-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
701 lines (566 loc) · 27.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
import json
import os
import xml.etree.ElementTree as ET
import torch
import random
import torchvision.transforms.functional as FT
cuda = torch.device("cuda")
cpu = torch.device("cpu")
device = cpu
label_map = {1: "object", 0: "background"}
rev_label_map = {v: k for k, v in label_map.items()}
def decimate(tensor, m):
"""
Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value.
This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size.
:param tensor: tensor to be decimated
:param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension
:return: decimated tensor
"""
assert tensor.dim() == len(m)
for d in range(tensor.dim()):
if m[d] is not None:
tensor = tensor.index_select(
dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()
)
return tensor
def calculate_mAP(
det_boxes,
det_labels,
det_scores,
true_boxes,
true_labels,
true_difficulties,
device=cpu,
):
"""
Calculate the Mean Average Precision (mAP) of detected objects.
:param det_boxes: list of tensors, one tensor for each image containing detected objects' bounding boxes
:param det_labels: list of tensors, one tensor for each image containing detected objects' labels
:param det_scores: list of tensors, one tensor for each image containing detected objects' labels' scores
:param true_boxes: list of tensors, one tensor for each image containing actual objects' bounding boxes
:param true_labels: list of tensors, one tensor for each image containing actual objects' labels
:param true_difficulties: list of tensors, one tensor for each image containing actual objects' difficulty (0 or 1)
:return: list of average precisions for all classes, mean average precision (mAP)
"""
print("Calculating mAP...")
assert (
len(det_boxes)
== len(det_labels)
== len(det_scores)
== len(true_boxes)
== len(true_labels)
== len(true_difficulties)
) # these are all lists of tensors of the same length, i.e. number of images
n_classes = len(label_map)
# Store all (true) objects in a single continuous tensor while keeping track of the image it is from
true_images = []
for i, label in enumerate(true_labels):
true_images.extend([i] * label.size(0))
true_images = torch.LongTensor(true_images).to(
device
) # (n_objects), n_objects is the total no. of objects across all images
true_boxes = torch.cat(true_boxes, dim=0) # (n_objects, 4)
true_labels = torch.cat(true_labels, dim=0) # (n_objects)
true_difficulties = torch.cat(true_difficulties, dim=0) # (n_objects)
assert true_images.size(0) == true_boxes.size(0) == true_labels.size(0)
# Store all detections in a single continuous tensor while keeping track of the image it is from
det_images = list()
for i in range(len(det_labels)):
det_images.extend([i] * det_labels[i].size(0))
det_images = torch.LongTensor(det_images).to(device) # (n_detections)
det_boxes = torch.cat(det_boxes, dim=0) # (n_detections, 4)
det_labels = torch.cat(det_labels, dim=0) # (n_detections)
det_scores = torch.cat(det_scores, dim=0) # (n_detections)
assert (
det_images.size(0)
== det_boxes.size(0)
== det_labels.size(0)
== det_scores.size(0)
)
# Calculate APs for each class (except background)
average_precisions = torch.zeros(
(n_classes - 1), dtype=torch.float
) # (n_classes - 1)
for c in range(1, n_classes):
# Extract only objects with this class
true_class_images = true_images[true_labels == c] # (n_class_objects)
true_class_boxes = true_boxes[true_labels == c] # (n_class_objects, 4)
true_class_difficulties = true_difficulties[
true_labels == c
] # (n_class_objects)
n_easy_class_objects = (
(1 - true_class_difficulties).sum().item()
) # ignore difficult objects
# Keep track of which true objects with this class have already been 'detected'
# So far, none
true_class_boxes_detected = torch.zeros(
(true_class_difficulties.size(0)), dtype=torch.uint8
).to(
device
) # (n_class_objects)
# Extract only detections with this class
det_class_images = det_images[det_labels == c] # (n_class_detections)
det_class_boxes = det_boxes[det_labels == c] # (n_class_detections, 4)
det_class_scores = det_scores[det_labels == c] # (n_class_detections)
n_class_detections = det_class_boxes.size(0)
if n_class_detections == 0:
continue
# Sort detections in decreasing order of confidence/scores
det_class_scores, sort_ind = torch.sort(
det_class_scores, dim=0, descending=True
) # (n_class_detections)
det_class_images = det_class_images[sort_ind] # (n_class_detections)
det_class_boxes = det_class_boxes[sort_ind] # (n_class_detections, 4)
# In the order of decreasing scores, check if true or false positive
true_positives = torch.zeros((n_class_detections), dtype=torch.float).to(
device
) # (n_class_detections)
false_positives = torch.zeros((n_class_detections), dtype=torch.float).to(
device
) # (n_class_detections)
for d in range(n_class_detections):
this_detection_box = det_class_boxes[d].unsqueeze(0) # (1, 4)
this_image = det_class_images[d] # (), scalar
# Find objects in the same image with this class, their difficulties, and whether they have been detected before
object_boxes = true_class_boxes[
true_class_images == this_image
] # (n_class_objects_in_img)
object_difficulties = true_class_difficulties[
true_class_images == this_image
] # (n_class_objects_in_img)
# If no such object in this image, then the detection is a false positive
if object_boxes.size(0) == 0:
false_positives[d] = 1
continue
# Find maximum overlap of this detection with objects in this image of this class
overlaps = find_jaccard_overlap(
this_detection_box, object_boxes
) # (1, n_class_objects_in_img)
max_overlap, ind = torch.max(overlaps.squeeze(0), dim=0) # (), () - scalars
# 'ind' is the index of the object in these image-level tensors 'object_boxes', 'object_difficulties'
# In the original class-level tensors 'true_class_boxes', etc., 'ind' corresponds to object with index...
original_ind = torch.LongTensor(range(true_class_boxes.size(0)))[
true_class_images == this_image
][ind]
# We need 'original_ind' to update 'true_class_boxes_detected'
# If the maximum overlap is greater than the threshold of 0.5, it's a match
if max_overlap.item() > 0.5:
# If the object it matched with is 'difficult', ignore it
if object_difficulties[ind] == 0:
# If this object has already not been detected, it's a true positive
if true_class_boxes_detected[original_ind] == 0:
true_positives[d] = 1
true_class_boxes_detected[
original_ind
] = 1 # this object has now been detected/accounted for
# Otherwise, it's a false positive (since this object is already accounted for)
else:
false_positives[d] = 1
# Otherwise, the detection occurs in a different location than the actual object, and is a false positive
else:
false_positives[d] = 1
# Compute cumulative precision and recall at each detection in the order of decreasing scores
cumul_true_positives = torch.cumsum(
true_positives, dim=0
) # (n_class_detections)
cumul_false_positives = torch.cumsum(
false_positives, dim=0
) # (n_class_detections)
cumul_precision = cumul_true_positives / (
cumul_true_positives + cumul_false_positives + 1e-10
) # (n_class_detections)
cumul_recall = (
cumul_true_positives / n_easy_class_objects
) # (n_class_detections)
# Find the mean of the maximum of the precisions corresponding to recalls above the threshold 't'
recall_thresholds = torch.arange(start=0, end=1.1, step=0.1).tolist() # (11)
precisions = torch.zeros((len(recall_thresholds)), dtype=torch.float).to(
device
) # (11)
for i, t in enumerate(recall_thresholds):
recalls_above_t = cumul_recall >= t
if recalls_above_t.any():
precisions[i] = cumul_precision[recalls_above_t].max()
else:
precisions[i] = 0.0
average_precisions[c - 1] = precisions.mean() # c is in [1, n_classes - 1]
# Calculate Mean Average Precision (mAP)
mean_average_precision = average_precisions.mean().item()
# Keep class-wise average precisions in a dictionary
average_precisions_dict = {}
for c, v in enumerate(average_precisions.tolist()):
class_name = rev_label_map.get(c + 1, f"Class_{c + 1}")
average_precisions_dict[class_name] = v
print(f"True positives: {true_positives[true_positives == 1].shape}\n\nFalse positives: {false_positives[false_positives == 1].shape}")
return average_precisions_dict, mean_average_precision, true_positives[true_positives == 1], false_positives[false_positives == 1]
def xy_to_cxcy(xy):
"""
Convert bounding boxes from boundary coordinates (x_min, y_min, x_max, y_max) to center-size coordinates (c_x, c_y, w, h).
:param xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat(
[(xy[:, 2:] + xy[:, :2]) / 2, xy[:, 2:] - xy[:, :2]], 1 # c_x, c_y
) # w, h
def cxcy_to_xy(cxcy):
"""
Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).
:param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
:return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
"""
return torch.cat(
[
cxcy[:, :2] - (cxcy[:, 2:] / 2), # x_min, y_min
cxcy[:, :2] + (cxcy[:, 2:] / 2),
],
1,
) # x_max, y_max
def cxcy_to_gcxgcy(cxcy, priors_cxcy):
"""
Encode bounding boxes (that are in center-size form) w.r.t. the corresponding prior boxes (that are in center-size form).
For the center coordinates, find the offset with respect to the prior box, and scale by the size of the prior box.
For the size coordinates, scale by the size of the prior box, and convert to the log-space.
In the model, we are predicting bounding box coordinates in this encoded form.
:param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_priors, 4)
:param priors_cxcy: prior boxes with respect to which the encoding must be performed, a tensor of size (n_priors, 4)
:return: encoded bounding boxes, a tensor of size (n_priors, 4)
"""
# The 10 and 5 below are referred to as 'variances' in the original Caffe repo, completely empirical
# They are for some sort of numerical conditioning, for 'scaling the localization gradient'
# See https://github.com/weiliu89/caffe/issues/155
return torch.cat(
[
(cxcy[:, :2] - priors_cxcy[:, :2])
/ (priors_cxcy[:, 2:] / 10), # g_c_x, g_c_y
torch.log(cxcy[:, 2:] / priors_cxcy[:, 2:]) * 5,
],
1,
) # g_w, g_h
def find_intersection(set_1, set_2):
"""
Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# PyTorch auto-broadcasts singleton dimensions
lower_bounds = torch.max(
set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0)
) # (n1, n2, 2)
upper_bounds = torch.min(
set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0)
) # (n1, n2, 2)
intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) # (n1, n2, 2)
return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] # (n1, n2)
def find_jaccard_overlap(set_1, set_2):
"""
Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.
:param set_1: set 1, a tensor of dimensions (n1, 4)
:param set_2: set 2, a tensor of dimensions (n2, 4)
:return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
"""
# Find intersections
intersection = find_intersection(set_1, set_2) # (n1, n2)
# Find areas of each box in both sets
areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) # (n1)
areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) # (n2)
# Find the union
# PyTorch auto-broadcasts singleton dimensions
union = (
areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection
) # (n1, n2)
return intersection / union # (n1, n2)
# Some augmentation functions below have been adapted from
# From https://github.com/amdegroot/ssd.pytorch/blob/master/utils/augmentations.py
def expand(image, boxes, filler):
"""
Perform a zooming out operation by placing the image in a larger canvas of filler material.
Helps to learn to detect smaller objects.
:param image: image, a tensor of dimensions (3, original_h, original_w)
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:param filler: RBG values of the filler material, a list like [R, G, B]
:return: expanded image, updated bounding box coordinates
"""
# Calculate dimensions of proposed expanded (zoomed-out) image
original_h = image.size(1)
original_w = image.size(2)
max_scale = 4
scale = random.uniform(1, max_scale)
new_h = int(scale * original_h)
new_w = int(scale * original_w)
# Create such an image with the filler
filler = torch.FloatTensor(filler) # (3)
new_image = torch.ones((3, new_h, new_w), dtype=torch.float) * filler.unsqueeze(
1
).unsqueeze(
1
) # (3, new_h, new_w)
# Note - do not use expand() like new_image = filler.unsqueeze(1).unsqueeze(1).expand(3, new_h, new_w)
# because all expanded values will share the same memory, so changing one pixel will change all
# Place the original image at random coordinates in this new image (origin at top-left of image)
left = random.randint(0, new_w - original_w)
right = left + original_w
top = random.randint(0, new_h - original_h)
bottom = top + original_h
new_image[:, top:bottom, left:right] = image
# Adjust bounding boxes' coordinates accordingly
new_boxes = boxes + torch.FloatTensor([left, top, left, top]).unsqueeze(
0
) # (n_objects, 4), n_objects is the no. of objects in this image
return new_image, new_boxes
def random_crop(image, boxes, labels, difficulties):
"""
Performs a random crop in the manner stated in the paper. Helps to learn to detect larger and partial objects.
Note that some objects may be cut out entirely.
Adapted from https://github.com/amdegroot/ssd.pytorch/blob/master/utils/augmentations.py
:param image: image, a tensor of dimensions (3, original_h, original_w)
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:param labels: labels of objects, a tensor of dimensions (n_objects)
:param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
:return: cropped image, updated bounding box coordinates, updated labels, updated difficulties
"""
original_h = image.size(1)
original_w = image.size(2)
# Keep choosing a minimum overlap until a successful crop is made
while True:
# Randomly draw the value for minimum overlap
min_overlap = random.choice(
[0.0, 0.1, 0.3, 0.5, 0.7, 0.9, None]
) # 'None' refers to no cropping
# If not cropping
if min_overlap is None:
return image, boxes, labels, difficulties
# Try up to 50 times for this choice of minimum overlap
# This isn't mentioned in the paper, of course, but 50 is chosen in paper authors' original Caffe repo
max_trials = 50
for _ in range(max_trials):
# Crop dimensions must be in [0.3, 1] of original dimensions
# Note - it's [0.1, 1] in the paper, but actually [0.3, 1] in the authors' repo
min_scale = 0.3
scale_h = random.uniform(min_scale, 1)
scale_w = random.uniform(min_scale, 1)
new_h = int(scale_h * original_h)
new_w = int(scale_w * original_w)
# Aspect ratio has to be in [0.5, 2]
aspect_ratio = new_h / new_w
if not 0.5 < aspect_ratio < 2:
continue
# Crop coordinates (origin at top-left of image)
left = random.randint(0, original_w - new_w)
right = left + new_w
top = random.randint(0, original_h - new_h)
bottom = top + new_h
crop = torch.FloatTensor([left, top, right, bottom]) # (4)
# Calculate Jaccard overlap between the crop and the bounding boxes
overlap = find_jaccard_overlap(
crop.unsqueeze(0), boxes
) # (1, n_objects), n_objects is the no. of objects in this image
overlap = overlap.squeeze(0) # (n_objects)
# If not a single bounding box has a Jaccard overlap of greater than the minimum, try again
if overlap.max().item() < min_overlap:
continue
# Crop image
new_image = image[:, top:bottom, left:right] # (3, new_h, new_w)
# Find centers of original bounding boxes
bb_centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0 # (n_objects, 2)
# Find bounding boxes whose centers are in the crop
centers_in_crop = (
(bb_centers[:, 0] > left)
* (bb_centers[:, 0] < right)
* (bb_centers[:, 1] > top)
* (bb_centers[:, 1] < bottom)
) # (n_objects), a Torch uInt8/Byte tensor, can be used as a boolean index
# If not a single bounding box has its center in the crop, try again
if not centers_in_crop.any():
continue
# Discard bounding boxes that don't meet this criterion
new_boxes = boxes[centers_in_crop, :]
new_labels = labels[centers_in_crop]
new_difficulties = difficulties[centers_in_crop]
# Calculate bounding boxes' new coordinates in the crop
new_boxes[:, :2] = torch.max(
new_boxes[:, :2], crop[:2]
) # crop[:2] is [left, top]
new_boxes[:, :2] -= crop[:2]
new_boxes[:, 2:] = torch.min(
new_boxes[:, 2:], crop[2:]
) # crop[2:] is [right, bottom]
new_boxes[:, 2:] -= crop[:2]
return new_image, new_boxes, new_labels, new_difficulties
def flip(image, boxes):
"""
Flip image horizontally.
:param image: image, a PIL Image
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:return: flipped image, updated bounding box coordinates
"""
# Flip image
new_image = FT.hflip(image)
# Flip boxes
new_boxes = boxes
new_boxes[:, 0] = image.width - boxes[:, 0] - 1
new_boxes[:, 2] = image.width - boxes[:, 2] - 1
new_boxes = new_boxes[:, [2, 1, 0, 3]]
return new_image, new_boxes
def resize(image, boxes, dims=(300, 300), return_percent_coords=True):
"""
Resize image. For the SSD300, resize to (300, 300).
Since percent/fractional coordinates are calculated for the bounding boxes (w.r.t image dimensions) in this process,
you may choose to retain them.
:param image: image, a PIL Image
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:return: resized image, updated bounding box coordinates (or fractional coordinates, in which case they remain the same)
"""
# Resize image
new_image = FT.resize(image, dims)
# Resize bounding boxes
old_dims = torch.FloatTensor(
[image.width, image.height, image.width, image.height]
).unsqueeze(0)
new_boxes = boxes / old_dims # percent coordinates
if not return_percent_coords:
new_dims = torch.FloatTensor([dims[1], dims[0], dims[1], dims[0]]).unsqueeze(0)
new_boxes = new_boxes * new_dims
return new_image, new_boxes
def photometric_distort(image):
"""
Distort brightness, contrast, saturation, and hue, each with a 50% chance, in random order.
:param image: image, a PIL Image
:return: distorted image
"""
new_image = image
distortions = [
FT.adjust_brightness,
FT.adjust_contrast,
FT.adjust_saturation,
FT.adjust_hue,
]
random.shuffle(distortions)
for d in distortions:
if random.random() < 0.5:
if d.__name__ == "adjust_hue":
# Caffe repo uses a 'hue_delta' of 18 - we divide by 255 because PyTorch needs a normalized value
adjust_factor = random.uniform(-18 / 255.0, 18 / 255.0)
else:
# Caffe repo uses 'lower' and 'upper' values of 0.5 and 1.5 for brightness, contrast, and saturation
adjust_factor = random.uniform(0.5, 1.5)
# Apply this distortion
new_image = d(new_image, adjust_factor)
return new_image
def transform(image, boxes, labels, difficulties, split):
"""
Apply the transformations above.
:param image: image, a PIL Image
:param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
:param labels: labels of objects, a tensor of dimensions (n_objects)
:param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
:param split: one of 'TRAIN' or 'TEST', since different sets of transformations are applied
:return: transformed image, transformed bounding box coordinates, transformed labels, transformed difficulties
"""
assert split in {"TRAIN", "TEST"}
# Mean and standard deviation of ImageNet data that our base VGG from torchvision was trained on
# see: https://pytorch.org/docs/stable/torchvision/models.html
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
new_image = image
new_boxes = boxes
new_labels = labels
new_difficulties = difficulties
# Skip the following operations for evaluation/testing
if split == "TRAIN":
# A series of photometric distortions in random order, each with 50% chance of occurrence, as in Caffe repo
new_image = photometric_distort(new_image)
# Convert PIL image to Torch tensor
new_image = FT.to_tensor(new_image)
# Expand image (zoom out) with a 50% chance - helpful for training detection of small objects
# Fill surrounding space with the mean of ImageNet data that our base VGG was trained on
if random.random() < 0.5:
new_image, new_boxes = expand(new_image, boxes, filler=mean)
# Randomly crop image (zoom in)
new_image, new_boxes, new_labels, new_difficulties = random_crop(
new_image, new_boxes, new_labels, new_difficulties
)
# Convert Torch tensor to PIL image
new_image = FT.to_pil_image(new_image)
# Flip image with a 50% chance
if random.random() < 0.5:
new_image, new_boxes = flip(new_image, new_boxes)
# Resize image to (300, 300) - this also converts absolute boundary coordinates to their fractional form
new_image, new_boxes = resize(new_image, new_boxes, dims=(300, 300))
# Convert PIL image to Torch tensor
new_image = FT.to_tensor(new_image)
# Normalize by mean and standard deviation of ImageNet data that our base VGG was trained on
new_image = FT.normalize(new_image, mean=mean, std=std)
return new_image, new_boxes, new_labels, new_difficulties
def adjust_learning_rate(optimizer, scale):
"""
Scale learning rate by a specified factor.
:param optimizer: optimizer whose learning rate must be shrunk.
:param scale: factor to multiply learning rate with.
"""
for param_group in optimizer.param_groups:
param_group["lr"] = param_group["lr"] * scale
print(
"DECAYING learning rate.\n The new LR is %f\n"
% (optimizer.param_groups[1]["lr"],)
)
def accuracy(scores, targets, k):
"""
Computes top-k accuracy, from predicted and true labels.
:param scores: scores from the model
:param targets: true labels
:param k: k in top-k accuracy
:return: top-k accuracy
"""
batch_size = targets.size(0)
_, ind = scores.topk(k, 1, True, True)
correct = ind.eq(targets.view(-1, 1).expand_as(ind))
correct_total = correct.view(-1).float().sum() # 0D tensor
return correct_total.item() * (100.0 / batch_size)
def save_checkpoint(epoch, model, optimizer, scheduler, model_name):
"""
Save model checkpoint.
:param epoch: epoch number
:param model: model
:param optimizer: optimizer
:param scheduler: scheduler
:param model_name: model name
"""
state = {
"epoch": epoch,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
}
filename = os.path.join(
f"/work/cvcs_2023_group23/ObjectDescriptionSupermarket-CVCS-UniMoRe/checkpoints/{model_name}",
"checkpoint.pth",
)
torch.save(state, filename)
class AverageMeter(object):
"""
Keeps track of most recent, average, sum, and count of a metric.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def clip_gradient(optimizer, grad_clip):
"""
Clips gradients computed during backpropagation to avoid explosion of gradients.
:param optimizer: optimizer with the gradients to be clipped
:param grad_clip: clip value
"""
for group in optimizer.param_groups:
for param in group["params"]:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)