forked from michelin/Evergreen-Patterns
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstablediff.py
162 lines (141 loc) · 5.11 KB
/
stablediff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from datetime import datetime
import urllib.request
import base64
import json
import time
import os
webui_server_url = 'http://127.0.0.1:7860'
out_dir = 'api_out'
out_dir_t2i = os.path.join(out_dir, 'txt2img')
out_dir_i2i = os.path.join(out_dir, 'img2img')
os.makedirs(out_dir_t2i, exist_ok=True)
os.makedirs(out_dir_i2i, exist_ok=True)
def timestamp():
return datetime.fromtimestamp(time.time()).strftime("%Y%m%d-%H%M%S")
def encode_file_to_base64(path):
with open(path, 'rb') as file:
return base64.b64encode(file.read()).decode('utf-8')
def decode_and_save_base64(base64_str, save_path):
with open(save_path, "wb") as file:
file.write(base64.b64decode(base64_str))
def call_api(api_endpoint, **payload):
data = json.dumps(payload).encode('utf-8')
request = urllib.request.Request(
f'{webui_server_url}/{api_endpoint}',
headers={'Content-Type': 'application/json'},
data=data,
)
response = urllib.request.urlopen(request)
return json.loads(response.read().decode('utf-8'))
def call_txt2img_api(target_file, **payload):
response = call_api('sdapi/v1/txt2img', **payload)
for index, image in enumerate(response.get('images')):
decode_and_save_base64(image, target_file)
def call_img2img_api(**payload):
response = call_api('sdapi/v1/img2img', **payload)
for index, image in enumerate(response.get('images')):
save_path = os.path.join(out_dir_i2i, f'img2img-{timestamp()}-{index}.png')
decode_and_save_base64(image, save_path)
if __name__ == '__main__':
payload = {
"prompt": "masterpiece, (best quality:1.1), 1girl <lora:lora_model:1>", # extra networks also in prompts
"negative_prompt": "",
"seed": 1,
"steps": 20,
"width": 512,
"height": 512,
"cfg_scale": 7,
"sampler_name": "DPM++ 2M Karras",
"n_iter": 1,
"batch_size": 1,
# example args for x/y/z plot
# "script_name": "x/y/z plot",
# "script_args": [
# 1,
# "10,20",
# [],
# 0,
# "",
# [],
# 0,
# "",
# [],
# True,
# True,
# False,
# False,
# 0,
# False
# ],
# example args for Refiner and ControlNet
# "alwayson_scripts": {
# "ControlNet": {
# "args": [
# {
# "batch_images": "",
# "control_mode": "Balanced",
# "enabled": True,
# "guidance_end": 1,
# "guidance_start": 0,
# "image": {
# "image": encode_file_to_base64(r"B:\path\to\control\img.png"),
# "mask": None # base64, None when not need
# },
# "input_mode": "simple",
# "is_ui": True,
# "loopback": False,
# "low_vram": False,
# "model": "control_v11p_sd15_canny [d14c016b]",
# "module": "canny",
# "output_dir": "",
# "pixel_perfect": False,
# "processor_res": 512,
# "resize_mode": "Crop and Resize",
# "threshold_a": 100,
# "threshold_b": 200,
# "weight": 1
# }
# ]
# },
# "Refiner": {
# "args": [
# True,
# "sd_xl_refiner_1.0",
# 0.5
# ]
# }
# },
# "enable_hr": True,
# "hr_upscaler": "R-ESRGAN 4x+ Anime6B",
# "hr_scale": 2,
# "denoising_strength": 0.5,
# "styles": ['style 1', 'style 2'],
# "override_settings": {
# 'sd_model_checkpoint': "sd_xl_base_1.0", # this can use to switch sd model
# },
}
call_txt2img_api(**payload)
init_images = [
encode_file_to_base64("img_1.png"),
# encode_file_to_base64(r"B:\path\to\img_2.png"),
# "https://image.can/also/be/a/http/url.png",
]
batch_size = 2
payload = {
"prompt": "1girl, blue hair",
"seed": 1,
"steps": 20,
"width": 512,
"height": 512,
"denoising_strength": 0.5,
"n_iter": 1,
"init_images": init_images,
"batch_size": batch_size if len(init_images) == 1 else len(init_images),
# "mask": encode_file_to_base64(r"B:\path\to\mask.png")
}
# if len(init_images) > 1 then batch_size should be == len(init_images)
# else if len(init_images) == 1 then batch_size can be any value int >= 1
call_img2img_api(**payload)
# there exist a useful extension that allows converting of webui calls to api payload
# particularly useful when you wish setup arguments of extensions and scripts
# https://github.com/huchenlei/sd-webui-api-payload-display