forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ForeachUnaryOp.cu
407 lines (358 loc) · 13.4 KB
/
ForeachUnaryOp.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/Dispatch.h>
#include <ATen/native/ForeachUtils.h>
#include <c10/util/TypeSafeSignMath.h>
#include <ATen/native/cuda/ForeachFunctors.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_foreach_abs_native.h>
#include <ATen/ops/_foreach_acos_native.h>
#include <ATen/ops/_foreach_asin_native.h>
#include <ATen/ops/_foreach_atan_native.h>
#include <ATen/ops/_foreach_ceil_native.h>
#include <ATen/ops/_foreach_cos_native.h>
#include <ATen/ops/_foreach_cosh_native.h>
#include <ATen/ops/_foreach_erf_native.h>
#include <ATen/ops/_foreach_erfc_native.h>
#include <ATen/ops/_foreach_exp_native.h>
#include <ATen/ops/_foreach_expm1_native.h>
#include <ATen/ops/_foreach_floor_native.h>
#include <ATen/ops/_foreach_frac_native.h>
#include <ATen/ops/_foreach_lgamma_native.h>
#include <ATen/ops/_foreach_log10_native.h>
#include <ATen/ops/_foreach_log1p_native.h>
#include <ATen/ops/_foreach_log2_native.h>
#include <ATen/ops/_foreach_log_native.h>
#include <ATen/ops/_foreach_neg_native.h>
#include <ATen/ops/_foreach_reciprocal_native.h>
#include <ATen/ops/_foreach_round_native.h>
#include <ATen/ops/_foreach_sigmoid_native.h>
#include <ATen/ops/_foreach_sign_native.h>
#include <ATen/ops/_foreach_sin_native.h>
#include <ATen/ops/_foreach_sinh_native.h>
#include <ATen/ops/_foreach_sqrt_native.h>
#include <ATen/ops/_foreach_tan_native.h>
#include <ATen/ops/_foreach_tanh_native.h>
#include <ATen/ops/_foreach_trunc_native.h>
#include <ATen/ops/_foreach_zero_native.h>
#include <ATen/ops/empty_like_native.h>
#endif
namespace at::native {
template <typename scalar_t, template <class> class Op>
std::vector<Tensor> foreach_unary_op(TensorList tensors) {
std::vector<std::vector<at::Tensor>> tensor_lists;
std::vector<at::Tensor> vec_res;
vec_res.reserve(tensors.size());
for (const auto& t : tensors) {
vec_res.emplace_back(at::native::empty_like(t));
}
tensor_lists.emplace_back(tensors.vec());
tensor_lists.emplace_back(std::move(vec_res));
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<2>(
tensor_lists,
UnaryOpFunctor<
scalar_t,
/* depth */ 2,
/* r_args_depth */ 1,
/* res_arg_index */ 1>(),
Op<opmath_t>());
return tensor_lists[1];
}
template <typename scalar_t, template <class> class Op>
void foreach_unary_op_(TensorList tensors) {
std::vector<std::vector<at::Tensor>> tensor_lists;
tensor_lists.emplace_back(tensors.vec());
using opmath_t = typename at::opmath_type<scalar_t>;
multi_tensor_apply<1>(
tensor_lists,
UnaryOpFunctor<
scalar_t,
/* depth */ 1,
/* r_args_depth */ 1,
/* res_arg_index */ 0>(),
Op<opmath_t>());
increment_version(tensors);
}
template <template <class> class Op>
std::vector<Tensor> floating_complex_half(TensorList tensors) {
return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(
ScalarType::Half,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void floating_complex_half_(TensorList tensors) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND1(
ScalarType::Half,
tensors[0].scalar_type(),
"foreach_unary_op_cuda_",
[&]() { foreach_unary_op_<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
std::vector<Tensor> all_types_complex_bfloat16_half_bool(TensorList tensors) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Half,
ScalarType::BFloat16,
ScalarType::Bool,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void all_types_complex_bfloat16_half_bool_(TensorList tensors) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(
ScalarType::Half,
ScalarType::BFloat16,
ScalarType::Bool,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { foreach_unary_op_<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
std::vector<Tensor> floating_complex_half_bfloat16(TensorList tensors) {
return AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void floating_complex_half_bfloat16_(TensorList tensors) {
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda_",
[&]() { foreach_unary_op_<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
std::vector<Tensor> all_types_half_complex_bfloat16(TensorList tensors) {
return AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
ScalarType::Half,
at::ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void all_types_half_complex_bfloat16_(TensorList tensors) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
ScalarType::Half,
at::ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda_",
[&]() { foreach_unary_op_<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
std::vector<Tensor> floating_half(TensorList tensors) {
return AT_DISPATCH_FLOATING_TYPES_AND(
ScalarType::Half,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void floating_half_(TensorList tensors) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
tensors[0].scalar_type(), "foreach_unary_op_cuda_", [&]() {
foreach_unary_op_<scalar_t, Op>(tensors);
});
}
template <template <class> class Op>
std::vector<Tensor> floating_half_bfloat16(TensorList tensors) {
return AT_DISPATCH_FLOATING_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda",
[&]() { return foreach_unary_op<scalar_t, Op>(tensors); });
}
template <template <class> class Op>
void floating_half_bfloat16_(TensorList tensors) {
AT_DISPATCH_FLOATING_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_unary_op_cuda_",
[&]() { foreach_unary_op_<scalar_t, Op>(tensors); });
}
// makes the functor
#define STD_FUNCTOR(op_name, functor_name) \
template <typename T> \
struct functor_name { \
__device__ T operator()(T t) const { \
return std::op_name(t); \
} \
};
// given a functor and a "dispatch function", creates the outplace and inplace
// operations
#define OP_CUSTOM_FUNCTOR(function, op_name, functor_name) \
std::vector<Tensor> foreach_tensor_##op_name##_cuda(TensorList tensors) { \
check_foreach_api_restrictions(tensors); \
if (!can_use_fast_route(tensors) || \
has_integral_tensor(tensors, /* includeBool */ true)) { \
return at::native::foreach_tensor_##op_name##_slow(tensors); \
} \
return function<functor_name>(tensors); \
} \
void foreach_tensor_##op_name##_cuda_(TensorList tensors) { \
check_foreach_api_restrictions(tensors); \
if (!can_use_fast_route(tensors) || \
has_integral_tensor(tensors, /* includeBool */ true)) { \
return at::native::foreach_tensor_##op_name##_slow_(tensors); \
} \
\
function##_<functor_name>(tensors); \
}
// creates a functor, outplace version, and inplace version.
#define OP(function, op_name, functor_name) \
STD_FUNCTOR(op_name, functor_name); \
OP_CUSTOM_FUNCTOR(function, op_name, functor_name);
OP(floating_half_bfloat16, erfc, Erfc);
OP(floating_half, lgamma, Lgamma);
OP(floating_half_bfloat16, trunc, Truncf);
OP(floating_half_bfloat16, floor, Floor);
OP(floating_half_bfloat16, ceil, Ceil);
OP(floating_complex_half_bfloat16, acos, Acos);
OP(floating_complex_half_bfloat16, asin, Asin);
OP(floating_complex_half_bfloat16, atan, Atan);
OP(floating_complex_half_bfloat16, cosh, Cosh);
OP(floating_complex_half_bfloat16, tan, Tan);
OP(floating_complex_half_bfloat16, sin, Sin);
OP(floating_complex_half_bfloat16, sinh, Sinh);
OP(floating_complex_half_bfloat16, exp, Exp);
OP(floating_complex_half_bfloat16, expm1, Expm1);
OP(floating_complex_half_bfloat16, tanh, Tanh);
OP(floating_complex_half_bfloat16, log, Log);
OP(floating_complex_half_bfloat16, log10, Log10);
OP(floating_complex_half_bfloat16, log2, Log2);
OP(floating_complex_half_bfloat16, log1p, Log1p);
OP(floating_complex_half_bfloat16, cos, Cos);
OP(floating_complex_half_bfloat16, sqrt, Sqrt);
OP(floating_half_bfloat16, erf, Erf);
//
// Special cases
// These functions must be special cased as they can't be written as
// std::functor_name in OP macro
//
template <typename T>
struct Sigmoid {
T one = T(1);
__device__ T operator()(T t) const {
return (one / (one + std::exp(-t)));
}
};
template <typename T>
struct Round {
__device__ T operator()(T t) const {
return std::nearbyint(t);
}
};
template <typename T>
struct Trunc {
__device__ T operator()(T t) const {
return t - std::trunc(t);
}
};
template <typename T>
struct Reciprocal {
T one = T(1);
__device__ T operator()(T t) const {
return (one / t);
}
};
template <typename T>
struct Sign {
C10_DEVICE T operator()(T t) const {
return c10::signum<T>(t);
}
};
OP_CUSTOM_FUNCTOR(floating_half_bfloat16, sigmoid, Sigmoid)
OP_CUSTOM_FUNCTOR(floating_half_bfloat16, round, Round)
OP_CUSTOM_FUNCTOR(floating_half_bfloat16, frac, Trunc)
OP_CUSTOM_FUNCTOR(floating_complex_half_bfloat16, reciprocal, Reciprocal)
OP_CUSTOM_FUNCTOR(floating_half_bfloat16, sign, Sign)
// note(mkozuki): tensor dtype checks of `neg` kernels.
// Since `check_foreach_api_restrictions` don't require all the tensors to have
// the same dtype, I think it safer to check every single tensor's dtype inside
// negation kernels.
std::vector<Tensor> foreach_tensor_neg_cuda(TensorList tensors) {
check_foreach_api_restrictions(tensors);
if (!can_use_fast_route(tensors)) {
return at::native::foreach_tensor_neg_slow(tensors);
}
TORCH_CHECK(
tensors[0].scalar_type() != kBool,
"Negation, the `-` operator, on a bool tensor is not supported. "
"If you are trying to invert a mask, use the `~` or `logical_not()` operator instead.");
return all_types_half_complex_bfloat16<std::negate>(tensors);
}
void foreach_tensor_neg_cuda_(TensorList tensors) {
check_foreach_api_restrictions(tensors);
if (!can_use_fast_route(tensors)) {
return at::native::foreach_tensor_neg_slow_(tensors);
}
TORCH_CHECK(
tensors[0].scalar_type() != kBool,
"Negation, the `-` operator, on a bool tensor is not supported. "
"If you are trying to invert a mask, use the `~` or `logical_not()` operator instead.");
all_types_half_complex_bfloat16_<std::negate>(tensors);
}
// Abs have to go via slow path in case of a complex type.
// This is because foreach kernels can't return a different dtype than passed,
// while abs with complex inputs will produce float output.
template <typename T>
struct Abs {
__device__ T operator()(T t) const {
return std::abs(t);
}
};
std::vector<Tensor> foreach_tensor_abs_cuda(TensorList tensors) {
check_foreach_api_restrictions(tensors);
const bool has_complex =
std::any_of(tensors.begin(), tensors.end(), [](const auto& t) {
return at::isComplexType(t.scalar_type());
});
if (!can_use_fast_route(tensors) || has_complex) {
return at::native::foreach_tensor_abs_slow(tensors);
}
return all_types_complex_bfloat16_half_bool<Abs>(tensors);
}
void foreach_tensor_abs_cuda_(TensorList tensors) {
check_foreach_api_restrictions(tensors);
const bool has_complex =
std::any_of(tensors.begin(), tensors.end(), [](const auto& t) {
return at::isComplexType(t.scalar_type());
});
if (!can_use_fast_route(tensors) || has_complex) {
return at::native::foreach_tensor_abs_slow_(tensors);
}
all_types_complex_bfloat16_half_bool_<Abs>(tensors);
}
void foreach_tensor_zero_cuda_(TensorList tensors) {
check_foreach_api_restrictions(tensors);
if (!can_use_fast_route(tensors)) {
return at::native::foreach_tensor_zero_slow_(tensors);
}
std::vector<std::vector<at::Tensor>> tensor_lists;
tensor_lists.emplace_back(tensors.vec());
AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND2(
ScalarType::Half,
ScalarType::BFloat16,
tensors[0].scalar_type(),
"foreach_zero_cuda_",
[&]() {
multi_tensor_apply<1>(
tensor_lists,
ZeroFunctor<
scalar_t,
/* depth */ 1,
/* r_args_depth */ 1,
/* res_arg_index */ 0>());
});
}
} // namespace at::native