forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
function.h
113 lines (90 loc) · 3.31 KB
/
function.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#pragma once
#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/qualified_name.h>
#include <c10/util/Exception.h>
#include <c10/util/FunctionRef.h>
namespace c10 {
struct FunctionSchema;
};
namespace at {
TORCH_API void launch(std::function<void()> func);
}
namespace torch::jit {
struct Graph;
struct Code;
namespace mobile {
struct Code;
}
using Stack = std::vector<at::IValue>;
using Kwargs = std::unordered_map<std::string, at::IValue>;
struct RecursiveMethodCallError : public std::exception {};
using TaskLauncher = std::function<void(std::function<void()>)>;
TORCH_API void preoptimizeGraph(
std::shared_ptr<Graph>& graph,
bool disable_autocast = false);
// A Function is a pure Graph with no implicit `self` object bound.
// It contains schema information and the executor that manages the
// execution of the function. Method is a wrapper around an
// underlying Function that also provides a `self` object.
struct TORCH_API Function {
Function() = default;
Function(const Function&) = default;
Function& operator=(const Function&) = default;
Function(Function&&) noexcept = default;
Function& operator=(Function&&) noexcept = default;
virtual c10::string_view doc_string() const {
static constexpr c10::string_view no_doc_string = "";
return no_doc_string;
}
virtual bool isGraphFunction() const {
return false;
}
virtual void run(Stack& stack) = 0;
virtual c10::intrusive_ptr<c10::ivalue::Future> runAsync(
Stack& /*stack*/,
C10_UNUSED TaskLauncher taskLauncher = at::launch) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(false);
return {};
}
at::IValue operator()(Stack stack, const Kwargs& kwargs = Kwargs()) {
getSchema().checkAndNormalizeInputs(stack, kwargs);
run(stack);
return stack.front();
}
virtual const c10::QualifiedName& qualname() const = 0;
const std::string& name() const {
return qualname().name();
}
// if this isn't yet defined, run its method_creator function
virtual void ensure_defined() = 0;
virtual const c10::FunctionSchema& getSchema() const = 0;
virtual size_t num_inputs() const = 0;
virtual Function& setSchema(c10::FunctionSchema schema) = 0;
// call() defines how different interpreter implementations interacts with
// Function objects. Basically interpreters need to provide a callback to
// communicate to Functions what to do if provided a Code object.
// Alternatively we could design the signature to return an optional Code
// object, but that requires special handling the null case in interpreter
// and the fallback behavior is not well defined by interpreter but rather
// Function themselves, so a callback approach is more reasonable than
// returning values.
// If call() returns true, then callback completes successfully, otherwise
// call() returns false.
// Overload for server interpreter, a bailout size is needed for graph
// executor.
virtual bool call(
Stack&,
c10::optional<size_t>,
c10::function_ref<void(const Code&)>) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(false);
return false;
}
// Overload for mobile interpreter.
virtual bool call(Stack&, c10::function_ref<void(const mobile::Code&)>) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(false);
return false;
}
virtual ~Function() = default;
};
} // namespace torch::jit