forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_permutation_op.cu
118 lines (104 loc) · 2.99 KB
/
batch_permutation_op.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/batch_permutation_op.h"
#include <c10/cuda/CUDADeviceAssertion.h>
namespace caffe2 {
namespace {
template <bool forward>
__global__ void BatchPermutationKernel(
int N,
int K,
const float* src,
const int* indices,
float* dst,
TORCH_DSA_KERNEL_ARGS) {
if (forward) {
CUDA_1D_KERNEL_LOOP(index, N * K) {
int k = index % K;
int n = index / K;
int idx = indices[n];
CUDA_KERNEL_ASSERT2(idx >= 0);
CUDA_KERNEL_ASSERT2(idx < N);
dst[index] = src[idx * K + k];
}
} else {
CUDA_1D_KERNEL_LOOP(index, N * K) {
int k = index % K;
int n = index / K;
// NOTE: an alternative implementation if we want to align the index with
// the output tensor (rather than the input tensor).
// int idx = -1;
// for (size_t i = 0; i < N; ++i) {
// if (indices[i] == n) {
// idx = i;
// }
// }
// CUDA_KERNEL_ASSERT2(idx >= 0);
// CUDA_KERNEL_ASSERT2(idx < N);
// dst[index] = src[idx * K + k];
int idx = indices[n];
CUDA_KERNEL_ASSERT2(idx >= 0);
CUDA_KERNEL_ASSERT2(idx < N);
dst[idx * K + k] = src[index];
}
}
}
} // namespace
template <>
bool BatchPermutationOp<float, CUDAContext>::RunOnDevice() {
auto& X = Input(0);
auto& indices = Input(1);
CAFFE_ENFORCE(indices.dim() == 1, "indices must be 1-d");
CAFFE_ENFORCE(
X.dim32(0) == indices.dim32(0),
"X.dim32(0) must be equal to indices.dim32(0)",
"(",
X.dim32(0),
" vs. ",
indices.dim32(0),
")");
auto* Y = Output(0, X.sizes(), at::dtype<float>());
if (X.dim32(0) > 0) {
TORCH_DSA_KERNEL_LAUNCH(
BatchPermutationKernel<true>,
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.stream(),
X.dim32(0),
X.numel() / X.dim32(0),
X.data<float>(),
indices.data<int>(),
Y->mutable_data<float>());
}
return true;
}
template <>
bool BatchPermutationGradientOp<float, CUDAContext>::RunOnDevice() {
auto& indices = Input(0);
auto& dY = Input(1);
auto* dX = Output(0, dY.sizes(), at::dtype<float>());
if (dY.dim32(0) > 0) {
TORCH_DSA_KERNEL_LAUNCH(
BatchPermutationKernel<false>,
CAFFE_GET_BLOCKS(dY.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.stream(),
dY.dim32(0),
dY.numel() / dY.dim32(0),
dY.data<float>(),
indices.data<int>(),
dX->mutable_data<float>());
}
return true;
}
REGISTER_CUDA_OPERATOR(
BatchPermutation,
BatchPermutationOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
BatchPermutationGradient,
BatchPermutationGradientOp<float, CUDAContext>);
} // namespace caffe2
using BatchPermutationOpFloatCUDA =
caffe2::BatchPermutationOp<float, caffe2::CUDAContext>;
C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(BatchPermutation, BatchPermutationOpFloatCUDA);