-
Notifications
You must be signed in to change notification settings - Fork 51
/
Getting_ready_to_use_R.html
762 lines (677 loc) · 31.8 KB
/
Getting_ready_to_use_R.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Getting ready to use R</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/sandstone.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/accessible-code-block-0.0.1/empty-anchor.js"></script>
<link href="site_libs/anchor-sections-1.0/anchor-sections.css" rel="stylesheet" />
<script src="site_libs/anchor-sections-1.0/anchor-sections.js"></script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-3"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-3');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
code.sourceCode > span { display: inline-block; line-height: 1.25; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ background-color: #f8f8f8; }
@media screen {
code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ef2929; } /* Alert */
code span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #c4a000; } /* Attribute */
code span.bn { color: #0000cf; } /* BaseN */
code span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4e9a06; } /* Char */
code span.cn { color: #000000; } /* Constant */
code span.co { color: #8f5902; font-style: italic; } /* Comment */
code span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code span.dt { color: #204a87; } /* DataType */
code span.dv { color: #0000cf; } /* DecVal */
code span.er { color: #a40000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #0000cf; } /* Float */
code span.fu { color: #000000; } /* Function */
code span.im { } /* Import */
code span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code span.ot { color: #8f5902; } /* Other */
code span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code span.sc { color: #000000; } /* SpecialChar */
code span.ss { color: #4e9a06; } /* SpecialString */
code span.st { color: #4e9a06; } /* String */
code span.va { color: #000000; } /* Variable */
code span.vs { color: #4e9a06; } /* VerbatimString */
code span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 61px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 66px;
margin-top: -66px;
}
.section h2 {
padding-top: 66px;
margin-top: -66px;
}
.section h3 {
padding-top: 66px;
margin-top: -66px;
}
.section h4 {
padding-top: 66px;
margin-top: -66px;
}
.section h5 {
padding-top: 66px;
margin-top: -66px;
}
.section h6 {
padding-top: 66px;
margin-top: -66px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Population genetics and genomics in R</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="TOC.html">Table of contents</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part I
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Introduction.html">Introduction</a>
</li>
<li>
<a href="Getting_ready_to_use_R.html">Getting ready to use R</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part II
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Data_Preparation.html">Data preparation</a>
</li>
<li>
<a href="First_Steps.html">First steps</a>
</li>
<li>
<a href="Population_Strata.html">Population strata and clone correction</a>
</li>
<li>
<a href="Locus_Stats.html">Locus-based statistics and missing data</a>
</li>
<li>
<a href="Genotypic_EvenRichDiv.html">Genotypic evenness, richness, and diversity</a>
</li>
<li>
<a href="Linkage_disequilibrium.html">Linkage disequilibrium</a>
</li>
<li>
<a href="Pop_Structure.html">Population structure</a>
</li>
<li>
<a href="Minimum_Spanning_Networks.html">Minimum Spanning Networks</a>
</li>
<li>
<a href="AMOVA.html">AMOVA</a>
</li>
<li>
<a href="DAPC.html">Discriminant analysis of principal components (DAPC)</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part III
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_vcf.html">Population genomics and HTS</a>
</li>
<li>
<a href="reading_vcf.html">Reading VCF data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genomic data</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="clustering_plot.html">Clustering plot</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Workshops
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">ICPP</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_icpp.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genome data</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">APS Southern Division</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_southernAPS.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
About
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Authors.html">Authors</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Appendices
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_to_R.html">Introduction to R</a>
</li>
<li>
<a href="Data_sets.html">Data sets</a>
</li>
<li>
<a href="funpendix.html">Function glossary</a>
</li>
<li>
<a href="background_functions.html">Background_functions</a>
</li>
<li>
<a href="https://github.com/grunwaldlab/Population_Genetics_in_R/">Source Code</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Getting ready to use R</h1>
<h3 class="subtitle"><em>NJ Grünwald, ZN Kamvar and SE Everhart</em></h3>
</div>
<p>R provides a unique environment for performing population genetic analyses. You will particularly enjoy not having to switch data formats and operating systems to execute a series of analyses, as was the case until now. Furthermore, R provides graphing capabilities that are ready for use in publications, with only a little bit of extra effort. But first, let’s install R, install an integrated development environment, open R, and load R packages.</p>
<!---
## FOR THE SPRING 2014 WORKSHOP
You must have:
1. The latest version of [R](http://www.r-project.org) **(3.1.0)**
2. [RStudio Desktop](http://www.rstudio.com/ide/). Think of this as kind of a GUI for R.
3. The latest development version of *poppr* (1.1.0.99) (see below)
**You must download the development version of poppr** (1.1.0.99). You may do this
in several ways:
### If you do NOT have a C compiler or do not know what it is:
1. In your R console, run the command to install the dependencies of *poppr*: `install.packages(c("adegenet", "pegas", "vegan", "ggplot2", "phangorn", "ape", "igraph"))`
2. Download the binaries for Windows [[here]](http://grunwaldlab.cgrb.oregonstate.edu/sites/default/files/u5/poppr_1.1.0.99_24.6.14.zip) or OSX [[here]](http://grunwaldlab.cgrb.oregonstate.edu/sites/default/files/u5/poppr_1.1.0.99_24.6.14.tgz) and install using the `Tools > Install Packages...` menu command. You should see a window like this:
![Install Packages Window](screenshots/InstallPackages.png)
You should make sure to choose the **Package Archive File** option and then indicate where you downloaded the package in the menubar. If you have downloaded it on your desktop, you would type `~/Desktop/poppr_1.1.0.99.tgz` (on OSX).
### If you have a working C compiler on your system
You may do install *poppr* via the R package *devtools*:
```r
install.packages("devtools")
devtools::install_github("grunwaldlab/poppr", ref = "devel")
```
-->
<div id="installing-r" class="section level2">
<h2>Installing R</h2>
<ol style="list-style-type: decimal">
<li><p>Download and install the <a href="http://www.r-project.org">R</a> statistical computing and graphing environment. This works cross-platform on Windows, OS X and Linux operating systems.</p></li>
<li><p>Download and install the free, open source edition of the <a href="http://www.rstudio.com/ide/">RStudio Desktop</a> integrated development environment (IDE) that we recommend.</p></li>
</ol>
</div>
<div id="installing-the-required-packages" class="section level2">
<h2>Installing the required packages</h2>
<p>The following packages are utilized in this primer:</p>
<ol style="list-style-type: decimal">
<li><a href="http://cran.r-project.org/web/packages/poppr/index.html">poppr</a></li>
<li><a href="http://cran.r-project.org/web/packages/adegenet/index.html">adegenet</a></li>
<li><a href="http://cran.r-project.org/web/packages/ape/index.html">ape</a></li>
<li><a href="http://cran.r-project.org/web/packages/ggplot2/index.html">ggplot2</a></li>
<li><a href="http://cran.r-project.org/web/packages/mmod/index.html">mmod</a></li>
<li><a href="http://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html">magrittr</a></li>
<li><a href="http://cran.r-project.org/web/packages/dplyr/vignettes/introduction.html">dplyr</a></li>
<li><a href="http://cran.r-project.org/web/packages/treemap/index.html">treemap</a></li>
</ol>
<p>Use the following script to install these packages:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">install.packages</span>(<span class="kw">c</span>(<span class="st">"poppr"</span>, <span class="st">"mmod"</span>, <span class="st">"magrittr"</span>, <span class="st">"treemap"</span>), <span class="dt">repos =</span> <span class="st">"http://cran.rstudio.com"</span>, <span class="dt">dependencies =</span> <span class="ot">TRUE</span>)</span></code></pre></div>
<p>We wrote and actively maintain <em>poppr</em> <span class="citation">(Kamvar, Tabima & Grünwald, 2014; Kamvar, Brooks & Grünwald, 2015)</span> and it is heavily relied upon in this primer. <em>Poppr</em> is an R package. You can think of a package as a library of functions written and curated by someone in the R user community, which you can be loaded into R for use.</p>
<p>Once you’ve installed <em>poppr</em>, you can invoke (i.e., load) it by typing or cutting and pasting:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a><span class="kw">library</span>(<span class="st">"poppr"</span>)</span></code></pre></div>
<p>This will load <em>poppr</em> and all dependent packages, such as <em>adegenet</em> and <em>ade4</em>. You will recognize loading by the prompts written to your screen.</p>
<p>Congratulations. You should now be all set for using R. Loading data and conducting your first analysis will be the topic of the next chapter. But before we go there lets provide a few useful resources.</p>
</div>
<div id="a-quick-introduction-to-r-using-rstudio" class="section level2">
<h2>A quick introduction to R using RStudio</h2>
<p>Next, let’s review some of the basic features and functions of R. To start R, open the RStudio application from your programs folder or start menu. This will initialize your R session. To exit R, simply close the RStudio application.</p>
<blockquote>
<p>Note that R is a case sensitive language!</p>
</blockquote>
<p>Let’s get comfortable with R by submitting the following command on the command line (where R prompts you with a <code>></code> in the lower left RStudio window pane) that will retrieve the current working directory on your machine:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a><span class="kw">getwd</span>() <span class="co"># this command will print the current working directory</span></span></code></pre></div>
<blockquote>
<p>Note that the symbol ‘#’ is used to add comments to your code and you just type <code>getwd()</code> after the “>”.</p>
</blockquote>
<p>Our primer is heavily based on the <em>poppr</em> and <em>adegenet</em> packages. To get help on any of their functions type a question mark before the empty function call as in:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a>?mlg <span class="co"># open the R documentation of the function mlg()</span></span></code></pre></div>
<p>To quit R you can either use the <kbd>RStudio > Quit</kbd> pull-down menu command or execute <kbd>⌘ + Q</kbd> (OS X) or <kbd>ctrl + Q</kbd> (PC).</p>
</div>
<div id="using-magrittr" class="section level2">
<h2>Using <em>magrittr</em></h2>
<p>Various chapters throughout this primer will have the symbol <code>%>%</code> in the code. This is called a “pipe” operator and it allows code to be more readable by stringing together commands from right to left. Here’s a <a href="http://rforcats.net/#pipes">short description of these “pipes” with cats</a>. When reading code, it can be thought of as equivalent to saying “and then”. For example, if you have three consecutive steps to a process, you would write this in English as:</p>
<blockquote>
<p>Take your data <strong>and then</strong> do step one, <strong>and then</strong> do step two, <strong>and then</strong> do step three.</p>
</blockquote>
<p>In R code with <em>magrittr</em>, assuming that each step is a function, it might be written as:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a>result <-<span class="st"> </span>data <span class="op">%>%</span><span class="st"> </span><span class="kw">step_one</span>() <span class="op">%>%</span><span class="st"> </span><span class="kw">step_two</span>() <span class="op">%>%</span><span class="st"> </span><span class="kw">step_three</span>()</span></code></pre></div>
<p>Below, are two examples of how code can be improved with <em>magrittr</em>. <a href="http://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html">More details about magrittr can be found in this link.</a></p>
<div id="consider-a-fake-example" class="section level4">
<h4>Consider a fake Example:</h4>
<p>Adapted from <a href="https://twitter.com/_inundata/status/557980236130689024">Hadley Wickham</a>. Based on the children’s song, <a href="http://en.wikipedia.org/wiki/Little_Bunny_Foo_Foo">Little bunny foo foo</a>.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a>foo_foo <-<span class="st"> </span><span class="kw">little_bunny</span>()</span>
<span id="cb6-2"><a href="#cb6-2"></a></span>
<span id="cb6-3"><a href="#cb6-3"></a><span class="kw">bop_on</span>(<span class="kw">scoop_up</span>(<span class="kw">hop_through</span>(foo_foo, forest), field_mouse), head)</span>
<span id="cb6-4"><a href="#cb6-4"></a></span>
<span id="cb6-5"><a href="#cb6-5"></a><span class="co"># VS</span></span>
<span id="cb6-6"><a href="#cb6-6"></a></span>
<span id="cb6-7"><a href="#cb6-7"></a>foo_foo <span class="op">%>%</span></span>
<span id="cb6-8"><a href="#cb6-8"></a><span class="st"> </span><span class="kw">hop_through</span>(forest) <span class="op">%>%</span></span>
<span id="cb6-9"><a href="#cb6-9"></a><span class="st"> </span><span class="kw">scoop_up</span>(field_mouse) <span class="op">%>%</span></span>
<span id="cb6-10"><a href="#cb6-10"></a><span class="st"> </span><span class="kw">bop_on</span>(head)</span></code></pre></div>
</div>
<div id="now-for-a-real-example" class="section level4">
<h4>Now for a real Example:</h4>
<p>We will use the <em>Phytophthora infestans</em> microsatellite data from North and South America <span class="citation">(Goss et al., 2014)</span>. Let’s calculate allelic diversity per population after clone-correction. This information can be found in our chapters on <a href="Population_Strata.html">Population strata and clone correction</a> and <a href="Locus_Stats.html">Locus based statistics</a>.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a><span class="kw">library</span>(<span class="st">"poppr"</span>)</span>
<span id="cb7-2"><a href="#cb7-2"></a><span class="kw">library</span>(<span class="st">"magrittr"</span>)</span>
<span id="cb7-3"><a href="#cb7-3"></a><span class="kw">data</span>(Pinf)</span>
<span id="cb7-4"><a href="#cb7-4"></a></span>
<span id="cb7-5"><a href="#cb7-5"></a><span class="co"># Compare the traditional R script</span></span>
<span id="cb7-6"><a href="#cb7-6"></a></span>
<span id="cb7-7"><a href="#cb7-7"></a>allelic_diversity <-<span class="st"> </span><span class="kw">lapply</span>(<span class="kw">seppop</span>(<span class="kw">clonecorrect</span>(Pinf, <span class="dt">strata =</span> <span class="op">~</span>Continent<span class="op">/</span>Country)),</span>
<span id="cb7-8"><a href="#cb7-8"></a> <span class="dt">FUN =</span> locus_table, <span class="dt">info =</span> <span class="ot">FALSE</span>)</span>
<span id="cb7-9"><a href="#cb7-9"></a></span>
<span id="cb7-10"><a href="#cb7-10"></a><span class="co"># versus the magrittr piping:</span></span>
<span id="cb7-11"><a href="#cb7-11"></a></span>
<span id="cb7-12"><a href="#cb7-12"></a>allelic_diversity <-<span class="st"> </span>Pinf <span class="op">%>%</span></span>
<span id="cb7-13"><a href="#cb7-13"></a><span class="st"> </span><span class="kw">clonecorrect</span>(<span class="dt">strata=</span> <span class="op">~</span>Continent<span class="op">/</span>Country) <span class="op">%>%</span><span class="st"> </span><span class="co"># clone censor by continent and country.</span></span>
<span id="cb7-14"><a href="#cb7-14"></a><span class="st"> </span><span class="kw">seppop</span>() <span class="op">%>%</span><span class="st"> </span><span class="co"># Separate populations (by continent)</span></span>
<span id="cb7-15"><a href="#cb7-15"></a><span class="st"> </span><span class="kw">lapply</span>(<span class="dt">FUN =</span> locus_table, <span class="dt">info =</span> <span class="ot">FALSE</span>) <span class="co"># Apply the function locus_table to both populations</span></span></code></pre></div>
<blockquote>
<p>To observe the results type <code>allelic_diversity</code> into the console after each statement.</p>
</blockquote>
<p>The <code>%>%</code> operator is thus good if you have to do a lot of small steps in your analysis. It allows your code to be more readable and reproducible.</p>
</div>
</div>
<div id="packages-and-getting-help" class="section level2">
<h2>Packages and getting help</h2>
<p>One way that R shines above other languages for analysis is the fact that R packages in CRAN are all documented. Help files are written in HTML and give the user a brief overview of:</p>
<ul>
<li>the purpose of a function,</li>
<li>the parameters it takes,</li>
<li>the output it yields,</li>
<li>and some examples demonstrating its usage.</li>
</ul>
<p>To see all of the help topics in a package, you can simply type:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="kw">help</span>(<span class="dt">package =</span> <span class="st">"poppr"</span>) <span class="co"># Get help for a package.</span></span>
<span id="cb8-2"><a href="#cb8-2"></a><span class="kw">help</span>(amova) <span class="co"># Get help for the amova function.</span></span>
<span id="cb8-3"><a href="#cb8-3"></a>?amova <span class="co"># same as above.</span></span>
<span id="cb8-4"><a href="#cb8-4"></a>??multilocus <span class="co"># Search for functions that have the keyword multilocus.</span></span></code></pre></div>
<p>Some packages include vignettes that can have different formats such as being introductions, tutorials, or reference cards in PDF format. You can look at a list of vignettes in all packages by typing:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="kw">browseVignettes</span>() <span class="co"># see vignettes from all packages</span></span>
<span id="cb9-2"><a href="#cb9-2"></a><span class="kw">browseVignettes</span>(<span class="dt">package =</span> <span class="st">'poppr'</span>) <span class="co"># see vignettes from a specific package.</span></span></code></pre></div>
<p>and to look at a specific vignette you can type:</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="kw">vignette</span>(<span class="st">'poppr_manual'</span>)</span></code></pre></div>
<p>Next, consider browsing Appendix 3 on “Introduction to R” if you are not yet familiar with R and RStudio. Otherwise, you are now ready to think about formatting and loading population genetic data into R.</p>
</div>
<div id="references" class="section level2 unnumbered">
<h2>References</h2>
<div id="refs" class="references">
<div id="ref-goss2014irish">
<p>Goss EM., Tabima JF., Cooke DEL., Restrepo S., Fry WE., Forbes GA., Fieland VJ., Cardenas M., Grünwald NJ. 2014. The Irish potato famine pathogen <em>phytophthora infestans</em> originated in central mexico rather than the andes. <em>Proceedings of the National Academy of Sciences</em> 111:8791–8796. Available at: <a href="http://www.pnas.org/content/early/2014/05/29/1401884111.abstract">http://www.pnas.org/content/early/2014/05/29/1401884111.abstract</a></p>
</div>
<div id="ref-kamvar2015novel">
<p>Kamvar ZN., Brooks JC., Grünwald NJ. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. <em>Name: Frontiers in Genetics</em> 6:208. Available at: <a href="http://dx.doi.org/10.3389/fgene.2015.00208">http://dx.doi.org/10.3389/fgene.2015.00208</a></p>
</div>
<div id="ref-kamvar2014poppr">
<p>Kamvar ZN., Tabima JF., Grünwald NJ. 2014. <span class="math inline">\(Poppr\)</span>: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. <em>PeerJ</em> 2:e281. Available at: <a href="http://dx.doi.org/10.7717/peerj.281">http://dx.doi.org/10.7717/peerj.281</a></p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>