-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlevel-surfaces.scad
340 lines (286 loc) · 11.8 KB
/
level-surfaces.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/**
* premise is that we iterate over each location then evaluate if the points should exist on corners of
* cube at the location then use drawMarchingCube to render each cube
*/
include <./point-list.scad>
// TODO: add support for multiple functions, lines, and points
bounds = 5;
resolution = 0.5;
interpolation = true;
// the following are functions set to work with a bounds of 5 and a resolution of 0.5
// cylinder
// function f(x, y, z) = pow(x, 2) + pow(y, 2) - 25;
// sphere
// function f(x, y, z) = pow(x, 2) + pow(y, 2) + pow(z, 2) - 25;
// hyperbolic paraboloid
// function f(x, y, z) = pow(x, 2) - pow(y, 2) - z;
// plane
// function f(x, y, z) = x + y + z + 0;
// paraboloid
// function f(x, y, z) = pow(x, 2) + pow(y, 2) - z- 5;
// hyperboloid of one sheet -> hyperboloid of two sheets
// function f(x, y, z) = pow(x, 2) + pow(y, 2) - pow(z, 2) - 10 + 20 * $t;
// hyperboloid of two sheets
function f(x, y, z) = pow(x, 2) - pow(y, 2) - pow(z, 2) - 5;
// cone
// function f(x, y, z) = pow(x, 2) + pow(y, 2) - pow(z, 2);
// repeating connected bulbs
// function f(x, y, z) = cos(x * 180 / 3.14 * 2) + cos(y * 180 / 3.14 * 2) + cos(z * 180 / 3.14 * 2);
// repeating connected bulbs over time
// function f(x, y, z) = cos(x * 180 / 3.14 * 2) + cos(y * 180 / 3.14 * 2) + cos(z * 180 / 3.14 * 2) -3.14 + 6.28 * $t;
// Steiner's Roman Surface
// bounds of 1.05 and resolution of 0.05
// function f(x, y, z) = pow(x, 2) * pow(y, 2) + pow(y, 2) * pow(z, 2) + pow(z,2) * pow(x, 2) - 2 * x * y * z;
edgePoints = [
[0, 0.5, 0],
[0.5, 1, 0],
[1, 0.5, 0],
[0.5, 0, 0],
[0, 0.5, 1],
[0.5, 1, 1],
[1, 0.5, 1],
[0.5, 0, 1],
[0, 0, 0.5],
[0, 1, 0.5],
[1, 1, 0.5],
[1, 0, 0.5]
];
// number = 162;
function sumVector(list, c = 0) =
c < len(list) - 1 ?
list[c] + sumVector(list, c + 1)
:
list[c];
// TODO: calculate all points, store in memory then look up?
// would calculate each point once instead of 8 times
// + resolution?
allPointsValues = [
for( i = [-bounds : resolution : bounds]) [
for( j = [-bounds : resolution : bounds]) [
for( k = [-bounds : resolution : bounds])
f(i, j, k)
]
]
];
// numbers at each vertex
// for debugging
// for( ii = [-bounds : resolution : bounds]) {
// for( jj = [-bounds : resolution : bounds]) {
// for( kk = [-bounds : resolution : bounds]) {
// echo ((ii + bounds) / resolution);
// echo(allPointsValues[(ii + bounds) / resolution ][(jj + bounds) / resolution][(kk + bounds) / resolution]);
// translate([ii, jj, kk]) {
// text(text = str((allPointsValues[(ii + bounds) / resolution][(jj + bounds) / resolution][(kk + bounds) / resolution])), size = 1);
// }
// }
// }
// }
// echo("all points values");
// echo(allPointsValues);
// debugging cube
// #translate([0, -10, -10]) {
// cube(10);
// }
// z on outer loop so only have to calculatre trianle color once per z
// maybe move this outside and store all color values before this loop
for( k = [0 : 1 : 2 * bounds / resolution - 1]) {
// pick color of triangles
// triangleColor = [sin((i + bounds) / bounds * 45), sin((j + bounds) / bounds * 45), sin((bounds - k) / bounds * 45)];
// have 45 degrees for which each color is on
// blue is at bottom, green in middle, red on top, like other graphs online
// go from - bounds to bounds then divide by 2 so range is 1 then multiply number
// hueModifier makes the colors lighter the higher the value is
hueModifier = 0.1;
triangleColor = [
min(max(sin(k / bounds * resolution * 90 - 90) + hueModifier, 0), 1),
min(max(sin(k / bounds * resolution * 90), 0) + hueModifier, 1),
min(max(sin(k / bounds * resolution * 90 + 90) + hueModifier, 0), 1)
];
for( j = [0 : 1 : 2 * bounds / resolution - 1]) {
for( i = [0 : 1 : 2 * bounds / resolution - 1]) {
// if (f([i, j, k]) > threshold) {
// each of the eight points to check
cubePoints = [
[i, j, k],
[i, j + 1, k],
[i + 1, j + 1, k],
[i + 1, j, k],
[i, j, k + 1],
[i, j + 1, k + 1],
[i + 1, j + 1, k + 1],
[i + 1, j, k + 1]
];
// idk how else to do this
// we need to figue which permuation of triangles we need
// so i loop through each element in cubePoints and find if it is big enough
// then i add the index of the element to the power of 2 to the element of
// permutationNumberList. Then I add all the elements in the list
// If i knew how to i would like to just loop over each element and add it
// to a variable but openscad is dumb and idk how
// permutationNumberList = [for (k = [0 : 1 : 7])
// f(cubePoints[k][0], cubePoints[k][1], cubePoints[k][2]) >= threshold ? pow(2, k) : 0
// ];
// if less than or equal to zero, then inside the surface
permutationNumberList = [for (k = [0 : 1 : 7])
allPointsValues[cubePoints[k][0]][cubePoints[k][1]][cubePoints[k][2]] <= 0 ? pow(2, k) : 0
];
permutationNumber = sumVector(permutationNumberList);
// for (k = [0 : 1 : 7]) {
// if ( f(cubePoints[k][0], cubePoints[k][1], cubePoints[k][2]) > threshold) {
// permutationNumber = permutationNumber + pow(k, 2);
// echo(permutationNumber);
// }
// }
// drawMarchingCube(permutationNumber, edgePoints, [i * resolution - bounds, j * resolution - bounds, k * resolution - bounds], resolution, triangleColor);
// draw a marching cube
currentPoints = points[permutationNumber];
if (currentPoints) {
position = [i * resolution - bounds, j * resolution - bounds, k * resolution - bounds];
size = resolution;
// linearly interpolate
// go on each of three axes and find first point, then for second point do first points + 1
// in axis that we are doing
// this is jankey and complicated and the syntax in the vectors kinda sucks
// but i think its better than writing out all tweleve permutations
// im am still doing this several hours later
// writing out all twelve permutations was definitely easier than what i did
if (interpolation) {
interpolatedEdgePoints = [
for (l = [0 : 1 : 2]) (
// alternate m so that we get all four sides
for(m = [0 : 1 : 3]) (
let (positionOne = [(l == 0) ? i : ((l == 1) ? i + m % 2 : i + (m >= 2 ? 1 : 0)), (l == 1) ? j : ((l == 0) ? j + ((m >= 2) ? 1 : 0) : j + m % 2), (l == 2) ? k : ((l == 0) ? k + m % 2 : k + (m >= 2 ? 1 : 0))])
let (positionTwo = [positionOne[0] + ((l == 0) ? 1 : 0), positionOne[1] + ((l == 1) ? 1 : 0), positionOne[2] + ((l == 2) ? 1 : 0)])
let (valueOne = allPointsValues[positionOne[0]][positionOne[1]][positionOne[2]])
let (valueTwo = allPointsValues[positionTwo[0]][positionTwo[1]][positionTwo[2]])
// if either valueOne is zero or valueTwo is zero, we want to send it into the loop
// because the loop will interpolate to zero
// check if two points have opposite signs because that is when there is a point on the edge
if ( valueOne == 0 || valueTwo == 0 || ((valueOne < 0) ? (valueTwo > 0) : (valueTwo < 0))) (
// this if might never be called
if (valueOne == valueTwo) (
// edgePoints[(l * 4 + m)]
0
) else [
for(n = [0 : 1 : 2]) (
// if on axis that is changing, then do interpolation
if (positionTwo[n] - positionOne[n] == 1) (
// i derived this equation using point slope form
valueOne * size / (valueOne - valueTwo)
// if edge is in positive direction, add size
) else if (positionOne[n] != [i, j, k][n]) (
size
) else (
0
)
)
]
) else (
// this needs parens, idk why
// edgePoints[(l * 4 + m)]
0
)
)
)
];
// echo("start");
// echo(allPointsValues[i][j][k]);
// echo(allPointsValues[i + 1][j][k]);
// echo(interpolatedEdgePoints);
// i used the script in convert-array.js to help figure out which points go where
// messy
remappedInterpolatedEdgePoints = [
interpolatedEdgePoints[4],
interpolatedEdgePoints[2],
interpolatedEdgePoints[5],
interpolatedEdgePoints[0],
interpolatedEdgePoints[6],
interpolatedEdgePoints[3],
interpolatedEdgePoints[7],
interpolatedEdgePoints[1],
interpolatedEdgePoints[8],
interpolatedEdgePoints[9],
interpolatedEdgePoints[11],
interpolatedEdgePoints[10],
];
//echo(interpolatedEdgePoints);
// if (i + 2 * j + 4 * k == 1) {
// for(h = [0 : 1 : 11]) {
// if (remappedInterpolatedEdgepoints[h] != 0) {
// red = h<4?h/3:1;
// green = h>3 && h<8?(h-4)/3:1;
// blue = h>7?(h-8)/3:1;
// echo("h");
// echo(h);
// echo([red, green, blue]);
// translate(position) {
// translate(remappedInterpolatedEdgePoints[h]) {
// color([red, green, blue]) {
// sphere(1);
// }
// }
// }
// }
// }
// }
// copying and pasting code is bad but putting this in a module slows down render time
// loop through each triangle in currentPoints and draw
for (i = [0 : 1 : len(currentPoints) - 1]) {
// echo("position");
// echo(position);
// turns the edges from currentPoints into actual points from edgePoints and multiply by size
currentTriangle = [
for (j = [0 : 2]) remappedInterpolatedEdgePoints[currentPoints[i][j]] + position
];
// echo("triangle");
// echo(currentTriangle);
color(triangleColor) {
polyhedron (
points = currentTriangle,
faces = [[0, 1, 2]]
);
}
}
} else {
// no interpolation loop
// loop through each triangle in currentPoints and draw
for (i = [0 : 1 : len(currentPoints) - 1]) {
// turns the edges from currentPoints into actual points from edgePoints and multiply by size
currentTriangle = [
for (j = [0 : 2]) edgePoints[currentPoints[i][j]] * size + position
];
color(triangleColor) {
polyhedron (
points = currentTriangle,
faces = [[0, 1, 2]]
);
}
}
}
}
}
}
}
// currentPoints = points[search(number, edges)[0]];
// echo(points[search(265, edges)[0]]);
// echo(points[3]);
// function changePoints(edgePoints, points) = (
// for(i = [0 : 1 : 2]) {
// }
// );
// trianglePointsOnFace = points[search(265, edges)[0]];
// trianglePoints = [ for (i = [0 : 1 : len(trianglePointsOnFace)]) ]
// for (i = [0:1:len(trianlgePoints)]) {
// for (j = [0:1:len(trianglePoints[i])]) {
// trianglePoints[i][j] = edgePoints.trianglePoints[i][j];
// }
// }
// polyhedron(
// points=points[search(265, edges)[0]],
// faces=[ [0,1,2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [12, 13, 14] ]
// );
/**
* loop through each point
* at each point find the sides for the cube
* render cube sides
*/