forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caffe_translator.py
937 lines (814 loc) · 34.4 KB
/
caffe_translator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
## @package caffe_translator
# Module caffe2.python.caffe_translator
import argparse
import copy
import logging
import re
import numpy as np # noqa
from caffe2.proto import caffe2_pb2, caffe2_legacy_pb2
from caffe.proto import caffe_pb2
from caffe2.python import core, utils, workspace
from google.protobuf import text_format
logging.basicConfig()
log = logging.getLogger("caffe_translator")
log.setLevel(logging.INFO)
def _StateMeetsRule(state, rule):
"""A function that reproduces Caffe's StateMeetsRule functionality."""
if rule.HasField('phase') and rule.phase != state.phase:
return False
if rule.HasField('min_level') and state.level < rule.min_level:
return False
if rule.HasField('max_level') and state.level > rule.max_level:
return False
curr_stages = set(list(state.stage))
# all stages in rule.stages should be in, otherwise it's not a match.
if len(rule.stage) and any([s not in curr_stages for s in rule.stage]):
return False
# none of the stage in rule.stages should be in, otherwise it's not a match.
if len(rule.not_stage) and any([s in curr_stages for s in rule.not_stage]):
return False
# If none of the nonmatch happens, return True.
return True
def _ShouldInclude(net_state, layer):
"""A function that reproduces Caffe's inclusion and exclusion rule."""
ret = (len(layer.include) == 0)
# check exclude rules: if any exclusion is met, we shouldn't include.
ret &= not any([_StateMeetsRule(net_state, rule) for rule in layer.exclude])
if len(layer.include):
# check include rules: if any inclusion is met, we should include.
ret |= any([_StateMeetsRule(net_state, rule) for rule in layer.include])
return ret
def _GetLegacyDims(net, net_params, dummy_input, legacy_pad_ops):
dim_map = {}
ws = workspace.C.Workspace()
for param in net_params.protos:
ws.create_blob(param.name) \
.feed(utils.Caffe2TensorToNumpyArray(param))
external_input = net.op[0].input[0]
ws.create_blob(external_input).feed(dummy_input)
# Get dimensions with legacy pad
for i in range(len(net.op)):
op_def = net.op[i]
ws._run_operator(op_def.SerializeToString())
if i in legacy_pad_ops:
output = op_def.output[0]
blob_legacy = ws.fetch_blob(output)
dim_map[i] = blob_legacy.shape
return dim_map
def _GetLegacyPadArgs(op_def, arg_map):
pads = {}
keys = ['pad_l', 'pad_t', 'pad_r', 'pad_b']
is_pad = 'pad' in arg_map
if is_pad:
for k in keys:
pads[k] = arg_map['pad'].i
else:
pads = {x: arg_map[x].i for x in keys}
return pads
def _AdjustDims(op_def, arg_map, pads, dim1, dim2):
n1, c1, h1, w1 = dim1
n2, c2, h2, w2 = dim2
assert(n1 == n2)
assert(c1 == c2)
is_pad = 'pad' in arg_map
if h1 != h2 or w1 != w2:
if h1 == h2 + 1:
pads['pad_b'] += 1
elif h1 != h2:
raise Exception("Unexpected dimensions for height:", h1, h2)
if w1 == w2 + 1:
pads['pad_r'] += 1
elif w1 != w2:
raise Exception("Unexpected dimensions for width:", w1, w2)
if is_pad:
op_def.arg.remove(arg_map['pad'])
args = []
for name in pads.keys():
arg = caffe2_pb2.Argument()
arg.name = name
arg.i = pads[name]
args.append(arg)
op_def.arg.extend(args)
else:
for name in pads.keys():
arg_map[name].i = pads[name]
def _RemoveLegacyPad(net, net_params, input_dims):
legacy_pad_ops = []
for i in range(len(net.op)):
op_def = net.op[i]
if re.match(r'^(Conv|ConvTranspose|MaxPool|AveragePool)(\dD)?$',
op_def.type):
for arg in op_def.arg:
if arg.name == 'legacy_pad':
legacy_pad_ops.append(i)
break
if legacy_pad_ops:
n, c, h, w = input_dims
dummy_input = np.random.randn(n, c, h, w).astype(np.float32)
dim_map = _GetLegacyDims(net, net_params, dummy_input, legacy_pad_ops)
# Running with the legacy pad argument removed
# compare the dimensions and adjust pad argument when necessary
ws = workspace.C.Workspace()
external_input = net.op[0].input[0]
ws.create_blob(external_input).feed_blob(dummy_input)
for param in net_params.protos:
ws.create_blob(param.name) \
.feed_blob(utils.Caffe2TensorToNumpyArray(param))
for i in range(len(net.op)):
op_def = net.op[i]
if i in legacy_pad_ops:
arg_map = {}
for arg in op_def.arg:
arg_map[arg.name] = arg
pads = _GetLegacyPadArgs(op_def, arg_map)
# remove legacy pad arg
for j in range(len(op_def.arg)):
arg = op_def.arg[j]
if arg.name == 'legacy_pad':
del op_def.arg[j]
break
output = op_def.output[0]
# use a new name to avoid the interference with inplace
nonlegacy_output = output + '_nonlegacy'
op_def.output[0] = nonlegacy_output
ws._run_operator(op_def.SerializeToString())
blob_nonlegacy = ws.fetch_blob(nonlegacy_output)
# reset output name
op_def.output[0] = output
dim1 = dim_map[i]
dim2 = blob_nonlegacy.shape
_AdjustDims(op_def, arg_map, pads, dim1, dim2)
ws._run_operator(op_def.SerializeToString())
return net
def _GetBlobDimMap(net, net_params, dummy_input):
dim_map = {}
ws = workspace.C.Workspace()
for param in net_params.protos:
ws.create_blob(param.name) \
.feed(utils.Caffe2TensorToNumpyArray(param))
external_input = net.op[0].input[0]
ws.create_blob(external_input).feed(dummy_input)
# Get dimensions with legacy pad
for i in range(len(net.op)):
op_def = net.op[i]
ws._run_operator(op_def.SerializeToString())
for output in op_def.output:
blob = ws.fetch_blob(output)
dim_map[output] = blob.shape
return dim_map
def _GetInputDims(caffe_net):
input_dims = []
if caffe_net.input_dim:
input_dims = caffe_net.input_dim
elif caffe_net.input_shape:
input_dims = caffe_net.input_shape[0].dim
elif caffe_net.layer[0].input_param.shape:
# getting input dimension from first layer
input_dims = caffe_net.layer[0].input_param.shape[0].dim
return input_dims
class TranslatorRegistry:
registry_ = {}
@classmethod
def Register(cls, op_name):
"""A decorator for registering gradient mappings."""
def Wrapper(func):
cls.registry_[op_name] = func
return func
return Wrapper
@classmethod
def TranslateLayer(cls, layer, pretrained_blobs, is_test, **kwargs):
try:
caffe_ops, params = cls.registry_[layer.type](
layer, pretrained_blobs, is_test, **kwargs)
except KeyError as e:
raise KeyError('No translator registered for layer: %s yet.' %
str(layer)) from e
if caffe_ops is None:
caffe_ops = []
if type(caffe_ops) is not list:
caffe_ops = [caffe_ops]
return caffe_ops, params
@classmethod
def TranslateModel(
cls,
caffe_net,
pretrained_net,
is_test=False,
net_state=None,
remove_legacy_pad=False,
input_dims=None
):
net_state = caffe_pb2.NetState() if net_state is None else net_state
net = caffe2_pb2.NetDef()
net.name = caffe_net.name
net_params = caffe2_pb2.TensorProtos()
if len(caffe_net.layers) > 0:
raise ValueError(
'I think something is wrong. This translation script '
'only accepts new style layers that are stored in the '
'layer field.'
)
if not input_dims:
input_dims = _GetInputDims(caffe_net)
for layer in caffe_net.layer:
if not _ShouldInclude(net_state, layer):
log.info('Current net state does not need layer {}'
.format(layer.name))
continue
log.info('Translate layer {}'.format(layer.name))
# Get pretrained one
pretrained_layers = (
[l for l in pretrained_net.layer
if l.name == layer.name] + [l
for l in pretrained_net.layers
if l.name == layer.name]
)
if len(pretrained_layers) > 1:
raise ValueError(
'huh? more than one pretrained layer of one name?')
elif len(pretrained_layers) == 1:
pretrained_blobs = [
utils.CaffeBlobToNumpyArray(blob)
for blob in pretrained_layers[0].blobs
]
else:
# No pretrained layer for the given layer name. We'll just pass
# no parameter blobs.
# print 'No pretrained layer for layer', layer.name
pretrained_blobs = []
operators, params = cls.TranslateLayer(
layer, pretrained_blobs, is_test, net=net,
net_params=net_params, input_dims=input_dims)
net.op.extend(operators)
net_params.protos.extend(params)
if remove_legacy_pad:
assert input_dims, \
'Please specify input_dims to remove legacy_pad'
net = _RemoveLegacyPad(net, net_params, input_dims)
return net, net_params
def TranslateModel(*args, **kwargs):
return TranslatorRegistry.TranslateModel(*args, **kwargs)
def ConvertTensorProtosToInitNet(net_params, input_name):
"""Takes the net_params returned from TranslateModel, and wrap it as an
init net that contain GivenTensorFill.
This is a very simple feature that only works with float tensors, and is
only intended to be used in an environment where you want a single
initialization file - for more complex cases, use a db to store the
parameters.
"""
init_net = caffe2_pb2.NetDef()
for tensor in net_params.protos:
if len(tensor.float_data) == 0:
raise RuntimeError(
"Only float tensors are supported in this util.")
op = core.CreateOperator(
"GivenTensorFill", [], [tensor.name],
arg=[
utils.MakeArgument("shape", list(tensor.dims)),
utils.MakeArgument("values", tensor.float_data)])
init_net.op.extend([op])
init_net.op.extend([core.CreateOperator("ConstantFill", [], [input_name], shape=[1])])
return init_net
def BaseTranslate(layer, caffe2_type):
"""A simple translate interface that maps the layer input and output."""
caffe2_op = caffe2_pb2.OperatorDef()
caffe2_op.type = caffe2_type
caffe2_op.input.extend(layer.bottom)
caffe2_op.output.extend(layer.top)
return caffe2_op
def AddArgument(op, key, value):
"""Makes an argument based on the value type."""
op.arg.extend([utils.MakeArgument(key, value)])
################################################################################
# Common translators for layers.
################################################################################
@TranslatorRegistry.Register("Input")
def TranslateInput(layer, pretrained_blobs, is_test, **kwargs):
return [], []
@TranslatorRegistry.Register("VideoData")
def TranslateVideoData(layer, pretrained_blobs, is_test, **kwargs):
return [], []
@TranslatorRegistry.Register("Data")
def TranslateData(layer, pretrained_blobs, is_test, **kwargs):
return [], []
# A function used in convolution, pooling and deconvolution to deal with
# conv pool specific parameters.
def _TranslateStridePadKernelHelper(param, caffe_op):
try:
if (len(param.stride) > 1 or len(param.kernel_size) > 1 or
len(param.pad) > 1):
raise NotImplementedError(
"Translator currently does not support non-conventional "
"pad/kernel/stride settings."
)
stride = param.stride[0] if len(param.stride) else 1
pad = param.pad[0] if len(param.pad) else 0
kernel = param.kernel_size[0] if len(param.kernel_size) else 0
except TypeError:
# This catches the case of a PoolingParameter, in which case we are
# having non-repeating pad, stride and kernel.
stride = param.stride
pad = param.pad
kernel = param.kernel_size
# Get stride
if param.HasField("stride_h") or param.HasField("stride_w"):
AddArgument(caffe_op, "stride_h", param.stride_h)
AddArgument(caffe_op, "stride_w", param.stride_w)
else:
AddArgument(caffe_op, "stride", stride)
# Get pad
if param.HasField("pad_h") or param.HasField("pad_w"):
if param.pad_h == param.pad_w:
AddArgument(caffe_op, "pad", param.pad_h)
else:
AddArgument(caffe_op, "pad_t", param.pad_h)
AddArgument(caffe_op, "pad_b", param.pad_h)
AddArgument(caffe_op, "pad_l", param.pad_w)
AddArgument(caffe_op, "pad_r", param.pad_w)
else:
AddArgument(caffe_op, "pad", pad)
# Get kernel
if param.HasField("kernel_h") or param.HasField("kernel_w"):
AddArgument(caffe_op, "kernel_h", param.kernel_h)
AddArgument(caffe_op, "kernel_w", param.kernel_w)
else:
AddArgument(caffe_op, "kernel", kernel)
@TranslatorRegistry.Register("Convolution3D")
def TranslateConvNd(layer, pretrained_blobs, is_test, **kwargs):
param = layer.convolution3d_param
caffe_op = BaseTranslate(layer, "Conv")
output = caffe_op.output[0]
caffe_op.input.append(output + '_w')
AddArgument(
caffe_op,
"kernels",
[param.kernel_depth, param.kernel_size, param.kernel_size])
AddArgument(
caffe_op,
"strides",
[param.temporal_stride, param.stride, param.stride])
temporal_pad = 0
spatial_pad = 0
if hasattr(param, 'temporal_pad'):
temporal_pad = param.temporal_pad
if hasattr(param, 'pad'):
spatial_pad = param.pad
AddArgument(caffe_op, "pads", [temporal_pad, spatial_pad, spatial_pad] * 2)
# weight
params = [
utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')]
# bias
if len(pretrained_blobs) == 2:
caffe_op.input.append(output + '_b')
params.append(
utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'))
return caffe_op, params
@TranslatorRegistry.Register("Convolution")
def TranslateConv(layer, pretrained_blobs, is_test, **kwargs):
param = layer.convolution_param
caffe_op = BaseTranslate(layer, "Conv")
output = caffe_op.output[0]
caffe_op.input.append(output + '_w')
_TranslateStridePadKernelHelper(param, caffe_op)
# weight
params = [
utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')]
# bias
if len(pretrained_blobs) == 2:
caffe_op.input.append(output + '_b')
params.append(
utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'))
# Group convolution option
if param.group != 1:
AddArgument(caffe_op, "group", param.group)
# Get dilation - not tested. If you have a model and this checks out,
# please provide a test and uncomment this.
if len(param.dilation) > 0:
if len(param.dilation) == 1:
AddArgument(caffe_op, "dilation", param.dilation[0])
elif len(param.dilation) == 2:
AddArgument(caffe_op, "dilation_h", param.dilation[0])
AddArgument(caffe_op, "dilation_w", param.dilation[1])
return caffe_op, params
@TranslatorRegistry.Register("Deconvolution")
def TranslateDeconv(layer, pretrained_blobs, is_test, **kwargs):
param = layer.convolution_param
if param.group > 1:
raise NotImplementedError(
"Translator currently does not support group deconvolution."
)
caffe_op = BaseTranslate(layer, "ConvTranspose")
output = caffe_op.output[0]
_TranslateStridePadKernelHelper(param, caffe_op)
caffe_op.input.extend([output + '_w'])
AddArgument(caffe_op, "order", "NCHW")
weight = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_w')
if param.bias_term:
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'
)
caffe_op.input.extend([output + '_b'])
return caffe_op, [weight, bias]
else:
return caffe_op, [weight]
@TranslatorRegistry.Register("Crop")
def TranslateCrop(layer, pretrained_blobs, is_test, **kwargs):
net, net_params, input_dims = kwargs['net'], kwargs['net_params'], kwargs['input_dims']
n, c, h, w = input_dims
dummy_input = np.random.randn(n, c, h, w).astype(np.float32)
dim_map = _GetBlobDimMap(net, net_params, dummy_input)
param = layer.crop_param
axis, offsets = param.axis, param.offset
caffe_op = BaseTranslate(layer, "Slice")
input_1 = caffe_op.input[1]
input_1_dim = dim_map[input_1]
starts, ends = [], []
dims = len(dim_map[input_1])
assert len(offsets) == 1, 'Caffe Translator for Crop only works for offset \
of 1 for now'
for _ in range(axis):
starts.append(0)
ends.append(-1)
end_offset = [int(offsets[0] + input_1_dim[i]) for i in range(axis, dims)]
ends.extend(end_offset)
starts.extend([offsets[0]] * len(end_offset))
op = caffe2_pb2.OperatorDef()
op.input.extend([caffe_op.input[0]])
op.output.extend(caffe_op.output)
op.arg.extend(caffe_op.arg)
op.type = caffe_op.type
AddArgument(op, "starts", starts)
AddArgument(op, "ends", ends)
return op, []
@TranslatorRegistry.Register("ReLU")
def TranslateRelu(layer, pretrained_blobs, is_test, **kwargs):
return BaseTranslate(layer, "Relu"), []
@TranslatorRegistry.Register("Pooling")
def TranslatePool(layer, pretrained_blobs, is_test, **kwargs):
param = layer.pooling_param
if param.pool == caffe_pb2.PoolingParameter.MAX:
caffe_op = BaseTranslate(layer, "MaxPool")
elif param.pool == caffe_pb2.PoolingParameter.AVE:
caffe_op = BaseTranslate(layer, "AveragePool")
_TranslateStridePadKernelHelper(param, caffe_op)
AddArgument(caffe_op, "order", "NCHW")
try:
# In the Facebook port of Caffe, a torch_pooling field was added to
# map the pooling computation of Torch. Essentially, it uses
# floor((height + 2 * padding - kernel) / stride) + 1
# instead of
# ceil((height + 2 * padding - kernel) / stride) + 1
# which is Caffe's version.
# Torch pooling is actually the same as Caffe2 pooling, so we don't
# need to do anything.
is_torch_pooling = param.torch_pooling
except AttributeError:
is_torch_pooling = False
if not is_torch_pooling:
AddArgument(caffe_op, "legacy_pad",
caffe2_legacy_pb2.CAFFE_LEGACY_POOLING)
if param.global_pooling:
AddArgument(caffe_op, "global_pooling", 1)
return caffe_op, []
@TranslatorRegistry.Register("Pooling3D")
def TranslatePool3D(layer, pretrained_blobs, is_test, **kwargs):
param = layer.pooling3d_param
if param.pool == caffe_pb2.Pooling3DParameter.MAX:
caffe_op = BaseTranslate(layer, "MaxPool")
elif param.pool == caffe_pb2.Pooling3DParameter.AVE:
caffe_op = BaseTranslate(layer, "AveragePool")
AddArgument(caffe_op, "order", "NCHW")
AddArgument(
caffe_op,
"kernels",
[param.kernel_depth, param.kernel_size, param.kernel_size])
AddArgument(
caffe_op,
"strides",
[param.temporal_stride, param.stride, param.stride])
temporal_pad = 0
spatial_pad = 0
if hasattr(param, 'temporal_pad'):
temporal_pad = param.temporal_pad
if hasattr(param, 'pad'):
spatial_pad = param.pad
AddArgument(caffe_op, "pads", [temporal_pad, spatial_pad, spatial_pad] * 2)
return caffe_op, []
@TranslatorRegistry.Register("LRN")
def TranslateLRN(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "LRN")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_scale'])
param = layer.lrn_param
if param.norm_region != caffe_pb2.LRNParameter.ACROSS_CHANNELS:
raise ValueError(
"Does not support norm region other than across channels.")
AddArgument(caffe_op, "size", int(param.local_size))
AddArgument(caffe_op, "alpha", float(param.alpha))
AddArgument(caffe_op, "beta", float(param.beta))
AddArgument(caffe_op, "bias", float(param.k))
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, []
@TranslatorRegistry.Register("InnerProduct")
def TranslateInnerProduct(layer, pretrained_blobs, is_test, **kwargs):
param = layer.inner_product_param
try:
if param.axis != 1 or param.transpose:
raise ValueError(
"We don't have testing case for non-default axis and transpose "
"cases yet so we are disabling it for now. If you have a model "
"with this, please do send us your model for us to update this "
"support, and you are more than welcome to send a PR for this.")
except AttributeError:
# We might be using an historic Caffe protobuf that does not have axis
# and transpose arguments, so we will silently pass.
pass
caffe_op = BaseTranslate(layer, "FC")
output = caffe_op.output[0]
caffe_op.input.extend([output + '_w', output + '_b'])
# To provide the old-style 4-dimensional blob (1, 1, dim_output, dim_input)
# case, we always explicitly reshape the pretrained blob.
if pretrained_blobs[0].ndim not in [2, 4]:
raise ValueError("Unexpected weight ndim.")
if (pretrained_blobs[0].ndim == 4 and
list(pretrained_blobs[0].shape[:2]) != [1, 1]):
raise ValueError(
"If pretrained blob has 4 dims (old-style Caffe), the first two "
"should be of value 1, but I got " + str(pretrained_blobs[0].shape))
weight = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0].reshape(-1, pretrained_blobs[0].shape[-1]),
output + '_w'
)
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b'
)
return caffe_op, [weight, bias]
@TranslatorRegistry.Register("Dropout")
def TranslateDropout(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Dropout")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_mask'])
param = layer.dropout_param
AddArgument(caffe_op, "ratio", param.dropout_ratio)
if (is_test):
AddArgument(caffe_op, "is_test", 1)
return caffe_op, []
@TranslatorRegistry.Register("Softmax")
def TranslateSoftmax(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Softmax")
return caffe_op, []
@TranslatorRegistry.Register("SoftmaxWithLoss")
def TranslateSoftmaxWithLoss(layer, pretrained_blobs, is_test, **kwargs):
softmax_op = core.CreateOperator(
"Softmax", [layer.bottom[0]],
layer.bottom[0] + "_translator_autogen_softmax")
xent_op = core.CreateOperator(
"LabelCrossEntropy",
[softmax_op.output[0], layer.bottom[1]],
layer.bottom[0] + "_translator_autogen_xent")
loss_op = core.CreateOperator(
"AveragedLoss",
xent_op.output[0],
layer.top[0])
return [softmax_op, xent_op, loss_op], []
@TranslatorRegistry.Register("Accuracy")
def TranslateAccuracy(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Accuracy")
if layer.accuracy_param.top_k != 1:
AddArgument(caffe_op, "top_k", layer.accuracy_param.top_k)
return caffe_op, []
@TranslatorRegistry.Register("Concat")
def TranslateConcat(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Concat")
caffe_op.output.extend(['_' + caffe_op.output[0] + '_dims'])
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, []
@TranslatorRegistry.Register("TanH")
def TranslateTanH(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Tanh")
return caffe_op, []
@TranslatorRegistry.Register("InstanceNorm")
def TranslateInstanceNorm(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "InstanceNorm")
output = caffe_op.output[0]
weight = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0].flatten(), output + '_w')
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), output + '_b')
caffe_op.input.extend([output + '_w', output + '_b'])
AddArgument(caffe_op, "order", "NCHW")
return caffe_op, [weight, bias]
@TranslatorRegistry.Register("BatchNorm")
def TranslateBatchNorm(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "SpatialBN")
output = caffe_op.output[0]
param = layer.batch_norm_param
AddArgument(caffe_op, "is_test", is_test)
AddArgument(caffe_op, "epsilon", param.eps)
AddArgument(caffe_op, "order", "NCHW")
caffe_op.input.extend(
[output + "_scale",
output + "_bias",
output + "_mean",
output + "_var"])
if not is_test:
caffe_op.output.extend(
[output + "_mean",
output + "_var",
output + "_saved_mean",
output + "_saved_var"])
n_channels = pretrained_blobs[0].shape[0]
if pretrained_blobs[2][0] != 0:
mean = utils.NumpyArrayToCaffe2Tensor(
(1. / pretrained_blobs[2][0]) * pretrained_blobs[0],
output + '_mean')
var = utils.NumpyArrayToCaffe2Tensor(
(1. / pretrained_blobs[2][0]) * pretrained_blobs[1],
output + '_var')
else:
raise RuntimeError("scalar is zero.")
if len(pretrained_blobs) > 3:
# IntelCaffe and NVCaffe uses fused BN+Scale,
# three blobs for BN and two blobs for Scale,
# so that the total number of blobs becomes five (including scale and bias).
scale = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[3].flatten(),
output + '_scale')
bias = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[4].flatten(),
output + '_bias')
else:
pretrained_blobs[2][0] = 1
pretrained_blobs[2] = np.tile(pretrained_blobs[2], (n_channels, ))
scale = utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[2],
output + '_scale')
bias = utils.NumpyArrayToCaffe2Tensor(
np.zeros_like(pretrained_blobs[2]),
output + '_bias')
return caffe_op, [scale, bias, mean, var]
@TranslatorRegistry.Register("Eltwise")
def TranslateElementWise(layer, pretrained_blobs, is_test, **kwargs):
param = layer.eltwise_param
# TODO(jiayq): if we have a protobuf that uses this, lift this constraint
# and verify that we can correctly translate.
if len(param.coeff) or param.operation != 1:
raise RuntimeError("This eltwise layer is not yet supported.")
caffe_op = BaseTranslate(layer, "Sum")
return caffe_op, []
@TranslatorRegistry.Register("Scale")
def TranslateScale(layer, pretrained_blobs, is_test, **kwargs):
mul_op = BaseTranslate(layer, "Mul")
scale_param = layer.scale_param
AddArgument(mul_op, "axis", scale_param.axis)
AddArgument(mul_op, "broadcast", True)
if len(mul_op.input) == 1:
# the scale parameter is in pretrained blobs
if scale_param.num_axes != 1:
raise RuntimeError("This path has not been verified yet.")
output = mul_op.output[0]
mul_op_param = output + 'scale_w'
mul_op.input.append(mul_op_param)
weights = []
weights.append(utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[0].flatten(), mul_op_param))
add_op = None
if len(pretrained_blobs) == 1:
# No bias-term in Scale layer
pass
elif len(pretrained_blobs) == 2:
# Caffe Scale layer supports a bias term such that it computes
# (scale_param * X + bias), whereas Caffe2 Mul op doesn't.
# Include a separate Add op for the bias followed by Mul.
add_op = copy.deepcopy(mul_op)
add_op.type = "Add"
add_op_param = output + 'scale_b'
internal_blob = output + "_internal"
del mul_op.output[:]
mul_op.output.append(internal_blob)
del add_op.input[:]
add_op.input.append(internal_blob)
add_op.input.append(add_op_param)
weights.append(utils.NumpyArrayToCaffe2Tensor(
pretrained_blobs[1].flatten(), add_op_param))
else:
raise RuntimeError("Unexpected number of pretrained blobs in Scale")
caffe_ops = [mul_op]
if add_op:
caffe_ops.append(add_op)
assert len(caffe_ops) == len(weights)
return caffe_ops, weights
elif len(mul_op.input) == 2:
# TODO(jiayq): find a protobuf that uses this and verify.
raise RuntimeError("This path has not been verified yet.")
else:
raise RuntimeError("Unexpected number of inputs.")
@TranslatorRegistry.Register("Reshape")
def TranslateReshape(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Reshape")
caffe_op.output.append("_" + caffe_op.input[0] + "_dims")
reshape_param = layer.reshape_param
AddArgument(caffe_op, 'shape', reshape_param.shape.dim)
return caffe_op, []
@TranslatorRegistry.Register("Flatten")
def TranslateFlatten(layer, pretrained_blobs, is_test, **kwargs):
param = layer.flatten_param
if param.end_axis != -1:
raise NotImplementedError("flatten_param.end_axis not supported yet.")
if param.axis == 0:
caffe_op = BaseTranslate(layer, "FlattenToVec")
elif param.axis == 1:
caffe_op = BaseTranslate(layer, "Flatten")
else:
# This could be a Reshape op, but dim size is not known here.
raise NotImplementedError(
"Not supported yet for flatten_param.axis {}.".format(param.axis))
return caffe_op, []
@TranslatorRegistry.Register("Sigmoid")
def TranslateSigmoid(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "Sigmoid")
return caffe_op, []
@TranslatorRegistry.Register("ROIPooling")
def TranslateROIPooling(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "RoIPool")
AddArgument(caffe_op, "order", "NCHW")
if is_test:
AddArgument(caffe_op, "is_test", is_test)
else:
# Only used for gradient computation
caffe_op.output.append(caffe_op.output[0] + '_argmaxes')
param = layer.roi_pooling_param
if param.HasField('pooled_h'):
AddArgument(caffe_op, 'pooled_h', param.pooled_h)
if param.HasField('pooled_w'):
AddArgument(caffe_op, 'pooled_w', param.pooled_w)
if param.HasField('spatial_scale'):
AddArgument(caffe_op, 'spatial_scale', param.spatial_scale)
return caffe_op, []
@TranslatorRegistry.Register("PReLU")
def TranslatePRelu(layer, pretrained_blobs, is_test, **kwargs):
caffe_op = BaseTranslate(layer, "PRelu")
output = caffe_op.output[0]
caffe_op.input.extend([output + '_Slope'])
slope = utils.NumpyArrayToCaffe2Tensor(pretrained_blobs[0], output + '_Slope')
return caffe_op, [slope]
@TranslatorRegistry.Register("Reduction")
def TranslateReduction(layer, pretrained_blobs, is_test, **kwargs):
param = layer.reduction_param
if param.operation == caffe_pb2.ReductionParameter.SUM:
caffe_op = BaseTranslate(layer, "ReduceBackSum")
elif param.operation == caffe_pb2.ReductionParameter.MEAN:
caffe_op = BaseTranslate(layer, "ReduceBackMean")
else:
raise NotImplementedError("Not yet supported")
if param.axis > 0:
# We can't figure out the number of dims to reduce from positive axis
# for back reduction since the shape info is not known here.
raise NotImplementedError("Not yet supported")
num_reduce_dim = -param.axis
AddArgument(caffe_op, "num_reduce_dim", num_reduce_dim)
return caffe_op, []
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="Utilitity to convert pretrained caffe models to Caffe2 models.")
parser.add_argument("prototext", help="Caffe prototext.")
parser.add_argument("caffemodel", help="Caffe trained model.")
parser.add_argument("--init_net", help="Caffe2 initialization net.",
default="init_net.pb")
parser.add_argument("--predict_net", help="Caffe2 prediction net.",
default="predict_net.pb")
parser.add_argument("--remove_legacy_pad", help="Remove legacy pad \
(Only works for nets with one input blob)",
action="store_true",
default=False)
parser.add_argument("--input_dims", help="Dimension of input blob", nargs='+',
type=int, default=[])
args = parser.parse_args()
caffenet = caffe_pb2.NetParameter()
caffenet_pretrained = caffe_pb2.NetParameter()
input_proto = args.prototext
input_caffemodel = args.caffemodel
output_init_net = args.init_net
output_predict_net = args.predict_net
with open(input_proto) as f:
text_format.Merge(f.read(), caffenet)
with open(input_caffemodel, 'rb') as f:
caffenet_pretrained.ParseFromString(f.read())
net, pretrained_params = TranslateModel(
caffenet, caffenet_pretrained, is_test=True,
remove_legacy_pad=args.remove_legacy_pad,
input_dims=args.input_dims
)
# Assume there is one input and one output
external_input = net.op[0].input[0]
external_output = net.op[-1].output[0]
net.external_input.extend([external_input])
net.external_input.extend([param.name for param in pretrained_params.protos])
net.external_output.extend([external_output])
init_net = ConvertTensorProtosToInitNet(pretrained_params, external_input)
with open(output_predict_net, 'wb') as f:
f.write(net.SerializeToString())
with open(output_predict_net + 'txt', 'w') as f:
f.write(str(net))
with open(output_init_net, 'wb') as f:
f.write(init_net.SerializeToString())