxg02vTymlWilHE4uIeGMllXeNMR8AvYGewFYROQjEAFtEJALIAGJrfTzGLjtf+RmMMa8aY5KMMUnh4dYhXT5eHkwfEsHynUc4WVbZ9G/o0gdBPGHNH5tel1JKtVJOzgoT4HUgxRjzLIAxZrsxposxpocxpgdWt1aiMeYIsBi4xZ4dNgooMMZkAcuBqSLS2R60n2qXNcjM+GhKyir5LMUF56sERkLS7ZD8Hhzd3/T6lFKqFXKyxTIauBmYKCLJ9jW9jvuXAvuBNOA14EcAxpijwOPARvt6zC5rkBE9Q+ga6Oua7jCASx8AT29Yo2MtSqn2ybEz740xawGp554etV4b4J7z3PcG8EZj4vD0EGYMjeKtrw9SUFJOUEfvxlRzWkAEJN0B61+xpiGH9m5afUop1co4PnjvDmYlRFNeaVi2w0Vb4I++Hzx9dKxFKdUuaWIBBkcH0jOsk+u6wwK6wkXfh23/hrxU19SplFKthCYWQESYGR/F1/vzyS4sdU2lo+8DT19Y/bRr6lNKqVZCE4ttZkIUxsASV7Va/LvAiDthx/uQu9c1dSqlVCugicXWO9yfwdGBrusOA6vV4tUBVj/lujqVUsrNaWKpZVZ8NNvSCziQd8I1FXYKs1stCyFnt2vqVEopN6eJpZYr4yMRgcXJLmy1XHIv+HTSVotSqt3QxFJLZFAHRvYMYdHWDKxlMy7QKRRGzIWdH0JOimvqVEopN6aJ5Swz46PZn3uCnZmFrqv0kp+Ajz+setJ1dSqllJvSxHKWywdH4O0prh3E7xgCI38Iuz6C7J2uq1cppdyQJpazdO7kw7h+4SxOzqSqykXdYQAX3wO+gdpqUUq1eZpYzmFGfBRHCkvZcLDBe1nWr2MIjLwLUhbDke2uq1cppdyMJpZzmBLXlQ7enq7tDgO4+EfgG6StFqVUm6aJ5Rw6+ngxdVBXlm7PoqyiynUVd+gMo+6G3R9D1tknLyulVNugieU8ZiVEcbyknC9Tc11b8ai7tdWilGrTNLGcx6V9wgnu6O367rAOwdZA/p6lkPmNa+tWSik3oInlPHy8PJg+JJL/7sympKzCtZWPugv8grXVopRqkzSx1GFWfBQnyytZsSvbtRX7BcElP4a9n0LGZtfWrZRSDnMssYhIrIisFJFdIrJTRO6zy/8oIrtFZJuIfCgiwbU+87CIpInIHhG5rFb5NLssTUTmuSrGi3qEEBnk59q9w6qN+KE1mK+tFqVUG+Nki6UC+KkxJg4YBdwjInHACmCwMWYosBd4GMB+73pgEDANeElEPEXEE3gRuByIA+bY9zaZh4cwIz6K1XtzOXaizBVVnuYXaG31kvpfSN/k2rqVUspBjiUWY0yWMWaL/boISAGijTH/NcZUD2qsA2Ls17OA+caYU8aYA0AaMMK+0owx+40xZcB8+16XmBkfRUWVYdmOI66q8rQRc6FDCKz6g+vrVkoph7jFGIuI9ACGAevPeusOYJn9Oho4XOu9dLvsfOVnP2OuiGwSkU25uQ2fQjwoKpDe4Z1YlJzR4M80mG8AjL4X0j6DwxtcX79SSjnA8cQiIv7AQuB+Y0xhrfJfYnWXveuK5xhjXjXGJBljksLDwy8kPmbGR7Ph4FGyCk66IpQzXXQndAzVVotSqs1wNLGIiDdWUnnXGPNBrfLbgCuBG83pg1EygNhaH4+xy85X7jIzE6IwBj7emuXKai2+/tYRxvu+gINrXV+/Ukq1MCdnhQnwOpBijHm2Vvk04OfATGNMSa2PLAauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7sy1p5hnYiPCWLR1mboDgO46AcQ3A0+uhtOHm+eZyilVAtxssUyGrgZmCgiyfY1HfgrEACssMv+BmCM2QksAHYBnwL3GGMq7YH+HwPLsSYALLDvdakZ8VHsyChkX26xq6u2ji7+3utQkAFL7gNXnV6plFIOEJcdwduKJCUlmU2bLmyKb3ZhKaP+8Dn3TuzLA1P6NU9gX/4JPn8MZjwPw29rnmcopVQjichmY0xSffc5PnjfWnQN9OPiXqEs3ppJsyXj0Q9Ar/GwbB7k7G6eZyilVDPTxHIBZiVEcSDvBNszCprnAR4ecPUrVtfY+7dDeTPMQlNKqWamieUCTBsUibenNM8WL9UCIqzkkrMLlv+y+Z6jlFLNRBPLBQjq6M34/l1Ysi2TyqpmHJvqO9na7mXT67BrUfM9RymlmoEmlgs0KyGK7MJTrD+Q37wPmvgbiEqExT+B498277OUUsqFNLFcoEkDutLJx7N5u8MAvHxg9utQVQUL74RKF58Jo5RSzUQTywXq4OPJ1EERLNtxhFMVlc37sJBecOWf4fA6WK3b6yulWgeXJBaxTBaRa2ufn9JWzUyIouBkOWv25jX/w4ZeCwk3wZpnYP/q5n+eUko10QUnFhH5nYh8cVbxUqyV7/8GUuwtV9qsS/uE0bmjd/PseHwu05+G0D7wwVw40QLJTCmlmqAxLZZrgeTqL0RkBnAZ8DRwA+AJ/Mol0bkpb08PrhgayWcp2Zw41QJjHz6dYPYbcPKotZ9YO9wtQSnVejQmscQAe2p9fRWwzxjzsDFmPvASMMkVwbmzWQnRlJZXsWJXdss8MHIoTH3COnFy3Ust80yllGqExiQWOevryVjdYNW+Bbo2OqJWYni3zkQHd2i57jCAEXdC/ytgxaOQ+U3LPVcppS5AYxLLPmAqgIiMwjoL5b+13o8GmmnPE/fh4SFcGR/Jl6l5HD1R1jIPFYFZfwX/LvD+HXCqqGWeq5RSF6AxieVl4GoR2Y51bPAhzmyxjAZ2uCA2tzcrPpqKKsPS7c1wANj5dAyBa16DYwfhk4da7rlKKdVAF5xYjDGvAN8HUoEPgcuMMacARCQECAfec2WQ7mpgZAB9u/g3/2LJs/UYDeN+AdvmQ3K7+FErpVqRRq1jMca8aYy5xhhzhzFmb63yo8aY4caY110XovsSEWbGR7Hh4FEyjrfwTsRjfwbdR8MnP4W8tJZ9tlJK1UEXSDbRzIQoAD7e2sKtFg9Pq0vMy8faYr/iVMs+XymlzsOxBZIiEisiK0Vkl4jsFJH77PIQEVkhIqn2v53tchGRF0QkTUS2iUhirbpute9PFZFbL/R7aoruoZ1IiA1mUUt3hwEERcOsl+DINvjsty3/fKWUOgcnF0hWAD81xsQBo4B7RCQOmAd8bozpC3xufw1wOdDXvuZiTSKoHtd5FBgJjAAerU5GLWVWQhS7sgpJy3FgltaA6TDih9balj2ftvzzlVLqLI4tkDTGZBljttivi4AUrKnKs4C37NvesuvHLn/bWNYBwSISiZXUVtjjO8eAFcC0RnxfjXbF0Eg8hJYfxK825THoOsRalV/oUAxKKWVziwWSItIDGAasB7oaY6rn7x6pVVc0cLjWx9LtsvOVt5guAX5c0juMRVszMU5st+LtB9e+aY2zfDAXqpp512WllKqD4wskRcQfWAjcb4wprP2esX5Lu+Q3tYjMFZFNIrIpNzfXFVWeYWZCFIfyS9ia7tDa0LC+MP2PcPBL+PJPzsSglFI4vEBSRLyxksq7xpgP7OJsu4sL+98cuzwDK4lVi7HLzld+BmPMq8aYJGNMUnh4eEPCuyCXDYrAx9OjZbd4OVvCDTDkWlj1Bzj0tXNxKKXaNccWSIqIAK8DKcaYZ2u9tRiontl1K7CoVvkt9uywUUCB3WW2HJgqIp3tQfupnJnoWkRQB28mDAjn421ZVFY5tPuwCFzxLAR3h4U/gJKjzsShlGrXnFwgORq4GZgoIsn2NR14EpgiIqlY4zfVRycuBfYDacBrwI+qnwk8Dmy0r8fsshY3KyGa3KJTrNuf78TjLX6B1hb7xdmw+Ce6xb5SqsV5NeXDIhIBVK9ZOWCMOdLQzxpj1vLdiQDVvjOrzB5vuec8db0BvNHQZzeXiQO64O/rxaLkDEb3CXMukOhEmPwo/PdXsPHv1q7ISinVQhrVYhGRi0VkA9ZYxlr7yhCR9XY3Vbvk5+3J1EFdWbbjCKcqHJ6ZNeoe6DMFlv8SjrSLPUGVUm6iMSvvRwBfAAOwuqQesK/XgIHAFyJykSuDbE1mJURTVFrBqj2un3l2QTw84KqXoUOwtcV+2Qln41FKtRuNabE8hjVTa6Ax5i5jzAv2dRdWssm172mXRvcOJbSTj3OLJWvzD4drXoW8vbDsF05Ho5RqJxqTWC4G/maMOdeU3kzgFeCSpgbWWnl5enDF0Eg+S8mmqLTc6XCg13i49AH45h3YsdDpaJRS7UBjEosnUNeRiafse9qtWQlRnKqoYsWubKdDsUx4BGJGwJL7rQPClFKqGTUmsWwF7hCRgLPfsFfR3wG06wPZE7t1JqZzB2d2PD4XT2/43t8BscZbKt2gJaWUarMak1j+D2ssZbuIPCwiV9vXI1gr7vsDT7gyyNam+gCwtWl55Be7yTkpnbvDzBcgYzN88bjT0Sil2rDGrLxfBswBfLASyPv29X9Y62KuN8a0+/3bZyZEUVllWLo9q/6bW8qgq2D47fC/5yHtc6ejUUq1UY1deb8Aa3+ui7HOYLkB60yV7kCOiLTbWWHVBkQE0r9rgPt0h1Wb9gcIHwgf3gXFOfXfr5RSF6jRRxMbYyqNMeuNMf+2rw3GmEpgDPBL14XYes1MiGLToWMcPlridCineXewttg/VQgf/hCqqpyOSCnVxrjkzHt1bjPjowBYss3NWi1dBsK0J2HfF/DVC05Ho5RqYzSxNKPYkI4kdgt2j8WSZxt+G8RdZQ3kp29yOhqlVBuiiaWZzUqIZveRIvYcKXI6lDOJwIznISDKmoJc6tABZUqpNkcTSzObPiQSD4HFWx08AOx8OgTD7NehIN1aPKlb7CulXKBB2+aLyB0XUOfwRsbSJoUH+DK6TxiLt2by0NT+WOebuZHYETDxl/D5Y9B7AiTe4nRESqlWrqHnsfwd6+z5hv5W1D99a5mVEM1D/9nKN4ePk9its9PhfNfoB2D/alj6c4gdCeH9nY5IKdWKNTSxTGjWKNq4ywZ15ZHG9MvFAAAgAElEQVQPPVicnOmeicXDw9oF+eXR1njLDz6zpiUrpVQjNCixGGNWN3cgbVmAnzeTBnTh422Z/OqKgXh5uuHQVkAEXP03eHe2dfLkFX9yOiKlVCvl2G84EXlDRHJEZEetsgQRWSciySKyyT5UDLG8ICJpIrJNRBJrfeZWEUm1r1ud+F4aYlZCFHnFZXy9P9/pUM6v7xS4+MfWccYpS5yORinVSjn5p/M/gGlnlT0N/M4YkwD8xv4a4HKgr33NBV4GEJEQ4FFgJDACeFRE3LCvCcb370KAr5f7bfFytkmPQtQwWPRjOH7Y6WiUUq2QY4nFGLMGOHp2MRBovw4Cqn8LzwLeNpZ1QLCIRAKXASuMMUeNMceAFXw3WbkFP29PLhscwfIdRygtr3Q6nPPz8oHvvQ5VlfDBnVBZ4XRESqlWxt06++8H/igih4FngIft8mig9p/P6XbZ+crd0qyEKIpOVbBqj5tv/hjaG678M3z7Nbw5DVY9CQe+hPJSpyNTSrUCDZ0V1lLuBh4wxiwUkeuA14HJrqhYROZidaPRrVs3V1R5wS7uFUqYvy+LkjOZNjjSkRgabOi1cCIHts63EgsGPH0h5iLoMRp6XGq91tljSqmzuFtiuRW4z379H6z1MwAZWNv0V4uxyzKA8WeVrzpXxcaYV4FXAZKSkhxZZ+Pl6cGVQyP514ZvKSwtJ9DP24kwGu7ie6zr5HGr9XJwrXWt+SOsfgo8fSA6qVaiGQE+HZ2OWinlMHdLLJnAOKzkMBFItcsXAz8WkflYA/UFxpgsEVkO/L7WgP1UTnefuaWZCVH846uDLN9xhGuTYuv/gDvoEAz9L7cusPYV+3bd6UTz5bNWsvHwhujhpxNN7Ejw6eRs7EqpFudYYhGR97BaG2Eiko41u+tO4HkR8QJKsbuugKXAdCANKAFuBzDGHBWRx4GN9n2PGWPOnhDgVobFBhMb0oHFWzNbT2I5m18Q9LvMugBKC+Hw+tOJZu1z8OWfwMMLohJrJZpR4OvvbOxKqWYnph1uPJiUlGQ2bXJuq/hnlu/hpVVprH9kMuEBvo7F0WxOFdmJ5n9WosncAlUVIJ7WVOYeo6HHGKtF4xdYf31KKbcgIpuNMUn13eduXWHtwsyEKP66Mo1PtmVy2+ieTofjer4B0GeydQGUnTgz0Xz9EvzveRAPiEw4nWi6jbJaQ0qpVk1bLA6Z9twaOvp48sGPRjsahyPKSiB9w+lEk7EJKsusRBMx1Oo263EpdLvYGt9RSrkFbbG4uVkJ0Tz16W6+zS+hW2g7m0nl0xF6jbcugPKTkL7xdKLZ8Bp8/VdAIGLImYmmY4hjYSulGkZbLA5JP1bCpU+t5GeX9eeeCX0cjcXtlJdarZjqyQDpG6GiFBDoOhgS5sCoH1mnYCqlWoy2WNxcTOeOJHXvzOLkTE0sZ/P2O91KAag4BRmbrRZN2mew/BHI2wtXPAsens7GqpT6Dnfb0qVdmZUQxZ7sInYfKXQ6FPfm5QvdL4FxP4M7PoUxP4XN/4AFt+g2M0q5IU0sDpo+JBJPD3H/HY/diQhM+g1Mewp2fwz/vMbaGUAp5TY0sTgo1N+XS/uEsTg5k/Y41tUko+6ydmE+vAH+cQUUHXE6IqWUTROLw2YlRJFx/CRbvj3mdCitz5DZcOMCOHoAXp8C+fucjkgphSYWx00dFIGvl4d2hzVW74lw28fWIszXp0LGFqcjUqrd08TiMH9fLybHdeWTbVlUVFY5HU7rFJ0Id/zXWh/z1gzY94XTEalzKT8Jye/BiTynI1HNTBOLG5gZH0X+iTL+75MUDuSdcDqc1imsj5VcOveAd6+D7e87HZGqZgzsXgovjoSP7oI3L9cxsTZOE4sbmNC/C9OHRPD21weZ8MwqZr/8FfM3fEtRabnTobUugZFw2ycQOwIWfh/W/c3piFT+Pnj3Wpg/xzoU7vI/QmEmvDkdCjKcjk41E11570ayC0v58JsM/rPpMPtyT+Dn7cG0QRHMHh7Lxb1D8fTQleYNUl5qJZbdH1trXib+Wlfpt7SyE7DmGWtrHi8/GP8wjLgTPL3h2/Xw7mxre55bl0CwMye6qgvX0JX3mljckDGGrekFvL/5MIuTMyksrSAqyI9rEmP43vAYeobp4Vn1qqqETx60FlIOuxmufA48daOJZmcM7PoIlv8SCjMgfg5M/h0EdD3zvvTN8M+rwTcIbltidWEqt6eJpQ7unlhqKy2v5LOUbN7fnM6avblUGRjevTOzh8dwxdBI9z/e2EnGwMrfw5qnof90mP2G1R2jmkfOblj2Mziwxto8dPoz1lEI55OZDO9cBd4drZZLaO+Wi1U1iiaWOrSmxFJbdVfZ+5vTScspxtfLg2mDI5g9PIZLeodpV9n5bHgNlv7M+iU35z3o0Ln+z6iGKy2E1U/B+r+Bjz9M+jUMv71h+7gd2Q5vz7KOtb7tYwjr2/zxqkbTxFKH1ppYqhlj2JZewPub01mUnEFhaQWRQX5ckxjN9xJj6BWux/9+x84P4YO5ENoHbloIgVFOR9T6GQPb/g0rfgPFOTD8Vpj4G+gUemH15KTAWzOt17cugS4DXB+rcgm3Tywi8gZwJZBjjBlcq/wnwD1AJfCJMebndvnDwPft8nuNMcvt8mnA84An8HdjzJP1Pbu1J5baSssr+Twlh/c3H2a1dpXVbf9qmH+jdXjYTR9AeD+nI2q9srZZrcDD6yB6OEz/o/VvY+XutdYgVVXALYsgYnD9n1EtrjUklrFAMfB2dWIRkQnAL4ErjDGnRKSLMSZHROKA94ARQBTwGVD9W2EvMAVIBzYCc4wxu+p6dltKLLXl1OoqS9WusnPLTLZmJFVVwo3vQ0wTfhm2RyVHrXGrTa9bXYqTfwcJN4KHC1Yu5O+zkkt5Cdz8EUQlNL1O5VJun1gARKQH8HGtxLIAeNUY89lZ9z0MYIz5g/31cuC39tu/NcZcdq77zqetJpZqtbvKFm/NpOBkORGBdlfZ8Bh6t/eusvx91q7IxTlw3TvQd7LTEbm/qir45h34/Hdw8hhcdCdMeNj141VHD1jJ5VQh3Pxh01pByuUamljcbYFkP2CMiKwXkdUicpFdHg0crnVful12vvLvEJG5IrJJRDbl5uY2Q+juQ0SIjw3m8asGs/6RSbx4QyJxUYH8bfU+Jv1pNde89D/+tf5bCk620wWYob2tVfqhveG9/wfbFjgdkXtL3wx/nwRL7oWw/vDDNTD96eaZBBHSE25fCn7B8PZV1u7VqtVxt8TiBYQAo4CfAQtEXLOyzRjzqjEmyRiTFB4e7ooqWwU/b0+uGBrJG7ddxLqHJ/HI9AEUlVbwyIfbGfHEZ9z73jes2ZtLZVU7m8QR0BVuWwrdLoYP7oSvX3Q6IvdzIg8W/Rj+PtFak3LNa9Yv/Yghzfvc4G7WczqFwTtXw6Gvm/d5yuXcbcVYOvCBsfrnNohIFRAGZACxte6Lscuoo1ydpUugH3PH9ubOMb3YnlE9qyyTxVsziQj042p7VlmfLu2kq8wv0Bpn+XCuddxxcbY1ZnCBf8vkFp0ir/gUAyICcNHfQc6qrIDNb8IXj1sr6C/5CYz9ufXzailBMVbif2uG1W15wwLoOablnq+axN3GWO4CoowxvxGRfsDnQDcgDvgXpwfvPwf6AoI1eD8JK6FsBG4wxuys67ltfYzlQpyqqJ5Vls5qu+UyrFsws4fHcOXQKII6tINZZVWV1gynTa9D/A0w8wVr65E6FJSU8+nOLJZszeKrfXk1s/HumdCbCf27tN4Ec+hr62eRvR16jrNme4X3dy6e4hxrKvKxgzDnX9YxCcoxbj94LyLvAeOxWiTZwKPAO8AbQAJQBjxkjPnCvv+XwB1ABXC/MWaZXT4deA5ruvEbxpgn6nu2JpZzyyks5aNka1bZ3uxifLw8GN8vnClxXZk4oAuh/r5Oh9h8jIHVT8Oq30Pfy+Daf1jb8Ndy4lQFn6Vks2RrJqv35lJeaege2pEZQ6MI6eTD62sPkHH8JAMjA/nR+N41R0+3CkVHrPUo2/4NgTFw2RMQN8s99lg7kWctosxLhevfhb5TnI6o3XL7xOIkTSx1M8awI6OQhVvSWb7zCFkFpXiI9Rf55IFdmRzXte3OLNv0BnzyU4hOghv+Tal3EKv25LJkWyafp2RTWl5FRKAfM+IjmREfxZDooJrWSXllFYuSM3lpVRr7c0/QM6wTd4/rzVXDovHxcrfhTFtlubViftVTUHkKLrkXxjwIPm62H13JUSu55O6G696G/pc7HVG7pImlDppYGs4Yw87MQlbsymbFrmx2ZRUC0Cu8E1PsJJPYrXPr+cu8ASp2LMLjg++T4xXFTad+QdqpYEI7+TB9iJVMkrp3xqOO77eyyvDfnUd4cVUaOzIKiQzyY+7YXlx/UTc6+DRgm5OWsn8VLP055O2BvlNh2pPuvV/XyWPwzjVwZBvMfhPiZjodUbujiaUOmlgaL+P4ST5PsZLMuv35lFcaQjr5MHFAFyYP7MrYfmF09HG3OSH1q6wybDhwlCXbMlm2PYv+pVt5zedPVHr5k3rZOwxLHImX54W1OowxrEnN48Uv0thw8CihnXy449Ke3Hxxd2d3RChIt3Yf3vWRtavwtKeg/zTn4rkQpQXwz9mQsRm+9xoM/p7TEbUrmljqoInFNQpLy1mzN5cVu7JZuTuHwtIKfLw8uLRPmNVlNrALXQL9nA7zvIwxJB8+zpKtWXyyPZPswlN08PZkclxXZgyNZHxwNj7vXQuVZdaspNgRjX7WhgNHeWlVGqv25BLg68Utl3Tn9tE9CWvJcauKU/DVX+DLP4Gpss6queRe8Hbf/0bndKrIOiX08Dq4+hUYep3TEbUbmljqoInF9corq9h48GhNl1n6sZMAxMcGM2VgF6bERdCvq7/js6WMMew+UsSSrZks2ZbJ4aMn8fH0YFz/cGbGRzFpYJczW1xHD1jTXQuz4Lq3oN9lTXr+jowCXl61j6U7svD18uD6i7oxd2wvooKbeTv/vf+FT38BR/fDwBkw9Qno3L15n9mcyk7Av/4fHFwLV70ECTc4HVG7oImlDppYmpcxhr3ZxazYdYQVKTlsPXwcgNiQDkwe2JUpcV25qEcI3hfYtdQU+3OLWbI1iyXbMknLKcbTQxjdJ4wZQyOZOiii7mnVxbnW/mJHtsOsFyFhTpPj2ZdbzMur9vHRNxmIwDXDYrhrfG/XH+J29AB8+jDsXQahfeHyp6DPJNc+wyllJTD/BmusaMZzMPw2pyNq8zSx1EETS8vKKSzls5QcPkvJZm1aHmUVVQT6eTFhQBemxHVlXL9wApphzCHj+Ek+tlsmOzKsSQcjeoYwIz6KywdHXFg31Kkia2fkA6thymMw+j6XxJh+rITX1uxn/sbDlFdWMX1IJD8a34e4qEYuRqyssFbJF6TD/pXwvxfAwwvG/wJG3g1ePi6J222Ul8K/b4K0FdbBYiPudDqiNk0TSx00sTinpKyCNXvz+Cwlmy9253D0RBnensKoXqFMievKpIFdiW5Ct1Bu0SmWbs9iydZMNh06BkB8TBAz4qO4YmgkkUFN6HKqOAUf3gU7P4CLfwxTHnfNrr523K+vPcA/1x2i+FQFEwd04Z4JfRje/az9uMpOwPHDVuIo+NZ+bX99/DAUZVrjJ9UGz4apj7ft82cqTsGCW61W2bQnYdTdTkfUZmliqYMmFvdQWWXY8u0xPrPHZfbnnQAgLjKQKXFWl9mgqMB6x2XOtQq+f9cAZiZEceXQSLqHurB7qaoKPp0HG16Bof/P6hqrZ5V+gxlDYf4Rlq3dwMatWwkqy2Z4cDEjOp8gtDIHOX4YTh498zMeXlbSCIq1rmD736AYa+pwezlLvqIMFt4BKUushD/6XqcjapM0sdRBE4t72pdbzGe7svksJZtNh45hDEQG+THJHvwf1SsEXy9rHUj1KvjFyZmsST29Cn5mfBRXDo2if0RA8wVqjDWz6ovHoc9ka8FeQxYUVlZYLYqaVsbh06+rWyEVJ8/4SAl+pFeFUugbSZfY3sT06I9HcDcrcQTHQkBkw44Abg8qy61TQnd+ABN/DWMfcjqiNkcTSx00sbi//OJTfLE7hxW7svkyNY+T5ZX4+3oxrp+1M/Xnu61V8JFBflw59Lur4FvElrdhyX0QNQxu+I81bbe6S6qmmyr9dOI4u5sKoGPY6VZGdcKo1fI45R3IB99k8vKqfXx7tIS+Xfz50YTezBgadcHratqFygr46G7YvgDGzYPx89xjW5o2QhNLHTSxtC6l5ZV8tS+PFbusCQBVVabBq+Cb3e6l8P7tVsKoLDvzPfGEwOhaiSO2VuKwk4h3w8Z8Kiqr+GR7Fi+t3Mee7CJiQzrww7G9mT08Bj9v92uxGGMoLK3gSEEpWQUnOVJQSmZBac0u0GP7htPD1TPgqlVVwuKfQPK71lqdib/W5OIimljqoIml9ar+36vT62HOcHgjbP+PdcZLUPN2U1VVGb7YncNfV6aRfPg4XQJ8uXNML24Y2Y1Ovi2z44ExhoKT5WTZSSOroNROIKV2ArESSUlZ5RmfE4EAXy8KSysA6BbSkbH9whjTN5xLeoe6dmZgVRV8fD9secva9n/K45pcXEATSx00sajWzhjD1/vyeXFVGv9Lyyeogze3j+7BbZf0ILhj46cUG2M4eqLsdLIoLOVIwUmyjtuJo9BKJqXlZ3bpeQh0CfAjMtiPyCA/IgI7WP8GWV9HBnegS4AvXh7CofwS1qTmsmZvLl/ty6ekrBIvDyGxW2fG9gtjbL9wBkcFNb0lWlUFy34GG/9uTbWe9gdNLk2kiaUOmlhUW7Ll22O8tHIfn6Vk08nHkxtHdecHl/b8znY6VVWG/BNlZ7QqrARyslbSKKWs4syk4ekhRARaSSIiyI/IQCtR1E4c4f6+jRrzKauoYvOhYzWJZmemtd4opJMPl/YJY0xfK9F0bezWQMZYC0TXvwxJ37fWurhoinh7pImlDppYVFu0+0ghL6/ax5KtmXh5ejB9cARVhpruquzCUsorz/z/u7en0DXQblUEnZksIoI6EBXkR6i/b4vtXp1XfIq1qXms2ZvLmtQ88opPAVjjMv3CGds3nKQenS9sXMkY66yZr16AxFvgyuc1uTSSJpY6aGJRbdmh/BP8bfV+lm7PIrijNxGBpxNFZNDpJBIR5EdoJx9nJz/UoarKkHKkkC/tRLPp4DHKKqvw8/ZgZM9QxvYLZ1y/MHqHN2APOmPgi/+DL5+xTgmd9Vedpt0ImljqoIlFqdanpKyCdfvzWbPXSjTVC2qjgvwY2y+cMX3DubRPGEEd65gEsOop65TQIdfCVX8Dz9Z3xIOTGppY9KeqlGoVOvp4MXFAVyYO6ArA4aMlNa2ZT7ZnMX/jYTzE2lF7bN9wxvYLJz4m6Myxn/G/sFoqXzwOVRVwzWuu2zlB1XDyzPs3gCuBHGPM4LPe+ynwDBBujMkTq537PDAdKAFuM8Zsse+9FfiV/dH/M8a8Vd+ztcWiVNtSUVlF8uHjrNmby+rUPLalH8cYCPTzYnQfawLA2H7hp/eh+98LsOLXMOBK6zTKtrY5ZzM4VVGJn7eX27dY/gH8FXi7dqGIxAJTgW9rFV8O9LWvkcDLwEgRCQEeBZIAA2wWkcXGmGPNHr1Sym14eXqQ1COEpB4hPDi1P8dLylibZk8C2JvHsh1HAOgd3slOMtczeooXPisehgW3WGfteLXgoWturqrKcCD/BFsPH2fr4eMkpxeQYs/YawhHx1hEpAfwce0Wi4i8DzwOLAKS7BbLK8AqY8x79j17gPHVlzHmh3b5Gfedj7ZYlGo/jDGk5hTXzDRbvz+fUxVV+Hh6MC98LXcc/ytlHbtSNXAWfgnXQsxF7W69S05RKVsPF5B8+BhbDxewNf04RfZC1o4+ngyJDiIhNphHrohz+xbLd4jILCDDGLP1rFke0cDhWl+n22XnKz9X3XOBuQDdunVzYdRKKXcmIvTrGkC/rgH8YEwvSssr2XDgKGv25jI/tSNryjoyp/ILxm96Eza/Sq5nF/aETOJ4rysJ6TOSPhEBhPv7utduD01w4lQF29Kt5FHdIsksKAWsNUsDIgKYER9FQkww8bHB9OniXzPd/JEGPsNtEouIdMSKe2pz1G+MeRV4FawWS3M8Qynl/vy8PWvGXACyC0eyK+tO5mcewTftU3rnrmBk7gK8c9/j26/DWVg1ipVel1LZZQh9uwbQp4s/fbr407drAFFBfm6dcMorq9hzpKhWEikgNaeIKvs3YLeQjgzvEcIdMVaLZFBUEB18mj4N220SC9Ab6AlUt1ZigC0iMgLIAGJr3Rtjl2VgdYfVLl/VArEqpdqIroF+1sr+/l1gwlDg55iSYxQmf0TA9oX88MhS7jZLyMyPZmnuKP5TehF7TCwgdPLxpHd1oukSQF/7dWxIxxZbVFrNGMPhoydJrtUS2ZFZULP9TueO3sTHBjNtcAQJscEMjQki9EJOUb0AbjfGUuu9g5weY7kC+DHWrLCRwAvGmBH24P1mINH+2BZguDHm6Nn11aZjLEqpBjuRD7uXwI4P4OCXYKo4GdSH1PAprPEew7qiMNJyijlSWFrzER8vD3qHVycc/5qE0z20Ez5erln1f/REGVvTj5P87fGaFsmxknIAfL08GBwdRHxMMPGxQQyL7UxsSIcmt67cfoGkiLyH1doIA7KBR40xr9d6/yCnE4tgzSCbhjXd+HZjzCb7vjs43fX3hDHmzfqerYlFKdUoxbmQsgh2fAiH/gcY6DIIBl9NUd+ZpJZ3IS27mLTcYlKzi0jNKSb92OnD27w8hB5hnWoSTXVLp1d4pzq3qTlZVsnOzAKSDx9na3oBWw8f59ujJYA1z6BvF3/iY4JJ6BZMfEww/SMC8G6G83rcPrE4SROLUqrJCrMgZbHVkjm8ziqLGAqDr4FBV9ccC11SVsH+3BOk5hSRml1MWo51Hcw/UTPWIWKNd1gJxxrHqaoyNd1au48UUWnfHBnkR0KsNbAeHxPMkJgg/FvoyARNLHXQxKKUcqmCdNj5Eez8EDLs3y1RiaeTTFDMdz5yqqKSg3kl30k4+/OKazYLDfD1shJIbHW3VnDjd3p2AU0sddDEopRqNscOWQlm54eQlWyVxYywkkzcVRAYWefHKyqrOGR3c/UM7eRWm4RqYqmDJhalVIvI32cnmY8gezsg0O1iO8nMAv8uTkd4QTSx1EETi1KqxeXutZPMB5C7G8QDelxqdZUNnAWdQp2OsF6aWOqgiUUp5ajsXaeTTH4aiCf0GmclmQFXQscQpyM8J00sddDEopRyC8bAke2nk8yxg+DhBb0nQr/LIHq4NZ3ZTXZf1vNYlFLK3YlA5FDrmvQbyPzm9JhM6n+tezx9oOtgiE60ZppFDYPw/m59Aqa2WJRSyt0YA8cPQcYWyNwCmcnWVVZkve/dESLjrUQTbSebkF7NviuzdoXVQROLUqrVqaqyxmMyt9gJ5xs4sg0q7K1k/IIgMuHMlk1QjEuTjXaFKaVUW+LhAeH9rCv+equsstyaYVbTsvkGvvqLdewyQKdwK8FUJ5roxBaZ4qyJRSmlWitPb4gYYl3Db7XKykshe+fpRJOxBVJXYB2yCwTGQFTC6S60qGHQobNLw9LEopRSbYm3H8QMt65qp4qtbrPqLrTMLbD749Pvh/Q6s2UTGQ++/o0OQROLUkq1db7+0P0S66p28pg9KcBONt+uhx0LrffEA8L6n+4+ixpmzUxrIE0sSinVHnXoDL0nWFe14pzT3WeZ30DaCtj6L+s9j4anC00sSimlLP5drIWZ/S6zvjYGCjNOTw7gdw2qRhOLUkqpcxOxpiwHxUDcTBqaWFx/xJhSSql2zbHEIiJviEiOiOyoVfZHEdktIttE5EMRCa713sMikiYie0Tkslrl0+yyNBGZ19Lfh1JKqTM52WL5B9YZ9rWtAAYbY4YCe4GHAUQkDrgeGGR/5iUR8RQRT+BF4HIgDphj36uUUsohjiUWY8wa4OhZZf81xthLRlkHVJ/nOQuYb4w5ZYw5AKQBI+wrzRiz3xhTBsy371VKKeUQdx5juQNYZr+OBg7Xei/dLjtfuVJKKYe4ZWIRkV8CFcC7LqxzrohsEpFNubm5rqpWKaXUWdwusYjIbcCVwI3m9NbLGUBsrdti7LLzlX+HMeZVY0ySMSYpPDzc5XErpZSyuFViEZFpwM+BmcaYklpvLQauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7d03EoppU5zbIGkiLwHjAfCRCQdeBRrFpgvsEKsMwTWGWPuMsbsFJEFwC6sLrJ7jDGVdj0/BpYDnsAbxpid9T178+bNxSKypxm+raYKA/KcDuIsGlPDaEwN545xaUwN078hN7XLg75EZFNDDqtpae4Yl8bUMBpTw7ljXBpTwzQ0JrfqClNKKdX6aWJRSinlUu01sbzqdADn4Y5xaUwNozE1nDvGpTE1TINiapdjLEoppZpPe22xKKWUaibtLrG4427I59rp2UkiEisiK0Vkl4jsFJH7nI4JQET8RGSDiGy142rY4RAtwN4U9RsR+bj+u5ufiBwUke0ikiwim5yOB0BEgkXkfXsH8xQRudjhePrbP5/qq1BE7ncypmoi8oD9v/EdIvKeiPi5QUz32fHsrO/n1K66wuzdkPcCU7D2FdsIzDHG7HI4rrFAMfC2MabhB0s3XzyRQKQxZouIBACbgavc4OckQCdjTLGIeANrgfuMMeucjAtARB7k/7d3/zFXlnUcx98fo6bALLOfyBIyKiwdmDMH4SqszURWuVatH0v7ZYLOZv/YWrHW2qiG/aFrK0idgS1B5ywjdJqVLdZEmi76oVKKEqCBGqSQfvrjug7dPJwHD3DwPnE+r+3eee77XM99vs+z5znfc1/XdX8vOBU42vacAYjnb8CptgfmPghJ1wlktg0AAAZNSURBVAC/tr243tA81va2tuOC3e8NjwBvt/33lmM5jvK3faLtf9d7+G6xfXWLMb2VUuT3NGAnsBK4wPb93doP2xXLQFZD7lbpuU22N9peU79+CljHABT3dPGvuvviurX+yUjSROBsYHHbsQwqSS8FzgCWANjeOShJpZoNPNB2UmkYAxwlaQwwFni05XimAqtt76gV6O8EPjha42FLLKmGvJ8kTQKmA6vbjaSoXU5rgc3ArbYHIa7vUkoRPdd2IA0GVkm6W9Ln2g4GmAxsAa6qXYaLJY1rO6iGjwDXtR0EgO1HgO8ADwEbgSdsr2o3Ku4DZkk6VtJY4H3sWadxD8OWWGI/SBoPrAAusf1k2/EA2H7W9jRKwdHT6iV6ayTNATbbvrvNOLp4h+1TKIvgzavdrW0aA5wCfM/2dGA7MChjnC8B5gLXtx0LgKRjKD0pk4EJwDhJH28zJtvrgIXAKko32Frg2dHaD1ti6bka8rCrYxgrgKW2b2g7npFqN8od7L0K6QttJjC3jmn8GHi3pB+1G9LuT73Y3gzcSOkGbtMGYEPjCnM5JdEMgrOANbY3tR1IdSaw3vYW27uAG4AZLceE7SW232b7DGArZby6q2FLLKmG3IM6SL4EWGd7UdvxdEh6paSX1a+PokzC+FObMdm+zPZE25Mof0+3227106WkcXXSBbW76b2UrozW2P4H8LCkThHD2ZSisoPgowxIN1j1EHC6pLH1f3E2ZZyzVZJeVR9fRxlfWTZa29aqG7fB9n8OpBryodat0rPtJS2GNBP4BHBvHc8A+LLtW1qMCeC1wDV1Bs8RwE9sD8T03gHzauDGWiF8DLDM9sp2QwLgImBp/VD3IHBey/F0Eu97gM+3HUuH7dWSlgNrKNXc72Ew7sJfIelYYBelwvyoky+GarpxREQcesPWFRYREYdYEktERPRVEktERPRVEktERPRVEktERPRVEkvE/zlJ75RkSZ9pO5YISGKJ2KfGm/ZoW+t32UcMmqG6QTLiICwBftnl+IMvcBwRAy+JJaI3v7Odq5OIHqQrLKIPJC2oXWPTJX1f0mOStkv6qaTXd2l/nKSrJW2S9ExdrfOLtTbUyLYn15UXt0h6WmX10ytqaZSRbedLeqCec62kd414/kWSLqurOO6QtK22m9ff30gMs1yxRPRmvKRXdDn+lO1nGvtXAU8CX6es9XMR8CtJJ9v+J0Ctt/Rb4DXAlZTutDnAIuAEYH7nZJJmUWrbbacsJLYeOB44l7IA1M7Ga18AjKfUldoJXALcJOl421trm6/W7er6ekcCJwKzaiwRB892tmzZRtkoxUG9j+1Ttd2Cun8XMKbx/efU4wsbx75Vj53bOCZKeXQDJ9VjR1BKkz8OTOgSm0bE+DAwvvH8tHr8wsaxe4Cftf17zXZ4b+kKi+jNIkoV3JHbL0a0u8Jl6VYAbN8M/JWSYDrmUpbIXtFoZ+DbdbfTdhowBbjS9l5L09bvabrW/1u6GdtrKVdPJzTabAPeImnqPn/aiIOQrrCI3qyzfVsP7f48yrEzG/uTgFu7tOusTzK5Pk6pj/f2EiDQbb32rcDLG/tfAW4C/ijpL8BtwHLbd/T4GhHPK1csEYeP0ZaK3T0hwPZdlCuYj1G67d4P3C6pzfV/4jCTxBLRX28a5dj6xv564M1d2k1tPA+lCw3gpP6EVth+wvYy2+dTJgIsBc6X9MZ+vk4MrySWiP6aL2l3F7OkcyhdWs2VLm8G3iDpA412Ar5UdzvLZa+lJJd5kiaMfKFuU5OfT52RtlsdD+osW3zM/p4vopuMsUT05nRJT3c5vsV2cwB/HKVr6XrKdOOLgY2UmWAdC4EPA9dJ6kw3Phs4izJQfx+A7eckfRZYCfxB0g8oVzMTgQ8BMyiD8ftjnaTfAL8HNlGupuZTxoHW7Oe5IrpKYonozafrNtJq9pwZdh5wIWX68ZGUMjAX236s08D245JmAN8EPgkcTUkulwKXN09u+05JM4GvAV+o59wA/BzYcQA/x+WUWWeXUu55eRT4IfAN27sO4HwRe8ma9xF9IGkB5c1/iu37Ww4nolUZY4mIiL5KYomIiL5KYomIiL7KGEtERPRVrlgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKv/gtMPLUqC1psCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Train VAE\n", + "train_vae_modules.train_vae(config_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulate data by latent transformation" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized gene expression data contains 50 samples and 5000 genes\n", + "Return: simulated gene expression data containing 426 samples and 5001 genes\n" + ] + } + ], + "source": [ + "# Run simulation\n", + "simulated_data = simulate_expression_data.simulate_by_latent_transformation(\n", + " num_simulated_experiments,\n", + " normalized_data_file,\n", + " NN_architecture,\n", + " dataset_name,\n", + " analysis_name,\n", + " experiment_id_file,\n", + " sample_id_colname,\n", + " local_dir,\n", + " base_dir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualize latent transform compendium" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Load VAE models\n", + "model_encoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_encoder_model.h5\"))[0]\n", + "\n", + "weights_encoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_encoder_weights.h5\"))[0]\n", + "\n", + "model_decoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_decoder_model.h5\"))[0]\n", + "\n", + "weights_decoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_decoder_weights.h5\"))[0]\n", + "\n", + "# Load saved models\n", + "loaded_model = load_model(model_encoder_file)\n", + "loaded_decode_model = load_model(model_decoder_file)\n", + "\n", + "loaded_model.load_weights(weights_encoder_file)\n", + "loaded_decode_model.load_weights(weights_decoder_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "pca = PCA(n_components=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Read data\n", + "normalized_compendium = pd.read_csv(normalized_data_file, header=0, sep=\"\\t\", index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Encode normalized compendium into latent space\n", + "compendium_encoded = loaded_model.predict_on_batch(normalized_compendium)\n", + "\n", + "compendium_encoded_df = pd.DataFrame(data=compendium_encoded, \n", + " index=normalized_compendium.index)\n", + "\n", + "# Get and save PCA model\n", + "model = pca.fit(compendium_encoded_df)\n", + "\n", + "compendium_PCAencoded = model.transform(compendium_encoded_df)\n", + "\n", + "compendium_PCAencoded_df = pd.DataFrame(data=compendium_PCAencoded,\n", + " index=compendium_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add label\n", + "compendium_PCAencoded_df['experiment_id'] = 'background'" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Embedding of real template experiment (encoded)\n", + "before_encoded_file = os.path.join(local_dir, \"simulated_before_encoded.txt\")\n", + "\n", + "template_encoded_df = pd.read_csv(before_encoded_file, header=0, sep='\\t', index_col=0)\n", + "\n", + "template_PCAencoded = model.transform(template_encoded_df)\n", + "\n", + "template_PCAencoded_df = pd.DataFrame(data=template_PCAencoded,\n", + " index=template_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add back label column\n", + "template_PCAencoded_df['experiment_id'] = 'before_experiment'" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Embedding of simulated experiment (encoded)\n", + "after_encoded_file = os.path.join(local_dir, \"simulated_after_encoded.txt\")\n", + "\n", + "simulated_encoded_df = pd.read_csv(after_encoded_file,header=0, sep='\\t', index_col=0)\n", + "\n", + "simulated_PCAencoded = model.transform(simulated_encoded_df)\n", + "\n", + "simulated_PCAencoded_df = pd.DataFrame(data=simulated_PCAencoded,\n", + " index=simulated_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add back label column\n", + "simulated_PCAencoded_df['experiment_id'] = 'after_experiment'" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(58, 3)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12experiment_id
SRR592745-1.5577856.548028background
SRR592746-1.3355386.123819background
SRR592747-1.2349336.325553background
SRR5927480.6332639.497215background
SRR5927491.3896168.344598background
\n", + "
" + ], + "text/plain": [ + " 1 2 experiment_id\n", + "SRR592745 -1.557785 6.548028 background\n", + "SRR592746 -1.335538 6.123819 background\n", + "SRR592747 -1.234933 6.325553 background\n", + "SRR592748 0.633263 9.497215 background\n", + "SRR592749 1.389616 8.344598 background" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Concatenate dataframes\n", + "combined_PCAencoded_df = pd.concat([compendium_PCAencoded_df, \n", + " template_PCAencoded_df,\n", + " simulated_PCAencoded_df])\n", + "\n", + "print(combined_PCAencoded_df.shape)\n", + "combined_PCAencoded_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAAHVCAYAAADB3HU9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3XlYVGX7B/DvmRmYAYZNEERFcEfcUjMXInG3cEncMNe00jLbTE19yyx7TUvtstc2rbTcqp+Z9Vq5Bhqumba4JKbihgKuIAgMc//+8J2JcWbYHBwGvp/r8lKfs93zzHPOnPssz6OIiICIiIiIiMhFqJwdABERERERUWkwiSEiIiIiIpfCJIaIiIiIiFwKkxgiIiIiInIpTGKIiIiIiMilMIkhIiIiIiKXwiSGiIiIiIhcCpMYIiIiIiJyKUxiiIiIiIjIpTCJAaAoisUflUoFPz8/REdHY+nSpRARu8vu3r0bjz32GBo1agRvb2/odDqEh4dj8ODBWLduHYxGo91l9+7da97ma6+9Vh4frcxiYmKgKApOnTp1x+saPXo0FEVBQkLCHa+rLMLDw6EoSoVdnyspa7uoynXmCIqiIDw83NlhuKwuXbqgdu3ayM3NNZedOnUKiqIgJibGeYGRU73zzjtQFAV79+51dihEVAZMYgoZNWoURo0ahWHDhiEyMhJJSUl4/PHH8cgjj1jNm5+fj8ceewwdOnTAxx9/DJVKhW7duqFfv34ICgrC2rVrERcXh+7du9vd3ueff27+98qVK8vlM1HF9eqrr0JRFCxbtszZodwxnmRTadzN9rJhwwb89NNPmD59OrRabblsw9kXakwq0zHlbhg3bhyCg4Px4osvOjsUIioDjbMDqEhuP/Bv3rwZDz30ENasWYNhw4ahd+/e5mkjR47EmjVr0KhRI3z66afo2LGjxbLnz5/Ha6+9hk2bNtncVn5+PtasWQMAqFGjBo4dO4Y9e/agXbt2jv1QZfTZZ58hOzsbtWrVuuN1zZkzBy+99BLq1KnjgMjImRzZLqjkjhw5Ajc3N2eH4ZKmT5+O6tWr47HHHnN2KFTBeHh44LnnnsO0adPwww8/4MEHH3R2SERUCrwTU4Tu3btjxIgRAIBvvvnGXP7VV19hzZo1CA4Oxvbt260SGACoWbMmPvjgA4u7LYX9+OOPyMjIQFRUFJ566ikAsDuvM9SpUwcREREOOXEKCQlBREQEPD09HRAZOZMj2wWVXEREBOrXr+/sMFxOUlISfv/9dwwZMgTu7u7ODocqoGHDhkFRFLz//vvODoWISktIAIi9qli0aJEAkB49epjL7rvvPgEg77//fpm3OXjwYPM6Tpw4IQAkMDBQ8vLyyrS+DRs2SLdu3cTPz0+0Wq00atRIpk6dKleuXLGad+bMmQJAPv30U9mzZ4/ExsZKtWrVBIAcOHBAREQ6deokAOTkyZNWyyckJEjnzp1Fr9eLn5+fPPjgg7Jv3z759NNPBYDMnDnTYv5Ro0YJAPnpp58sysPCwsz1vmTJEmnevLnodDoJDg6WJ554wmbsycnJMnPmTGnfvr0EBweLm5ub1KpVS0aMGCF//fWXzbopvJ2Sys7OlunTp0t4eLhotVqpV6+evPLKK5Kbm2tzfUajUVatWiVDhgyRhg0biqenp+j1emnbtq0sXrxYCgoKbMZk64+pnnJycmTp0qXSt29fqVu3ruh0OvH19ZXo6GhZvXp1qT5PWFiYaLVaycnJsSh/9tlnBYDUrl3bapkBAwYIANm3b5+57PZ2YfrObf3p1KmT1ecVKfl3XZzTp0/LhAkTpF69eqLVasXf319iY2MlKSnJYj6DwSAdO3YUALJ48WKr9Wzfvl1UKpWEhIRIRkaGVcxGo1HeeecdadKkiWi1WqlZs6ZMnDjRbsymttC5c2fz/hgRESEzZ86UGzduWM1fuE5Xrlwp7dq1E71eL76+vuZ5AEhYWJjFcj/99JMAkFGjRsnFixdlzJgxEhwcLJ6enhIVFWVRD++//765zmvXri0zZ860apMmly5dkpdeekmaNGkiOp1OfHx8pHPnzvLdd99ZzXvy5Enzd52dnS1Tp06VOnXqiLu7u9SvX1/efPNNMRqN5vlL2l7S0tJk6tSp0qRJE/Hy8hIfHx9p2LChjBgxQvbs2WMzbltGjx4tAKzaxO2xF1ba/c7e57F1/Pzhhx/koYceksDAQHF3d5e6devK888/b9HuTAofNxMTE83HXG9vb3nooYfk0KFDFvOX5JhSlMzMTPn3v/8tLVq0EB8fH/Hy8pJ69erJwIED5ccff7S5rdLsG+fPn5e5c+fKAw88IDVr1hQ3NzcJDg6W/v37y969e+3GlZWVJW+++aa0adNGvL29xdPTUxo3bixPPfWUzWP+7t27ZeDAgVKjRg3z78PYsWMlJSXF7jaio6NFrVbLuXPniq0nIqo4mMRI0UnMG2+8IQCkT58+IiKSnp4uAERRlDKdeImIXL16VXQ6nbi7u8ulS5dERMwnWd9++22p1/fvf/9bAIhGo5GuXbvKkCFDpHbt2gJAGjVqJBcuXLCY35TEPProo+Lm5iZNmzaV+Ph4eeCBB+S3334TEftJzNq1a0WtVgsAad++vcTHx0vTpk1Fq9XK+PHjy5TETJ48Wdzd3aVHjx7Sv39/CQoKEgASHR1tcQIkIjJ16lRRFEWaN28uvXv3lgEDBkiTJk0EgPj4+Jjjt7WdksrNzZXo6GgBIP7+/hIXFyexsbHi4eEhffr0kTp16litLycnRwBIQECAREdHy5AhQ6Rbt27i6elpPtEsbNKkSdKyZUsBIFFRUTJq1CjznyNHjoiIyJEjRwSA1KxZUzp37ixDhgyRTp06iZubm816LsrIkSNtfgctWrQwt//k5GRzudFolMDAQPH19RWDwWAuv71d7Nixw/z9enl5WXyOOXPmmJcry3ddlJ07d4q/v78AkMaNG0tcXJxER0eLRqMRtVota9assZj/77//Fm9vb/Hw8DDXr8itfTEsLEwURZFNmzZZLGOKecKECeLm5ibdu3eXwYMHS3BwsACQFi1ayLVr1yyWKSgokKFDhwoA0ev1EhMTI/3795fQ0FABIPfdd59kZ2dbLGOq0yeeeEJUKpVER0dLfHy8REVFmecpKonp27ev1KtXT8LCwmTIkCHSrl07ASCenp7y559/yjPPPCMeHh7y0EMPSe/evcXb21sAyPTp063q9a+//jLHGh4eLv369ZMuXbqY2/Fbb71lMb8pEejQoYPcf//9Uq1aNYmLi5OePXuKTqcTADJjxgzz/CVpL9evX5e6desKAAkNDZWHH35YBg4cKPfdd5+4ubmVqt1Xr15dPDw8JD8/32qavSSmtPvdqFGjpH79+gJAevbsafGZ0tPTzfNNnTpVAIi7u7tERUXJwIEDpWHDhgJA6tevb3WcNtXTCy+8IGq1Wtq1ayeDBw+WRo0amY81qamp5vlLckyxx2AwmNtNYGCg9O3bVwYPHiwdO3YUT09Pq+NXWfaN999/37y/9urVSwYPHiytWrUSAOLm5iYbN260iuv8+fPStGlT87G4T58+MnDgQGndurWoVCpZuHChxfyLFy8WlUolKpVK2rVrJ4MGDTIf46pXry6HDx+2+flffvllASAff/xxkfVERBULkxixn8QYjUbp0KGDxQ/x5s2bzT86ZbV06VIBIP369TOXvffeewJABg0aVKp17d27V1Qqlej1etm9e7e5/ObNmzJo0CABIAMGDLBYxpTEAJC5c+faXK+tJObatWvmOzYrV660mN/0I1CWJKZGjRpy9OhRc3l6ero0aNBAAMjWrVstltm1a5ecOHHCKt5PPvlEAEjnzp2tppU2iXnzzTcFgLRq1criCmlycrLUrFnTZnvJz8+XdevWWd1JS0tLk3vvvVcASGJiosW0wnfEbMnIyJDNmzdbndyfOHFCwsPDRaVS2bxTZoupfgp/N5cuXRJFUcwnCUuWLDFP+/333wWAxMbGWqzHXnJr6yS7sLJ81/Zcu3ZNQkJCRK1Wy4oVKyym7du3T/z9/UWv10taWprFtGXLlpm/19zcXBEReeSRRwSAPPfcc3Zj9vHxkV9++cVcnpmZKV26dBEA8uyzz1osM2/ePAEgMTExFieYubm5MnbsWAEgU6dOtVjGVKc6nU4SEhJsfuaikhgAMnz4cIu2Z2pbkZGRUrNmTTl+/Lh52qFDh8Td3V08PT0lMzPTXG4wGKR58+YCQObNm2dxpyY5OVnq1q0rarVa/vjjD3O5KREwJQOFT1z37dsnarXaajv2Po+Jqa327dvX6m5RWlqaxfaLYkpGOnbsaHO6vSSmLPudvWOcyZdffikApFmzZlYXC1555RUBIEOGDLG5TpVKJevWrTOXGwwG813Sl19+2WKZ4o4p9mzbtk0ASNu2ba3u1l67ds2i/YuUbd/4/fff5c8//7Ta9o8//mi+c3d7nXft2lUAyODBg63a0MmTJy0uWu3atUvUarXUqlXLKl7Tb267du1sfv7vvvtOAMjIkSNtTieiiolJjFgnMQaDQY4dO2Z+FEGr1ZpPAtasWWO+C1FWppOWr776ylyWkZEhbm5uotPp5OrVqyVel+kK+7Rp06ymXbx4UTw8PESlUsnp06fN5aYfuubNm9u9+m3rZHXJkiUCQLp27Wo1f35+vvmHrbRJTOGTZ5O333671HcboqKiRFEUq/orbRJjutOybds2q2mmq4mlWZ8p8X3hhRcsyst6wiHyz3exaNGiEs1vemSx8Anb119/LQBk+fLlotVqZdiwYeZppsco582bZ7GeO01iHPFdL1y4UADIpEmTbE5fsGCBAJAFCxZYTTMl9pMnT5YVK1aYTyxv3rxpN2ZbdywOHTokiqKIXq83n/Tl5+dLYGCgeHl5WV1VF7n1iGKNGjXE39/f4uTcVKcTJkyw+5mLSmJ8fHzk8uXLFtOuXr0qiqIIAFm6dKnV+vr372+1T65bt87mRQ8TU3t55plnzGWmREClUlkkpya9e/e2ue8X1V7mzp0rAOSdd96xOb2kvvjiCwFu3XG2xV4SUxR7+11xSYzpDomtBMxoNMo999wjarXa4s6NaZ2F90uTX375xWbsZT2mmOrKVjJvS2n3jeIMGzZMAMjvv/9uLtuzZ48AkKCgILl+/Xqx6+jXr58AsPnYo4hI3759BYD8+uuvVtOSk5PNd5CIyHWwd7JCbI1j4e3tjeXLlzvspdrTp09j+/bt8PPzQ58+fczlAQEBeOihh7B+/Xp89dVXJe5JZ8eOHQBuvZx4u6CgIPTo0QPr169HUlIS4uPjLab37t27VGN3JCUlAQAGDRpkNU2j0WDAgAFYsGBBiddn0qNHD6uyRo0aAQBSU1OtpmVlZeG7777DwYMHcfnyZeTn55vnFRH8/fffaN26danjAG59P6dPn0ZQUBA6d+5sNX3o0KF48skn7S5/8OBBbNq0CSkpKcjOzoaIIDMzEwCQnJxcpph+/vlnJCQk4Ny5c7h58yZExFwvJV1n3bp1UadOHezevRs3b96ETqczdwfbq1cvtG/fHomJieb5TdMcPYZGab9rW0w9/sXFxdmcHh0dDQA2x3748MMPsWvXLsyfPx+enp7QarVYuXJlkV3v3r7fAEBkZCRatmyJgwcP4sCBA+jQoQN+/fVXZGRkoHv37ggODrZaxsPDA23atMGGDRuQnJyMxo0bW0zv27ev/Q9dhHvvvRf+/v4WZb6+vqhWrRouXbpks87r1asHwLLO76Rew8LCrD4PUPrvFgDatGkDAHjrrbcQHByM2NhYeHt7l3h5k7S0NACwqpuScsR+Z4rjt99+Q8OGDdGsWTOr6YqiICoqCgcPHsT+/fvRs2dPi+mO2GeKc88990ClUuHTTz9FZGQk4uLiEBAQUOxyJd03THJzc/Hjjz9i7969SE9PR15eHgDgjz/+AHCrXps3bw4A2LJlC4Bbx9zivn+j0YitW7fC09PTqv5MoqOj8e2332Lv3r1o1aqVxbRq1aoBANLT04v9zERUcTCJKWTUqFEAAJVKBR8fHzRv3hxxcXEWP4KmA3tZD3YrV66EiGDgwIFWJ07Dhw/H+vXrsWLFihInMefPnwcAu2MumMrPnTtnNa20XR6bfjBDQ0NtTi9rF8q1a9e2KjP9aBUenA4Atm3bhvj4+CLr35Q0lIWpPsPCwmxO9/X1hZ+fH65evWpRnpeXh9GjR2P16tUOi+vatWuIi4vDtm3bHLLOTp064fPPP8fu3bsRExODhIQEREZGIigoCDExMUhMTMTx48dRv359bN++Hd7e3mVOBu0pzXdtj2mgzaioqCLny8jIsCrz9/fH4sWL0a9fP2RlZWHu3Llo0aJFkeux1xbCw8Nx8OBBc5sxxbV58+ZiLw5kZGRYnfSXdf+x1921Xq/HpUuXbE7X6/UAYDX4I3DrgoitiyImturV1vcKlP67BYCuXbvi+eefxzvvvIOhQ4dCo9GgdevW6N69O8aMGWNOwIpz7do1ixhKytH7nalek5OTS9QubueIfaY4jRo1wrx58zBt2jQ88cQTGD9+PJo1a4auXbti9OjRdveRku4bwK1EpW/fvkUOlFu4Xs+cOQMAJbqAmJGRgaysLAAothc6W3Xs4+MDAFbHdSKq2JjEFFKSAcJatmwJADhx4gSuXr0KPz+/Um3D1I1yQkIC7r//fotppqtS27dvR0pKit0fiNIo6kdTp9Pd8fodQaUqWU/fWVlZGDx4MC5fvoxXXnkF8fHxCAsLg4eHBxRFwSOPPILVq1dDRMo5YmsLFizA6tWr0bx5c8ybNw+tW7eGv78/3NzccOzYMTRu3LjUcU2dOhXbtm1Dp06dMGvWLDRr1gx+fn5Qq9XYtGkTevbsWap1xsTE4PPPP0dCQgJatGiBP/74w3xXKSYmBrNmzUJCQgJycnKQkZGBBx98EGq1ulQxF6ek33VRjEYjAGDgwIHw8vKyO19ERITN8i+++ML87/37999xPLfH1aBBg2ITLFtXucu6PxZXpyWtc1P8vXr1snknySQwMLDM2yipBQsWYNy4cVi/fj22bNmCpKQk7N27F/PmzcPq1asxYMCAYtfh6+sLoPQXDxy935nqtUaNGnbvEpjYOuY7um7tmTRpEgYPHoxvvvkGmzdvxo4dO7Bw4UK88847WLhwIZ599tkyr1tEMHjwYJw6dQrjx4/H+PHjUa9ePej1eiiKgunTp2POnDllPnab6liv1xfbNpo2bWpVZkp4S/t7TkTOxSSmlKpXr4777rsPe/fuxZo1azB+/PgSL7t//34cOXIEAHD8+HEcP37c5nwigpUrV2L69OnFrrNmzZo4efIkUlJSEBkZaTXddNXLEYMThoSEAPjnCtnt7JU7yo4dO3Dp0iUMHDgQs2bNspp+4sSJO96G6TOmpKTYnH79+nWbV+vWrVsHAFi9erXVj2RZ41q3bh3UajW+/fZb85XCO1lnp06dANxKoFu2bAkRMT8u1r59e2i1WnMSAzj+UTJHqV27Nv766y+89NJL5kePSmr16tVYtWoVmjZtCnd3d3z55ZeIjY3FyJEj7S6TkpJifsTl9nLg1j5oigu4lTy54ojppvgfe+yxEiUJ5a1x48aYMmUKpkyZgps3b+I///kPJk+ejCeffLJE8QUFBQEALl++XKrtOnq/M9VrYGBghW8XoaGhmDhxIiZOnAiDwYA1a9bg0UcfxZQpUzBy5EirR/NKum8cPXoUR48exb333mtzPBZb9Wq64//3338XG3dgYCB0Op35kbjSPCYNAFeuXAFw6/ediFwHB7ssgxdffBEA8Oqrr5qfu7Zn586d5n+vWLHCvLzc6lTB6o/pXQTTvMUxPadu6zGm9PR0bNy40fzM9Z0yrWPt2rVW0woKCvD111/f8TaKYvqhsfV4xfHjx/Hrr7/e8TbCwsIQGhqKtLQ0i3dETNasWVPq2L788kuby5geezAYDHbX6ePjY3UiVdQ6i1K/fn2EhoZi9+7d+PHHH6EoijlR0el05vdiyvI+jJubm93P4Wjdu3cH8E/iWFJnzpzBU089Ba1Wi1WrVmHFihXQ6XSYOHEiTp48aXc5W3V99OhRHDx4EHq9Hvfccw8AoG3btvD19UViYmKpT5wrgrLWa1mUtr3odDq8+OKLCAkJQXp6erHHXeCfu+Z//fVXqWIry35X1L5cu3ZtRERE4PDhwzh27FipYimt4o4ppaHRaDB8+HC0bdsWeXl5Nt8DKum+UdTx8cqVK9i8ebNVebdu3QDc+m0zPSpWVKwxMTG4fv06tm7dWvyHu43p4qIpXiJyDUxiymDQoEGIj4/HxYsX8cADD2DXrl1W81y4cAFPP/00hg8fDuDWSb4p0Rg6dKjddUdHR6NWrVo4cuRIiR51mTBhAlQqFRYtWoRffvnFXJ6Xl4eJEyciJycHcXFxdt9jKY1BgwahWrVq2Lx5s9XJ/OzZs4s8EXQE08usX3/9tcU7MVevXsXYsWPNL/jfKdMjVpMmTbI4GT1x4gRee+21ImP74IMPLMr/7//+D5999pnNZUxXKe2dZDVq1AhXrlyxePwJABYuXIiffvqpBJ/EWqdOnZCbm4vPPvsMkZGRFlceY2JicPbsWXz//felfh+mZs2auHjx4l15pnzcuHEICgrCvHnz8NFHH5kfJTExGAzYuHEj/vzzT3OZ0WjEyJEjcfXqVbzxxhto0aIFIiMjMXfuXFy/fh0jRoxAQUGBze29++67OHDggPn/2dnZmDhxIkQEjz76KDw8PAAAWq0WU6ZMQWZmJuLi4mxeXT537pz5kdKKZsCAAYiMjMTKlSvx+uuvW71vISJISkoyd/BxJ4pqL9988w12795tVb5//35cvHgRer2+RI/9NG7cGEFBQTh48GCpTurLst8Vty+//PLLMBqNGDBgAA4ePGg1/dKlS1iyZEmJY7SnuDjs+emnn7BlyxarfenkyZM4cuQIFEWxmYCUdN9o0KABVCoVtm3bZpEM3bx5E+PHj7eZ9N93333o3Lkz0tLS8MQTT+DGjRsW00+dOmXuEAAAZsyYAZVKhUcffdR8IaawrKwsfPLJJ+Y7zYWZOqsw3a0mIhdxN7tCq6hQyi5zRUTy8vJkzJgx5mUjIiIkLi7OPNicaUDI7t27i4jI999/L8CtwSeL88ILL9jsZ98e04CcGo1GunXrJvHx8eYB6xo2bGh3sMuiuuEsyWCXHTp0kKFDh0qzZs3E3d1dnnjiCQEgb7zxhsUyxXWxbEvh0cgL6969uwAQPz8/efjhh+Xhhx8WPz8/adCggbmLzdJsx5bc3FyJiooS4NYAawMGDJDevXuLh4eH9O7d2+Zgl4mJieZ6adOmjQwdOtQ8PsyLL75oszvUc+fOiU6nE7VaLb169ZIxY8bI2LFjzV3VmroABm4NBjl06FCJjIwUlUolzz//vM36KY6pi1jY6NK38LgjvXr1srm8vXYxceJEASB169aVYcOGydixYy26Zy7Ld12UXbt2SWBgoAC3BkR88MEH5ZFHHpEuXbqIn5+fALAYW8PUbW/Xrl0tuhU3Go3So0cPASCvv/66xTZuH9CvZ8+eMnjwYKlRo4YAkKZNm1p1511QUCAjRowQ4Naghu3atZP4+HiJi4uTpk2biqIo0rJlyxLVaWEoootle/VWVJ3bOwYcO3bMPNBkUFCQdOvWTR555BHp0aOHeWDSwgMMFtdNsb3tFNVenn32WQEgtWrVkt69e8sjjzwiMTEx5v1r/vz5duvpdqZu8n/++WerafZiL8t+98svv4iiKKLT6aRfv34yduxYGTt2rMU4U9OnTzd3R926dWsZNGiQDBw4UFq1aiVqtVp8fX0t1llct8222kRxxxR7TN2WV69eXXr16iXDhg2THj16iFarFQAyceJEi/nLsm88/vjjAkA8PDwkNjZWBg4cKMHBwRIYGGj+nm5vJ2fPnpXGjRsLAKlWrZr07dtXBg0aZHewy/fff9/cTpo1a2bxm2z6LLYGqb7//vtFrVbLuXPniqwnIqpYmMRI2ZIYk507d8qYMWOkQYMG4unpKVqtVsLCwmTw4MGyfv168wmTaRTvkoyFsW/fPvNJhK2Rpm3573//K127dhVfX19xd3eXBg0ayJQpU6zGjxC5syRG5NbJU0xMjHh5eYmPj4/06NFD9uzZI7NnzxYA8sEHH1jM78gkJjs7W2bMmCENGzYUrVYroaGhMn78eMnIyCjTduy5ceOGTJs2TerUqSPu7u4SHh4u06dPl9zcXLvr27Vrl3Tp0kX8/f3F29tbOnbsKGvXri3yRG/jxo0SFRUler3e3A4Lx79hwwZp3769eHt7i5+fn3Tr1k0SEhLKdOIv8s94CIDlOEUiIjk5OeYf+jfffNPm8vbaRVZWljz99NMSGhoqGo3G6vM6OokREUlNTZUpU6ZI06ZNxdPTUzw9PaV+/frSr18/WbZsmXlwvAMHDoi7u7v4+/vL2bNnrdZz/vx5CQgIEI1GI3v27LGKuaCgQN5++22JiIgQrVYrISEhMmHCBJv7lsn69eslNjZWgoKCxM3NTYKCgqRNmzYyZcoU2b9/v8W8FSmJEbk1xszs2bOldevWotfrRafTSXh4uPTs2VMWL15sMZZJWZOYotrLgQMHZNKkSdK2bVsJCgoyH1P79OkjW7Zssbkde5KSkgSAPPXUU1bTioq9LPvdypUrpXXr1uLh4WHex27/ThMTE2XQoEFSs2ZNcXNzk4CAAGnRooU8/fTTVoPhliWJESn+mGJLcnKy/Otf/5KoqCgJCQkRd3d3qVWrlnTt2lXWrl1rNZ5YWfYNg8Eg8+fPl8jISNHpdBIcHCzDhg2TU6dOFdker1+/Lq+99pq0aNFCPDw8RK/XS0REhDz99NMWA4eaHDhwQEaNGiVhYWHi7u4ufn5+0rRpUxkzZoz897//tfosKSkpoiiK9OnTp8g6IqKKRxFxQldOVCn16tULGzduxO7du9GuXTtnh0N0R8LDw5GSkuKU3u7IcVq1aoWzZ8/i7NmzRY4HRCVXmfaNOXPmYPr06fj+++/x4IMPOjscIioFvhNDpXLu3DlcvHjRosxoNGLhwoXYuHEjGjX6RDiGAAAgAElEQVRqhPvuu89J0RERWXrjjTeQkZHhkHdOqHLJycnBokWLEB0dzQSGyAWxi2UqlR07dmD48OFo1aoVwsLCkJubiz///BOnTp2Cp6cnli5dWuruLYmIystDDz2Ezp07480338Tjjz/OuzFk9uGHH+LChQtYv369s0MhojLg42RUKsnJyZgzZw527NiBixcv4ubNm6hRowZiYmLw0ksv2RyrhsgVVaZHZogcifsGEVUETGKIiIiIiMil8J0YIiIiIiJyKUxiiIiIiIjIpVSJF/tzcnKwbt06/PXXX0hOTkZWVhaeffZZdO3a1WreM2fOYOnSpThy5Ag0Gg3uvfdejB07Fr6+vk6InIiIiIiIblcl7sRcv34da9aswdmzZ1G3bl2782VkZGDatGlITU3FiBEj8PDDD+OXX37BK6+8gvz8/LsYMRERERER2VMl7sRUq1YNy5cvh7+/P5KTkzFp0iSb83311Ve4efMmFi5ciOrVqwMAGjVqhFdeeQVbt25Fr1697mbYRERERERkQ5W4E+Pm5gZ/f/9i59u5cyfatm1rTmAA4J577kGtWrWQlJRUniESEREREVEJVYk7MSVx6dIlXLt2DQ0aNLCa1rBhQ+zfv7/YdVy9ehXZ2dnlER4RERGVE09PT/j5+Tk7DCIqBSYx/3P58mUAtx49u52/vz8yMzORn58PNzc3m8tfvXoVixcvRn5+PlQqFVq1aoUDBw7AaDSWa9xVjV6vN9dtVlaWs8OpVNhuyw/bbflhuy0fVa3Nurm5YcKECUxkiFwIk5j/ycvLAwCbSYq7uzsAIDc3124Sk52djfz8fMTFxSEwMBAA0KZNm3KKturSaDTw9/dH8+bNYTAYnB1OpcR263hst+WP7daxqlKbzcjIwNdff43s7GwmMUQuhEnM/5gSFVu9kJkSHK1Wa1GempqK1NRUAEB6ejpu3LiBwMBABAUFIS0tDUFBQVCpqsRrR3eNiMBgMCAgIACKojg7nErFaDSy3ZYTttvyw3ZbPthmiaiiYxLzP6bHyEyPlRV25coVeHt7W92F+fDDDzFr1izz/+Pj4wEAaWlpFn8TuRK2W3JFbLdERFULk5j/CQgIgK+vL44fP241LTk52eb4MuPGjUPfvn0B3LoTs2XLFgDgnZhyZLo6qNFoeHXQwXhFu/yw3ZYfttvyUZXa7IULF5wdAhGVAZOYQjp06IBt27YhPT3d3M3yb7/9hnPnzpmTlcJCQkIQEhICADh//jx27doFAOYfUpVKxR9VBxMRc71W9h9WZ2G7dTy22/LHdutYbLNEVNFVmSTmv//9L27cuGF+XGzv3r3IyMgAAPTu3RteXl4YNGgQkpKSMGPGDPTt2xc5OTlYt24dwsLC0K1bN2eGT0RERERE/1NlkphvvvnG4pnpXbt2me+cxMTEwMvLC9WrV8ecOXPw8ccfY/ny5dBoNLj33nsxZswYu72SERERERHR3VVlkpilS5eWaL46depYvKxPREREREQVCx8gJiIiIiIil8IkhoiIiIiIXAqTGCIiIiIicilMYoiIiIiIyKUwiSEiIiIiIpdSZXonI6K7y2g04sqVK8jMzIRKpYK/vz/0ej0HziMiIqI7xiSGiMpFWloa0tPToVarISLIzMxEaGgofHx8nB0aERERuTg+TkZEDmcwGHD58mVotVrodDp4eHhAURRkZGQ4OzQiIiKqBJjEEJHDGY1GiAhUqn8OMSqVCkaj0YlRERERUWXBJIaIHE6j0UCn0+HmzZsQERiNRuTn58PLy8vZoREREVElwCSGiBxOpVKhVq1a0Ol0yMnJwc2bN+Hn54egoCBnh0ZERESVAF/sJ6JyodPpULduXeTl5UFRFGi1WvZMRkRERA7BJIaIyo1arYaHh4ezwyAiIqJKho+TERERERGRS2ESQ0RERERELoVJDBERERERuRQmMURERERE5FKYxBARERERkUthEkNERERERC6FSQwREREREbkUJjFERERERORSmMQQEREREZFLYRJDREREREQuhUkMERERERG5FCYxRERERETkUpjEEBERERGRS2ESQ0RERERELoVJDBERERERuRSNswOoTPR6PTQaDUTE/LeIODusSsVUn6xXx2O7LT9st+WH7bZ8VKU2q9HwVIjIFXHPdaBWrVrB398fRqPR/LfRaHR2WJVSQUGBs0OolNhuyxfbbflguy0/VaHN+vv7OzsEIioDJjEOdODAATRv3hwBAQG4dOkSAgICoFLxiT1HEhEUFBRArVZDURRnh1OpGI1GtttywnZbfthuy0dVarPp6enODoGIyoBJjANlZWXBYDBAURTz35X94O8srFvHY7stf6xbx2O7LV9VoV4NBoOzQyCiMuBlKyIiIiIicilMYoiIiIiIyKUwiSEiIiIiIpfCJIaIiIiIiFwKkxgiIiIiInIp7J2MiFxebm4url+/DqPRCE9PT+j1+krfoxIREVFVxiSGiFxaTk4OTp8+jfz8fCiKAhFBSEgIAgICnB0aERERlRM+TkZELi09PR0GgwGenp7w8PCAm5sb0tLSOPYDERFRJcYkhohcWn5+PtRqtfn/Go0GBQUFKCgocGJUREREVJ6YxBCRS9PpdMjPz4eIAADy8vLg5uYGjYZPyxIREVVW/JUnIpcWFBSE3NxcZGdnA7h1J6ZWrVoWd2eIiIiocmESQ0Quzc3NDWFhYcjOzoaIQKfTwd3d3dlhERERUTliEkNELk+tVsPb29vZYRAREdFdwndiiIiIiIjIpTCJISIiIiIil8IkhoiIiIiIXAqTGCIiIiIicilMYoiIiIiIyKUwiSEiIiIiIpfCJIaIiIiIiFwKkxgiIiIiInIpTGKIiIiIiMilMIkhIiIiIiKXwiSGiIiIiIhcisbZATjSO++8g23bttmd/umnnyIgIMDmtFWrVmHNmjVW5W5ubli7dq3DYiQiIiIiojtTqZKYXr16oWXLllbl7733HoKCguwmMIU9+eST0Ol05v+rVLxZRURERERUkVSqJCYiIgIREREWZYcPH0Zubi46depUonVERUXBx8enPMIjIiIiIiIHqPS3GRITE6EoSomTGBFBdnY2RKScIyMiIiIiorKoVHdibmcwGPDzzz8jIiICwcHBJVrmiSeeQE5ODnQ6Hdq1a4cxY8bA39+/nCMlIiIiIqKSqtRJzIEDB5CZmVmiuzB6vR6xsbGIiIiAm5sbDh06hO+//x7JyclYsGABPD0970LERERERERUnEqdxCQmJkKj0eD+++8vdt6+ffta/L9jx45o1KgR5s+fj++//x4DBw4srzCJiIiIiKgUKm0Sk5OTgz179qBVq1ZlflG/U6dO+OSTT/Dbb7/ZTGJSU1ORmpoKAEhPT8eNGzcAAEaj0eJvchwRgdFohNFohKIozg6nUmG7LT9st+WH7bZ8sM0SUUVXaZOY3bt3l6pXMnsCAwORmZlpc9qHH36IWbNmmf8fHx8PAEhLS7P4m8iVsN2SK2K7JSKqWiptEpOYmAgPDw+0a9euzOsQEaSlpaFevXo2p48bN878GFp6ejq2bNkCAAgKCkJaWhqCgoI4zoyDiQgMBgM0Gg2vDjqY0Whkuy0nbLflh+22fFSlNnvhwgVnh0BEZVApk5hr167ht99+wwMPPACtVms1PT09Hbm5uahdu7bFMr6+vhbz/fDDD7h27Rpat25tczshISEICQkBAJw/fx67du0C8M8AmSqVij+qDiYi5nqt7D+szsJ263hst+WP7dax2GaJqKKrlEnMjh07UFBQYPdRsoULF+LPP//Et99+ay4bO3YsoqOjERYWBnd3dxw+fBg7duxA3bp10atXr7sVOhERERERFaNSJjGJiYnw9fVFy5YtS7xMTEwMjhw5gp07dyI/Px/Vq1dHXFwcBg0aZPNuDhEREREROUelTGLeeuutIqf/+9//tip7+umnyyscIiIiIiJyID5ATERERERELqVS3okhIsf5++88zJ+fg+PHVfD3N2LsWDf06OHp7LCIiIioCuOdGCKy68qVAkydmoM9e9QwGo04fVqFWbMKkJSU4+zQiIiIqApjEkNEdu3bl4sTJ9SoV68A1asrCA8X5OQo2LIlz9mhERERURXGJIaI7DIYBCoVUHj4DbUaKCjguBFERETkPExiiMiuli3dERAgSElRIScHSE8HRIC2bdXODo2IiIiqMCYxRGRXrVpumDVLg+BgIy5eVGAwKHjySUFsLF/sJyIiIudh72REVKT27T3w1VdaXLxYAD8/Fby9eReGiIiInItJDBEVy91dhdBQ3rglIiKiioFnJURERERE5FKYxBARERERkUthEkNERERERC6FSQwREREREbkUJjFERERERORSmMQQEREREZFLYRJDREREREQuhUkMERERERG5FA52SVQK2dnZyM3NhUqlgl6vh1rN0euJiIiI7jYmMUQldPnyZaSmpkJEAACenp4IDQ2Fm5ubkyMjIiIiqlr4OBlRCeTl5eHChQvQaDTw9PSEh4cHbty4gUuXLjk7NCIiIqIqh0kMUQkYDAYYjUbzXRdFUaBWq3Hz5k0nR0ZERERU9TCJISoBjUYDlUoFg8EAABARGI1GaLVaJ0dGREREVPUwiSEqAXd3dwQFBSE/Px/Z2dnIycmBTqdDQECAs0MjIiIiqnL4Yj9RCQUEBECn0+HmzZtQqVTw9vYu8qX+goIC5ObmQlEUaLVaqFS8ZkBERETkCExiiEpIURTo9Xro9fpi583Ly8PZs2eRnZ0NAPDy8kLt2rXZkxkRERGRA/DSMJGDiQjOnz+P7OxseHh4mHsyS01NdXZoRERERJUCkxgiBzMajcjJyYFWq4WiKFAUBe7u7rhx44Z5jBkiIiIiKjsmMUQOplKpoFKpUFBQYC4rKCiAWq12YlRERERElQffiXEgvV4PjUYDETH/zSvvjmWqz4perwEBAbhw4YI5kRERBAcHm/9dEbHdlh9XabeuiO22fFSlNqvR8FSIyBVxz3WgVq1awd/fH0aj0fy30Wh0dliVUuG7HBVFQUEBrl+/jvz8fGg0GgQHB+PGjRsAAB8fH+j1evM4MxUV2235qojttjJguy0/VaHN+vv7OzsEIioDJjEOdODAATRv3hwBAQG4dOkSAgIC2K2ug4mI+dEsRVGcHY5ZQUEBUlNTkZWVBUVRICLw9vZGaGioy7QBo9HIdltOKmq7rQzYbstHVWqz6enpzg6BiMqASYwDZWVlwWAwQFEU89+V/eDvLBWtbrOysnDjxg14enqak5isrCxkZWXB19fX2eGVyN1ot3l5gu++y8a5cwUICFChXz9P6PVV58SzorXbyoDH2/JVFeq1ot8hJyLbmMQQOYDpkQvTj73ph78qPIpRUvn5gqlTr2P7djUAFQoKgK1bM7FokXeVSmSIiIjozvHMgcgBTINYmpIW09/u7u5Oi6mi2bIlB9u3q1GnTgEaNTKiQYMC/PqrGuvWZTs7NCIiInIxvBND5ADe3t4ICAjA5cuXzWUBAQHw8vJyYlQVS1qaEYoC6HS37la5uSlQqYCMDN6tIiIiotJhEkPkAIqioEaNGvDx8YHBYICbmxs8PDwq/bPkpRESogJgxI0bAi8vBbm5AhEgOJjj5xAREVHpMIkhchBFUXjnpQhdunigR4/r2Ljxn6SlQwcD+vf3cWJURERE5IqYxBDRXaHRKHjtNR9ER2cjNdWIatUU9OrlA52Or+YRERFR6TCJIaK7RqNR8OCDvFtFREREd4aXQImIiIiIyKUwiSEiIiIiIpfCJIaIiIiIiFwKkxgiIiIiInIpTGKIiIiIiMilMIkhIiIiIiKXwiSGiIiIiIhcCpMYIiIiIiJyKUxiiIiIiIjIpTCJISIiIiIil8IkhoiIiIiIXAqTGCIiIiIicilMYoiIiIiIyKUwiSEiIiIiIpfCJIaIiIiIiFwKkxgiIiIiInIpTGKIiIiIiMilaJwdQEXyxx9/YMaMGTanzZs3DxEREXc5IiIiIiIiuh2TGBv69OmDBg0aWJTVrFnTSdEQVQy7d+cgObkAej3QpYsHfH3Vzg6JiIiIqigmMTZERkYiKirK2WEQVRgff5yJjz4CDAZARMH//V8WFi70QlAQDyFERER09/GdGDuys7NRUFDg7DCInC45OQ8ffwz4+BjRqJGgXr0CHD6sxpIl2c4OjYiIiKooJjE2LFq0CPHx8RgwYABmzJiB5ORkZ4dE5DTnzhmQm6sgMFABALi5KfDwEJw+bXRyZEREVJUoioLw8HBnh1HhJCQkQFEUjB49ulTLhYeHQ1GU8gnqLuCzIIVoNBp07NgRbdq0gY+PD86cOYN169Zh2rRpmDt3LurXr+/sEInuuqAgNdzcCnDtmsDXV0FBgSA7W4UaNXgNhIiIqKwURUFYWBhOnTrl7FBcEpOYQpo0aYImTZqY/9+uXTt07NgRzzzzDD777DPMmjXLidEROUdEhDv697+Jr75S48IFQAQIDS3A6NGezg6NiIiqkCNHjsDNzc3ZYVQ49913H44cOQJfX19nh3JXMYkpRs2aNdGuXTvs2rULBQUFUKv/6ZEpNTUVqampAID09HTcuHEDAGA0Gi3+JscRERiNRhiNRpe+BVoRFdVuJ03SIyIiBydOFMDLS4UHH9ShVi0123gJsd2WHx5vywfbLFVEHOrCNk9PzypZN0xiSiAwMBAGgwG5ubnw9Pzn6vOHH35ocXcmPj4eAJCWlmbxN5Ersddu27a99cfkwoW7FBBRCfB4S1XZmTNnMHfuXPzwww84d+4cPD090bFjR0yfPh0dO3YEABQUFOCBBx7Azp07sXjxYjz11FMW69ixYwdiYmIQHByMP/74AwEBAQBuvTeRkpICo9GIRYsW4cMPP8SJEycQEBCAAQMG4LXXXoOfn59VTCKCNWvWYMmSJThw4ABycnJQt25dDBkyBFOmTLE4nwKAmJgYJCYm4uTJk9i5cycWLVqEQ4cOQa1W4+rVqwBsP36VkJCAzp07Y9SoUZg3bx6mTZuGDRs2IDMzE61atcK8efPMdfDBBx/gvffeQ3JyMgIDAzF27Fi88sorUKmsH4++fPky3nrrLaxfvx4nT56Eu7s72rRpgxdeeAG9e/e2mPfUqVOoW7cuOnXqhB9++AGzZs3C6tWrceHCBYSGhuLxxx/HlClTzBcEli1bhkcffRQAkJKSYnGhoFOnTkhISCj2Oy+scB0sW7bMYlpOTg5mz56NVatWITU1FbVq1cLw4cPtjovoSpjElMDFixfh7u4OnU5nUT5u3Dj07dsXwK07MVu2bAEABAUFIS0tDUFBQTZ3DCo7EYHBYIBGo+HVQQczGo1st+WE7bb8sN2Wj6rUZi+4+BWZXbt2ITY2FleuXEHjxo0RGxuL9PR0bNy4ET/++CNWrlyJIUOGQK1W4/PPP8c999yDF198EV26dDFfvb927RpGjBgBEcHy5cvNCUxhEydOxEcffYSYmBg0b94ciYmJePfdd5GYmIgdO3bAx8fHPK/RaMTw4cOxevVq6PV63HvvvfD398cvv/yCWbNm4YcffkBCQgI8PDystjNnzhwsXboUUVFR6N27N86cOVOierhy5Qo6dOiAgoICxMTE4NSpU0hKSkL37t2xd+9efPTRR1iyZAk6d+6MsLAwJCYmYtasWcjPz8cbb7xhsa5jx46hW7duOHPmDMLDw9GzZ09kZmZi9+7d6NOnD9566y28+OKLVjHk5eWhR48eOHz4MGJiYnDjxg0kJibipZdeQmZmJmbPng0AaNCgAUaNGoXly5fDy8sLAwcONK/DkXdU8vLy0LNnT+zYsQP+/v6IjY1Fbm4u3nrrLRw4cAAi4rBtOYWQ2dWrV63KTpw4If3795fXX3+9yGXPnTsnM2fOlHPnzklBQYH5b3Iso9EoeXl5YjQanR1KpcN2W37YbssP2235qEpttvDvt6u5du2ahISEiFqtlhUrVlhM27dvn/j7+4ter5e0tDRz+bJlywSAtGrVSnJzc0VE5JFHHhEA8txzz1ltIywsTACIj4+P/PLLL+byzMxM6dKliwCQZ5991mKZefPmCQCJiYmR1NRUc3lubq6MHTtWAMjUqVMtlunUqZMAEJ1OJwkJCTY/LwAJCwuzKPvpp58EgACQ4cOHS15ennnazJkzBYBERkZKzZo15fjx4+Zphw4dEnd3d/H09JTMzExzucFgkObNmwsAmTdvnsWxJTk5WerWrStqtVr++OMPc/nJkyfNMXTq1EmuXbtmnrZv3z5Rq9VW27H3ecrCVAejRo2yKH/zzTfN33VGRobF56hZs6Y5ZlflupGXg+nTp8usWbPkiy++kB9//FGWLFkiAwcOlPj4eDl9+nSRyzKJuTuqxA/rb7+JfPSRyPvvixT6wShvbLflp0q0Wydhuy0fVanNunISs3DhQgEgkyZNsjl9wYIFAkAWLFhgUT5o0CABIJMnT5YVK1YIAGnWrJncvHnTah2mJGb69OlW0w4dOiSKooher5ecnBwREcnPz5fAwEDx8vKSCxcuWC2TnZ0tNWrUEH9/f4v91pTETJgwwe7nLSqJ8fHxkcuXL1tMu3r1qiiKIgBk6dKlVuvr37+/AJCffvrJXLZu3ToBIAMGDLAZw9dffy0A5JlnnjGXmZIYlUolR48etVqmd+/eVtux93nKwl4SU6dOHQEg27Zts1rm/fffd/kkhvfeC2nfvj2uX7+O9evX44MPPsDPP/+MDh06YP78+QgNDXV2eFQV/PwzMHkysHw5sHIlMHUqsGmTs6MiIqIKaNP/fh/i4uJsTo+OjgYA7N2716L8ww8/RO3atTF//nyMHz8eWq0WK1euhFartbst03u/hUVGRqJly5bIysrCgQMHAAC//vorMjIy0LFjRwQHB1st4+HhgTZt2uDKlSs2x+EzPaZfWqZH1grz9fVFtWrVAAA9evSwWqZevXoAYO6kCSh7nQJAWFgYGjdubFXeqFEjq+2Ut9OnT+P06dMICgpC586draYPHTr0rsVSXvhOTCF9+vRBnz59nB0GVWUffXSrD+PIyFv/P3v2VlnXrkChnvGIiIhML7hHRUUVOV9GRobF//39/bF48WL069cPWVlZmDt3Llq0aFHkOsLCwmyWh4eH4+DBgzh//rxFTJs3by72faqMjAyrk/46deoUuYw9tWrVslmu1+tx6dIlm9P1ej0AIDc311xmin/YsGEYNmyY3e3dXqcAULt2bZvzent7W22nvJm+D3vfm6+vL/z8/MydJrgiJjFEFYXBAFy6BBTu593P71ZZVpZlORERVXmmrsUHDhwILy8vu/PZeln8iy++MP97//79Do+pQYMGxSZXtjoQuL0TpZIqrmOPknb8YYq/V69eNu8kmQQGBpZ5G+QYTGKIKgqNBggLAw4fvpW8AMDFi0CtWkChXl+IiIiAW1f+//rrL7z00kto06ZNiZdbvXo1Vq1ahaZNm8Ld3R1ffvklYmNjMXLkSLvLpKSkoHnz5jbLgVvj6pliAm4lTrd39+sKTPE/9thjGDBggJOjKbuQkBAA/3w/t7t+/bpL34UBAKaMRBXJM88AwcHA0aO3/vj4AC+8AFTyLk6JiKj0unfvDgBYt25diZc5c+YMnnrqKWi1WqxatQorVqyATqfDxIkTcfLkSbvLffnll1ZlR48excGDB6HX63HPPfcAANq2bQtfX18kJibi8uXLpfxEzleWOi0rNzc3GAyGcll3WFgYQkNDkZaWhsTERKvpa9asKZft3k1MYogqkogI4N13gX/9C5g+HfjPf4D//TAQEREVNm7cOAQFBWHevHn46KOPzI9CmRgMBmzcuBF//vkngFuPSo0cORJXr17FG2+8gRYtWiAyMhJz587F9evXMWLECBQUFNjc1rvvvmt+eR8AsrOzMXHiRIgIHn30UfOYL1qtFlOmTEFmZibi4uJw4sQJq3WdO3cOn3/+uaOqwaEGDBiAyMhIrFy5Eq+//rrVeywigqSkJCQlJd3xtmrWrImLFy+W2x2RJ598EgAwadIki4TyxIkTeO2118plm3cTHycjqmiCgoCePZ0dBRERVXB+fn5Yv349+vTpg3HjxmH27Nlo1qwZ/P39ceHCBfz666+4evUq1q1bh2bNmuHtt99GQkICunbtihdeeMG8nokTJ2LDhg3YtGkT5syZg3/9619W2xo+fDjatWuHLl26wNfXF9u3b8eFCxfQtGlTvP766xbzvvTSSzh69Cg+//xzNGnSBK1atULdunWRl5eHv/76C4cPH0aLFi0wYsSIcq+j0tJoNPjmm2/Qs2dPvPLKK/jPf/6DFi1aICgoCBkZGTh48CDS0tKwcOHCYt/5KU7fvn3x7rvvonXr1ujYsSN0Oh0aN26MyZMnO+SzTJo0CRs2bEBSUhIaNGiALl26IDc3F1u3bkXXrl2hVqtx+vRph2zLGXgnhoiIiMhFtW/fHn/88QemTJkCHx8fJCYm4ptvvkFKSgo6deqEZcuWoVu3bjh48CBefvll+Pv7Y/ny5RY9hymKgmXLliEgIACzZs2y2X3wokWLMGfOHKSkpGD9+vVQFAUTJkzAjh074HtbxzMqlQqfffYZ1q9fj+7du+PkyZNYu3Ytfv75Z+h0OkyePBmffPJJuddNWTVs2BAHDhzA7NmzUbt2bezevRtff/01jh07hlatWmHx4sUYPnz4HW9nzpw5ePrpp2EwGPDFF1/g448/xoYNGxzwCW5xd3fHpk2bMG3aNHh7e+O7777Dn3/+ieeffx5r164ttve4ik4RESnJjDdv3sTs2bOxevVqnD9/HjVq1MDDDz+MqVOnokaNGjaXefTRR/H555+X2/N+Fcn58+fx0Ucf4YknnkCNGjVw4cIF1KhRgz1VOJiIwGAwQKPRuPzOV9EYjUa223LCdlt+2G7LR1Vqs4V/v00vp9M/wsPDkZKSghKeLpMSwBIAACAASURBVBLdNSU64hsMBvTs2RNz5szByZMnkZubi5SUFCxatAjNmjXDt99+a3dZNnoiIiIiInKkEiUx7733Hnbs2IHQ0FCsWrUKhw4dwnfffYcuXbrg8uXLiIuLw3vvvVfesRIREREREZXsxf5Vq1ZBp9Nh69atqF+/PgCgSZMmiI2NxQcffIDnnnsOEydOxOXLl22+DEZERERERMUbPXp0ieYLDAzE22+/Xb7BVGAlSmIOHz6MqKgocwJT2Pjx49G0aVP069cPM2fOxJUrVzB//nyHB0pEREREd9epU6ecHUKVs3z58hLNFxYWVqWTmBI9Tpabm4vq1avbnR4dHY3t27cjODgY77zzDh5//HG+C0NEREREVEoiUqI/VT3BLNGdmFq1auHYsWNFztOsWTMkJSWhe/fu+OSTT5CVlQW1Wu2QIImIiIiIiExKdCemXbt2OHjwIM6ePVvkfHXr1sWOHTvQtGlTfPnll/jyyy8dEiQREREREZFJiZKYPn36wGg0YvHixcXOGxISgu3bt6Ndu3ZVYnwYIiIiIleXnJyMHj16wNfXF4qi4JtvvnF2SC5v9OjRCA8Pd3YYlVaJHieLjY3FjBkz4OXlVaKV+vn5YevWrZg+fTquXr16RwESERERUfkaNWoUTp48iTfeeAN+fn649957sXPnTmzatAnPPfcc/Pz8nB0ilYPs7GzMmzcPMTExiImJcXY4pVKiJMbX1xevv/56qVbs4eGBhQsXlikoIiIiIro7cnJysGvXLsyYMQNPP/20uXzNmjWYNWsWRo8ezSSmDJYsWQKj0ejsMIqUnZ2NWbNmAYDLJTElepyMiIiIiCqn9PR0ALhriUp2dvZd2Y6z3LhxAwDg5uYGrVbr5GgqLyYxRERERJVQSkoKnnrqKTRu3BgeHh4ICAjAoEGDLLrmffXVVxEWFgYAmDx5MhRFQXh4OF599VVMnjwZwK2OmxRFgaIoFsuuWLECbdq0gYeHB6pVq4b4+HicOXPGIoaYmBg0a9YM+/fvxwMPPABPT09Mnz69xJ/h3LlzGDNmDIKDg6HVatG0aVN88sknFvOMGjUKOp0OR44csSjv2bMn/P39/5+9+w6Polz/Bv6d2Z5k0zckhBJCUfpBRFSIqHQ8IKJiBBQCCoKgwuFVsFAURQEFBSl6FAEVsYAeDyCCihXbEfghSlFCSyGFlN3sbrbM8/4RM2ZJAklI2Gzy/VwX17rPzM7cu3nc2XuehvT0dADAG2+8AUmS8NVXX2HSpEmIiopCaGgo7r77buTl5ZU79/bt25GUlITg4GCYzWbcdNNNOHjwoM8+48aNQ0hICP78808MGTIEZrMZo0ePVreVHRNz/PhxSJKEJUuW4OWXX0ZiYiKCgoIwYMAAnDp1CkIIPPXUU2jWrBlMJhNuvvlmnD179qLiSktLw/DhwxESEgKLxYKZM2fC6/Wq8ZQuoTJ//nz1bzxv3rwq/GX8r0rdyYiIiIgosPz000/47rvvkJycjGbNmuH48eNYtWoVrr/+evz2228ICgrCiBEjEB4ejunTp+POO+/EkCFDEBISgsTERBw5cgQbN27E0qVLER0dDQDqj96nn34aTzzxBEaOHIl77rkH2dnZWL58Oa677jrs3bvXp1UnNzcXgwcPRnJyMsaMGYMmTZpUKf4zZ87g6quvhiRJmDp1KiwWC7Zv344JEyagsLAQDz30EADgxRdfxOeff46xY8diz5490Gg0WLNmDT799FNs2LABTZs29Tnu1KlTER4ejnnz5uHw4cNYtWoVTpw4gd27d0OSJADAhg0bMHbsWAwcOBDPPfcc7HY7Vq1ahd69e2Pv3r0+yYnH48HAgQPRu3dvLFmyBEFBQed9X2+99RZcLhemTZuGs2fPYtGiRRg5ciRuvPFG7N69G4888gj++OMPLF++HDNnzvRJ2qoTl9frxcCBA9GzZ08sWbIEu3btwvPPP4/WrVtj8uTJsFgsWLVqFSZPnoxbbrkFI0aMAAB06dKlSn8fvxNUK9LS0sTcuXNFWlqa8Hq96iPVLkVRhMvlEoqi+DuUBof1tu6w3tYd1tu60ZjqbNnrd73hdAqxYoUQM2aUPDqdNTqM3W4vV7Znzx4BQKxfv14tS01NFQDE4sWLffZdvHixACBSU1N9yo8fPy40Go14+umnfcoPHDggtFqtT3mfPn0EALF69epqxz9hwgQRFxcncnJyfMqTk5NFWFiYz/vbsWOHACAWLFggjh07JkJCQsTw4cN9Xrd27VoBQHTv3l24XC61fNGiRQKA+Oijj4QQQlitVhEeHi7uvfden9dnZmaKsLAwn/KxY8cKAGLWrFnl4h87dqxo2bKl+rz0c7ZYLCI/P18tnz17tgAgunbtKtxut1p+5513Cr1eL5x//f1rEteTTz7ps2+3bt1E9+7d1efZ2dkCgJg7d265+Os7dicjIiIiqi+Ki4GkJGDGDGD58pLH664rKa8mk8mk/rfb7UZubi7atGmD8PBw/PLLLzUOcfPmzVAUBSNHjkROTo76LzY2Fm3btsUXX3zhs7/BYEBKSkq1ziGEwAcffIChQ4dCCOFznoEDB6KgoMDnPQwYMACTJk3Ck08+iREjRsBoNGLNmjUVHnvixInQ6XTq88mTJ0Or1WLbtm0AgJ07dyI/Px933nmnz3k1Gg169uxZ7v2VHqOqbr/9doSFhanPe/bsCQAYM2YMtFqtT7nL5UJaWlqN47rvvvt8niclJeHYsWNVjrU+Y3cyIiIiovri3/8G9u8HXK6/y/btA157DZgypVqHcjgcWLhwIdauXYu0tDQIIdRtBQUFNQ7x6NGjEEKgbdu2FW4vmyAAQHx8PPR6fbXOkZ2djfz8fLzyyit45ZVXKtwnKyvL5/mSJUvw0UcfYd++fXj77bcRExNT4evOjTskJARxcXHqeJ+jR48CAG688cYKXx8aGurzXKvVolmzZhd8T6VatGjh87w0oWnevHmF5aXjdaobl9FoVLv/lYqIiKhw/E8gqvMkRlEUyDIbfIiIiIgu6NgxoEyyAaDkeQ3unk+bNg1r167FQw89hGuuuUZdyDI5Ofmipv5VFAWSJGH79u3QaDTltoeEhPg8L9siVJ1zACWtE2PHjq1wn3PHbuzdu1dNbA4cOIA777yz2ucte+4NGzYgNja23PayrSVASUtTdX7rVvSZna+8NPmsblyVHa+hqLMkZu/evdiwYQPeeecddVYIIiIiIjqPxETgr8HlKkkqKa+m999/H2PHjsXzzz+vljmdziovRC6dG8dfWrduDSEEWrVqhXbt2lU7rqqwWCwwm83wer3o16/fBfcvKipCSkoKOnTogGuvvRaLFi3CLbfcgh49epTb9+jRo7jhhhvU5zabDRkZGRgyZAiAkvcHADExMVU696VSF3FV9jcOBLXaRHLq1Ck8++yz6NSpE6688kosW7YMZ86cqc1TEBERETVc99wDdO0K6PWATlfy+I9/ABMmVPtQGo3GpwsZACxfvlydYvdCgoODAaBc0jNixAhoNBrMnz+/3PGFEMjNza12rOfSaDS49dZb8cEHH+DXX38tt710bZtSjzzyCE6ePIl169bhhRdeQEJCAsaOHYviCsYSvfLKK3C73erzVatWwePxYPDgwQBKpmYODQ3FM88847NfZee+VOoirtKZ1Kqa2NYnF90SY7Va8d577+HNN9/EV199BSEEhBCIj4/HHXfcUeOmPCIiIqJGx2AAvv66ZAzMsWMlLTATJpSUV9M///lPbNiwAWFhYejQoQP27NmDXbt2ISoqqkqv7969OwDgscceQ3JyMnQ6HYYOHYrWrVtjwYIFmD17No4fP47hw4fDbDYjNTUVW7ZswcSJEzFz5sxqx3uuZ599Fl988QV69uyJe++9Fx06dMDZs2fxyy+/YNeuXeoaKp9//jlWrlyJuXPn4oorrgAArF27Ftdffz2eeOIJLFq0yOe4LpcLffv2xciRI3H48GGsXLkSvXv3xrBhwwCUjC1ZtWoV7rrrLlxxxRVITk6GxWLByZMnsXXrVvTq1QsrVqy46PdXXXURl8lkQocOHbBp0ya0a9cOkZGR6NSpEzp16lRH76L21CiJ8Xq9+OSTT7BhwwZ8/PHHcDqdaiYuSRJ2796NpKSkgG6iImoQ7Hbgzz8BjQZo3bpGF0EiIrrEDIZqD+KvyIsvvgiNRoO33noLTqcTvXr1wq5duzBw4MAqvb5Hjx546qmnsHr1anzyySdQFAWpqakIDg7GrFmz0K5dOyxduhTz588HUDIwfcCAAWoycLGaNGmCH3/8EU8++SQ2b96MlStXIioqCh07dsRzzz0HoORm+vjx49GtWzc89thj6muTkpLw4IMP4vnnn8eIESNw9dVXq9tWrFiBt956C3PmzIHb7cadd96Jl156yed366hRo9C0aVM8++yzWLx4MYqLixEfH4+kpKRqz7RWm+oirn//+9+YNm0apk+fDpfLhblz5wZEEiOJc9sBz+Onn37Chg0bsGnTJuTk5EAIAZ1OhyFDhmDMmDFYtGgRfv755yo3UzYk6enpePvtt3H33XcjKioKubm5iIqK4qQGtUwIAa/XC41GwyT5Qo4fBxYsAP6azQSdOwOPPw5UMBgQKBkwyHpbN1hv6w7rbd1oTHU2OzsbK1euxMSJE8stikgNyxtvvIGUlBT89NNPuPLKK/0dDl2kKrXELFiwAG+99RaOHDmitrhce+21GDNmDEaOHInIyEgAwLJly+ou0gDQrVs3REREQFEU9fFiZv+gyjXGRLlahID83HPA4cNA27aAokDatw/KsmUQCxZU+jLW27rFels3WG/rTmOosxEREf4OgYhqoEpJzJw5cyBJEmJjYzFlyhSMHj0aCQkJdRxa4Nm7dy86d+7Mlpg61JjuDl6UgoKSvtQtWgClUy7GxUHz228ls9xUMO0i72jXHdbbusN6WzcaU5311yDtxsxms8Fms513H4vF0uCnCKaLU+UxMUIIZGZmYseOHYiJicHtt9+O8PDwuowt4NhsNng8HkiSpD429C9/f+FnewEmU8mMNg4HUDpfv8MBmM0lCUwFnx3rbd3jZ1v7WG/rVmP4XD0ej79DaHSWLFmijqOpTGpqKm+Y03lVKYn54YcfsH79emzatAnffPMNvv32WzzwwAMYMmQIRo8ejaFDh5ZbnZWI/MhgAEaMANauBYqKShZKc7tLZrhp4D9IiIiofrv77rvRu3fv8+5T0WKOF2vcuHEYN25crR+X/KNKSUyPHj3Qo0cPLF26FNu3b8ebb76Jjz/+GFu2bMGHH36IiIgI3HrrrVwThqg+GTsWiIgAvvqqpPWlb19g0CB/R0VERI1cYmIiEmuweCdRWdWaYlmr1WLo0KEYOnQoCgsL8d5772HDhg34+uuv8eqrr6pNzrNmzUJycjL+8Y9/1EnQRFQFGg1wyy0l/4iIiIgakBqPggwNDcWECROwe/duHD9+HE8//TQuv/xyCCGwePFidO/eHe3bt8dTTz1Vm/ESEREREVEjVytTuTRv3hyzZ8/GwYMH8fPPP+OBBx5ATEwMDh8+jHnz5tXGKYiIiIiIiADUUhJT1hVXXIGlS5ciLS0NW7duRXJycm2fgoiIiIiIGrE6m1RflmUMHjwYb731Vl2dgoiIiIjOY968eZAkCTk5OZfsnNdffz06dep0yc5X35R+5lS3qpTECCHQv39/tGnTBnv27Lng/nv27EGbNm0wePDgiw6QiIiIiIiorColMR999BE+++wzDBgwANdcc80F97/mmmswaNAgfPrpp9i6detFB0lERERERFSqSknMxo0bodFoMGfOnCof+IknnoAsy+xORkRERES1qqioyN8hkJ9VKYn58ccf0b1792qtntqkSRNceeWV+P7772scHBERERFdvJycHIwcORKhoaGIiorCgw8+CKfTqW5fu3YtbrzxRsTExMBgMKBDhw5YtWpVhcfavn07+vTpA7PZjNDQUPTo0QNvv/32ec//6aefIigoCHfeeSc8Hg8AwOFw4IEHHkB0dDTMZjOGDRuGtLQ0SJLkM7tt6RiT3377DaNGjUJERAR69+6tbv/888+RlJSE4OBghIeH4+abb8bvv//uc/5x48YhISGhXFwVjV+RJAlTp07Fhx9+iE6dOsFgMKBjx4745JNPyr3+m2++QY8ePWA0GtG6dWusWbPmvJ8D1Z4qLXaZmZmJq6++utoHT0hIwP79+6v9OiIiIiKqPSNHjkRCQgIWLlyI77//Hi+99BLy8vKwfv16AMCqVavQsWNHDBs2DFqtFh9//DGmTJkCRVFw//33q8d54403MH78eHTs2BGzZ89GeHg49u7di08++QSjRo2q8Nz//e9/cdttt+GOO+7A66+/Do1GA6AksXj33Xdx11134eqrr8aXX36Jm266qdL3cPvtt6Nt27Z45plnIIQAAOzatQuDBw9GYmIi5s2bB4fDgeXLl6NXr1745ZdfKkxcquKbb77B5s2bMWXKFJjNZrz00ku49dZbcfLkSURFRQEADhw4gAEDBsBisWDevHnweDyYO3cumjRpUqNzUvVUKYnR6XRwuVzVPrjb7VYrKhERERFdmKIoSE9Ph8PhgMlkQtOmTSHLFzehbKtWrfDRRx8BAO6//36EhoZi5cqVmDlzJrp06YIvv/wSJpNJ3X/q1KkYNGgQXnjhBTWJKSgowAMPPICrrroKu3fvhtFoVPcvTSrOtXnzZiQnJ2PcuHFYvXq1+j5++eUXvPvuu3jooYewdOlSAMCUKVOQkpJS6Q3wrl27lmvx+X//7/8hMjISe/bsQWRkJABg+PDh6NatG+bOnYt169bV5OPC77//jt9++w2tW7cGANxwww3o2rUrNm7ciKlTpwIA5syZAyEEvv76a7Ro0QIAcOutt6Jz5841OidVT5X+j4iLiyvXLFcVv/32G5o2bVrt1xERERE1Roqi4H//+x+OHj2K06dP4+jRo/jll1+gKMpFHbdsawoATJs2DQCwbds2APBJYAoKCpCTk4M+ffrg2LFjKCgoAADs3LkTVqsVs2bN8klgAFQ4pfDGjRtxxx13YNKkSVizZo1PIlbaNWvKlCkVxlWR++67z+d5RkYG9u3bh3HjxqkJDAB06dIF/fv3V99bTfTr109NYEqPGRoaimPHjgEAvF4vduzYgeHDh6sJDAC0b98eAwcOrPF5qeqqlMQkJSXh8OHD+OGHH6p84O+//x6HDh3CddddV+PgiIiIiBqT9PR02Gw2CCHUf1arFenp6Rd13LZt2/o8b926NWRZxvHjxwEA3377Lfr166eOK7FYLHj00UcBQE1i/vzzTwCo0howqampGDNmDG699VYsX768XJJz4sQJyLKMVq1a+ZS3adOm0mOeu++JEycAAJdddlm5fdu3b4+cnJwaTwBQNjEpFRERgby8PABAdnY2HA5Huc+1snio9lUpibn33nshhEBKSkqVFkvKyclBSkoKJEnCPffcc9FBEhERETUGDoejWuU1VTap+PPPP9G3b1/k5OTghRdewNatW7Fz505Mnz4dAGrUChQXF4drr70W27Ztw88//1wrMZdtLaquyhaf9Hq9FZZXNhyism5zdOlVKYnp2bMnxo8fj0OHDqFr16549dVXUVhYWG6/wsJCvPLKK+jSpQuOHDmC8ePHo2fPnrUeNBEREVFDVNkP9Yv5AQ8AR48e9Xn+xx9/QFEUJCQk4OOPP0ZxcTH+85//YNKkSRgyZAj69etX7pyl3at+/fXXC57PaDTiv//9L9q2bYtBgwbh4MGDPttbtmwJRVGQmppaLq6qatmyJQDg8OHD5bYdOnQI0dHRCA4OBlDSipKfn19uv9LWnOqyWCwwmUzlPtfK4qHaV+VRYqtXr8Ydd9yBjIwM3HfffYiMjES7du3Qq1cv9OrVC+3atUNkZCQmT56MzMxM3HHHHVi9enVdxk5ERETUoDRt2hQhISGQJEn9ZzabL3qM8csvv+zzfPny5QCAwYMHq60OZVsZCgoKsHbtWp/XDBgwAGazGQsXLvSZnvnc15YKCwvDjh07EBMTg/79+6vd0QCo40ZWrlxZYVxVERcXh3/84x9Yt26dT4Ly66+/4tNPP8WQIUPUstatW6OgoAD/93//p5ZlZGRgy5YtVT5fWRqNBgMHDsSHH36IkydPquW///47duzYUaNjUvVUaXYyANBqtdi4cSNGjBiBJUuW4KeffsIff/xRLmO+6qqrMHPmTNx22221HiwRERFRQybLMrp3717rs5OlpqZi2LBhGDRoEPbs2YM333wTo0aNQteuXWE0GqHX6zF06FBMmjQJNpsNr776KmJiYpCRkaEeIzQ0FEuXLsU999yDHj16qGu27N+/H3a7vcKZwKKjo7Fz50707t0b/fr1wzfffIP4+Hh0794dt956K5YtW4bc3Fx1iuUjR44AqLz717kWL16MwYMH45prrsGECRPUKZbDwsJ81ppJTk7GI488gltuuQUPPPAA7HY7Vq1ahXbt2uGXX36p0Wc6f/58fPLJJ0hKSsKUKVPg8XiwfPlydOzY0SdZorpR5SSm1O23347bb78dubm52LdvH3JzcwEAUVFR6Nq1K6Kjo2s9SCIiIqLGQpZlNGvWrFaPuWnTJsyZMwezZs2CVqvF1KlTsXjxYgAlA9Hff/99PP7445g5cyZiY2MxefJkWCwWjB8/3uc4EyZMQExMDJ599lk89dRT0Ol0uPzyy9XxMxWJj4/Hrl27kJSUhP79++Orr75CdHQ01q9fj9jYWGzcuBFbtmxBv379sGnTJlx22WXlZj+rTL9+/fDJJ59g7ty5mDNnDnQ6Hfr06YPnnnvOZyKAqKgobNmyBTNmzMDDDz+MVq1aYeHChersbzXRpUsX7NixAzNmzMCcOXPQrFkzzJ8/HxkZGUxiLgFJcIRSrUhPT8crr7yCiRMnIjY2FpmZmYiNjb3oOyfkSwgBj8cDrVZb5bs0VDWKorDe1hHW27rDels3GlOdLXv95rIQ/rdv3z5069YNb775JkaPHu3vcKgeq1ZLzLZt2/Dhhx/i1KlTMBgM6NKlC1JSUspNeUdEF0kIIDMT8HiAuDhAW+1GUyIionqttLtcWcuWLYMsy1yigy6oyr+MRo8ejXfeeQfA34O3Pv74YyxZsgTvvPMOhg0bVjcREjU2RUXA4sXAN98AXi/Qvj0wezbQvLm/IyMiIqo1ixYtwv/+9z/ccMMN0Gq12L59O7Zv346JEyeiOa95dAFVSmJee+01bNy4EVqtFnfddRe6desGq9WK//73v9izZw/uvvtunDhxAmFhYXUdL1HD9+qrwKefAq1albTAHDgALFwILF8OVDJvPRERUaC59tprsXPnTjz11FOw2Wxo0aIF5s2bh8cee8zfoVEAqFISs27dOsiyjO3bt6Nv375q+ezZs5GSkoL169dj8+bNSElJqbNAq+Lo0aP47LPPcODAAWRlZcFsNuOyyy7DmDFjEB8ff97XfvbZZ3jxxRcr3LZu3TpERETURchE5f3wA2CxAH/NbY+EBODIESArq6RrGRERUQPQv39/9O/f399hUICqUhJz4MABXH311T4JTKlHH30U69atw4EDB2o9uOr64IMP8Pvvv6NXr15ISEhAXl4etm7diunTp2Px4sXqokjnM2rUKDRp0sSnrHShJKJLQq8HCgr+fu52A5JUUk5EREREVUtiCgsL1VVaz1VaXlhYWHtR1dDNN9+Mf/3rX9DpdGpZUlISpk2bhvfffx//+te/LniM7t27o23btnUZJtH53Xwz8OKLwKlTgE4H5OQAQ4cCkZH+joyIiIioXqhSEiOEUFdzPVfplJaKotReVDXUvn37cmVNmzZFixYtcPr06Sofx263w2AwVPqeierULbeUtLxs3QoUFwODBgHjx5eUEREREVH1F7sMNEII5Ofno0WLFlXa//HHH4fD4YBWq8UVV1yB8ePHc954urQkqSSRueUWf0dCREREVC9VeWWwdevWQaPRVPhPkqRKt2v9vL7F7t27kZubi969e593P4PBgL59+2LSpEl49NFHMWLECOzfvx8PP/wwsrOzL1G0RERERER0IVXOMErXhqmumr6uNpw+fRpr1qzB5ZdfjhtvvPG8+/bu3dsn0bn66qtxxRVXYPbs2XjvvfcwZcqUug6XiIiIiIiqoEpJTH0Y71JdeXl5ePLJJxEUFIRHHnmkRuNbOnTogHbt2mHfvn0Vbs/IyEBGRgYAIDs7G0VFRQD+/rwC8XOr74QQUBQFiqJA4hiRWsV6W3dYb+sO623dYJ1tOObNm4f58+cjOzsb0dHRtXLMDRs24Omnn8aff/6J4OBg5Ofn18pxqcQbb7yBlJQUpKamIiEhwd/h1FsNckxMUVER5s2bh6KiIixcuBBRUVE1PlZ0dDTS0tIq3LZmzRrMnz9ffZ6cnAwAyMrK8nkkCiSstxSIWG+JLo1Dhw5h3LhxGDRoEGbNmoWgoCB/h0R+snLlSgQFBWHcuHF+OX+DS2JcLheeeuoppKen46mnnqrygP7KnDlzBmFhYRVumzRpEoYNGwagpCVm165dAICYmBhkZWUhJiZGnb2NaocQAh6PB1qtlncHa5miKKy3dYT1tu6w3taNxlRnMzMz/R1CQNm9ezcURcGLL76INm3a+DucBumuu+5CcnIyDAaDv0M5r5UrVyI6OppJTG3wer1YtGgRDh8+jMceewyXX355hfudPXsWdrsdsbGx6sQDBQUF5ZKVn3/+GX/88QeGDh1a4XHi4uIQ99cK6unp6dizZw+Av6edlmWZF9VaJoRQP9eGfmH1F9bb2sd6W/dYb2sX6yxVprTVMzw8vNaOabfb2aKDkp5EwcHB6uRYdH4N6hv/9ddfx48//oju3bvDarXiiy++8PlXav369ZgyZQpyc3PVsocffhjPPfccPvjg6sy65wAAIABJREFUA3zyySd4+eWX8fTTTyM6Ohq33XabP94OERERUa3IycnByJEjERoaiqioKDz44INwOp0++7z55pvo3r07TCYTIiMjkZycjFOnTqnbExISMHfuXACAxWKBJEmYN2+eun3lypXo2LEjDAYDmjZtivvvv7/ceJnrr78enTp1wv/+9z9cd911CAoKwqOPPqpu3759O5KSkhAcHAyz2YybbroJBw8erPb7LS4uxty5c9GmTRsYDAY0b94cDz/8MIqLi9V91q5dC0mS8Prrr/u89plnnoEkSdi2bRsA4Pjx45AkCUuWLMHSpUvRsmVLmEwm9OnTB7/++mu5cx86dAi33XYbIiMjYTQaceWVV+I///mPzz5vvPEGJEnCl19+iSlTpiAmJgbNmjXz2Xb8+HF1/4SEBPzzn//E7t27ceWVV8JkMqFz587YvXs3AGDz5s3o3LkzjEYjunfvjr17915UXN9++y1mzJgBi8WC4OBg3HLLLT6z9SYkJODgwYP48ssvIUkSJEnC9ddff+E/TC1qUC0xqampAIAff/wRP/74Y7ntN9xwQ6WvTUpKwk8//YR9+/ahuLgYERERGDBgAJKTkxEREVFnMRMRERHVtZEjRyIhIQELFy7E999/j5deegl5eXlYv349AODpp5/GE088gZEjR+Kee+5BdnY2li9fjuuuuw579+5FeHg4li1bhvXr12PLli1YtWoVQkJC0KVLFwB/TyDQr18/TJ48GYcPH8aqVavw008/4dtvv4VOp1Njyc3NxeDBg5GcnIwxY8agSZMmAEomDBg7diwGDhyI5557Dna7HatWrULv3r2xd+/eKg9yVxQFw4YNwzfffIOJEyeiffv2OHDgAJYuXYojR47gww8/BACkpKRg8+bNmDFjBvr374/mzZvjwIEDmD9/PiZMmIAhQ4b4HHf9+vWwWq24//774XQ68eKLL+LGG2/EgQMH1Pdw8OBB9OrVC/Hx8Zg1axaCg4Px7rvvYvjw4fjggw9wyzlrwE2ZMgUWiwVz5sxRJ4iqzB9//IFRo0Zh0qRJGDNmDJYsWYKhQ4di9erVePTRR9WZdBcuXIiRI0fi8OHDagt1deOaNm0aIiIiMHfuXBw/fhzLli3D1KlTsWnTJgDAsmXLMG3aNISEhOCxxx4DAPUzuGQE1Yq0tDQxd+5ckZaWJrxer/pItUtRFOFyuYSiKOXKbTabyMvLEzabrdx2ujDW27pTWb2li8d6WzcaU50te/2uL5xOIVasEGLGjJJHp7Pmx5o7d64AIIYNG+ZTPmXKFAFA7N+/Xxw/flxoNBrx9NNP++xz4MABodVqfcpLj5edna2WZWVlCb1eLwYMGODz/+KKFSsEAPH666+rZX369BEAxOrVq33OZbVaRXh4uLj33nt9yjMzM0VYWFi58vPZsGGDkGVZfP311z7lq1evFgDEt99+q5ZlZGSIyMhI0b9/f1FcXCy6desmWrRoIQoKCtR9UlNTBQBhMpnE6dOn1fIffvhBABDTp09Xy/r27Ss6d+4snGX+aIqiiGuvvVa0bdtWLVu7dq0AIHr37i08Ho9PnKXbUlNT1bKWLVsKAOK7775Ty3bs2KHGdeLECbV8zZo1AoD44osvahxXv379fP7/nz59utBoNCI/P18t69ixo+jTp4/wlwbVnYwaJyEEMjMzkZqaitOnTyM1NRWZmZl+XaOIiIioJoqLgaQkYMYMYPnyksfrrispvxj333+/z/Np06YBALZt24bNmzdDURSMHDkSOTk56r/Y2Fi0bdvWp0t+RXbt2gWXy4WHHnrIZ2zavffei9DQUGzdutVnf4PBgJSUFJ+ynTt3Ij8/H3feeadPDBqNBj179rxgDGW99957aN++PS6//HKfY5WuGVj2WLGxsXj55Zexc+dOJCUlYd++fXj99dcRGhpa7rjDhw9HfHy8+vyqq65Cz5491W5nZ8+exeeff46RI0fCarWq583NzcXAgQNx9OjRcjPe3nvvvVUe/9KhQwdcc8016vOePXsCAG688UafiaxKy48dO1bjuCZOnOgzHi4pKQlerxcnTpyoUqyXQoPqTkaNk81mQ25uLgwGAzQaDbxeL3JzcxESEgKz2ezv8IiIiKrs3/8G9u8HXK6/y/btA157DbiYdbfbtm3r87x169aQZRnHjx+HLMsQQpTbp1TZrmAVKf1he9lll/mU6/V6JCYmlvvhGx8fD71e71N29OhRAKh0cfKKkorKHD16FL///jssFkuF28+dkj05ORlvvvkmtm7diokTJ6Jv374Vvq6iz6ddu3Z49913AZR09xJC4IknnsATTzxR6bnLJkKtWrWq0nsCUG7G3dIJqZo3b15heV5eXo3jOvdcpUMrSo9ZHzCJoYDn+uubvvRORumjq+wVgIiIKAAcOwac25FAiJLy2lT2Lnvpoqbbt2+vsFUgJCSkVs9tMpnKlZUuWLthwwbExsaW2146m2xVKIqCzp0744UXXqhw+7k/+nNzc/Hzzz8DAH777TcoilKj2Q5L38PMmTMxcODACvc5d1rqij6LylTWYlNZeWmPlJrEdaFj1gdMYijglX6xlX7pCCEghKjWFx4REVF9kJgInDurtSSVlF+Mo0eP+tz1/+OPP6AoChISEqDRaCCEQKtWrdCuXbtqH7tly5YAgMOHDyOxTKAulwupqano16/fBY/RunVrACVr7VVl/wsda//+/ejbt2+Vpgi///77YbVasXDhQsyePRvLli3DjBkzyu1X2lpU1pEjR9QJB0rfu06nu+j3UJvqKi5/T7/OMTEU8MxmM8xmMxwOB+x2O+x2O0JDQ9mVjIiIAs499wBduwJ6PaDTlTz+4x/AhAkXd9yXX37Z5/ny5csBAIMHD8aIESOg0Wgwf/78cnfahRA+S1JUpF+/ftDr9XjppZd8Xv/aa6+hoKAAN9100wXjGzhwIEJDQ/HMM8/A7XaX2152et8LGTlyJNLS0vDqq6+W2+ZwOHxmAXv//fexadMmPPvss5g1axaSk5Px+OOP48iRI+Ve++GHH/qMHfnxxx/xww8/YPDgwQBKErDrr78ea9asQUZGxkW9h9pUV3EFBweXm0L7UuKtagp4siyjefPmKCgogNvthlarRVhYGBe+IyKigGMwAF9/XTIG5tixkhaYCRNKyi9Gamoqhg0bhkGDBmHPnj148803MWrUKHTt2hUAsGDBAsyePRvHjx/H8OHDYTabkZqaii1btmDixImYOXNmpce2WCyYPXs25s+fj0GDBmHYsGE4fPgwVq5ciR49emDMmDEXjC80NBSrVq3CXXfdhSuuuALJycmwWCw4efIktm7dil69emHFihVVeq933XUX3n33Xdx333344osv0KtXL3i9Xhw6dAjvvvsuduzYgSuvvBJZWVmYPHkybrjhBkydOhUAsGLFCnzxxRcYN24cvvnmG5/fEm3atEHv3r0xefJkFBcXY9myZYiKisLDDz+s7vPyyy+jd+/e6Ny5M+69914kJibizJkz2LNnD06fPo39+/dX6T3UtrqIq3v37li1ahUWLFiANm3aICYmptIxTXWBSQw1CLIscz0fIiJqEAyGixvEX5FNmzZhzpw5mDVrFrRaLaZOnYrFixer22fNmoV27dph6dKlmD9/PoCSsSMDBgzAsGHDLnj8efPmwWKxYMWKFZg+fToiIyMxceJEPPPMMxecGKDUqFGj0LRpUzz77LNYvHgxiouLER8fj6SkpHKzmZ2PLMv48MMPsXTpUnVdm6CgICQmJuLBBx9Uu8yVJiOli14CQFRUFF555RXcfPPNWLJkiU+Ccvfdd0OWZSxbtgxZWVm46qqrsGLFCsTFxan7dOjQAT///DPmz5+PN954A7m5uYiJiUG3bt0wZ86cKr+H2lYXcc2ZMwcnTpzAokWLYLVa0adPn0uaxEiiPo3QCWDp6el45ZVXMHHiRMTGxiIzMxOxsbFsDahlQgh4PB5otVq/98VsaBRFYb2tI6y3dYf1tm40pjpb9vrdtGlTf4dD9dDx48fRqlUrLF68+LwtUnRp8RufiIiIiIgCCruTEREREVG953K5cPbs2fPuExYWVq1piylwMYkhIiIionrvu+++ww033HDefdauXYtx48ZdmoDIr5jEEBEREVG917VrV+zcufO8+3Ts2LHWz5uQkFCvFnmkEkxiiIiIiKjei4iIqFeLSJJ/cWA/EREREREFFCYxREREREQUUJjEEBERERFRQGESQ0REREREAYVJDBERERERBRQmMUREREREFFCYxBARERERUUBhEkNERERERAGFSQwREREREQUUJjFERERERBRQmMQQEREREVFA0fo7AKKaslqtyM/Ph9frhdlsRkREBGSZeTkRERFRQ8ckhgKS1WrF6dOnIYSAJEmwWq1wu91o0qQJJEnyd3hURR6PB1arFV6vFwaDASEhIfz7ERER0QUxiaGAlJubCwAwmUwASn4Mnz17FlFRUdDpdP4MjarI4/Hg5MmTKCoqUhMXi8WCmJgYJjJERER0XkxialFISAi0Wi2EEOqjEMLfYTUopZ+n1+v16TomyzIURYHX64VWy2pdE5e63p49exZFRUUICgqCJEnwer3IycmB2WxWk9OGovTz5PdB7eP3bd1oTHWW1wyiwMT/c2tRt27dEBERAUVR1EdFUfwdVoNkMpmQm5sLWZYhSRKcTicMBgMkSYLH4/F3eAHrUtZbp9MJSZLUH5+SJEFRFBQXFzfY1jSv1+vvEBokft/WncZQZyMiIvwdAhHVAJOYWrR371507twZUVFRyM3NRVRUFAea1zIhBLxeL2JiYuD1elFYWAigJKmJj4+HXq/3c4SBS1GUS1pvjUYjCgoKIEmSmnzKsgyj0djg7oyW1luNRsOucrXsUtfbxqIx1dns7Gx/h0BENdCwfin4mc1mg8fjUX+Qlf44o9qn1WrRvHlzuFwuKIoCvV4PjUbj77AC2qWut1FRUbDb7bDZbOr5Y2JiGlxXsrL4nVD7+H1btxrD58rWe6LAxCSGApYkSTAYDP4Og2pIo9GgefPmsNls6uxkQUFB/g6LiIiIAgCTGCLyG41Gg7CwMH+HQURERAGGHYiJiIiIiCigMIkhIiIiIqKAwiSGiIiIiIgCCpMYIiIiIiIKKExiiIiIiIgooDCJISIiIiKigMIkhoiIiIiIAgqTGCIiIiIiCihMYoiIiIiIKKAwiSEiIiIiooDCJIaIiIiIiAIKkxgiIiIiIgooTGKIiIiIiCigMIkhIiIiIqKAwiSGiIiIiIgCCpMYIiIiIiIKKExiiIiIiIgooDCJISIiIiKigMIkhoiIiIiIAgqTGCIiIiIiCihMYoiIiIiIKKBo/R0AUU3l5XmxfHkRDhwQCAkRGD1aj379gvwdFhERERHVMSYx53C73Xjrrbewe/du2Gw2JCQkYPTo0ejWrZu/Q6My3G6B2bOt+P57HcLCvDh5UsacOV5otXZcfz0TGSIiIqKGjN3JzrFs2TJ89NFH6NOnD+655x7Isownn3wSv/32m79DozIOHCjGzz9rkJjoQdOmQGKigMcjYfNmt79DIyIiIqI6xiSmjCNHjuDrr7/G3XffjZSUFAwaNAgLFiyAxWLBG2+84e/wqIziYgEhJOh0f5dptQJOp/9iIqLGw+v14syZM/jzzz+RmpqKgoICCCH8HRYRUaPBJKaMb7/9FrIsY+DAgWqZXq9H//79cejQIWRnZ/sxOiqrXTsdmjRRcPy4Bm63gNUq4HBI6N6dVZqI6pYQApmZmcjKyoLb7YbD4cDp06dRWFjo79CIiBoN/uIr49ixY4iPj0dQkO+Yinbt2gEAUlNT/REWVSAqSou5c3WwWBScOCEjN1fG0KEKxo0L9ndoRNTAeTwe5Ofnw2g0Qq/Xw2g0QpIk5OXlQQgBp9OJoqIiuFwuf4dKRNRgcWB/GXl5eYiIiChXXlp29uzZSx0SnUfPniZs3KjHiRMehITIaNFCCyEU2O12SJIEg8EAWWaeTkS1S1EUAIAkSWqZJElqF7Pc3FwIIaDRaBAbG1vhdYWIiC4Ok5gyXC4XdGUHWfxFr9cDAIqLiy91SHQBZrMGnTppAABOpxOnT5+G86+BMWazGfHx8dBqWc2JqPbodDqYTCbY7XYYjUYIIeDxeGAymZCTkwODwQCNRgOXy4WMjAyYTCYYjUZ/h01E1KDw110Zer0ebnf52a1KuwQYDAaf8oyMDGRkZAAAsrOzUVRUBODvu3Slj1R7hBBQFAWKovjcBRVCqAlM6Y+FgoICaLVaxMXF+SvcgMJ6W3cqq7d08fxVb+Pi4pCeng6HwwFJkhAZGQmg5G8tyzKEENDpdHA4HHA4HOrNsEDBOktE9R2TmDIiIiIq7DKWl5cHAOpFqtSaNWswf/589XlycjIAICsry+eR6p7X60V+fj60Wq2aTHq9XmRlZfECXE2stxSI/FFvjUYjdDqd+h1TVFQEp9MJr9cLSZIghIDb7UZeXh4cDsclj4+IqCFjElNGYmIiDhw4ALvd7jO4//DhwwCAVq1a+ew/adIkDBs2DEBJS8yuXbsAADExMcjKykJMTAzHZNSy0m4bWq3WJznxer2wWq3QaDRq97HSVpnY2Fh/hRtQFEVhva0jldVbunj1qd663W6cOHECxcXFkGUZXq8X0dHRaN68ud9jq67GVGczMzP9HQIR1QCTmDKuvfZabNmyBTt27MAtt9wCoOSi9Nlnn6Fdu3awWCw++8fFxaldldLT07Fnzx4AUC9WsiwH3IWrvivtqiHLss+FVZZlREdHIysrC16vF0IISJIEi8XCv0E1sd7WvsrqLdWe+lBvDQYDEhIScPbsWbjdbhgMBkRFRUGj0fg1rppgnSWi+o5JTBmXXXYZevXqhfXr1yM/Px9xcXH4/PPPkZWVhWnTpvk7PLoAi8UCrVYLm80GSZIQHh4Os9ns77CIqBHR6/Vs/SUiugSYxJxj+vTpeOutt7B7927YbDYkJCTgiSeeQKdOnfwdGl1A6eDac8cuEREREVHDwiTmHHq9HikpKUhJSfF3KEREREREVAF2fCciIiIiooDCJIaIiIiIiAIKu5MRXSSPx4OsrCw4HA5otVpYLBafKbqJGiOv1wu73Q4hBIxGY8At9giULHRcOs1wIMZPRNSQMYkhugherxenTp2CzWaDTqeD0+mEw+FAy5YtYTKZ1P0URYHH44Esy+o6NkQNldvtxqlTp2C32wEAWq0WzZo1Q0hIiJ8jqxohBHJzc5GVlQVFUSDLMpo0aYKoqCh/h0ZERH/hrymii+BwOFBUVISgoCB1LQW73Y7CwkI1iXE6nUhLS4PT6YQsy4iMjERMTAzXXqAGKysry+f/C6fTifT0dLRu3Tog1kwpKirCmTNnoNPpoNVq4Xa7kZmZCZPJxFZWIqJ6gmNiiC6CEKLCckVRAJS01Jw+fRpOpxMGgwEajQbZ2dnIy8u7lGESXVIOhwM6nU5N1A0Gg9o1KxAUFxdDCKG2mup0Oggh4HQ6/RwZERGVYksM0UUwGo3Q6XQoLi6GwWCA1+sFAPVubXFxMZxOJ0wmEyRJgizL8Hg8OHv2rPo8JCQkIO5OE1WVXq9HcXGx+tzj8UCj0QRMPZdlGUIICCEgSZL637LM+35ERPUFkxiii6DT6dCsWTOkpaXB4XCofedDQ0MBQL0TXfpjCCjpXmaz2VBcXAxFURAcHIwWLVpwrAw1GNHR0bDb7SgqKlLrfWxsbMDUcbPZDJPJBLvdDo1GA0VREBQUFDBjeoiIGoPAuKIQ1WPBwcFo3bq1ere57A81g8EAs9kMq9UKrVYLj8cDp9Op/kgSQsButyM3NxdNmjTx47sgqj1BQUFISEhAYWGhmqgHUgKg1WrRsmVL5OTkwOVyQa/XIzo6OmCSMCKixoDfyES1oLKuMrIsIz4+Xh3oLEkSTCYTgoODAUDtUla26w1RQ2A0GmE0Gv0dRo3pdDrExcX5OwwiIqoEkxiiOqbVatG0aVMAJWNk/vjjD3XtCSEEvF4v16AgIiIiqgaOUiS6hAwGAywWC1wuF+x2OxwOB0wmE9efICIiIqoGtsQQXWIWiwUmkwnFxcWQZRlmsxk6nc7fYRER1WtlJ0ghImISQ3SJSZIEs9kMs9ns71CIiOo9l8uFM2fOwG63Q6vVwmKxqDNAElHjxe5kREREVC+VLhhcUFAAoGRc4enTp2Gz2fwcGRH5G5MYIiIiqpecTifsdjtMJhN0Oh2MRiMURUFhYaG/QyMiP2MSQ0RERPWSEKJcmSRJFZYTUePCJIaIiIjqJaPRCIPBAKfTCa/XC5fLBSEExxQSEZMYIiIiqp+0Wi2aN28Oo9EIt9sNAIiLi2MSQ0ScnYyIiIjqL6PRiMTERHi9XsiyDFnm/VciYhJDRERE9ZwkSdBq+ZOFiP7G2xlERERERBRQmMQQEREREVFAYRJDREREREQBhUkMEREREREFFCYxREREREQUUJjEEBERERFRQGESQ0REREREAYWTrteikJAQaLVaCCHURyGEv8O6KEIIKIoCSZLqxQJjpZ9noH+u9VFDqrf1Dett3WG9rRtCCNhsNhQUFEBRFAQHByM6OrpeXAdqG9efIQpM/D+3FnXr1g0RERFQFEV9VBTF32HVmNvtxpkzZ2C32wEAkZGRiIqKgiRJfo4M8Hq9/g6hQWoI9bY+Y72tG6y3tc9msyEtLQ0AIMsybDYbiouLERsbWy+uAbUpIiLC3yEQUQ0wialFe/fuRefOnREVFYXc3FxERUUF7F0rIQTS0tJgs9lgNBqhKApycnKg0+kQFRXl17i8Xi80Gk2Du5D6m6IoAV9v6yvW27rDels3CgoKAAAmkwmSJMHr9cJqtaJJkybQ6XR+jq52ZWdn+zsEIqoBJjG1yGazwePxQJIk9TFQf7C4XC4UFRXBZDJBlmVoNBooigKr1Yro6Gh/hxfQn2191RDqbX3Hz7b2sd7WDUVRIMuy+pnKsqx22Wton7PH4/F3CERUA7xtRRVqaBcpIiKquuDgYHg8Hni9Xggh4HQ6YTQaodfr/R0aEREAtsRQJXQ6HcxmMwoKCqDX69XuMGFhYf4OjYiI6lh0dDSKi4thtVohhIDRaESzZs3YZY+I6g0mMVQhSZLQtGlTdUCnLMuIi4vjAEgiokZAlmXExsaiSZMmEEJAr9czgSGieoVJDFVKq9WiWbNm6rSl7GJGRNR4SJIEnU7H734iqpd4W4V8KIoCj8fjs94CB8wSERERUX3ClphGQAiB/Px85OXlQVEUhIaGIjo6Gl6vFzabTe3vbLVacfbsWQghEBQUhKZNm3IQJxERERHVO0xiGoG8vDykpaWpUyWfOXMGTqcTDocDbrcbQMnClkIIBAcHq+Ng0tLS0LJlS/aDJiIiIqJ6hb9OGziPx4MTJ07AarXCZrPB6XTCYDDgzJkzKC4uhslkQlBQEDweD1wuFzQaDTQaDYxGI4qKitQkh4iIiIiovmBLTAOXmZkJh8MBIQTcbjdcLpc6979Wq/VZyKy0NaYUx8EQERERUX3ElpgGTFEUFBYWqgmKoihQFAU2mw1arVZdxAyAmtC43W643W44HA6YzWaOiSEiIiKieoctMQ1I6YKUGo1GbUUpTVz0er2atMiyjLCwMAgh4HA4AJQsbtmsWTM4nU4oioKoqCjExMSwNYaIiIiI6h0mMQ1EUVERMjIyUFxcDK/Xi7CwMISFhSE0NBQFBQXqWJfShEan0yE+Pl6dncxkMsFkMgEoSYaYvBARERFRfcUkpgFwuVw4deoUvF4vnE4niouLYbPZkJeXh/DwcAQHB8PpdEKWZZhMJkiShODgYOh0OkRERJQ7HhMYIiIiIqrPmMQ0AHa7HR6PRx37otfr4fF4oNFoYLPZEB8fj/z8fBQXF0OSJERERCAqKsrfYRMRERER1QiTmAbE6/UCgM+MY0IIaLVaJCYmwu12Q5Zl6HQ6trYQEQU4h8MBu90OAAgODobRaPRzRERElw6TmADgcDhgs9lgNBrVxSjLCg4Ohl6vR1FRkTqVsizLkGUZiqJAp9OpY2KIiCjw2Ww2tRtx6c2q5s2bIyQkxN+hERFdEkxi6jG73Y7vv//epywsLAxdu3aFVvv3n06n06F58+bIyMiA1+uFx+OBwWCA1+tFdHQ0goODL3XoRERUR4QQyMjIgBACQUFBAACn04nMzEy0bt2aLe1E1CgwiamnvF5vuQQGAAoKCvDnn3/isssu8yk3mUxITExEQkICioqK4PF4oNPpEBwczAsaEVE94XK54HQ6AQBBQUE+N6SqSlEU9Tu+lFarVRcs5nc+ETUGTGLqqfz8/Eq35eTklEtiSsmyDLPZXFdhERFRDdntdpw6dQputxsAYDAY0KJFCxgMhmodR5Zl6PV6FBcXQ6PRqN2ITSZTue7GREQNFZOYeqr0IlcRv12kTp8Gvv0WcLuB9u2B7t39EwcRUYARQiA9PR1er1ddk8vhcCAzMxMtW7as1rEkSUJcXBxOnTqlDuzX6XSIjY2t9biJiOorJjH1VHh4eKXbWrRocQkj+cuRI8BjjwEZGYAkATod8OCDwM03X/pYiIgCjNfrhcvl8pkdUqfTwel01qgLWFBQEFq1aqUmMUFBQdDr9eX2KyoqQlZWltpS06RJkwr3IyIKNGx3rqeMRiNatWpVrjw6Ohrx8fGXPqDXXgOyskpaYNq3B8xm4NVXgYKCSx8LEVGAkWUZGo1GnQofKElsLmbKe71ej/DwcISHh1eYmDgcDpw8eRIOhwNCCBQUFODkyZPweDw1fh9ERPUFW2LqsVatWiE6OhqZmZkQQqBFixb+WwcgLQ0IDy9phQGAyEggNRXIyQHCwvwTExFRgJBlGbGxsTh9+jTsdrs6LXJMTEydndNqtcLj8agzVEqShPz8fJw4cQLh4eGIiIjgGBoiClhMYuo5s9n6vEFOAAAR6UlEQVRcPwbqt2gBfPMNEBNTkshkZwOhoYDF4u/IiIgCQlhYGLRaLYqKigCUfL+Xjo+pK6WtPF6vF4WFhXA6nbBarbDb7bDb7YiPj68wkfF4PMjKylK7wEVFRdV5rERE1dGgkpj9+/dj9+7d+P3335GTk4OIiAh06dIFo0ePRmRk5AVf//bbb+Odd94pV67T6fDBBx/URciB4557SlpeDh0CZBkwGIAZM0oSGSIiqpLg4OBLtnZXUFAQJEmCy+WCy+VCcXEx9Hq9OvV+QUEBIiIiyi2QqSgK0tLSUFBQAJ1OB6vVCpvNhoSEBP/1BiAiOkeDSmLWrVsHq9WKXr16oWnTpsjMzMTWrVvx008/4cUXX0RERESVjjN58mSfL2o2twNITARefBH47jvA5QI6dAA6dfJ3VEREVIng4GDExcWpLSqyLCMsLAwajUbdR1GUcq9zOByw2WzQ6/Ww2+3weDyw2WzQarWVLqbJ9WmI6FJrUEnM+PHj0aFDB5+k44orrsCjjz6KrVu3YsyYMVU6Tq9evRDKFobyYmKA4cP9HQUREVWBJEmIjIxEWFgY8vLykJGRoV4f3W63ut7MuRRFgRACRUVF8Hq9kGUZiqIgPz8fhYWFCPtrHKQQAnl5ecjNzYWiKDCbzWjSpIlPkkREVFcaVBNDp06dyrWadOrUCWazGadOnarycYQQ6sBLIiKiQKbRaBAZGYmoqCi4XC44HA54vV7ExsZW2D2sdPHN0sU0gZKESKPRwGq1qvvl5eUhPT1dne0sNzcX6enpvHYS0SXRoFpiKuJwOOBwOKrVsjJx4kQ4HA4YjUb07NkT48ePr3JXNCIiovpGlmXExcUhPDwcXq8Xer1eTVbOpdfrERsbC6vVqrbYBAcHQ5Zlny5jBQUF0Gg06nFkWUZhYSHcbjfXoiGiOtfgk5j//Oc/8Hg86N279wX3DQkJwU033YTLL78cOp0OBw8exLZt23D06FG88MILCAoKugQRExER1T5Jkqp8HYuMjER0dDTsdruapCiK4nND8NwWF46JIaJLqd4mMYqiVHlBrsoWC/v111/xzjvvoHfv3ujatesFjzNs2DCf59deey3atWuH559/Htu2bcNtt91WteCJiIgCmCzLaNasGXJzc2G326HRaGCxWHym/A8NDUVmZqbaWuN0OmE2m6HT6ap1Lq/X63OeqKgo3jQkoguqt0nMwYMH8dhjj1Vp35UrV6JZs2Y+ZadPn8bChQvRokULTJ06tcZx9OnTB6+//jr2799fLonJyMhARkYGACA7O1ud+790tpeKZn2hiyOEgKIoUBSFd/1qGett3WG9rTust3VDCAGNRoOmTZsC+LuVpeznHB4eDo/Hg7Nnz8Lj8cBsNiMuLg5CiCqPixFCIC0tDfn5+dBqtVAUBVarFS1atGAiQ0TnVW+TmGbNmuHBBx+s0r7njlfJzs7GnDlzEBQUhLlz5170F2F0dLTPYMZSa9aswfz589XnycnJAICsrCyfR6JAwnpLgYj11n9CQ0MhhIAsy8jNza3Wa91uN/5/e/ceU3X9x3H8dY7nHG4qHLko6CagHRWHU6h0oM1pllm2ZWqYNNPcWk7rH8fmbEtZtsUqqzXXH1iGMGy2vLWFps7LBBVpNirSUCxSuXlBHQLnwPn94Tj+iJvQ4Ry/+HxsbPA53+/n+z7jM+DF9/P9fGpqamS1WuV0OiVJjY2N+uuvv3gWFUC3HtoQY7fbNXv27F6fd+vWLb333ntyOp16//33H2iTy+643W7V1NQoPj6+w2tvvvmmZwpabW2tDh48KEmKiopSTU2NoqKi2GPGy9xut1wulywWC//R9rLW1lbGbT9h3PYfxm3/8NWYbWho0K1btxQUFOS5TmNjowYPHqwRI0b023X/X1VVlU+uA8C7HtoQ0xeNjY3KzMzUtWvXtGnTJs9t8M7U1taqqamp3TS0+vp6z/r3bX788UfV19crKSmpQx/R0dGKjo6WJF25ckVFRUWS7m+OaTab+aXqZW3/7fv3KjnwHsat9zFu+x/j1rt8NWYDAwMVEBCgpqYmBQYGeqZdDh48mO8ngG4NqBDz8ccf6/z583r66adVWVnZbm+YoKAgTZs2zfP15s2b9euvv2rv3r2etjfeeEMzZszQ6NGjZbPZ9Pvvv+v48eOKi4vT3LlzffpeAAAY6CwWi0aOHKnLly/r7t27MplMCg8PZyoZgB4NqBBTUVEhSTp48KBnalebqKiodiGmMzNnzlRZWZkKCwvldDoVGRmpBQsWaNGiRV2upw8AAPouJCREY8aMUXNzs8xms2w2G3csAfRoQIWY7OzsBz72gw8+6ND2X1YxAwAAfTNo0CAFBQX5uwwABsKEUwAAAACGQogBAAAAYCiEGAAAAACGQogBAAAAYCiEGAAAAACGQogBAAAAYCiEGAAAAACGQogBAAAAYCiEGAAAAACGQogBAAAAYCiEGAAAAACGYvF3AQNNXV2d5/Oqqio/VjIwWSwW2e121dbWyuVy+bucAYlx632M2/7HuPWuR2nM/v/vbQDGQYjxkuDgYFmtVn3//fe6ffu2SkpKlJycrCFDhvi7NOCBMG5hRIxbeIPValVwcLC/ywDQCya32+32dxEDxc2bN9XQ0KDS0lLNnTtXBQUFSkxM9HdZwANh3MKIGLfwhuDgYIWFhfm7DAC9wJ0YLwoLC1NYWJhnWkNkZKRiYmL8XBXwYBi3MCLGLQA8mniwHwAAAIChDNqwYcMGfxcxEA0ePFgzZ85kjjYMhXELI2LcAsCjh2diAAAAABgK08kAAAAAGAohBgAAAIChsDqZDxw6dEifffZZp6998803stvtPq4IuM/pdCovL09HjhzRnTt3FBsbq6VLl2rKlCn+Lg3oVGlpqdavX9/pa1lZWRo/fryPKwIA+BohxodeffVVDR8+vF1bSEiIn6oB7vn0009VWFioF198UdHR0Tp8+LAyMzO1adMmJSQk+Ls8oEvz58/X2LFj27WxzDIAPBoIMT6UnJysxx57zN9lAB7nz5/X8ePHtXz5cr300kuSpFmzZmn16tXatm2bsrKy/Fwh0LWEhASlpqb6uwwAgB/wTIyPNTQ0qKWlxd9lAJKkEydOyGw269lnn/W02Ww2zZkzR3/88Ydqa2v9WB3QM36mAsCjiTsxPvTuu+/q7t27slgsSkpK0ooVK5j6AL+6ePGiRo4cqeDg4HbtDodDklRRUaHIyEh/lAb06PPPP9fdu3dlNps1ceJEvf7669ztBoBHBCHGBwICAjR79mwlJiYqODhY5eXl2rNnjzIyMrR582b+SITf3Lhxo9OFJdrarl+/7uuSgB5ZLBalpKQoOTlZQ4cOVWVlpXbt2qV169bpww8/1JgxY/xdIgCgnxFieqm1tVUul+uBjrVarTKZTJo+fbqmT5/uaZ82bZqSkpK0bt067dy5U6tWreqvcoFuNTc3y2q1dmi32WySpKamJl+XBPRowoQJmjBhgufrqVOnKiUlRW+//bZycnK0ceNGP1YHAPAFQkwv/fbbb10u7flvW7Zs0ahRozp9LSEhQQ6HQ2fPnvVmeUCv2Gw2OZ3ODu3Nzc2S7t1FBIwgJiZGU6dOVVFRkVpaWjRo0CB/lwQA6EeEmF4aNWqU3nnnnQc6tqf9XyIiInT58mVvlAX0id1u73TK2I0bNyRJw4YN83VJQJ9FRETI5XKpqampw3NeAICBhRDTS3a7XbNnz/ZKX9XV1QoNDfVKX0BfxMfHq7S0VA0NDe3+6Dt37pwkKS4uzl+lAb1WXV0tm82mwMBAf5cCAOhnLLHsA/X19R3azpw5o/LyciUlJfmhIuCelJQUtba2av/+/Z42p9OpQ4cOyeFwsOgEHkqd/UytqKjQ6dOnNXnyZJnN/GoDgIGOOzE+kJGRofj4eI0dO1YhISG6cOGCDh48qIiICC1cuNDf5eERNm7cOKWmpionJ0c3b95UdHS0Dh8+rJqaGq1Zs8bf5QGdysrKUkBAgMaPH6/Q0FBVVlZq//79CggI0LJly/xdHgDAB0xut9vt7yIGutzcXBUXF6umpkZNTU2y2+16/PHHlZaW1uNzM0B/a25uVl5eno4cOaI7d+4oNjZWS5cu5S4hHlr79u3T0aNHdfXqVTU0NCg0NFSTJk1SWloae28BwCOCEAMAAADAUJg4DAAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAHkomk6ndh9lsVlhYmGbMmKHs7Gy53e4uzz158qRWrlwph8OhIUOGKDAwULGxsVq8eLF27dql1tbWLs89ffq055qZmZl9rv/o0aPauHGjnn/+eUVGRspkMik2NrbP/QEAgPtM7u7+EgAAPzGZTJKkZcuWSZJaWlp04cIFnTx5Um63W2lpacrPz293jtPp1FtvvaWtW7dKksaNG6cJEybIZrOpoqJCJSUlam1t1axZs3To0KFOr7tmzRp98cUXkiSHw6Fz5871qf7Jkyfrl19+adc2evRoXbp0qU/9AQCA+wgxAB5KbSHm3z+ifvrpJ82bN08ul0v79u3TCy+84HltyZIl2rFjhxwOh77++mulpKS0O/fKlSvKzMzUgQMHdPHixQ7XdDqdiomJUV1dnUaMGKGqqiqdPHlSU6dO7XX9GRkZCg0N1RNPPKFRo0Zp4sSJhBgAALyE6WQADGXOnDl67bXXJEm7d+/2tO/cuVM7duzQ8OHDdezYsQ4BRpJiYmL05Zdfavv27Z32XVBQoLq6OqWmpmrVqlWS1OWxPcnKytL69ev1zDPPaNiwYX3qAwAAdI4QA8BwpkyZIkmqrKz0tH300UeSpA0bNmj48OHdnp+amtppe25uriQpPT1d6enpkqRvv/1WTqfzP9cMAAC8hxADwHBu374tSQoICJAk1dXVeR7IT0tL61Of9fX12rt3r2w2mxYvXqy4uDilpKSorq5OBQUFXqsdAAD8d4QYAIbidrv1ww8/SJImTZokSTp79qwkKT4+XmFhYX3q97vvvlNjY6Oee+45z/SvtrsxfZ1SBgAA+gchBoAhtLS06M8//9SKFStUVFSkgIAALV++XJJ07do1SVJkZGSf+28LKm3BRZIWL14sq9Wqffv2qb6+/j9UDwAAvIkQA+Ch1rZni8VikcPh0LZt2zRkyBDl5+drzJgxXrnG33//rWPHjiksLEzz58/3tIeHh2vevHlqbGzUzp07vXItAADw31n8XQAAdKdtnxiz2ayhQ4cqMTFRCxYskN1u9xwTHh4uSaqtre3TNfLy8uR2u7Vw4ULPczZt0tPTtWfPHuXm5mrlypV9fBcAAMCb2CcGwEOpq31iOlNbW6uoqCiZTCZdv36918/FJCQkqKysTGPHju2wsllzc7OKi4tlMplUUVGh0aNH96pvSaqqqlJ0dDT7xAAA4CVMJwNgeJGRkXryySfldru1Y8eOXp1bUlKisrIySVJ5eblOnDjR7qO4uFjSvTCVl5fn9doBAEDvEWIADAhr166VdG+fmJqamm6PLSws9HzetjfM2rVr5Xa7O/04cuRIu2MBAIB/EWIADAiLFi1SWlqaqqur9dRTT6moqKjDMVVVVVq9erVnBbKWlhbl5+dLkpYsWdJl3zNmzNDIkSNVVlamkpKS/nkDAADggfFgP4ABIycnR8HBwfrqq6+UkpKi8ePHKyEhQVarVZcuXdKZM2fU0tKiOXPmSJIOHDig6upqORwOJSUlddmv2WzWK6+8ok8++UTbt29XcnJyj7VkZ2crOztbkuR0OiVJV69e1bRp0zzHbNmypdvrAgCAznEnBsCAYbVatXXrVhUWFmrFihVyuVwqKCjQ7t27VVVVpZdffll79uzR/v37Jd3fG6a7uzBt2o7Jz8+Xy+Xq8fh//vlHp06d0qlTp/Tzzz9LurdIQFvbqVOndOvWrb6+VQAAHmmsTgYAAADAULgTAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQCDEAAAAADIUQAwAAAMBQ/gcouJguBKRJ9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Plot\n", + "fig = ggplot(combined_PCAencoded_df, aes(x='1', y='2'))\n", + "fig += geom_point(aes(color='experiment_id'), alpha=0.5)\n", + "fig += labs(x ='PCA 1',\n", + " y = 'PCA 2',\n", + " title = 'PCA original data with experiments (latent space)')\n", + "fig += theme_bw()\n", + "fig += theme(\n", + " legend_title_align = \"center\",\n", + " plot_background=element_rect(fill='white'),\n", + " legend_key=element_rect(fill='white', colour='white'), \n", + " legend_title=element_text(family='sans-serif', size=15),\n", + " legend_text=element_text(family='sans-serif', size=12),\n", + " plot_title=element_text(family='sans-serif', size=15),\n", + " axis_text=element_text(family='sans-serif', size=12),\n", + " axis_title=element_text(family='sans-serif', size=15)\n", + " )\n", + "fig += guides(colour=guide_legend(override_aes={'alpha': 1}))\n", + "fig += scale_color_manual(['red', '#bdbdbd', 'blue'])\n", + "fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'after_experiment'],\n", + " alpha=0.2, \n", + " color='red')\n", + "fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'before_experiment'],\n", + " alpha=0.2, \n", + " color='blue')\n", + "\n", + "print(fig)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:simulate_expression_compendia] *", + "language": "python", + "name": "conda-env-simulate_expression_compendia-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/human_tests/Human_random_sampling_simulation.ipynb b/human_tests/Human_random_sampling_simulation.ipynb new file mode 100644 index 0000000..d276e4a --- /dev/null +++ b/human_tests/Human_random_sampling_simulation.ipynb @@ -0,0 +1,870 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test simulating compendia by random sampling" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import os\n", + "import sys\n", + "import pandas as pd\n", + "import numpy as np\n", + "import random\n", + "import umap\n", + "from plotnine import (ggplot,\n", + " labs, \n", + " geom_point,\n", + " aes, \n", + " ggsave, \n", + " theme_bw,\n", + " theme,\n", + " facet_wrap,\n", + " scale_color_manual,\n", + " guides, \n", + " guide_legend,\n", + " element_blank,\n", + " element_text,\n", + " element_rect,\n", + " element_line,\n", + " coords)\n", + "\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore')\n", + "\n", + "from ponyo import utils, train_vae_modules, simulate_expression_data\n", + "\n", + "np.random.seed(123)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Read in config variables\n", + "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", + "config_file = os.path.abspath(os.path.join(base_dir,\n", + " \"human_tests\", \n", + " \"config_test_human.tsv\"))\n", + "params = utils.read_config(config_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load parameters\n", + "local_dir = params[\"local_dir\"]\n", + "dataset_name = params['dataset_name']\n", + "analysis_name = params[\"simulation_type\"]\n", + "train_architecture = params['NN_architecture']\n", + "num_simulated_samples = params['num_simulated_samples']" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Input files\n", + "rpkm_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_RPKM_data_test.tsv\")\n", + "assert os.path.exists(rpkm_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup directories" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "utils.setup_dir(config_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-process data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Output file\n", + "normalized_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_normalized_data_test.tsv.xz\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input: dataset contains 50 samples and 5000 genes\n", + "Output: normalized dataset contains 50 samples and 5000 genes\n" + ] + } + ], + "source": [ + "train_vae_modules.normalize_expression_data(base_dir,\n", + " config_file,\n", + " rpkm_data_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train VAE" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Directory containing log information from VAE training\n", + "vae_log_dir = os.path.join(\n", + " base_dir, \n", + " dataset_name,\n", + " \"logs\",\n", + " train_architecture)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input dataset contains 50 samples and 5000 genes\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "tracking beta\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Train on 45 samples, validate on 5 samples\n", + "Epoch 1/10\n", + "45/45 [==============================] - 4s 88ms/step - loss: 2466.1158 - val_loss: 2732.4883\n", + "Epoch 2/10\n", + "45/45 [==============================] - 4s 80ms/step - loss: 1671.1998 - val_loss: 2180.0183\n", + "Epoch 3/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1566.8178 - val_loss: 1799.2496\n", + "Epoch 4/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1481.5816 - val_loss: 1730.1412\n", + "Epoch 5/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1577.6224 - val_loss: 1477.2603\n", + "Epoch 6/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1444.6422 - val_loss: 1510.6864\n", + "Epoch 7/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1475.2912 - val_loss: 1676.2584\n", + "Epoch 8/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1398.2218 - val_loss: 1403.8243\n", + "Epoch 9/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1352.8320 - val_loss: 1309.4790\n", + "Epoch 10/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1411.7664 - val_loss: 1252.2395\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAESCAYAAADe2fNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VuX5+PHPlQ1kkQGZ7BlGQoiAInuIKKAW/YlbW6nW1lXboh22+rVVa63aqlWrVq2VUlEBBSkqQ6pswwyQsCSDLCCDELLu3x/nJASEJCRPcp4k1/v1Oi+e3M957nMltrlybzHGoJRSSrmKh9MBKKWUals0sSillHIpTSxKKaVcShOLUkopl9LEopRSyqU0sSillHIpTSxKKaVcyrHEIiKxIrJSRHaJyE4Ruc8uTxCRdSKSLCKbRGSEXS4i8oKIpInINhFJrFXXrSKSal+3OvU9KaWUAnFqgaSIRAKRxpgtIhIAbAauAp4D/myMWSYi04GfG2PG269/AkwHRgLPG2NGikgIsAlIAoxdz3BjzDEHvi2llGr3vJx6sDEmC8iyXxeJSAoQjZUcAu3bgoBM+/Us4G1jZcJ1IhJsJ6fxwApjzFEAEVkBTAPeO9+zw8LCTI8ePVz+PSmlVFu2efPmPGNMeH33OZZYahORHsAwYD1wP7BcRJ7B6qq7xL4tGjhc62Ppdtn5ys9+xlxgLkC3bt3YtGmTS78HpZRq60TkUEPuc3zwXkT8gYXA/caYQuBu4AFjTCzwAPC6K55jjHnVGJNkjEkKD6834SqllGokRxOLiHhjJZV3jTEf2MW3AtWv/wOMsF9nALG1Ph5jl52vXCmllAOcnBUmWK2RFGPMs7XeygTG2a8nAqn268XALfbssFFAgT1OsxyYKiKdRaQzMNUuU0op5QAnx1hGAzcD20Uk2S57BLgTeF5EvIBS7HERYCnWjLA0oAS4HcAYc1REHgc22vc9Vj2Qr5RyD+Xl5aSnp1NaWup0KKoB/Pz8iImJwdvbu1Gfd2y6sZOSkpKMDt4r1XIOHDhAQEAAoaGhWJ0Vyl0ZY8jPz6eoqIiePXue8Z6IbDbGJNVXh+OD90qptq+0tFSTSishIoSGhjapdamJRSnVIjSptB5N/W/VPhNLQTpUnHI6CqWUapPaZ2I5kQtb3nY6CqVUC8nPzychIYGEhAQiIiKIjo6u+bqsrKxBddx+++3s2bOnzntefPFF3n33XVeEzKWXXkpycnL9N7oht1h53+J8/OHLP8Gwm8Hbz+lolFLNLDQ0tOaX9G9/+1v8/f156KGHzrjHGIMxBg+Pc/+9/eabb9b7nHvuuafpwbYB7bPFEhAJRVmw5S2nI1FKOSgtLY24uDhuvPFGBg0aRFZWFnPnziUpKYlBgwbx2GOP1dxb3YKoqKggODiYefPmER8fz8UXX0xOTg4Av/rVr3juuedq7p83bx4jRoygf//+fPXVVwCcOHGC733ve8TFxTF79mySkpLqbZn885//ZMiQIQwePJhHHnkEgIqKCm6++eaa8hdeeAGAP//5z8TFxTF06FBuuukml//MGqJ9tlh8/aH7pVarJfEW8O7gdERKtRu/W7KTXZmFLq0zLiqQR2cMatRnd+/ezdtvv01SkjWL9sknnyQkJISKigomTJjA7NmziYuLO+MzBQUFjBs3jieffJIHH3yQN954g3nz5n2nbmMMGzZsYPHixTz22GN8+umn/OUvfyEiIoKFCxeydetWEhMTv/O52tLT0/nVr37Fpk2bCAoKYvLkyXz88ceEh4eTl5fH9u3bATh+/DgATz/9NIcOHcLHx6emrKW1zxYLwISHoTgbNtXfvFVKtV29e/euSSoA7733HomJiSQmJpKSksKuXbu+85kOHTpw+eWXAzB8+HAOHjx4zrqvueaa79yzdu1arr/+egDi4+MZNKjuhLh+/XomTpxIWFgY3t7e3HDDDaxZs4Y+ffqwZ88e7r33XpYvX05QUBAAgwYN4qabbuLdd99t9ALHpmqfLRaAHpdCjzGw9s8w/Dbw6eh0REq1C41tWTSXTp061bxOTU3l+eefZ8OGDQQHB3PTTTedcz2Hj49PzWtPT08qKirOWbevr2+99zRWaGgo27ZtY9myZbz44ossXLiQV199leXLl7N69WoWL17M73//e7Zt24anp6dLn12f9ttiAZjwCJzIgU1vOB2JUsoNFBYWEhAQQGBgIFlZWSxf7vptB0ePHs2CBQsA2L59+zlbRLWNHDmSlStXkp+fT0VFBfPnz2fcuHHk5uZijOHaa6/lscceY8uWLVRWVpKens7EiRN5+umnycvLo6SkxOXfQ33ab4sFoPsl0HMc/O85SLodfDrV/xmlVJuVmJhIXFwcAwYMoHv37owePdrlz/jJT37CLbfcQlxcXM1V3Y11LjExMTz++OOMHz8eYwwzZszgiiuuYMuWLXz/+9/HGIOI8NRTT1FRUcENN9xAUVERVVVVPPTQQwQEBLj8e6iP7hX27Tp44zKY8jiMvtfZwJRqo1JSUhg4cKDTYbiFiooKKioq8PPzIzU1lalTp5KamoqXl3v9nX+u/2YN3SvMvb4TJ3QbBb0mwP+eh4u+r60WpVSzKi4uZtKkSVRUVGCM4ZVXXnG7pNJUbeu7aawJj8DrU2DDa3Dp/U5Ho5Rqw4KDg9m8ebPTYTSr9j14Xy12BPSeBF+9AKeKnY5GKaVaNU0s1SY8AiX5sOFVpyNRSqlWTRNLtZgk6DPFbrUUOR2NUkq1Wk6eeR8rIitFZJeI7BSR+2q99xMR2W2XP12r/GERSRORPSJyWa3yaXZZmoh8d1+FhprwMJw8ButfaXQVSinV3jnZYqkAfmqMiQNGAfeISJyITABmAfHGmEHAMwAiEgdcDwwCpgEviYiniHgCLwKXA3HAHPveCxc9HPpNg6/+AqUFTfz2lFLuYsKECd9Z7Pjcc89x99131/k5f39/ADIzM5k9e/Y57xk/fjz1HXX+3HPPnbFQcfr06S7Zx+u3v/0tzzzzTJPrcTXHEosxJssYs8V+XQSkANHA3cCTxphT9ns59kdmAfONMaeMMQeANGCEfaUZY/YbY8qA+fa9jTN+HpQe11aLUm3InDlzmD9//hll8+fPZ86cOQ36fFRUFO+//36jn392Ylm6dCnBwcGNrs/ducUYi4j0AIYB64F+wBgRWS8iq0XkIvu2aOBwrY+l22XnK2+cqGHQfzp8/Vc46czOoEop15o9ezaffPJJzaFeBw8eJDMzkzFjxtSsK0lMTGTIkCEsWrToO58/ePAggwcPBuDkyZNcf/31DBw4kKuvvpqTJ0/W3Hf33XfXbLn/6KOPAvDCCy+QmZnJhAkTmDBhAgA9evQgLy8PgGeffZbBgwczePDgmi33Dx48yMCBA7nzzjsZNGgQU6dOPeM555KcnMyoUaMYOnQoV199NceOHat5fvU2+tWbX65evbrmoLNhw4ZRVOTacWXH17GIiD+wELjfGFMoIl5ACFb32EXAAhHp5YLnzAXmAnTr1q3um8fPg1fGwvq/Wa+VUq6zbB4c2e7aOiOGwOVPnvftkJAQRowYwbJly5g1axbz58/nuuuuQ0Tw8/Pjww8/JDAwkLy8PEaNGsXMmTPPe+77yy+/TMeOHUlJSWHbtm1nbHv/xBNPEBISQmVlJZMmTWLbtm3ce++9PPvss6xcuZKwsLAz6tq8eTNvvvkm69evxxjDyJEjGTduHJ07dyY1NZX33nuP1157jeuuu46FCxfWeb7KLbfcwl/+8hfGjRvHb37zG373u9/x3HPP8eSTT3LgwAF8fX1rut+eeeYZXnzxRUaPHk1xcTF+fq498NDRFouIeGMllXeNMR/YxenAB8ayAagCwoAMILbWx2PssvOVn8EY86oxJskYkxQeHl53YJHxMOBK+PolbbUo1UbU7g6r3Q1mjOGRRx5h6NChTJ48mYyMDLKzs89bz5o1a2p+wQ8dOpShQ4fWvLdgwQISExMZNmwYO3furHeDybVr13L11VfTqVMn/P39ueaaa/jyyy8B6NmzJwkJCUDdW/ODdT7M8ePHGTduHAC33nora9asqYnxxhtv5J///GfNCv/Ro0fz4IMP8sILL3D8+HGXr/x3rMUi1p8DrwMpxphna731ETABWCki/QAfIA9YDPxLRJ4FooC+wAZAgL4i0hMroVwP3NDkAMfPg90fw7qXrDUuSinXqKNl0ZxmzZrFAw88wJYtWygpKWH48OEAvPvuu+Tm5rJ582a8vb3p0aPHObfKr8+BAwd45pln2LhxI507d+a2225rVD3VqrfcB2vb/fq6ws7nk08+Yc2aNSxZsoQnnniC7du3M2/ePK644gqWLl3K6NGjWb58OQMGDGh0rGdzssUyGrgZmCgiyfY1HXgD6CUiO7AG4m+1Wy87gQXALuBT4B5jTKUxpgL4MbAcawLAAvvepokYAgNnwLqXrSnISqlWzd/fnwkTJnDHHXecMWhfUFBAly5d8Pb2ZuXKlRw6dKjOesaOHcu//vUvAHbs2MG2bdsAa8v9Tp06ERQURHZ2NsuWLav5TEBAwDnHMcaMGcNHH31ESUkJJ06c4MMPP2TMmDEX/L0FBQXRuXPnmtbOO++8w7hx46iqquLw4cNMmDCBp556ioKCAoqLi9m3bx9DhgzhF7/4BRdddBG7d+++4GfWxbEWizFmLVZr41zO2ZFojHkCeOIc5UuBpa6LzjZuHqQsga9fhIm/cnn1SqmWNWfOHK6++uozZojdeOONzJgxgyFDhpCUlFTvX+533303t99+OwMHDmTgwIE1LZ/4+HiGDRvGgAEDiI2NPWPL/blz5zJt2jSioqJYuXJlTXliYiK33XYbI0aMAOAHP/gBw4YNq7Pb63zeeust7rrrLkpKSujVqxdvvvkmlZWV3HTTTRQUFGCM4d577yU4OJhf//rXrFy5Eg8PDwYNGlRzGqar6Lb59VlwC6R9Afdvg44hzRuYUm2Ubpvf+jRl23y3mG7s1sbNg7Jia/qxUkqpemliqU/XOBh0lbVg8kS+09EopZTb08TSEOPmQdkJ+PovTkeiVKvVHrvdW6um/rfSxNIQXQbA4O/B+lfhRJ7T0SjV6vj5+ZGfn6/JpRUwxpCfn9+kRZOOr7xvNcb9AnZ+YB1hPPVxp6NRqlWJiYkhPT2d3Nxcp0NRDeDn50dMTEyjP6+JpaHC+8Hg2bDx73DJveBfz+p9pVQNb29vevbs6XQYqoVoV9iFGPcLqCiF/z3ndCRKKeW2NLFciLA+MOQ62Pg6FJ1/LyGllGrPNLFcqHE/h8oya6xFKaXUd2hiuVChvWHo/4NNr0PREaejUUopt9MuE0uTZzyO+xlUlsNaHWtRSqmztcvEsiurkEP5JxpfQUgviJ8Dm96AwizXBaaUUm1Au0wsVcawODmzaZWMfQhMJaz9s2uCUkqpNqJdJpZOPl4s2prZtFXAIT2tVsvmf0BhE5OUUkq1Ie0ysQR39CYtp5iUrO8evHNBxv7MarV8+Wz99yqlVDvRLhNLYAdvvDyERVszmlZR5+6QcCNseQsK0l0TnFJKtXLtMrF4eQhj+4WzJDmTqqomThEb+5A1zezLP7kmOKWUauUcSywiEisiK0Vkl4jsFJH7znr/pyJiRCTM/lpE5AURSRORbSKSWOveW0Uk1b5ubcjzZ8ZHkVlQyuZvm3iefXA3SLwZtrwDx79tWl1KKdUGONliqQB+aoyJA0YB94hIHFhJB5gK1P5NfTnQ177mAi/b94YAjwIjgRHAoyLSub6HT4nrip+3B4uSm9gdBjDmpyCirRallMLBxGKMyTLGbLFfFwEpQLT99p+BnwO1+6lmAW8byzogWEQigcuAFcaYo8aYY8AKYFp9z+/k68WUuAg+2ZZFeWVV076ZoBhIvAW++SccO9S0upRSqpVzizEWEekBDAPWi8gsIMMYs/Ws26KBw7W+TrfLzlder5nxURwrKWdtqgsO77r0QRAP+PKZptellFKtmOOJRUT8gYXA/VjdY48Av2mG58wVkU0isqn6sKFx/cIJ6uDN4q0uWIcSFA3Db4Pkf8Gxg02vTymlWilHE4uIeGMllXeNMR8AvYGewFYROQjEAFtEJALIAGJrfTzGLjtf+RmMMa8aY5KMMUnh4dYhXT5eHkwfEsHynUc4WVbZ9G/o0gdBPGHNH5tel1JKtVJOzgoT4HUgxRjzLIAxZrsxposxpocxpgdWt1aiMeYIsBi4xZ4dNgooMMZkAcuBqSLS2R60n2qXNcjM+GhKyir5LMUF56sERkLS7ZD8Hhzd3/T6lFKqFXKyxTIauBmYKCLJ9jW9jvuXAvuBNOA14EcAxpijwOPARvt6zC5rkBE9Q+ga6Oua7jCASx8AT29Yo2MtSqn2ybEz740xawGp554etV4b4J7z3PcG8EZj4vD0EGYMjeKtrw9SUFJOUEfvxlRzWkAEJN0B61+xpiGH9m5afUop1co4PnjvDmYlRFNeaVi2w0Vb4I++Hzx9dKxFKdUuaWIBBkcH0jOsk+u6wwK6wkXfh23/hrxU19SplFKthCYWQESYGR/F1/vzyS4sdU2lo+8DT19Y/bRr6lNKqVZCE4ttZkIUxsASV7Va/LvAiDthx/uQu9c1dSqlVCugicXWO9yfwdGBrusOA6vV4tUBVj/lujqVUsrNaWKpZVZ8NNvSCziQd8I1FXYKs1stCyFnt2vqVEopN6eJpZYr4yMRgcXJLmy1XHIv+HTSVotSqt3QxFJLZFAHRvYMYdHWDKxlMy7QKRRGzIWdH0JOimvqVEopN6aJ5Swz46PZn3uCnZmFrqv0kp+Ajz+setJ1dSqllJvSxHKWywdH4O0prh3E7xgCI38Iuz6C7J2uq1cppdyQJpazdO7kw7h+4SxOzqSqykXdYQAX3wO+gdpqUUq1eZpYzmFGfBRHCkvZcLDBe1nWr2MIjLwLUhbDke2uq1cppdyMJpZzmBLXlQ7enq7tDgO4+EfgG6StFqVUm6aJ5Rw6+ngxdVBXlm7PoqyiynUVd+gMo+6G3R9D1tknLyulVNugieU8ZiVEcbyknC9Tc11b8ai7tdWilGrTNLGcx6V9wgnu6O367rAOwdZA/p6lkPmNa+tWSik3oInlPHy8PJg+JJL/7sympKzCtZWPugv8grXVopRqkzSx1GFWfBQnyytZsSvbtRX7BcElP4a9n0LGZtfWrZRSDnMssYhIrIisFJFdIrJTRO6zy/8oIrtFZJuIfCgiwbU+87CIpInIHhG5rFb5NLssTUTmuSrGi3qEEBnk59q9w6qN+KE1mK+tFqVUG+Nki6UC+KkxJg4YBdwjInHACmCwMWYosBd4GMB+73pgEDANeElEPEXEE3gRuByIA+bY9zaZh4cwIz6K1XtzOXaizBVVnuYXaG31kvpfSN/k2rqVUspBjiUWY0yWMWaL/boISAGijTH/NcZUD2qsA2Ls17OA+caYU8aYA0AaMMK+0owx+40xZcB8+16XmBkfRUWVYdmOI66q8rQRc6FDCKz6g+vrVkoph7jFGIuI9ACGAevPeusOYJn9Oho4XOu9dLvsfOVnP2OuiGwSkU25uQ2fQjwoKpDe4Z1YlJzR4M80mG8AjL4X0j6DwxtcX79SSjnA8cQiIv7AQuB+Y0xhrfJfYnWXveuK5xhjXjXGJBljksLDwy8kPmbGR7Ph4FGyCk66IpQzXXQndAzVVotSqs1wNLGIiDdWUnnXGPNBrfLbgCuBG83pg1EygNhaH4+xy85X7jIzE6IwBj7emuXKai2+/tYRxvu+gINrXV+/Ukq1MCdnhQnwOpBijHm2Vvk04OfATGNMSa2PLAauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7sy1p5hnYiPCWLR1mboDgO46AcQ3A0+uhtOHm+eZyilVAtxssUyGrgZmCgiyfY1HfgrEACssMv+BmCM2QksAHYBnwL3GGMq7YH+HwPLsSYALLDvdakZ8VHsyChkX26xq6u2ji7+3utQkAFL7gNXnV6plFIOEJcdwduKJCUlmU2bLmyKb3ZhKaP+8Dn3TuzLA1P6NU9gX/4JPn8MZjwPw29rnmcopVQjichmY0xSffc5PnjfWnQN9OPiXqEs3ppJsyXj0Q9Ar/GwbB7k7G6eZyilVDPTxHIBZiVEcSDvBNszCprnAR4ecPUrVtfY+7dDeTPMQlNKqWamieUCTBsUibenNM8WL9UCIqzkkrMLlv+y+Z6jlFLNRBPLBQjq6M34/l1Ysi2TyqpmHJvqO9na7mXT67BrUfM9RymlmoEmlgs0KyGK7MJTrD+Q37wPmvgbiEqExT+B498277OUUsqFNLFcoEkDutLJx7N5u8MAvHxg9utQVQUL74RKF58Jo5RSzUQTywXq4OPJ1EERLNtxhFMVlc37sJBecOWf4fA6WK3b6yulWgeXJBaxTBaRa2ufn9JWzUyIouBkOWv25jX/w4ZeCwk3wZpnYP/q5n+eUko10QUnFhH5nYh8cVbxUqyV7/8GUuwtV9qsS/uE0bmjd/PseHwu05+G0D7wwVw40QLJTCmlmqAxLZZrgeTqL0RkBnAZ8DRwA+AJ/Mol0bkpb08PrhgayWcp2Zw41QJjHz6dYPYbcPKotZ9YO9wtQSnVejQmscQAe2p9fRWwzxjzsDFmPvASMMkVwbmzWQnRlJZXsWJXdss8MHIoTH3COnFy3Ust80yllGqExiQWOevryVjdYNW+Bbo2OqJWYni3zkQHd2i57jCAEXdC/ytgxaOQ+U3LPVcppS5AYxLLPmAqgIiMwjoL5b+13o8GmmnPE/fh4SFcGR/Jl6l5HD1R1jIPFYFZfwX/LvD+HXCqqGWeq5RSF6AxieVl4GoR2Y51bPAhzmyxjAZ2uCA2tzcrPpqKKsPS7c1wANj5dAyBa16DYwfhk4da7rlKKdVAF5xYjDGvAN8HUoEPgcuMMacARCQECAfec2WQ7mpgZAB9u/g3/2LJs/UYDeN+AdvmQ3K7+FErpVqRRq1jMca8aYy5xhhzhzFmb63yo8aY4caY110XovsSEWbGR7Hh4FEyjrfwTsRjfwbdR8MnP4W8tJZ9tlJK1UEXSDbRzIQoAD7e2sKtFg9Pq0vMy8faYr/iVMs+XymlzsOxBZIiEisiK0Vkl4jsFJH77PIQEVkhIqn2v53tchGRF0QkTUS2iUhirbpute9PFZFbL/R7aoruoZ1IiA1mUUt3hwEERcOsl+DINvjsty3/fKWUOgcnF0hWAD81xsQBo4B7RCQOmAd8bozpC3xufw1wOdDXvuZiTSKoHtd5FBgJjAAerU5GLWVWQhS7sgpJy3FgltaA6TDih9balj2ftvzzlVLqLI4tkDTGZBljttivi4AUrKnKs4C37NvesuvHLn/bWNYBwSISiZXUVtjjO8eAFcC0RnxfjXbF0Eg8hJYfxK825THoOsRalV/oUAxKKWVziwWSItIDGAasB7oaY6rn7x6pVVc0cLjWx9LtsvOVt5guAX5c0juMRVszMU5st+LtB9e+aY2zfDAXqpp512WllKqD4wskRcQfWAjcb4wprP2esX5Lu+Q3tYjMFZFNIrIpNzfXFVWeYWZCFIfyS9ia7tDa0LC+MP2PcPBL+PJPzsSglFI4vEBSRLyxksq7xpgP7OJsu4sL+98cuzwDK4lVi7HLzld+BmPMq8aYJGNMUnh4eEPCuyCXDYrAx9OjZbd4OVvCDTDkWlj1Bzj0tXNxKKXaNccWSIqIAK8DKcaYZ2u9tRiontl1K7CoVvkt9uywUUCB3WW2HJgqIp3tQfupnJnoWkRQB28mDAjn421ZVFY5tPuwCFzxLAR3h4U/gJKjzsShlGrXnFwgORq4GZgoIsn2NR14EpgiIqlY4zfVRycuBfYDacBrwI+qnwk8Dmy0r8fsshY3KyGa3KJTrNuf78TjLX6B1hb7xdmw+Ce6xb5SqsV5NeXDIhIBVK9ZOWCMOdLQzxpj1vLdiQDVvjOrzB5vuec8db0BvNHQZzeXiQO64O/rxaLkDEb3CXMukOhEmPwo/PdXsPHv1q7ISinVQhrVYhGRi0VkA9ZYxlr7yhCR9XY3Vbvk5+3J1EFdWbbjCKcqHJ6ZNeoe6DMFlv8SjrSLPUGVUm6iMSvvRwBfAAOwuqQesK/XgIHAFyJykSuDbE1mJURTVFrBqj2un3l2QTw84KqXoUOwtcV+2Qln41FKtRuNabE8hjVTa6Ax5i5jzAv2dRdWssm172mXRvcOJbSTj3OLJWvzD4drXoW8vbDsF05Ho5RqJxqTWC4G/maMOdeU3kzgFeCSpgbWWnl5enDF0Eg+S8mmqLTc6XCg13i49AH45h3YsdDpaJRS7UBjEosnUNeRiafse9qtWQlRnKqoYsWubKdDsUx4BGJGwJL7rQPClFKqGTUmsWwF7hCRgLPfsFfR3wG06wPZE7t1JqZzB2d2PD4XT2/43t8BscZbKt2gJaWUarMak1j+D2ssZbuIPCwiV9vXI1gr7vsDT7gyyNam+gCwtWl55Be7yTkpnbvDzBcgYzN88bjT0Sil2rDGrLxfBswBfLASyPv29X9Y62KuN8a0+/3bZyZEUVllWLo9q/6bW8qgq2D47fC/5yHtc6ejUUq1UY1deb8Aa3+ui7HOYLkB60yV7kCOiLTbWWHVBkQE0r9rgPt0h1Wb9gcIHwgf3gXFOfXfr5RSF6jRRxMbYyqNMeuNMf+2rw3GmEpgDPBL14XYes1MiGLToWMcPlridCineXewttg/VQgf/hCqqpyOSCnVxrjkzHt1bjPjowBYss3NWi1dBsK0J2HfF/DVC05Ho5RqYzSxNKPYkI4kdgt2j8WSZxt+G8RdZQ3kp29yOhqlVBuiiaWZzUqIZveRIvYcKXI6lDOJwIznISDKmoJc6tABZUqpNkcTSzObPiQSD4HFWx08AOx8OgTD7NehIN1aPKlb7CulXKBB2+aLyB0XUOfwRsbSJoUH+DK6TxiLt2by0NT+WOebuZHYETDxl/D5Y9B7AiTe4nRESqlWrqHnsfwd6+z5hv5W1D99a5mVEM1D/9nKN4ePk9its9PhfNfoB2D/alj6c4gdCeH9nY5IKdWKNTSxTGjWKNq4ywZ15ZHG9MvFAAAgAElEQVQPPVicnOmeicXDw9oF+eXR1njLDz6zpiUrpVQjNCixGGNWN3cgbVmAnzeTBnTh422Z/OqKgXh5uuHQVkAEXP03eHe2dfLkFX9yOiKlVCvl2G84EXlDRHJEZEetsgQRWSciySKyyT5UDLG8ICJpIrJNRBJrfeZWEUm1r1ud+F4aYlZCFHnFZXy9P9/pUM6v7xS4+MfWccYpS5yORinVSjn5p/M/gGlnlT0N/M4YkwD8xv4a4HKgr33NBV4GEJEQ4FFgJDACeFRE3LCvCcb370KAr5f7bfFytkmPQtQwWPRjOH7Y6WiUUq2QY4nFGLMGOHp2MRBovw4Cqn8LzwLeNpZ1QLCIRAKXASuMMUeNMceAFXw3WbkFP29PLhscwfIdRygtr3Q6nPPz8oHvvQ5VlfDBnVBZ4XRESqlWxt06++8H/igih4FngIft8mig9p/P6XbZ+crd0qyEKIpOVbBqj5tv/hjaG678M3z7Nbw5DVY9CQe+hPJSpyNTSrUCDZ0V1lLuBh4wxiwUkeuA14HJrqhYROZidaPRrVs3V1R5wS7uFUqYvy+LkjOZNjjSkRgabOi1cCIHts63EgsGPH0h5iLoMRp6XGq91tljSqmzuFtiuRW4z379H6z1MwAZWNv0V4uxyzKA8WeVrzpXxcaYV4FXAZKSkhxZZ+Pl6cGVQyP514ZvKSwtJ9DP24kwGu7ie6zr5HGr9XJwrXWt+SOsfgo8fSA6qVaiGQE+HZ2OWinlMHdLLJnAOKzkMBFItcsXAz8WkflYA/UFxpgsEVkO/L7WgP1UTnefuaWZCVH846uDLN9xhGuTYuv/gDvoEAz9L7cusPYV+3bd6UTz5bNWsvHwhujhpxNN7Ejw6eRs7EqpFudYYhGR97BaG2Eiko41u+tO4HkR8QJKsbuugKXAdCANKAFuBzDGHBWRx4GN9n2PGWPOnhDgVobFBhMb0oHFWzNbT2I5m18Q9LvMugBKC+Hw+tOJZu1z8OWfwMMLohJrJZpR4OvvbOxKqWYnph1uPJiUlGQ2bXJuq/hnlu/hpVVprH9kMuEBvo7F0WxOFdmJ5n9WosncAlUVIJ7WVOYeo6HHGKtF4xdYf31KKbcgIpuNMUn13eduXWHtwsyEKP66Mo1PtmVy2+ieTofjer4B0GeydQGUnTgz0Xz9EvzveRAPiEw4nWi6jbJaQ0qpVk1bLA6Z9twaOvp48sGPRjsahyPKSiB9w+lEk7EJKsusRBMx1Oo263EpdLvYGt9RSrkFbbG4uVkJ0Tz16W6+zS+hW2g7m0nl0xF6jbcugPKTkL7xdKLZ8Bp8/VdAIGLImYmmY4hjYSulGkZbLA5JP1bCpU+t5GeX9eeeCX0cjcXtlJdarZjqyQDpG6GiFBDoOhgS5sCoH1mnYCqlWoy2WNxcTOeOJHXvzOLkTE0sZ/P2O91KAag4BRmbrRZN2mew/BHI2wtXPAsens7GqpT6Dnfb0qVdmZUQxZ7sInYfKXQ6FPfm5QvdL4FxP4M7PoUxP4XN/4AFt+g2M0q5IU0sDpo+JBJPD3H/HY/diQhM+g1Mewp2fwz/vMbaGUAp5TY0sTgo1N+XS/uEsTg5k/Y41tUko+6ydmE+vAH+cQUUHXE6IqWUTROLw2YlRJFx/CRbvj3mdCitz5DZcOMCOHoAXp8C+fucjkgphSYWx00dFIGvl4d2hzVW74lw28fWIszXp0LGFqcjUqrd08TiMH9fLybHdeWTbVlUVFY5HU7rFJ0Id/zXWh/z1gzY94XTEalzKT8Jye/BiTynI1HNTBOLG5gZH0X+iTL+75MUDuSdcDqc1imsj5VcOveAd6+D7e87HZGqZgzsXgovjoSP7oI3L9cxsTZOE4sbmNC/C9OHRPD21weZ8MwqZr/8FfM3fEtRabnTobUugZFw2ycQOwIWfh/W/c3piFT+Pnj3Wpg/xzoU7vI/QmEmvDkdCjKcjk41E11570ayC0v58JsM/rPpMPtyT+Dn7cG0QRHMHh7Lxb1D8fTQleYNUl5qJZbdH1trXib+Wlfpt7SyE7DmGWtrHi8/GP8wjLgTPL3h2/Xw7mxre55bl0CwMye6qgvX0JX3mljckDGGrekFvL/5MIuTMyksrSAqyI9rEmP43vAYeobp4Vn1qqqETx60FlIOuxmufA48daOJZmcM7PoIlv8SCjMgfg5M/h0EdD3zvvTN8M+rwTcIbltidWEqt6eJpQ7unlhqKy2v5LOUbN7fnM6avblUGRjevTOzh8dwxdBI9z/e2EnGwMrfw5qnof90mP2G1R2jmkfOblj2Mziwxto8dPoz1lEI55OZDO9cBd4drZZLaO+Wi1U1iiaWOrSmxFJbdVfZ+5vTScspxtfLg2mDI5g9PIZLeodpV9n5bHgNlv7M+iU35z3o0Ln+z6iGKy2E1U/B+r+Bjz9M+jUMv71h+7gd2Q5vz7KOtb7tYwjr2/zxqkbTxFKH1ppYqhlj2JZewPub01mUnEFhaQWRQX5ckxjN9xJj6BWux/9+x84P4YO5ENoHbloIgVFOR9T6GQPb/g0rfgPFOTD8Vpj4G+gUemH15KTAWzOt17cugS4DXB+rcgm3Tywi8gZwJZBjjBlcq/wnwD1AJfCJMebndvnDwPft8nuNMcvt8mnA84An8HdjzJP1Pbu1J5baSssr+Twlh/c3H2a1dpXVbf9qmH+jdXjYTR9AeD+nI2q9srZZrcDD6yB6OEz/o/VvY+XutdYgVVXALYsgYnD9n1EtrjUklrFAMfB2dWIRkQnAL4ErjDGnRKSLMSZHROKA94ARQBTwGVD9W2EvMAVIBzYCc4wxu+p6dltKLLXl1OoqS9WusnPLTLZmJFVVwo3vQ0wTfhm2RyVHrXGrTa9bXYqTfwcJN4KHC1Yu5O+zkkt5Cdz8EUQlNL1O5VJun1gARKQH8HGtxLIAeNUY89lZ9z0MYIz5g/31cuC39tu/NcZcdq77zqetJpZqtbvKFm/NpOBkORGBdlfZ8Bh6t/eusvx91q7IxTlw3TvQd7LTEbm/qir45h34/Hdw8hhcdCdMeNj141VHD1jJ5VQh3Pxh01pByuUamljcbYFkP2CMiKwXkdUicpFdHg0crnVful12vvLvEJG5IrJJRDbl5uY2Q+juQ0SIjw3m8asGs/6RSbx4QyJxUYH8bfU+Jv1pNde89D/+tf5bCk620wWYob2tVfqhveG9/wfbFjgdkXtL3wx/nwRL7oWw/vDDNTD96eaZBBHSE25fCn7B8PZV1u7VqtVxt8TiBYQAo4CfAQtEXLOyzRjzqjEmyRiTFB4e7ooqWwU/b0+uGBrJG7ddxLqHJ/HI9AEUlVbwyIfbGfHEZ9z73jes2ZtLZVU7m8QR0BVuWwrdLoYP7oSvX3Q6IvdzIg8W/Rj+PtFak3LNa9Yv/Yghzfvc4G7WczqFwTtXw6Gvm/d5yuXcbcVYOvCBsfrnNohIFRAGZACxte6Lscuoo1ydpUugH3PH9ubOMb3YnlE9qyyTxVsziQj042p7VlmfLu2kq8wv0Bpn+XCuddxxcbY1ZnCBf8vkFp0ir/gUAyICcNHfQc6qrIDNb8IXj1sr6C/5CYz9ufXzailBMVbif2uG1W15wwLoOablnq+axN3GWO4CoowxvxGRfsDnQDcgDvgXpwfvPwf6AoI1eD8JK6FsBG4wxuys67ltfYzlQpyqqJ5Vls5qu+UyrFsws4fHcOXQKII6tINZZVWV1gynTa9D/A0w8wVr65E6FJSU8+nOLJZszeKrfXk1s/HumdCbCf27tN4Ec+hr62eRvR16jrNme4X3dy6e4hxrKvKxgzDnX9YxCcoxbj94LyLvAeOxWiTZwKPAO8AbQAJQBjxkjPnCvv+XwB1ABXC/MWaZXT4deA5ruvEbxpgn6nu2JpZzyyks5aNka1bZ3uxifLw8GN8vnClxXZk4oAuh/r5Oh9h8jIHVT8Oq30Pfy+Daf1jb8Ndy4lQFn6Vks2RrJqv35lJeaege2pEZQ6MI6eTD62sPkHH8JAMjA/nR+N41R0+3CkVHrPUo2/4NgTFw2RMQN8s99lg7kWctosxLhevfhb5TnI6o3XL7xOIkTSx1M8awI6OQhVvSWb7zCFkFpXiI9Rf55IFdmRzXte3OLNv0BnzyU4hOghv+Tal3EKv25LJkWyafp2RTWl5FRKAfM+IjmREfxZDooJrWSXllFYuSM3lpVRr7c0/QM6wTd4/rzVXDovHxcrfhTFtlubViftVTUHkKLrkXxjwIPm62H13JUSu55O6G696G/pc7HVG7pImlDppYGs4Yw87MQlbsymbFrmx2ZRUC0Cu8E1PsJJPYrXPr+cu8ASp2LMLjg++T4xXFTad+QdqpYEI7+TB9iJVMkrp3xqOO77eyyvDfnUd4cVUaOzIKiQzyY+7YXlx/UTc6+DRgm5OWsn8VLP055O2BvlNh2pPuvV/XyWPwzjVwZBvMfhPiZjodUbujiaUOmlgaL+P4ST5PsZLMuv35lFcaQjr5MHFAFyYP7MrYfmF09HG3OSH1q6wybDhwlCXbMlm2PYv+pVt5zedPVHr5k3rZOwxLHImX54W1OowxrEnN48Uv0thw8CihnXy449Ke3Hxxd2d3RChIt3Yf3vWRtavwtKeg/zTn4rkQpQXwz9mQsRm+9xoM/p7TEbUrmljqoInFNQpLy1mzN5cVu7JZuTuHwtIKfLw8uLRPmNVlNrALXQL9nA7zvIwxJB8+zpKtWXyyPZPswlN08PZkclxXZgyNZHxwNj7vXQuVZdaspNgRjX7WhgNHeWlVGqv25BLg68Utl3Tn9tE9CWvJcauKU/DVX+DLP4Gpss6queRe8Hbf/0bndKrIOiX08Dq4+hUYep3TEbUbmljqoInF9corq9h48GhNl1n6sZMAxMcGM2VgF6bERdCvq7/js6WMMew+UsSSrZks2ZbJ4aMn8fH0YFz/cGbGRzFpYJczW1xHD1jTXQuz4Lq3oN9lTXr+jowCXl61j6U7svD18uD6i7oxd2wvooKbeTv/vf+FT38BR/fDwBkw9Qno3L15n9mcyk7Av/4fHFwLV70ECTc4HVG7oImlDppYmpcxhr3ZxazYdYQVKTlsPXwcgNiQDkwe2JUpcV25qEcI3hfYtdQU+3OLWbI1iyXbMknLKcbTQxjdJ4wZQyOZOiii7mnVxbnW/mJHtsOsFyFhTpPj2ZdbzMur9vHRNxmIwDXDYrhrfG/XH+J29AB8+jDsXQahfeHyp6DPJNc+wyllJTD/BmusaMZzMPw2pyNq8zSx1EETS8vKKSzls5QcPkvJZm1aHmUVVQT6eTFhQBemxHVlXL9wApphzCHj+Ek+tlsmOzKsSQcjeoYwIz6KywdHXFg31Kkia2fkA6thymMw+j6XxJh+rITX1uxn/sbDlFdWMX1IJD8a34e4qEYuRqyssFbJF6TD/pXwvxfAwwvG/wJG3g1ePi6J222Ul8K/b4K0FdbBYiPudDqiNk0TSx00sTinpKyCNXvz+Cwlmy9253D0RBnensKoXqFMievKpIFdiW5Ct1Bu0SmWbs9iydZMNh06BkB8TBAz4qO4YmgkkUFN6HKqOAUf3gU7P4CLfwxTHnfNrr523K+vPcA/1x2i+FQFEwd04Z4JfRje/az9uMpOwPHDVuIo+NZ+bX99/DAUZVrjJ9UGz4apj7ft82cqTsGCW61W2bQnYdTdTkfUZmliqYMmFvdQWWXY8u0xPrPHZfbnnQAgLjKQKXFWl9mgqMB6x2XOtQq+f9cAZiZEceXQSLqHurB7qaoKPp0HG16Bof/P6hqrZ5V+gxlDYf4Rlq3dwMatWwkqy2Z4cDEjOp8gtDIHOX4YTh498zMeXlbSCIq1rmD736AYa+pwezlLvqIMFt4BKUushD/6XqcjapM0sdRBE4t72pdbzGe7svksJZtNh45hDEQG+THJHvwf1SsEXy9rHUj1KvjFyZmsST29Cn5mfBRXDo2if0RA8wVqjDWz6ovHoc9ka8FeQxYUVlZYLYqaVsbh06+rWyEVJ8/4SAl+pFeFUugbSZfY3sT06I9HcDcrcQTHQkBkw44Abg8qy61TQnd+ABN/DWMfcjqiNkcTSx00sbi//OJTfLE7hxW7svkyNY+T5ZX4+3oxrp+1M/Xnu61V8JFBflw59Lur4FvElrdhyX0QNQxu+I81bbe6S6qmmyr9dOI4u5sKoGPY6VZGdcKo1fI45R3IB99k8vKqfXx7tIS+Xfz50YTezBgadcHratqFygr46G7YvgDGzYPx89xjW5o2QhNLHTSxtC6l5ZV8tS+PFbusCQBVVabBq+Cb3e6l8P7tVsKoLDvzPfGEwOhaiSO2VuKwk4h3w8Z8Kiqr+GR7Fi+t3Mee7CJiQzrww7G9mT08Bj9v92uxGGMoLK3gSEEpWQUnOVJQSmZBac0u0GP7htPD1TPgqlVVwuKfQPK71lqdib/W5OIimljqoIml9ar+36vT62HOcHgjbP+PdcZLUPN2U1VVGb7YncNfV6aRfPg4XQJ8uXNML24Y2Y1Ovi2z44ExhoKT5WTZSSOroNROIKV2ArESSUlZ5RmfE4EAXy8KSysA6BbSkbH9whjTN5xLeoe6dmZgVRV8fD9secva9n/K45pcXEATSx00sajWzhjD1/vyeXFVGv9Lyyeogze3j+7BbZf0ILhj46cUG2M4eqLsdLIoLOVIwUmyjtuJo9BKJqXlZ3bpeQh0CfAjMtiPyCA/IgI7WP8GWV9HBnegS4AvXh7CofwS1qTmsmZvLl/ty6ekrBIvDyGxW2fG9gtjbL9wBkcFNb0lWlUFy34GG/9uTbWe9gdNLk2kiaUOmlhUW7Ll22O8tHIfn6Vk08nHkxtHdecHl/b8znY6VVWG/BNlZ7QqrARyslbSKKWs4syk4ekhRARaSSIiyI/IQCtR1E4c4f6+jRrzKauoYvOhYzWJZmemtd4opJMPl/YJY0xfK9F0bezWQMZYC0TXvwxJ37fWurhoinh7pImlDppYVFu0+0ghL6/ax5KtmXh5ejB9cARVhpruquzCUsorz/z/u7en0DXQblUEnZksIoI6EBXkR6i/b4vtXp1XfIq1qXms2ZvLmtQ88opPAVjjMv3CGds3nKQenS9sXMkY66yZr16AxFvgyuc1uTSSJpY6aGJRbdmh/BP8bfV+lm7PIrijNxGBpxNFZNDpJBIR5EdoJx9nJz/UoarKkHKkkC/tRLPp4DHKKqvw8/ZgZM9QxvYLZ1y/MHqHN2APOmPgi/+DL5+xTgmd9Vedpt0ImljqoIlFqdanpKyCdfvzWbPXSjTVC2qjgvwY2y+cMX3DubRPGEEd65gEsOop65TQIdfCVX8Dz9Z3xIOTGppY9KeqlGoVOvp4MXFAVyYO6ArA4aMlNa2ZT7ZnMX/jYTzE2lF7bN9wxvYLJz4m6Myxn/G/sFoqXzwOVRVwzWuu2zlB1XDyzPs3gCuBHGPM4LPe+ynwDBBujMkTq537PDAdKAFuM8Zsse+9FfiV/dH/M8a8Vd+ztcWiVNtSUVlF8uHjrNmby+rUPLalH8cYCPTzYnQfawLA2H7hp/eh+98LsOLXMOBK6zTKtrY5ZzM4VVGJn7eX27dY/gH8FXi7dqGIxAJTgW9rFV8O9LWvkcDLwEgRCQEeBZIAA2wWkcXGmGPNHr1Sym14eXqQ1COEpB4hPDi1P8dLylibZk8C2JvHsh1HAOgd3slOMtczeooXPisehgW3WGfteLXgoWturqrKcCD/BFsPH2fr4eMkpxeQYs/YawhHx1hEpAfwce0Wi4i8DzwOLAKS7BbLK8AqY8x79j17gPHVlzHmh3b5Gfedj7ZYlGo/jDGk5hTXzDRbvz+fUxVV+Hh6MC98LXcc/ytlHbtSNXAWfgnXQsxF7W69S05RKVsPF5B8+BhbDxewNf04RfZC1o4+ngyJDiIhNphHrohz+xbLd4jILCDDGLP1rFke0cDhWl+n22XnKz9X3XOBuQDdunVzYdRKKXcmIvTrGkC/rgH8YEwvSssr2XDgKGv25jI/tSNryjoyp/ILxm96Eza/Sq5nF/aETOJ4rysJ6TOSPhEBhPv7utduD01w4lQF29Kt5FHdIsksKAWsNUsDIgKYER9FQkww8bHB9OniXzPd/JEGPsNtEouIdMSKe2pz1G+MeRV4FawWS3M8Qynl/vy8PWvGXACyC0eyK+tO5mcewTftU3rnrmBk7gK8c9/j26/DWVg1ipVel1LZZQh9uwbQp4s/fbr407drAFFBfm6dcMorq9hzpKhWEikgNaeIKvs3YLeQjgzvEcIdMVaLZFBUEB18mj4N220SC9Ab6AlUt1ZigC0iMgLIAGJr3Rtjl2VgdYfVLl/VArEqpdqIroF+1sr+/l1gwlDg55iSYxQmf0TA9oX88MhS7jZLyMyPZmnuKP5TehF7TCwgdPLxpHd1oukSQF/7dWxIxxZbVFrNGMPhoydJrtUS2ZFZULP9TueO3sTHBjNtcAQJscEMjQki9EJOUb0AbjfGUuu9g5weY7kC+DHWrLCRwAvGmBH24P1mINH+2BZguDHm6Nn11aZjLEqpBjuRD7uXwI4P4OCXYKo4GdSH1PAprPEew7qiMNJyijlSWFrzER8vD3qHVycc/5qE0z20Ez5erln1f/REGVvTj5P87fGaFsmxknIAfL08GBwdRHxMMPGxQQyL7UxsSIcmt67cfoGkiLyH1doIA7KBR40xr9d6/yCnE4tgzSCbhjXd+HZjzCb7vjs43fX3hDHmzfqerYlFKdUoxbmQsgh2fAiH/gcY6DIIBl9NUd+ZpJZ3IS27mLTcYlKzi0jNKSb92OnD27w8hB5hnWoSTXVLp1d4pzq3qTlZVsnOzAKSDx9na3oBWw8f59ujJYA1z6BvF3/iY4JJ6BZMfEww/SMC8G6G83rcPrE4SROLUqrJCrMgZbHVkjm8ziqLGAqDr4FBV9ccC11SVsH+3BOk5hSRml1MWo51Hcw/UTPWIWKNd1gJxxrHqaoyNd1au48UUWnfHBnkR0KsNbAeHxPMkJgg/FvoyARNLHXQxKKUcqmCdNj5Eez8EDLs3y1RiaeTTFDMdz5yqqKSg3kl30k4+/OKazYLDfD1shJIbHW3VnDjd3p2AU0sddDEopRqNscOWQlm54eQlWyVxYywkkzcVRAYWefHKyqrOGR3c/UM7eRWm4RqYqmDJhalVIvI32cnmY8gezsg0O1iO8nMAv8uTkd4QTSx1EETi1KqxeXutZPMB5C7G8QDelxqdZUNnAWdQp2OsF6aWOqgiUUp5ajsXaeTTH4aiCf0GmclmQFXQscQpyM8J00sddDEopRyC8bAke2nk8yxg+DhBb0nQr/LIHq4NZ3ZTXZf1vNYlFLK3YlA5FDrmvQbyPzm9JhM6n+tezx9oOtgiE60ZppFDYPw/m59Aqa2WJRSyt0YA8cPQcYWyNwCmcnWVVZkve/dESLjrUQTbSebkF7NviuzdoXVQROLUqrVqaqyxmMyt9gJ5xs4sg0q7K1k/IIgMuHMlk1QjEuTjXaFKaVUW+LhAeH9rCv+equsstyaYVbTsvkGvvqLdewyQKdwK8FUJ5roxBaZ4qyJRSmlWitPb4gYYl3Db7XKykshe+fpRJOxBVJXYB2yCwTGQFTC6S60qGHQobNLw9LEopRSbYm3H8QMt65qp4qtbrPqLrTMLbD749Pvh/Q6s2UTGQ++/o0OQROLUkq1db7+0P0S66p28pg9KcBONt+uhx0LrffEA8L6n+4+ixpmzUxrIE0sSinVHnXoDL0nWFe14pzT3WeZ30DaCtj6L+s9j4anC00sSimlLP5drIWZ/S6zvjYGCjNOTw7gdw2qRhOLUkqpcxOxpiwHxUDcTBqaWFx/xJhSSql2zbHEIiJviEiOiOyoVfZHEdktIttE5EMRCa713sMikiYie0Tkslrl0+yyNBGZ19Lfh1JKqTM52WL5B9YZ9rWtAAYbY4YCe4GHAUQkDrgeGGR/5iUR8RQRT+BF4HIgDphj36uUUsohjiUWY8wa4OhZZf81xthLRlkHVJ/nOQuYb4w5ZYw5AKQBI+wrzRiz3xhTBsy371VKKeUQdx5juQNYZr+OBg7Xei/dLjtfuVJKKYe4ZWIRkV8CFcC7LqxzrohsEpFNubm5rqpWKaXUWdwusYjIbcCVwI3m9NbLGUBsrdti7LLzlX+HMeZVY0ySMSYpPDzc5XErpZSyuFViEZFpwM+BmcaYklpvLQauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7d03EoppU5zbIGkiLwHjAfCRCQdeBRrFpgvsEKsMwTWGWPuMsbsFJEFwC6sLrJ7jDGVdj0/BpYDnsAbxpid9T178+bNxSKypxm+raYKA/KcDuIsGlPDaEwN545xaUwN078hN7XLg75EZFNDDqtpae4Yl8bUMBpTw7ljXBpTwzQ0JrfqClNKKdX6aWJRSinlUu01sbzqdADn4Y5xaUwNozE1nDvGpTE1TINiapdjLEoppZpPe22xKKWUaibtLrG4427I59rp2UkiEisiK0Vkl4jsFJH7nI4JQET8RGSDiGy142rY4RAtwN4U9RsR+bj+u5ufiBwUke0ikiwim5yOB0BEgkXkfXsH8xQRudjhePrbP5/qq1BE7ncypmoi8oD9v/EdIvKeiPi5QUz32fHsrO/n1K66wuzdkPcCU7D2FdsIzDHG7HI4rrFAMfC2MabhB0s3XzyRQKQxZouIBACbgavc4OckQCdjTLGIeANrgfuMMeucjAtARB7k/7d3/zFXlnUcx98fo6bALLOfyBIyKiwdmDMH4SqszURWuVatH0v7ZYLOZv/YWrHW2qiG/aFrK0idgS1B5ywjdJqVLdZEmi76oVKKEqCBGqSQfvrjug7dPJwHD3DwPnE+r+3eee77XM99vs+z5znfc1/XdX8vOBU42vacAYjnb8CptgfmPghJ1wlktg0AAAZNSURBVAC/tr243tA81va2tuOC3e8NjwBvt/33lmM5jvK3faLtf9d7+G6xfXWLMb2VUuT3NGAnsBK4wPb93doP2xXLQFZD7lbpuU22N9peU79+CljHABT3dPGvuvviurX+yUjSROBsYHHbsQwqSS8FzgCWANjeOShJpZoNPNB2UmkYAxwlaQwwFni05XimAqtt76gV6O8EPjha42FLLKmGvJ8kTQKmA6vbjaSoXU5rgc3ArbYHIa7vUkoRPdd2IA0GVkm6W9Ln2g4GmAxsAa6qXYaLJY1rO6iGjwDXtR0EgO1HgO8ADwEbgSdsr2o3Ku4DZkk6VtJY4H3sWadxD8OWWGI/SBoPrAAusf1k2/EA2H7W9jRKwdHT6iV6ayTNATbbvrvNOLp4h+1TKIvgzavdrW0aA5wCfM/2dGA7MChjnC8B5gLXtx0LgKRjKD0pk4EJwDhJH28zJtvrgIXAKko32Frg2dHaD1ti6bka8rCrYxgrgKW2b2g7npFqN8od7L0K6QttJjC3jmn8GHi3pB+1G9LuT73Y3gzcSOkGbtMGYEPjCnM5JdEMgrOANbY3tR1IdSaw3vYW27uAG4AZLceE7SW232b7DGArZby6q2FLLKmG3IM6SL4EWGd7UdvxdEh6paSX1a+PokzC+FObMdm+zPZE25Mof0+3227106WkcXXSBbW76b2UrozW2P4H8LCkThHD2ZSisoPgowxIN1j1EHC6pLH1f3E2ZZyzVZJeVR9fRxlfWTZa29aqG7fB9n8OpBryodat0rPtJS2GNBP4BHBvHc8A+LLtW1qMCeC1wDV1Bs8RwE9sD8T03gHzauDGWiF8DLDM9sp2QwLgImBp/VD3IHBey/F0Eu97gM+3HUuH7dWSlgNrKNXc72Ew7sJfIelYYBelwvyoky+GarpxREQcesPWFRYREYdYEktERPRVEktERPRVEktERPRVEktERPRVEkvE/zlJ75RkSZ9pO5YISGKJ2KfGm/ZoW+t32UcMmqG6QTLiICwBftnl+IMvcBwRAy+JJaI3v7Odq5OIHqQrLKIPJC2oXWPTJX1f0mOStkv6qaTXd2l/nKSrJW2S9ExdrfOLtTbUyLYn15UXt0h6WmX10ytqaZSRbedLeqCec62kd414/kWSLqurOO6QtK22m9ff30gMs1yxRPRmvKRXdDn+lO1nGvtXAU8CX6es9XMR8CtJJ9v+J0Ctt/Rb4DXAlZTutDnAIuAEYH7nZJJmUWrbbacsJLYeOB44l7IA1M7Ga18AjKfUldoJXALcJOl421trm6/W7er6ekcCJwKzaiwRB892tmzZRtkoxUG9j+1Ttd2Cun8XMKbx/efU4wsbx75Vj53bOCZKeXQDJ9VjR1BKkz8OTOgSm0bE+DAwvvH8tHr8wsaxe4Cftf17zXZ4b+kKi+jNIkoV3JHbL0a0u8Jl6VYAbN8M/JWSYDrmUpbIXtFoZ+DbdbfTdhowBbjS9l5L09bvabrW/1u6GdtrKVdPJzTabAPeImnqPn/aiIOQrrCI3qyzfVsP7f48yrEzG/uTgFu7tOusTzK5Pk6pj/f2EiDQbb32rcDLG/tfAW4C/ijpL8BtwHLbd/T4GhHPK1csEYeP0ZaK3T0hwPZdlCuYj1G67d4P3C6pzfV/4jCTxBLRX28a5dj6xv564M1d2k1tPA+lCw3gpP6EVth+wvYy2+dTJgIsBc6X9MZ+vk4MrySWiP6aL2l3F7OkcyhdWs2VLm8G3iDpA412Ar5UdzvLZa+lJJd5kiaMfKFuU5OfT52RtlsdD+osW3zM/p4vopuMsUT05nRJT3c5vsV2cwB/HKVr6XrKdOOLgY2UmWAdC4EPA9dJ6kw3Phs4izJQfx+A7eckfRZYCfxB0g8oVzMTgQ8BMyiD8ftjnaTfAL8HNlGupuZTxoHW7Oe5IrpKYonozafrNtJq9pwZdh5wIWX68ZGUMjAX236s08D245JmAN8EPgkcTUkulwKXN09u+05JM4GvAV+o59wA/BzYcQA/x+WUWWeXUu55eRT4IfAN27sO4HwRe8ma9xF9IGkB5c1/iu37Ww4nolUZY4mIiL5KYomIiL5KYomIiL7KGEtERPRVrlgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKv/gtMPLUqC1psCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Train VAE\n", + "train_vae_modules.train_vae(config_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Check reproducibility of VAE training\n", + "template_path = \"data/test_vae_log.tsv\"\n", + "output_path = \"logs/NN_2500_30/tybalt_2layer_30latent_stats.tsv\"\n", + "assert np.all(np.isclose(\n", + " pd.read_csv(output_path, sep=\"\\t\").values,\n", + " pd.read_csv(template_path, sep=\"\\t\").values\n", + "))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulate data by random sampling" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized gene expression data contains 50 samples and 5000 genes\n", + "Return: simulated gene expression data containing 100 samples and 5000 genes\n" + ] + } + ], + "source": [ + "# Run simulation\n", + "simulated_data = simulate_expression_data.simulate_by_random_sampling(\n", + " normalized_data_file,\n", + " train_architecture,\n", + " dataset_name,\n", + " analysis_name,\n", + " num_simulated_samples,\n", + " local_dir,\n", + " base_dir,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0123456789...4990499149924993499449954996499749984999
00.1077080.2543220.0914860.0989330.1697520.1856920.2960730.2836560.0273640.024563...0.3028360.3469060.0425730.0862330.0542000.0937570.0347670.1821330.1338200.025069
10.5218810.1639920.0775380.0162920.1028690.1621920.5529840.7665630.0141000.015000...0.2998630.4188890.0070240.1156480.0069580.0796860.0447770.3349440.4269200.020790
20.5515350.2021640.1011210.0518450.1267030.2595660.5345390.6397850.0355700.029662...0.2920040.3472240.0236870.1475980.0263550.1034120.0828120.2060110.3891020.031277
30.1742450.1673010.2082170.1719290.1069760.1684170.2204040.1746010.0373600.068209...0.2012840.1900600.1331510.1405540.1670050.2277250.0558060.1774140.1658940.073089
40.3106090.1892690.1922790.1743140.1376170.2422490.3314640.4169840.0446770.060262...0.2297710.2729260.0755180.1564850.1102770.1746240.0747670.2060380.2710690.068040
\n", + "

5 rows × 5000 columns

\n", + "
" + ], + "text/plain": [ + " 0 1 2 3 4 5 6 \\\n", + "0 0.107708 0.254322 0.091486 0.098933 0.169752 0.185692 0.296073 \n", + "1 0.521881 0.163992 0.077538 0.016292 0.102869 0.162192 0.552984 \n", + "2 0.551535 0.202164 0.101121 0.051845 0.126703 0.259566 0.534539 \n", + "3 0.174245 0.167301 0.208217 0.171929 0.106976 0.168417 0.220404 \n", + "4 0.310609 0.189269 0.192279 0.174314 0.137617 0.242249 0.331464 \n", + "\n", + " 7 8 9 ... 4990 4991 4992 4993 \\\n", + "0 0.283656 0.027364 0.024563 ... 0.302836 0.346906 0.042573 0.086233 \n", + "1 0.766563 0.014100 0.015000 ... 0.299863 0.418889 0.007024 0.115648 \n", + "2 0.639785 0.035570 0.029662 ... 0.292004 0.347224 0.023687 0.147598 \n", + "3 0.174601 0.037360 0.068209 ... 0.201284 0.190060 0.133151 0.140554 \n", + "4 0.416984 0.044677 0.060262 ... 0.229771 0.272926 0.075518 0.156485 \n", + "\n", + " 4994 4995 4996 4997 4998 4999 \n", + "0 0.054200 0.093757 0.034767 0.182133 0.133820 0.025069 \n", + "1 0.006958 0.079686 0.044777 0.334944 0.426920 0.020790 \n", + "2 0.026355 0.103412 0.082812 0.206011 0.389102 0.031277 \n", + "3 0.167005 0.227725 0.055806 0.177414 0.165894 0.073089 \n", + "4 0.110277 0.174624 0.074767 0.206038 0.271069 0.068040 \n", + "\n", + "[5 rows x 5000 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "simulated_data.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualize random sampled compendium" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Read data\n", + "normalized_data = pd.read_csv(normalized_data_file, header=0, sep=\"\\t\", index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ENSG00000086200.16ENSG00000279019.1ENSG00000206772.1ENSG00000252996.1ENSG00000277635.1ENSG00000224790.2ENSG00000106636.7ENSG00000152443.12ENSG00000225819.1ENSG00000237377.2...ENSG00000281392.1ENSG00000241627.3ENSG00000239216.1ENSG00000256797.1ENSG00000221263.1ENSG00000249478.1ENSG00000283340.1ENSG00000242052.1ENSG00000264443.1ENSG00000236858.1
SRR5927450.0809780.8863990.00.0006540.6761130.0920190.5631590.6269640.00.000000...0.2375370.2417190.00.0000000.00.0000000.00.3083430.1118080.025641
SRR5927460.0873390.1615150.00.0000001.0000000.0535210.3862220.3337470.00.000000...0.1143700.3347520.00.0000000.00.0000000.00.1245470.1669280.000000
SRR5927470.1311390.4111280.00.0000000.0000000.1380280.5143650.6291700.00.000000...0.0645160.5142770.00.3269230.00.0000000.00.2672310.1492270.000000
SRR5927480.1445810.2411130.00.0446720.0000000.1352110.5970270.8668320.00.237624...1.0000000.5478140.00.0000000.00.0099010.00.6372430.2558820.041026
SRR5927490.2022820.0479130.00.0000000.0000000.0901410.6671330.7739180.00.000000...0.8504400.4866580.00.0000000.00.0148510.00.7122130.2301140.000000
\n", + "

5 rows × 5000 columns

\n", + "
" + ], + "text/plain": [ + " ENSG00000086200.16 ENSG00000279019.1 ENSG00000206772.1 \\\n", + "SRR592745 0.080978 0.886399 0.0 \n", + "SRR592746 0.087339 0.161515 0.0 \n", + "SRR592747 0.131139 0.411128 0.0 \n", + "SRR592748 0.144581 0.241113 0.0 \n", + "SRR592749 0.202282 0.047913 0.0 \n", + "\n", + " ENSG00000252996.1 ENSG00000277635.1 ENSG00000224790.2 \\\n", + "SRR592745 0.000654 0.676113 0.092019 \n", + "SRR592746 0.000000 1.000000 0.053521 \n", + "SRR592747 0.000000 0.000000 0.138028 \n", + "SRR592748 0.044672 0.000000 0.135211 \n", + "SRR592749 0.000000 0.000000 0.090141 \n", + "\n", + " ENSG00000106636.7 ENSG00000152443.12 ENSG00000225819.1 \\\n", + "SRR592745 0.563159 0.626964 0.0 \n", + "SRR592746 0.386222 0.333747 0.0 \n", + "SRR592747 0.514365 0.629170 0.0 \n", + "SRR592748 0.597027 0.866832 0.0 \n", + "SRR592749 0.667133 0.773918 0.0 \n", + "\n", + " ENSG00000237377.2 ... ENSG00000281392.1 ENSG00000241627.3 \\\n", + "SRR592745 0.000000 ... 0.237537 0.241719 \n", + "SRR592746 0.000000 ... 0.114370 0.334752 \n", + "SRR592747 0.000000 ... 0.064516 0.514277 \n", + "SRR592748 0.237624 ... 1.000000 0.547814 \n", + "SRR592749 0.000000 ... 0.850440 0.486658 \n", + "\n", + " ENSG00000239216.1 ENSG00000256797.1 ENSG00000221263.1 \\\n", + "SRR592745 0.0 0.000000 0.0 \n", + "SRR592746 0.0 0.000000 0.0 \n", + "SRR592747 0.0 0.326923 0.0 \n", + "SRR592748 0.0 0.000000 0.0 \n", + "SRR592749 0.0 0.000000 0.0 \n", + "\n", + " ENSG00000249478.1 ENSG00000283340.1 ENSG00000242052.1 \\\n", + "SRR592745 0.000000 0.0 0.308343 \n", + "SRR592746 0.000000 0.0 0.124547 \n", + "SRR592747 0.000000 0.0 0.267231 \n", + "SRR592748 0.009901 0.0 0.637243 \n", + "SRR592749 0.014851 0.0 0.712213 \n", + "\n", + " ENSG00000264443.1 ENSG00000236858.1 \n", + "SRR592745 0.111808 0.025641 \n", + "SRR592746 0.166928 0.000000 \n", + "SRR592747 0.149227 0.000000 \n", + "SRR592748 0.255882 0.041026 \n", + "SRR592749 0.230114 0.000000 \n", + "\n", + "[5 rows x 5000 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "normalized_data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "model = umap.UMAP(random_state=123).fit(normalized_data)\n", + "\n", + "input_data_UMAPencoded = model.transform(normalized_data)\n", + "input_data_UMAPencoded_df = pd.DataFrame(data=input_data_UMAPencoded,\n", + " index=normalized_data.index,\n", + " columns=['1','2'])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# UMAP embedding of simulated data\n", + "\n", + "simulated_data_UMAPencoded = model.transform(simulated_data)\n", + "simulated_data_UMAPencoded_df = pd.DataFrame(data=simulated_data_UMAPencoded,\n", + " index=simulated_data.index,\n", + " columns=['1','2'])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAHVCAYAAAATqShMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xl4VtWh7/HvHt4x8wRhHkVABScqWqcqOFTEoVWxE1h6pa22+mhv9ehVsO3RensP9NzbeurQVm3r0No61KpH6/SgQp3AOiCCCDInIUCmd9p7r/tHyFtiEkggIcnL7/M8PE+yh7XX3isJv6ysvZZljDGIiIiIiOQou7crICIiIiLSkxR4RURERCSnKfCKiIiISE5T4BURERGRnKbAKyIiIiI5TYFXRERERHKaAq+IiIiI5DQFXhERERHJaQq8IiIiIpLTFHilz6itrWXBggUce+yxlJSUEIvFGDVqFLNnz2bJkiX7VbZlWYwcObJb6jly5Egsy+qWsrpq7dq1WJbFqaee2ivX31cvvfQSlmUxZ86cHim/O9u3u5166qlYlsXatWt7uypdNmfOHCzL4qWXXuqW8vrzsxCR/k2BV/qE559/nrFjx3LLLbewdu1aTjrpJM477zwKCwu5//77OeGEE7j66qsJgqC3qyrSK3r6l4b+5N5778WyLBYsWNDbVRGRfsLt7QqIvPHGG3zxi18kk8nwox/9iOuvv55QKJTd/8orr3DppZfyn//5nziOw3/8x390+RorVqxoVeb+eP7558lkMt1SlnSP7mxfERHJPerhlV5ljGH27Nmk02nmz5/PTTfd1Ca4nHjiiTz77LNEo1EWLVrE0qVLu3yd8ePHM2bMmG6p85gxYxg/fny3lCXdozvbV0REco8Cr/Sqp59+mhUrVjB48GBuuOGGDo+bMGECV1xxBcYYFi5c2Grf7uMCH3jgAaZOnUpBQQHFxcXZYzoa42mM4a677mLy5MnEYjEqKyuZO3cuVVVVHY5fbG8M7+5jaxOJBNdffz0jRowgEokwduxYbr/9dowxba6/ePFirrzySiZNmpQdtzx+/Hiuv/56duzY0YknuHerV69mwYIFHH/88VRWVhIOhxk6dCjf+MY3+Oijj9o9p+V5+b7P7bffzrhx44hEIgwbNozrrruOVCrV7nnvv/8+559/PiUlJRQUFHDSSSfxzDPP7FO9161bx3e+8x3GjRtHPB6ntLSUww47jHnz5rFy5cp267u73YcAVFVVMXfuXCorK8nLy+PEE0/ktddeyx77q1/9ikmTJhGLxRg2bBgLFixoM3xmb+OnFyxYgGVZ3HvvvZ26v660/Zw5c/jCF74AwH333YdlWdl/n/2z/vr167nyyisZM2YM0WiU0tJSZsyY0ep+P+s3v/kNRx55ZPZ7YM6cOWzZsqVT9/FZvu/zf/7P/2H8+PFEo1GGDRvGVVddRV1dXYfn/O1vf+Ob3/wmEyZMoLCwkLy8PCZPnsytt97a5mvt1FNP5bLLLgPglltuafUsWp69MYYHH3yQWbNmMW7cOPLy8igoKOBzn/scd9xxh4ZGiRyMjEgv+u53v2sAc9VVV+312LffftsApqioyPi+n91+yimnGMBcfvnlxrZtc9JJJ5lZs2aZz3/+89ljADNixIg2ZV599dUGMOFw2Jx55pnm4osvNpWVlWbkyJFm5syZBjAvvvhiq3NGjBhhPvut88knnxjAHH/88ebEE080paWl5sILLzRnnnmmiUajBjA33nhjm+sfd9xxJhqNms997nPmS1/6kjnnnHPMoEGDDGAOO+wwU19f3+51TjnllL0+rxbXXXedsSzLHHHEEWbGjBnmS1/6kpkwYYIBTGFhoXnnnXfanNPyvC6++GKTn59vZsyYYWbMmGGKiooMYL761a+2OeeNN94w+fn5BjCHH364mTVrljnmmGOMZVnZdp49e3an6vzpp5+a0tJSA5hDDjnEfOlLXzLnn3++Oeqoo4xlWea3v/1tu/Xd3YsvvmgAM3PmTDN69GgzYsQIc8kll5jjjjvOACYej5v33nvPfP/73zexWMx88YtfNDNmzDAFBQUGMDfccEOr8vb27OfPn2+ANnVr+fr85JNPWm3vStvffffd5swzzzSAGTNmjJk9e3b236OPPpo97rXXXjMlJSUGMIceeqi58MILzUknnWRc1zWO45iHHnqoTb2vu+46A5hQKGTOOOMMc9FFF5kBAwaY4cOHm3PPPbfd74E9mTVrVvb5nnvuueaCCy4wRUVF5phjjjFTp05t91kMHDjQFBYWmhNOOMFcfPHF5swzz8zex2mnnWY8z8see9ttt5nPf/7zBjCTJ09u9SwWL15sjDEmkUgYwJSVlZmTTjrJXHLJJWbatGkmHo936etQRHKHAq/0qpb/uH73u9/t9dhMJmPC4bABzOrVq7PbWwJFNBo1L730UrvntheIFi9ebABTWlpq3n333ez2xsbGbLjoauBtCUQ7d+7M7nvjjTeM4zgmHo+3CbBPPfWU2bFjR6ttyWTSXH755QYwt9xyS7vX6UrgXbJkiVmzZk2b7b/5zW8MYL7whS+02ddyLxMmTDCbN2/Obl+zZo0pLi5u0wZBEJiJEycawNx8882tyvrlL3+ZLa+zQePmm282gLnyyivb7Fu3bl2ra7fUt6PAC5ivfe1rJp1OZ/e1hNOJEyeawYMHtyrv/fffN+FwuE17dXfg7Wrbt9xPR89w586dZtCgQcZxHPP73/++1b433njDlJSUmPz8fFNVVZXdvmTJEmNZlikqKjJvv/12dnt9fb057bTTOvwe6MhDDz1kADN8+PBW97t161Zz+OGHZ8v77LN47LHHTFNTU6ttdXV1ZsaMGQYw9913X6t9v/3tbw1g5s+f3249MpmMefTRR1u1uTHGVFVVmWOPPdYA5uWXX+7UPYlIblDglV41fvx4A5hnnnmmU8cPHDjQAGbp0qXZbS2B4oorrujwvPYC0Ve/+lUDmB//+Mdtjl+5cqWxbbvLgde2bfPhhx+2Ka/lP+7OBoempibjuq45+uij271OVwLvnnz+8583lmW1CV4tweS5555rc86VV17ZJti98MILBjCjR49u1RvXoqVXtbOB9zvf+Y4BzGOPPdap4/cUeAsLC01tbW2rfTt27DCWZRnA3HPPPW3Ku+CCC9q0V3cH3o501PZ7C7yLFi0ygLn22mvb3b9w4UIDmIULF2a3feMb32j3lxRjmoN/yzPq7NftySefbADzm9/8ps2+p59+usPA25FVq1YZwFx44YWttu8t8O7Jc889ZwBzzTXXdPlcEem/NEuD5IyZM2d26fhXX30VgIsuuqjNvnHjxnHkkUfy9ttvd6nMESNGcOihh7ZbHsDmzZvb7Nu4cSN//etf+fDDD6mrq8uOLwyHw6xatapL1+9IQ0MDf/3rX1m+fDm1tbXZWSY2b96MMYaPP/6Yo48+utU5oVAoO250b/eyePFiAL785S/jOE6bcy699FL+8Y9/dLq+xxxzDAA33HADjuMwbdo0otFop8/fXcu8zrsrKiqitLSUbdu2ccYZZ7Q5Z/To0UD77dWdurPtn332WQAuvPDCdvefdNJJALz++uvZbS3tNmvWrDbHT5w4kcmTJ7N8+fJOXT+TyWRfKL3kkkva7D/rrLMoKSlh+/bt7Z6/atUqnnrqKVavXk1jYyNBEGTHve/r98Hy5ct59tlnWbduHU1NTRhjqK+v368yRaR/UuCVXlVWVgZAdXX1Xo/1PC/7n2V5eXmb/cOHD+/StVvCzLBhw9rdP3z48C4H3qFDh7a7vaCgAKDNCzgLFy7k+uuv79Fpzl544QVmzZq1x2fcEgJ2V1lZ2W54be9eNm3aBDQH/vZ0dVGIOXPm8Oyzz/LHP/6Rc889l2g0ypQpUzjrrLP45je/SWVlZafLGjJkSLvb8/Pz2bZtW7v78/Pzgbbt1Z26u+1bFnP4/Oc/v8fjampqsh93pt06G3i3bdtGOp2moqKCeDze7jEjRoxoE3iNMfzgBz9g0aJF7b7YCe1/fe5JOp1mzpw5PPjggx0e09UyRaR/0ywN0qsmT54MwJtvvrnXY9977z3S6TRFRUWMGjWqzf597QHsTrbd+W+ppUuXcu211xKPx7n33ntZu3YtyWQS0zzUiEGDBu13fRoaGrj44oupqanh5ptv5oMPPmjVe3bppZcCtBs0unIv3c1xHB5++GHefvtt5s+fz5QpU/jHP/7BjTfeyLhx4/Y448Bn7e0+uus+u/Lmf0+0fcv1v/zlLzN79uwO/51++uldLrsnPfzwwyxcuJChQ4fyyCOPsHHjRtLpNMaY7C8cHQXhjixcuJAHH3yQI444gqeffpqtW7dmy2yZ4aOrZYpI/6YeXulVX/ziF7njjjt45JFH+NnPfrbHxQMeeOABAM4444xuCSmDBg1i7dq1rF+/vt1hCOvXr9/va+zJo48+CsC///u/M3v27Fb7EonEPk8LtbvFixezbds2vvzlL3PLLbe02b9mzZr9vgaQDWjr1q1rd39H2/fmqKOO4qijjmLBggXU1dWxYMECFi1axNVXX93qT/MHQjgcBpp/iWhPV75eeqLthw4dysqVK7n++uuzQ0L2puV7YN26dUyYMKHN/q60W1lZGeFwmOrqahKJBLFYrM0xn376aZttLc/iv/7rvzjnnHNa7dvXr8+WMh988EEOO+ywbilTRPo39fBKrzr77LMZP348Gzdu5Kc//WmHx61cuZJf/OIXWJbFNddc0y3XbvnT75///Oc2+1avXs2yZcu65TodafnTbnvDIP70pz91Sw/Unq6xevXqLg/Z6EjL+NA///nP7fZ0PvTQQ/t9jcLCQm677TYsy+K9997b7/K6qry8HNd1+eSTT/A8r9W+TCbDyy+/3Omy9qXtWwL3Z6/dYvr06cC/wl5ntLTbH//4xzb7Pvzww04PZ4DmMd/HHXdch+U9++yz1NbWttm+p2fRXjmw92exL2WKSG5T4JVeZds2999/P+FwmPnz53Prrbe2+U/stddeY/r06SQSCa6++mqmTp3aLdeeN28e0Pznzw8++CC7PZFI8P3vf7/HJ6dvefnr17/+datxnB988AHXXXddt17jL3/5S6sxvDt27GDu3LndNn701FNPZfz48Xz88cf85Cc/abXvzjvvZMmSJV0q73e/+127ofbpp5/GGNPhuOueFA6HOf7446mtreWXv/xldrvneVx77bV88sknnS5rX9p+8ODBAG0W3Wgxb948BgwYwP/+3/+bu+66q83Xr+d5/Pd//3er5/rtb38bgJ///Oe888472e2NjY1873vf6/IvXd/5zncAmD9/fqve3JqaGv7n//yf7Z7T8izuuuuuVtdbvHgxP/vZz9o9Z2/PoqXMX/3qV622P/LII9x///2duRURyTUHdlIIkfY999xz2Ynmy8vLzcyZM80ll1xiJk+enJ3K6Hvf+16rBSdadGbaJ/ay8EQkEjFnnXWWufjii82gQYPMiBEjspPuv/rqq63O2dO0ZF2ZsqqmpsZUVlYawIwaNcpcfPHFZtq0aSYUCpmLLrpon67TnunTpxvAFBcXm/PPP9+cf/75pri42IwdO9acd9557U471dHzMqbjKaGWLl1q8vLyDGCOOOIIc+mll5opU6bs08ITLfUaM2aMOf/8882ll15qpk6daizLMrZtmz/+8Y97re/epvFq7/m26GiKseeeey47Xd3xxx9vLrjgAjN8+HBTXl5uZs+e3elpyfal7Y0xZtKkSQYwU6ZMMXPmzDFz5841jz/+eHb/kiVLTHl5uQHMsGHDzNlnn22+8pWvmNNOOy07f/LuC1UYY8wPfvCD7MITLYuvDBw4cJ8XnrjooosMYPLy8szMmTPNhRdeaIqLi83RRx/d7sITK1euzH7dTJw40cyaNcucdNJJxrKsbN0+27aJRMIMGDAg+71w2WWXmblz52a/V19++WXjOI4BzDHHHGMuvfTS7Py7LWV219R+ItI/qIdX+oRp06axatUqbr75ZoYNG8ZLL73EY489xvbt2/n617/Oa6+9xv/9v/+321+kWrhwIb/61a8YN24cL774Ii+99BJnnHEGS5cuJZFIAP+aSaK7lZWV8cYbb/CVr3yFdDrNE088wcaNG/nxj3+8x7fLu+rxxx/nxhtvpKKigqeffpq33nqLWbNmsXTp0lbLL++v4447jiVLlnDuuefy6aef8sQTT+C6Ln/961/bnfptT6655hquuOIKCgoKWLx4MY8++ihVVVVccskl/OMf/+hyed1l2rRpPPHEE0yZMoW3336bl19+malTp/LGG290aSaKfW37P//5z5x//vmsWbOG+++/n1//+tethqVMnTqVd999lx/+8IcUFhby8ssv89hjj7Fu3TpOOeUU7r33XqZNm9aqzJ/97GfcfffdTJgwgZdeeomXXnqJ6dOns2TJEkpLS7v8jB544AFuv/12hgwZwjPPPMPSpUv5yle+wgsvvEAkEmlz/Lhx43jzzTc599xzqamp4YknnqChoYE777yzwx7eaDTK3/72N6ZPn87y5cu59957+fWvf51dKvvkk0/mlVde4bTTTmPNmjU8+eSThMNh/vznP3PFFVd0+Z5EpP+zjNGrqiKf1dDQwKhRo0gmk+zYsaPd6blERESkf1APrxzUVqxYQVNTU6ttdXV1XH755dTU1DBr1iyFXRERkX5OPbxyUPv2t7/N73//e4455hgGDRpETU0Ny5Yto7a2ltGjR7N06VIqKip6u5oiIiKyHzQPrxzULrzwQrZs2cJbb72Vndd11KhRfOtb3+KHP/xhj43fFRERkQNHPbwiIiIiktM0hldEREREcpoCr4iIiIjkNAVeEREREclpCrwiIiIiktMUeEVEREQkpynwioiIiEhOO+jn4d2xY0eblbZERESkb4vH4xQXF/d2NaSfOKgD744dO/jlL39JJpPp8Wvl5+dz1FFHsWzZMhoaGnr8egeabdvZ+wuCoLer0+1yvf1Abdjf5Xr7gdqwv+vu9guFQlxxxRUKvdIpB/XCE5s2beKuu+7iwgsvpLy8vEev5bouJSUlbN++Hc/zevRa0v3Ufv2f2rD/Uxv2b93ZfjU1NfzlL3/h8ssvZ/Dgwd1UQ8llB3UPb4vy8vIe/4YxxuB5HhUVFViW1aPX6g1BELBlyxYqKyux7dwbGp7r7Qdqw/4u19sP1Ib9Xa63n/RtufcdJSIiIiKyGwVeEREREclpCrwiIiIiktMUeEVEREQkpynwioiIiEhOU+AVERERkZymwCsiIiIiOU2BV0RERERymgKviIiIiOQ0BV4RERERyWkKvCIiIiKS09zeroB0XmAMG5NpajIZHMtmcCREeTjU29USERER6dMUePuRNYkUK5sSRG2bwPhsSac5uiBPoVdERERkDzSkoZ9IBQFrEylKXJdi16U05GJjsS6Z6u2qiYiIiPRpCrz9hG8gAFzLym4LWRYZ03t1EhEREekP+uyQhkQiwaOPPsrKlStZtWoVDQ0NXHXVVZx++umtjvv5z3/OCy+80Ob8IUOG8F//9V8Hqro9LmpbFLkOtZ5HueviAw2Bz5BouLerJiIiItKn9dnAW1dXx0MPPURFRQWjRo3i3Xff7fDYUCjElVde2WpbXl5eT1fxgLIti8PyY7zX0ERNxsOyYHg0wshopLerJiIiItKn9dnAW1payn333UdJSQmrVq3i2muv7fBYx3H4whe+cABr17NqMx7rkykyxlAechkWjeBYFvmOw7GF+ST8ANuCuG1j7TbEQURERETa6rOBNxQKUVJS0unjfd8nlUoRj8d7sFY9rzbj8VZ9I8aAa8HWtEfSNxyaF8WyLFzLosB1eruaIiIiIv1Gnw28XZFKpZg1axapVIr8/HxOPvlkZs+eTSwW6+2q7ZVnDE1+gA3EHZv1yRTGQFmouWnigeHTVJrhsQhxp+/25tZ5Ppu8gEwyTVk4RL5CuYiIiPQR/T7wlpSUcOGFFzJmzBiCIODtt9/mqaee4pNPPuHWW2/Fcfpu8KrJZHizrpH6jE/MtRkWCZMMAtzdcq1rNS84EZi+Ox1DTTrD23UN1GZ8qhoTxJIpjizIoyTU77+8REREJAf0+0Qye/bsVp+ffPLJDB48mN///ve8+uqrnHzyyb1Usz3bkfF4smo7tZ5PnmMTDWzSQUCp65IIDPHA4FpQ63kUuQ5Rp2/OIGeM4cPGBI5lUebYlIRddngBHzUlOa4ov7erJyIiItL/A297zjvvPB544AHeeeedNoF38+bNbN68GYDq6moaGxsBCIKgR+tkjCEIgux13qlvZKfnURkOYQN1fgCZgArXYVQ0xPpkmsAYCl2XifEo9l56eY3n4Tc2gDE4+QVY7oFp2kxgSAYBMQuadt1nxIJGz8f3/Zx5qW739suVe/qslq/Nnv5e6C253oa53n6gNuzvcr39pG/LycAbiUQoKCigvr6+zb4777yTW265Jfv5rFmzANiyZUuP1ysRGDKAjaEq5WH8gLp0mtCuYQvVAQxMJRkdcYnSvNhENA2NiQYa91CuSSbxV6/E1O0EwCoowjlkHFa058cwG2NIp322G0OxbbNjx062+wEljsXW1J5qLX1VVVVVb1dB9oPar/9TG4p0v5wMvE1NTdTV1VFUVNRm37x585g5cybQ3MP797//HYDKysoerdPapiQrG5sILIvAGBKWT15gaAwMjmOR9g0FjsVR5SVUhENdKrvpn++QweCMGgOAv60ad0cteUces091Nb6PSaexQqFO9RTHPY9ldY1U7ayjoKCAQSGHyflx8vvw+OmuMsbgeR6u6+Zsz0QQBFRVVTFgwABsu28Oodkfud6Gud5+oDbs77qz/Q5EJ5Xkln4deNPpNJ7ntZmK7OGHH8YYw9FHH93mnEGDBjFo0CAANm3axJIlSwB69IdLVTrD0vpGGjMZtqQ9GnyfRt+Q79rEHIcG32JwJMwpJYUMbGchCRMEBA0NGN/DjsexI9FW+/y6HbiFRdi7xvlaRcUE9fVYQdDloQ2ZbTUkVq7AJBIQDhM/dDyhAXv+ZaAkHOa4IpuPE41UFOZRGg4RybEf1sYYbNvGPgjmPm65z1xzsLRhrrYfqA37u4Ol/aRv6tOB98knn6SxsZHa2loAXn/9dWpqagCYMWMGDQ0NXH311Zx88skMHToUgGXLlvHmm29y9NFHc9xxx/Va3Vv4xrC8roHl9Q1sTvtkdm0PAQXYVLguhSGHQ/NijIlH25xvfJ/EyhWkN24ADFY0Rt5hR+CWlgFg2TZWOIxJpyHafL7JpJuDbhd7WP3GBpreewcsC6e4mCCRoOndf5J3bBS3qHiP58Ycm3LHZmA4lJM/qEVERKT/6tOB97HHHms1lmnJkiXZHtlTTz2VvLw8pkyZwvLly3nhhRcIgoBBgwbx9a9/nQsuuKBPBK9tGY8PGpvYkPbZ/TUED9jh+wy3LSrDEbwOzk9tXE9q/TpCZeVYrou3cyeN779LwXEnYIfDAMRGj6Xx3XcItjX/MoCB+OGTuvwbtF9fj0mnCVUMAMDJzyfd1IRfX7/XwCsiIiLSV/XpwHvPPffs9ZhrrrnmANRk3/jG8G59I/+sT/DZd24NzTMcBBjSBFTY7TdFsHMndiSSHZrgFhWRqa4iSDRlA29owEDyjzqGTE01GINbXkGorHzv9aurI8iksSOR5pkdbAuMwRiTDcsWeptWRERE+rc+HXj7M2MMz23bwV+2bKOpg2MyBiKWTb7jMCbWdjgDsGu4Qib7uclkwHbajM11S8uywxw6U7fUmo9Jrv0YAgO2TXTsOMKVg3CKSvBqarDjMYJEEjuvALe0tFPlioiIiPRFCrw9ZHM6wzPVtdTt4ZjxsTBnlhVTHg4R62BhifCQYaSrtpKpqsIKuQTpNNFRY7DjeftcN692G8mPV+MUF2GHwwSpFMlVK3GLiogfMZnUJx/j19URGlhJdNRo7Fh874WKiIiI9FEKvD1kW8pjm9/xQhHjo2HOGVDGsFjbWRl25+Tnk3/UsaS3bsak0jjFRYQrB+/XMIOgqQksgx0OYzwPy3HAGIJEgnBxCfHDjtinco3n4dVuwwKcgoJWs0mIiIiI9BYF3h7yUaKpzbjdFiU2HFmQR1moc4/fyc8nln9It9XNCrkEnkdq4wa82m1gAoyB2GGHt3u8CYJdMz+EmsNxO4JEAn/F+zQSYNkOdl4e8cMn4Ra2nQtZRERE5EBS4O0BtRmPTSmPYsdmm9869lrAuFiUw/LjDIqEO11mkEqSqa7GZNI4efm4FQP2uZc3VD4ADCRXr8IpyMd4PlYohFezjcjgoa2O9bbX0vThB5hEAiscJjZuPKEBA9uUmfx4Naa+DmfUaBzHxqutJfHhB+QfexxWH5gtQ0RERA5eCrw9oNH3CdkwMT/OysYmaryAgOaHfVJBnEsHD6Cwk727JghIfbqWhrffwiQTOEXF2KEQ0TGHEB0zdp/qZ7kubkEBkdFjmntjoxHseD5ebQ0mk8EKNa/05jc10fjuO2ACnMJCgmSCpvf+Sd4xU9pMU+bX7cCKx7Ih3CksaJ7mLJPBiux52IaIiIhIT1Lg7QGOZVEactmZCRifl0ej57HT8zi+II8vDizrdM+sMYbk6o+of2Mp/vbtu15U24EzbDjJtWsIDazEyc/ft0q6IUIlJTj5BQAEySQGYLe6+fV1BKkk4ey8vAVkqqvw6+raBF4rFsPUVGc/D1IprFC4yyu9iYiIiHQ3pZEeUB5yGRGNsp4kTb4hbIeYXBDnxIKuzXYQNDaSWv8pTiwOfoCTn4+/cyd+fR12KITxMnsvpAORYcNo+uC95k8sC7++geiYsa0CqmVZWIZW8/KawIDdNrBHR42BDRvwqqua5/O1beKHTepwzK+IiIjIgaLA2wPCts2RBXEqQi6NfkCeYzMkEsIOOnqNrX3G88APsPML8HZsxwQBuA5BfQPOwIH7NQtCeMgwwCK94VOMMcTGjScyYmSrY5yiYuzCwuZ5efPizfPyxuO4JW3n+3WLS3AnHk7EdbBbPi/R/L0iIiLS+xR4e0jEthkd/1cgNcbg7SHw+g0NBE0N4Li4xSVYjoNgtlSiAAAgAElEQVQdi2FFI1iBj1taildTg9/USHjIMGLjJ2LHYvtcP8uyiAwdRmTosA6PsSMR8iYdRXLNquZ5ecvLiY4aixNvv6fayssnWlnZJ5Z0FhEREWmhwNsHpLdsJvHBexjfA9O8VHD8sCOwIxHihx1B0/vvYkfzcCtsYuUDmqf7Kjow03058Th5h08+INcSERER6QkKvL0sSCRIfPgBViSCm1eKCQLSW7fgFJcQHTmKUFk5BZ87niDRBI6Dk1+AZduYICBTtYWgsQkrGiFUMRA73PlpzkREREQOFgq8vSxIpTDpDG5x86wHlm1jR8IEDfXZY+xoFDu62/CIICCx4n3SG9aDY2N8n1D5APImHZmdUkxEREREminw9oCkH5AIAkKWRZ5j73EaMisUwnIdglQKOxLBGIOfTEHdDpreexcrGiE8eGircbP+zh2kN27ELSvDcl2MMWSqtpKpriI8eMiBuMVuFSSa8BsawLZxi4r3OpVZ8y8JKaxwWMsXi4iIyF4p8HazqnSG9xuaSAYGx4IR0QiHxKN0FHmdvDwio8aQXPURvgXGyxDUN4CXgXSaIJ0mU1VF/lHHZF9SM5k0WGSDoWVZWLZNkE4doLvsPl7tNhrf+ycmlcQYCJWVEz98EnYHi1VkqrbQtOKD5sAbChMdO26PL96JiIiIKPB2oyY/4N2GJhwsBoRdMoHh40SSQtehMtzxUIPIyFHNc+w2NRI0NZFau4bQgIHZOWzTW7eQ2rqZcHnzAhBWKAK2TZBMYkejGM/DGIMd69o8v73NeB5NK94HYwhVDGjuqa6uIrV2DbFDJ7Q53m+ob+71joRxiwY0j39e8T5OXp6mQBMREZEOKfB2oybfJ20MA3YtGxyyLRzLos7z9xh4LcsiVDGAEJCpqSa9cX2bBRuSKz4gFfoIDLhl5YSHjyT96Vr8+uaxvtHhIwntWhGtvwhSKYJEE25ZOdD8HJx4HL9uZ7vH+w0NGN/DzWsOt3Yshl9fj9/QoMArIiIiHVLg7UauZWEBvjE4u8btesYQ7uRSwgB2PA/LDeE3NODk5xNk0mS2bsXJixEZOQYsC29bNSHbpuBzUwmSSaxQCKeouNNLFvcVzeOXQ5hkAmtX73SQTOEUlbR/vONAYLIrvxmz62Ot5iYiIiJ7oMDbjQpdhyHhEOtTacKWTdoEFDkOAyOdny7Miceb595d8T6ZqmpwLOz8fEKVg7LBzikqxtuxHTsawyko7Knb6XF2uHkMbtOK97EaGvAbGvDr6ppXlPN9ooccipOXlz3eLS7BLSsjU13VPJQjlcIpKsIta7vym4iIiEgLBd5uZFsWE/LjFLoOdX5A1LYYEgkTd2yMMZ0qI0gl8RsbcEpKsJwQkaFDafrgPciks8cYLwOWRZBOY0O/noosMnQYdixGeuNGvJ0rCA0ahFtYSKammiCVIu+oY7LzC1uhEPEjjiS1fh1+fT3OwDiR4SM0U4OIiIjskQJvN3MtixGxfQtgQSpF4/JleNtrscNhgkwaTEBk+EgSH7yL8baDBf7OneCGaFj6Krgu0TGH9OuZCkJl5fh1dbhFRdlxyFYkQqa6Gr++DnvXGF9oXu44NnZcb1VVRERE+iEF3j4kU12Ft72W0MCBzWNUfZ/Mxo1EBg8hb/LRpDdvxmTSeI2NOLEoTlExQSpFYsX72NEoofKKfbqut72W9MYNBJ6HW1pGZOgwLNve4zkmCPC212IyaexIFLuoeJ+uvVuJ+3m+iIiISPsUePsQk05huU725TPLccBqnr4rVDGAUMUAMttqyGyrIVTaPG7ViccJEk14O7bvU+D1ttfSuOwtwIDj4m3dgkkmiB5yaIcvwRnfbx5jvGkjWIBlER41BmJ57R7fGW5JKdgOfl0dViTSPGShsLBfj1EWERGRvmHP3XhyQDn5+Rg/wGQyAPhNTViO02p+Xcu2sSxajwn2g32eqSC1fj0AbmkZblERTmkJ6Q3rMclkh+dkqraS2bAet6yMUMUAnMIiUp+swdTXd3jO3rjFJeRNOhJclyCRwC0tJe/wydnxuyIiIiL7Sj28fYhbPoDoqDGk1q/FBAF2KER0wmE4+fnZY5yCQtyyCjLVVTh5eZhUCisS2efhDMbLtFrK13JDmMDHBH6H5wTJBLhONmTb4TAEQfMKcPshVDEAt7wCfH+vywuLiIiIdJZSRR9i2TbRQ8YRrhzUHESjMZx469XTLNclftgRpD5Zg7ejFqesgMiI0fv8p3+3tIxE9VbseKx5SMO2bTiFRdjRWIfn2JEoxvMxQYBl27tmjWgOy/vLsixQ2BUREZFupGTRx1iWhVO45/BqRyLExrddendfRIYNxySaSG3aAIHBKSoiPvHwdodIBMkkJghwyysID6wkU7WV5vEVEB4xkqaCAkwQNAdhhVYRERHpI5RKDnKW4xAdP5HwiFEQBNjRaJuwanyf5Mermsf2BgFuUTHRQw8lNGgQJuM1n1NSSvDuP2n4+CMIAtySUmLjxmPHOu4pFhERETkQFHiluVf5M0MndpfauJ7Umo9xSkux3OZhD8mVK8k7+thsT3Bqy2aCj1dhBlbixKNkqrZgPI+8I4/W0r8iIiLSqzRLQx8TGIPfyVXZDhRvWw12PI4dDmPZNm5ZGd7O7c0vr+2Sqa4C18HJy8MOh3HLK/BqawiaGnux5iIiIiLq4e0zvCBgTTLFxmQaAwwOhxkbj+La7c+FeyBZjovxvX9t8H0s28Gyd+u5/Ww1jWlno4iIiMiBp8Dby7akMqxJJNmQSlGX8RkTixFxLD7eNQ/u+PzOj4ENjCFtDC5Wtwbl8JChZGqq8LZvx3Id/KYmoiNGYUX/tYRyaEAlrPwQv74eIiG8nXWEBwzEju/7YhSflQwCqtMZ0oEhz3EYGHY7XBxDREREpIUCby+qTmd4p76RsG2xM+OTCgKqMxlGuRGKXZdN6TSHmChOJ0Jdg+fzfmOCOs/HsWB0LMKIaKRNIDTGdDkkhsrKm5c23rAe42UIDxtJZNjwVuWEyitwDhmP1VBHkMkQGTqM8JAh+HU7scIRnLz9C75JP+Dt+ka2ZzwcyyLAcEg8ythYVKFXRERE9kiBtxdtSWewLYtC1yFs24Qsix2eTzIwnRoM4BvD+mSKbRmPNU0poo7NgHCIdGBY0ZgkajtURprnxk34AcvrG6jJ+MRtm0n5MSoinV/FLFRWTqisfI/H2OUVFBx+BBaQ3riBxrffwvgeluMSGXMI0REjO309gNqMx/aMhwXU+z47PI+B4RCWZZEOAj5JpKgMhylw9VKciIiIdEyBtzeZllGuFhUhl/XJNBljSPg+GWMYm9dx727S91m6s5ENqRQhy2ZjKkWp61Aacok7NskgYFsmQ2UkhBcY/r5tB6sTKSKWhWdgczrNF8uKKQ3v/2IRn+XX1ZH4aEXzC2zRGEEySXLVh7iFhbglpZ0qY+uu3m9/11Dg6nSGQsfJ9uaGbRvfa35OIiIiInuiwNuLKsIhNqTSNPo+xSGHWs8mYwwh22JUNMLoWLTd8xp8n3/sqGd5QxN5toNvfAyQNLA9k2FQJEJgDPauOL0+lWJ1IklFKETYsfECw5Z0hjfrGygLhfAMDAi7DI9GOjV8Ym+CpsZdc/o2jz+2o1G8ujr8psZOBd7AGD5qTBC2bApCzb23DRmPTak0gyNhHMui0fcJ2xZRWxONiIiIyJ4p8PaigWGXw/NirE4kyQQwIS/O+HiUuGO3Oy416Qd82Jjgw6YEG5JpbAwlIYd0YKhP+TQYnzrHIWp72Lb1r+EMQYABQrteZHNti1QQsKopiR23cS2LDxqTpALD+Lz9XyjCcl0ITHa8sDEGjMFyOvfl5htIB4a4868wOzASJhkYanYNA3Fti4m7npWIiIjInijw9iLLshgWizAkGsY3/wqk7QmM4b3GJqrTGYyBiG2zzcsQzmQYsGscqw3kOzZFIYdR0QgloebmLXZcIrbNDs+nwHXYmfHY7nmUuFEKXQfHsogEFuuTaUbGIvvda+qWluFWDCBTtRU7HMFkUp0aA5w934J812Gn51Fm2xhjaAoCDs+PMSIWxTOGuG2Tr7G7IiIi0gkKvH2AbVnsbRaxJj+gJu1RHgphDNT7AQPcEI1+81RdvjGcVFLE4fkxbMvCCwyfJlIkgoCIZTE5P867DU180pSkwfeJWBYp0/zi18hY81AGAwTdMCTWcl3ih08ivWkjQVMjdjxOePBQrFDnxgtblsXEvBj/bGikKp3BYChxXQ7NixHXqm0iIiLSRQq8/cmuUFwWdqkPfDYkPDxjyASG0bEIQyOh5rBrDP9saGJzOk3IssgYQ0UoxCklBbxR10Sp62BZsCGZpiaTId+xcGyb8pBLtJvm77XDYaIjR+3z+QWuw7GF+dR7PkB2JgsRERGRrlKC6Cfijs2AUIjqTIZMAKWui2NbDAi7TMyPE3McljU0Uef5bMt4bEmnGRAKURYKMSAUoibjYWExIBJicDTCwEiYQZEwvjFUZzzKQi4T85p7h/uC2l1TrW1NZ/CBUB+pl4iIiPQ/6uHtJ2zL4rD8GOEmi+p0Bs8YBoZcxsai2Lt6PremM9SkM0Ts5pfeWsKrbVlYGJJBQG06Q4PnU+K6DN41Jdn4eIxD8qIdhl1jDJtSaTamMgRA5a4ZHXoqHFenMyyrb8IYg21ZfJpKc3g8xrBYpEeuJyIiIrlNgbcfidg2h+fHCYyhNuPxRl1jNuxC84gHA8QcG8tAKgiI2DbpICBlDBtTGQywMZVmXTJFRSjEYflxRsc7DrvsOv69hkRzkAY+aEziGRgbb3/atP31cVMSx4LiXWN+G32f1Ykkg6Phbpk2TURERA4uB33gzc/Px3Xd5qmzelBL+d1xHQvIc2zyHJvaTIZC1yEZBFgYilyHEtdhXDzCqqYkO2ketxK3bHxjmJAXo97zafB8ksYwLhrBtfZcr3XJFFHbosBtDtehANYlUoyIhHF3jfk1xmSf477eY9IP+CiRZHl9E64NI3fNNBG2LOqDAC8IWgX8A6k726+v6o427MtyvQ1zvf1AbdjfdWf7ue5BH1+kiw76r5ijjjqKkpISPM87INfzfb9bynGBidEwHzYl2Z7OELIsJkTDFFngeR7DQi7FeTFSxhC2LNYkU+zwAnzfJ25BPORQlfbwfA/P2vMPn4zXvLBFtuqBwQsC0p7H7tNLlJSUEAQBQRB0+X58Y3inIUGN51FoW1RlMqz2A0ZHw3hAseti+T7ePpTdnbqr/fqq/WnD/iKX2/BgaD9QG/Z33dF+JSUl3VATOZgc9IF32bJlHHHEEVRUVPTodYwx+L6Ps9vyuPurzHU5PhImYwyuZbX5c3/Jbr8B7zCGKi8Jto1jWez0PApCIfLCIdy99JoOikVZ3ZQgumtc8A7PY3AkTCzkZu8lCAK2bdtGWVnZPvXCNnk+24OAgZEw5WFwkjabUhnWZzwm5MU5Ij9GqBenJOuJ9utr9rcN+7pcb8Ncbz9QG/Z33dl+1dXV3VQrOVgc9IG3oaEBz/MO2A9Py7K69VqOZdGZGDgiGqXeD9iya17bqGVzeEGcSCdC5JhYFN80j+UFw+BImIn5sdbjhy0r+xz35f5azrGwCNkWo3etolYRCnFMYf4eF+U4kLq7/fqS/W3D/iJX7+9gaT9QG/Z33XF/B+qvspI7DvrAe7BwbYtJ+XFGej4+kGfbRDu5LK9rW0zMjzEmHsEAkR74YZzn2JSHQ1SnPYpch4wxhGyb0fFonwm7IiIi0j8p8B5EbMuiOLTvTR7pwT+xOZbF4XlxPiTBds/b9XmMAeHOrc4mIiIi0hEFXukzYo7NUYV5eMbgQE7/SU9EREQOHAVe6XNcBV0RERHpRrn3GqiIiIiIyG4UeEVEREQkpynwioiIiEhOU+AVERERkZymwCsiIiIiOU2BV0RERERymgKviIiIiOQ0BV4RERERyWkKvCIiIiKS0xR4RURERCSnKfCKiIiISE5T4BURERGRnKbAKyIiIiI5TYFXRERERHKaAq+IiIiI5DQFXhERERHJaQq8IiIiIpLTFHhFREREJKcp8IqIiIhITlPgFREREZGcpsArIiIiIjlNgVdEREREcpoCr4iIiIjkNAVeEREREclpCrwiIiIiktMUeEVEREQkpynwioiIiEhOU+AVERERkZymwCsiIiIiOU2BV0RERERymgKviIiIiOQ0BV4RERERyWkKvCIiIiKS0xR4RURERCSnKfCKiIiISE5T4BURERGRnOb2dgU6kkgkePTRR1m5ciWrVq2ioaGBq666itNPP73NsevXr+eee+5hxYoVuK7Lsccey9y5cykqKuqFmouIiIhIX9Jne3jr6up46KGH2LBhA6NGjerwuJqaGv7t3/6NzZs38/Wvf53zzz+fN998k5tvvplMJnMAaywiIiIifVGf7eEtLS3lvvvuo6SkhFWrVnHttde2e9yf/vQnkskkixYtoqKiAoBx48Zx88038/zzz3PWWWcdyGqLiIiISB/TZ3t4Q6EQJSUlez3utddeY8qUKdmwC3DkkUcyZMgQXn311Z6sooiIiIj0A3028HbGtm3b2LlzJ2PHjm2z75BDDmHNmjW9UCsRERER6Uv6deCtra0Fmoc/fFZJSQn19fUaxysiIiJykOvXgTedTgPNwx8+KxwOA5BKpQ5onURERESkb+mzL611Rkuoba8XtyUMRyKRVts3b97M5s2bAaiurqaxsRGAIAh6sqoYYwiCgCAIsCyrR6/VG1qeX08/x96S6+0HasP+LtfbD9SG/V2ut5/0bf068LYMZWgZ2rC77du3U1BQ0Kb398477+SWW27Jfj5r1iwAtmzZ0oM1PXhUVVX1dhVkP6kN+ze1X/+nNhTpfv068JaVlVFUVMTq1avb7Fu1alW78/fOmzePmTNnAs09vH//+98BqKys7NG6GmPwPA/XdXPyN9sgCKiqqmLAgAHYdr8eKdOuXG8/UBv2d7nefqA27O+6s/3USSVd1a8DL8Dxxx/PCy+8QHV1dXZqsnfeeYeNGzdmg+3uBg0axKBBgwDYtGkTS5YsAejxHy7GGGzbxrbtnPxB3aLlHnPNwdJ+oDbs73K1/UBt2N8dLO0nfVOfDrxPPvkkjY2N2SELr7/+OjU1NQDMmDGDvLw8LrroIl599VVuvPFGZs6cmV2SeMSIEUybNq03qy8iIiIifUCfDryPPfZYq7FMS5YsyfbInnrqqeTl5VFRUcFtt93Gr3/9a+677z5c1+XYY4/lm9/8ZruzN4iIiIjIwaVPB9577rmnU8cNHz681YtoIiIiIiItcm+QkIiIiIjIbhR4RURERCSnKfCKiIiISE5T4BURERGRnKbAKyIiIiI5TYFXRERERHKaAq+IiIiI5DQFXhERERHJaQq8IiIiIpLTFHhFREREJKcp8IqIiIhITlPgFREREZGcpsArIiIiIjmtS4H373//O3PnzuXss8/msssu4/HHH9/j8bfffjunnXbaflVQRERERGR/uJ098Ac/+AGLFi0CwBgDwP3338/xxx/PH/7wB0aMGNHmnA8//JCXX365m6oqIiIiItJ1nerh/etf/8rChQtxHIf/8T/+B7/85S+59tprKS8v57XXXmPKlCm88cYbPV1XEREREZEu61QP7x133IFlWTz++OOcffbZ2e3/63/9L+bNm8cf//hHTj/9dB599FFOP/30HqusiIiIiEhXdaqH980332TKlCmtwi5AUVERDz30ELfddhuNjY3MmDGDxx57rEcqKiIiIiKyLzoVeHfu3Mno0aM73H/ddddx33334fs+F198Mb/73e+6rYIiIiIiIvujU0MaysrK2LJlyx6P+drXvkZxcTEXXXQRl112GXV1dd1SQRERERGR/dGpHt7JkyezdOlSGhsb93jcjBkzeOaZZ8jLy+P73/8+Tz/9dLdUUkRERCSX7NixA8uyuPfeezt9zksvvcStt97ac5XqhMcee4w77rijV+uwLzoVeM855xySyST333//Xo895ZRTePHFFykrK6Oqqmq/KygiIiIiCrz7o1OB97zzzuOEE05g8eLFnSr06KOPZvHixUyePJnhw4fvVwVFRERERPZHpwLv8OHDeeWVV3jggQc6XfChhx7KsmXL+OSTT/a5ciIiIiK54O6772bkyJHE43FOP/10Vq9e3Wr//fffz4knnkhpaSklJSWceuqpvP7669n9CxYs4JZbbqGxsRHLsrAsi1NPPRVoXuhr1qxZDBs2jHg8zsSJE/mP//gPgiBodY2f/vSnjB07lmg0SkVFBdOmTWuV01KpFDfccAMjRowgEokwYcKEVtlvzpw53Hfffbz//vvZOsyZM6f7H1YP6PRKayIiIiLSdU8++SSXX345c+bMYdasWbz11ltcdNFFrY5Zu3Yt3/jGNxgzZgzpdJoHH3yQk08+mX/+85+MGzeOb33rW2zYsIEHHniAF154AYDCwkIANm7cyKGHHspXv/pVCgoKWL58OfPnz6ehoYH58+cDzYH6pptu4kc/+hHHH388O3fuZPHixa0mGbj44ot55ZVXmD9/PhMmTOCpp57ia1/7GiUlJZx99tncdNNNVFdX8+GHH/KHP/wBgIqKigPxCPebAq+IiIhID/rJT37CSSedxG9/+1sAzjzzTJLJJD/+8Y+zx9x8883Zj4MgYPr06bz++uvce++93HrrrQwdOpShQ4di2zZTp05tVf7pp5+eXfjLGMOJJ55IU1MTv/jFL7KB9/XXX2fSpEn827/9W/a88847L/vxiy++yBNPPMF///d/c8YZZwAwffp0Nm/ezPz58zn77LMZM2YMFRUVrFu3rk0d+rpODWkQERERka7zfZ+33nqLCy64oNX2L3/5y60+X7FiBRdccAEDBw7EcRxCoRArV67ko48+2us1kskk8+fPZ+zYsUQiEUKhEDfeeCObN2+moaEBaH6/atmyZVxzzTW88sorZDKZVmU8++yzlJaWctppp+F5Xvbf9OnTWbZsGb7v7+eT6F3q4RURERHpIdXV1Xiex4ABA1ptHzhwYPbj+vp6zjjjDCoqKli4cCEjRowgGo3yrW99i2QyuddrXHfdddx9993Mnz+fY445huLiYh5//HF+8pOfkEwmyc/PZ86cOdTX13PXXXexaNEiioqKmD17Nj/96U+JxWLU1NRQW1tLKBRq9xqbN29m6NCh+/cwepECr4iIiEgPqaiowHXdNlO1bt26NfvxkiVL2LBhA08++SSTJ0/Obt+5c2enQuaf/vQn5s2bx3XXXZfd9re//a3VMbZtc9VVV3HVVVexceNGHnroIa6//nrKy8u56aabKC0tpaKigqeeeqrda3w2sPc3GtIgIiIi0kMcx+Hoo4/m0UcfbbX9kUceyX6cSCQACIfD2W2vvfYaa9eubXVOOBwmlUq1uUYikWh1ru/7PPTQQx3WaciQIVx77bVMmjSJFStWADBt2jSqq6sJh8Mce+yxbf61lB8OhzvV69zXqIdXREREpAfdeOONnHfeeVx22WXZWRp+97vfZfdPnTqV/Px8rrjiCq6//no2btzI/PnzGTJkSKtyJkyYgOd5/Od//icnnHAChYWFHHrooUyfPp27776biRMnUl5ezh133NEmGM+bN4+SkhKmTp1KSUkJr776Ku+88w7f/e53geYX1M4991zOOussfvjDHzJp0iQaGxt5//33Wb16Nffcc0+2Dr/5zW948MEHOeSQQygvL2fkyJE9+wC7QZd7eDdt2sQ//vEPli9f3i8TvoiIiMiBNHPmTH71q1/x/PPPc/755/Pss8/y8MMPZ/cPHDiQP/3pT1RVVXHeeefx85//nDvvvJOxY8e2Kufcc8/lu9/9LrfddhvHHXcc8+bNA+D//b//xymnnML3vvc95s6dyxFHHMENN9zQ6twTTjiBV155hblz53LWWWfxhz/8gUWLFjF37tzsMY888gjf/va3ueOOOzj77LOZO3cuzz77LKecckr2mLlz53LRRRfxve99jylTprBgwYIeeGLdzzLGmM4c+NZbb/Gd73yHt956K7stFAoxZ84cFi1aRCwW67FK9pRNmzZx1113cfnllzN48OAevZYxBs/zcF0Xy7J69Fq9IQgCtmzZQmVlJbadeyNlcr39QG3Y3+V6+4HasL/rzvY7kP9/S27o1JCGjz/+mC984QvZqS1KS0tpbGwklUpx9913Zwdai4iIiIj0NZ36FfL222+noaGBc845h3Xr1lFTU0NTUxNPP/00lZWVPP3007z22ms9XVcRERERkS7rVOB9/vnnGTRoEA8//DDDhg0DwLIszjzzTH7xi19gjOH555/v0YqKiIiIiOyLTgXejRs3ctxxxxGPx9vsO+2004Dm8TQiIiIiIn1NpwJvOp2muLi43X1FRUUA7c4LJyIiIiLS23LvNVARERERkd10euGJ5cuX86Mf/ajL+y3L4qabbtq32omI/H/27jw+rrre//jrLLNP9qVN9wVKV6ClWGhRvKDSh0C5FYWyQ91Qr/pzRUS9ReVxFUXBFbcLFIqIIouAcAVsRagFhEJbKG3plrZZ2yRNMpOZOcvvj2lja0ObpEmTmbyfj0cfkJmzfM58k8k73/me71dEROQo9Sjwrl69utvPG4aB7/sKvCIiIiIyoLoVeP/7v/+7v+sQEREREekXCrwiIiIiOerZZ5/l6quv5q233jrittu3b2fq1Kns3r2bUCh0VOddsmQJ69ev57777juq4xwr3R7S0Fvr1q1j2rRp/X2aXovH49i2TTdXWO61/cfv7/MMFN/3O1/HfLzGfG8/UBvmunxvP1Ab5rq+bD/b7vf4kjPe+c53divsAowZM6Zz1dyhpl++Y+rq6rj33nu5++67ee2113Acpz9O0ydmzpxJSUnJMavRdd1jcp6BUFJSgud5eJ430KX0m3xuP1Ab5rqh0H6gNsx1fdF+JTsbm6IAACAASURBVCUlfVBJ7nMcR+G/m/rsVUomk/zxj3/k7rvv5umnn8bzPHzfH/TflK+88gozZsygoqKiX8/j+z6u62JZFoZh9Ou5BoLneezevZuysjJMM/9mu8v39oPcb8OU59HuehhAoW1h/Vs75Xsb5nr7dYfaMLf1Zfs1NDT0UVV9x/c8nN2NeOkUZjCEXVaO0ct23LBhA5/61Kd46aWXqKio4LrrruPDH/4wd955J7fffjtnnnkmd9xxBwsXLuSSSy5h0aJF1NbWAvDaa6/x4Q9/mPXr13PmmWcyatQoOjo6uPPOO9m6dSvjx48nmUwSDod597vfzTvf+U7+/ve/89JLL3HiiSdy7733MnbsWAA+//nP84c//IGmpiaOP/54fvjDH3LmmWf22Wt2LB1V4PV9n6eeeoq7776bhx56iPb2dgCi0SgLFizgkksu4ZxzzumTQvtLW1sbjuMcszdPwzDy8o3aMIzO1zEfr2+/fL6+XG7D5ozDq20Jkq6HDwwLBpgejxDs4pdNLl5fd+Ry+/VUvl7jUGnDvri+wfbJse95JNe/Tqp6e+djodFjiEye2uPQm8lkOO+881i0aBGPPfYYr732GvPnz+8MoS+99BIXXnghO3fuxHEcVq1addC+F1xwAddeey2f//znefbZZ1mwYAEf/OAH3/Z8S5cu5bHHHmPSpElceumlfP3rX2fp0qUAnHLKKXz1q1+luLiYn/zkJ3zoQx9i69atXa68O9j16k+PV199lS996UuMGjWK+fPnc88995BMJjsHQDc0NLBs2TLOO+88AoFAnxYsInIg1/dZ254g4/lUBAOUB2xq0hm2JLX6o4gcG87uRlLV2wmUlhGsHEagtIxU9Xac3Y09PtaqVatoamriv//7vwkGg8yePZuPfOQj3HXXXQBUVlbyxS9+kUAgQCQSOWjflStXkkgk+NKXvkQgEOCss85i/vz5hz3fNddcw/Tp0wkGg1x66aW8/PLLnc9ddtlllJeXY9s2/+///T8ymQxvvPFGj69pMOh24N21axff+973OPHEE5k1axa33HILNTU1zJw5kx/+8Ifs3LmTU045BYBwONxvBYuIHGj/UIYi2wLANAxipkmTk7/jPEVkcPHS2T+wjX3jaff/10+ne3ysnTt3MmrUKCzL6nxs3Lhx7Ny5E4DRo0e/bQ/5rl27GDFixEFDYkaPHn3Y8w0fPrzz/6PR6EE3tX3/+99nypQpFBUVUVxcTEtLC42NPQ/xg0G3hjS85z3vYcWKFZ3jcseNG8ell17K5ZdfzuTJk/u7RhGRt2UbBjYGKc8nYmV/CaR9jxLTOsKeIiJ9wwxmP+H2HQfDtvH3DbkwgsEeH2vkyJHs2LGjc7wzwNatWxk5cmT2mIcZDjJixAh27dqF53mdobe6upp4PN7jOp599ln+53/+h7/+9a9Mnz4d0zQpKSnJ2RlEutXD+8wzz+B5HlVVVTz22GNs3ryZb3/72wq7IjLggqbJxGiIVtelMZOhPpMhYBiMjRzdHJMiIt1ll5UTGj2GzJ7dpOvryOzZTWj0GOyy8h4fa86cORQXF/Otb32LdDrNyy+/zG9+8xuuuOKKI+57+umnEw6HueWWW3Ach+XLl/PEE0/05pJobW3Ftm3Ky8txHIebbrqJvXv39upYg0G3Am9RURG+77Nr1y4+9KEPcdlll/HnP/85r6dNEZHcMTYcYlZhjHHhEMdHwpxSGKdYU/WIyDFimCaRyVOJz5pNbPqJxGfN7tUNawCBQIA//elPPPvss1RWVnLxxRdz00038b73va9b+z788MP87ne/o7i4mO9973tcfPHFvVpk4pxzzuHcc89l8uTJjB07lkAgcMThEYOZ4XejbzqdTvPoo4+ydOlS/vznP5PJZDAMg/LychYtWsQVV1zB7Nmzeec738nzzz+fM3Mk7tq1i1/+8pd87GMfY8SIEf16Lt/3O+fLy8e7bz3Po7a2luHDh+ftdDr53H6gNsx1+d5+oDbMdX3Zfsfy93euu+CCCzj11FP52te+NtClDKhu/UQFg0E+8IEP8NBDD1FbW8tPf/pT5syZQ0NDAz/+8Y+ZM2cOkydPZsOGDf1dr4iIiIi8jb/97W/s3LkT13V55JFHeOKJJ1i4cOFAlzXgevwnZElJCZ/4xCd4/vnn2bhxI9/4xjeYMGECGzZs6JwI+rTTTuO2226jpqamzwsWERERka5t2rSJ2bNnU1hYyHXXXcf//u//Mm3atIEua8Ad1WcmEydOZMmSJWzcuJHnn3+ea6+9ltLSUl544QU+//nPM2bMGM4+++y+qlVEREREDmPx4sXU1NTQ3t7OG2+8wWWXXTbQJQ0KfTZI6LTTTuNnP/sZNTU1PPTQQyxcuBDLsli+fHlfnUJEREREpMf6/DZm27ZZsGABCxYsoKWlhfvvv7+vTyEiIiIi0m39ehtoUVERH/3oR/vzFCIiIiIih9WtHt6//e1vR3WSd73rXUe1v4iIiIhIb3Ur8L773e8+qjnzcmVeXhERERHJPz0aw3vSSScxbNiw/qpFRERERKTPdSvwFhcX09zczNq1axk2bBiXX345CxcuJBqN9nd9IiIiIiJHpVs3rdXW1vLAAw9w3nnnsXz5cq688kqGDRvGFVdcwZNPPonnef1dp4iIiIhIr3R7aeGFCxfyxz/+kdraWn7+858za9Ys7r33Xt7//vczcuRIPve5z/HSSy/1d70iIiIiIj3S42nJioqK+NjHPsaKFSvYunUr3/72tykrK+O2225jzpw5TJkyhe9///v9UauIiIiISI8d1Ty8o0eP5vrrr2ft2rW8/PLLnHPOObz55pvcfPPNfVWfiIiIyJC3bNkyzjrrrH459vLlyxk+fHi/HLsrixYtYsmSJcfsfNAHC0/U1NRwyy23sHjxYp588kkARo0addSFiYiIiEjWZZddxjPPPDPQZXDnnXdy2mmnDXQZPdarpYVbW1t54IEHuOeee1ixYgWu61JWVsa1117L5Zdfzumnn97XdYqIiIiI9Eq3e3gdx+GRRx7h4osvZvjw4SxevJiVK1dy4YUX8sgjj1BTU8NPf/pThV0RERGRo/D973+f0aNHU1BQwIQJE7jvvvsO6Vk1DIPbb7+dyZMnE4vFuPbaa2loaODcc8+loKCAuXPnsmPHDgC2bt2KYRh0dHR07n+4YQXf+973OO644ygoKGDKlCk88MADAKxZs4Zrr72WF198kXg8Tjwep729Hd/3+cEPfsCkSZMoLS3l/e9/f+e5Af76178ybdo0CgoKuPLKK0mn0/3wqh1etwLvJz7xCYYPH87ChQt54IEHmDdvHnfccQd1dXXcd999nHfeedh2rzqLRURERHKe5/vUpzNUd6SoT2fwfL9Xx3nzzTf5xje+wVNPPUVrayvPPfccJ554YpfbPvzww6xcuZLXX3+d+++/n3POOYclS5awZ88eKisr+eY3v9mrGsaPH8+KFStoaWnhW9/6FldccQU7duxgxowZ3H777Zx66qm0tbXR1tZGLBbjJz/5CcuWLeP//u//qKurY9asWSxatAiAPXv2cMEFF/CVr3yFpqYmzj77bB555JFe1XU0upVSf/GLX2AYBjNnzuSSSy6hqqoKoNsFX3rppb2vUERERGQQ83yf19uTbO9IdT42JhxiaiyCaRg9OpZt2/i+z9q1axkzZgxVVVVUVVXxwgsvHLLtddddR0lJCSUlJZxxxhmMGDGCU089FYCLLrqIH/zgB726ng9+8IMH/f9NN93EqlWr3vYerZ///OfccsstjBs3DoAlS5YQi8XYvn07y5cv5/jjj+eKK64A4KqrruLWW2/tVV1Ho9vdsr7v88orr/DKK6/0+CQKvCIiIpKvGjMO2ztSlAUC2IaB4/ts70hRGQxQGQz06FgTJ07krrvu4kc/+hHXXHMN73znO7nlllu63PbAmRWi0eghX7e1tfXqepYuXcoPfvADtm7dCkBbWxuNjY1vu/3WrVu5+OKLMc1/DRwwTZMdO3awa9cuxowZc9D2Y8eO7VVdR6Nbgfeqq67q7zpEREREclJq34qz9r7e3P3/TXu9G9Zw0UUXcdFFF5FIJPjKV77CRz/6UT784Q/3ur54PA5AIpEgHA4D2VV0J0+efMi227Zt4yMf+QhPPfUU8+bNw7IsZs6cib9viIbRRY/1mDFjuP3223n3u999yHObNm1i+/btBz22fft2Tj755F5fT290K/Decccd/V2HiIiISE4K7evZdHy/s4cXIGj2bDgDZMfwVldXc8YZZxAKhYjH41iWdVT1lZeXM2rUKO666y4+85nP8Oijj7Jy5couA2p7ezsAFRUVQLa3d+3atZ3PDxs2jJ07d5JKpQiFQkD2Xq8bbriBpUuXMnHiRJqamvjLX/7CRRddxLnnnsunPvUp7r33Xi666CJ++9vfsmbNGhYsWHBU19RTRz0Pr4iIiMhQVh6wGRMOsTuToS6dZncmw5hwiPJAz2/oT6VS3HDDDVRUVFBWVsY//vEPbr/99qOu8Te/+Q0/+clPKC0t5bHHHuP888/vcrupU6fypS99iXnz5jFs2DBWr17N3LlzO58/66yzOPnkk6mqqqK4uJj29nY+/elPs2jRIs477zwKCws56aSTOtdmKCsr48EHH+Tb3/42JSUl/OUvf3nbc/cnw/d7eRthHti1axe//OUv+djHPsaIESP69Vy+7+M4DrZtd/lxQK7zPI/a2lqGDx9+0BiefJHv7Qdqw1yX7+0HasNc15ftdyx/f3eX5/s0ZhzSnk/QNCgP2D2+YU36T7f+9OjOtBaGYRCLxRg1ahTz5s1j5MiRR12ciIiISC4wDaPHN6jJsdOtwLtkyZIe/TVmmiYXXnghP/3pTykrK+t1cSIiIiIiR6tbgffKK688YuD1fZ9EIsHmzZtZvXo1v//971m/fj0rV64kEon0SbEiIiIiIj3VrcB755139uig1dXVLF68mGeeeYaf/exnfOELX+hNbSIiIiIiR61fRsWPHj2aP/zhDxQWFvKHP/yhP04hIiIiItIt/XYbaFFREWeccQbr16/vr1OIiIiIiBxRv857UlRURCKR6M9TiIiIiIgcVr8G3i1btlBeXt6fpxARGVJ83+9cxUlERLqn50uAdNMLL7zAqlWrjvnScSIi+aohneHNRJKU51NoW0yORiiwj27JURGRoaBPA29HRwebN2/mscce4zvf+Q6+73Pttdf25SkOsWbNGm644YYun7v55puZPHlyv55fRORYaHYcVrcmsAyImCZ7Mg6vtbUzuzBOKA9X5RIR6UvdCryW1fMeBN/3ue6663jf+97X43174/zzz+e444476LHBstygiMjRako7OPiU2tmVnEKmSX06w17HpSKowCsicjjdCrx+D8aLRSIR5s2bx2c/+1nOPffcXhfWU1OnTmXevHnH7HwiIgOpJ+/LIiJDXbcC75YtW464jWEYRKNRSktLMQfo47VEIkEoFOpVj7SIyGBWGrQJdBg0Ow5h06TNdSm0TYo0hldE5Ii6FXjHjh3b33UctR/96Eckk0lM02TatGlcffXVHH/88QNdlohInyiybU6OR9mY6KDD8ygPBDghFiao8bsiIkfUb7M0HCu2bTN37lxOOeUUCgsLqa6u5sEHH+T666/nu9/9LhMnThzoEkVE+kR5MEB5MIDn+5iGMdDliIjkjJwPvFOmTGHKlCmdX8+ZM4e5c+fymc98hqVLl3LjjTcOYHUiIn2vJ2HX832aHRfH94lZJjEN+RKRISjnA29XRowYwZw5c1i5ciWu6x40prempoaamhoAGhoaaG9vB8DzvH6tyfd9PM/D8zyMPOyZ2f/69ffrOFDyvf1AbZjrumo/x/dZ156kJpUGIGAYTItFGB4KDkiNR2sotmE+yff2k8EtLwMvQHl5OY7jkEqliEajnY//4he/OKjXd9GiRQDU1tYe8xrzUX19/UCXIEdJbZjbDmy/nY7LpoxHqWlgGgYJz2fl3r3MDNmEFTgGLf0MivS9vA28dXV1BINBwuHwQY9//OMf71z9raGhgaeeegqA4cOH92s9vu/jOA62beflX7ae51FfX09lZeWAzdLRn/K9/UBtmOu6ar+GtgTl6QwlgexbfQlQn85QVBjvfCyXDMU2zCd92X7qpJKeyr13vH/T0tJCUVHRQY9t2bKFF154gVmzZh3yplFVVUVVVRUAu3btYuXKlQD9/ubi+z6maWKaZl6+Ue+3/xrzzVBpP1Ab5roD2y9m22TSGQwj+3Xa87BNk5Bl5WQbD8U2zCdDpf1kcMr5wHvzzTcTCoWYPHkyRUVFVFdX8+STTxIKhbjqqqsGujwRkQEzMhSkLp2mNp3GwsAHjouGiGvuXhEZYnI+8J522mmsWLGChx9+mEQiQVFREaeffjqLFi3S0sIiMqRFLJNTCuLUZzKkPZ+4ZTEsmPNv+yIiPZbz73znn38+559//kCXISIyKIUtkzFWaKDLEBEZUPk3SEhERERE5AAKvCIiIiKS1xR4RURERCSvKfCKiIiISF5T4BURERGRvKbAKyIiIiJ5TYFXRERERPKaAq+IiIiI5DUFXhERERHJawq8IiIiIpLXFHhFREREJK8p8IqIiIhIXlPgFREREZG8psArIiIiInlNgVdERERE8poCr4iIiIjkNQVeEREREclrCrwiIiIiktcUeEVEREQkrynwioiIiEheU+AVERERkbymwCsiIiIieU2BV0RERETymgKviIiIiOQ1BV4RERERyWsKvCIiIiKS1xR4RURERCSvKfCKiIiISF5T4BURERGRvKbAKyIiIiJ5TYFXRERERPKaAq+IiIiI5DUFXhERERHJawq8IiIiIpLXFHhFREREJK8p8IqIiIhIXlPgFREREZG8psArIiIiInlNgVdERERE8poCr4iIiIjkNQVeEREREclrCrwiIiIiktcUeEVEREQkrynwioiIiEheswe6gIEWj8exbRvf9/v1PPuP39/nGSi+73e+jvl4jfnefqA2zHX53n6gNsx1fdl+tj3k44v00JD/jpk5cyYlJSU4jnNMzue67jE5z0AoKSnB8zw8zxvoUvpNPrcfqA1z3VBoP1Ab5rq+aL+SkpI+qESGkiEfeF955RVmzJhBRUVFv57H931c18WyLAzD6NdzDQTP89i9ezdlZWWYZv6NlMn39gO1Ya7L9/YDtWGu68v2a2ho6KOqZKgY8oG3ra0Nx3GO2ZunYRh5+UZtGEbn65iP17dfPl+f2jC3DZX2A7VhruuL6ztWn8pK/si/PyFFRERERA4w5Ht4RUREhqoOz2NnR5qk5xG3TEaFQthm/vYuy9ClwCsiIjJE+L5PfcZhT9rBw6M25ZDyPYKGScr3aMq4nFgQxcrjIRUyNCnwioiIDBHbOlKsb+/ANGBPxqE2lWFmQZS4beP5PjXpNKMzQcqDgYEuVaRPKfCKiIgMAa2Ow9+bW0l7PlHLwiLbi1ufcYjbNqZhYABO/k0BLKKb1kRERPKd6/usaUtSn8lgGpBwXerSGVzfJ+Fm5/xNuC62YRK1FA0k/+i7WkREJM+1ui7NjkulHcD1IW5b2AYYBpgG1KczpDyfabEwhbY10OWK9DkNaRAREclzvg8GMCYSZFsyTXPGJen7TIiEObOkAB+DsKneXclfCrwiIiJ5LmaZFNom7a7HhGiIVscj4Xq8oyhOSUA3qEn+059yIiIieS5omsyIxyi0LRKuT9A0OKUwSpVmY5AhQj28IiIiQ0ChbfGOwjhpz8c2DC0wIUOKAq+IiMhhdLgeLj5h08z5BRlMwyBs5fY1iPSGAq+IiEgXPN9nQ6KD6o40Hj7FtsW0WJR4P85i4LsuXiqFEQ5j5HC49lIpUtu34ra2YkYihMaOx4xEBrosGcIUeEVERLqwvSPFW8kUpbaFbRjscRzWtic4tTDe5z29vu+Tqt6G8+pqWmMxAkXFRKZMxYrF+/Q8x4KfyZBYs5rMnt1Y4QjO7kacpiZiM08BW7FDBoZuWhMREelCY8YhYhoETRPTMCizbZodl6Tn9fm5nIY6kutfx7AtrIICnKY9JNatwXecPj9Xf3Oam3D27CZQUYlVWEigogKvtQVnd+NAlyZDmP7UEhER6ULAMHAPWGbX8cHEwKTvhxpkGhsx7ABGIIhhB7DLy3EaG3ET7diFRX1+vs7z1teR2rUTXJdA5TCCI0dhmEfXF+Z7Hr5hHjwkw7TwPfcoqxXpPQVeERGRLowMBalLO+zJONiGQcJ1GR8JE+mP2Q1MEzwPrH3jg30f8DH6IVzvl66rJbFmNYZtY5gWidcb8DNpwhOOO6rjWrE4ZsDGbWvFjMXxO5LZx+MFfVG2SK9oSIOIiEgXyoMBZhVEKQ/YxCyTqfEIJ8T652ay4LDhYBj4rXvxEu1k6uvwMUi8sZa2F/9BatcOfN8/8oF6IL19K0YwiF1cglVYiF1URGr7NvxMplfH8z0PL5nECAaJTjsR3wensREvlSYydTp2SWmf1i/SE+rhFREReRvlwQDlx2BxBruklOiJJ9P66itgGJihMG4ygdfRgdvWRse2bURnnEj0hCl9dk7PcTGsf8UAw7bA9/A9r8f9ym57O8n1r+O2NINpEho9lvipp4HjYAQCmKFQnwd2kZ5Q4BURERkEAuUV2NNOJF5RQdvzz2IVFJKpr8XbuxcvlaL178uxCosIVY3o9TmclmZSW97CTSZx21rxUynMUBBMC6epiUB5JUYw2KNj+q5L8vW1OE17sEtLs19v2oARDBIaPabXtYr0JQ1pEBERGUx8H3wft7kJb28LZmERVlExmBbJ9a/jpTp6dVi3rY32V1/B2bM7O17Y9fAzaZymZpw9e7DLKohMntrjIRtuWxuZPY3YFRUYto0ZCmGGw2Q0K4MMIurhFRERGUQM28YuryC19S180wTXxUsmCAwbju9k8FIpzFC4x8fN7G7ESyYJDhsGgBmNkqlvIDp1OlZJKWY43KMZGnzPI1W9neTG9XRsfgu3tZXQmLGYwSB4LobZfwt0iPSUAq+IiMggEzn+BFI7tpPatAnDMAhUVGIXl+CnU5iBng056OR5BwVawzAwTDCCQaxotMeHS9fsIrn+dayCAoLDhpGqrsZLpQhWVYHvExw5snd1ivQDBV4REZFBxgyFKHrXWbTHCnD2tmDYNl4yQXjSlF4v0WsXF4Np4La3ZW+Ka23FjER7PV1Ypr4OMxzGikYxx07ACEXI1O7EjESIHHcCgbLyXh1XpD8o8IqIiAxCVjRK/B2n4exuxHddrFgMu7Ss18ezS0qJTJ1Bx6YNuHv3YkSjRCdP63WAxjDBz646Z1gmgYpKvEQ7XipDctNG3PZ2QmPGHvVCFiJ9QYFXRERkkDJDIYIj+m5oQKhqBMGKSnzXya7qdhRhNDSiivaGOtzWvRi2Tce2bXipDgKWCZ5Dx5tvgOce9UIWIn1Bf3aJiIgMIdmZFHp2g1pX7IphRKafiBEI4rkehm0THjcBu6AAKxbHKiwktaMa3/P6qHKR3lMPr4iIiPSYYRiEqkYQqhqB53m0Pvc3TNs6cIPOKdZEBpoCr4iISJ7xPQ+3dS++42RvKot0fxYGp2kP6Z078BwXu7SU0KjRR+wNNk2T4PAqOjZvwjYtMAyc5mbCY8dhWJqeTAaeAq+IiMgg5DTtIVNfh+/7BMrKscsrOheFcJr20LFlM14qhV1cTHjCcZihELBv5bM33yC9awf4YAQDRKfOIFBReeRz7tlN++qXAR8sG6euBr+jg8ikE464b3j8RPB80jU7AQiNGUv4uEm9fwFE+pACr4iIyCCTaWwg8eor+PgYhkG6ehuRKdMJjRqN09JM+6sv7wuzQVLV2/CSSWInzcSwLNI1u0hXb8MuK8ewbdy2NhKvr6XgHad3OSOD7zhgWRiGQWrHdjDALsnOBuFFIqR3bM8uKBE+/GIXhm0TOWEy4QkTs18HAn3/woj0kgKviIjIIJPauhlsi0BRMQBuop2OLZsIVo0g09iAn8l09tiakQhOYyNuayt2cXF21oRgEMPO/oq34nEyDfV4HcmDAq+XTJLcsB6nuQnDsghNmIifyXTuB9kQ63tej248U9CVwUizNIiIiAwyXiqFccCKamYgCI6D77rgurBvTK3b1obb3ITb3orvZLLbhsN4mUznvr6TAdM8KMj6rkvi9bVk6muzPbcGJNetBcPATSTxHQff93H27MEqKuocLiGSq9TDKyIiMsjYpWWkqrftC6MGTksLdnEJRiCAXVJKattWOrZtxdndgJvswLQDdGzfhl1cQnB4FemaGtJ1tRiBAH4mQ3jcRMwDVlTz2ttx9jT+a1xwKISfTmMEAoTHjCW1awd4PlZREdEp03XjmeQ8BV4REZFBJjxhIn5HB+nGegzfwCoqIjJ5KoZhYJdXEBwzlr3Ln8YIBAhWVBAcMRqnvo5MXS3BkaOIz5xFurYWP53CKiwiMGx45w1vB/H97PRhkB0TbNmEJ08lOHY8eB5mOHxQz7BIrtJ3sYiIyCBjhsJETzyZUFtrdsKEWKxzbKxhGARKywiNm4BdWoph2RimgZdK4iYT2f0jUcLjJ3Qez/c8Mg312V7ccBirqBi7rIJMYwN2YSF+JoPveQQqKjEMAyva/WnMRHKBAq+IiMggZFgW9r6b1g55LhTCsC3wfQzTwPd9fMfpehYGzyPx+trsNGWGgQGExo4nMmUaxlsbcZp2Y1gBotNPIFBRie95OE17sscLh9+2BpFcosArIiKSY6yCQkLjJpB66y1cwwfPI1g5nGDl8EO2zTTUk965g0B5OYZl4TsZUtu2EqioJDb9RHzP61xYwnddEutfJ7NrBz4GhmkQPv4EwmPGHeMrFOlbCrwiIiI5xjAMwhOOwy4uwUsmMWybQHlFl+Nt/XQKwzA6bzwz7OzQCC/Vke0ZTqXwASMci2ZK1QAAHAJJREFUJlNfR6Z6O3ZFBYZl4XV00LFxA4HiUqzCwmN5iSJ9Ki8CbyaTYdmyZSxfvpy2tjbGjRvHZZddxsyZMwe6NBERkV7xHSe7PLDnYcXihyz8YBgGgbLyIx7HCIbA9/Fdt7OHFwDTIrFuDU59Hfg+dmVldio02+oMx2Y4jNvaipfqwOLQwOu7Lnie5t6VQS8vAu+tt97K888/z4IFC6iqquKZZ57hm9/8JjfddBNTp04d6PJERER6xEulSL6+lkxDPRjZm9Ci00/ELi7p8bECFZUERo46ZAyvs7uR9M7qztCc3rULIxTCd118P7vCm+9k8JwMXjqD7zidPci+55HatoXU9m3ZsFxWTmTSZM3XK4NWzi88sWHDBp599lmuvPJKrrnmGubPn8+3v/1tKioquPPOOwe6PBERkR5LbdtKpqEOu7w8eyOZkyHx+rrsMsA9ZJgm0anTic+cTWzqDGIzZxM6btK+GRqKMGwbw7axi4sxPA+7rJxMfR3p+noSG97EbWkm8fprtL60CmdvS7a+HdtJbliPGQpiRqOkd+0kueENfN/v65dCpE/kfOB97rnnME2Tc845p/OxYDDIe9/7XtavX09DQ8MAViciItJzbksTZjTaeTOZVViEl2jHS6d7dTzDNAlUVBIcOSo71tcwMEwzOyRhH991IWATm3EysRknY5WUYIbChMZNJFBegZ9IkFj7Gl46jVNbixWNYYYjmMEggbIynIYG/HSqT65fpK/lfODdvHkzI0eOJPpvcwZOmjQJgC1btgxEWSIiIr1mhCN4qX+FWz+V6uyJ7a5MQz2JtWtIrF1Dpr7uoN5XwzAIjR2Pl2jHaWnB3bsXt7WV0JjxmKEQwREjsaMxAmVlWOFQdsGL0lK89ja8ZAJMI7toxf76fG//kY/62kX6Q86P4W1qaqKk5NAxTfsf27Nnz7EuSURE5KiEx47HadpDpq4OLBN8n/DkaZjBYLf2T+3aSXLdmuxcvRika3YSmTad0IhRndsER44C0yRTsyv79YTjsCIR0nW12bG4ln3QEIpsb3C2ZzgwYiTJtWuywde0cFv3Eh4zDqOb9YkcazkfeNPpNIEu7g4N7vuhS6X08YqIiOQWq7CQ+KxTs6ujeS52YRF2eQWQnb3Bdx2MQLBzyMOBfN8ntXUzZiSMFS8AwG1rI7VlM8GqkZ1LDBuGQWjESEIjRuJ7Hh0b3qT9jXXZKcoMsCuHYdgBMrsbMQNB3GSC4KgxmLE4wXgB+GRvWvNcwhOOIzx+YtfLF4sMAjkfeIPBIJlM5pDH0/vGOYX+7Y7RmpoaampqAGhoaKC9vR0Az/PoT77v43kenufl5RvC/tevv1/HgZLv7Qdqw1yX7+0HQ68NjWiU4NhxBz2f3rWD1Fub8F0HK15IZPIUrIKDpwvzPQ8vncYIhfC87LAD37LxUx14jtM55diBMg31JLdtwS4pwbADeOk0mbpawsedgNu2Fz+VJjRyFKHRY/EBfJ9A1QgCVSP+NaPDvnO/nXxvPxnccj7wlpSUdDlsoampCYDS0tKDHv/FL37BjTfe2Pn1okWLAKitre3HKoeO+vr6gS5BjpLaMLep/XLf27Wh17QH9411GNEIBIL4O3fQvLsRa9qM7Py5B3Aw8HfuwNg3jZnf3IRRXkHibW7k9mp34bbuxTzgE1OvZS/te/diVlT+a8PGxqO8OpGBkfOBd8KECaxZs4ZEInHQjWtvvvkmAOPHjz9o+49//OMsWLAAyPbwPvXUUwAMH37ocox9yfd9HMfBtu28/MvW8zzq6+uprKzE7OIjtlyX7+0HasNcl+/tB2rDjr3NpIqLsUvLsg+UlZNpqCceLwDfw0u0g2Vhl5bDO04j+cY6nN3ZgGuPn0hkyrRDFq/YL2NAe31ddpqyfbM3OJkMsaoqAvuGUhytvmw/dVJJT+V84J07dy4PPvggTz75JAsXLgSyK689/fTTTJo0iYqKg39Qq6qqqKqqAmDXrl2sXLkSoN9/Qfi+j2mamKaZl2/U++2/xnwzVNoP1Ia5Ll/bD9SGhm1j+B6mmb1238v+f6a2hkzNDvB8fN/HLi4hduLJxE+elZ1RgezCFV0NZdgvWDkMp2oEmdpdYJj4vkd41BiC5RVdjhPujaHSfjI45XzgPeGEE5g3bx5Lly6lubm5c6W1+vp6Pv3pTw90eSIiIn0iUFFJesd2nKYmjGAQt70Nu6iYTO1OrHgBZjiM7/tkGhpI7dhO5PgTOm9aOxLDsohOm0Fm2DC8VBozHCZQUdlnYVdkoOV84AX43Oc+x7Jly1i+fDltbW2MGzeOr3/960yfPn2gSxMREekTdlExsZNm0bFlM14qRWj0WOyKStpfealzqIJhGJihYGfP7n5eOo3f0YERsDEjB89b76U6cFua8T0fq7CY4L/Nay+SD/Ii8AaDQa655hquueaagS5FRESk39glpcRL/nUztpfqyE4ZlmjHisbwfR8/1YEV+1fPrtO0h8S6NXjJBIZlExo7ntCE7BRiblsb7a+txm3bC4aJGQoRO/Fk7OJD57cXyWX6rEJERCRHmaEw4ROm4HekyDTU4zTUY5dXEhw9BsgG4va1r+G7LoGKSsx4nOSmDWTqsjd9dby1ES/RTrByGMGKCvBckuvfOGhVtu7KeB5vtCVZ1dzKurYErY575J1EjpG86OEVEREZqkJVI7Djcdz2NgzLxi4p7VyC2Esk8JMdBCqzN3CbwSBmwMZtaYbhVbite7Fi/xrCYMXiuG1t+JlMj1ZN63BdntjdwuZkBwHDJGIZ7EqlOa2ogAL77W+WEzlW1MMrIiKS46yCQoLDR2RvNLMP6MsyTTD2Lwuc5TsOhp2db9eMxfGSyc7n3GQCIxQ6+Bjd8HJrO+vakoRNk5hl4no+2ztS7Nq3CJTIQFMPr4iISJ6yCgoJDK8ivWsHZjiCn05jRKIEhmXnng9PPI72V1tJ19WBYWAGA0ROmNKj2Rk6XJdXW9tp81wMB8Cl0LLIeB4pN39X/pPcosArIiKSpwzTJDplGlZBAU5zC2YoSGj0GKx4HAC7sIj4rFNxm5uyc/gWFmEVFh7hqNk5dZOeT9rz2JZI0uZ6RA0Dy4CAYbA7kyFuWZRoOIMMEgq8IiIiecywbcLjJrzt81YshhWLdft4jufzRiLJ1mSKHR0p9jouad/HBVKuTxKPhOcxqyDGyHCoD65A5Ogp8IqIiEi3+L7PC3tbea01QbPjZocteB6OD8W2RcS2iJsWIcvgzJICTK2oJoOEAq+IiMgg5/g+ru8TMIwBDZHVHWn+2dpOU9qhJp2hw/OwAdMwcIEK02RyNMAJsQiFgcCA1Sny7xR4RUREBinf96nuSPFmooPqjjQJ12FMKMiUeIyJ0XC/h9/dGYfaVBoPKLUt3kokcTw/O4Rh31y9vmFgAAYQMOAdhXFKggq7Mrgo8IqIiAxS9RmHl1vbebO9gx0daTJkF3d4cW877ygu4PTCOA4Gdek0ru9TaFsUWBYB06TYto4qENenM6xubQfAxGBbMkXCdYlaFo1pB59syHV9n7BlYhoGRbZNYUDRQgYffVeKiIgMUo3pNJsTabZ1pPD87A1jbcDeVIba+iZeaG7FNg1swyTlurS7PsNDNmMjEQpsk2LbJmqZjA2HKO5hEN2STGEZBsX75uRNuB67MxksoMi2aHVcUoZHCIMCyyZmm1QEbSyN25VBSIFXRERkkGrOuJ2LN3R4Hh0HPOf6PhtT2QAaBjJke1x3Ow7bUmlihsmEaJiYbbE52cHphQUkPJedqQymAaNDQUaGQ28bUNOeR+CA5wKGQUUgQNg0SXhJopaJ7RuETZMC26IkYHNSQfdnexA5lhR4RUREBjHbAMfzSP3b494B/00e8LUBdDgeu/HY1dKGDVgmrGpppcwOYBsGngGvmSazCmOcHI8Rsg5daKI8EGBzR4qIaWIAza5DRSjAzHiU6QURtifSbEkmyWBQZJlML4gyRtOQySClwCsiIjJIFQZsJkUivOK6tDkefhfbGPwr7B7I51+9vp4HNSmHtOdzfDRCoWWxpSPFM3v2siuVYUY8yoRI6KAxvxOjITo8j7p0BvApDthMjUWwTZPKYJDKYJBZRTHSvo9tGNgayiCDmAKviIjIIFURsBkWCjDeDeMlOmh1PTzo/Adg0nXghWzYBbANY9/UZtDueqR9n5TnUxQwsQyDNxNJAgaMjYQ79w2aJicVRGnbtzxw1DIPCbWmYRBW0JUcoMArIiIySA0LBpgWj9DhebRkXEKmg+v5NLseDhACwobBXt/HOWA/Azp7g32y4289fDwf9jouKc/DMHzwLeKWiYFBXdphbOTg85uGQaGWB5Y8oMArIiIySBmGwbhImFHhELMKoqxuTVCXyeB5Po2ZDAnXxwNKDIO96TTNfjbg7v8H2R5gw4ACwyBgGjQ7Do4PUTMbiy3AwcdUR63kMQVeERGRQc42DMZHI4yPRvA8jw2JFG8kEiQ9j4wHGc8jHovQ5nlsTaYAn4Tn43keIcskbFlMiYbJ+D5xy2S349HuuljA9o4MFSGbUaHgQF+mSL9R4BUREckhHT5sT6WpCoYI7OuW3ZBI0Ob4zCyMMzEaoc1xaHEdzigqoCoUImgatLkezzW3Uh6wGQXUptPUpDJYJpwUjzJMq6NJHlPgFRERySGe7+P5PvYBQxCK7AAdbpo9GYewaRCwTCaGIowIhwia2SnHIqZJgW3S5LiUBmwqg0Esw2BqLEKVenclzx068Z6IiIgMWmHLpNC22O04+L5PxvPxfZ9TCmOUBCx8oCoY4KR4rDPsAtimwbR4lLBpUJ9O0+Q4jAmHGK25c2UIUA+viIhIDrENg+nxKGva2mnMOBgGjI+EOSEWPuKyvsW2zWlF2RXXLAxilomhacVkCFDgFRERyTGFtsWcwgKSnodlZIcrdDe4BkyDIlO//mVo0Xe8iIhIDrJNgwJTc+SKdIfG8IqIiIhIXlPgFREREZG8psArIiIiInlNgVdERERE8poCr4iIiIjkNQVeEREREclrCrwiIiIiktcUeEVEREQkrynwioiIiEheU+AVERERkbymwCsiIiIiec0e6AIGg8bGxn4/h23blJSU0NDQgOM4/X6+gVJbWzvQJfSLodJ+oDbMdfnafqA2zHV92X7H4ve25JchHXij0SiBQIA//vGPA11KzmttbeWf//wnp5xyCgUFBQNdjvSC2jC3qf1yn9qwZwKBANFodKDLkBxh+L7vD3QRA6m5uZlEIjHQZeS8NWvWMH/+fJ544glmzJgx0OVIL6gNc5vaL/epDXsmGo1SXFw80GVIjhjSPbwAxcXF+oHpA/s/gquoqGDEiBEDXI30htowt6n9cp/aUKT/6KY1EREREclr1pIlS5YMdBGSH+LxOO9+97s19iyHqQ1zm9ov96kNRfrHkB/DKyIiIiL5TUMaRERERCSvKfCKiIiISF4b8rM0SP94+umnue2227p87q677qKkpOQYVyRvJ5PJsGzZMpYvX05bWxvjxo3jsssuY+bMmQNdmhzBmjVruOGGG7p87uabb2by5MnHuCI5nGQyyYMPPsibb77Jxo0baWtr47Of/Sxnn332IdtWV1fz61//mjfeeAPbtpk9ezYf/vCHKSoqGoDKRXKfAq/0q0svvZRhw4Yd9FgsFhugaqQrt956K88//zwLFiygqqqKZ555hm9+85vcdNNNTJ06daDLk244//zzOe644w56TNNaDT579+7lvvvuo6KigvHjx7NmzZout2tsbOT6668nGo1yxRVXkEwmeeihh9i2bRvf//73CQQCx7hykdynwCv96pRTTuH4448f6DLkbWzYsIFnn32Wa665hoULFwJw1lln8V//9V/ceeed3HzzzQNcoXTH1KlTmTdv3kCXIUdQWlra+QnXxo0b+cIXvtDldr///e/p6Ojghz/8IRUVFQBMmjSJb3zjGzz99NPMnz//WJYtkhc0hlf6XSKRwHXdgS5DuvDcc89hmibnnHNO52PBYJD3vve9rF+/noaGhgGsTnpCP2eDXyAQ6NZwrueff55TTz21M+wCnHzyyYwcOZLnnnuuP0sUyVvq4ZV+9bWvfY1kMolt28yaNYvFixfro9ZBZPPmzYwcOfKQ9egnTZoEwJYtWw76pSuD049+9COSySSmaTJt2jSuvvpqfbKSo3bv3k1LS8shQ1QAjj/+eP75z38OQFUiuU+BV/pFKBTi7LPPZsaMGUSjUTZt2sTDDz/Ml7/85YM+ppOB1dTU1GWP0/7H9uzZc6xLkh6wbZu5c+dyyimnUFhYSHV1NQ8++CDXX3893/3ud5k4ceJAlyg9tP9nrrS09JDnSkpKaG1tJZPJaByvSA8p8MoReZ6H4zjd2jYQCGAYBmeccQZnnHFG5+OnnXYas2bN4vrrr+f3v/89n/zkJ/urXOmBdDrd5S/OYDAIQCqVOtYlSQ9MmTKFKVOmdH49Z84c5s6dy2c+8xmWLl3KjTfeOIDVSW+k02mAI/5cKvCK9IwCrxzRunXr3nbqo3/3s5/9jFGjRnX53NSpU5k0aRKrV6/uy/LkKASDQTKZzCGP7/+lGwqFjnVJcpRGjBjBnDlzWLlyJa7rYlnWQJckPbA/1OrnUqRvKfDKEY0aNYrPfvaz3dr2SDdklJeXs3Pnzr4oS/pASUlJl8MWmpqagK4/VpXBr7y8HMdxSKVSh4zPlsFt/8/c2/1cFhQUqHdXpBcUeOWISkpKupwYvTfq6uo0cfogMmHCBNasWUMikTgoGL355psAjB8/fqBKk6NQV1dHMBgkHA4PdCnSQ2VlZRQVFbFp06ZDntu4caN+JkV6SdOSSb9oaWk55LGXXnqJTZs2MWvWrAGoSLoyd+5cPM/jySef7Hwsk8nw9NNPM2nSJN1cOMh19XO2ZcsWXnjhBU4++WRMU2/xuej000/nxRdfPGhawFdffZWdO3dqvmWRXlIPr/SLL3/5y0yYMIHjjjuOWCzGW2+9xVNPPUV5eTkf/OAHB7o82eeEE05g3rx5LF26lObm5s6V1urr6/n0pz890OXJEdx8882EQiEmT55MUVER1dXVPPnkk4RCIa666qqBLk+68Oijj9Le3t45ZOGFF16gsbERgPPOO49YLMaHPvQhnnvuOW644QYWLFjQuSTx2LFjec973jOQ5YvkLMP3fX+gi5D8c8899/Diiy9SX19PKpWipKSE2bNns2jRom5NvC7HTjqdZtmyZSxfvpy2tjbGjRvHZZddpp74HPCnP/2JFStWUFNTQyKRoKioiBNPPJFFixZpvutB6iMf+Qj19fVdPverX/2qcyn27du385vf/IbXX38d27aZPXs2ixcv1vunSC8p8IqIiIhIXtMALxERERHJawq8IiIiIpLXFHhFREREJK8p8IqIiIhIXlPgFREREZG8psArIiIiInlNgVdERERE8poCr4iIiIjkNQVeEREREclrCrwiclhbt27FMAwMwzjsdldffTWGYbBkyZIuHzcMg49//ONvu38qlaK0tLRz2+XLlx9225KSEgzD4KyzzjpsXUuWLOk85v5/oVCICRMm8NGPfpRNmzYddv8Dua7L/fffzxe/+EXe9a53EYvFMAyDq6++utvHEBGRY88e6AJEZOj4/e9/z49//GOCweAhzz322GM0NTV16ziPPvoozc3NAKxYsYIdO3YwatSow+5z0kkncfLJJwPQ3NzMqlWr+PWvf819993HM888w6mnnnrE87a2tnLxxRd3q0YRERk81MMrIsfEzJkzaWpq4vHHH+/y+XvuuQfLsjjppJOOeKy7774bgKqqKjzPY9myZUfc5z//8z+58847ufPOO3nooYfYuHEj5557Lm1tbXziE5/o1jUEAgGuuOIKbrvtNp5//nnuuOOObu0nIiIDS4FXRI6JSy65BNM0uwynzc3NPP7445x99tkMHz78sMfZs2cPjz/+OJFIhF/96lfAvwJwT8TjcX72s58B8M9//pMdO3YccZ9YLMbSpUv5zGc+w+mnn044HO7xeUVE5NhT4BWRY6KqqoqzzjqLRx99lJaWloOeu//++0mlUlx++eVHPM7vfvc7MpkMCxYs4P3vfz/jxo1j3bp1vPLKKz2uacyYMZSWlgJQXV3d4/1FRCQ3KPCKyDFz2WWX0dHRwQMPPHDQ48uWLSMajbJw4cIjHmN/b+7ll1+OYRhceumlQHZIRE95nkd7ezsAoVCox/uLiEhuUOAVkWPmwgsvJBKJHBROt2/fzrPPPssFF1xAPB4/7P6bNm1i5cqVlJeXM3/+fIDOXuF7770X13V7VM9f/vIXUqkUgUCAyZMn9/BqREQkVyjwisgxU1BQwPnnn8+KFSvYuXMnkO3d9X2/W8MZ9gfliy++GNvOTjIzZcoUZs2aRW1tLU899VS36mhububBBx/kmmuuAeCqq64iGo325pJERCQHKPCKyDF1+eWX43ke9957L5ANvJWVlbzvfe874r77b3i74oorDnp8/9eHu3ntxhtv7JyHt6SkhA984APU1NQwf/58br311t5ejoiI5ADNwysih3WkBSf2832/W9vPnz+fsrIyli1bxnve8x7WrVvHpz/96c4e27ezcuVKNm3axPHHH8+cOXMOeu6SSy7hi1/8Ig899BDt7e3EYrFD9j9wHt5QKMSIESM4++yzOeOMM7p1fSIikrsUeEXksA78qD+RSLztR/+JRAKgy7B5oEAgwEUXXcTPf/5zvvrVrwJ0azjD/t7b5ubmLkNqIBCgvb2dP/7xj4f0AEN2Ht5/XwVORESGBgVeETms0tJSIpEIyWSSzZs3M3369C6327x5M8ARVzyDbMD9+c9/zhNPPMGkSZN4xzvecdjtM5kM999/PwANDQ00NDS87bZ33313l4FXRESGLo3hFZHDsiyLefPmAdnlf7tSXV3N6tWrMU2zc9vDmTt3LieddBJlZWUsXrz4iNs//vjj7N69m9mzZ+P7fpf/9g9lePrpp6mpqenZRYqISF5T4BWRI/rsZz8LwHe+8x1WrVp10HMtLS0sXrwYz/P4wAc+wOjRo7t1zNWrV9PY2Mh11113xG33D2e45JJL3nabaDTKggULDrohTkREBDSkQUS64bzzzuPLX/4yN998M3PnzmXOnDmMHz+elpYW/v73v9PS0sL06dM7l+rtS83NzTz66KOYpsnFF1982G0vueQSfvvb33L33XfzhS98oc9rAfjkJz/Jyy+/DMDu3buBbM/3aaed1rnNP/7xj345t4iI9I4Cr4h0y3e/+13+4z/+g9tvv51Vq1bx4osvEo1GmTx5MhdeeCGf+tSnjnjDWm/sX3b4zDPPZOTIkYfd9pxzzqGkpIRXX32VNWvWMGPGjD6v5/XXXz+kl7uxsZHGxsY+P5eIiPQNw98/l5CIiIiISB7SGF4RERERyWsKvCIiIiKS1xR4RURERCSvKfCKiIiISF5T4BURERGRvKbAKyIiIiJ5TYFXRERERPKaAq+IiIiI5DUFXhERERHJawq8IiIiIpLXFHhFREREJK8p8IqIiIjI/2+3DmQAAAAABvlb3+MritaEFwCAtQDuLQmDSz/HvgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Overlay original input vs simulated data\n", + "\n", + "# Add label for input or simulated dataset\n", + "input_data_UMAPencoded_df['dataset'] = 'original'\n", + "simulated_data_UMAPencoded_df['dataset'] = 'simulated'\n", + "\n", + "# Concatenate input and simulated dataframes together\n", + "combined_data_df = pd.concat([input_data_UMAPencoded_df, simulated_data_UMAPencoded_df])\n", + "\n", + "# Plot\n", + "g_input_sim = ggplot(combined_data_df, aes(x='1', y='2'))\n", + "g_input_sim += geom_point(aes(color='dataset'),alpha=0.3)\n", + "g_input_sim += labs(x = \"UMAP 1\",\n", + " y = \"UMAP 2\", \n", + " title = \"Original and simulated data\")\n", + "g_input_sim += theme_bw()\n", + "g_input_sim += theme(\n", + " legend_title_align = \"center\",\n", + " plot_background=element_rect(fill='white'),\n", + " legend_key=element_rect(fill='white', colour='white'), \n", + " plot_title=element_text(family='sans-serif', size=15),\n", + " axis_text=element_text(family='sans-serif', size=12),\n", + " axis_title=element_text(family='sans-serif', size=15)\n", + "\n", + ")\n", + "\n", + "print(g_input_sim)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:simulate_expression_compendia] *", + "language": "python", + "name": "conda-env-simulate_expression_compendia-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/human_tests/Human_template_simulation.ipynb b/human_tests/Human_template_simulation.ipynb new file mode 100644 index 0000000..ae8e624 --- /dev/null +++ b/human_tests/Human_template_simulation.ipynb @@ -0,0 +1,649 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test shifting template experiments" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Using TensorFlow backend.\n" + ] + } + ], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import os\n", + "import sys\n", + "import pandas as pd\n", + "import numpy as np\n", + "import random\n", + "import umap\n", + "import glob\n", + "import pickle\n", + "from keras.models import load_model\n", + "from sklearn.decomposition import PCA\n", + "from plotnine import (ggplot,\n", + " labs, \n", + " geom_point,\n", + " aes, \n", + " ggsave, \n", + " theme_bw,\n", + " theme,\n", + " facet_wrap,\n", + " scale_color_manual,\n", + " guides, \n", + " guide_legend,\n", + " element_blank,\n", + " element_text,\n", + " element_rect,\n", + " element_line,\n", + " coords)\n", + "\n", + "\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore')\n", + "\n", + "from ponyo import utils, train_vae_modules, simulate_expression_data\n", + "\n", + "np.random.seed(123)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Read in config variables\n", + "base_dir = os.path.abspath(os.path.join(os.getcwd(),\"../\"))\n", + "config_file = os.path.abspath(os.path.join(base_dir,\n", + " \"human_tests\", \n", + " \"config_test_human.tsv\"))\n", + "params = utils.read_config(config_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load parameters\n", + "local_dir = params[\"local_dir\"]\n", + "dataset_name = params['dataset_name']\n", + "analysis_name = params[\"simulation_type\"]\n", + "project_id = params['project_id']\n", + "NN_architecture = params['NN_architecture']\n", + "sample_id_colname = params['metadata_colname']\n", + "scaler_file = params['scaler_transform_file']\n", + "num_runs = params['num_simulated']\n", + "\n", + "NN_dir = os.path.join(\n", + " base_dir, \n", + " dataset_name, \n", + " \"models\", \n", + " NN_architecture)\n", + "\n", + "metadata_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"metadata\",\n", + " \"recount2_metadata.tsv\")\n", + "\n", + "# Load pickled file\n", + "scaler = pickle.load(open(scaler_file, \"rb\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Input files\n", + "rpkm_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_RPKM_data_test.tsv\")\n", + "assert os.path.exists(rpkm_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup directories" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "utils.setup_dir(config_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pre-process data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Output file\n", + "normalized_data_file = os.path.join(\n", + " base_dir,\n", + " dataset_name,\n", + " \"data\",\n", + " \"input\",\n", + " \"recount2_gene_normalized_data_test.tsv.xz\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input: dataset contains 50 samples and 5000 genes\n", + "Output: normalized dataset contains 50 samples and 5000 genes\n" + ] + } + ], + "source": [ + "train_vae_modules.normalize_expression_data(base_dir,\n", + " config_file,\n", + " rpkm_data_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Output file\n", + "experiment_id_file = os.path.join(\n", + " base_dir, \n", + " dataset_name,\n", + " \"data\",\n", + " \"metadata\", \n", + " \"experiment_ids.txt\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "There are 3219 experiments in the compendium\n", + "There are 6 experiments with gene expression data\n", + "6 experiment ids saved to file\n" + ] + } + ], + "source": [ + "utils.create_experiment_id_file(metadata_file,\n", + " normalized_data_file,\n", + " experiment_id_file,\n", + " config_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train VAE" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Directory containing log information from VAE training\n", + "vae_log_dir = os.path.join(\n", + " base_dir, \n", + " dataset_name,\n", + " \"logs\",\n", + " NN_architecture)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "input dataset contains 50 samples and 5000 genes\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Colocations handled automatically by placer.\n", + "tracking beta\n", + "WARNING:tensorflow:From /home/alexandra/anaconda3/envs/simulate_expression_compendia/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n", + "Instructions for updating:\n", + "Use tf.cast instead.\n", + "Train on 45 samples, validate on 5 samples\n", + "Epoch 1/10\n", + "45/45 [==============================] - 4s 88ms/step - loss: 2466.1158 - val_loss: 2732.4883\n", + "Epoch 2/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1671.1998 - val_loss: 2180.0183\n", + "Epoch 3/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1566.8178 - val_loss: 1799.2496\n", + "Epoch 4/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1481.5816 - val_loss: 1730.1412\n", + "Epoch 5/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1577.6224 - val_loss: 1477.2603\n", + "Epoch 6/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1444.6422 - val_loss: 1510.6864\n", + "Epoch 7/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1475.2912 - val_loss: 1676.2584\n", + "Epoch 8/10\n", + "45/45 [==============================] - 4s 78ms/step - loss: 1398.2218 - val_loss: 1403.8243\n", + "Epoch 9/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1352.8320 - val_loss: 1309.4790\n", + "Epoch 10/10\n", + "45/45 [==============================] - 4s 79ms/step - loss: 1411.7664 - val_loss: 1252.2395\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAESCAYAAADe2fNYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd8VuX5+PHPlQ1kkQGZ7BlGQoiAInuIKKAW/YlbW6nW1lXboh22+rVVa63aqlWrVq2VUlEBBSkqQ6pswwyQsCSDLCCDELLu3x/nJASEJCRPcp4k1/v1Oi+e3M957nMltrlybzHGoJRSSrmKh9MBKKWUals0sSillHIpTSxKKaVcShOLUkopl9LEopRSyqU0sSillHIpTSxKKaVcyrHEIiKxIrJSRHaJyE4Ruc8uTxCRdSKSLCKbRGSEXS4i8oKIpInINhFJrFXXrSKSal+3OvU9KaWUAnFqgaSIRAKRxpgtIhIAbAauAp4D/myMWSYi04GfG2PG269/AkwHRgLPG2NGikgIsAlIAoxdz3BjzDEHvi2llGr3vJx6sDEmC8iyXxeJSAoQjZUcAu3bgoBM+/Us4G1jZcJ1IhJsJ6fxwApjzFEAEVkBTAPeO9+zw8LCTI8ePVz+PSmlVFu2efPmPGNMeH33OZZYahORHsAwYD1wP7BcRJ7B6qq7xL4tGjhc62Ppdtn5ys9+xlxgLkC3bt3YtGmTS78HpZRq60TkUEPuc3zwXkT8gYXA/caYQuBu4AFjTCzwAPC6K55jjHnVGJNkjEkKD6834SqllGokRxOLiHhjJZV3jTEf2MW3AtWv/wOMsF9nALG1Ph5jl52vXCmllAOcnBUmWK2RFGPMs7XeygTG2a8nAqn268XALfbssFFAgT1OsxyYKiKdRaQzMNUuU0op5QAnx1hGAzcD20Uk2S57BLgTeF5EvIBS7HERYCnWjLA0oAS4HcAYc1REHgc22vc9Vj2Qr5RyD+Xl5aSnp1NaWup0KKoB/Pz8iImJwdvbu1Gfd2y6sZOSkpKMDt4r1XIOHDhAQEAAoaGhWJ0Vyl0ZY8jPz6eoqIiePXue8Z6IbDbGJNVXh+OD90qptq+0tFSTSishIoSGhjapdamJRSnVIjSptB5N/W/VPhNLQTpUnHI6CqWUapPaZ2I5kQtb3nY6CqVUC8nPzychIYGEhAQiIiKIjo6u+bqsrKxBddx+++3s2bOnzntefPFF3n33XVeEzKWXXkpycnL9N7oht1h53+J8/OHLP8Gwm8Hbz+lolFLNLDQ0tOaX9G9/+1v8/f156KGHzrjHGIMxBg+Pc/+9/eabb9b7nHvuuafpwbYB7bPFEhAJRVmw5S2nI1FKOSgtLY24uDhuvPFGBg0aRFZWFnPnziUpKYlBgwbx2GOP1dxb3YKoqKggODiYefPmER8fz8UXX0xOTg4Av/rVr3juuedq7p83bx4jRoygf//+fPXVVwCcOHGC733ve8TFxTF79mySkpLqbZn885//ZMiQIQwePJhHHnkEgIqKCm6++eaa8hdeeAGAP//5z8TFxTF06FBuuukml//MGqJ9tlh8/aH7pVarJfEW8O7gdERKtRu/W7KTXZmFLq0zLiqQR2cMatRnd+/ezdtvv01SkjWL9sknnyQkJISKigomTJjA7NmziYuLO+MzBQUFjBs3jieffJIHH3yQN954g3nz5n2nbmMMGzZsYPHixTz22GN8+umn/OUvfyEiIoKFCxeydetWEhMTv/O52tLT0/nVr37Fpk2bCAoKYvLkyXz88ceEh4eTl5fH9u3bATh+/DgATz/9NIcOHcLHx6emrKW1zxYLwISHoTgbNtXfvFVKtV29e/euSSoA7733HomJiSQmJpKSksKuXbu+85kOHTpw+eWXAzB8+HAOHjx4zrqvueaa79yzdu1arr/+egDi4+MZNKjuhLh+/XomTpxIWFgY3t7e3HDDDaxZs4Y+ffqwZ88e7r33XpYvX05QUBAAgwYN4qabbuLdd99t9ALHpmqfLRaAHpdCjzGw9s8w/Dbw6eh0REq1C41tWTSXTp061bxOTU3l+eefZ8OGDQQHB3PTTTedcz2Hj49PzWtPT08qKirOWbevr2+99zRWaGgo27ZtY9myZbz44ossXLiQV199leXLl7N69WoWL17M73//e7Zt24anp6dLn12f9ttiAZjwCJzIgU1vOB2JUsoNFBYWEhAQQGBgIFlZWSxf7vptB0ePHs2CBQsA2L59+zlbRLWNHDmSlStXkp+fT0VFBfPnz2fcuHHk5uZijOHaa6/lscceY8uWLVRWVpKens7EiRN5+umnycvLo6SkxOXfQ33ab4sFoPsl0HMc/O85SLodfDrV/xmlVJuVmJhIXFwcAwYMoHv37owePdrlz/jJT37CLbfcQlxcXM1V3Y11LjExMTz++OOMHz8eYwwzZszgiiuuYMuWLXz/+9/HGIOI8NRTT1FRUcENN9xAUVERVVVVPPTQQwQEBLj8e6iP7hX27Tp44zKY8jiMvtfZwJRqo1JSUhg4cKDTYbiFiooKKioq8PPzIzU1lalTp5KamoqXl3v9nX+u/2YN3SvMvb4TJ3QbBb0mwP+eh4u+r60WpVSzKi4uZtKkSVRUVGCM4ZVXXnG7pNJUbeu7aawJj8DrU2DDa3Dp/U5Ho5Rqw4KDg9m8ebPTYTSr9j14Xy12BPSeBF+9AKeKnY5GKaVaNU0s1SY8AiX5sOFVpyNRSqlWTRNLtZgk6DPFbrUUOR2NUkq1Wk6eeR8rIitFZJeI7BSR+2q99xMR2W2XP12r/GERSRORPSJyWa3yaXZZmoh8d1+FhprwMJw8ButfaXQVSinV3jnZYqkAfmqMiQNGAfeISJyITABmAfHGmEHAMwAiEgdcDwwCpgEviYiniHgCLwKXA3HAHPveCxc9HPpNg6/+AqUFTfz2lFLuYsKECd9Z7Pjcc89x99131/k5f39/ADIzM5k9e/Y57xk/fjz1HXX+3HPPnbFQcfr06S7Zx+u3v/0tzzzzTJPrcTXHEosxJssYs8V+XQSkANHA3cCTxphT9ns59kdmAfONMaeMMQeANGCEfaUZY/YbY8qA+fa9jTN+HpQe11aLUm3InDlzmD9//hll8+fPZ86cOQ36fFRUFO+//36jn392Ylm6dCnBwcGNrs/ducUYi4j0AIYB64F+wBgRWS8iq0XkIvu2aOBwrY+l22XnK2+cqGHQfzp8/Vc46czOoEop15o9ezaffPJJzaFeBw8eJDMzkzFjxtSsK0lMTGTIkCEsWrToO58/ePAggwcPBuDkyZNcf/31DBw4kKuvvpqTJ0/W3Hf33XfXbLn/6KOPAvDCCy+QmZnJhAkTmDBhAgA9evQgLy8PgGeffZbBgwczePDgmi33Dx48yMCBA7nzzjsZNGgQU6dOPeM555KcnMyoUaMYOnQoV199NceOHat5fvU2+tWbX65evbrmoLNhw4ZRVOTacWXH17GIiD+wELjfGFMoIl5ACFb32EXAAhHp5YLnzAXmAnTr1q3um8fPg1fGwvq/Wa+VUq6zbB4c2e7aOiOGwOVPnvftkJAQRowYwbJly5g1axbz58/nuuuuQ0Tw8/Pjww8/JDAwkLy8PEaNGsXMmTPPe+77yy+/TMeOHUlJSWHbtm1nbHv/xBNPEBISQmVlJZMmTWLbtm3ce++9PPvss6xcuZKwsLAz6tq8eTNvvvkm69evxxjDyJEjGTduHJ07dyY1NZX33nuP1157jeuuu46FCxfWeb7KLbfcwl/+8hfGjRvHb37zG373u9/x3HPP8eSTT3LgwAF8fX1rut+eeeYZXnzxRUaPHk1xcTF+fq498NDRFouIeGMllXeNMR/YxenAB8ayAagCwoAMILbWx2PssvOVn8EY86oxJskYkxQeHl53YJHxMOBK+PolbbUo1UbU7g6r3Q1mjOGRRx5h6NChTJ48mYyMDLKzs89bz5o1a2p+wQ8dOpShQ4fWvLdgwQISExMZNmwYO3furHeDybVr13L11VfTqVMn/P39ueaaa/jyyy8B6NmzJwkJCUDdW/ODdT7M8ePHGTduHAC33nora9asqYnxxhtv5J///GfNCv/Ro0fz4IMP8sILL3D8+HGXr/x3rMUi1p8DrwMpxphna731ETABWCki/QAfIA9YDPxLRJ4FooC+wAZAgL4i0hMroVwP3NDkAMfPg90fw7qXrDUuSinXqKNl0ZxmzZrFAw88wJYtWygpKWH48OEAvPvuu+Tm5rJ582a8vb3p0aPHObfKr8+BAwd45pln2LhxI507d+a2225rVD3VqrfcB2vb/fq6ws7nk08+Yc2aNSxZsoQnnniC7du3M2/ePK644gqWLl3K6NGjWb58OQMGDGh0rGdzssUyGrgZmCgiyfY1HXgD6CUiO7AG4m+1Wy87gQXALuBT4B5jTKUxpgL4MbAcawLAAvvepokYAgNnwLqXrSnISqlWzd/fnwkTJnDHHXecMWhfUFBAly5d8Pb2ZuXKlRw6dKjOesaOHcu//vUvAHbs2MG2bdsAa8v9Tp06ERQURHZ2NsuWLav5TEBAwDnHMcaMGcNHH31ESUkJJ06c4MMPP2TMmDEX/L0FBQXRuXPnmtbOO++8w7hx46iqquLw4cNMmDCBp556ioKCAoqLi9m3bx9DhgzhF7/4BRdddBG7d+++4GfWxbEWizFmLVZr41zO2ZFojHkCeOIc5UuBpa6LzjZuHqQsga9fhIm/cnn1SqmWNWfOHK6++uozZojdeOONzJgxgyFDhpCUlFTvX+533303t99+OwMHDmTgwIE1LZ/4+HiGDRvGgAEDiI2NPWPL/blz5zJt2jSioqJYuXJlTXliYiK33XYbI0aMAOAHP/gBw4YNq7Pb63zeeust7rrrLkpKSujVqxdvvvkmlZWV3HTTTRQUFGCM4d577yU4OJhf//rXrFy5Eg8PDwYNGlRzGqar6Lb59VlwC6R9Afdvg44hzRuYUm2Ubpvf+jRl23y3mG7s1sbNg7Jia/qxUkqpemliqU/XOBh0lbVg8kS+09EopZTb08TSEOPmQdkJ+PovTkeiVKvVHrvdW6um/rfSxNIQXQbA4O/B+lfhRJ7T0SjV6vj5+ZGfn6/JpRUwxpCfn9+kRZOOr7xvNcb9AnZ+YB1hPPVxp6NRqlWJiYkhPT2d3Nxcp0NRDeDn50dMTEyjP6+JpaHC+8Hg2bDx73DJveBfz+p9pVQNb29vevbs6XQYqoVoV9iFGPcLqCiF/z3ndCRKKeW2NLFciLA+MOQ62Pg6FJ1/LyGllGrPNLFcqHE/h8oya6xFKaXUd2hiuVChvWHo/4NNr0PREaejUUopt9MuE0uTZzyO+xlUlsNaHWtRSqmztcvEsiurkEP5JxpfQUgviJ8Dm96AwizXBaaUUm1Au0wsVcawODmzaZWMfQhMJaz9s2uCUkqpNqJdJpZOPl4s2prZtFXAIT2tVsvmf0BhE5OUUkq1Ie0ysQR39CYtp5iUrO8evHNBxv7MarV8+Wz99yqlVDvRLhNLYAdvvDyERVszmlZR5+6QcCNseQsK0l0TnFJKtXLtMrF4eQhj+4WzJDmTqqomThEb+5A1zezLP7kmOKWUauUcSywiEisiK0Vkl4jsFJH7znr/pyJiRCTM/lpE5AURSRORbSKSWOveW0Uk1b5ubcjzZ8ZHkVlQyuZvm3iefXA3SLwZtrwDx79tWl1KKdUGONliqQB+aoyJA0YB94hIHFhJB5gK1P5NfTnQ177mAi/b94YAjwIjgRHAoyLSub6HT4nrip+3B4uSm9gdBjDmpyCirRallMLBxGKMyTLGbLFfFwEpQLT99p+BnwO1+6lmAW8byzogWEQigcuAFcaYo8aYY8AKYFp9z+/k68WUuAg+2ZZFeWVV076ZoBhIvAW++SccO9S0upRSqpVzizEWEekBDAPWi8gsIMMYs/Ws26KBw7W+TrfLzlder5nxURwrKWdtqgsO77r0QRAP+PKZptellFKtmOOJRUT8gYXA/VjdY48Av2mG58wVkU0isqn6sKFx/cIJ6uDN4q0uWIcSFA3Db4Pkf8Gxg02vTymlWilHE4uIeGMllXeNMR8AvYGewFYROQjEAFtEJALIAGJrfTzGLjtf+RmMMa8aY5KMMUnh4dYhXT5eHkwfEsHynUc4WVbZ9G/o0gdBPGHNH5tel1JKtVJOzgoT4HUgxRjzLIAxZrsxposxpocxpgdWt1aiMeYIsBi4xZ4dNgooMMZkAcuBqSLS2R60n2qXNcjM+GhKyir5LMUF56sERkLS7ZD8Hhzd3/T6lFKqFXKyxTIauBmYKCLJ9jW9jvuXAvuBNOA14EcAxpijwOPARvt6zC5rkBE9Q+ga6Oua7jCASx8AT29Yo2MtSqn2ybEz740xawGp554etV4b4J7z3PcG8EZj4vD0EGYMjeKtrw9SUFJOUEfvxlRzWkAEJN0B61+xpiGH9m5afUop1co4PnjvDmYlRFNeaVi2w0Vb4I++Hzx9dKxFKdUuaWIBBkcH0jOsk+u6wwK6wkXfh23/hrxU19SplFKthCYWQESYGR/F1/vzyS4sdU2lo+8DT19Y/bRr6lNKqVZCE4ttZkIUxsASV7Va/LvAiDthx/uQu9c1dSqlVCugicXWO9yfwdGBrusOA6vV4tUBVj/lujqVUsrNaWKpZVZ8NNvSCziQd8I1FXYKs1stCyFnt2vqVEopN6eJpZYr4yMRgcXJLmy1XHIv+HTSVotSqt3QxFJLZFAHRvYMYdHWDKxlMy7QKRRGzIWdH0JOimvqVEopN6aJ5Swz46PZn3uCnZmFrqv0kp+Ajz+setJ1dSqllJvSxHKWywdH4O0prh3E7xgCI38Iuz6C7J2uq1cppdyQJpazdO7kw7h+4SxOzqSqykXdYQAX3wO+gdpqUUq1eZpYzmFGfBRHCkvZcLDBe1nWr2MIjLwLUhbDke2uq1cppdyMJpZzmBLXlQ7enq7tDgO4+EfgG6StFqVUm6aJ5Rw6+ngxdVBXlm7PoqyiynUVd+gMo+6G3R9D1tknLyulVNugieU8ZiVEcbyknC9Tc11b8ai7tdWilGrTNLGcx6V9wgnu6O367rAOwdZA/p6lkPmNa+tWSik3oInlPHy8PJg+JJL/7sympKzCtZWPugv8grXVopRqkzSx1GFWfBQnyytZsSvbtRX7BcElP4a9n0LGZtfWrZRSDnMssYhIrIisFJFdIrJTRO6zy/8oIrtFZJuIfCgiwbU+87CIpInIHhG5rFb5NLssTUTmuSrGi3qEEBnk59q9w6qN+KE1mK+tFqVUG+Nki6UC+KkxJg4YBdwjInHACmCwMWYosBd4GMB+73pgEDANeElEPEXEE3gRuByIA+bY9zaZh4cwIz6K1XtzOXaizBVVnuYXaG31kvpfSN/k2rqVUspBjiUWY0yWMWaL/boISAGijTH/NcZUD2qsA2Ls17OA+caYU8aYA0AaMMK+0owx+40xZcB8+16XmBkfRUWVYdmOI66q8rQRc6FDCKz6g+vrVkoph7jFGIuI9ACGAevPeusOYJn9Oho4XOu9dLvsfOVnP2OuiGwSkU25uQ2fQjwoKpDe4Z1YlJzR4M80mG8AjL4X0j6DwxtcX79SSjnA8cQiIv7AQuB+Y0xhrfJfYnWXveuK5xhjXjXGJBljksLDwy8kPmbGR7Ph4FGyCk66IpQzXXQndAzVVotSqs1wNLGIiDdWUnnXGPNBrfLbgCuBG83pg1EygNhaH4+xy85X7jIzE6IwBj7emuXKai2+/tYRxvu+gINrXV+/Ukq1MCdnhQnwOpBijHm2Vvk04OfATGNMSa2PLAauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7sy1p5hnYiPCWLR1mboDgO46AcQ3A0+uhtOHm+eZyilVAtxssUyGrgZmCgiyfY1HfgrEACssMv+BmCM2QksAHYBnwL3GGMq7YH+HwPLsSYALLDvdakZ8VHsyChkX26xq6u2ji7+3utQkAFL7gNXnV6plFIOEJcdwduKJCUlmU2bLmyKb3ZhKaP+8Dn3TuzLA1P6NU9gX/4JPn8MZjwPw29rnmcopVQjichmY0xSffc5PnjfWnQN9OPiXqEs3ppJsyXj0Q9Ar/GwbB7k7G6eZyilVDPTxHIBZiVEcSDvBNszCprnAR4ecPUrVtfY+7dDeTPMQlNKqWamieUCTBsUibenNM8WL9UCIqzkkrMLlv+y+Z6jlFLNRBPLBQjq6M34/l1Ysi2TyqpmHJvqO9na7mXT67BrUfM9RymlmoEmlgs0KyGK7MJTrD+Q37wPmvgbiEqExT+B498277OUUsqFNLFcoEkDutLJx7N5u8MAvHxg9utQVQUL74RKF58Jo5RSzUQTywXq4OPJ1EERLNtxhFMVlc37sJBecOWf4fA6WK3b6yulWgeXJBaxTBaRa2ufn9JWzUyIouBkOWv25jX/w4ZeCwk3wZpnYP/q5n+eUko10QUnFhH5nYh8cVbxUqyV7/8GUuwtV9qsS/uE0bmjd/PseHwu05+G0D7wwVw40QLJTCmlmqAxLZZrgeTqL0RkBnAZ8DRwA+AJ/Mol0bkpb08PrhgayWcp2Zw41QJjHz6dYPYbcPKotZ9YO9wtQSnVejQmscQAe2p9fRWwzxjzsDFmPvASMMkVwbmzWQnRlJZXsWJXdss8MHIoTH3COnFy3Ust80yllGqExiQWOevryVjdYNW+Bbo2OqJWYni3zkQHd2i57jCAEXdC/ytgxaOQ+U3LPVcppS5AYxLLPmAqgIiMwjoL5b+13o8GmmnPE/fh4SFcGR/Jl6l5HD1R1jIPFYFZfwX/LvD+HXCqqGWeq5RSF6AxieVl4GoR2Y51bPAhzmyxjAZ2uCA2tzcrPpqKKsPS7c1wANj5dAyBa16DYwfhk4da7rlKKdVAF5xYjDGvAN8HUoEPgcuMMacARCQECAfec2WQ7mpgZAB9u/g3/2LJs/UYDeN+AdvmQ3K7+FErpVqRRq1jMca8aYy5xhhzhzFmb63yo8aY4caY110XovsSEWbGR7Hh4FEyjrfwTsRjfwbdR8MnP4W8tJZ9tlJK1UEXSDbRzIQoAD7e2sKtFg9Pq0vMy8faYr/iVMs+XymlzsOxBZIiEisiK0Vkl4jsFJH77PIQEVkhIqn2v53tchGRF0QkTUS2iUhirbpute9PFZFbL/R7aoruoZ1IiA1mUUt3hwEERcOsl+DINvjsty3/fKWUOgcnF0hWAD81xsQBo4B7RCQOmAd8bozpC3xufw1wOdDXvuZiTSKoHtd5FBgJjAAerU5GLWVWQhS7sgpJy3FgltaA6TDih9balj2ftvzzlVLqLI4tkDTGZBljttivi4AUrKnKs4C37NvesuvHLn/bWNYBwSISiZXUVtjjO8eAFcC0RnxfjXbF0Eg8hJYfxK825THoOsRalV/oUAxKKWVziwWSItIDGAasB7oaY6rn7x6pVVc0cLjWx9LtsvOVt5guAX5c0juMRVszMU5st+LtB9e+aY2zfDAXqpp512WllKqD4wskRcQfWAjcb4wprP2esX5Lu+Q3tYjMFZFNIrIpNzfXFVWeYWZCFIfyS9ia7tDa0LC+MP2PcPBL+PJPzsSglFI4vEBSRLyxksq7xpgP7OJsu4sL+98cuzwDK4lVi7HLzld+BmPMq8aYJGNMUnh4eEPCuyCXDYrAx9OjZbd4OVvCDTDkWlj1Bzj0tXNxKKXaNccWSIqIAK8DKcaYZ2u9tRiontl1K7CoVvkt9uywUUCB3WW2HJgqIp3tQfupnJnoWkRQB28mDAjn421ZVFY5tPuwCFzxLAR3h4U/gJKjzsShlGrXnFwgORq4GZgoIsn2NR14EpgiIqlY4zfVRycuBfYDacBrwI+qnwk8Dmy0r8fsshY3KyGa3KJTrNuf78TjLX6B1hb7xdmw+Ce6xb5SqsV5NeXDIhIBVK9ZOWCMOdLQzxpj1vLdiQDVvjOrzB5vuec8db0BvNHQZzeXiQO64O/rxaLkDEb3CXMukOhEmPwo/PdXsPHv1q7ISinVQhrVYhGRi0VkA9ZYxlr7yhCR9XY3Vbvk5+3J1EFdWbbjCKcqHJ6ZNeoe6DMFlv8SjrSLPUGVUm6iMSvvRwBfAAOwuqQesK/XgIHAFyJykSuDbE1mJURTVFrBqj2un3l2QTw84KqXoUOwtcV+2Qln41FKtRuNabE8hjVTa6Ax5i5jzAv2dRdWssm172mXRvcOJbSTj3OLJWvzD4drXoW8vbDsF05Ho5RqJxqTWC4G/maMOdeU3kzgFeCSpgbWWnl5enDF0Eg+S8mmqLTc6XCg13i49AH45h3YsdDpaJRS7UBjEosnUNeRiafse9qtWQlRnKqoYsWubKdDsUx4BGJGwJL7rQPClFKqGTUmsWwF7hCRgLPfsFfR3wG06wPZE7t1JqZzB2d2PD4XT2/43t8BscZbKt2gJaWUarMak1j+D2ssZbuIPCwiV9vXI1gr7vsDT7gyyNam+gCwtWl55Be7yTkpnbvDzBcgYzN88bjT0Sil2rDGrLxfBswBfLASyPv29X9Y62KuN8a0+/3bZyZEUVllWLo9q/6bW8qgq2D47fC/5yHtc6ejUUq1UY1deb8Aa3+ui7HOYLkB60yV7kCOiLTbWWHVBkQE0r9rgPt0h1Wb9gcIHwgf3gXFOfXfr5RSF6jRRxMbYyqNMeuNMf+2rw3GmEpgDPBL14XYes1MiGLToWMcPlridCineXewttg/VQgf/hCqqpyOSCnVxrjkzHt1bjPjowBYss3NWi1dBsK0J2HfF/DVC05Ho5RqYzSxNKPYkI4kdgt2j8WSZxt+G8RdZQ3kp29yOhqlVBuiiaWZzUqIZveRIvYcKXI6lDOJwIznISDKmoJc6tABZUqpNkcTSzObPiQSD4HFWx08AOx8OgTD7NehIN1aPKlb7CulXKBB2+aLyB0XUOfwRsbSJoUH+DK6TxiLt2by0NT+WOebuZHYETDxl/D5Y9B7AiTe4nRESqlWrqHnsfwd6+z5hv5W1D99a5mVEM1D/9nKN4ePk9its9PhfNfoB2D/alj6c4gdCeH9nY5IKdWKNTSxTGjWKNq4ywZ15ZHG9MvFAAAgAElEQVQPPVicnOmeicXDw9oF+eXR1njLDz6zpiUrpVQjNCixGGNWN3cgbVmAnzeTBnTh422Z/OqKgXh5uuHQVkAEXP03eHe2dfLkFX9yOiKlVCvl2G84EXlDRHJEZEetsgQRWSciySKyyT5UDLG8ICJpIrJNRBJrfeZWEUm1r1ud+F4aYlZCFHnFZXy9P9/pUM6v7xS4+MfWccYpS5yORinVSjn5p/M/gGlnlT0N/M4YkwD8xv4a4HKgr33NBV4GEJEQ4FFgJDACeFRE3LCvCcb370KAr5f7bfFytkmPQtQwWPRjOH7Y6WiUUq2QY4nFGLMGOHp2MRBovw4Cqn8LzwLeNpZ1QLCIRAKXASuMMUeNMceAFXw3WbkFP29PLhscwfIdRygtr3Q6nPPz8oHvvQ5VlfDBnVBZ4XRESqlWxt06++8H/igih4FngIft8mig9p/P6XbZ+crd0qyEKIpOVbBqj5tv/hjaG678M3z7Nbw5DVY9CQe+hPJSpyNTSrUCDZ0V1lLuBh4wxiwUkeuA14HJrqhYROZidaPRrVs3V1R5wS7uFUqYvy+LkjOZNjjSkRgabOi1cCIHts63EgsGPH0h5iLoMRp6XGq91tljSqmzuFtiuRW4z379H6z1MwAZWNv0V4uxyzKA8WeVrzpXxcaYV4FXAZKSkhxZZ+Pl6cGVQyP514ZvKSwtJ9DP24kwGu7ie6zr5HGr9XJwrXWt+SOsfgo8fSA6qVaiGQE+HZ2OWinlMHdLLJnAOKzkMBFItcsXAz8WkflYA/UFxpgsEVkO/L7WgP1UTnefuaWZCVH846uDLN9xhGuTYuv/gDvoEAz9L7cusPYV+3bd6UTz5bNWsvHwhujhpxNN7Ejw6eRs7EqpFudYYhGR97BaG2Eiko41u+tO4HkR8QJKsbuugKXAdCANKAFuBzDGHBWRx4GN9n2PGWPOnhDgVobFBhMb0oHFWzNbT2I5m18Q9LvMugBKC+Hw+tOJZu1z8OWfwMMLohJrJZpR4OvvbOxKqWYnph1uPJiUlGQ2bXJuq/hnlu/hpVVprH9kMuEBvo7F0WxOFdmJ5n9WosncAlUVIJ7WVOYeo6HHGKtF4xdYf31KKbcgIpuNMUn13eduXWHtwsyEKP66Mo1PtmVy2+ieTofjer4B0GeydQGUnTgz0Xz9EvzveRAPiEw4nWi6jbJaQ0qpVk1bLA6Z9twaOvp48sGPRjsahyPKSiB9w+lEk7EJKsusRBMx1Oo263EpdLvYGt9RSrkFbbG4uVkJ0Tz16W6+zS+hW2g7m0nl0xF6jbcugPKTkL7xdKLZ8Bp8/VdAIGLImYmmY4hjYSulGkZbLA5JP1bCpU+t5GeX9eeeCX0cjcXtlJdarZjqyQDpG6GiFBDoOhgS5sCoH1mnYCqlWoy2WNxcTOeOJHXvzOLkTE0sZ/P2O91KAag4BRmbrRZN2mew/BHI2wtXPAsens7GqpT6Dnfb0qVdmZUQxZ7sInYfKXQ6FPfm5QvdL4FxP4M7PoUxP4XN/4AFt+g2M0q5IU0sDpo+JBJPD3H/HY/diQhM+g1Mewp2fwz/vMbaGUAp5TY0sTgo1N+XS/uEsTg5k/Y41tUko+6ydmE+vAH+cQUUHXE6IqWUTROLw2YlRJFx/CRbvj3mdCitz5DZcOMCOHoAXp8C+fucjkgphSYWx00dFIGvl4d2hzVW74lw28fWIszXp0LGFqcjUqrd08TiMH9fLybHdeWTbVlUVFY5HU7rFJ0Id/zXWh/z1gzY94XTEalzKT8Jye/BiTynI1HNTBOLG5gZH0X+iTL+75MUDuSdcDqc1imsj5VcOveAd6+D7e87HZGqZgzsXgovjoSP7oI3L9cxsTZOE4sbmNC/C9OHRPD21weZ8MwqZr/8FfM3fEtRabnTobUugZFw2ycQOwIWfh/W/c3piFT+Pnj3Wpg/xzoU7vI/QmEmvDkdCjKcjk41E11570ayC0v58JsM/rPpMPtyT+Dn7cG0QRHMHh7Lxb1D8fTQleYNUl5qJZbdH1trXib+Wlfpt7SyE7DmGWtrHi8/GP8wjLgTPL3h2/Xw7mxre55bl0CwMye6qgvX0JX3mljckDGGrekFvL/5MIuTMyksrSAqyI9rEmP43vAYeobp4Vn1qqqETx60FlIOuxmufA48daOJZmcM7PoIlv8SCjMgfg5M/h0EdD3zvvTN8M+rwTcIbltidWEqt6eJpQ7unlhqKy2v5LOUbN7fnM6avblUGRjevTOzh8dwxdBI9z/e2EnGwMrfw5qnof90mP2G1R2jmkfOblj2Mziwxto8dPoz1lEI55OZDO9cBd4drZZLaO+Wi1U1iiaWOrSmxFJbdVfZ+5vTScspxtfLg2mDI5g9PIZLeodpV9n5bHgNlv7M+iU35z3o0Ln+z6iGKy2E1U/B+r+Bjz9M+jUMv71h+7gd2Q5vz7KOtb7tYwjr2/zxqkbTxFKH1ppYqhlj2JZewPub01mUnEFhaQWRQX5ckxjN9xJj6BWux/9+x84P4YO5ENoHbloIgVFOR9T6GQPb/g0rfgPFOTD8Vpj4G+gUemH15KTAWzOt17cugS4DXB+rcgm3Tywi8gZwJZBjjBlcq/wnwD1AJfCJMebndvnDwPft8nuNMcvt8mnA84An8HdjzJP1Pbu1J5baSssr+Twlh/c3H2a1dpXVbf9qmH+jdXjYTR9AeD+nI2q9srZZrcDD6yB6OEz/o/VvY+XutdYgVVXALYsgYnD9n1EtrjUklrFAMfB2dWIRkQnAL4ErjDGnRKSLMSZHROKA94ARQBTwGVD9W2EvMAVIBzYCc4wxu+p6dltKLLXl1OoqS9WusnPLTLZmJFVVwo3vQ0wTfhm2RyVHrXGrTa9bXYqTfwcJN4KHC1Yu5O+zkkt5Cdz8EUQlNL1O5VJun1gARKQH8HGtxLIAeNUY89lZ9z0MYIz5g/31cuC39tu/NcZcdq77zqetJpZqtbvKFm/NpOBkORGBdlfZ8Bh6t/eusvx91q7IxTlw3TvQd7LTEbm/qir45h34/Hdw8hhcdCdMeNj141VHD1jJ5VQh3Pxh01pByuUamljcbYFkP2CMiKwXkdUicpFdHg0crnVful12vvLvEJG5IrJJRDbl5uY2Q+juQ0SIjw3m8asGs/6RSbx4QyJxUYH8bfU+Jv1pNde89D/+tf5bCk620wWYob2tVfqhveG9/wfbFjgdkXtL3wx/nwRL7oWw/vDDNTD96eaZBBHSE25fCn7B8PZV1u7VqtVxt8TiBYQAo4CfAQtEXLOyzRjzqjEmyRiTFB4e7ooqWwU/b0+uGBrJG7ddxLqHJ/HI9AEUlVbwyIfbGfHEZ9z73jes2ZtLZVU7m8QR0BVuWwrdLoYP7oSvX3Q6IvdzIg8W/Rj+PtFak3LNa9Yv/Yghzfvc4G7WczqFwTtXw6Gvm/d5yuXcbcVYOvCBsfrnNohIFRAGZACxte6Lscuoo1ydpUugH3PH9ubOMb3YnlE9qyyTxVsziQj042p7VlmfLu2kq8wv0Bpn+XCuddxxcbY1ZnCBf8vkFp0ir/gUAyICcNHfQc6qrIDNb8IXj1sr6C/5CYz9ufXzailBMVbif2uG1W15wwLoOablnq+axN3GWO4CoowxvxGRfsDnQDcgDvgXpwfvPwf6AoI1eD8JK6FsBG4wxuys67ltfYzlQpyqqJ5Vls5qu+UyrFsws4fHcOXQKII6tINZZVWV1gynTa9D/A0w8wVr65E6FJSU8+nOLJZszeKrfXk1s/HumdCbCf27tN4Ec+hr62eRvR16jrNme4X3dy6e4hxrKvKxgzDnX9YxCcoxbj94LyLvAeOxWiTZwKPAO8AbQAJQBjxkjPnCvv+XwB1ABXC/MWaZXT4deA5ruvEbxpgn6nu2JpZzyyks5aNka1bZ3uxifLw8GN8vnClxXZk4oAuh/r5Oh9h8jIHVT8Oq30Pfy+Daf1jb8Ndy4lQFn6Vks2RrJqv35lJeaege2pEZQ6MI6eTD62sPkHH8JAMjA/nR+N41R0+3CkVHrPUo2/4NgTFw2RMQN8s99lg7kWctosxLhevfhb5TnI6o3XL7xOIkTSx1M8awI6OQhVvSWb7zCFkFpXiI9Rf55IFdmRzXte3OLNv0BnzyU4hOghv+Tal3EKv25LJkWyafp2RTWl5FRKAfM+IjmREfxZDooJrWSXllFYuSM3lpVRr7c0/QM6wTd4/rzVXDovHxcrfhTFtlubViftVTUHkKLrkXxjwIPm62H13JUSu55O6G696G/pc7HVG7pImlDppYGs4Yw87MQlbsymbFrmx2ZRUC0Cu8E1PsJJPYrXPr+cu8ASp2LMLjg++T4xXFTad+QdqpYEI7+TB9iJVMkrp3xqOO77eyyvDfnUd4cVUaOzIKiQzyY+7YXlx/UTc6+DRgm5OWsn8VLP055O2BvlNh2pPuvV/XyWPwzjVwZBvMfhPiZjodUbujiaUOmlgaL+P4ST5PsZLMuv35lFcaQjr5MHFAFyYP7MrYfmF09HG3OSH1q6wybDhwlCXbMlm2PYv+pVt5zedPVHr5k3rZOwxLHImX54W1OowxrEnN48Uv0thw8CihnXy449Ke3Hxxd2d3RChIt3Yf3vWRtavwtKeg/zTn4rkQpQXwz9mQsRm+9xoM/p7TEbUrmljqoInFNQpLy1mzN5cVu7JZuTuHwtIKfLw8uLRPmNVlNrALXQL9nA7zvIwxJB8+zpKtWXyyPZPswlN08PZkclxXZgyNZHxwNj7vXQuVZdaspNgRjX7WhgNHeWlVGqv25BLg68Utl3Tn9tE9CWvJcauKU/DVX+DLP4Gpss6queRe8Hbf/0bndKrIOiX08Dq4+hUYep3TEbUbmljqoInF9corq9h48GhNl1n6sZMAxMcGM2VgF6bERdCvq7/js6WMMew+UsSSrZks2ZbJ4aMn8fH0YFz/cGbGRzFpYJczW1xHD1jTXQuz4Lq3oN9lTXr+jowCXl61j6U7svD18uD6i7oxd2wvooKbeTv/vf+FT38BR/fDwBkw9Qno3L15n9mcyk7Av/4fHFwLV70ECTc4HVG7oImlDppYmpcxhr3ZxazYdYQVKTlsPXwcgNiQDkwe2JUpcV25qEcI3hfYtdQU+3OLWbI1iyXbMknLKcbTQxjdJ4wZQyOZOiii7mnVxbnW/mJHtsOsFyFhTpPj2ZdbzMur9vHRNxmIwDXDYrhrfG/XH+J29AB8+jDsXQahfeHyp6DPJNc+wyllJTD/BmusaMZzMPw2pyNq8zSx1EETS8vKKSzls5QcPkvJZm1aHmUVVQT6eTFhQBemxHVlXL9wApphzCHj+Ek+tlsmOzKsSQcjeoYwIz6KywdHXFg31Kkia2fkA6thymMw+j6XxJh+rITX1uxn/sbDlFdWMX1IJD8a34e4qEYuRqyssFbJF6TD/pXwvxfAwwvG/wJG3g1ePi6J222Ul8K/b4K0FdbBYiPudDqiNk0TSx00sTinpKyCNXvz+Cwlmy9253D0RBnensKoXqFMievKpIFdiW5Ct1Bu0SmWbs9iydZMNh06BkB8TBAz4qO4YmgkkUFN6HKqOAUf3gU7P4CLfwxTHnfNrr523K+vPcA/1x2i+FQFEwd04Z4JfRje/az9uMpOwPHDVuIo+NZ+bX99/DAUZVrjJ9UGz4apj7ft82cqTsGCW61W2bQnYdTdTkfUZmliqYMmFvdQWWXY8u0xPrPHZfbnnQAgLjKQKXFWl9mgqMB6x2XOtQq+f9cAZiZEceXQSLqHurB7qaoKPp0HG16Bof/P6hqrZ5V+gxlDYf4Rlq3dwMatWwkqy2Z4cDEjOp8gtDIHOX4YTh498zMeXlbSCIq1rmD736AYa+pwezlLvqIMFt4BKUushD/6XqcjapM0sdRBE4t72pdbzGe7svksJZtNh45hDEQG+THJHvwf1SsEXy9rHUj1KvjFyZmsST29Cn5mfBRXDo2if0RA8wVqjDWz6ovHoc9ka8FeQxYUVlZYLYqaVsbh06+rWyEVJ8/4SAl+pFeFUugbSZfY3sT06I9HcDcrcQTHQkBkw44Abg8qy61TQnd+ABN/DWMfcjqiNkcTSx00sbi//OJTfLE7hxW7svkyNY+T5ZX4+3oxrp+1M/Xnu61V8JFBflw59Lur4FvElrdhyX0QNQxu+I81bbe6S6qmmyr9dOI4u5sKoGPY6VZGdcKo1fI45R3IB99k8vKqfXx7tIS+Xfz50YTezBgadcHratqFygr46G7YvgDGzYPx89xjW5o2QhNLHTSxtC6l5ZV8tS+PFbusCQBVVabBq+Cb3e6l8P7tVsKoLDvzPfGEwOhaiSO2VuKwk4h3w8Z8Kiqr+GR7Fi+t3Mee7CJiQzrww7G9mT08Bj9v92uxGGMoLK3gSEEpWQUnOVJQSmZBac0u0GP7htPD1TPgqlVVwuKfQPK71lqdib/W5OIimljqoIml9ar+36vT62HOcHgjbP+PdcZLUPN2U1VVGb7YncNfV6aRfPg4XQJ8uXNML24Y2Y1Ovi2z44ExhoKT5WTZSSOroNROIKV2ArESSUlZ5RmfE4EAXy8KSysA6BbSkbH9whjTN5xLeoe6dmZgVRV8fD9secva9n/K45pcXEATSx00sajWzhjD1/vyeXFVGv9Lyyeogze3j+7BbZf0ILhj46cUG2M4eqLsdLIoLOVIwUmyjtuJo9BKJqXlZ3bpeQh0CfAjMtiPyCA/IgI7WP8GWV9HBnegS4AvXh7CofwS1qTmsmZvLl/ty6ekrBIvDyGxW2fG9gtjbL9wBkcFNb0lWlUFy34GG/9uTbWe9gdNLk2kiaUOmlhUW7Ll22O8tHIfn6Vk08nHkxtHdecHl/b8znY6VVWG/BNlZ7QqrARyslbSKKWs4syk4ekhRARaSSIiyI/IQCtR1E4c4f6+jRrzKauoYvOhYzWJZmemtd4opJMPl/YJY0xfK9F0bezWQMZYC0TXvwxJ37fWurhoinh7pImlDppYVFu0+0ghL6/ax5KtmXh5ejB9cARVhpruquzCUsorz/z/u7en0DXQblUEnZksIoI6EBXkR6i/b4vtXp1XfIq1qXms2ZvLmtQ88opPAVjjMv3CGds3nKQenS9sXMkY66yZr16AxFvgyuc1uTSSJpY6aGJRbdmh/BP8bfV+lm7PIrijNxGBpxNFZNDpJBIR5EdoJx9nJz/UoarKkHKkkC/tRLPp4DHKKqvw8/ZgZM9QxvYLZ1y/MHqHN2APOmPgi/+DL5+xTgmd9Vedpt0ImljqoIlFqdanpKyCdfvzWbPXSjTVC2qjgvwY2y+cMX3DubRPGEEd65gEsOop65TQIdfCVX8Dz9Z3xIOTGppY9KeqlGoVOvp4MXFAVyYO6ArA4aMlNa2ZT7ZnMX/jYTzE2lF7bN9wxvYLJz4m6Myxn/G/sFoqXzwOVRVwzWuu2zlB1XDyzPs3gCuBHGPM4LPe+ynwDBBujMkTq537PDAdKAFuM8Zsse+9FfiV/dH/M8a8Vd+ztcWiVNtSUVlF8uHjrNmby+rUPLalH8cYCPTzYnQfawLA2H7hp/eh+98LsOLXMOBK6zTKtrY5ZzM4VVGJn7eX27dY/gH8FXi7dqGIxAJTgW9rFV8O9LWvkcDLwEgRCQEeBZIAA2wWkcXGmGPNHr1Sym14eXqQ1COEpB4hPDi1P8dLylibZk8C2JvHsh1HAOgd3slOMtczeooXPisehgW3WGfteLXgoWturqrKcCD/BFsPH2fr4eMkpxeQYs/YawhHx1hEpAfwce0Wi4i8DzwOLAKS7BbLK8AqY8x79j17gPHVlzHmh3b5Gfedj7ZYlGo/jDGk5hTXzDRbvz+fUxVV+Hh6MC98LXcc/ytlHbtSNXAWfgnXQsxF7W69S05RKVsPF5B8+BhbDxewNf04RfZC1o4+ngyJDiIhNphHrohz+xbLd4jILCDDGLP1rFke0cDhWl+n22XnKz9X3XOBuQDdunVzYdRKKXcmIvTrGkC/rgH8YEwvSssr2XDgKGv25jI/tSNryjoyp/ILxm96Eza/Sq5nF/aETOJ4rysJ6TOSPhEBhPv7utduD01w4lQF29Kt5FHdIsksKAWsNUsDIgKYER9FQkww8bHB9OniXzPd/JEGPsNtEouIdMSKe2pz1G+MeRV4FawWS3M8Qynl/vy8PWvGXACyC0eyK+tO5mcewTftU3rnrmBk7gK8c9/j26/DWVg1ipVel1LZZQh9uwbQp4s/fbr407drAFFBfm6dcMorq9hzpKhWEikgNaeIKvs3YLeQjgzvEcIdMVaLZFBUEB18mj4N220SC9Ab6AlUt1ZigC0iMgLIAGJr3Rtjl2VgdYfVLl/VArEqpdqIroF+1sr+/l1gwlDg55iSYxQmf0TA9oX88MhS7jZLyMyPZmnuKP5TehF7TCwgdPLxpHd1oukSQF/7dWxIxxZbVFrNGMPhoydJrtUS2ZFZULP9TueO3sTHBjNtcAQJscEMjQki9EJOUb0AbjfGUuu9g5weY7kC+DHWrLCRwAvGmBH24P1mINH+2BZguDHm6Nn11aZjLEqpBjuRD7uXwI4P4OCXYKo4GdSH1PAprPEew7qiMNJyijlSWFrzER8vD3qHVycc/5qE0z20Ez5erln1f/REGVvTj5P87fGaFsmxknIAfL08GBwdRHxMMPGxQQyL7UxsSIcmt67cfoGkiLyH1doIA7KBR40xr9d6/yCnE4tgzSCbhjXd+HZjzCb7vjs43fX3hDHmzfqerYlFKdUoxbmQsgh2fAiH/gcY6DIIBl9NUd+ZpJZ3IS27mLTcYlKzi0jNKSb92OnD27w8hB5hnWoSTXVLp1d4pzq3qTlZVsnOzAKSDx9na3oBWw8f59ujJYA1z6BvF3/iY4JJ6BZMfEww/SMC8G6G83rcPrE4SROLUqrJCrMgZbHVkjm8ziqLGAqDr4FBV9ccC11SVsH+3BOk5hSRml1MWo51Hcw/UTPWIWKNd1gJxxrHqaoyNd1au48UUWnfHBnkR0KsNbAeHxPMkJgg/FvoyARNLHXQxKKUcqmCdNj5Eez8EDLs3y1RiaeTTFDMdz5yqqKSg3kl30k4+/OKazYLDfD1shJIbHW3VnDjd3p2AU0sddDEopRqNscOWQlm54eQlWyVxYywkkzcVRAYWefHKyqrOGR3c/UM7eRWm4RqYqmDJhalVIvI32cnmY8gezsg0O1iO8nMAv8uTkd4QTSx1EETi1KqxeXutZPMB5C7G8QDelxqdZUNnAWdQp2OsF6aWOqgiUUp5ajsXaeTTH4aiCf0GmclmQFXQscQpyM8J00sddDEopRyC8bAke2nk8yxg+DhBb0nQr/LIHq4NZ3ZTXZf1vNYlFLK3YlA5FDrmvQbyPzm9JhM6n+tezx9oOtgiE60ZppFDYPw/m59Aqa2WJRSyt0YA8cPQcYWyNwCmcnWVVZkve/dESLjrUQTbSebkF7NviuzdoXVQROLUqrVqaqyxmMyt9gJ5xs4sg0q7K1k/IIgMuHMlk1QjEuTjXaFKaVUW+LhAeH9rCv+equsstyaYVbTsvkGvvqLdewyQKdwK8FUJ5roxBaZ4qyJRSmlWitPb4gYYl3Db7XKykshe+fpRJOxBVJXYB2yCwTGQFTC6S60qGHQobNLw9LEopRSbYm3H8QMt65qp4qtbrPqLrTMLbD749Pvh/Q6s2UTGQ++/o0OQROLUkq1db7+0P0S66p28pg9KcBONt+uhx0LrffEA8L6n+4+ixpmzUxrIE0sSinVHnXoDL0nWFe14pzT3WeZ30DaCtj6L+s9j4anC00sSimlLP5drIWZ/S6zvjYGCjNOTw7gdw2qRhOLUkqpcxOxpiwHxUDcTBqaWFx/xJhSSql2zbHEIiJviEiOiOyoVfZHEdktIttE5EMRCa713sMikiYie0Tkslrl0+yyNBGZ19Lfh1JKqTM52WL5B9YZ9rWtAAYbY4YCe4GHAUQkDrgeGGR/5iUR8RQRT+BF4HIgDphj36uUUsohjiUWY8wa4OhZZf81xthLRlkHVJ/nOQuYb4w5ZYw5AKQBI+wrzRiz3xhTBsy371VKKeUQdx5juQNYZr+OBg7Xei/dLjtfuVJKKYe4ZWIRkV8CFcC7LqxzrohsEpFNubm5rqpWKaXUWdwusYjIbcCVwI3m9NbLGUBsrdti7LLzlX+HMeZVY0ySMSYpPDzc5XErpZSyuFViEZFpwM+BmcaYklpvLQauFxFfEekJ9AU2ABuBviLSU0R8sAb4F7d03EoppU5zbIGkiLwHjAfCRCQdeBRrFpgvsEKsMwTWGWPuMsbsFJEFwC6sLrJ7jDGVdj0/BpYDnsAbxpid9T178+bNxSKypxm+raYKA/KcDuIsGlPDaEwN545xaUwN078hN7XLg75EZFNDDqtpae4Yl8bUMBpTw7ljXBpTwzQ0JrfqClNKKdX6aWJRSinlUu01sbzqdADn4Y5xaUwNozE1nDvGpTE1TINiapdjLEoppZpPe22xKKWUaibtLrG4427I59rp2UkiEisiK0Vkl4jsFJH7nI4JQET8RGSDiGy142rY4RAtwN4U9RsR+bj+u5ufiBwUke0ikiwim5yOB0BEgkXkfXsH8xQRudjhePrbP5/qq1BE7ncypmoi8oD9v/EdIvKeiPi5QUz32fHsrO/n1K66wuzdkPcCU7D2FdsIzDHG7HI4rrFAMfC2MabhB0s3XzyRQKQxZouIBACbgavc4OckQCdjTLGIeANrgfuMMeucjAtARB7k/7d3/zFXlnUcx98fo6bALLOfyBIyKiwdmDMH4SqszURWuVatH0v7ZYLOZv/YWrHW2qiG/aFrK0idgS1B5ywjdJqVLdZEmi76oVKKEqCBGqSQfvrjug7dPJwHD3DwPnE+r+3eee77XM99vs+z5znfc1/XdX8vOBU42vacAYjnb8CptgfmPghJ1wlktg0AAAZNSURBVAC/tr243tA81va2tuOC3e8NjwBvt/33lmM5jvK3faLtf9d7+G6xfXWLMb2VUuT3NGAnsBK4wPb93doP2xXLQFZD7lbpuU22N9peU79+CljHABT3dPGvuvviurX+yUjSROBsYHHbsQwqSS8FzgCWANjeOShJpZoNPNB2UmkYAxwlaQwwFni05XimAqtt76gV6O8EPjha42FLLKmGvJ8kTQKmA6vbjaSoXU5rgc3ArbYHIa7vUkoRPdd2IA0GVkm6W9Ln2g4GmAxsAa6qXYaLJY1rO6iGjwDXtR0EgO1HgO8ADwEbgSdsr2o3Ku4DZkk6VtJY4H3sWadxD8OWWGI/SBoPrAAusf1k2/EA2H7W9jRKwdHT6iV6ayTNATbbvrvNOLp4h+1TKIvgzavdrW0aA5wCfM/2dGA7MChjnC8B5gLXtx0LgKRjKD0pk4EJwDhJH28zJtvrgIXAKko32Frg2dHaD1ti6bka8rCrYxgrgKW2b2g7npFqN8od7L0K6QttJjC3jmn8GHi3pB+1G9LuT73Y3gzcSOkGbtMGYEPjCnM5JdEMgrOANbY3tR1IdSaw3vYW27uAG4AZLceE7SW232b7DGArZby6q2FLLKmG3IM6SL4EWGd7UdvxdEh6paSX1a+PokzC+FObMdm+zPZE25Mof0+3227106WkcXXSBbW76b2UrozW2P4H8LCkThHD2ZSisoPgowxIN1j1EHC6pLH1f3E2ZZyzVZJeVR9fRxlfWTZa29aqG7fB9n8OpBryodat0rPtJS2GNBP4BHBvHc8A+LLtW1qMCeC1wDV1Bs8RwE9sD8T03gHzauDGWiF8DLDM9sp2QwLgImBp/VD3IHBey/F0Eu97gM+3HUuH7dWSlgNrKNXc72Ew7sJfIelYYBelwvyoky+GarpxREQcesPWFRYREYdYEktERPRVEktERPRVEktERPRVEktERPRVEkvE/zlJ75RkSZ9pO5YISGKJ2KfGm/ZoW+t32UcMmqG6QTLiICwBftnl+IMvcBwRAy+JJaI3v7Odq5OIHqQrLKIPJC2oXWPTJX1f0mOStkv6qaTXd2l/nKSrJW2S9ExdrfOLtTbUyLYn15UXt0h6WmX10ytqaZSRbedLeqCec62kd414/kWSLqurOO6QtK22m9ff30gMs1yxRPRmvKRXdDn+lO1nGvtXAU8CX6es9XMR8CtJJ9v+J0Ctt/Rb4DXAlZTutDnAIuAEYH7nZJJmUWrbbacsJLYeOB44l7IA1M7Ga18AjKfUldoJXALcJOl421trm6/W7er6ekcCJwKzaiwRB892tmzZRtkoxUG9j+1Ttd2Cun8XMKbx/efU4wsbx75Vj53bOCZKeXQDJ9VjR1BKkz8OTOgSm0bE+DAwvvH8tHr8wsaxe4Cftf17zXZ4b+kKi+jNIkoV3JHbL0a0u8Jl6VYAbN8M/JWSYDrmUpbIXtFoZ+DbdbfTdhowBbjS9l5L09bvabrW/1u6GdtrKVdPJzTabAPeImnqPn/aiIOQrrCI3qyzfVsP7f48yrEzG/uTgFu7tOusTzK5Pk6pj/f2EiDQbb32rcDLG/tfAW4C/ijpL8BtwHLbd/T4GhHPK1csEYeP0ZaK3T0hwPZdlCuYj1G67d4P3C6pzfV/4jCTxBLRX28a5dj6xv564M1d2k1tPA+lCw3gpP6EVth+wvYy2+dTJgIsBc6X9MZ+vk4MrySWiP6aL2l3F7OkcyhdWs2VLm8G3iDpA412Ar5UdzvLZa+lJJd5kiaMfKFuU5OfT52RtlsdD+osW3zM/p4vopuMsUT05nRJT3c5vsV2cwB/HKVr6XrKdOOLgY2UmWAdC4EPA9dJ6kw3Phs4izJQfx+A7eckfRZYCfxB0g8oVzMTgQ8BMyiD8ftjnaTfAL8HNlGupuZTxoHW7Oe5IrpKYonozafrNtJq9pwZdh5wIWX68ZGUMjAX236s08D245JmAN8EPgkcTUkulwKXN09u+05JM4GvAV+o59wA/BzYcQA/x+WUWWeXUu55eRT4IfAN27sO4HwRe8ma9xF9IGkB5c1/iu37Ww4nolUZY4mIiL5KYomIiL5KYomIiL7KGEtERPRVrlgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKvklgiIqKv/gtMPLUqC1psCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Train VAE\n", + "train_vae_modules.train_vae(config_file,\n", + " normalized_data_file)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Shift template experiment" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#tmp result dir\n", + "tmp = os.path.join(local_dir, \"pseudo_experiment\")\n", + "os.makedirs(tmp, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "scrolled": false + }, + "outputs": [], + "source": [ + "# Run simulation\n", + "for run in range(num_runs):\n", + " simulate_expression_data.shift_template_experiment(\n", + " normalized_data_file,\n", + " project_id,\n", + " sample_id_colname,\n", + " NN_architecture,\n", + " dataset_name,\n", + " scaler,\n", + " local_dir,\n", + " base_dir,\n", + " run)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualize latent transform compendium" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Load VAE models\n", + "model_encoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_encoder_model.h5\"))[0]\n", + "\n", + "weights_encoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_encoder_weights.h5\"))[0]\n", + "\n", + "model_decoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_decoder_model.h5\"))[0]\n", + "\n", + "weights_decoder_file = glob.glob(os.path.join(\n", + " NN_dir,\n", + " \"*_decoder_weights.h5\"))[0]\n", + "\n", + "# Load saved models\n", + "loaded_model = load_model(model_encoder_file)\n", + "loaded_decode_model = load_model(model_decoder_file)\n", + "\n", + "loaded_model.load_weights(weights_encoder_file)\n", + "loaded_decode_model.load_weights(weights_decoder_file)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "pca = PCA(n_components=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Read data\n", + "normalized_compendium = pd.read_csv(normalized_data_file, header=0, sep=\"\\t\", index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Encode normalized compendium into latent space\n", + "compendium_encoded = loaded_model.predict_on_batch(normalized_compendium)\n", + "\n", + "compendium_encoded_df = pd.DataFrame(data=compendium_encoded, \n", + " index=normalized_compendium.index)\n", + "\n", + "# Get and save PCA model\n", + "model = pca.fit(compendium_encoded_df)\n", + "\n", + "compendium_PCAencoded = model.transform(compendium_encoded_df)\n", + "\n", + "compendium_PCAencoded_df = pd.DataFrame(data=compendium_PCAencoded,\n", + " index=compendium_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add label\n", + "compendium_PCAencoded_df['experiment_id'] = 'background'" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Embedding of real template experiment (encoded)\n", + "template_file = os.path.join(local_dir,\n", + " \"pseudo_experiment\",\n", + " \"template_normalized_data_\"+project_id+\"_test.txt\")\n", + "\n", + "template_data = pd.read_csv(template_file, header=0, sep='\\t', index_col=0)\n", + "\n", + "# Encode template experiment into latent space\n", + "template_encoded = loaded_model.predict_on_batch(template_data)\n", + "template_encoded_df = pd.DataFrame(data=template_encoded,\n", + " index=template_data.index)\n", + "\n", + "template_PCAencoded = model.transform(template_encoded_df)\n", + "\n", + "template_PCAencoded_df = pd.DataFrame(data=template_PCAencoded,\n", + " index=template_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add back label column\n", + "template_PCAencoded_df['experiment_id'] = 'template_experiment'" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "# Embedding of simulated experiment (encoded)\n", + "encoded_simulated_file = os.path.join(local_dir,\n", + " \"pseudo_experiment\",\n", + " \"selected_simulated_encoded_data_\"+project_id+\"_1.txt\")\n", + "\n", + "simulated_encoded_df = pd.read_csv(encoded_simulated_file,header=0, sep='\\t', index_col=0)\n", + "\n", + "simulated_PCAencoded = model.transform(simulated_encoded_df)\n", + "\n", + "simulated_PCAencoded_df = pd.DataFrame(data=simulated_PCAencoded,\n", + " index=simulated_encoded_df.index,\n", + " columns=['1','2'])\n", + "\n", + "# Add back label column\n", + "simulated_PCAencoded_df['experiment_id'] = 'simulated_experiment'" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(60, 3)\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
12experiment_id
SRR592745-1.5577856.548028background
SRR592746-1.3355386.123819background
SRR592747-1.2349336.325553background
SRR5927480.6332639.497215background
SRR5927491.3896168.344598background
\n", + "
" + ], + "text/plain": [ + " 1 2 experiment_id\n", + "SRR592745 -1.557785 6.548028 background\n", + "SRR592746 -1.335538 6.123819 background\n", + "SRR592747 -1.234933 6.325553 background\n", + "SRR592748 0.633263 9.497215 background\n", + "SRR592749 1.389616 8.344598 background" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Concatenate dataframes\n", + "combined_PCAencoded_df = pd.concat([compendium_PCAencoded_df, \n", + " template_PCAencoded_df,\n", + " simulated_PCAencoded_df])\n", + "\n", + "print(combined_PCAencoded_df.shape)\n", + "combined_PCAencoded_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAz0AAAHVCAYAAADb4JWzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvqOYd8AAAIABJREFUeJzs3Xd4VNXaNvB7ZjKZSU8gpFESCDUJICA15hA6GgiYhNCLoMKh2FCaRwHLQVDBF1/EggpKE18pKgqCQIgRpFsQJQhEOgRISEidzPP9wTdbhplJI2GSyf27Li5g12evWbs8u6ylEhEBERERERGRg1LbOwAiIiIiIqLKxKSHiIiIiIgcGpMeIiIiIiJyaEx6iIiIiIjIoTHpISIiIiIih8akh4iIiIiIHBqTHiIiIiIicmhMeoiIiIiIyKEx6SEiIiIiIofmEEmPSqUy+6NWq+Ht7Y2oqCgsW7YMImJz3r179+LRRx9F06ZN4eHhAb1ej5CQECQmJmLDhg0wGo025923b5+yzpdeeqkyNq3coqOjoVKpcPr06bte1pgxY6BSqbBr1667XlZ5hISEQKVSVdnlVSflrRc1ucwqgkqlQkhIiL3DqLa6d++OevXqIT8/Xxl2+vRpqFQqREdH2y8wsqu33noLKpUK+/bts3coRFQNOETSYzJ69GiMHj0aw4cPR1hYGFJSUvDYY49h2LBhFtMWFhbi0UcfRefOnfHhhx9CrVajZ8+eGDBgAPz8/PDFF18gLi4OvXr1srm+Tz/9VPn3qlWrKmWbqOqaM2cOVCoVli9fbu9Q7hovyqks7mV92bx5M3bu3IlZs2ZBp9NVyjrsfWPHxJGOKffC+PHj4e/vj2effdbeoRBRNeBk7wAq0p0nim3btuGhhx7C2rVrMXz4cPTr108ZN2rUKKxduxZNmzbFxx9/jC5dupjNe/78ebz00kv47rvvrK6rsLAQa9euBQAEBATg+PHj+Omnn9CxY8eK3ahy+uSTT5CTk4O6deve9bLmzZuHGTNmoEGDBhUQGdlTRdYLKr1jx45Bq9XaO4xqadasWahTpw4effRRe4dCVYyLiwueeuopzJw5E99++y0efPBBe4dERFWYQz3puVOvXr0wcuRIAMDGjRuV4Z9//jnWrl0Lf39/7N692yLhAYCgoCC8++67Zk9zbrdlyxakp6cjMjISEydOBACb09pDgwYN0Lx58wq50AoMDETz5s3h6upaAZGRPVVkvaDSa968OUJDQ+0dRrWTkpKCX375BYMHD4azs7O9w6EqaPjw4VCpVFi6dKm9QyGiqk4cAACxtSmLFy8WANK7d29lWIcOHQSALF26tNzrTExMVJZx8uRJASC+vr5SUFBQruVt3rxZevbsKd7e3qLT6aRp06Yyffp0uX79usW0s2fPFgDy8ccfy08//SQxMTFSq1YtASCHDx8WEZGuXbsKADl16pTF/Lt27ZJu3bqJu7u7eHt7y4MPPij79++Xjz/+WADI7NmzzaYfPXq0AJCdO3eaDQ8ODlbK/YMPPpCWLVuKXq8Xf39/efzxx63GnpqaKrNnz5ZOnTqJv7+/aLVaqVu3rowcOVL+/PNPq2Vz+3pKKycnR2bNmiUhISGi0+mkUaNG8uKLL0p+fr7V5RmNRlm9erUMHjxYmjRpIq6uruLu7i7t27eXJUuWSFFRkdWYrP0xlVNubq4sW7ZMYmNjpWHDhqLX68XLy0uioqJkzZo1Zdqe4OBg0el0kpubazb8ySefFABSr149i3ni4+MFgOzfv18Zdme9MP3m1v507drVYntFSv9bl+Tvv/+WSZMmSaNGjUSn04mPj4/ExMRISkqK2XQGg0G6dOkiAGTJkiUWy9m9e7eo1WoJDAyU9PR0i5iNRqO89dZb0qJFC9HpdBIUFCRTpkyxGbOpLnTr1k3ZH5s3by6zZ8+WmzdvWkx/e5muWrVKOnbsKO7u7uLl5aVMA0CCg4PN5tu5c6cAkNGjR8ulS5dk7Nix4u/vL66urhIZGWlWDkuXLlXKvF69ejJ79myLOmly9epVmTFjhrRo0UL0er14enpKt27d5KuvvrKY9tSpU8pvnZOTI9OnT5cGDRqIs7OzhIaGymuvvSZGo1GZvrT15fLlyzJ9+nRp0aKFuLm5iaenpzRp0kRGjhwpP/30k9W4rRkzZowAsKgTd8Z+u7Lud7a2x9rx89tvv5WHHnpIfH19xdnZWRo2bChPP/20Wb0zuf24mZSUpBxzPTw85KGHHpKjR4+aTV+aY0pxsrKy5L///a+0atVKPD09xc3NTRo1aiQJCQmyZcsWq+sqy75x/vx5mT9/vvzrX/+SoKAg0Wq14u/vLw8//LDs27fPZlzZ2dny2muvSbt27cTDw0NcXV2lWbNmMnHiRKvH/L1790pCQoIEBAQo54dx48ZJWlqazXVERUWJRqORc+fOlVhORFRzOXzS8+qrrwoA6d+/v4iIXLlyRQCISqUq14WaiEhGRobo9XpxdnaWq1eviogoF2VffvllmZf33//+VwCIk5OT9OjRQwYPHiz16tUTANK0aVO5ePGi2fSmpOeRRx4RrVYr4eHhMmTIEPnXv/4lP//8s4jYTnq++OIL0Wg0AkA6deokQ4YMkfDwcNHpdDJhwoRyJT3PPfecODs7S+/eveXhhx8WPz8/ASBRUVFmF0wiItOnTxeVSiUtW7aUfv36SXx8vLRo0UIAiKenpxK/tfWUVn5+vkRFRQkA8fHxkbi4OImJiREXFxfp37+/NGjQwGJ5ubm5AkBq164tUVFRMnjwYOnZs6e4uroqF6a3mzp1qrRu3VoASGRkpIwePVr5c+zYMREROXbsmACQoKAg6datmwwePFi6du0qWq3WajkXZ9SoUVZ/g1atWin1PzU1VRluNBrF19dXvLy8xGAwKMPvrBfJycnK7+vm5ma2HfPmzVPmK89vXZwff/xRfHx8BIA0a9ZM4uLiJCoqSpycnESj0cjatWvNpv/rr7/Ew8NDXFxclPIVubUvBgcHi0qlku+++85sHlPMkyZNEq1WK7169ZLExETx9/cXANKqVSvJzMw0m6eoqEiGDh0qAMTd3V2io6Pl4Ycflvr16wsA6dChg+Tk5JjNYyrTxx9/XNRqtURFRcmQIUMkMjJSmaa4pCc2NlYaNWokwcHBMnjwYOnYsaMAEFdXV/ntt9/kiSeeEBcXF3nooYekX79+4uHhIQBk1qxZFuX6559/KrGGhITIgAEDpHv37ko9fv31182mNyUOnTt3lgceeEBq1aolcXFx0qdPH9Hr9QJAnn/+eWX60tSXGzduSMOGDQWA1K9fXwYOHCgJCQnSoUMH0Wq1Zar3derUERcXFyksLLQYZyvpKet+N3r0aAkNDRUA0qdPH7NtunLlijLd9OnTBYA4OztLZGSkJCQkSJMmTQSAhIaGWhynTeX0zDPPiEajkY4dO0piYqI0bdpUOdZcuHBBmb40xxRbDAaDUm98fX0lNjZWEhMTpUuXLuLq6mpx/CrPvrF06VJlf+3bt68kJiZKmzZtBIBotVrZunWrRVznz5+X8PBw5Vjcv39/SUhIkLZt24parZZFixaZTb9kyRJRq9WiVqulY8eOMmjQIOUYV6dOHfn999+tbv8LL7wgAOTDDz8stpyIqGZz6KTHaDRK586dzU7c27ZtU05S5bVs2TIBIAMGDFCGvfPOOwJABg0aVKZl7du3T9Rqtbi7u8vevXuV4Xl5eTJo0CABIPHx8WbzmJIeADJ//nyry7WW9GRmZipPhFatWmU2vemkUZ6kJyAgQP744w9l+JUrV6Rx48YCQL7//nuzefbs2SMnT560iPejjz4SANKtWzeLcWVNel577TUBIG3atDG7A5uamipBQUFW60thYaFs2LDB4knd5cuX5f777xcAkpSUZDbu9idu1qSnp8u2bdsskoGTJ09KSEiIqNVqq0/irDGVz+2/zdWrV0WlUikXFR988IEy7pdffhEAEhMTY7YcW8mwtYvy25Xnt7YlMzNTAgMDRaPRyMqVK83G7d+/X3x8fMTd3V0uX75sNm758uXK75qfny8iIsOGDRMA8tRTT9mM2dPTUw4cOKAMz8rKku7duwsAefLJJ83mWbBggQCQ6OhoswvS/Px8GTdunACQ6dOnm81jKlO9Xi+7du2yus3FJT0AZMSIEWZ1z1S3wsLCJCgoSE6cOKGMO3r0qDg7O4urq6tkZWUpww0Gg7Rs2VIAyIIFC8yeBKWmpkrDhg1Fo9HIr7/+qgw3JQ6m5OH2C939+/eLRqOxWI+t7TEx1dXY2FiLp1GXL182W39xTMlLly5drI63lfSUZ7+zdYwzWbdunQCQiIgIi5sLL774ogCQwYMHW12mWq2WDRs2KMMNBoPyFPaFF14wm6ekY4otO3bsEADSvn17i6fBmZmZZvVfpHz7xi+//CK//fabxbq3bNmiPBm8s8x79OghACQxMdGiDp06dcrsJteePXtEo9FI3bp1LeI1nXM7duxodfu/+uorASCjRo2yOp6ISMRBkx6DwSDHjx9XXo3Q6XTKRcPatWuVpxzlZbrI+fzzz5Vh6enpotVqRa/XS0ZGRqmXZbqDP3PmTItxly5dEhcXF1Gr1fL3338rw00nxpYtW9q8u27t4vaDDz4QANKjRw+L6QsLC5UTYVmTntsvtk3eeOONMj/NiIyMFJVKZVF+ZU16TE9yduzYYTHOdLeyLMszJcrPPPOM2fDyXqCI/PNbLF68uFTTm16hvP0Cb/369QJAVqxYITqdToYPH66MM73WuWDBArPl3G3SUxG/9aJFiwSATJ061er4hQsXCgBZuHChxTjTjYDnnntOVq5cqVyI5uXl2YzZ2hORo0ePikqlEnd3d+UisbCwUHx9fcXNzc3irr3IrVcmAwICxMfHx+xi3lSmkyZNsrnNxSU9np6ecu3aNbNxGRkZolKpBIAsW7bMYnkPP/ywxT65YcMGqzdJTEz15YknnlCGmRIHtVptlsya9OvXz+q+X1x9mT9/vgCQt956y+r40vrss88EuPVE2xpbSU9xbO13JSU9picw1hI2o9Eo9913n2g0GrMnQ6Zl3r5fmhw4cMBq7OU9ppjKylryb01Z942SDB8+XADIL7/8ogz76aefBID4+fnJjRs3SlzGgAEDBIDV1zBFRGJjYwWAHDp0yGJcamqq8oSKiMgWh2q9zVo/Ih4eHlixYkWFfUT8999/Y/fu3fD29kb//v2V4bVr18ZDDz2ETZs24fPPPy91S0PJyckAbn2MeSc/Pz/07t0bmzZtQkpKCoYMGWI2vl+/fmXqOyUlJQUAMGjQIItxTk5OiI+Px8KFC0u9PJPevXtbDGvatCkA4MKFCxbjsrOz8dVXX+HIkSO4du0aCgsLlWlFBH/99Rfatm1b5jiAW7/P33//DT8/P3Tr1s1i/NChQ/Hvf//b5vxHjhzBd999h7S0NOTk5EBEkJWVBQBITU0tV0w//PADdu3ahXPnziEvLw8iopRLaZfZsGFDNGjQAHv37kVeXh70er3SvG7fvn3RqVMnJCUlKdObxlV0HyZl/a2tMbWIGBcXZ3V8VFQUAFjte+O9997Dnj178Oabb8LV1RU6nQ6rVq0qtinjO/cbAAgLC0Pr1q1x5MgRHD58GJ07d8ahQ4eQnp6OXr16wd/f32IeFxcXtGvXDps3b0ZqaiqaNWtmNj42Ntb2Rhfj/vvvh4+Pj9kwLy8v1KpVC1evXrVa5o0aNQJgXuZ3U67BwcEW2wOU/bcFgHbt2gEAXn/9dfj7+yMmJgYeHh6lnt/k8uXLAGBRNqVVEfudKY6ff/4ZTZo0QUREhMV4lUqFyMhIHDlyBAcPHkSfPn3MxlfEPlOS++67D2q1Gh9//DHCwsIQFxeH2rVrlzhfafcNk/z8fGzZsgX79u3DlStXUFBQAAD49ddfAdwq15YtWwIAtm/fDuDWMbek399oNOL777+Hq6urRfmZREVF4csvv8S+ffvQpk0bs3G1atUCAFy5cqXEbSaimsuhkp7Ro0cDANRqNTw9PdGyZUvExcWZnTRNJ4LyHhxXrVoFEUFCQoLFhdaIESOwadMmrFy5stRJz/nz5wHAZp8XpuHnzp2zGFfWJqRNJ9j69etbHV/eJqnr1atnMcx0kru9M0EA2LFjB4YMGVJs+ZuSjPIwlWdwcLDV8V5eXvD29kZGRobZ8IKCAowZMwZr1qypsLgyMzMRFxeHHTt2VMgyu3btik8//RR79+5FdHQ0du3ahbCwMPj5+SE6OhpJSUk4ceIEQkNDsXv3bnh4eJQ7ebSlLL+1LaaOUSMjI4udLj093WKYj48PlixZggEDBiA7Oxvz589Hq1atil2OrboQEhKCI0eOKHXGFNe2bdtKvJmQnp5ukSSUd/+x1Xy4u7s7rl69anW8u7s7AFh01gncuoFi7SaKibVytfa7AmX/bQGgR48eePrpp/HWW29h6NChcHJyQtu2bdGrVy+MHTtWSdhKkpmZaRZDaVX0fmcq19TU1FLViztVxD5TkqZNm2LBggWYOXMmHn/8cUyYMAERERHo0aMHxowZY3MfKe2+AdxKbGJjY4vt2Pj2cj1z5gwAlOqGY3p6OrKzswGgxFb6rJWxp6cnAFgc14mIbudQSU9pOnRr3bo1AODkyZPIyMiAt7d3mdZhapZ6165deOCBB8zGme567d69G2lpaTZPKGVR3ElWr9ff9fIrglpdupbPs7OzkZiYiGvXruHFF1/EkCFDEBwcDBcXF6hUKgwbNgxr1qyBiFRyxJYWLlyINWvWoGXLlliwYAHatm0LHx8faLVaHD9+HM2aNStzXNOnT8eOHTvQtWtXzJ07FxEREfD29oZGo8F3332HPn36lGmZ0dHR+PTTT7Fr1y60atUKv/76q/LUKjo6GnPnzsWuXbuQm5uL9PR0PPjgg9BoNGWKuSSl/a2LYzQaAQAJCQlwc3OzOV3z5s2tDv/ss8+Ufx88ePCu47kzrsaNG5eYkFm7i17e/bGkMi1tmZvi79u3r9UnVSa+vr7lXkdpLVy4EOPHj8emTZuwfft2pKSkYN++fViwYAHWrFmD+Pj4Epfh5eUFoOw3Gyp6vzOVa0BAgM2nECbWjvkVXba2TJ06FYmJidi4cSO2bduG5ORkLFq0CG+99RYWLVqEJ598stzLFhEkJibi9OnTmDBhAiZMmIBGjRrB3d0dKpUKs2bNwrx588p97DaVsbu7e4l1Izw83GKYKUEu6/mciGoWh0p6SqNOnTro0KED9u3bh7Vr12LChAmlnvfgwYM4duwYAODEiRM4ceKE1elEBKtWrcKsWbNKXGZQUBBOnTqFtLQ0hIWFWYw33VWriM4kAwMDAfxzB+5OtoZXlOTkZFy9ehUJCQmYO3euxfiTJ0/e9TpM25iWlmZ1/I0bN6zeDdywYQMAYM2aNRYn1fLGtWHDBmg0Gnz55ZfKnci7WWbXrl0B3Eq4W7duDRFRXl/r1KkTdDqdkvQAFf9qW0WpV68e/vzzT8yYMUN5Faq01qxZg9WrVyM8PBzOzs5Yt24dYmJiMGrUKJvzpKWlKa/c3DkcuLUPmuICbiVbpbmBUtWY4n/00UdLlVRUtmbNmmHatGmYNm0a8vLy8L//+7947rnn8O9//7tU8fn5+QEArl27Vqb1VvR+ZypXX1/fKl8v6tevjylTpmDKlCkwGAxYu3YtHnnkEUybNg2jRo2yeFWwtPvGH3/8gT/++AP333+/1f5wrJWr6Y2Cv/76q8S4fX19odfrlVf0yvLaNgBcv34dwK3zOxGRLQ7dOaktzz77LABgzpw5ynvjtvz444/Kv1euXKnML7cagbD4Y/qWwjRtSUzv2Vt7rerKlSvYunWr8s743TIt44svvrAYV1RUhPXr19/1OopjOjFZe93jxIkTOHTo0F2vIzg4GPXr18fly5fNvnExWbt2bZljW7dundV5TK9hGAwGm8v09PS0uPAqbpnFCQ0NRf369bF3715s2bIFKpVKSWz0er3yXU95vufRarU2t6Oi9erVC8A/iWZpnTlzBhMnToROp8Pq1auxcuVK6PV6TJkyBadOnbI5n7Wy/uOPP3DkyBG4u7vjvvvuAwC0b98eXl5eSEpKKvOFdlVQ3nItj7LWF71ej2effRaBgYG4cuVKicdd4J+n8n/++WeZYivPflfcvlyvXj00b94cv//+O44fP16mWMqqpGNKWTg5OWHEiBFo3749CgoKrH7HVNp9o7jj4/Xr17Ft2zaL4T179gRw69xmenWtuFijo6Nx48YNfP/99yVv3B1MNyNN8RIRWVMjk55BgwZhyJAhuHTpEv71r39hz549FtNcvHgRkydPxogRIwDcSgpMicnQoUNtLjsqKgp169bFsWPHSvXqzaRJk6BWq7F48WIcOHBAGV5QUIApU6YgNzcXcXFxNr/DKYtBgwahVq1a2LZtm8XF/yuvvFLshWNFMH28u379erNvejIyMjBu3DilQYO7ZXrla+rUqWYXrydPnsRLL71UbGzvvvuu2fD/+7//wyeffGJ1HtNdUFsXZU2bNsX169fNXscCgEWLFmHnzp2l2BJLXbt2RX5+Pj755BOEhYWZ3dmMjo7G2bNn8c0335T5e56goCBcunTpnrwTP378ePj5+WHBggV4//33lVdbTAwGA7Zu3YrffvtNGWY0GjFq1ChkZGTg1VdfRatWrRAWFob58+fjxo0bGDlyJIqKiqyu7+2338bhw4eV/+fk5GDKlCkQETzyyCNwcXEBAOh0OkybNg1ZWVmIi4uzevf63LlzyiuuVU18fDzCwsKwatUqvPzyyxbfi4gIUlJSlAZN7kZx9WXjxo3Yu3evxfCDBw/i0qVLcHd3L9VrSM2aNYOfnx+OHDlSpiSgPPtdSfvyCy+8AKPRiPj4eBw5csRi/NWrV/HBBx+UOkZbSorDlp07d2L79u0W+9KpU6dw7NgxqFQqqwlLafeNxo0bQ61WY8eOHWbJU15eHiZMmGD1JkGHDh3QrVs3XL58GY8//jhu3rxpNv706dNKAwgA8Pzzz0OtVuORRx5RbtzcLjs7Gx999JHyJPt2psY5TE/DiYisupdNxVUWlLEJYhGRgoICGTt2rDJv8+bNJS4uTukc0NSBZ69evURE5JtvvhHgVmehJXnmmWes9nNgi6kDVScnJ+nZs6cMGTJE6WCwSZMmNjsnLa5Z09J0Ttq5c2cZOnSoREREiLOzszz++OMCQF599VWzeUpqstqa23ubv12vXr0EgHh7e8vAgQNl4MCB4u3tLY0bN1aaLC3LeqzJz8+XyMhIAW51iBcfHy/9+vUTFxcX6devn9XOSZOSkpRyadeunQwdOlTpn+fZZ5+12rzsuXPnRK/Xi0ajkb59+8rYsWNl3LhxStO/piaVgVuddw4dOlTCwsJErVbL008/bbV8SmJqchdWmki+vd+Xvn37Wp3fVr2YMmWKAJCGDRvK8OHDZdy4cWbNXZfnty7Onj17xNfXV4BbHVg++OCDMmzYMOnevbt4e3sLALO+TUzNIPfo0cOsmXaj0Si9e/cWAPLyyy+brePODhj79OkjiYmJEhAQIAAkPDzconn0oqIiGTlypAC3OqHs2LGjDBkyROLi4iQ8PFxUKpW0bt26VGV6OxTTZLWtciuuzG0dA44fP650DOrn5yc9e/aUYcOGSe/evZWOZG/vELKkZp9trae4+vLkk08KAKlbt67069dPhg0bJtHR0cr+9eabb9ospzuZuh344YcfLMbZir08+92BAwdEpVKJXq+XAQMGyLhx42TcuHFm/XzNmjVLad67bdu2MmjQIElISJA2bdqIRqMRLy8vs2WW1Ay2tTpR0jHFFlMz8HXq1JG+ffvK8OHDpXfv3qLT6QSATJkyxWz68uwbjz32mAAQFxcXiYmJkYSEBPH39xdfX1/ld7qznpw9e1aaNWsmAKRWrVoSGxsrgwYNstk56dKlS5V6EhERYXZONm2LtU7FH3jgAdFoNHLu3Lliy4mIarYam/SY/PjjjzJ27Fhp3LixuLq6ik6nk+DgYElMTJRNmzYpF1imXtpL0xfJ/v37lYsOaz2JW/P1119Ljx49xMvLS5ydnaVx48Yybdo0i/47RO4u6RG5dbEVHR0tbm5u4unpKb1795affvpJXnnlFQEg7777rtn0FZn05OTkyPPPPy9NmjQRnU4n9evXlwkTJkh6enq51mPLzZs3ZebMmdKgQQNxdnaWkJAQmTVrluTn59tc3p49e6R79+7i4+MjHh4e0qVLF/niiy+KvTDcunWrREZGiru7u1IPb49/8+bN0qlTJ/Hw8BBvb2/p2bOn7Nq1q1yJgsg//VEA5v1EiYjk5uYqFwavvfaa1flt1Yvs7GyZPHmy1K9fX5ycnCy2t6KTHhGRCxcuyLRp0yQ8PFxcXV3F1dVVQkNDZcCAAbJ8+XKlM8PDhw+Ls7Oz+Pj4yNmzZy2Wc/78ealdu7Y4OTnJTz/9ZBFzUVGRvPHGG9K8eXPR6XQSGBgokyZNsrpvmWzatEliYmLEz89PtFqt+Pn5Sbt27WTatGly8OBBs2mrUtIjcquPn1deeUXatm0r7u7uotfrJSQkRPr06SNLliwx60umvElPcfXl8OHDMnXqVGnfvr34+fkpx9T+/fvL9u3bra7HlpSUFAEgEydOtBhXXOzl2e9WrVolbdu2FRcXF2Ufu/M3TUpKkkGDBklQUJBotVqpXbu2tGrVSiZPnmzReXF5kh6Rko8p1qSmpsp//vMfiYyMlMDAQHF2dpa6detKjx495IsvvrDoz608+4bBYJA333xTwsLCRK/Xi7+/vwwfPlxOnz5dbH28ceOGvPTSS9KqVStxcXERd3d3ad68uUyePNmso1eTw4cPy+jRoyU4OFicnZ3F29tbwsPDZezYsfL1119bbEtaWpqoVCrp379/sWVERKQSsUNTWVQl9e3bF1u3bsXevXvRsWNHe4dDdFdCQkKQlpZml9YAqeK0adMGZ8+exdmzZ4vtj4lKz5H2jXnz5mHWrFn45ptv8OCDD9o7HCKqwmrkNz012blz53Dp0iWzYUajEYsWLcLWrVvRtGlTdOjQwU7RERGZe/XVV5GAR4vgAAAgAElEQVSenl4h38yQY8nNzcXixYsRFRXFhIeISlTjmqyu6ZKTkzFixAi0adMGwcHByM/Px2+//YbTp0/D1dUVy5YtK3NzoUREleWhhx5Ct27d8Nprr+Gxxx7j0x5SvPfee7h48SI2bdpk71CIqBrg6201TGpqKubNm4fk5GRcunQJeXl5CAgIQHR0NGbMmGG1ryCi6siRXuEhqkjcN4ioJmLSQ0REREREDo3f9BARERERkUNj0kNERERERA6NSQ8RERERETk0Jj1EREREROTQqkWT1bm5udiwYQP+/PNPpKamIjs7G08++SR69OhhMe2ZM2ewbNkyHDt2DE5OTrj//vsxbtw4eHl52SFyIiIiIiKyt2rxpOfGjRtYu3Ytzp49i4YNG9qcLj09HTNnzsSFCxcwcuRIDBw4EAcOHMCLL76IwsLCexgxERERERFVFdXiSU+tWrWwYsUK+Pj4IDU1FVOnTrU63eeff468vDwsWrQIderUAQA0bdoUL774Ir7//nv07du32PVkZGQgJyenwuMnIiKiyuPq6gpvb297h0FEVVi1SHq0Wi18fHxKnO7HH39E+/btlYQHAO677z7UrVsXKSkpxSY9GRkZWLJkCQoLC6FWq9GmTRscPnwYRqOxQraBbnF3d1fKNjs7297hOBTW28rDelt5WG8rT02qt1qtFpMmTWLiQ0Q2VYukpzSuXr2KzMxMNG7c2GJckyZNcPDgwWLnz8nJQWFhIeLi4uDr6wsAaNeuXaXEWpM5OTnBx8cHLVu2hMFgsHc4Don1tuKx3lY+1tuKV1PqbXp6OtavX4+cnBwmPURkk8MkPdeuXQNw61W4O/n4+CArKwuFhYXQarXFLsfX1xcBAQG4ePEiAgICoFZXi8+eqg0RgcFgQJ06daBSqewdjkMxGo2st5WE9bbysN5WHtZbIqJ/OMwZpqCgAACsJjXOzs4AgPz8/HsaExERERER2Z/DPOkxJTbWWmkzJUQ6nc5s+IULF3DhwgUAwJUrV3Dz5k0AUN4r5/vlFU9EYDQaYTQaeeexgrHeVh7W28rDelt5WG+JiP7hMEmP6bU202tut7t+/To8PDwsngK99957mDt3rvL/IUOGAAAuX75s9jdRdcJ6S9UR6y0REVUmh0l6ateuDS8vL5w4ccJiXGpqqtX+fcaPH4/Y2FgAt570bN++HQDg5+eHy5cvw8/Pj++YVzDTO+ZOTk6881jBjEYj620lYb2tPKy3laem1NuLFy/aOwQiqgYcJukBgM6dO2PHjh24cuWK0mz1zz//jHPnzinJze0CAwMRGBgIADh//jz27NkDAMqJV61W8yRcwUREKVdHPgnbE+ttxWO9rXystxWP9ZaI6B/VJun5+uuvcfPmTeX1tX379iE9PR0A0K9fP7i5uWHQoEFISUnB888/j9jYWOTm5mLDhg0IDg5Gz5497Rk+ERERERHZSbVJejZu3Gj2zveePXuUJzPR0dFwc3NDnTp1MG/ePHz44YdYsWIFnJyccP/992Ps2LElNlVNRERERESOqdokPcuWLSvVdA0aNDBrnICIiIiIiGo2vkBNREREREQOjUkPERERERE5NCY9RERERETk0KrNNz1EdO/t35+PX34xAABatXJC+/Y6O0dEREREVHZMeojIquTkPGzYYICr663/Hz1aiLw8QVSU3r6BEREREZURX28jIgtFRYLk5CL4+AgaNFCjQQM1fHwESUlFKCoSe4dHREREVCZMeojIgtEI5OcDOt0/vbi7uKhQUHBrHBEREVF1wqSHiCxotSo0aqTChQuAwSAoKhKcOweEhqqg1apKXgARERFRFcJveojIqgED9MjLy0NqahEAoHlzDfr35/c8REREVP0w6SEiq7y91Rg71gWXLt1Kevz9NXzKQ0RERNUSkx4iskmrVaFePR4miIiIqHrjNz1EREREROTQmPQQEREREZFDY9JDREREREQOjUkPERERERE5NCY9RERERETk0Jj0EBERERGRQ2PSQ0REREREDo1JDxEREREROTQmPURERERE5NCY9BARERERkUNj0kNERERERA6NSQ8RERERETk0Jj1EREREROTQmPQQEREREZFDY9JDREREREQOjUkPERERERE5NCY9RERERETk0Jj0EBERERGRQ2PSQ0REREREDo1JDxFVCdnZRly9WoTCQrF3KERERORgnOwdABHVbEVFgp0785GUVISCAoG/P5CQoEeDBjw8ERERUcXgkx4isqtDhwrwzTdF8PAQ1K+vwoULwGef5SM722jv0IiIiMhBMOkhIrs6caIIOp3A21sNZ2cVmjRR48IFwcWLRfYOjYiIiBwEkx4isisnJ8Bg+Of/BoNApQKcnFT2C4qIiIgcCpMeIrKrNm200GqB06eNuHKlCH/+KWjeXI26dTX2Do2IiIgcBJMeIrKrxo21GDFChwYN1NDpVHjgATUGD9ZDq+WTHiIiIqoYbB6JiOwuLEyLsDCtvcMgIiIiB8UnPURERERE5NCY9BARERERkUNj0kNERERERA6NSQ8RERERETk0Jj1EREREROTQmPQQEREREZFDY9JDREREREQOjUkPERERERE5NCY9RERERETk0Jj0EBERERGRQ2PSQ0REREREDo1JDxEREREROTQmPURERERE5NCY9BARERERkUNj0kNERERERA7Nyd4BVCXu7u5wcnKCiCh/i4i9w3IopvJkuVY81tvKw3pbeVhvK09NqbdOTryUIaKS8UhxmzZt2sDHxwdGo1H522g02jssh1RUVGTvEBwS623lYr2tHKy3lcvR662Pj4+9QyCiaoBJz20OHz6Mli1bonbt2rh69Spq164NtZpvAFYkEUFRURE0Gg1UKpW9w3EoRqOR9baSsN5WHtbbylNT6u2VK1fsHQIRVQNMem6TnZ0Ng8EAlUql/O3IJwp7YtlWPNbbyseyrXist5XP0cvWYDDYOwQiqgZ4W42IiIiIiBwakx4iIiIiInJoTHqIagDTu/38UJyIiIhqIn7TQ+TgDAaD2fdqLi4ucHFxceh3/ImIiIhuxyc9RA7MaDQqCY9Wq4VarcbNmzeRn59v79CIiIiI7hkmPUQOzGg0orCwEFqtFiqVChqNBmq1GgUFBfYOjYiIiOieYdJD5ODufI1NRNgfChEREdUo/KaHyIFpNBrodDrk5eVBo9FARAAAOp3OzpERERER3TtMeogcmEqlgpubGzQaDQoKCqBWq6HX66HVau0dGhEREdE9w6SHyMGp1Wq4urrC1dXV3qEQERER2QVf7CciIiIiIofGpIeIiIiIiBwakx4iIiIiInJoTHqIiIiIiMihMekhIiIiIiKHxqSHiIiIiIgcGpMeqnEKCwVFRWLvMIiIiIjoHmE/PVRjZGcbsXlzHn7/XeDkBHTurEG3bjpoNCp7h0ZERERElYhPeqjG2LgxDz/+aISbm0CtNmLz5iIkJ+fbOywiIiIiqmRMeqhGyMgw4uhRIxo2VMHbW406dTTw9hYcOmSwd2hEREREVMmY9BARERERkUNj0kM1gre3GuHhapw6JcjIMOLKlSJkZKjQti0/ayMiIiJydLzioxpj4EA9tFpTQwYqxMRoEBWlszn96dMGHD1qgMEAhIaqERHhfA+jJSIiIqKKwqSHagx3dzUGD3ZFYaFArUaxrbYdP16ITz7JR04OoNEAu3cDcXFGREbq72HERERERFQR+Hob1ThararEZqq3by+E0Qg0b65GkyZq1Kol2L69CPn57N+HiIiIqLph0kNkRWamwM3tnwTH01ONvDxBTo7RjlERERERUXkw6SGyIjhYhatXVTAabyU+584JfH1V8PTkLkNERERU3fCbHqL/LyPDiO+/z8P58wKdDvDxERw/roJKdSvhiY/XlfhaHBERERFVPUx6iADk5BixenUuUlMF3t5AVhbg6qpCfLwGPj4aBAVp4O3NpzwmIreegKlUTAKJiIio6mPSQwTg5EkDTpwAmja91chBYCDw++9GFBYCYWFae4dXZRQVFeHmzZswGAxQqVRwdXWFTme72W8iIiKiqoC3rokAGAy3nl7c/vqakxOQl2fHoKoYo9GIrKwsFBQUQK1WQ0SQlZWFwsJCe4dGREREVCwmPUQAAgM18PBQ4fx5I4xGQUaGESJAvXrcRUyKiopQWFgIrVYLtVoNJ6dbD4rz8/PtHBkRERFR8XhFRwTA31+DxEQtNBoVTpww4sYNoH9/J0REONs7NCIiIiK6S/ymh+j/i4hwRkiIEzIyjHB3V7PhgjtoNBpotVoUFBTAyckJRuOtPov4TQ8RERFVdUx6iG7j7q6GuzuTHWvUajU8PDyUhgw0Gg1cXV2h1bKhByIiIqramPQQUalpNBp4enpCRNhcNREREVUbvKVNRGXGhIeIiIiqEyY9RERERETk0Jj0EBERERGRQ2PSQ0REREREDo1JDxEREREROTQmPURERERE5NCY9BARERERkUNj0kNERERERA6NSQ8RERERETk0Jj1EREREROTQmPQQEREREZFDY9JDREREREQOjUkPERERERE5NCd7B1CRfv31Vzz//PNWxy1YsADNmze/xxEREREREZG9OVTSY9K/f380btzYbFhQUJCdoiEiIiIiIntyyKQnLCwMkZGR9g6DqEopLCxEYWEh1Go1tFotNBqNvUMiIiIiuiccMukBgJycHOh0Ol7YEQHIy8tDdnY2AEBE4OTkBA8PDzg5OewhgIiIiEjhkFc8ixcvRm5uLtRqNcLDwzFmzBg0adLE3mER2YXRaEROTg7UarWS5BQUFCA3NxceHh52jo6IiIio8jlU0uPk5IQuXbqgXbt28PT0xJkzZ7BhwwbMnDkT8+fPR2hoqL1DJLrnRARGoxFarVYZplarUVRUZMeoiIiIiO4dh0p6WrRogRYtWij/79ixI7p06YInnngCn3zyCebOnWvH6IjsQ61WQ6PRwGAwQKvVQkRQVFQEZ2dne4dGREREdE84VNJjTVBQEDp27Ig9e/agqKjI7BufCxcu4MKFCwCAK1eu4ObNmwBuvQ50+99UcUxPHYxGI1Qqlb3DcSjF1VtXV1dkZWUhLy8PAKDVaqHT6VjHS4n1tvLweFt5WG+JiP7h8EkPAPj6+sJgMCA/Px+urq7K8Pfee8/s6c+QIUMAAJcvXzb7m6g6sVVvTRc/wK2W3HJzc+9lWETF4vGWiIgqU41Iei5dugRnZ2fo9Xqz4ePHj0dsbCyAW096tm/fDgDw8/PD5cuX4efnB7Vafc/jdWQiAoPBACcnJ955rGBGo5H1tpKw3lYe1tvKU1Pq7cWLF+0dAhFVAw6V9GRmZsLLy8ts2KlTp7Bv3z60bdvW4oQaGBiIwMBAAMD58+exZ88eAFCmU6vVPAlXMBFRytWRT8L2xHpb8VhvKx/rbcVjvSUi+odDJT0LFiyATqdD8+bN4eXlhTNnzmDr1q3Q6XQYPXq0vcMjIiIiIiI7cKikp1OnTkhKSsKmTZuQk5MDLy8vdO7cGUOGDEFQUJC9wyMiIiIiIjtwqKSnf//+6N+/v73DICIiIiKiKoQvUBMRERERkUNj0kNERERERA6NSQ8RERERETk0Jj1EREREROTQmPQQEREREZFDY9JDREREREQOjUkPERERERE5NCY9RERERETk0Jj0EBEREVGVpVKpEBISYu8wqpxdu3ZBpVJhzJgxZZovJCQEKpWqcoKqwpj0EBERERHdI0zi7MPJ3gEQEREREdly7NgxaLVae4dR5XTo0AHHjh2Dl5eXvUOpFpj0EBEREVGV1bx5c3uHUCW5urqybMqAr7cRERERVUNnzpzB5MmTERoaCr1ej1q1aqFfv3748ccflWmKiooQGRkJlUqFd955x2IZycnJ0Gg0CAoKwtWrV5Xhpu8+RAT/8z//g7CwMOj1etStWxdPPPEEMjIyrMYkIlizZg26d+8OHx8f6PV6tGjRAnPmzEFOTo7F9NHR0VCpVDh9+jRWr16NTp06wcPDA97e3so01l4Hu/17lsuXL2PcuHEICAiAm5sbHnjgAbMyePfdd9GqVSu4uLigfv36mDNnDoxGo9X4r127hpkzZyIsLAwuLi7w8vJC9+7d8fXXX1tMe/r0aahUKkRHRyM3NxczZsxAcHAwdDodGjdujPnz50NElOmXL1+ufEuTlpYGlUql/ImOjrYaT3GK+6YnNzcXzz//PBo2bAi9Xo/Q0FDMnj0bBQUFZV6Po+CTHiIiIqJqZs+ePYiJicH169fRrFkzxMTE4MqVK9i6dSu2bNmCVatWYfDgwdBoNPj0009x33334dlnn0X37t2VpwOZmZkYOXIkRAQrVqxA7dq1LdYzZcoUvP/++4iOjkbLli2RlJSEt99+G0lJSUhOToanp6cyrdFoxIgRI7BmzRq4u7vj/vvvh4+PDw4cOIC5c+fi22+/xa5du+Di4mKxnnnz5mHZsmWIjIxEv379cObMmVKVw/Xr19G5c2cUFRUhOjoap0+fRkpKCnr16oV9+/bh/fffxwcffIBu3bohODgYSUlJmDt3LgoLC/Hqq6+aLev48ePo2bMnzpw5g5CQEPTp0wdZWVnYu3cv+vfvj9dffx3PPvusRQwFBQXo3bs3fv/9d0RHR+PmzZtISkrCjBkzkJWVhVdeeQUA0LhxY4wePRorVqyAm5sbEhISlGVU5BObgoIC9OnTB8nJyfDx8UFMTAzy8/Px+uuv4/Dhw2aJWI0iJCIi586dk9mzZ8u5c+ekqKhI+ZsqltFolIKCAjEajfYOxeGw3lYe1tvKw3pbeWpKvb39/F1TZGZmSmBgoGg0Glm5cqXZuP3794uPj4+4u7vL5cuXleHLly8XANKmTRvJz88XEZFhw4YJAHnqqacs1hEcHCwAxNPTUw4cOKAMz8rKku7duwsAefLJJ83mWbBggQCQ6OhouXDhgjI8Pz9fxo0bJwBk+vTpZvN07dpVAIher5ddu3ZZ3V4AEhwcbDZs586dAkAAyIgRI6SgoEAZN3v2bAEgYWFhEhQUJCdOnFDGHT16VJydncXV1VWysrKU4QaDQVq2bCkAZMGCBWbHpNTUVGnYsKFoNBr59ddfleGnTp1SYujatatkZmYq4/bv3y8ajcZiPba2pzxMZTB69Giz4a+99pryW6enp5ttR1BQkBJzTVPzttgGJj33Rk05CdsD623lYb2tPKy3laem1NuamPQsWrRIAMjUqVOtjl+4cKEAkIULF5oNHzRokACQ5557TlauXCkAJCIiQvLy8iyWYUp6Zs2aZTHu6NGjolKpxN3dXXJzc0VEpLCwUHx9fcXNzU0uXrxoMU9OTo4EBASIj4+P2f5uSnomTZpkc3uLS3o8PT3l2rVrZuMyMjJEpVIJAFm2bJnF8h5++GEBIDt37lSGbdiwQQBIfHy81RjWr18vAOSJJ55QhpmSHrVaLX/88YfFPP369bNYj63tKQ9bSU+DBg0EgOzYscNinqVLl9bYpIff9BARERFVI9999x0AIC4uzur4qKgoAMC+ffvMhr/33nuoV68e3nzzTUyYMAE6nQ6rVq2CTqezua4hQ4ZYDAsLC0Pr1q2RnZ2Nw4cPAwAOHTqE9PR0dOnSBf7+/hbzuLi4oF27drh+/TpSU1MtxsfGxtqMoTimV+hu5+XlhVq1agEAevfubTFPo0aNAAAXLlxQhpW3TAEgODgYzZo1sxjetGlTi/VUtr///ht///03/Pz80K1bN4vxQ4cOvWexVDVMeoiIiIiqkdOnTwOA0kDBnX/at28PAEhPTzebz8fHB0uWLIHRaER2djZeeukltGrVqth1BQcHWx1ualjg/PnzZjFt27bNakwqlQqbN2+2GhcANGjQoFTbfqe6detaHe7u7m5zvGlcfn6+MswU//Dhw63GXqdOHZux16tXz2oMHh4eFuupbKbfw9bv5uXlZdZIRE3ChgyIiIiIqhFTy2MJCQlwc3OzOZ21j+M/++wz5d8HDx6s8JgaN26MyMjIYqe11mCCXq8v13rV6uLv35c03sQUf9++fa0+qTLx9fUt9zrIvpj0EBEREVUj9erVw59//okZM2agXbt2pZ5vzZo1WL16NcLDw+Hs7Ix169YhJiYGo0aNsjlPWloaWrZsaXU4AAQFBSkxAbcSreXLl5dha6oGU/yPPvoo4uPj7RxN+QUGBgL45/e5040bN2w2N+7omJoSERERVSO9evUCAGzYsKHU85w5cwYTJ06ETqfD6tWrsXLlSuj1ekyZMgWnTp2yOd+6desshv3xxx84cuQI3N3dcd999wEA2rdvDy8vLyQlJeHatWtl3CL7K0+ZlpdWq4XBYKiUZQcHB6N+/fq4fPkykpKSLMavXbu2UtZbHTDpISIiIqpGxo8fDz8/PyxYsADvv/++RUebBoMBW7duxW+//Qbg1qtbo0aNQkZGBl599VW0atUKYWFhmD9/Pm7cuIGRI0eiqKjI6rrefvttpbECAMjJycGUKVMgInjkkUeUPnd0Oh2mTZuGrKwsxMXF4eTJkxbLOnfuHD799NOKKoYKFR8fj7CwMKxatQovv/yyxXc4IoKUlBSkpKTc9bqCgoJw6dKlSnvi8u9//xsAMHXqVLME9OTJk3jppZcqZZ3VAZMeIiIiomrE29sbmzZtgpeXF8aPH4+QkBA89NBDGD58OHr06IE6deqgb9++OHHiBADgjTfewK5du9CjRw8888wzynKmTJmC3r17IyUlBfPmzbO6rhEjRqBjx47o27cvBg8ejNDQUGzfvh3h4eF4+eWXzaadMWMGRo4ciaSkJLRo0QKdOnXC0KFDER8fj4iICNSvXx9vvvlm5RXMXXBycsLGjRvRsGFDvPjii2jQoAF69eqF4cOHo0+fPggICMADDzyA/fv33/W6YmNjYTAY0LZtW4wYMQKPPvooXn/99QrYilumTp2KyMhIHDx4EI0bN0ZCQgL69++PiIgItGnTptyNRlR3THqIiIiIqplOnTrh119/xbRp0+Dp6YmkpCRs3LgRaWlp6Nq1K5YvX46ePXviyJEjeOGFF+Dj44MVK1ZApVIpy1CpVFi+fDlq166NuXPnWm2OefHixZg3bx7S0tKwadMmqFQqTJo0CcnJyfDy8jKbVq1W45NPPsGmTZvQq1cvnDp1Cl988QV++OEH6PV6PPfcc/joo48qvWzKq0mTJjh8+DBeeeUV1KtXD3v37sX69etx/PhxtGnTBkuWLMGIESPuej3z5s3D5MmTYTAY8Nlnn+HDDz9UWrarCM7Ozvjuu+8wc+ZMeHh44KuvvsJvv/2Gp59+Gl988YVZHahJVCIipZkwLy8Pr7zyCtasWYPz588jICAAAwcOxPTp0xEQEGB1nkceeQSffvpppb23WJHOnz+P999/H48//jgCAgJw8eJFBAQEsEWOCiYiMBgMcHJyqrE7XWUxGo2st5WE9bbysN5WnppSb28/f5s+qqe7FxISgrS0NJTyMpGoyivVGcZgMKBPnz6YN28eTp06hfz8fKSlpWHx4sWIiIjAl19+aXNe7ixERERERGRPpUp63nnnHSQnJ6N+/fpYvXo1jh49iq+++grdu3fHtWvXEBcXh3feeaeyYyUiIiIiIiqzUvXTs3r1auj1enz//fcIDQ0FALRo0QIxMTF499138dRTT2HKlCm4du0a/vOf/1RqwEREREREjmbMmDGlms7X1xdvvPFG5QbjgEqV9Pz++++IjIxUEp7bTZgwAeHh4RgwYABmz56N69evV9mWOYiIiIioZKdPn7Z3CDXOihUrSjVdcHAwk55yKNXrbfn5+ahTp47N8VFRUdi9ezf8/f3x1ltv4bHHHuO3PEREREREpSQipfrDhLR8SvWkp27dujh+/Hix00RERCAlJQW9evXCRx99hOzsbGg0mgoJkoiIiIiIqLxK9aSnY8eOOHLkCM6ePVvsdA0bNkRycjLCw8Oxbt06rFu3rkKCJCIiIiIiKq9SJT39+/eH0WjEkiVLSpw2MDAQu3fvRseOHatF/zxEREREVdWcOXOgUqmQnp5+z9YZHR2NiIiIe7a+qsZU5uRYSvV6W0xMDJ5//nm4ubmVaqHe3t74/vvvMWvWLGRkZNxVgERERERERHejVEmPl5cXXn755TIt2MXFBYsWLSpXUERERERERBWlVK+3ERERERFVlJs3b9o7BKphmPQQERERVXHp6elITEyEp6cnateujSeffBJ5eXnK+I8//hjdu3eHn58fdDodwsLCsHTpUqvL+vbbb9G1a1d4eHjA09MT7du3x+rVq4td/3fffQdXV1cMHTpU+WY7NzcXTzzxBHx9feHh4YHY2FicO3cOKpUKc+bMUeY1fSPz+++/Y9iwYfDx8cEDDzygjN+xYweioqLg5uYGb29vDBgwAMeOHTNb/5gxYxASEmIRl7Xvb1QqFSZPnoyNGzciIiICOp0O4eHh2LJli8X8P/zwA9q3bw+9Xo/Q0FC89957xZYDVV+ler2NiIiIiOwnMTERISEhmDdvHvbu3YvFixfj+vXr+OSTTwAAS5cuRXh4OGJjY+Hk5ISvvvoKEydOhNFoxKRJk5TlLF++HGPHjkV4eDhmzpwJb29vHD58GFu2bMGwYcOsrvvrr79GQkICBg8ejI8++kjpkmTMmDFYt24dRo4ciU6dOiEpKQkxMTE2t2HQoEFo0qQJ/vvf/yr9OW7fvh0PPvggGjVqhDlz5iA3Nxdvv/02IiMjcejQIauJTmn88MMPWL9+PSZOnAgPDw8sXrwY8fHx+Pvvv1G7dm0AwK+//orevXujTp06mDNnDgwGA2bPng1/f/9yrZOqNiY9RERERBXIaDTi/PnzyM3NhYuLC4KCgqBW393LNQ0bNsSmTZsAAJMmTYKnpyfeeecdPPvss2jVqhWSkpLg4uKiTD958mT07dsXCxcuVJKezMxMPPHEE+jQoQN27YugC+gAACAASURBVNoFvV6vTG+rU/n169djyJAhGDNmDN59911lOw4dOoR169bhqaeeUr7hnjhxIh555BH8/PPPVpfVunVriydKzz33HGrVqoU9e/agVq1aAICBAweiTZs2mD17NlasWFGe4sKxY8fw+++/IzQ0FADQrVs3tG7dGmvWrMHkyZMBAC+++CJEBMnJyWjQoAEAID4+Hi1btizXOqlq4+ttRERERBXEaDTi4MGDSE1NxdmzZ5GamopDhw7BaDTe1XJvf1oDAFOmTAEAfPPNNwBglvBkZmYiPT0dXbt2xcmTJ5GZmQkA2LZtG7KysjBjxgyzhAeA1Saa16xZg8GDB2P8+PF47733zBI306tiEydOtBqXNRMmTDD7/4ULF3DkyBGMGTNGSXgAoFWrVujVq5eybeXRs2dPJeExLdPT0xMnT54EABQVFWHr1q0YOHCgkvAAQIsWLdCnT59yr5eqLiY9RERERBXk/PnzyM7Ohogof7KysnD+/Pm7Wm6TJk3M/h8aGgq1Wo3Tp08DAFJSUtCzZ0/lu5g6depg1qxZAKAkPX/99RcAlKoPnlOnTmHEiBGIj4/H22+/bZEUpaWlQa1Wo2HDhmbDGzdubHOZd06blpYGAGjWrJnFtC1atEB6enq5Gzy4PZEx8fHxwfXr1wEAV65cQW5urkW52oqHqr9KT3ru9s4GERERUXWRm5tbpuHldXsS8tdff6FHjx5IT0/HwoULsXnzZmzbtg1PP/00gPJdiwUGBqJLly745ptvcODAgQqJ+fanUWVlq7PQoqIiq8NN3x3dydZrfOT4Ki3pOXz4MJ555hnUq1evslZBREREVKXYurC/mwt+AEhNTTX7/4kTJ2A0GhESEoKvvvoK+fn5+PL/sXfn4U1V+f/A3/dmbZpuQKFAkUKhyKIslUFBwBHKJjCDAnbAEQpIERWd+bHqsJRlGIF5gEERUWQZQBhUBhlkVVBEUBzAqQ6rFGXKVqB70mz3/P7IN9eGtpCWhrTp+/U8PG1Obm4+SQ5NPjnnfM7HHyM1NRX9+vVDz549S9ynZ7rX999/f8f7MxqN+Ne//oXmzZujT58++OGHH7yub9y4MRRFQUZGRom4fNW4cWMAwOnTp0tcd+rUKdSpUwehoaEA3KM0pW147xktKq/o6GiEhISUeF7Lioeqv0pNei5evIi//OUvaNOmDR566CEsWbIEV69ercy7ICIiIqqyGjRoALPZDEmS1H9hYWFo0KDBXZ33zTff9Lq8bNkyAEDfvn3VUY3ioxi5ublYvXq112169eqFsLAwzJ8/36vc9a239YiIiMDu3btRt25dJCUlqdPjAKjrXpYvX15qXL6oX78+2rVrh7Vr13olNN9//z327NmDfv36qW3x8fHIzc3Ff/7zH7Xt8uXL2Lp1q8/3V5xGo0Hv3r3xz3/+Ez///LPafvLkSezevbtC56Sq7a6rt+Xn52PLli1Yv349vvjiC3X+asOGDfH000/jd7/7XWXESURERFTlybKMxMTESq/elpGRgYEDB6JPnz44fPgw1q9fj2HDhqFt27YwGo3Q6/UYMGAAUlNTUVBQgHfeeQd169bF5cuX1XOEh4dj8eLFGDNmDDp27KjumfPdd9/BYrGUWimtTp062Lt3Lx599FH07NkTX375JRo2bIjExEQ89dRTWLJkCW7cuKGWrD5z5gyAsqej3WrhwoXo27cvHnnkEYwePVotWR0REeG1109ycjKmTJmCQYMGYcKECbBYLHjrrbeQkJCAY8eOVeg5TUtLw65du9C1a1eMHz8eTqcTy5YtQ+vWrb2SKwoOFfof6HK5sGPHDiQnJyMmJgbPPfccDhw4oM4ZPXDgAH7++WcsWrQIiYmJlRowERERUVUmyzJiY2PRvHlzxMbG3nXCAwCbN2+GwWDA1KlTsWPHDrz44otYtWoVAPfC+w8++ACSJGHixIlYsWIFxo4di5dffrnEeUaPHo2PP/4Y4eHhmDNnDqZMmYJjx46hb9++Zd53w4YNsW/fPthsNiQlJeH69esAgHXr1uGFF17Ajh07MGXKFNjtdmzevBkASlSHK0vPnj2xa9cu1K5dGzNmzMCiRYvw8MMP49ChQ16FD2rXro2tW7fCZDJh8uTJWLt2LebPn48BAwb4/Bze6sEHH8Tu3bsRHR2NGTNm4L333kNaWhoGDRpU4XNS1SWJcqzoOnr0KP7+979j8+bNuH79OoQQ0Ol06NevH5555hksWLAA3377bZmLyqqyS5cuYeXKlRg7dixiYmJw5coVxMTEVMofKvqFEAJOpxNardbnb4HIN4qisN/6Cfut/7Df+k9N6bfF37/vdgoZ3b0TJ06gffv2WL9+PYYPHx7ocIhUPk1vmzt3LjZs2IAzZ86ocz47d+6MZ555BkOHDlVrqy9ZssR/kRIRERFRleGZvlfckiVLIMsyunXrFqCoiErnU9IzY8YMSJKEmJgYjB8/HsOHD0dcXJyfQyMiIiKiqmrBggX497//jV//+tfQarXYuXMndu7cibFjx6JRo0aBDo/Ii8+FDIQQuHLlilrFY8iQIYiMjPRnbERERERURXXu3Bl79+7FnDlzUFBQgPvuuw+zZs3Ca6+9FujQiErwKen5+uuvsW7dOmzevBlffvklDh06hAkTJqBfv34YPnw4BgwYAJ1O5+9YiYiIiKiKSEpKQlJSUqDDIPKJT6tGO3bsiGXLluHSpUvYtm0bBg8eDEmSsHXrVgwZMgT169dHamoq9+QhIiIiIqIqp1ylcrRaLQYMGIDNmzfjypUreOedd9C1a1dkZ2fjnXfeUTetmjp1Kk6cOOGXgImIiIiIiMqjwpuThoeHY/To0Rg9ejQuXryI9evXY/369Th58iQWLlyIhQsXIiEhAcOGDcP06dMrM2a/MZvN0Gq1EEKoP8tR0Zt84Hk++bxWPvZb/2G/9R/2W/+pKf1Wq73rfdaJqAYo1z49vjh27Bj+/ve/Y9OmTbh69SokSaoW+/ZcunQJJ0+eZIlFIiKiambevHncp4eIbqvSvx7p0KEDOnTogL/+9a/YvXs31q9fX9l34TfHjx/HAw88gNq1a+PGjRuoXbs2N8urZEIIuFwuaDSaoN4sLxAURWG/9RP2W/9hv/WfmtJvs7KyAh0CEVUDfhsTlmUZffv2Rd++ff11F5WuoKAATqcTkiSpP4P5jSKQ+NxWPvZb/+NzW/nYb/0v2J9bp9MZ6BCIqBrw6Ws1IQSSkpLQrFkzHD58+I7HHz58GM2aNatWCQ8RERFRdTNy5MiAbRh/4MABSJKEAwcOBOT+yxIXF4eRI0cGOox75sKFC5AkCWvWrAl0KFWaT0nPtm3b8Omnn6JXr1545JFH7nj8I488gj59+mDPnj3YsWPHXQdJNYMQAoqiBP2iWyIiopruk08+waxZswIdBt1DgX7NfUp63n//fWg0GsyYMcPnE0+fPh2yLGPDhg0VDo5qDqfTidzcXGRnZyMnJwc2my3QIREREVV577zzDk6fPh3oMMrtk08+QVpaWqDDCAqNGzeG1WrF73//+0CHcluBfs19WtPzzTffIDExETExMT6fuF69enjooYdw5MiRCgdHNYOiKMjPz4fL5YJWq1Uvy7IMnU4X6PCIiIiqLL5P1lxOpxOKokCv18NoNAY6nCrPp5GeK1euoEmTJuU+eVxcHK5cuVLu21HN4nQ64XQ6odfrIcuyumeHw+EIdGhEREQBlZ+fj1deeQVxcXEwGAyoW7cukpKScOzYMQAl1/R41ncsWrQIb775Jpo2bQqTyYRevXrh4sWLEEJgzpw5iI2NRUhICH7zm9/g5s2bXvcpSVKp05B8WStz8OBBDBkyBPfddx8MBgMaNWqEP/zhD7BareoxI0eOxJtvvqne163FNhRFwZIlS9C6dWsYjUbUq1cPqampyM7O9rovIQTmzp2L2NhYmEwm/PrXv8YPP/zgy9NaqvXr1yMxMREhISGoVasWkpOTcfHiRfX6kydPIiQkBM8++6zX7b788ktoNBpMmTJFbYuLi0P//v2xZ88etGvXDkajEa1atcJHH31U4n5zcnLwyiuvoFGjRjAYDGjWrBlef/11KIqiHlP8dV2yZAni4+NhMBjw3//+t9Q1PSNHjoTZbMbPP/+M/v37w2w2o2HDhurznp6ejscffxyhoaFo3LgxNm7ceNdxrVy5Uo2rY8eOOHr0qFc8t3vN7wWfRnp0Oh3sdnu5T+5wOKDRaMp9O6pZPJ1eCBHUFYaIiKiGsNmAd98Fzp8HmjYFxowBDIYKnWrcuHH44IMP8OKLL6JVq1a4ceMGvvzyS5w8eRIdOnQo83YbNmyA3W7HSy+9hJs3b2LBggUYOnQoHn/8cRw4cABTpkzBuXPnsGzZMkycOBHvvfdeRR+tly1btsBiseD5559H7dq18c0332DZsmX43//+hy1btgAAUlNTcenSJezduxd///vfS5wjNTUVa9asQUpKCiZMmICMjAy88cYbOH78OA4dOqSObs2YMQNz585Fv3790K9fPxw7dgy9evWq0GfWefPmYfr06Rg6dCjGjBmDrKwsLFu2DN26dcPx48cRGRmJli1bYs6cOZg0aRIGDx6MgQMHorCwECNHjsT999+P2bNne53z7NmzePrppzFu3DiMGDECq1evxpAhQ7Br1y4kJSUBACwWC7p3747MzEykpqbivvvuw1dffYVp06bh8uXLWLJkidc5V69ejaKiIowdOxYGgwG1atXySkKKc7lc6Nu3L7p164YFCxZgw4YNePHFFxEaGorXXnsNw4cPx5NPPokVK1bg2WefxSOPPKIOcpQ3ro0bNyI/Px+pqamQJAkLFizAk08+ifPnz0On093xNb8nhA8SEhJEy5YtfTnUS8uWLUVCQkK5bxcImZmZYubMmSIzM1O4XC71J1UuRVGE3W4XiqKobS6XS2RnZ4usrCxx8+ZNcf36dXH9+nXhcDgCGGn1w37rP6X1W6oc7Lf+U1P6bfH37yqhqEiIjh2F0OuF0OncP3/1K3d7BURERIgXXnihzOtHjBghGjdurF7OyMgQAER0dLTIyclR26dNmyYAiLZt23q9v/7ud78Ter1eFBWLD4CYOXNmiftq3LixGDFihHp5//79AoDYv3+/2maxWErcbv78+UKSJPHTTz+pbS+88IIo7WPowYMHBQCxYcMGr/Zdu3Z5tV+7dk3o9XrxxBNPePXxV199VQDwivNOLly4IDQajZg3b55Xe3p6utBqtV7tLpdLPProo6JevXri+vXr4oUXXhBarVYcPXrU67aNGzcWAMSHH36otuXm5or69euL9u3bq21z5swRoaGh4syZM163nzp1qtBoNOLnn38WQvzyuoaHh4tr1655Heu5bvXq1WrbiBEjBADx5z//WW3Lzs4WISEhQpIksWnTJrX91KlTJV7z8sZVu3ZtcfPmTfW4bdu2CQBi+/btaltZr/m94tP0tq5du+L06dP4+uuvfU6mjhw5glOnTqFbt24+34ZqJlmWERYWBr1eDyEENBoNwsPDodX6bRspIiIi/3j3XeC77wC7HXA43D9PnABWrarQ6SIjI/H111/j0qVL5brdkCFDEBERoV7u1KkTAOCZZ57xen/t1KkT7HY7MjMzKxTfrUJCQtTfCwsLcf36dXTu3BlCCBw/fvyOt9+yZQsiIiKQlJSE69evq/8SExNhNpuxf/9+AMC+ffvUkazis0ReeeWVcsf80UcfQVEUDB061Os+Y2Ji0Lx5c/U+AfdnljVr1qCgoAB9+/bF8uXLMW3aNDz00EMlztugQQMMGjRIvRweHo5nn30Wx48fV5d/bNmyBV27dkVUVJTXfffs2RMulwtffPGF1zmfeuopREdH+/zYxowZo/4eGRmJFi1aIDQ0FEOHDlXbW7RogcjISJw/f15tK29cTz/9NKKiotTLXbt2BQCvcwaaT58qn3vuObz33ntISUnBF198gTp16tz2+OvXryMlJQWSJHk92URl8SQ6RERE1dr588CtWy8I4W6vgAULFmDEiBFo1KgREhMT0a9fPzz77LNo2rTpbW933333eV32JECNGjUqtf3W9TIV9fPPP2PGjBn4+OOPS5wzNzf3jrc/e/YscnNzUbdu3VKvv3btGgDgp59+AgA0b97c6/ro6GivD9++OHv2LIQQJc7lcWuxiPj4eMyaNQuTJk1CmzZtMH369FJv16xZsxLT9hMSEgC418LExMTg7Nmz+M9//lNmIuN5vB7lWWNvNBpLnDciIgKxsbEl4oqIiPB6vcob1639zfMaVFa/qgw+JT2dOnXCqFGj8N5776Ft27aYNWsWnn766RIfUvPy8rBp0ybMmjULV69exahRo9RvFoiIiIiCXtOmwK3rUyXJ3V4BQ4cORdeuXbF161bs2bMHCxcuxOuvv46PPvrotpvAl7Wmuqx24cMeeS6X647XJyUl4ebNm5gyZQruv/9+hIaGIjMzEyNHjixz7UlxiqKgbt26ZW55Up5RDl8pigJJkrBz585Snx+z2Vyibc+ePQCAS5cu4caNG+WqcHzrfSclJWHy5MmlXu9JkjyKj6Tdyd30gfLGdTf96l7xef7QihUrUFhYiM2bN2PcuHF4/vnn0bRpU7XzZWVl4fz58xBCQAiB5ORkrFixwm+BExEREVU5Y8YAa9e6p7gJ4U542rUDRo+u8Cnr16+P8ePHY/z48bh27Ro6dOiAefPm3TbpuRtRUVHIycnxarPb7bh8+fJtb5eeno4zZ85g7dq1XhXO9u7dW+LYsgoXxcfHY9++fejSpcttP+A3btwYgHtEovioV1ZWVrlHF+Lj4yGEQJMmTUp8mC/NihUrsHfvXsybNw/z589Hamoqtm3bVuK4c+fOlSjSdObMGQBQK+7Fx8ejoKAAPXv2LFfM/uaPuAJdrMqnNT0AoNVq8f7772Pz5s146KGHoCgKzp07h8OHD+Pw4cM4d+4cFEVBx44d8Y9//AMbN25k5TYiIiKqWQwG4OBBYPFiYMIE988vvqhQ9TaXy1ViSljdunXRoEEDv27iHR8fX2LNxsqVK+840uP53Ff8230hBJYuXVri2NDQUAAokVwNHToULpcLc+bMKXEbp9OpHt+zZ0/odDosW7bM6/5urSrmiyeffBIajQZpaWklRiaEELhx44Z6OSMjA5MmTcJTTz2FV199FYsWLcLHH3+MdevWlTjvpUuXsHXrVvVyXl4e1q1bh3bt2qkjQ0OHDsXhw4exe/fuErfPycmB0+ks9+OpDP6Iq6zX/F4p90rxIUOGYMiQIbhx4wZOnDihdoTatWujbdu2d1zvQ0RERBTUDAZg/Pi7Pk1+fj5iY2MxePBgtG3bFmazGfv27cPRo0fx17/+tRICLd2YMWMwbtw4PPXUU0hKSsJ3332H3bt33/Ez3v3334/4+HhMnDgRmZmZCA8Px4cffljqyEtiYiIAYMKECejduzc0Gg2Sk5PRvXt3pKamYv78+Thx4gR69eoFnU6Hs2fPYsuWLVi6dCkGDx6M6OhoTJw4EfPnz0f//v3Rr18/HD9+HDt37iz3Z9H4+HjMnTsX06ZNw4ULF/Db3/4WYWFhyMjIwNatWzF27FhMnDgRQgiMGjUKISEheOuttwC4y2t/+OGHePnll9GzZ080aNBAPW9CQgJGjx6No0ePol69enjvvfdw9epVrF69Wj1m0qRJ+Pjjj9G/f3+MHDkSiYmJKCwsRHp6Oj744ANcuHAhIJ+t/RFXWa/5vVLh8li1a9dGjx49KjMWIiIiIvo/JpMJ48ePx549e9QKY82aNcPy5cvx/PPP++1+n3vuOWRkZGDVqlXYtWsXunbtir17997xc59Op8P27dsxYcIEzJ8/H0ajEYMGDcKLL76Itm3beh375JNP4qWXXsKmTZuwfv16dWkE4J4+lpiYiLfffhuvvvoqtFot4uLi8Mwzz6BLly7qOebOnQuj0YgVK1Zg//796NSpE/bs2YMnnnii3I956tSpSEhIwOLFi5GWlgbAXfShV69eGDhwIABg2bJlOHDgAD788EOvtUWrVq1CmzZt8Nxzz2HHjh1qe/PmzbFs2TJMmjQJp0+fRpMmTbB582b07t1bPcZkMuHzzz/Hn//8Z2zZsgXr1q1DeHg4EhISkJaW5lWB717yR1y3e83vBUmUY4XRJ598gn/+85+4ePEiDAYDHnzwQaSkpJSrkkRVdenSJaxcuRJjx45FTEwMrly5gpiYGMiyzzMAyQdCCDidTmi12oDP7Qw2iqKw3/oJ+63/sN/6T03pt8Xfv4t/y04USHFxcWjTpg3+9a9/BToU+j8+j/QMHz4cmzZtAvDLXM3t27dj0aJF2LRpk5oFExERERERVSU+JT2rVq3C+++/D61Wi9///vdo37498vPz8a9//QuHDx/Gs88+i59++ilgQ3BERERERLfybAJalpCQEH5+rSF8SnrWrl0LWZaxc+dOr/mc06ZNQ0pKCtatW4ePPvoIKSkpfguUiIiIiKg86tevf9vrR4wYgTVr1tybYCigfEp60tPT8fDDD5e6gO3VV1/F2rVrkZ6eXunBERERERFVVGl7BBXnr3VgFy5c8Mt5qeJ8Snry8vIQHx9f6nWe9ry8vMqLioiIiIjoLlW1TT8pcHwqlSOEKHOjUU+1HUVRKi8qIiIiIiKiSsL6oEREREREFNR8TnrWrl0LjUZT6j9Jksq8Xqut8P6nREREREREd83njKQce5hWyu0o+DkcDlitViiKAq1WC5PJxM0JiYiIiKjS+fQJU1GUu/pHdCuHw4G8vDw4HA4oigKLxYKCggImydWMy+VCQUEBcnNzUVBQwP/vREQ1WFxcHEaOHBnoMILSgQMHIEkSDhw4EOhQqi1+rU4BYbPZIISATqeDVquFwWCAzWaDy+UKdGjkI5fLhby8PBQVFcHpdMJqtSIvL4+JDxFRJfrqq68wa9Ys5OTkBDoUv7l06RJmzZqFEydOBDoUuksbN27EkiVLAh1GqZj0UJUgSVKgQ6BycjgccDqd0Ov10Ol00Ov1ahsREVWOr776CmlpaUGf9KSlpTHpuY1u3brBarWiW7dugQ7ltpj0EN1Cp9NBCAGXywUhBOx2O3Q6Hdf0VCNCCK9k1fM7pygSERFVjqKiIiiKAlmWYTQa+TnpLvCZo4DQ6/Uwm80QQsDhcECr1cJsNvM/czXiqczoSVydTidkWS5zTy8iIiqfWbNmYdKkSQCAJk2aQJIkSJKECxcuAADWr1+PxMREhISEoFatWkhOTsbFixe9zvHYY4+hTZs2+M9//oPu3bvDZDKhWbNm+OCDDwAAn3/+OTp16oSQkBC0aNEC+/btKxGDJEk4deoUhg4divDwcNSuXRsvv/wyioqKbhv/zZs3MXHiRDzwwAMwm80IDw9H37598d1336nHHDhwAB07dgQApKSkqI9xzZo16jFff/01+vTpg4iICJhMJnTv3h2HDh0q9/OpKAqWLFmC1q1bw2g0ol69ekhNTUV2drZ6zGeffQZZljFjxgyv227cuBGSJOGtt95S2yRJwosvvogNGzagRYsWMBqNSExMxBdffFHivjMzMzFq1CjUq1cPBoMBrVu3xnvvved1jGfdzqZNm/CnP/0JDRs2hMlkQl5eXqlreu72tS1vXP/4xz8wb948xMbGwmg0okePHjh37pxXPDt27MBPP/2kvo5xcXF3fmHuEdaTpoCQJAkhISEwGAwQQkCWZU5xq2Z0Oh3MZjMsFgvsdjs0Gg3CwsJYpp6IqJI8+eSTOHPmDN5//30sXrwYderUAQBER0dj3rx5mD59OoYOHYoxY8YgKysLy5YtQ7du3XD8+HFERkaq58nOzkb//v2RnJyMIUOG4K233kJycjI2bNiAV155BePGjcOwYcOwcOFCDB48GBcvXkRYWJhXLEOHDkVcXBzmz5+PI0eO4G9/+xuys7Oxbt26MuM/f/48/vnPf2LIkCFo0qQJrl69irfffhvdu3fHf//7XzRo0AAtW7bE7NmzMWPGDIwdOxZdu3YFAHTu3BmAOwnp27cvEhMTMXPmTMiyjNWrV+Pxxx/HwYMH8atf/crn5zM1NRVr1qxBSkoKJkyYgIyMDLzxxhs4fvw4Dh06BJ1Oh8cffxzjx4/H/Pnz8dvf/hYdOnTA5cuX8dJLL6Fnz54YN26c1zk///xzbN68GRMmTIDBYMDy5cvRp08ffPPNN2jTpg0A4OrVq3j44YfVJCk6Oho7d+7E6NGjkZeXh1deecXrnHPmzIFer8fEiRNhs9mg1+vLfEx389qWN66//OUvkGUZEydORG5uLhYsWIDhw4fj66+/BgC89tpryM3Nxf/+9z8sXrwYAGA2m31+ffxOkBBCiMzMTDFz5kyRmZkpXC6X+pMql6Iowm63C0VRAh1K0AlUv3W5XMLhcAT1/xf2W//h31v/qSn9tvj7d1VRVCTEG28I8cc/un8WFVX8XAsXLhQAREZGhtp24cIFodFoxLx587yOTU9PF1qt1qu9e/fuAoDYuHGj2nbq1CkBQMiyLI4cOaK27969WwAQq1evVttmzpwpAIiBAwd63df48eMFAPHdd9+pbY0bNxYjRoxQLxcVFZX4v52RkSEMBoOYPXu22nb06NES9yuEuw83b95c9O7d26sfWywW0aRJE5GUlFTKM1a6gwcPCgBiw4YNXu27du0q0V5YWCiaNWsmWrduLYqKisQTTzwhwsPDxU8//eR1WwACgPj222/Vtp9++kkYjUYxaNAgtW306NGifv364vr16163T05OFhEREcJisQghhNi/f78AIJo2baq2eXiu279/v9p2t69teeNq2bKlsNls6nFLly4VAER6erra9sQTT4jGjRuLqohziYjorsiyDK1Wy6mJREQAbDaga1fgj38Eli1z/+zWzd1eWT766CMoioKhQ4fi+vXr6r+YmBg0b94c3lKjdgAAIABJREFU+/fv9zrebDYjOTlZvdyiRQtERkaiZcuW6NSpk9ru+f38+fMl7vOFF17wuvzSSy8BAD755JMy4zQYDOp7g8vlwo0bN2A2m9GiRQscO3bsjo/zxIkTOHv2LIYNG4YbN26oj7OwsBA9evTAF1984XPF0C1btiAiIgJJSUlez1liYiLMZrPXc2YymbBmzRqcPHkS3bp1w44dO7B48WLcd999Jc77yCOPIDExUb1833334Te/+Q12796tTv/+8MMPMWDAAAghvO67d+/eyM3NLfFcjBgxAiEhIT49roq+thWJKyUlxWvUyTMqV1p/qYo4D4WIiIiokrz7LvDdd4Dd/kvbiRPAqlXA+PGVcx9nz56FEALNmzcv9XqdTud1OTY2tsQU8oiICDRq1KhEGwCvNS4et95XfHw8ZFlW1xeVRlEULF26FMuXL0dGRobXthS1a9cu83YeZ8+eBeBOAsqSm5uLqKgon86Vm5uLunXrlnr9tWvXvC536dIFzz//PN5880307t0bo0aNKvV2pb0GCQkJsFgsyMrKgizLyMnJwcqVK7Fy5Uqf7rtJkyZ3fDweFX1ts7Kyyh3XrUmf53kvrb9URUx6iIiIiCrJ+fPArUUshXC3VxZFUSBJEnbu3Flq8Zhb11GUVWCmrHbhQxVOX9bh/vnPf8b06dMxatQozJkzB7Vq1YIsy3jllVd8GqHxHLNw4UK0a9eu1GN8XTOiKArq1q2LDRs2lHp9dHS012WbzaYWDfjxxx9hsVhgMpl8uq9b7xcAnnnmmTKTtwcffNDrsq+jPEDFX9uKxHU3/aUqYNJDREREVEmaNgVuzQckyd1eEaUlF/Hx8RBCoEmTJkhISKjYicvp7NmzXiMQ586dg6Iot63O9cEHH+DXv/41Vq1a5dWek5OjFmUAyk6g4uPjAQDh4eHo2bPnXUTvPte+ffvQpUsXn5KKmTNn4uTJk1i0aBGmTJmCqVOn4m9/+1uJ4zyjUcWdOXMGJpNJTaTCwsLgcrnu+jFUpujoaL/EVZWLUnESPhEREVElGTMGaNsW0OsBnc79s107YPToip0vNDQUALw2J33yySeh0WiQlpZW4lt2IQRu3LhR4fjL8uabb3pdXrZsGQCgb9++Zd5Go9GUiG/Lli3IzMz0aivtMQJAYmIi4uPjsWjRIhQUFJQ4f1ZWls/xDx06FC6XC3PmzClxndPp9Lrvr7/+GosWLcIrr7yC//f//h8mTZqEN954A59//nmJ2x4+fNhr7cvFixexbds29OrVCxqNBhqNBk899RQ+/PBDfP/993f1GCqTv+IKDQ1Fbm7u3YbnFxzpISIiIqokBgNw8KB7Dc/58+4RntGj3e0V4Vkk/9prryE5ORk6nQ4DBgzA3LlzMW3aNFy4cAG//e1vERYWhoyMDGzduhVjx47FxIkTK/FRARkZGRg4cCD69OmDw4cPY/369Rg2bBjatm1b5m369++P2bNnIyUlBZ07d0Z6ejo2bNiAprcMe8XHxyMyMhIrVqxAWFgYQkND0alTJzRp0gTvvvsu+vbti9atWyMlJQUNGzZEZmYm9u/fj/DwcGzfvt2n+Lt3747U1FTMnz8fJ06cQK9evaDT6XD27Fls2bIFS5cuxeDBg1FUVIQRI0agefPmmDdvHgAgLS0N27dvR0pKCtLT09UkDQDatGmD3r17e5Ws9tzG4y9/+Qv279+PTp064bnnnkOrVq1w8+ZNHDt2DPv27cPNmzd9fh0qkz/iSkxMxObNm/HHP/4RHTt2hNlsxoABA/wQffkx6SEiIiKqRAZD5RUt6NixI+bMmYMVK1Zg165dUBQFGRkZmDp1KhISErB48WL1A3ajRo3Qq1cvDBw4sHLuvJjNmzdjxowZmDp1KrRaLV588UUsXLjwtrd59dVXUVhYiI0bN2Lz5s3o0KEDduzYgalTp3odp9PpsHbtWkybNg3jxo2D0+nE6tWr0aRJEzz22GM4fPgw5syZgzfeeAMFBQWIiYlBp06dkJqaWq7HsGLFCiQmJuLtt9/Gq6++Cq1Wi7i4ODzzzDPo0qWLGvO5c+fw1VdfwWg0AnBvqL527Vo8/PDDmDRpkprYAO5k6pFHHkFaWhp+/vlntGrVCmvWrPFaD1OvXj188803mD17Nj766CMsX74ctWvXRuvWrfH666+X6zFUJn/ENX78eJw4cQKrV6/G4sWL0bhx4yqT9Eiiuqw+8rNLly5h5cqVGDt2LGJiYnDlyhXExMSwDG8lE0LA6XRCq9VW6Xmf1ZGiKOy3fsJ+6z/st/5TU/pt8ffvBg0aBDqcoDNr1iykpaUhKyvLax0OudevvPDCC3jjjTcCHQr5gO8wREREREQU1Di9jYiIiIiqJZfLdcdF92az2efS1hS8mPQQERERUbV08eLFO27mOXPmTMyaNeveBERVFpMeIiIiIirVrFmzqnTCEBMTg7179972mFurxVUWLouvXpj0EBEREVG1ZDQaq9Smn1R1sZABEREREREFNSY9REREREQU1Jj0EBERERFRUGPSQ0REREREQY1JDwWUEAIulwuKogQ6FCIiIiIKUkFXvc3hcGDDhg04cOAACgoKEBcXh+HDh6N9+/aBDo1u4XK5UFhYCIfDAQAwGAwIDQ2FJEkBjoyIiIiIgknQjfQsWbIE27ZtQ/fu3TFmzBjIsozZs2fjv//9b6BDo2KEECgsLITNZoNGo4FGo4HFYoHVag10aEREREQUZIIq6Tlz5gwOHjyIZ599FikpKejTpw/mzp2L6OhorFmzJtDhUTGKosBut0On00GWZciyDK1WC7vdHujQiKiGcDqdKCoqQlFREZxOZ6DDISIiPwqqpOfQoUOQZRm9e/dW2/R6PZKSknDq1ClkZWUFMDoqTpKkEtPYhBCc2kZE94Tdbkdubi7y8/ORn5+PvLw8daotEREFn6BKes6fP4+GDRvCZDJ5tSckJAAAMjIyAhEWlUKWZRgMBtjtdjidTjgcDgghYDQaAx0aEQU5IQQsFgsA91pCg8GgTrkF3CNAnr9NREQUHIKqkEF2djaioqJKtHvabt68ea9DotsIDQ2FLMuw2+2QJAlGoxFarRY2mw0AoNVqodFoAhwlEQUbIQQURfH6+yLLMhRFQWFhIaxWqzrybDKZSnyRRkRE1U9QJT2eNSK30uv1AKB+mKaq4dYPFE6nE3l5eeq3qxqNBmFhYaW+pkREFeVZR+h0OtX3B5fLBUmSYLVa1eIqniRIq9WqxxERUfUUVEmPXq8vdU62Z3G8wWDwar98+TIuX74MAMjKylKnNnj2jOHeMZXP8w2roigl1u8UFBR4fQix2+3Iz89HZGRkIEKtdthv/ed2/ZbuTqD6rclkQn5+PoqKigC4v2QxGAywWCzQ6XTqSI8QAk6nE1pt9Xu7ZL8lIvpF9fsrfhtRUVGlTmHLzs4GANSqVcur/e2330ZaWpp6OTk5GQBw7do1r5/kf5759J5vYAGob9ZWq5Vv2OXAfkvVUSD6redvDOAe/fFMbdNqtV4JT1FRUbVMeoiI6BdB9Ve8adOmSE9Ph8Vi8ZqDffr0aQBAkyZNvI5PTU3FwIEDAbhHevbt2wcAqFu3Lq5du4a6deuqH8CpchT/1vTWRCY3Nxcul0udzuZwOCDLMkd6fKQoCvutn9yu39LdqUr9VgiB/Px82Gw2dY2PwWCA2WwOeGwVUVP67ZUrVwIdAhFVA0GV9HTu3Blbt27F7t27MWjQIADuD86ffvopEhISEB0d7XV8/fr1Ub9+fQDApUuXcPjwYQBQ39yKjzpQ5RBCqM/rrW/CZrMZ+fn56nREWZYRFhbG16Cc2G8r3+36LVWOqtJvw8PD1cptnrU8VSGuimC/JSL6RVAlPS1atECXLl2wbt065OTkoH79+vjss89w7do1vPTSS4EOj+5Ap9MhIiJCXZel1Wo5pYSI7ilZllk6n4goCAXdJ8o//OEP2LBhAw4cOICCggLExcVh+vTpaNOmTaBDIx94qiYREREREVWWoEt69Ho9UlJSkJKSEuhQiIiIiIioCgi6pIeoIhwOh7pPh06nq7Zz+Ikqk6Io6rqQ6romxFN6moiIajYmPVTjFRUVIT8/X72s0+kQFhZWYpqdEAIA+AGKgp4QAkVFRbBarVAUBVqtFmazuVqtsXM6nSgsLITL5YIsyzCZTNxglIioBuPX2VSjFd9x3WAwqBvcWq1Wr2Py8/ORnZ2N7OxsWCwWNQEiCkZ2ux0FBQXqyKfT6URBQUG12fjW83/W4XBAkiS4XC7k5+fD6XQGOjQiIgoQJj1Uo3k2J/SM6kiSpO7PAfyyaapng1RJklBYWKju4k4UjDzJgkajgSRJ6pcBLpcr0KH5xOl0wul0Qq/XQ6PRQKfTQQihlsMnIqKap/rMVSDyA1mWodFo1D05hBBeSZDng1LxvTo8Gxg6nU5IkgSDwaBuqEoUjDzrYji1k4iIqismPVSjybKM0NBQdVNUIQR0Oh1CQkLKvE1RURHsdjs0Gg2EELDZbAgPD2fiQ0HDYDDAZrPBbrdDlmU4nU4YjcZqU07es8eX5/+poijqiBUREdVMTHqoxjMYDNBoNOrUneLV22RZhsFggNVqhVarhaIoKCoqgslkUpMcu90Oq9XKpIeChk6nQ3h4uFrIwGQywWQyVZuRHlmWERYWphYy0Gg0MJlM1aoQAxERVS6+AxDhl2+GS2MymQC41zkIIWAwGLx2bC++BogoWOh0umqdyGu1WkRERLBkNRERAWDSQ3RHsizDbDarFdtyc3PVRdJCCLhcLhgMhgBHSUSlYcJDREQAq7cR+cyzkNuzX4ndbofdbofRaLztGiAioprO8wURR8WJKFA40kNUTlqtFuHh4eqbt6esLxERleRyuVBQUKCWQjcajdVqjRgRBQcmPUQVIMuyWuyAiIhKV7zEv2e/JIvFAlmWOUJORPcUP7URERGRXyiKoiY8ns2fZVmGw+EIdGhEVMMw6SEiIiK/8hSCufV3IqJ7hdPbiIiIyC9kWYbRaITValU3dAbgVfafiOheYNJDREREfiFJEkJDQyHLMux2u5oE6fX6QIdGRDUMkx4iIiLyG0mSYDKZ1I2eiYgCgWt6iIiIiIgoqHGkh4iqnsJCID0dyM4GIiKABx8EzOZAR0VERETVFJMeIqpaioqAvXuB//3Pnej8+CNw5QrQty/AfT2IiIioApj0EFHVkpnp/te0KSDLgBDuxOfiRSAhIdDRERERUTXENT1EVLU4HIAkuRMe4JffuZkhERERVRCTHiKqWqKiAI0GyMlxX87NdSc9UVGBjYuoGlIUBS6XixuCElGNx+ltQc7lcsHpdAIAtFotNBpNgCMiuoN69YDHHgO++gq4eRMwGoHu3YEGDQIdGVG1IYSA1WpFQUEBJEmCTqeD2WyGVsu3fSKqmfjXL4g5HA7k5+fD5XIBcCc9YWFhfNOjqq9FCyA2FrBY3MULWLmNqFzsdrua8Oj1evX9ICIiArLMSR5EVPPw02+QEkKgsLAQQggYDAYA7jdBi8WC8PDwAEdH5IPQUPc/Iio3h8MBWZYhy7Ka+NhsNrhcLiY9RFQj8S9fkBJCwOVyeU1n02g0cDqdnNtNRBTkZFn2+lsvhIAkSZAkKYBREREFDpOeICVJEjQajTq1DYCaBPFNj4gouOn1ekiSBLvdDqfTCZvNBr1ez3WdRFRjMekJUpIkIfT/pgbZbDbYbDbIsqy2ERFR8NJqtQgPD4der4csyzCZTDCbzfzSi4hqLK7pCWI6nQ4RERFq9TadTsdv+YiIagidTqcWr2GyQ0Q1HZOeakJRFHU9jkajUSuwKYoCIYQ6f9tut0NRFGi1Wuh0Omi1WlZrIyIiIqIajZ+GqwFFUZCfnw+73Q7APXXNbDZDURRYrVavpMflcqnf6IWGhsJkMgUydCIiIiKigGPSU8UJIZCbm4vc3FxotVp1IWp2djZkWVbna+fn58PpdCIqKgqSJEFRFFgsFuj1eo70EBEREVGNxkIGVZzNZkNeXh4cDgesVitycnJgtVrhcDjUCm2SJEGr1cLlcqnV2jwjPyxPTUREREQ1HZOeKq6oqAiKosDhcKhtOTk5XqWoAZTYbM7pdKob0xERERER1WSc91SFOJ1OdU2ORqPxGq3R6XRQFAUA1MsajQZ2u11NbEJDQ9VzeMpTs1obEREREdV0THqqCKvVisLCQjidThQVFUGj0SA0NFQtSqDX6wG4E6OQkBCYTCaEhYXBarVCURSEhobCaDR6VXPjWh4iIiIiIiY9VYLL5YLFYoEkSXA6nZAkCS6XCzabDVqtFkajEUVFRdBqtTCZTGoBA51OB51O53UujuwQEREREXlj0lMFeEZnPMmOXq+Hw+FQp61FRETAZDKpU9kMBgNLURMRVXPF91/TarX80oqIyI+Y9NwDhYWFsFqtCAkJQUhISIniAp4pbMXX7HimqAHu0RuTyaReL8syd9cmIqrGXC4X8vPz1SI1Go0GYWFhJUbviYiocjDp8SOn04kTJ04gLy9PbWvQoAGaN2/u9Y2eZ9pafn4+hBCwWq0wGAyQJEldm+MpbkBERNWfxWKB0+mEXq+HJElwOBwoKChAZGQkv9QiIvIDJj1+lJ6e7pXwAMClS5dgNpsRGxvr1R4SEgKtVovQ0FAUFRUBgHqZBQmIiKoGh8MBm80GwF1gxlNkprw82wp4EhytVgun0wlFUfgFFxGRH/DTtJ84HA414fG8gXnW7mRnZ6Nhw4Ze3+ZJkqS+gZrNZnWNDxERVQ12u93riyyr1Qqz2YyQkJByn8uz5YCHZ7sC7q1GROQfTHr8qPhaHc+eO4Bva3KY8BARVS2eKpuedTdOpxNWqxVGo7Hcf7NNJpNapRNw/80PCwsrcR4hBOx2u/o+4pkOR0RE5cOkx0+0Wi3Cw8Nx8+ZNCCHgcrnU6+rXrx/AyIiIqCKKF5gB3F9guVyuCo3Me94jHA6HWr3t1iIGQggUFBSoU54BwGg0wmw2M/EhIionjqP7iSRJaNWqFcLDw73aWrRogVq1agUwMiLyoihAYSHwf9+4E5VFp9OpJaaFEHA6nWqhmYrQaDQwGo0ICQkptWqbw+FAUVER9Ho9DAYDdDod8vLykJubi6KiIrWiJxER3RlHevxIr9ejQ4cO6rxto9EY4IiIyEtuLnDwIHDlCqDRAA8+CLRvD3BdBZXCs3WA3W6HEAI6nc6voy6eKdGSJKmVPYuKiiDLMhwOBwwGA8xmc6nrgBRFgcVi8drYuqJFF4iIggGTHj+TZZnJDlFV5HIBn38O/O9/QIMGgMMBHD4MGI1A69aBjo6qIFmWERYWpk5p02g0fi084Dm3oihwuVxqAmMwGKDRaGCz2WA0GkskM0IIdX84zwaoRUVFiIyM5PsREdVY/DqTiGqm3Fx3wtO4sTvRCQsDzGbgwoVAR0ZVmCRJ6vobf1da82xb4HQ6YbPZoCgKjEaj15S60qa4KYoCm80GjUaDoqIi2O12FBYW4ubNm17rS4FfCiXYbDY4nU6/Ph4iokDiSA8R1UwajXsam8vl/h1w/859saiKkCQJJpMJOp1OTWIMBgMAd2JT1qbVQgg18QFQotqc2WxWz1FQUOBVQc5sNnM0iIiCEt/diahmCgsDmjcHfvgBqFMHsNvdU9xatAh0ZERedDqdOrJksVjUanGehOhWGo0GWq0W+fn50Ol06miQXq/3Gs0pKiqCzWZTy2C7XC4UFhZCp9Nxg1QiCjpMeoioZpJloGtXwGQCLl4EQkOBBx4A4uICHRlRqTzFCDx79mjLGJX07PlTUFAAp9MJSZLUvYSKJzMul8tr3ziNRgOn0wlFUZj0EFHQYdJDRDWXXg888oj7H1E1UFaicyudToc6deogNzdXTWy0Wi1CQkLUYzQaDRRFUUeOPElQedcqeSrL2e12NcHyTMMjIqoqmPQUYzabodVq1Y3iPHsxUOXxPJ98Xisf+63/sN/6D/ut/3jW5ng2VfVMW/M8zwaDATabDTabTR3tCQ0NhSzL5XotCgoKYLVa1dcxLy8PYWFh9yzx8TURJKKajX8pimnfvj2ioqKgKIr6k5u/+cetFYSocrDf+hf7rX+w3/pP8TU/ng1VizOZTHA4HGoJbs8GrL7y7AfkmQ4nSRIURUFhYeE9myIXFRV1T+6HiKo3Jj3FHD9+HA888ABq166NGzduoHbt2n4vSVrTCCHgcrmg0Wj8tqFfTaUoCvutn7Df+g/7rf/42m/vZtNSz/m1Wq3X63e7NUeVLSsr657cDxFVb0x6iim+6NPzkx9w/IPPbeVjv/U/PreVj/3W//z53Go0Guj1ethsNq/S2Gaz+Z69ntxfiIh8waSHiIiIKkSSJISGhgIAHA4HAPeUueIFE4iIqgImPURERFRhGo0GYWFh6oapnKZIRFURkx4iIiK6K7fuAUREVNXw6xgiIiIiIgpqTHqIiIiIiCioMekhIiIiIqKgxqSHiIiIiIiCGpMeIiIiIiIKakx6iIiIiIgoqDHpISIiIiKioMakh4iIiIiIghqTHiIiIiIiCmpMeoiIiIiIKKgx6SEiIiIioqDGpIeIiIiIiIIakx4iIiIiIgpqTHqIiIiIiCioMekhIiIiIqKgxqSHiIiIiIiCGpMeIiIiIiIKakx6iIiIiIgoqDHpISIiIiKioMakh4iIiIiIghqTHiIiIiIiCmpMeoiIiIiIKKgx6SEiIiIioqDGpIeIiIiIiIIakx4iIiIiIgpqTHqIiIiIiCioMekhIiIiIqKgxqSHiIiIiIiCGpMeontJUQIdAREREVGNow10AEQ1QmYm8PXXQEEBUKcO8PDDQK1agY6KiIiIqEbgSA+Rv2VlAbt3Azk5QEgIcPEisHcvYLUGOjIiIiKiGoFJD5G/Xb7sTnAaNADCwoDGjYHr14GrVwMdGREREVGNwKSH6F6QpJJtQtz7OIiIiIhqIK7pIfK3evUAnQ64cgUID3eP8kRFAXXrBjoyIiIiohqBIz1E/lavHpCUBBiNQG6uO9lJSgJCQ0s/3uUCzpwBjhwBvv+ea3+IiIiI7hJHeojuhbg491oehwPQ68s+TlGAgweB9HT36JDDAZw9C/Tp4y6CQERERETlxqSH6F6RpNsnPIC7uMHJk+4ESa93r/s5dw748UegTZt7EycRERFRkOH0NqKqxGZzj/Z4kiNJco/4FBYGNi4iIiKiaoxJD1FVEh7uTnhyc92XbTb3FDduZEpERERUYZzeRlQVXLzoLl7gcLgLH1y+7K7yJknAgw8CTZsGOkIiIiKiaotJD1Gg/fwzsGsXIMuAVuueytaiBdCsmbviW9267uuIiIiIqEKY9BAFWnq6O9lp0MB9ubAQ+OknoEsXVmwjIiIiqgT8+pgo0Gw276puOp17rx6HI3AxEREREQURJj1EgRYbC2RnA3a7u3JbZqZ7SltZm5cSERERUblwehtRoLVrBxQUuAsZKAoQEwN07w5oNIGOjIiIiCgoMOkhCjS9HnjsMaB9e3fSEx7unuJGRERERJUiqJKeTz/9FEuXLi31urVr1yIqKuoeR0TkI1kG2D+JiIiI/CKokh6PYcOGoV69el5toVwfQURERERUIwVl0pOYmIjmzZsHOgwiIiIiIqoCgrZ6m8VigcvlCnQYREREREQUYEE50vOnP/0JVqsVWq0WHTp0wKhRo9DAs/EjERERERHVKEGV9BgMBvTo0QMPPPAATCYTzp07h23btmHy5MlYvHgxoqOjAx0iERERERHdY1U26VEUBU6n06djdTodJEnCo48+ikcffVRtf/jhh9GhQwdMmzYNW7Zswfjx4/0VLhERERERVVFVNun54Ycf8Nprr/l07PLlyxEbG1vqda1atUJCQgJOnDhR4rrLly/j8uXLAICsrCwUFhYCcCdcxX9S5RFCQFEUKIoCSZICHU5QYb/1H/Zb/2G/9R/2WyKiX1TZpCc2NhYvv/yyT8feaf+dOnXqIDMzs0T722+/jbS0NPVycnIyAODatWteP4mqE/Zbqo7Yb4mIyJ+qbNITFRWFHj16VMq5rl69ioiIiBLtqampGDhwIAD3SM++ffsAAHXr1sW1a9dQt25dyHLQFrgLCCEEnE4ntFotv3msZIqisN/6Cfut/7Df+k9N6bdXrlwJdAhEVA1U2aSnInJzc0skN99++y3OnTuHAQMGlDi+fv36qF+/PgDg0qVLOHz4MACob7yyLPNNuJIJIdTnNZjfhAOJ/bbysd/6H/tt5WO/JSL6RVAlPZMnT0bTpk3RrFkzhIaG4scff8S+fftQp04dDB48ONDhERERERFRAARV0tO1a1ccPXoUJ06cgM1mQ1RUFHr16oXk5OQ7rvvxuH79uvo7h8wrn1arRVRUFLKysnyuzkflw35b+dhv/Y/9tvLVlH5b/H2biKgskhBCBDqIqiAnJwdvvvkmHA4H8vPz8e9//xuJiYkICwsLdGhEPmG/peqI/ZYqg06nwwsvvIDIyMhAh0JEVRSTnmJycnJgsViQnp6OPn36YNeuXXjggQcCHRaRT9hvqTpiv6XKYDKZmPAQ0W0F1fS2uxUZGYnIyEh1mkV0dDQaNGgQ4KiIfMN+S9UR+y0REd0LLJVDRERERERBTTNr1qxZgQ6iKjKbzXjsscc4x5yqFfZbqo7Yb4mIyN+4poeIiIiIiIIap7cREREREVFQY9JDRERERERBjdXbfPDpp59i6dKlpV63du1anzc+JfIHh8OBDRs24MCBAygoKEBcXByGDx+O9u3bBzo0olKlp6fjtddeK/W6BQsW4P7777/HERERUbBj0lMOw4YNQ7169bzaQkNDAxQNkduSJUvw1VdfYeDAgahfvz4+++wzzJ49G/PmzUOrVq0CHR5RmQYMGIBmzZp5tbFsNRER+QOTnnJITExE8+bNAx0GkerMmTM4ePAgUlJSMGjQIADA448/jhfKhZ4BAAAJT0lEQVRffBFr1qzBggULAhwhUdlatWqFLl26BDoMIiKqAbimp5wsFgtcLlegwyACABw6dAiyLKN3795qm16vR1JSEk6dOoWsrKwARkd0Z/ybSkRE9wJHesrhT3/6E6xWK7RaLTp06IBRo0ZxKgYF1Pnz59GwYUOYTCav9oSEBABARkYGoqOjAxEa0R397W9/g9VqhSzLaN26NUaOHMnRdCIi8gsmPT4wGAzo0aMHHnjgAZhMJpw7dw7btm3D5MmTsXjxYn6opIDJzs4utZCGp+3mzZv3OiSiO9JqtejcuTMSExMRHh6OixcvYuvWrZg2bRpef/11xMfHBzpEIiIKMjUu6VEUBU6n06djdTodJEnCo48+ikcffVRtf/jhh9GhQwdMmzYNW7Zswfjx4/0VLtFt2e126HS6Eu16vR4AYLPZ7nVIRHfUsmVLtGzZUr3cqVMndO7cGRMmTMC6deuQlpYWwOiIiCgY1bik54cffiizVOqtli9fjtjY2FKva9WqFRISEnDixInKDI+oXPR6PRwOR4l2u90OwD1KSVQdNGjQAJ06dcLhw4fhcrmg0WgCHRIREQWRGpf0xMbG4uWXX/bp2Dvtv1OnTh1kZmZWRlhEFRIVFVXqFLbs7GwAQK1ate51SEQVVqdOHTidTthsthLr1IiIiO5GjUt6oqKi0KNHj0o519WrVxEREVEp5yKqiKZNmyI9PR0Wi8XrQ+Lp06cBAE2aNAlUaETldvXqVej1ehiNxkCHQkREQYYlq32Qm5tbou3bb7/FuXPn0KFDhwBEROTWuXNnKIqC3bt3q20OhwOffvopEhISWGSDqqTS/qZmZGTgm2++Qbt27SDLfGsiIqLKVeNGeipi8uTJaNq0KZo1a4bQ0FD8+OOP2LdvH+rUqYPBgwcHOjyqwVq0aIEuXbpg3bp1yMnJQf369fHZZ5/h2rVreOmllwIdHlGpFixYAIPBgPvvvx8RERG4ePEidu/eDYPBgBEjRgQ6PCIiCkKSEEIEOoiqbv369Th69CiuXbsGm82GqKgoPPTQQ0hOTr7juh8if7Pb7diwYQMOHDiAgoICxMXFYfjw4RyFpCpr+/bt+Pzzz3H58mVYLBZERETgwQcfRHJyMvc+IyIiv2DSQ0REREREQY0Tp4mIiIiIKKgx6SEiIiIioqDGpIeIiIiIiIIakx4iIiIiIgpqTHqIiIiIiCioMekhIiIiIqKgxqSHiIiIiIiCGpMeIiIiIiIKakx6iIiIiIgoqDHpISK/kCTJ658sy4iMjETXrl3x7rvvQghR5m2PHDmCMWPGICEhAWFhYTAajYiLi8PQoUOxdetWKIpS5m2/+eYb9T5nz55d4fg///xzpKWl4YknnkB0dDQkSUJcXFyFz0dERESBI4nbffIgIqogSZIAACNGjAAAuFwu/Pjjjzhy5AiEEEhOTsb777/vdRuHw4Hnn38eq1atAgC0aNECLVu2hF6vR0ZGBv79739DURQ8/vjj+PTTT0u935deeglvvPEGACAhIQGnT5+uUPzt2rXDd99959XWuHFjXLhwoULnIyIiosBh0kNEfuFJem79E7N3717069cPTqcT27dvR//+/dXrfve732HTpk1ISEjA6tWr0blzZ6/bXrp0CbNnz8aePXtw/vz5EvfpcDjQoEEDXL9+HTExMbhy5QqOHDmCTp06lTv+yZMnIyIiAh07dkRsbCxat279/9u7m5CoujiO41/FSQgKTUyqhZQhIhSkEKHUziChTS9mMC2UVtLSXZvWIS3FhYqkMoYttFpMrUJIGcxoNwuDooLGnAJzI+kwzyJmIvIFJ7OZ+3w/cGE4nPs/5y5/nDPnGHokSSpQbm+TtKtaWlq4ceMGABMTE9n28fFxxsbGqKqqYmpq6rfAA3D48GH6+voYHh5et3Y0GiWZTNLc3ExXVxfAhn23cvfuXW7fvs358+c5cOBATjUkSVJ+MPRI2nWnTp0C4MOHD9m2np4eAO7cuUNVVdWm7zc3N6/bPjIyAkA4HCYcDgPw4MEDVldX/3jOkiSpcBl6JO265eVlAEpLSwFIJpPZAwja29tzqrm0tMSjR4/Ys2cPbW1tHD16lKamJpLJJNFodMfmLkmSCo+hR9KuSqfTPHnyBICTJ08C8Pr1awCOHTtGWVlZTnUfPnzIysoKFy5cyG5Hy6z25LrFTZIkBYOhR9KuSKVSzM/P09nZyczMDKWlpXR0dADw5csXACorK3Ounwk2maAD0NbWRigU4vHjxywtLf3B7CVJUiEz9Ej6qzJ35pSUlFBbW8vQ0BD79u0jEolQU1OzI2O8f/+eqakpysrKuHjxYra9oqKC1tZWVlZWGB8f35GxJElS4Sn51xOQFGyZe3qKi4vZv38/J06c4NKlS5SXl2f7VFRUALC4uJjTGKOjo6TTaa5cuZL9n1BGOBxmcnKSkZERbt68meNXSJKkQuY9PZL+io3u6VnP4uIiBw8epKioiK9fv277fz319fXE43GOHz/+28lv379/Z3Z2lqKiIt6+fUt1dfW2agMkEgkOHTrkPT2SJBUot7dJ+ucqKys5ffo06XSasbGxbb07NzdHPB4H4M2bN7x48eKXZ3Z2FvgRvkZHR3d87pIkKf8ZeiTlhe7ubuDHPT2fP3/etO/09HT2d+Zunu7ubtLp9LrP8+fPf+krSZL+Xww9kvLC1atXaW9vZ2FhgXPnzjEzM/Nbn0Qiwa1bt7IntKVSKSKRCADXr1/fsPbZs2c5cuQI8Xicubm5v/MBkiQpb3mQgaS8cf/+ffbu3cvg4CBNTU3U1dVRX19PKBTi3bt3vHz5klQqRUtLCwDPnj1jYWGB2tpaGhoaNqxbXFzMtWvXuHfvHsPDwzQ2Nm45l/7+fvr7+wFYXV0F4NOnT5w5cybbp7e3d9NxJUlSfnClR1LeCIVCDAwMMD09TWdnJ2tra0SjUSYmJkgkEly+fJnJyUmePn0K/LybZ7NVnoxMn0gkwtra2pb9P378SCwWIxaL8erVK+DHoQiZtlgsxrdv33L9VEmStIs8vU2SJElSoLnSI0mSJCnQDD2SJEmSAs3QI0mSJCnQDD2SJEmSAs3QI0mSJCnQDD2SJEmSAs3QI0mSJCnQDD2SJEmSAs3QI0mSJCnQDD2SJEmSAs3QI0mSJCnQDD2SJEmSAs3QI0mSJCnQ/gPPRX0yJ32sxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Plot\n", + "fig = ggplot(combined_PCAencoded_df, aes(x='1', y='2'))\n", + "fig += geom_point(aes(color='experiment_id'), alpha=0.2)\n", + "fig += labs(x ='PCA 1',\n", + " y = 'PCA 2',\n", + " title = 'PCA original data with experiments (latent space)')\n", + "fig += theme_bw()\n", + "fig += theme(\n", + " legend_title_align = \"center\",\n", + " plot_background=element_rect(fill='white'),\n", + " legend_key=element_rect(fill='white', colour='white'), \n", + " legend_title=element_text(family='sans-serif', size=15),\n", + " legend_text=element_text(family='sans-serif', size=12),\n", + " plot_title=element_text(family='sans-serif', size=15),\n", + " axis_text=element_text(family='sans-serif', size=12),\n", + " axis_title=element_text(family='sans-serif', size=15)\n", + " )\n", + "fig += guides(colour=guide_legend(override_aes={'alpha': 1}))\n", + "fig += scale_color_manual(['#bdbdbd', 'red', 'blue'])\n", + "fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'template_experiment'],\n", + " alpha=0.2, \n", + " color='blue')\n", + "fig += geom_point(data=combined_PCAencoded_df[combined_PCAencoded_df['experiment_id'] == 'simulated_experiment'],\n", + " alpha=0.1, \n", + " color='red')\n", + "\n", + "print(fig)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:simulate_expression_compendia] *", + "language": "python", + "name": "conda-env-simulate_expression_compendia-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/human_tests/config_test_human.tsv b/human_tests/config_test_human.tsv new file mode 100644 index 0000000..f908577 --- /dev/null +++ b/human_tests/config_test_human.tsv @@ -0,0 +1,18 @@ +local_dir "../test_results/" +scaler_transform_file "../test_results/scaler_transform.pickle" +dataset_name "human_tests" +simulation_type "None" +NN_architecture "NN_2500_30" +learning_rate 0.001 +batch_size 5 +epochs 10 +kappa 0.01 +intermediate_dim 2500 +latent_dim 30 +epsilon_std 1.0 +validation_frac 0.1 +num_simulated_samples 100 +num_simulated_experiments 50 +num_simulated 2 +project_id "SRP016140" +metadata_colname 'run' diff --git a/Human_tests/data/input/recount2_gene_RPKM_data_test.tsv b/human_tests/data/input/recount2_gene_RPKM_data_test.tsv similarity index 100% rename from Human_tests/data/input/recount2_gene_RPKM_data_test.tsv rename to human_tests/data/input/recount2_gene_RPKM_data_test.tsv diff --git a/human_tests/data/input/recount2_gene_normalized_data_test.tsv.xz b/human_tests/data/input/recount2_gene_normalized_data_test.tsv.xz new file mode 100644 index 0000000..fb670d3 Binary files /dev/null and b/human_tests/data/input/recount2_gene_normalized_data_test.tsv.xz differ diff --git a/Human_tests/data/metadata/experiment_ids.txt b/human_tests/data/metadata/experiment_ids.txt similarity index 100% rename from Human_tests/data/metadata/experiment_ids.txt rename to human_tests/data/metadata/experiment_ids.txt diff --git a/Human_tests/data/metadata/recount2_metadata.tsv b/human_tests/data/metadata/recount2_metadata.tsv similarity index 100% rename from Human_tests/data/metadata/recount2_metadata.tsv rename to human_tests/data/metadata/recount2_metadata.tsv diff --git a/human_tests/data/test_vae_log.tsv b/human_tests/data/test_vae_log.tsv new file mode 100644 index 0000000..609ea3a --- /dev/null +++ b/human_tests/data/test_vae_log.tsv @@ -0,0 +1,11 @@ +val_loss loss learning_rate batch_size epochs kappa +2732.48828125 2466.1158040364585 0.001 5 10 0.01 +2180.018310546875 1671.1998291015625 0.001 5 10 0.01 +1799.2496337890625 1566.8177761501736 0.001 5 10 0.01 +1730.1412353515625 1481.5816379123264 0.001 5 10 0.01 +1477.26025390625 1577.6224093967014 0.001 5 10 0.01 +1510.6864013671875 1444.6422390407986 0.001 5 10 0.01 +1676.2584228515625 1475.2911783854167 0.001 5 10 0.01 +1403.8243408203125 1398.2217678493923 0.001 5 10 0.01 +1309.47900390625 1352.832010904948 0.001 5 10 0.01 +1252.239501953125 1411.7664116753472 0.001 5 10 0.01 diff --git a/ponyo/cca_core.py b/ponyo/cca_core.py deleted file mode 100644 index f7f8ff8..0000000 --- a/ponyo/cca_core.py +++ /dev/null @@ -1,350 +0,0 @@ -# Copyright 2016 Google Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -""" -The core code for applying Canonical Correlation Analysis to deep networks. -This module contains the core functions to apply canonical correlation analysis -to deep neural networks. The main function is get_cca_similarity, which takes in -two sets of activations, typically the neurons in two layers and their outputs -on all of the datapoints D = [d_1,...,d_m] that have been passed through. -Inputs have shape (num_neurons1, m), (num_neurons2, m). This can be directly -applied used on fully connected networks. For convolutional layers, the 3d block -of neurons can either be flattened entirely, along channels, or alternatively, -the dft_ccas (Discrete Fourier Transform) module can be used. -See https://arxiv.org/abs/1706.05806 for full details. -""" - -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function -import numpy as np - -num_cca_trials = 5 -epsilon = 1e-6 - - -def positivedef_matrix_sqrt(array): - """Stable method for computing matrix square roots, supports complex matrices. - Args: - array: A numpy 2d array, can be complex valued that is a positive - definite symmetric (or hermitian) matrix - Returns: - sqrtarray: The matrix square root of array - """ - w, v = np.linalg.eigh(array) - # A - np.dot(v, np.dot(np.diag(w), v.T)) - wsqrt = np.sqrt(w) - sqrtarray = np.dot(v, np.dot(np.diag(wsqrt), np.conj(v).T)) - return sqrtarray - - -def remove_small(sigma_xx, sigma_xy, sigma_yx, sigma_yy, threshold=1e-6): - """Takes covariance between X, Y, and removes values of small magnitude. - Args: - sigma_xx: 2d numpy array, variance matrix for x - sigma_xy: 2d numpy array, crossvariance matrix for x,y - sigma_yx: 2d numpy array, crossvariance matrixy for x,y, - (conjugate) transpose of sigma_xy - sigma_yy: 2d numpy array, variance matrix for y - threshold: cutoff value for norm below which directions are thrown - away - Returns: - sigma_xx_crop: 2d array with low x norm directions removed - sigma_xy_crop: 2d array with low x and y norm directions removed - sigma_yx_crop: 2d array with low x and y norm directiosn removed - sigma_yy_crop: 2d array with low y norm directions removed - x_idxs: indexes of sigma_xx that were removed - y_idxs: indexes of sigma_yy that were removed - """ - - x_diag = np.abs(np.diagonal(sigma_xx)) - y_diag = np.abs(np.diagonal(sigma_yy)) - x_idxs = x_diag >= threshold - y_idxs = y_diag >= threshold - - sigma_xx_crop = sigma_xx[x_idxs][:, x_idxs] - sigma_xy_crop = sigma_xy[x_idxs][:, y_idxs] - sigma_yx_crop = sigma_yx[y_idxs][:, x_idxs] - sigma_yy_crop = sigma_yy[y_idxs][:, y_idxs] - - return (sigma_xx_crop, sigma_xy_crop, sigma_yx_crop, sigma_yy_crop, x_idxs, y_idxs) - - -def compute_ccas(sigma_xx, sigma_xy, sigma_yx, sigma_yy, verbose=True): - """Main cca computation function, takes in variances and crossvariances. - This function takes in the covariances and cross covariances of X, Y, - preprocesses them (removing small magnitudes) and outputs the raw results of - the cca computation, including cca directions in a rotated space, and the - cca correlation coefficient values. - Args: - sigma_xx: 2d numpy array, (num_neurons_x, num_neurons_x) - variance matrix for x - sigma_xy: 2d numpy array, (num_neurons_x, num_neurons_y) - crossvariance matrix for x,y - sigma_yx: 2d numpy array, (num_neurons_y, num_neurons_x) - crossvariance matrix for x,y (conj) transpose of sigma_xy - sigma_yy: 2d numpy array, (num_neurons_y, num_neurons_y) - variance matrix for y - verbose: boolean on whether to print intermediate outputs - Returns: - [ux, sx, vx]: [numpy 2d array, numpy 1d array, numpy 2d array] - ux and vx are (conj) transposes of each other, being - the canonical directions in the X subspace. - sx is the set of canonical correlation coefficients- - how well corresponding directions in vx, Vy correlate - with each other. - [uy, sy, vy]: Same as above, but for Y space - invsqrt_xx: Inverse square root of sigma_xx to transform canonical - directions back to original space - invsqrt_yy: Same as above but for sigma_yy - x_idxs: The indexes of the input sigma_xx that were pruned - by remove_small - y_idxs: Same as above but for sigma_yy - """ - - (sigma_xx, sigma_xy, sigma_yx, sigma_yy, x_idxs, y_idxs) = remove_small( - sigma_xx, sigma_xy, sigma_yx, sigma_yy - ) - - numx = sigma_xx.shape[0] - numy = sigma_yy.shape[0] - - if numx == 0 or numy == 0: - return ( - [0, 0, 0], - [0, 0, 0], - np.zeros_like(sigma_xx), - np.zeros_like(sigma_yy), - x_idxs, - y_idxs, - ) - - if verbose: - print("adding eps to diagonal and taking inverse") - sigma_xx += epsilon * np.eye(numx) - sigma_yy += epsilon * np.eye(numy) - inv_xx = np.linalg.pinv(sigma_xx) - inv_yy = np.linalg.pinv(sigma_yy) - - if verbose: - print("taking square root") - invsqrt_xx = positivedef_matrix_sqrt(inv_xx) - invsqrt_yy = positivedef_matrix_sqrt(inv_yy) - - if verbose: - print("dot products...") - arr_x = np.dot(sigma_yx, invsqrt_xx) - arr_x = np.dot(inv_yy, arr_x) - arr_x = np.dot(invsqrt_xx, np.dot(sigma_xy, arr_x)) - arr_y = np.dot(sigma_xy, invsqrt_yy) - arr_y = np.dot(inv_xx, arr_y) - arr_y = np.dot(invsqrt_yy, np.dot(sigma_yx, arr_y)) - - if verbose: - print("trying to take final svd") - arr_x_stable = arr_x + epsilon * np.eye(arr_x.shape[0]) - arr_y_stable = arr_y + epsilon * np.eye(arr_y.shape[0]) - try: - ux, sx, vx = np.linalg.svd(arr_x_stable) - uy, sy, vy = np.linalg.svd(arr_y_stable) - except: - return [0, 0, 0], [0, 0, 0], 0, 0, 0, 0 - sx = np.sqrt(np.abs(sx)) - sy = np.sqrt(np.abs(sy)) - if verbose: - print("computed everything!") - - return [ux, sx, vx], [uy, sy, vy], invsqrt_xx, invsqrt_yy, x_idxs, y_idxs - - -def sum_threshold(array, threshold): - """Computes threshold index of decreasing nonnegative array by summing. - This function takes in a decreasing array nonnegative floats, and a - threshold between 0 and 1. It returns the index i at which the sum of the - array up to i is threshold*total mass of the array. - Args: - array: a 1d numpy array of decreasing, nonnegative floats - threshold: a number between 0 and 1 - Returns: - i: index at which np.sum(array[:i]) >= threshold - """ - assert (threshold >= 0) and (threshold <= 1), "print incorrect threshold" - - for i in range(len(array)): - if np.sum(array[:i]) / np.sum(array) >= threshold: - return i - - -def create_zero_dict(compute_dirns, dimension): - """Outputs a zero dict when neuron activation norms too small. - This function creates a return_dict with appropriately shaped zero entries - when all neuron activations are very small. - Args: - compute_dirns: boolean, whether to have zero vectors for directions - dimension: int, defines shape of directions - Returns: - return_dict: a dict of appropriately shaped zero entries - """ - return_dict = {} - return_dict["mean"] = (np.asarray(0), np.asarray(0)) - return_dict["sum"] = (np.asarray(0), np.asarray(0)) - return_dict["cca_coef1"] = np.asarray(0) - return_dict["cca_coef2"] = np.asarray(0) - return_dict["idx1"] = 0 - return_dict["idx2"] = 0 - - if compute_dirns: - return_dict["cca_dirns1"] = np.zeros((1, dimension)) - return_dict["cca_dirns2"] = np.zeros((1, dimension)) - - return return_dict - - -def get_cca_similarity(acts1, acts2, threshold=0.98, compute_dirns=True, verbose=True): - """The main function for computing cca similarities. - This function computes the cca similarity between two sets of activations, - returning a dict with the cca coefficients, a few statistics of the cca - coefficients, and (optionally) the actual directions. - Args: - acts1: (num_neurons1, data_points) a 2d numpy array of neurons by - datapoints where entry (i,j) is the output of neuron i on - datapoint j. - acts2: (num_neurons2, data_points) same as above, but (potentially) - for a different set of neurons. Note that acts1 and acts2 - can have different numbers of neurons, but must agree on the - number of datapoints - threshold: float between 0, 1 used to get rid of trailing zeros in - the cca correlation coefficients to output more accurate - summary statistics of correlations. - compute_dirns: boolean value determining whether actual cca - directions are computed. (For very large neurons and - datasets, may be better to compute these on the fly - instead of store in memory.) - verbose: Boolean, whether info about intermediate outputs printed - Returns: - return_dict: A dictionary with outputs from the cca computations. - Contains neuron coefficients (combinations of neurons - that correspond to cca directions), the cca correlation - coefficients (how well aligned directions correlate), - x and y idxs (for computing cca directions on the fly - if compute_dirns=False), and summary statistics. If - compute_dirns=True, the cca directions are also - computed. - """ - - # assert dimensionality equal - assert acts1.shape[1] == acts2.shape[1], "dimensions don't match" - # check that acts1, acts2 are transposition - assert acts1.shape[0] < acts1.shape[1], ( - "input must be number of neurons" "by datapoints" - ) - return_dict = {} - - # compute covariance with numpy function for extra stability - numx = acts1.shape[0] - - covariance = np.cov(acts1, acts2) - sigmaxx = covariance[:numx, :numx] - sigmaxy = covariance[:numx, numx:] - sigmayx = covariance[numx:, :numx] - sigmayy = covariance[numx:, numx:] - - # rescale covariance to make cca computation more stable - xmax = np.max(np.abs(sigmaxx)) - ymax = np.max(np.abs(sigmayy)) - sigmaxx /= xmax - sigmayy /= ymax - sigmaxy /= np.sqrt(xmax * ymax) - sigmayx /= np.sqrt(xmax * ymax) - - ([_, sx, vx], [_, sy, vy], invsqrt_xx, invsqrt_yy, x_idxs, y_idxs) = compute_ccas( - sigmaxx, sigmaxy, sigmayx, sigmayy, verbose - ) - - # if x_idxs or y_idxs is all false, return_dict has zero entries - if (not np.any(x_idxs)) or (not np.any(y_idxs)): - return create_zero_dict(compute_dirns, acts1.shape[1]) - - if compute_dirns: - # orthonormal directions that are CCA directions - cca_dirns1 = np.dot(vx, np.dot(invsqrt_xx, acts1[x_idxs])) - cca_dirns2 = np.dot(vy, np.dot(invsqrt_yy, acts2[y_idxs])) - - # get rid of trailing zeros in the cca coefficients - idx1 = sum_threshold(sx, threshold) - idx2 = sum_threshold(sy, threshold) - - return_dict["neuron_coeffs1"] = np.dot(vx, invsqrt_xx) - return_dict["neuron_coeffs2"] = np.dot(vy, invsqrt_yy) - return_dict["cca_coef1"] = sx - return_dict["cca_coef2"] = sy - return_dict["x_idxs"] = x_idxs - return_dict["y_idxs"] = y_idxs - # summary statistics - return_dict["mean"] = (np.mean(sx[:idx1]), np.mean(sy[:idx2])) - return_dict["sum"] = (np.sum(sx), np.sum(sy)) - - if compute_dirns: - return_dict["cca_dirns1"] = cca_dirns1 - return_dict["cca_dirns2"] = cca_dirns2 - - return return_dict - - -def robust_cca_similarity( - acts1, acts2, threshold=0.98, compute_dirns=True, verbose=False -): - """Calls get_cca_similarity multiple times while adding noise. - This function is very similar to get_cca_similarity, and can be used if - get_cca_similarity doesn't converge for some pair of inputs. This function - adds some noise to the activations to help convergence. - Args: - acts1: (num_neurons1, data_points) a 2d numpy array of neurons by - datapoints where entry (i,j) is the output of neuron i on - datapoint j. - acts2: (num_neurons2, data_points) same as above, but (potentially) - for a different set of neurons. Note that acts1 and acts2 - can have different numbers of neurons, but must agree on the - number of datapoints - threshold: float between 0, 1 used to get rid of trailing zeros in - the cca correlation coefficients to output more accurate - summary statistics of correlations. - compute_dirns: boolean value determining whether actual cca - directions are computed. (For very large neurons and - datasets, may be better to compute these on the fly - instead of store in memory.) - Returns: - return_dict: A dictionary with outputs from the cca computations. - Contains neuron coefficients (combinations of neurons - that correspond to cca directions), the cca correlation - coefficients (how well aligned directions correlate), - x and y idxs (for computing cca directions on the fly - if compute_dirns=False), and summary statistics. If - compute_dirns=True, the cca directions are also - computed. - """ - - for trial in range(num_cca_trials): - try: - return_dict = get_cca_similarity( - acts1, acts2, threshold, compute_dirns, verbose=verbose - ) - except np.LinAlgError: - acts1 = acts1 * 1e-1 + np.random.normal(size=acts1.shape) * epsilon - acts2 = acts2 * 1e-1 + np.random.normal(size=acts1.shape) * epsilon - if trial + 1 == num_cca_trials: - raise - - return return_dict diff --git a/ponyo/generate_data_parallel.py b/ponyo/generate_data_parallel.py deleted file mode 100644 index 348b3cb..0000000 --- a/ponyo/generate_data_parallel.py +++ /dev/null @@ -1,903 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 30 August 2019 - -These scripts are the components used to run each simulation experiment, -found in `simulations.py`. -These scripts generate simulated compendia, add noise to simulated data, -apply noise correction to simulated data, permute simulated data. -""" - -import os -import pandas as pd -import numpy as np -import random -import glob -import warnings -from keras.models import load_model -from sklearn import preprocessing - -from rpy2.robjects.packages import importr -from rpy2.robjects import pandas2ri - -limma = importr("limma") -sva = importr("sva") -pandas2ri.activate() - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - -random.seed(123) - - -def get_sample_ids(experiment_id, dataset_name, sample_id_colname): - """ - Returns sample ids (found in gene expression df) associated with - a given list of experiment ids (found in the metadata) - - Arguments - ---------- - experiment_ids_file: str - File containing all cleaned experiment ids - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - sample_id_colname: str - Column header that contains sample id that maps expression data - and metadata - - """ - base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) - - if "pseudomonas" in dataset_name.lower(): - # metadata file - mapping_file = os.path.join( - base_dir, dataset_name, "data", "metadata", "sample_annotations.tsv" - ) - - # Read in metadata - metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) - - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata[sample_id_colname]) - - else: - # metadata file - mapping_file = os.path.join( - base_dir, dataset_name, "data", "metadata", "recount2_metadata.tsv" - ) - - # Read in metadata - metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) - - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata[sample_id_colname]) - - return sample_ids - - -def simulate_compendium( - num_simulated_experiments, - normalized_data_file, - NN_architecture, - dataset_name, - analysis_name, - experiment_ids_file, - sample_id_colname, - local_dir, - base_dir, -): - """ - Generate simulated data by randomly sampling some number of experiments - and linearly shifting the gene expression in the VAE latent space, - preserving the relationship between samples within an experiment. - - Workflow: - 1. Randomly select 1 experiment and get the gene expression data for that - experiment (here we are assuming that there is only biological variation - within this experiment) - 2. Encode this experiment into a latent space using the trained VAE model - 3. Encode the entire dataset from the - 3a. Select a random point in the encoded space. For each encoded feature, sample - from a distribution using the mean and standard deviation for that feature - 4. Calculate the shift_vec_df = centroid(encoded experiment) - random encoded experiment - 5. Shift all the samples from the experiment by the shift_vec_df - 6. Decode the samples - 7. Repeat steps 1-6 for - - This will generate a simulated compendium of different gene expression experiments that - are of a similar type to the original data but with different perturbations - - Arguments - ---------- - number_simulated_experiments: int - Number of experiments to simulate - - normalized_data_file: str - File containing normalized gene expression data - - ------------------------------| PA0001 | PA0002 |... - 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... - 54375-4-05.CEL | 0.7789 | 0.7678 |... - ... | ... | ... |... - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings will be stored. - Format of the directory name is __lvl_sim - - experiment_ids_file: str - File containing all cleaned experiment ids - - sample_id_colname: str - Column header that contains sample id that maps expression data and metadata - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - Returns - -------- - simulated dataframe - - """ - - # Files - NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) - latent_dim = NN_architecture.split("_")[-1] - - model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] - - weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] - - model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] - - weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] - - # Load saved models - loaded_model = load_model(model_encoder_file) - loaded_decode_model = load_model(model_decoder_file) - - loaded_model.load_weights(weights_encoder_file) - loaded_decode_model.load_weights(weights_decoder_file) - - # Read data - experiment_ids = pd.read_csv(experiment_ids_file, header=0, sep="\t", index_col=0) - - normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) - - print( - "Normalized gene expression data contains {} samples and {} genes".format( - normalized_data.shape[0], normalized_data.shape[1] - ) - ) - - # Simulate data - - simulated_data_df = pd.DataFrame() - - for i in range(num_simulated_experiments): - - selected_experiment_id = np.random.choice( - experiment_ids["experiment_id"], size=1 - )[0] - - # Get corresponding sample ids - sample_ids = get_sample_ids( - selected_experiment_id, dataset_name, sample_id_colname - ) - - # Remove any missing sample ids - sample_ids = list(filter(str.strip, sample_ids)) - - # Remove any sample_ids that are not found in gene expression data - # There are some experiments where most samples have gene expression but a - # few do not - sample_ids = [ - sample for sample in sample_ids if sample in normalized_data.index - ] - - # Gene expression data for selected samples - selected_data_df = normalized_data.loc[sample_ids] - - # Encode selected experiment into latent space - data_encoded = loaded_model.predict_on_batch(selected_data_df) - data_encoded_df = pd.DataFrame(data_encoded, index=selected_data_df.index) - - # Get centroid of original data - centroid = data_encoded_df.mean(axis=0) - - # Add individual vectors(centroid, sample point) to new_centroid - - # Encode original gene expression data into latent space - data_encoded_all = loaded_model.predict_on_batch(normalized_data) - data_encoded_all_df = pd.DataFrame( - data_encoded_all, index=normalized_data.index - ) - - data_encoded_all_df.head() - - # Find a new location in the latent space by sampling from the latent space - encoded_means = data_encoded_all_df.mean(axis=0) - encoded_stds = data_encoded_all_df.std(axis=0) - - latent_dim = int(latent_dim) - new_centroid = np.zeros(latent_dim) - - for j in range(latent_dim): - new_centroid[j] = np.random.normal(encoded_means[j], encoded_stds[j]) - - shift_vec_df = new_centroid - centroid - - simulated_data_encoded_df = data_encoded_df.apply( - lambda x: x + shift_vec_df, axis=1 - ) - - # Decode simulated data into raw gene space - simulated_data_decoded = loaded_decode_model.predict_on_batch( - simulated_data_encoded_df - ) - - simulated_data_decoded_df = pd.DataFrame( - simulated_data_decoded, - index=simulated_data_encoded_df.index, - columns=selected_data_df.columns, - ) - - # Add experiment label - simulated_data_decoded_df["experiment_id"] = ( - selected_experiment_id + "_" + str(i) - ) - - # Concatenate dataframe per experiment together - simulated_data_df = pd.concat([simulated_data_df, simulated_data_decoded_df]) - - # re-normalize per gene 0-1 - simulated_data_numeric_df = simulated_data_df.drop( - columns=["experiment_id"], inplace=False - ) - - simulated_data_scaled = preprocessing.MinMaxScaler().fit_transform( - simulated_data_numeric_df - ) - - simulated_data_scaled_df = pd.DataFrame( - simulated_data_scaled, - columns=simulated_data_numeric_df.columns, - index=simulated_data_numeric_df.index, - ) - - simulated_data_scaled_df["experiment_id"] = simulated_data_df["experiment_id"] - - # If sampling with replacement, then there will be multiple sample ids that are the same - # therefore we want to reset the index. - simulated_data_scaled_df.reset_index(drop=True, inplace=True) - - print( - "Return: simulated gene expression data containing {} samples and {} genes".format( - simulated_data_scaled_df.shape[0], simulated_data_scaled_df.shape[1] - ) - ) - - return simulated_data_scaled_df - - -def simulate_data( - normalized_data_file, - NN_architecture, - dataset_name, - analysis_name, - num_simulated_samples, - local_dir, - base_dir, -): - """ - Generate simulated data by randomly sampling from VAE latent space. - - Workflow: - 1. Input gene expression data the entire compendium from the - 2. Encode this input into a latent space using the trained VAE model - 3. Randomly sample samples from the latent space. - For each encoded feature, sample from a distribution using the - the mean and standard deviation for that feature - 4. Decode the samples - - This compendium is generated by randomly sampling samples from the - latent space distribution of the compendium. All samples are treated equal, where - association with a specific experiment is ignored. - - - Arguments - ---------- - normalized_data_file: str - File containing normalized gene expression data - - ------------------------------| PA0001 | PA0002 |... - 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... - 54375-4-05.CEL | 0.7789 | 0.7678 |... - ... | ... | ... |... - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: str - Name of analysis directory, Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings will be stored. - Format of the directory name is __lvl_sim - - number_simulated_samples: int - Number of samples to simulate - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - Returns - -------- - simulated dataframe - - """ - - # Files - NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) - model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] - - weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] - - model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] - - weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] - - # Load saved models - loaded_model = load_model(model_encoder_file) - loaded_decode_model = load_model(model_decoder_file) - - loaded_model.load_weights(weights_encoder_file) - loaded_decode_model.load_weights(weights_decoder_file) - - # Read data - normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) - - print( - "Normalized gene expression data contains {} samples and {} genes".format( - normalized_data.shape[0], normalized_data.shape[1] - ) - ) - - # Simulate data - - # Encode into latent space - data_encoded = loaded_model.predict_on_batch(normalized_data) - data_encoded_df = pd.DataFrame(data_encoded, index=normalized_data.index) - - latent_dim = data_encoded_df.shape[1] - - # Get mean and standard deviation per encoded feature - encoded_means = data_encoded_df.mean(axis=0) - encoded_stds = data_encoded_df.std(axis=0) - - # Generate samples - new_data = np.zeros([num_simulated_samples, latent_dim]) - for j in range(latent_dim): - # Use mean and std for feature - new_data[:, j] = np.random.normal( - encoded_means[j], encoded_stds[j], num_simulated_samples - ) - - # Use standard normal - # new_data[:,j] = np.random.normal(0, 1, num_simulated_samples) - - new_data_df = pd.DataFrame(data=new_data) - - # Decode samples - new_data_decoded = loaded_decode_model.predict_on_batch(new_data_df) - simulated_data = pd.DataFrame(data=new_data_decoded) - - print( - "Return: simulated gene expression data containing {} samples and {} genes".format( - simulated_data.shape[0], simulated_data.shape[1] - ) - ) - - return simulated_data - - -def permute_data(simulated_data): - """ - Permute the simulated data - - Arguments - ---------- - simulated_data: df - Dataframe containing simulated gene expression data - - Returns - -------- - permuted simulated dataframe. This data will be used as a - negative control in similarity analysis. - """ - - if "experiment_id" in list(simulated_data.columns): - simulated_data_tmp = simulated_data.drop(columns="experiment_id", inplace=False) - else: - simulated_data_tmp = simulated_data.copy() - - # Shuffle values within each sample (row) - # Each sample treated independently - shuffled_simulated_arr = [] - num_samples = simulated_data.shape[0] - - for i in range(num_samples): - row = list(simulated_data_tmp.values[i]) - shuffled_simulated_row = random.sample(row, len(row)) - shuffled_simulated_arr.append(shuffled_simulated_row) - - shuffled_simulated_data = pd.DataFrame( - shuffled_simulated_arr, - index=simulated_data_tmp.index, - columns=simulated_data_tmp.columns, - ) - - return shuffled_simulated_data - - -def add_experiments_io( - simulated_data, num_experiments, run, local_dir, dataset_name, analysis_name -): - """ - Say we are interested in identifying genes that differentiate between - disease vs normal states. However our dataset includes samples from - different labs or protocols and there are variations - in gene expression that are due to these other conditions - that do not have to do with disease state. - - These non-relevant variations in the data are called technical variations - that we want to model. To model technical variation in our simulated data - we will do the following: - - 1. Partition our simulated data into - 2. For each partition we will shift all genes using a vector of values - sampled from a gaussian distribution centered around 0. This noise represents - noise shared acoss the samples in the partition. - 3. Repeat this for each partition - 4. Append all shifted partitions together - - Arguments - ---------- - simulated_data: df - Dataframe containing simulated gene expression data - - num_experiments: list - List of different numbers of experiments to add to - simulated data - - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - local_dir: str - Parent directory on local machine to store intermediate results - - dataset_name: str - Name of analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings are be stored. - Format of the directory name is __lvl_sim - - Output - -------- - Files of simulated data with different numbers of experiments added are save to file. - Each file is named as "Experiment_" - """ - analysis_dir = os.path.join( - local_dir, "experiment_simulated", dataset_name + "_" + analysis_name - ) - - if not os.path.exists(analysis_dir): - print("Creating new directory: \n {}".format(analysis_dir)) - os.makedirs(analysis_dir, exist_ok=True) - - # Add batch effects - num_genes = simulated_data.shape[1] - - # Create an array of the simulated data indices - simulated_ind = np.array(simulated_data.index) - - for i in num_experiments: - print("Creating simulated data with {} experiments..".format(i)) - - experiment_file = os.path.join( - analysis_dir, "Experiment_" + str(i) + "_" + str(run) + ".txt.xz" - ) - - experiment_map_file = os.path.join( - analysis_dir, "Experiment_map_" + str(i) + "_" + str(run) + ".txt.xz" - ) - - # Create dataframe with grouping - experiment_data_map = simulated_data.copy() - - if i == 1: - simulated_data.to_csv(experiment_file, sep="\t", compression="xz") - - # Add experiment id to map dataframe - experiment_data_map["experiment"] = str(i) - experiment_data_map_df = pd.DataFrame( - data=experiment_data_map["experiment"], index=simulated_ind.sort() - ) - - experiment_data_map_df.to_csv( - experiment_map_file, sep="\t", compression="xz" - ) - - else: - experiment_data = simulated_data.copy() - - # Shuffle indices - np.random.shuffle(simulated_ind) - - # Partition indices to batch - # Note: 'array_split' will chunk data into almost equal sized chunks. - # Returns arrays of size N % i and one array with the remainder - partition = np.array_split(simulated_ind, i) - - for j in range(i): - # Scalar to shift gene expressiond data - stretch_factor = np.random.normal(0.0, 0.2, [1, num_genes]) - - # Tile stretch_factor to be able to add to batches - num_samples_per_experiment = len(partition[j]) - stretch_factor_tile = pd.DataFrame( - pd.np.tile(stretch_factor, (num_samples_per_experiment, 1)), - index=experiment_data.loc[partition[j].tolist()].index, - columns=experiment_data.loc[partition[j].tolist()].columns, - ) - - # Add experiments - experiment_data.loc[partition[j].tolist()] = ( - experiment_data.loc[partition[j].tolist()] + stretch_factor_tile - ) - - # Add experiment id to map dataframe - experiment_data_map.loc[partition[j], "experiment"] = str(j) - - experiment_data_map_df = pd.DataFrame( - data=experiment_data_map["experiment"], index=simulated_ind.sort() - ) - - # Save - experiment_data.to_csv( - experiment_file, float_format="%.3f", sep="\t", compression="xz" - ) - - experiment_data_map_df.to_csv( - experiment_map_file, sep="\t", compression="xz" - ) - - -def add_experiments_grped_io( - simulated_data, num_partitions, run, local_dir, dataset_name, analysis_name -): - """ - Similar to `add_experiments_io` we will model technical variation in our - simulated data. In this case, we will keep track of which samples - are associated with an experiment. - - To do this we will: - 1. Partition our simulated data into - Here we are keeping track of experiment id and partitioning - such that all samples from an experiment are in the same - partition. - - Note: Partition sizes will be different since experiment - sizes are different per experiment. - 2. For each partition we will shift all genes using a vector of values - sampled from a gaussian distribution centered around 0. - 3. Repeat this for each partition - 4. Append all partitions together - - This function will return the files with compendia with different numbers - of technical variation added with one file per compendia. - - Arguments - ---------- - simulated_data_file: str - File containing simulated gene expression data - - num_partitions: list - List of different numbers of partitions to add - technical variations to - - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - local_dir: str - Parent directory on local machine to store intermediate results - - dataset_name: str - Name of analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings are be stored. - Format of the directory name is __lvl_sim - - - Output - -------- - Files of simulated data with different numbers of experiments added are saved to file. - Each file is named as "Experiment_" - """ - - analysis_dir = os.path.join( - local_dir, "partition_simulated", dataset_name + "_" + analysis_name - ) - - if not os.path.exists(analysis_dir): - print("Creating new directory: \n {}".format(analysis_dir)) - os.makedirs(analysis_dir, exist_ok=True) - - # Add batch effects - num_genes = simulated_data.shape[1] - 1 - - # Create an array of the simulated data indices - simulated_ind = np.array(simulated_data.index) - - for i in num_partitions: - print("Creating simulated data with {} partitions..".format(i)) - - partition_file = os.path.join( - analysis_dir, "Partition_" + str(i) + "_" + str(run) + ".txt.xz" - ) - - partition_map_file = os.path.join( - analysis_dir, "Partition_map_" + str(i) + "_" + str(run) + ".txt.xz" - ) - - # Create dataframe with grouping - partition_data_map = simulated_data.copy() - - if i == 1: - simulated_data_out = simulated_data.drop(columns="experiment_id") - simulated_data_out.to_csv(partition_file, sep="\t", compression="xz") - - # Add experiment id to map dataframe - partition_data_map["partition"] = str(i) - - partition_data_map_df = pd.DataFrame( - data=partition_data_map["partition"], index=simulated_ind.sort() - ) - - partition_data_map_df.to_csv(partition_map_file, sep="\t", compression="xz") - - else: - partition_data = simulated_data.copy() - - # Shuffle experiment ids - experiment_ids = simulated_data["experiment_id"].unique() - np.random.shuffle(experiment_ids) - - # Partition experiment ids - # Note: 'array_split' will chunk data into almost equal sized chunks. - # Returns arrays of size N % i and one array with the remainder - partition = np.array_split(experiment_ids, i) - - for j in range(i): - # Randomly select experiment ids - # selected_experiment_ids = partition[j] - - # Get sample ids associated with experiment ids - sample_ids = list( - simulated_data[ - simulated_data["experiment_id"].isin(partition[j]) - ].index - ) - - # Scalar to shift gene expressiond data - stretch_factor = np.random.normal(0.0, 0.2, [1, num_genes]) - - # Tile stretch_factor to be able to add to batches - num_samples_per_partition = len(sample_ids) - - if j == 0: - # Drop experiment_id label to do calculation - partition_data.drop(columns="experiment_id", inplace=True) - - stretch_factor_tile = pd.DataFrame( - pd.np.tile(stretch_factor, (num_samples_per_partition, 1)), - index=partition_data.loc[sample_ids].index, - columns=partition_data.loc[sample_ids].columns, - ) - - # Add noise to partition - partition_data.loc[sample_ids] = ( - partition_data.loc[sample_ids] + stretch_factor_tile - ) - - # Add partition id to map dataframe - partition_data_map.loc[sample_ids, "partition"] = str(j) - - partition_data_map_df = pd.DataFrame( - data=partition_data_map["partition"], index=simulated_ind.sort() - ) - - # Save - partition_data.to_csv( - partition_file, float_format="%.3f", sep="\t", compression="xz" - ) - - partition_data_map_df.to_csv(partition_map_file, sep="\t", compression="xz") - - -def apply_correction_io( - local_dir, run, dataset_name, analysis_name, num_experiments, correction_method -): - """ - This function uses the limma or sva R package to correct for the technical variation - we added using or - - This function will return the corrected gene expression files - - Arguments - ---------- - local_dir: str - Root directory where simulated data with experiments/partitionings are be stored - - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - dataset_name: - Name of analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings are be stored. - Format of the directory name is __lvl_sim - - num_experiments: list - List of different numbers of experiments/partitions to add - technical variations to - - correction_method: str - Noise correction method. Either "limma" or "combat" - - - Returns - -------- - Files of simulated data with different numbers of experiments added and corrected are saved to file. - Each file is named as "Experiment_". - Note: After the data is corrected, the dimensions are now gene x sample - """ - - for i in range(len(num_experiments)): - - if "sample" in analysis_name: - print("Correcting for {} experiments..".format(num_experiments[i])) - - experiment_file = os.path.join( - local_dir, - "experiment_simulated", - dataset_name + "_" + analysis_name, - "Experiment_" + str(num_experiments[i]) + "_" + str(run) + ".txt.xz", - ) - - experiment_map_file = os.path.join( - local_dir, - "experiment_simulated", - dataset_name + "_" + analysis_name, - f"Experiment_map_{num_experiments[i]}_{run}.txt.xz", - ) - - # Read in data - # data transposed to form gene x sample for R package - experiment_data = pd.read_csv( - experiment_file, header=0, index_col=0, sep="\t" - ).T - - experiment_map = pd.read_csv( - experiment_map_file, header=0, index_col=0, sep="\t" - )["experiment"] - else: - print("Correcting for {} Partition..".format(num_experiments[i])) - - experiment_file = os.path.join( - local_dir, - "partition_simulated", - dataset_name + "_" + analysis_name, - "Partition_" + str(num_experiments[i]) + "_" + str(run) + ".txt.xz", - ) - - experiment_map_file = os.path.join( - local_dir, - "partition_simulated", - dataset_name + "_" + analysis_name, - "Partition_map_" + str(num_experiments[i]) + "_" + str(run) + ".txt.xz", - ) - - # Read in data - # data transposed to form gene x sample for R package - experiment_data = pd.read_csv( - experiment_file, header=0, index_col=0, sep="\t" - ).T - - experiment_map = pd.read_csv( - experiment_map_file, header=0, index_col=0, sep="\t" - )["partition"] - - if i == 0: - corrected_experiment_data_df = experiment_data.copy() - - else: - # Correct for technical variation - if correction_method == "limma": - corrected_experiment_data = limma.removeBatchEffect( - experiment_data, batch=experiment_map - ) - - # Convert R object to pandas df - # corrected_experiment_data_df = pandas2ri.ri2py_dataframe( - # corrected_experiment_data) - corrected_experiment_data_df = pd.DataFrame(corrected_experiment_data) - - if correction_method == "combat": - corrected_experiment_data = sva.ComBat( - np.array(experiment_data), batch=experiment_map - ) - - # Convert R object to pandas df - # corrected_experiment_data_df = pandas2ri.ri2py_dataframe( - # corrected_experiment_data - # ) - corrected_experiment_data_df = pd.DataFrame(corrected_experiment_data) - - corrected_experiment_data_df.columns = experiment_data.columns - - if "sample" in analysis_name: - # Write out corrected files - experiment_corrected_file = os.path.join( - local_dir, - "experiment_simulated", - dataset_name + "_" + analysis_name, - f"Experiment_corrected_{num_experiments[i]}_{run}.txt.xz", - ) - - corrected_experiment_data_df.to_csv( - experiment_corrected_file, - float_format="%.3f", - sep="\t", - compression="xz", - ) - - else: - # Write out corrected files - experiment_corrected_file = os.path.join( - local_dir, - "partition_simulated", - dataset_name + "_" + analysis_name, - f"Partition_corrected_{num_experiments[i]}_{run}.txt.xz", - ) - - corrected_experiment_data_df.to_csv( - experiment_corrected_file, - float_format="%.3f", - sep="\t", - compression="xz", - ) diff --git a/ponyo/generate_labeled_data.py b/ponyo/generate_labeled_data.py deleted file mode 100644 index cec65b7..0000000 --- a/ponyo/generate_labeled_data.py +++ /dev/null @@ -1,271 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 30 August 2019 - -Scripts to generate gene expression compendia using experiment-preserving -approach with added experiment id labels for visualizations. -These scripts are used to generate visualizations that validate this -experiment-preserving simulation approach. -""" - -from numpy.random import seed -import os -import pandas as pd -import numpy as np -import glob -from keras.models import load_model -from sklearn import preprocessing -import warnings - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - - -random_state = 123 - - -def get_sample_ids(experiment_id, dataset_name): - """ - Return sample ids for a given experiment id - - """ - base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) - - if "pseudomonas" in dataset_name.lower(): - # metadata file - mapping_file = os.path.join( - base_dir, dataset_name, "data", "metadata", "sample_annotations.tsv" - ) - - # Read in metadata - metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) - - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata["ml_data_source"]) - - else: - # metadata file - mapping_file = os.path.join( - base_dir, dataset_name, "data", "metadata", "recount2_metadata.tsv" - ) - - # Read in metadata - metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) - - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata["run"]) - - return sample_ids - - -def simulate_compendium_labeled( - experiment_ids_file, - num_simulated_experiments, - normalized_data_file, - NN_architecture, - dataset_name, - local_dir, - base_dir, -): - """ - Generate simulated data using a list of experiment_ids found in - experiment_ids_file as templates. The compendia will contain the - shifted experiments using the experiment_ids as templates and following - the same workflow as simulate_compendia in generate_data_parallel.py - - This function adds a column to label each sample with the experiment_id that - they originated from. This will be used for plotting. - - Arguments - ---------- - experiment_ids_file: str - File containing all cleaned experiment ids - - number_simulated_experiments: int - Number of experiments to simulate - - normalized_data_file: str - File containing normalized gene expression data - - ------------------------------| PA0001 | PA0002 |... - 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... - 54375-4-05.CEL | 0.7789 | 0.7678 |... - ... | ... | ... |... - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: - Name of analysis directory. Either "Human" or "Pseudomonas" - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - Returns - -------- - simulated_data_file: str - File containing simulated gene expression data - - """ - seed(random_state) - - # Files - NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) - latent_dim = NN_architecture.split("_")[-1] - - model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] - - weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] - - model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] - - weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] - - # Load saved models - loaded_model = load_model(model_encoder_file) - loaded_decode_model = load_model(model_decoder_file) - - loaded_model.load_weights(weights_encoder_file) - loaded_decode_model.load_weights(weights_decoder_file) - - # Read data - experiment_ids = pd.read_csv(experiment_ids_file, header=0, sep="\t", index_col=0) - - normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) - - print( - "Normalized gene expression data contains {} samples and {} genes".format( - normalized_data.shape[0], normalized_data.shape[1] - ) - ) - - # Simulate data - - simulated_data_df = pd.DataFrame() - - for i in range(num_simulated_experiments): - - selected_experiment_id = np.random.choice( - experiment_ids["experiment_id"], size=1 - )[0] - - # Get corresponding sample ids - sample_ids = get_sample_ids(selected_experiment_id, dataset_name) - - # Remove any missing sample ids - sample_ids = list(filter(str.strip, sample_ids)) - - # Remove any sample_ids that are not found in gene expression data - # There are some experiments where most samples have gene expression but a - # few do not - sample_ids = [ - sample for sample in sample_ids if sample in normalized_data.index - ] - - # Gene expression data for selected samples - selected_data_df = normalized_data.loc[sample_ids] - - # Encode selected experiment into latent space - data_encoded = loaded_model.predict_on_batch(selected_data_df) - data_encoded_df = pd.DataFrame(data_encoded, index=selected_data_df.index) - - # Get centroid of original data - centroid = data_encoded_df.mean(axis=0) - - # Add individual vectors(centroid, sample point) to new_centroid - - # Encode original gene expression data into latent space - data_encoded_all = loaded_model.predict_on_batch(normalized_data) - data_encoded_all_df = pd.DataFrame( - data_encoded_all, index=normalized_data.index - ) - - data_encoded_all_df.head() - - # Find a new location in the latent space by sampling from the latent space - encoded_means = data_encoded_all_df.mean(axis=0) - encoded_stds = data_encoded_all_df.std(axis=0) - - latent_dim = int(latent_dim) - new_centroid = np.zeros(latent_dim) - - for j in range(latent_dim): - new_centroid[j] = np.random.normal(encoded_means[j], encoded_stds[j]) - - shift_vec_df = new_centroid - centroid - - simulated_data_encoded_df = data_encoded_df.apply( - lambda x: x + shift_vec_df, axis=1 - ) - - # Decode simulated data into raw gene space - simulated_data_decoded = loaded_decode_model.predict_on_batch( - simulated_data_encoded_df - ) - - simulated_data_decoded_df = pd.DataFrame( - simulated_data_decoded, - index=simulated_data_encoded_df.index, - columns=selected_data_df.columns, - ) - - # Add experiment label - simulated_data_decoded_df["experiment_id"] = ( - selected_experiment_id + "_" + str(i) - ) - - # Concatenate dataframe per experiment together - simulated_data_df = pd.concat([simulated_data_df, simulated_data_decoded_df]) - - # re-normalize per gene 0-1 - simulated_data_numeric_df = simulated_data_df.drop( - columns=["experiment_id"], inplace=False - ) - - simulated_data_scaled = preprocessing.MinMaxScaler().fit_transform( - simulated_data_numeric_df - ) - - simulated_data_scaled_df = pd.DataFrame( - simulated_data_scaled, - columns=simulated_data_numeric_df.columns, - index=simulated_data_numeric_df.index, - ) - - simulated_data_scaled_df["experiment_id"] = simulated_data_df["experiment_id"] - - # If sampling with replacement, then there will be multiple sample ids that are the same - # therefore we want to reset the index. - simulated_data_scaled_df.reset_index(drop=True, inplace=True) - - # Remove expression data for samples that have duplicate sample id across - # different experiment ids - # We remove these because we are not sure which experiment the sample should - # belong to - # simulated_data_scaled_df = simulated_data_scaled_df.loc[~simulated_data_scaled_df.index.duplicated( - # keep=False)] - - print( - "Return: simulated gene expression data containing {} samples and {} genes".format( - simulated_data_scaled_df.shape[0], simulated_data_scaled_df.shape[1] - ) - ) - - # Save - simulated_data_file = os.path.join( - local_dir, "pseudo_experiment", "simulated_data_labeled.txt.xz" - ) - - simulated_data_scaled_df.to_csv( - simulated_data_file, float_format="%.3f", sep="\t", compression="xz" - ) diff --git a/ponyo/generate_template_data.py b/ponyo/generate_template_data.py deleted file mode 100644 index 5cc201d..0000000 --- a/ponyo/generate_template_data.py +++ /dev/null @@ -1,188 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 15 June 2020 - -Script to generate gene expression compendia using experiment-preserving -approach using a specific template experiment. -This script is used to generate a null set of gene expression data with -some context, defined by the template experiment. -""" - -import os -import pandas as pd -import numpy as np -import glob -import random -from keras.models import load_model - -from ponyo import generate_labeled_data - -import warnings - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - - -random.seed(123) - - -def shift_template_experiment( - normalized_data_file, - selected_experiment_id, - NN_architecture, - dataset_name, - scaler, - local_dir, - base_dir, - run, -): - """ - Generate simulated data using the selected_experiment_id as a template - experiment using the same workflow as simulate_compendia in generate_data_parallel.py - - This will return a file with a single simulated experiment following the workflow mentioned. - This function can be run multiple times to generate multiple simulated experiments from a - single selected_experiment_id. - - Arguments - ---------- - normalized_data_file: str - File containing normalized gene expression data - - ------------------------------| PA0001 | PA0002 |... - 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... - 54375-4-05.CEL | 0.7789 | 0.7678 |... - ... | ... | ... |... - - selected_experiment_id: str - Experiment id selected as template - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - scaler: minmax model - Model used to transform data into a different range - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - run: int - Simulation run - - Returns - -------- - simulated_data_file: str - File containing simulated gene expression data - - """ - - # Files - NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) - latent_dim = NN_architecture.split("_")[-1] - - model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] - - weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] - - model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] - - weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] - - # Load saved models - loaded_model = load_model(model_encoder_file, compile=False) - loaded_decode_model = load_model(model_decoder_file, compile=False) - - loaded_model.load_weights(weights_encoder_file) - loaded_decode_model.load_weights(weights_decoder_file) - - # Read data - normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) - - # Get corresponding sample ids - sample_ids = generate_labeled_data.get_sample_ids( - selected_experiment_id, dataset_name - ) - - # Gene expression data for selected samples - selected_data_df = normalized_data.loc[sample_ids] - - # Encode selected experiment into latent space - data_encoded = loaded_model.predict_on_batch(selected_data_df) - data_encoded_df = pd.DataFrame(data_encoded, index=selected_data_df.index) - - # Get centroid of original data - centroid = data_encoded_df.mean(axis=0) - - # Add individual vectors(centroid, sample point) to new_centroid - - # Encode original gene expression data into latent space - data_encoded_all = loaded_model.predict_on_batch(normalized_data) - data_encoded_all_df = pd.DataFrame(data_encoded_all, index=normalized_data.index) - - data_encoded_all_df.head() - - # Find a new location in the latent space by sampling from the latent space - encoded_means = data_encoded_all_df.mean(axis=0) - encoded_stds = data_encoded_all_df.std(axis=0) - - latent_dim = int(latent_dim) - new_centroid = np.zeros(latent_dim) - - for j in range(latent_dim): - new_centroid[j] = np.random.normal(encoded_means[j], encoded_stds[j]) - - shift_vec_df = new_centroid - centroid - # print(shift_vec_df) - - simulated_data_encoded_df = data_encoded_df.apply( - lambda x: x + shift_vec_df, axis=1 - ) - - # Decode simulated data into raw gene space - simulated_data_decoded = loaded_decode_model.predict_on_batch( - simulated_data_encoded_df - ) - - simulated_data_decoded_df = pd.DataFrame( - simulated_data_decoded, - index=simulated_data_encoded_df.index, - columns=selected_data_df.columns, - ) - - simulated_data_scaled = scaler.inverse_transform(simulated_data_decoded_df) - - simulated_data_scaled_df = pd.DataFrame( - simulated_data_scaled, - columns=simulated_data_decoded_df.columns, - index=simulated_data_decoded_df.index, - ) - - # Save - out_file = os.path.join( - local_dir, - "pseudo_experiment", - "selected_simulated_data_" + selected_experiment_id + "_" + str(run) + ".txt", - ) - - simulated_data_scaled_df.to_csv(out_file, float_format="%.3f", sep="\t") - - out_encoded_file = os.path.join( - local_dir, - "pseudo_experiment", - f"selected_simulated_encoded_data_{selected_experiment_id}_{run}.txt", - ) - - simulated_data_encoded_df.to_csv(out_encoded_file, float_format="%.3f", sep="\t") diff --git a/ponyo/helper_vae.py b/ponyo/helper_vae.py index 5175b17..9e2ecd0 100644 --- a/ponyo/helper_vae.py +++ b/ponyo/helper_vae.py @@ -12,7 +12,6 @@ import os import tensorflow as tf import numpy as np -import random as rn # The below is necessary in Python 3.2.3 onwards to # have reproducible behavior for certain hash-based operations. @@ -32,7 +31,7 @@ # The below is necessary for starting core Python generated random numbers # in a well-defined state. -rn.seed(12345) +np.random.seed(12345) # Force TensorFlow to use single thread. # Multiple threads are a potential source of diff --git a/ponyo/pipeline.py b/ponyo/pipeline.py deleted file mode 100644 index 908f333..0000000 --- a/ponyo/pipeline.py +++ /dev/null @@ -1,483 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 11 March 2020 - -Scripts called by analysis notebooks to run entire the entire analysis pipeline: -1. setup directories -2. Process data -3. Train VAE -4. Run simulation experiment, described in `simulations.py` -""" - -from ponyo import vae, utils, simulations -import os -import pandas as pd -import numpy as np -import random -import math -from sklearn import preprocessing - -from joblib import Parallel, delayed - -# import multiprocessing - -import warnings - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - - -random.seed(123) - - -def setup_dir(config_file): - """ - Create directories to store files created by VAE training and - simulation analysis - - Arguments - ---------- - config_file: str - File containing user defined parameters - """ - - base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) - - # Read in config variables - params = utils.read_config(config_file) - - # Load parameters - local_dir = params["local_dir"] - dataset_name = params["dataset_name"] - train_architecture = params["NN_architecture"] - - # Create VAE directories - output_dirs = [ - os.path.join(base_dir, dataset_name, "models"), - os.path.join(base_dir, dataset_name, "logs"), - ] - - # Check if analysis output directory exist otherwise create - for each_dir in output_dirs: - if not os.path.exists(each_dir): - print("creating new directory: {}".format(each_dir)) - os.makedirs(each_dir, exist_ok=True) - - # Check if NN architecture directory exist otherwise create - for each_dir in output_dirs: - new_dir = os.path.join(each_dir, train_architecture) - if not os.path.exists(new_dir): - print("creating new directory: {}".format(new_dir)) - os.makedirs(new_dir, exist_ok=True) - - # Create results directories - output_dirs = [os.path.join(base_dir, dataset_name, "results")] - - # Check if analysis output directory exist otherwise create - for each_dir in output_dirs: - if not os.path.exists(each_dir): - print("creating new directory: {}".format(each_dir)) - os.makedirs(each_dir, exist_ok=True) - - # Check if 'saved_variables' directory exist otherwise create - for each_dir in output_dirs: - new_dir = os.path.join(each_dir, "saved_variables") - - if not os.path.exists(new_dir): - print("creating new directory: {}".format(new_dir)) - os.makedirs(new_dir, exist_ok=True) - - # Create local directories to store intermediate files - output_dirs = [ - os.path.join(local_dir, "experiment_simulated"), - os.path.join(local_dir, "partition_simulated"), - ] - - # Check if analysis output directory exist otherwise create - for each_dir in output_dirs: - if not os.path.exists(each_dir): - print("creating new directory: {}".format(each_dir)) - os.makedirs(each_dir, exist_ok=True) - - -def transpose_data(data_file, out_file): - """ - Transpose and save expression data so that it is of the form sample x gene - - Arguments - ---------- - data_file: str - File containing gene expression - - out_file: str - File containing transposed gene expression - """ - # Read data - data = pd.read_csv(data_file, header=0, sep="\t", index_col=0) - - data.T.to_csv(out_file, sep="\t", compression="xz") - - -def normalize_expression_data( - base_dir, config_file, raw_input_data_file, normalized_data_file -): - """ - 0-1 normalize the expression data. - - Arguments - ---------- - base_dir: str - Root directory containing analysis subdirectories - - config_file: str - File containing user defined parameters - - raw_input_data_file: str - File containing raw expression data - - normalize_data_file: - Output file containing normalized expression data - """ - - # Read data - data = pd.read_csv(raw_input_data_file, header=0, sep="\t", index_col=0) - print( - "input: dataset contains {} samples and {} genes".format( - data.shape[0], data.shape[1] - ) - ) - - # 0-1 normalize per gene - data_scaled_df = preprocessing.MinMaxScaler().fit_transform(data) - data_scaled_df = pd.DataFrame( - data_scaled_df, columns=data.columns, index=data.index - ) - - print( - "Output: normalized dataset contains {} samples and {} genes".format( - data_scaled_df.shape[0], data_scaled_df.shape[1] - ) - ) - - # Save scaled data - data_scaled_df.to_csv(normalized_data_file, sep="\t", compression="xz") - - -def create_experiment_id_file(metadata_file, input_data_file, output_file, config_file): - """ - Create file with experiment ids that are associated with expression data - - Arguments - ---------- - metadata_file: str - File containing metadata annotations per sample - - input_data_file: str - File containing normalized expression data - - output_file: str - File containing experiment ids with expression data and sample annotations - - config_file: str - File containing user defined parameters - - """ - # Read in metadata - metadata = pd.read_csv(metadata_file, header=0, sep="\t", index_col=0) - - # Read in expression data - normalized_data = pd.read_csv(input_data_file, header=0, sep="\t", index_col=0) - - # Read in config variables - params = utils.read_config(config_file) - - # Load parameters - sample_id_colname = params["metadata_colname"] - dataset_name = params["dataset_name"] - - # Get sample id that maps between metadata and expression files - map_experiment_sample = metadata[[sample_id_colname]] - - # Get all unique experiment ids - experiment_ids = np.unique(np.array(map_experiment_sample.index)).tolist() - print("There are {} experiments in the compendium".format(len(experiment_ids))) - - # Get only sample ids that have expression data available - sample_ids_with_gene_expression = list(normalized_data.index) - - # Get associated experiment ids with expression data - experiment_ids_with_gene_expression = [] - - for experiment_id in experiment_ids: - - if "human" in dataset_name.lower(): - # Some project id values are descriptions - # We will skip these - if len(experiment_id) == 9: - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata[sample_id_colname]) - - if any(x in sample_ids_with_gene_expression for x in sample_ids): - experiment_ids_with_gene_expression.append(experiment_id) - else: - selected_metadata = metadata.loc[experiment_id] - sample_ids = list(selected_metadata[sample_id_colname]) - - if any(x in sample_ids_with_gene_expression for x in sample_ids): - experiment_ids_with_gene_expression.append(experiment_id) - - print( - "There are {} experiments with gene expression data".format( - len(experiment_ids_with_gene_expression) - ) - ) - - # Save file with experiment ids - experiment_ids_with_gene_expression_df = pd.DataFrame( - experiment_ids_with_gene_expression, columns=["experiment_id"] - ) - experiment_ids_with_gene_expression_df.to_csv(output_file, sep="\t") - print( - "{} experiment ids saved to file".format( - len(experiment_ids_with_gene_expression) - ) - ) - - -def train_vae(config_file, input_data_file): - """ - Trains VAE model using parameters set in config file - - Arguments - ---------- - config_file: str - File containing user defined parameters - - input_data_file: str - File path corresponding to input dataset to use - - """ - - # Read in config variables - params = utils.read_config(config_file) - - # Load parameters - base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) - dataset_name = params["dataset_name"] - learning_rate = params["learning_rate"] - batch_size = params["batch_size"] - epochs = params["epochs"] - kappa = params["kappa"] - intermediate_dim = params["intermediate_dim"] - latent_dim = params["latent_dim"] - epsilon_std = params["epsilon_std"] - train_architecture = params["NN_architecture"] - validation_frac = params["validation_frac"] - - # Read data - normalized_data = pd.read_csv(input_data_file, header=0, sep="\t", index_col=0) - - print( - "input dataset contains {} samples and {} genes".format( - normalized_data.shape[0], normalized_data.shape[1] - ) - ) - - # Train (VAE) - vae.tybalt_2layer_model( - learning_rate, - batch_size, - epochs, - kappa, - intermediate_dim, - latent_dim, - epsilon_std, - normalized_data, - base_dir, - dataset_name, - train_architecture, - validation_frac, - ) - - -def run_simulation(config_file, input_data_file, corrected, experiment_ids_file=None): - """ - Runs simulation experiment without applying correction method - - Arguments - ---------- - config_file: str - File containing user defined parameters - - input_data_file: str - File path corresponding to input dataset to use - - corrected: bool - True if simulation is applying noise correction - - experiment_ids_file: str - File containing experiment ids with expression data associated generated from ```create_experiment_id_file``` - - """ - - # Read in config variables - params = utils.read_config(config_file) - - # Load parameters - dataset_name = params["dataset_name"] - simulation_type = params["simulation_type"] - NN_architecture = params["NN_architecture"] - use_pca = params["use_pca"] - num_PCs = params["num_PCs"] - local_dir = params["local_dir"] - correction_method = params["correction_method"] - sample_id_colname = params["metadata_colname"] - iterations = params["iterations"] - num_cores = params["num_cores"] - - if "sample" in simulation_type: - num_simulated_samples = params["num_simulated_samples"] - lst_num_experiments = params["lst_num_experiments"] - else: - num_simulated_experiments = params["num_simulated_experiments"] - lst_num_partitions = params["lst_num_partitions"] - - # Output files - # base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) - base_dir = os.path.abspath(os.pardir) - if corrected: - similarity_uncorrected_file = os.path.join( - base_dir, - dataset_name, - "results", - "saved_variables", - f"{dataset_name}_{simulation_type}_svcca_corrected_{correction_method}.pickle", - ) - - ci_uncorrected_file = os.path.join( - base_dir, - dataset_name, - "results", - "saved_variables", - f"{dataset_name}_{simulation_type}_ci_corrected_{correction_method}.pickle", - ) - - else: - similarity_uncorrected_file = os.path.join( - base_dir, - dataset_name, - "results", - "saved_variables", - f"{dataset_name}_{simulation_type}_svcca_uncorrected_{correction_method}.pickle", - ) - - ci_uncorrected_file = os.path.join( - base_dir, - dataset_name, - "results", - "saved_variables", - f"{dataset_name}_{simulation_type}_ci_uncorrected_{correction_method}.pickle", - ) - - similarity_permuted_file = os.path.join( - base_dir, - dataset_name, - "results", - "saved_variables", - dataset_name + "_" + simulation_type + "_permuted", - ) - - # Run multiple simulations - if "sample" in simulation_type: - if corrected: - file_prefix = "Experiment_corrected" - else: - file_prefix = "Experiment" - results = Parallel(n_jobs=num_cores, verbose=100)( - delayed(simulations.sample_level_simulation)( - i, - NN_architecture, - dataset_name, - simulation_type, - num_simulated_samples, - lst_num_experiments, - corrected, - correction_method, - use_pca, - num_PCs, - file_prefix, - input_data_file, - local_dir, - base_dir, - ) - for i in iterations - ) - - else: - if corrected: - file_prefix = "Partition_corrected" - else: - file_prefix = "Partition" - results = Parallel(n_jobs=num_cores, verbose=100)( - delayed(simulations.experiment_level_simulation)( - i, - NN_architecture, - dataset_name, - simulation_type, - num_simulated_experiments, - lst_num_partitions, - corrected, - correction_method, - use_pca, - num_PCs, - file_prefix, - input_data_file, - experiment_ids_file, - sample_id_colname, - local_dir, - base_dir, - ) - for i in iterations - ) - - # permuted score - permuted_score = results[0][0] - - # Concatenate output dataframes - all_svcca_scores = pd.DataFrame() - - for i in iterations: - all_svcca_scores = pd.concat([all_svcca_scores, results[i][1]], axis=1) - - # Get mean svcca score for each row (number of experiments) - mean_scores = all_svcca_scores.mean(axis=1).to_frame() - mean_scores.columns = ["score"] - print(mean_scores) - - # Get standard dev for each row (number of experiments) - std_scores = (all_svcca_scores.std(axis=1) / math.sqrt(10)).to_frame() - std_scores.columns = ["score"] - print(std_scores) - - # Get confidence interval for each row (number of experiments) - # z-score for 95% confidence interval - err = std_scores * 1.96 - - # Get boundaries of confidence interval - ymax = mean_scores + err - ymin = mean_scores - err - - ci = pd.concat([ymin, ymax], axis=1) - ci.columns = ["ymin", "ymax"] - print(ci) - - # Pickle dataframe of mean scores scores for first run, interval - mean_scores.to_pickle(similarity_uncorrected_file) - ci.to_pickle(ci_uncorrected_file) - np.save(similarity_permuted_file, permuted_score) diff --git a/ponyo/similarity_metric_parallel.py b/ponyo/similarity_metric_parallel.py deleted file mode 100644 index 1aa5c25..0000000 --- a/ponyo/similarity_metric_parallel.py +++ /dev/null @@ -1,264 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 30 August 2019 - -Scripts to compare simulated compendium with simulated compendia with noise added. -""" - -from sklearn.decomposition import PCA -from ponyo import cca_core -import os -import pandas as pd -import numpy as np -import random -import warnings - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - -random.seed(123) - - -def read_data(simulated_data, file_prefix, run, local_dir, dataset_name, analysis_name): - """ - Script used by all similarity metrics to: - - 1. Read in simulated data into data - 2. Generate directory where simulated experiment data is already stored - 3. Read in simulated data with a single experiment/partitioning - - Returns - -------- - simulated_data: dataframe - Dataframe containing simulated gene expression data - - file_prefix: str - File prefix to determine whether to use data before correction ("Experiment" or "Partition") - or after correction ("Experiment_corrected" or "Parition_corrected") - - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - local_dir: str - Root directory where simulated data with experiments/partitionings are be stored - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings are be stored. - Format of the directory name is __lvl_sim - - """ - - if "experiment_id" in list(simulated_data.columns): - simulated_data.drop(columns="experiment_id", inplace=True) - - # Compendium directory - compendium_dir = os.path.join( - local_dir, "partition_simulated", dataset_name + "_" + analysis_name - ) - else: - # Compendium directory - compendium_dir = os.path.join( - local_dir, "experiment_simulated", dataset_name + "_" + analysis_name - ) - - # Get compendium with 1 experiment or partitioning - compendium_1_file = os.path.join( - compendium_dir, file_prefix + "_1" + "_" + str(run) + ".txt.xz" - ) - - compendium_1 = pd.read_csv(compendium_1_file, header=0, index_col=0, sep="\t") - - # Transpose compendium df because output format - # for correction method is swapped - if file_prefix.split("_")[-1] == "corrected": - compendium_1 = compendium_1.T - - return [simulated_data, compendium_dir, compendium_1] - - -def sim_svcca_io( - simulated_data, - permuted_simulated_data, - corrected, - file_prefix, - run, - num_experiments, - use_pca, - num_PCs, - local_dir, - dataset_name, - analysis_name, -): - """ - We want to determine if adding multiple simulated experiments is able to capture the - biological signal that is present in the original data: - How much of the simulated data with a single experiment is captured in the simulated data with multiple experiments? - - In other words, we want to compare the representation of the single simulated experiment and multiple simulated experiments. - - Note: For the representation of the simulated data, users can choose to use: - 1. All genes - 2. PCA representation with dimensions - - We will use **SVCCA** to compare these two representations. - - How does it work? - Singular Vector Canonical Correlation Analysis - [Raghu et al. 2017](https://arxiv.org/pdf/1706.05806.pdf) [(github)](https://github.com/google/svcca) - to the UMAP and PCA representations of our batch 1 simulated dataset vs batch n simulated datasets. - The output of the SVCCA analysis is the SVCCA mean similarity score. This single number can be interpreted - as a measure of similarity between our original data vs batched dataset. - - Briefly, SVCCA uses Singular Value Decomposition (SVD) to extract the components explaining 99% of the variation. - This is done to remove potential dimensions described by noise. Next, SVCCA performs a Canonical Correlation Analysis (CCA) - on the SVD matrices to identify maximum correlations of linear combinations of both input matrices. - The algorithm will identify the canonical correlations of highest magnitude across and within algorithms of the same dimensionality. - - Arguments - ---------- - simulated_data: df - Dataframe containing simulated gene expression data - - permuted_simulated_data: df - Dataframe containing permuted simulated gene expression data - - corrected: bool - True if correction was applied - - file_prefix: str - File prefix to determine whether to use data before correction ("Experiment" or "Partition") - or after correction ("Experiment_corrected" or "Parition_corrected") - - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - num_experiments: list - List of different numbers of experiments/partitions that were added to - simulated data - - use_pca: bool - True if want to represent expression data in top PCs before - calculating similarity - - num_PCs: int - Number of top PCs to use to represent expression data - - local_dir: str - Root directory where simulated data with experiments/partitionings are be stored - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings are be stored. - Format of the directory name is __lvl_sim - - - Returns - -------- - output_list: array - Similarity scores for each number of experiment/partition added - - permuted_svcca: float - Similarity score comparing the permuted data to the simulated data - - """ - - [simulated_data, compendium_dir, compendium_1] = read_data( - simulated_data, file_prefix, run, local_dir, dataset_name, analysis_name - ) - - output_list = [] - - for i in range(len(num_experiments)): - if "sample" in analysis_name: - print( - "Calculating SVCCA score for 1 experiment vs {} experiments..".format( - num_experiments[i] - ) - ) - else: - print( - "Calculating SVCCA score for 1 partition vs {} partitions..".format( - num_experiments[i] - ) - ) - - # All experiments/partitions - compendium_other_file = os.path.join( - compendium_dir, - file_prefix + "_" + str(num_experiments[i]) + "_" + str(run) + ".txt.xz", - ) - - compendium_other = pd.read_csv( - compendium_other_file, header=0, index_col=0, sep="\t" - ) - - # Transpose compendium df because output format - # for correction method is swapped - if corrected: - compendium_other = compendium_other.T - - if use_pca: - # PCA projection - pca = PCA(n_components=num_PCs) - - original_data_PCAencoded = pca.fit_transform(compendium_1) - - original_data_df = pd.DataFrame( - original_data_PCAencoded, index=compendium_1.index - ) - # Use trained model to encode expression data into SAME latent space - noisy_original_data_PCAencoded = pca.fit_transform(compendium_other) - noisy_original_data_df = pd.DataFrame( - noisy_original_data_PCAencoded, index=compendium_other.index - ) - else: - # Use trained model to encode expression data into SAME latent space - original_data_df = compendium_1 - - # Use trained model to encode expression data into SAME latent space - noisy_original_data_df = compendium_other - - # SVCCA - svcca_results = cca_core.get_cca_similarity( - original_data_df.T, noisy_original_data_df.T, verbose=False - ) - - output_list.append(np.mean(svcca_results["cca_coef1"])) - - # SVCCA of permuted data - if use_pca: - simulated_data_PCAencoded = pca.fit_transform(simulated_data) - simulated_data_PCAencoded_df = pd.DataFrame( - simulated_data_PCAencoded, index=simulated_data.index - ) - - shuffled_data_PCAencoded = pca.fit_transform(permuted_simulated_data) - shuffled_data_PCAencoded_df = pd.DataFrame( - shuffled_data_PCAencoded, index=permuted_simulated_data.index - ) - - svcca_results = cca_core.get_cca_similarity( - simulated_data_PCAencoded_df.T, shuffled_data_PCAencoded_df.T, verbose=False - ) - - permuted_svcca = np.mean(svcca_results["cca_coef1"]) - - else: - svcca_results = cca_core.get_cca_similarity( - simulated_data.T, permuted_simulated_data.T, verbose=False - ) - - permuted_svcca = np.mean(svcca_results["cca_coef1"]) - - return output_list, permuted_svcca diff --git a/ponyo/simulate_expression_data.py b/ponyo/simulate_expression_data.py new file mode 100644 index 0000000..892b5a3 --- /dev/null +++ b/ponyo/simulate_expression_data.py @@ -0,0 +1,586 @@ +""" +Author: Alexandra Lee +Date Created: 30 August 2019 + +These scripts generate simulated compendia using the low-dimensional +representation of the gene expressiond data, created by training the +VAE on gene expression data. +""" + +import os +import pandas as pd +import numpy as np +import glob +import warnings +from keras.models import load_model +from sklearn import preprocessing + + +def fxn(): + warnings.warn("deprecated", DeprecationWarning) + + +with warnings.catch_warnings(): + warnings.simplefilter("ignore") + fxn() + +np.random.seed(123) + + +def get_sample_ids(experiment_id, dataset_name, sample_id_colname): + """ + Returns sample ids (found in gene expression df) associated with + a given list of experiment ids (found in the metadata) + + Arguments + ---------- + experiment_ids_file: str + File containing all cleaned experiment ids + + dataset_name: str + Name for analysis directory. Either "Human" or "Pseudomonas" + + sample_id_colname: str + Column header that contains sample id that maps expression data + and metadata + + """ + base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) + + if "pseudomonas" in dataset_name.lower(): + # metadata file + mapping_file = os.path.join( + base_dir, dataset_name, "data", "metadata", "sample_annotations.tsv" + ) + + # Read in metadata + metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) + + selected_metadata = metadata.loc[experiment_id] + sample_ids = list(selected_metadata[sample_id_colname]) + + else: + # metadata file + mapping_file = os.path.join( + base_dir, dataset_name, "data", "metadata", "recount2_metadata.tsv" + ) + + # Read in metadata + metadata = pd.read_csv(mapping_file, header=0, sep="\t", index_col=0) + + selected_metadata = metadata.loc[experiment_id] + sample_ids = list(selected_metadata[sample_id_colname]) + + return sample_ids + + +def simulate_by_random_sampling( + normalized_data_file, + NN_architecture, + dataset_name, + analysis_name, + num_simulated_samples, + local_dir, + base_dir, +): + """ + Generate simulated data by randomly sampling from VAE latent space. + + Workflow: + 1. Input gene expression data the entire compendium from the + 2. Encode this input into a latent space using the trained VAE model + 3. Randomly sample samples from the latent space. + For each encoded feature, sample from a distribution using the + the mean and standard deviation for that feature + 4. Decode the samples + + This compendium is generated by randomly sampling samples from the + latent space distribution of the compendium. All samples are treated equal, where + association with a specific experiment is ignored. + + + Arguments + ---------- + normalized_data_file: str + File containing normalized gene expression data + + ------------------------------| PA0001 | PA0002 |... + 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... + 54375-4-05.CEL | 0.7789 | 0.7678 |... + ... | ... | ... |... + + NN_architecture: str + Name of neural network architecture to use. + Format 'NN__' + + dataset_name: str + Name of analysis directory, Either "Human" or "Pseudomonas" + + analysis_name: str + Parent directory where simulated data with experiments/partitionings will be stored. + Format of the directory name is __lvl_sim + + number_simulated_samples: int + Number of samples to simulate + + local_dir: str + Parent directory on local machine to store intermediate results + + base_dir: str + Root directory containing analysis subdirectories + + Returns + -------- + simulated dataframe + + """ + + # Files + NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) + model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] + + weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] + + model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] + + weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] + + # Load saved models + loaded_model = load_model(model_encoder_file) + loaded_decode_model = load_model(model_decoder_file) + + loaded_model.load_weights(weights_encoder_file) + loaded_decode_model.load_weights(weights_decoder_file) + + # Read data + normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) + + print( + "Normalized gene expression data contains {} samples and {} genes".format( + normalized_data.shape[0], normalized_data.shape[1] + ) + ) + + # Simulate data + + # Encode into latent space + data_encoded = loaded_model.predict_on_batch(normalized_data) + data_encoded_df = pd.DataFrame(data_encoded, index=normalized_data.index) + + latent_dim = data_encoded_df.shape[1] + + # Get mean and standard deviation per encoded feature + encoded_means = data_encoded_df.mean(axis=0) + encoded_stds = data_encoded_df.std(axis=0) + + # Generate samples + new_data = np.zeros([num_simulated_samples, latent_dim]) + for j in range(latent_dim): + # Use mean and std for feature + new_data[:, j] = np.random.normal( + encoded_means[j], encoded_stds[j], num_simulated_samples + ) + + # Use standard normal + # new_data[:,j] = np.random.normal(0, 1, num_simulated_samples) + + new_data_df = pd.DataFrame(data=new_data) + + # Decode samples + new_data_decoded = loaded_decode_model.predict_on_batch(new_data_df) + simulated_data = pd.DataFrame(data=new_data_decoded) + + print( + "Return: simulated gene expression data containing {} samples and {} genes".format( + simulated_data.shape[0], simulated_data.shape[1] + ) + ) + + return simulated_data + + +def simulate_by_latent_transformation( + num_simulated_experiments, + normalized_data_file, + NN_architecture, + dataset_name, + analysis_name, + experiment_ids_file, + sample_id_colname, + local_dir, + base_dir, +): + """ + Generate simulated data by randomly sampling some number of experiments + and linearly shifting the gene expression in the VAE latent space, + preserving the relationship between samples within an experiment. + + Workflow: + 1. Randomly select 1 experiment and get the gene expression data for that + experiment (here we are assuming that there is only biological variation + within this experiment) + 2. Encode this experiment into a latent space using the trained VAE model + 3. Encode the entire dataset from the + 3a. Select a random point in the encoded space. For each encoded feature, sample + from a distribution using the mean and standard deviation for that feature + 4. Calculate the shift_vec_df = centroid(encoded experiment) - random encoded experiment + 5. Shift all the samples from the experiment by the shift_vec_df + 6. Decode the samples + 7. Repeat steps 1-6 for + + This will generate a simulated compendium of different gene expression experiments that + are of a similar type to the original data but with different perturbations + + Arguments + ---------- + number_simulated_experiments: int + Number of experiments to simulate + + normalized_data_file: str + File containing normalized gene expression data + + ------------------------------| PA0001 | PA0002 |... + 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... + 54375-4-05.CEL | 0.7789 | 0.7678 |... + ... | ... | ... |... + + NN_architecture: str + Name of neural network architecture to use. + Format 'NN__' + + dataset_name: str + Name for analysis directory. Either "Human" or "Pseudomonas" + + analysis_name: str + Parent directory where simulated data with experiments/partitionings will be stored. + Format of the directory name is __lvl_sim + + experiment_ids_file: str + File containing all cleaned experiment ids + + sample_id_colname: str + Column header that contains sample id that maps expression data and metadata + + local_dir: str + Parent directory on local machine to store intermediate results + + base_dir: str + Root directory containing analysis subdirectories + + Returns + -------- + simulated dataframe + + """ + + # Files + NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) + latent_dim = NN_architecture.split("_")[-1] + + model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] + + weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] + + model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] + + weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] + + # Load saved models + loaded_model = load_model(model_encoder_file) + loaded_decode_model = load_model(model_decoder_file) + + loaded_model.load_weights(weights_encoder_file) + loaded_decode_model.load_weights(weights_decoder_file) + + # Read data + experiment_ids = pd.read_csv(experiment_ids_file, header=0, sep="\t", index_col=0) + + normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) + + print( + "Normalized gene expression data contains {} samples and {} genes".format( + normalized_data.shape[0], normalized_data.shape[1] + ) + ) + + # Simulate data + + simulated_data_df = pd.DataFrame() + + for i in range(num_simulated_experiments): + + selected_experiment_id = np.random.choice( + experiment_ids["experiment_id"], size=1 + )[0] + + # Get corresponding sample ids + sample_ids = get_sample_ids( + selected_experiment_id, dataset_name, sample_id_colname + ) + + # Remove any missing sample ids + sample_ids = list(filter(str.strip, sample_ids)) + + # Remove any sample_ids that are not found in gene expression data + # There are some experiments where most samples have gene expression but a + # few do not + sample_ids = [ + sample for sample in sample_ids if sample in normalized_data.index + ] + + # Gene expression data for selected samples + selected_data_df = normalized_data.loc[sample_ids] + + # Encode selected experiment into latent space + data_encoded = loaded_model.predict_on_batch(selected_data_df) + data_encoded_df = pd.DataFrame(data_encoded, index=selected_data_df.index) + + # Get centroid of original data + centroid = data_encoded_df.mean(axis=0) + + # Encode original gene expression data into latent space + data_encoded_all = loaded_model.predict_on_batch(normalized_data) + data_encoded_all_df = pd.DataFrame( + data_encoded_all, index=normalized_data.index + ) + + data_encoded_all_df.head() + + # Find a new location in the latent space by sampling from the latent space + encoded_means = data_encoded_all_df.mean(axis=0) + encoded_stds = data_encoded_all_df.std(axis=0) + + latent_dim = int(latent_dim) + new_centroid = np.zeros(latent_dim) + + for j in range(latent_dim): + new_centroid[j] = np.random.normal(encoded_means[j], encoded_stds[j]) + + shift_vec_df = new_centroid - centroid + + simulated_data_encoded_df = data_encoded_df.apply( + lambda x: x + shift_vec_df, axis=1 + ) + + # Decode simulated data into raw gene space + simulated_data_decoded = loaded_decode_model.predict_on_batch( + simulated_data_encoded_df + ) + + simulated_data_decoded_df = pd.DataFrame( + simulated_data_decoded, + index=simulated_data_encoded_df.index, + columns=selected_data_df.columns, + ) + + # Add experiment label + simulated_data_decoded_df["experiment_id"] = ( + selected_experiment_id + "_" + str(i) + ) + + # Concatenate dataframe per experiment together + simulated_data_df = pd.concat([simulated_data_df, simulated_data_decoded_df]) + + # re-normalize per gene 0-1 + simulated_data_numeric_df = simulated_data_df.drop( + columns=["experiment_id"], inplace=False + ) + + simulated_data_scaled = preprocessing.MinMaxScaler().fit_transform( + simulated_data_numeric_df + ) + + simulated_data_scaled_df = pd.DataFrame( + simulated_data_scaled, + columns=simulated_data_numeric_df.columns, + index=simulated_data_numeric_df.index, + ) + + simulated_data_scaled_df["experiment_id"] = simulated_data_df["experiment_id"] + + # If sampling with replacement, then there will be multiple sample ids that are the same + # therefore we want to reset the index. + simulated_data_scaled_df.reset_index(drop=True, inplace=True) + + print( + "Return: simulated gene expression data containing {} samples and {} genes".format( + simulated_data_scaled_df.shape[0], simulated_data_scaled_df.shape[1] + ) + ) + + # Save before and after experiment for visualization validation + before_encoded_file = os.path.join(local_dir, "simulated_before_encoded.txt") + after_encoded_file = os.path.join(local_dir, "simulated_after_encoded.txt") + + data_encoded_df.to_csv(before_encoded_file, float_format="%.3f", sep="\t") + simulated_data_encoded_df.to_csv(after_encoded_file, float_format="%.3f", sep="\t") + + return simulated_data_scaled_df + + +def shift_template_experiment( + normalized_data_file, + selected_experiment_id, + sample_id_colname, + NN_architecture, + dataset_name, + scaler, + local_dir, + base_dir, + run, +): + """ + Generate new simulated experiment using the selected_experiment_id as a template + experiment using the same workflow as `simulate_by_latent_transform` + + This will return a file with a single simulated experiment following the workflow mentioned. + This function can be run multiple times to generate multiple simulated experiments from a + single selected_experiment_id. + + Arguments + ---------- + normalized_data_file: str + File containing normalized gene expression data + + ------------------------------| PA0001 | PA0002 |... + 05_PA14000-4-2_5-10-07_S2.CEL | 0.8533 | 0.7252 |... + 54375-4-05.CEL | 0.7789 | 0.7678 |... + ... | ... | ... |... + + selected_experiment_id: str + Experiment id selected as template + + sample_id_colname: str + Column header that contains sample id that maps expression data and metadata + + NN_architecture: str + Name of neural network architecture to use. + Format 'NN__' + + dataset_name: str + Name for analysis directory. Either "Human" or "Pseudomonas" + + scaler: minmax model + Model used to transform data into a different range + + local_dir: str + Parent directory on local machine to store intermediate results + + base_dir: str + Root directory containing analysis subdirectories + + run: int + Simulation run + + Returns + -------- + simulated_data_file: str + File containing simulated gene expression data + + """ + + # Files + NN_dir = os.path.join(base_dir, dataset_name, "models", NN_architecture) + latent_dim = NN_architecture.split("_")[-1] + + model_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_model.h5"))[0] + + weights_encoder_file = glob.glob(os.path.join(NN_dir, "*_encoder_weights.h5"))[0] + + model_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_model.h5"))[0] + + weights_decoder_file = glob.glob(os.path.join(NN_dir, "*_decoder_weights.h5"))[0] + + # Load saved models + loaded_model = load_model(model_encoder_file, compile=False) + loaded_decode_model = load_model(model_decoder_file, compile=False) + + loaded_model.load_weights(weights_encoder_file) + loaded_decode_model.load_weights(weights_decoder_file) + + # Read data + normalized_data = pd.read_csv(normalized_data_file, header=0, sep="\t", index_col=0) + + # Get corresponding sample ids + sample_ids = get_sample_ids(selected_experiment_id, dataset_name, sample_id_colname) + + # Gene expression data for selected samples + selected_data_df = normalized_data.loc[sample_ids] + + # Encode selected experiment into latent space + data_encoded = loaded_model.predict_on_batch(selected_data_df) + data_encoded_df = pd.DataFrame(data_encoded, index=selected_data_df.index) + + # Get centroid of original data + centroid = data_encoded_df.mean(axis=0) + + # Add individual vectors(centroid, sample point) to new_centroid + + # Encode original gene expression data into latent space + data_encoded_all = loaded_model.predict_on_batch(normalized_data) + data_encoded_all_df = pd.DataFrame(data_encoded_all, index=normalized_data.index) + + data_encoded_all_df.head() + + # Find a new location in the latent space by sampling from the latent space + encoded_means = data_encoded_all_df.mean(axis=0) + encoded_stds = data_encoded_all_df.std(axis=0) + + latent_dim = int(latent_dim) + new_centroid = np.zeros(latent_dim) + + for j in range(latent_dim): + new_centroid[j] = np.random.normal(encoded_means[j], encoded_stds[j]) + + shift_vec_df = new_centroid - centroid + # print(shift_vec_df) + + simulated_data_encoded_df = data_encoded_df.apply( + lambda x: x + shift_vec_df, axis=1 + ) + + # Decode simulated data into raw gene space + simulated_data_decoded = loaded_decode_model.predict_on_batch( + simulated_data_encoded_df + ) + + simulated_data_decoded_df = pd.DataFrame( + simulated_data_decoded, + index=simulated_data_encoded_df.index, + columns=selected_data_df.columns, + ) + + # Un-normalize the data in order to run DE analysis downstream + simulated_data_scaled = scaler.inverse_transform(simulated_data_decoded_df) + + simulated_data_scaled_df = pd.DataFrame( + simulated_data_scaled, + columns=simulated_data_decoded_df.columns, + index=simulated_data_decoded_df.index, + ) + + # Save template data for visualization validation + test_file = os.path.join( + local_dir, + "pseudo_experiment", + "template_normalized_data_" + selected_experiment_id + "_test.txt", + ) + + selected_data_df.to_csv(test_file, float_format="%.3f", sep="\t") + + # Save + out_file = os.path.join( + local_dir, + "pseudo_experiment", + "selected_simulated_data_" + selected_experiment_id + "_" + str(run) + ".txt", + ) + + simulated_data_scaled_df.to_csv(out_file, float_format="%.3f", sep="\t") + + out_encoded_file = os.path.join( + local_dir, + "pseudo_experiment", + f"selected_simulated_encoded_data_{selected_experiment_id}_{run}.txt", + ) + + simulated_data_encoded_df.to_csv(out_encoded_file, float_format="%.3f", sep="\t") diff --git a/ponyo/simulations.py b/ponyo/simulations.py deleted file mode 100644 index 03a596a..0000000 --- a/ponyo/simulations.py +++ /dev/null @@ -1,327 +0,0 @@ -""" -Author: Alexandra Lee -Date Created: 11 November 2019 - -Scripts to run simulation different types of simulations -(sample-level or experiment-level) -using functions in `generate_data_parallel.py` -""" -from ponyo import similarity_metric_parallel -from ponyo import generate_data_parallel -import pandas as pd -import random -import warnings - - -def fxn(): - warnings.warn("deprecated", DeprecationWarning) - - -with warnings.catch_warnings(): - warnings.simplefilter("ignore") - fxn() - -random.seed(123) - - -def sample_level_simulation( - run, - NN_architecture, - dataset_name, - analysis_name, - num_simulated_samples, - lst_num_experiments, - corrected, - correction_method, - use_pca, - num_PCs, - file_prefix, - input_file, - local_dir, - base_dir, -): - """ - This function performs runs series of scripts that performs the following steps: - 1. Simulate gene expression data, ignorning the sample-experiment relationship - 2. Add varying numbers of technical variation - 3. Compare the similarity of the gene expression structure between the simulated data - vs simulated data + technical variation. - - Arguments - ---------- - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings will be stored. - Format of the directory name is __lvl_sim - - num_simulated_samples: int - Number of samples to simulate - - lst_num_experiments: list - List of different numbers of experiments to add to - simulated data. These are the number of sources of - technical variation that are added to the simulated - data - - corrected: bool - True if correction was applied - - correction_method: str - Noise correction method to use. Either 'limma' or 'combat - - use_pca: bool - True if want to represent expression data in top PCs before - calculating similarity - - num_PCs: int - Number of top PCs to use to represent expression data - - file_prefix: str - File prefix to determine whether to use data before correction ("Experiment" or "Partition") - or after correction ("Experiment_corrected" or "Parition_corrected") - - input_file: str - File name containing normalized gene expressiond data - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - Returns - -------- - similarity_score_df: df - Similarity scores for each number of experiment/partition added per run - - permuted_scre: df - Similarity score comparing the permuted data to the simulated data per run - - """ - - # Generate simulated data - simulated_data = generate_data_parallel.simulate_data( - input_file, - NN_architecture, - dataset_name, - analysis_name, - num_simulated_samples, - local_dir, - base_dir, - ) - - # Permute simulated data to be used as a negative control - permuted_data = generate_data_parallel.permute_data(simulated_data) - - if not corrected: - # Add technical variation - generate_data_parallel.add_experiments_io( - simulated_data, - lst_num_experiments, - run, - local_dir, - dataset_name, - analysis_name, - ) - - if corrected: - # Remove technical variation - generate_data_parallel.apply_correction_io( - local_dir, - run, - dataset_name, - analysis_name, - lst_num_experiments, - correction_method, - ) - - # Calculate similarity between compendium and compendium + noise - batch_scores, permuted_score = similarity_metric_parallel.sim_svcca_io( - simulated_data, - permuted_data, - corrected, - file_prefix, - run, - lst_num_experiments, - use_pca, - num_PCs, - local_dir, - dataset_name, - analysis_name, - ) - - # Convert similarity scores to pandas dataframe - similarity_score_df = pd.DataFrame( - data={"score": batch_scores}, index=lst_num_experiments, columns=["score"] - ) - - similarity_score_df.index.name = "number of experiments" - similarity_score_df - - # Return similarity scores and permuted score - return permuted_score, similarity_score_df - - -def experiment_level_simulation( - run, - NN_architecture, - dataset_name, - analysis_name, - num_simulated_experiments, - lst_num_partitions, - corrected, - correction_method, - use_pca, - num_PCs, - file_prefix, - input_file, - experiment_ids_file, - sample_id_colname, - local_dir, - base_dir, -): - """ - This function performs runs series of scripts that performs the following steps: - 1. Simulate gene expression data, keeping track of which sample is associated - with a given experiment - 2. Add varying numbers of technical variation - 3. Compare the similarity of the gene expression structure between the simulated data - vs simulated data + technical variation. - - Arguments - ---------- - run: int - Unique core identifier that is used to create unique filenames for intermediate files - - NN_architecture: str - Name of neural network architecture to use. - Format 'NN__' - - dataset_name: str - Name for analysis directory. Either "Human" or "Pseudomonas" - - analysis_name: str - Parent directory where simulated data with experiments/partitionings will be stored. - Format of the directory name is __lvl_sim - - num_simulated_samples: int - Number of samples to simulate - - lst_num_experiments: list - List of different numbers of partitions to add to - simulated data. These are the number of sources of - technical variation that are added to the simulated - data - - corrected: bool - True if correction was applied - - correction_method: str - Noise correction method to use. Either 'limma' or 'combat - - use_pca: bool - True if want to represent expression data in top PCs before - calculating similarity - - num_PCs: int - Number of top PCs to use to represent expression data - - file_prefix: str - File prefix to determine whether to use data before correction ("Experiment" or "Partition") - or after correction ("Experiment_corrected" or "Parition_corrected") - - input_file: str - File name containing normalized gene expressiond data - - experiment_ids_file: str - File containing all cleaned experiment ids - - sample_id_colname: str - Column header that contains sample id that maps expression data and metadata - - local_dir: str - Parent directory on local machine to store intermediate results - - base_dir: str - Root directory containing analysis subdirectories - - Returns - -------- - similarity_score_df: df - Similarity scores for each number of experiment/partition added per run - - permuted_scre: df - Similarity score comparing the permuted data to the simulated data per run - """ - - # Generate simulated data - simulated_data = generate_data_parallel.simulate_compendium( - num_simulated_experiments, - input_file, - NN_architecture, - dataset_name, - analysis_name, - experiment_ids_file, - sample_id_colname, - local_dir, - base_dir, - ) - - # Permute simulated data to be used as a negative control - permuted_data = generate_data_parallel.permute_data(simulated_data) - - if not corrected: - # Add technical variation - generate_data_parallel.add_experiments_grped_io( - simulated_data, - lst_num_partitions, - run, - local_dir, - dataset_name, - analysis_name, - ) - - if corrected: - # Remove technical variation - generate_data_parallel.apply_correction_io( - local_dir, - run, - dataset_name, - analysis_name, - lst_num_partitions, - correction_method, - ) - - # Calculate similarity between compendium and compendium + noise - batch_scores, permuted_score = similarity_metric_parallel.sim_svcca_io( - simulated_data, - permuted_data, - corrected, - file_prefix, - run, - lst_num_partitions, - use_pca, - num_PCs, - local_dir, - dataset_name, - analysis_name, - ) - - # Convert similarity scores to pandas dataframe - similarity_score_df = pd.DataFrame( - data={"score": batch_scores}, index=lst_num_partitions, columns=["score"] - ) - - similarity_score_df.index.name = "number of partitions" - - # Return similarity scores and permuted score - return permuted_score, similarity_score_df diff --git a/ponyo/train_vae_modules.py b/ponyo/train_vae_modules.py new file mode 100644 index 0000000..b6471d6 --- /dev/null +++ b/ponyo/train_vae_modules.py @@ -0,0 +1,141 @@ +""" +Author: Alexandra Lee +Date Created: 11 March 2020 + +Scripts related to training the VAE including +1. Normalizing gene expression data +2. Wrapper function to input training parameters and run vae +training in `vae.tybalt_2layer_model` +""" + +from ponyo import vae, utils +import os +import pickle +import pandas as pd +import numpy as np +from sklearn import preprocessing + +import warnings + + +def fxn(): + warnings.warn("deprecated", DeprecationWarning) + + +with warnings.catch_warnings(): + warnings.simplefilter("ignore") + fxn() + + +np.random.seed(123) + + +def normalize_expression_data( + base_dir, config_file, raw_input_data_file, normalized_data_file +): + """ + 0-1 normalize the expression data. + + Arguments + ---------- + base_dir: str + Root directory containing analysis subdirectories + + config_file: str + File containing user defined parameters + + raw_input_data_file: str + File containing raw expression data + + normalize_data_file: + Output file containing normalized expression data + """ + # Read in config variables + params = utils.read_config(config_file) + + # Read data + data = pd.read_csv(raw_input_data_file, header=0, sep="\t", index_col=0) + print( + "input: dataset contains {} samples and {} genes".format( + data.shape[0], data.shape[1] + ) + ) + + # 0-1 normalize per gene + scaler = preprocessing.MinMaxScaler() + data_scaled_df = scaler.fit_transform(data) + data_scaled_df = pd.DataFrame( + data_scaled_df, columns=data.columns, index=data.index + ) + + print( + "Output: normalized dataset contains {} samples and {} genes".format( + data_scaled_df.shape[0], data_scaled_df.shape[1] + ) + ) + + # Save scaler transform + scaler_file = params["scaler_transform_file"] + + outfile = open(scaler_file, "wb") + pickle.dump(scaler, outfile) + outfile.close() + + # Save scaled data + data_scaled_df.to_csv(normalized_data_file, sep="\t", compression="xz") + + +def train_vae(config_file, input_data_file): + """ + Trains VAE model using parameters set in config file + + Arguments + ---------- + config_file: str + File containing user defined parameters + + input_data_file: str + File path corresponding to input dataset to use + + """ + + # Read in config variables + params = utils.read_config(config_file) + + # Load parameters + base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) + dataset_name = params["dataset_name"] + learning_rate = params["learning_rate"] + batch_size = params["batch_size"] + epochs = params["epochs"] + kappa = params["kappa"] + intermediate_dim = params["intermediate_dim"] + latent_dim = params["latent_dim"] + epsilon_std = params["epsilon_std"] + train_architecture = params["NN_architecture"] + validation_frac = params["validation_frac"] + + # Read data + normalized_data = pd.read_csv(input_data_file, header=0, sep="\t", index_col=0) + + print( + "input dataset contains {} samples and {} genes".format( + normalized_data.shape[0], normalized_data.shape[1] + ) + ) + + # Train (VAE) + vae.tybalt_2layer_model( + learning_rate, + batch_size, + epochs, + kappa, + intermediate_dim, + latent_dim, + epsilon_std, + normalized_data, + base_dir, + dataset_name, + train_architecture, + validation_frac, + ) diff --git a/ponyo/utils.py b/ponyo/utils.py index 3869f60..ad9aba2 100644 --- a/ponyo/utils.py +++ b/ponyo/utils.py @@ -1,3 +1,8 @@ +import os +import pandas as pd +import numpy as np + + def read_config(filename): """ Read and parse configuration file containing stored user variables. @@ -11,3 +16,151 @@ def read_config(filename): items = lines.split("\t", 1) config_dict[items[0]] = eval(items[1]) return config_dict + + +def setup_dir(config_file): + """ + Create directories to store files created by VAE training and + simulation analysis + + Arguments + ---------- + config_file: str + File containing user defined parameters + """ + + base_dir = os.path.abspath(os.path.join(os.getcwd(), "../")) + + # Read in config variables + params = read_config(config_file) + + # Load parameters + local_dir = params["local_dir"] + dataset_name = params["dataset_name"] + train_architecture = params["NN_architecture"] + + # Create VAE directories + output_dirs = [ + os.path.join(base_dir, dataset_name, "models"), + os.path.join(base_dir, dataset_name, "logs"), + ] + + # Check if the following directories exist + # and if not to create them + for each_dir in output_dirs: + + # Check if analysis output directory exist otherwise create + if not os.path.exists(each_dir): + print("creating new directory: {}".format(each_dir)) + os.makedirs(each_dir, exist_ok=True) + + # Check if NN architecture directory exist otherwise create + NN_dir = os.path.join(each_dir, train_architecture) + if not os.path.exists(NN_dir): + print("creating new directory: {}".format(NN_dir)) + os.makedirs(NN_dir, exist_ok=True) + + # Check if analysis output directory exist otherwise create + results_dir = os.path.join(base_dir, dataset_name, "results") + if not os.path.exists(results_dir): + print("creating new directory: {}".format(results_dir)) + os.makedirs(results_dir, exist_ok=True) + + # Check if 'saved_variables' directory exist otherwise create + var_dir = os.path.join(each_dir, "saved_variables") + if not os.path.exists(var_dir): + print("creating new directory: {}".format(var_dir)) + os.makedirs(var_dir, exist_ok=True) + + # Create local directories to store intermediate files + output_dirs = [ + os.path.join(local_dir, "experiment_simulated"), + os.path.join(local_dir, "partition_simulated"), + ] + + # Check if analysis output directory exist otherwise create + for each_dir in output_dirs: + if not os.path.exists(each_dir): + print("creating new directory: {}".format(each_dir)) + os.makedirs(each_dir, exist_ok=True) + + +def create_experiment_id_file(metadata_file, input_data_file, output_file, config_file): + """ + Create file with experiment ids that are associated with expression data + + Arguments + ---------- + metadata_file: str + File containing metadata annotations per sample + + input_data_file: str + File containing normalized expression data + + output_file: str + File containing experiment ids with expression data and sample annotations + + config_file: str + File containing user defined parameters + + """ + # Read in metadata + metadata = pd.read_csv(metadata_file, header=0, sep="\t", index_col=0) + + # Read in expression data + normalized_data = pd.read_csv(input_data_file, header=0, sep="\t", index_col=0) + + # Read in config variables + params = read_config(config_file) + + # Load parameters + sample_id_colname = params["metadata_colname"] + dataset_name = params["dataset_name"] + + # Get sample id that maps between metadata and expression files + map_experiment_sample = metadata[[sample_id_colname]] + + # Get all unique experiment ids + experiment_ids = np.unique(np.array(map_experiment_sample.index)).tolist() + print("There are {} experiments in the compendium".format(len(experiment_ids))) + + # Get only sample ids that have expression data available + sample_ids_with_gene_expression = list(normalized_data.index) + + # Get associated experiment ids with expression data + experiment_ids_with_gene_expression = [] + + for experiment_id in experiment_ids: + + if "human" in dataset_name.lower(): + # Some project id values are descriptions + # We will skip these + if len(experiment_id) == 9: + selected_metadata = metadata.loc[experiment_id] + sample_ids = list(selected_metadata[sample_id_colname]) + + if any(x in sample_ids_with_gene_expression for x in sample_ids): + experiment_ids_with_gene_expression.append(experiment_id) + else: + selected_metadata = metadata.loc[experiment_id] + sample_ids = list(selected_metadata[sample_id_colname]) + + if any(x in sample_ids_with_gene_expression for x in sample_ids): + experiment_ids_with_gene_expression.append(experiment_id) + + print( + "There are {} experiments with gene expression data".format( + len(experiment_ids_with_gene_expression) + ) + ) + + # Save file with experiment ids + experiment_ids_with_gene_expression_df = pd.DataFrame( + experiment_ids_with_gene_expression, columns=["experiment_id"] + ) + experiment_ids_with_gene_expression_df.to_csv(output_file, sep="\t") + print( + "{} experiment ids saved to file".format( + len(experiment_ids_with_gene_expression) + ) + ) diff --git a/setup.cfg b/setup.cfg index 625f749..8039bf2 100644 --- a/setup.cfg +++ b/setup.cfg @@ -6,5 +6,5 @@ exclude = # No need to traverse our git directory .git, setup.py, - ponyo/cca_core.py + *.ipynb max-line-length = 88 diff --git a/setup.py b/setup.py index 943aa29..c713869 100644 --- a/setup.py +++ b/setup.py @@ -1,13 +1,23 @@ +import pathlib from setuptools import setup +# The directory containing this file +HERE = pathlib.Path(__file__).parent + +# The text of the README file +README = (HERE / "README.md").read_text() + setup( name="ponyo", version="0.1", - description="Install functions from ponyo: simulate gene expression compendia", - url="#", + description="Install functions to simulate gene expression compendia", + long_description=README, + long_description_content_type="text/markdown", + url="https://github.com/greenelab/ponyo", author="Alexandra Lee", author_email="alexjlee.21@gmail.com", license="BSD 3-Clause", packages=["ponyo"], zip_safe=False, + install_requires=["pandas", "numpy", "glob2", "keras", "tensorflow", "sklearn"], )