-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_test_set.py
128 lines (109 loc) · 5.16 KB
/
process_test_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import numpy as np
from pathlib import Path
import skimage.draw as skdraw
from skimage import io as skio
import json
import skimage.morphology as morph
from torch.utils.data import DataLoader, Dataset
from skimage import img_as_ubyte
from skimage.exposure import rescale_intensity
class COCODetection(Dataset):
def __init__(self, img_folder, annotate_file):
self.img_folder = img_folder
self.annotate_file = annotate_file
self.gt = []
# Start processing annotation
with open(annotate_file) as fin:
self.data = json.load(fin)
self.images = {}
self.label_map = {}
self.label_info = {}
# 0 stand for the background
cnt = 0
self.label_info[cnt] = "background"
for cat in self.data["categories"]:
cnt += 1
self.label_map[cat["id"]] = cnt
self.label_info[cnt] = cat["name"]
# build inference for images
for img in self.data["images"]:
img_id = img["id"]
img_name = img["file_name"]
img_size = (img["height"],img["width"])
if img_id in self.images: raise Exception("duplicated image record")
self.images[img_id] = (img_name, img_size, [])
# read bboxes
for bboxes in self.data["annotations"]:
img_id = bboxes["image_id"]
category_id = bboxes["category_id"]
bbox = bboxes["bbox"]
bbox_label = self.label_map[bboxes["category_id"]]
self.images[img_id][2].append((bbox, bbox_label))
img_name = self.images[img_id][0]
x_min = bbox[0]
y_min = bbox[1]
width = bbox[2]
height = bbox[3]
x_max = x_min + width
y_max = y_min + height
row = [img_name,x_min, y_min, x_max, y_max]
self.gt.append(row)
for k, v in list(self.images.items()):
if len(v[2]) == 0:
self.images.pop(k)
self.img_keys = list(self.images.keys())
self.gt = pd.DataFrame(self.gt, columns=["file_path","xmin","ymin","xmax","ymax"])
def filter_stoma_summary(df, confidence_score: int):
df = df.loc[df.conf_score_per_cent > confidence_score]
filtered_grps = []
for file_id, grp in df.groupby("file_path"): # going through image one by one
filtered_grps.append(grp)
details = pd.concat(filtered_grps)
return details
def draw_preds_and_gt(img, preds, gt, initial_image_shape, fname, dilation_radius=0):
init_image = np.zeros((img.shape[0] + 100, img.shape[1] + 100, 3), dtype="uint8")
init_image[:img.shape[0], :img.shape[1], :] = img.copy()
blank = np.zeros((img.shape[0] + 100, img.shape[1] + 100), dtype="uint8")
for idx, pred in gt.iterrows():
rr, cc = skdraw.rectangle_perimeter(start=(pred.xmin, pred.ymin),
end=(pred.xmax - 2 - dilation_radius, pred.ymax - 2 - dilation_radius))
blank[cc, rr] = 128
dilated = morph.dilation(blank, morph.disk(radius=dilation_radius))
init_image[dilated == 128] = (255, 0, 234) # GT: pink
for idx, pred in preds.iterrows():
rr, cc = skdraw.rectangle_perimeter(start=(pred.xmin, pred.ymin),
end=(pred.xmax - 2 - dilation_radius, pred.ymax - 2 - dilation_radius))
blank[cc, rr] = 255
dilated = morph.dilation(blank, morph.disk(radius=dilation_radius))
init_image[dilated == 255] = (234, 255, 0) # PRED: yellow
img2 = init_image[:initial_image_shape[0], :initial_image_shape[1], :]
skio.imsave(fname, img2, check_contrast=False)
return
if __name__ == "__main__":
annotations_file = Path("./data/splits/test.json")
file_root = Path("./data/images")
details_csv_path = Path("./data/predictions/test_set_details.csv")
substring = "only_test_Set"
save_path = Path("./output/predictions")
stoma = COCODetection(file_root, annotations_file)
dets = pd.read_csv(details_csv_path,
dtype={'area': np.uint16, 'xmin': np.uint16, 'ymin': np.uint16, 'xmax': np.uint16,
'ymax': np.uint16, 'conf_score_per_cent': np.uint8})
dets = dets.loc[dets.file_path.str.contains(f"{substring}")]
print(f"loaded {len(pd.unique(stoma.gt.file_path))} images.")
print(f"Saving to {save_path}...")
for file_name in file_root.glob("*.png"):
file_name = file_name.stem
filtered_grps = filter_stoma_summary(dets, 50)
all_preds_per_image = filtered_grps.loc[filtered_grps.file_path.str.contains(str(file_name))]
if len(all_preds_per_image) > 0:
print(f"Processing {file_name}...")
img = skio.imread(f"{str(file_root)}/{file_name}.png", as_gray=True)
img = img_as_ubyte(img)
img = rescale_intensity(img)
img = np.dstack((img, img, img))
save_sub_path = save_path
save_sub_path.mkdir(exist_ok=True, parents=True)
gt = stoma.gt.loc[stoma.gt.file_path.str.contains(file_name)]
draw_preds_and_gt(img, all_preds_per_image, gt, img.shape, fname=f"{save_sub_path}/pred_{file_name}.png", dilation_radius=4)