forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbbox_transform_op.cc
211 lines (190 loc) · 7.48 KB
/
bbox_transform_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include "bbox_transform_op.h"
#include "caffe2/operators/generate_proposals_op_util_boxes.h"
namespace caffe2 {
namespace {
REGISTER_CPU_OPERATOR(BBoxTransform, BBoxTransformOp<float, CPUContext>);
// Input: box, delta Output: box
OPERATOR_SCHEMA(BBoxTransform)
.NumInputs(3)
.NumOutputs(1, 2)
.SetDoc(R"DOC(
Transform proposal bounding boxes to target bounding box using bounding box
regression deltas.
)DOC")
.Arg("weights", "vector<float> weights [wx, wy, ww, wh] for the deltas")
.Arg(
"apply_scale",
"bool (default true), transform the boxes to the scaled image space"
" after applying the bbox deltas."
"Set to false to match the detectron code, set to true for keypoint"
" models and for backward compatibility")
.Arg(
"rotated",
"bool (default false). If true, then boxes (rois and deltas) include "
"angle info to handle rotation. The format will be "
"[ctr_x, ctr_y, width, height, angle (in degrees)].")
.Arg(
"angle_bound_on",
"bool (default true). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"angle_bound_lo",
"int (default -90 degrees). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"angle_bound_hi",
"int (default 90 degrees). If set, for rotated boxes, angle is "
"normalized to be within [angle_bound_lo, angle_bound_hi].")
.Arg(
"clip_angle_thresh",
"float (default 1.0 degrees). For RRPN, clip almost horizontal boxes "
"within this threshold of tolerance for backward compatibility. "
"Set to negative value for no clipping.")
.Input(
0,
"rois",
"Bounding box proposals in pixel coordinates, "
"Size (M, 4), format [x1, y1, x2, y2], or"
"Size (M, 5), format [batch_index, x1, y1, x2, y2]. "
"If proposals from multiple images in a batch are present, they "
"should be grouped sequentially and in incremental order."
"For rotated boxes, this would have an additional angle (in degrees) "
"in the format [<optional_batch_id>, ctr_x, ctr_y, w, h, angle].")
.Input(
1,
"deltas",
"bounding box translations and scales,"
"size (M, 4*K), format [dx, dy, dw, dh], K = # classes. "
"For rotated boxes, size (M, 5*K, format [dx, dy, dw, dh, da].")
.Input(
2,
"im_info",
"Image dimensions, size (batch_size, 3), "
"format [img_height, img_width, img_scale]")
.Output(
0,
"box_out",
"Pixel coordinates of the transformed bounding boxes,"
"Size (M, 4*K), format [x1, y1, x2, y2]. "
"For rotated boxes, size (M, 5*K), "
"format [ctr_x, ctr_y, w, h, angle].")
.Output(
1,
"roi_batch_splits",
"Tensor of shape (batch_size) with each element denoting the number "
"of RoIs belonging to the corresponding image in batch");
SHOULD_NOT_DO_GRADIENT(BBoxTransform);
} // namespace
template <>
bool BBoxTransformOp<float, CPUContext>::RunOnDevice() {
const auto& roi_in = Input(0);
const auto& delta_in = Input(1);
const auto& iminfo_in = Input(2);
const int box_dim = rotated_ ? 5 : 4;
const int N = roi_in.dim32(0);
CAFFE_ENFORCE_EQ(roi_in.dim(), 2);
CAFFE_ENFORCE(roi_in.dim32(1) == box_dim || roi_in.dim32(1) == box_dim + 1);
CAFFE_ENFORCE_EQ(delta_in.dim(), 2);
CAFFE_ENFORCE_EQ(delta_in.dim32(0), N);
CAFFE_ENFORCE_EQ(delta_in.dim32(1) % box_dim, 0);
const int num_classes = delta_in.dim32(1) / box_dim;
CAFFE_ENFORCE_EQ(iminfo_in.dim(), 2);
CAFFE_ENFORCE_EQ(iminfo_in.dim32(1), 3);
const int batch_size = iminfo_in.dim32(0);
TORCH_DCHECK_EQ(weights_.size(), 4);
Eigen::Map<const ERArrXXf> boxes0(
roi_in.data<float>(), roi_in.dim32(0), roi_in.dim32(1));
Eigen::Map<const ERArrXXf> deltas0(
delta_in.data<float>(), delta_in.dim32(0), delta_in.dim32(1));
// Count the number of RoIs per batch
vector<int> num_rois_per_batch(batch_size, 0);
if (roi_in.dim32(1) == box_dim) {
CAFFE_ENFORCE_EQ(batch_size, 1);
num_rois_per_batch[0] = N;
} else {
const auto& roi_batch_ids = boxes0.col(0);
for (int i = 0; i < roi_batch_ids.size(); ++i) {
const int roi_batch_id = roi_batch_ids(i);
CAFFE_ENFORCE_LT(roi_batch_id, batch_size);
num_rois_per_batch[roi_batch_id]++;
}
}
CAFFE_ENFORCE_EQ(iminfo_in.sizes(), (at::IntArrayRef{batch_size, 3}));
Eigen::Map<const ERArrXXf> iminfo(
iminfo_in.data<float>(), iminfo_in.size(0), iminfo_in.size(1));
auto* box_out = Output(0, delta_in.sizes(), at::dtype<float>());
Eigen::Map<ERArrXXf> new_boxes(
box_out->template mutable_data<float>(),
box_out->dim32(0),
box_out->dim32(1));
// We assume roi_in and delta_in over multiple batches are grouped
// together in increasing order as generated by GenerateProposalsOp
int offset = 0;
for (int i = 0; i < batch_size; ++i) {
const int num_rois = num_rois_per_batch[i];
const auto& cur_iminfo = iminfo.row(i);
const float scale_before = cur_iminfo(2);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
const float scale_after = apply_scale_ ? cur_iminfo(2) : 1.0;
// NOLINTNEXTLINE(bugprone-incorrect-roundings,cppcoreguidelines-avoid-magic-numbers)
int img_h = int(cur_iminfo(0) / scale_before + 0.5);
// NOLINTNEXTLINE(bugprone-incorrect-roundings,cppcoreguidelines-avoid-magic-numbers)
int img_w = int(cur_iminfo(1) / scale_before + 0.5);
EArrXXf cur_boxes =
boxes0.rightCols(box_dim).block(offset, 0, num_rois, box_dim);
// Do not apply scale for angle in rotated boxes
cur_boxes.leftCols(4) /= scale_before;
for (int k = 0; k < num_classes; k++) {
const auto& cur_deltas =
deltas0.block(offset, k * box_dim, num_rois, box_dim);
const auto& trans_boxes = utils::bbox_transform(
cur_boxes,
cur_deltas,
weights_,
utils::BBOX_XFORM_CLIP_DEFAULT,
legacy_plus_one_,
angle_bound_on_,
angle_bound_lo_,
angle_bound_hi_);
EArrXXf clip_boxes = utils::clip_boxes(
trans_boxes, img_h, img_w, clip_angle_thresh_, legacy_plus_one_);
// Do not apply scale for angle in rotated boxes
clip_boxes.leftCols(4) *= scale_after;
new_boxes.block(offset, k * box_dim, num_rois, box_dim) = clip_boxes;
}
offset += num_rois;
}
if (OutputSize() > 1) {
auto* roi_batch_splits = Output(1, {batch_size}, at::dtype<float>());
Eigen::Map<EArrXf> roi_batch_splits_map(
roi_batch_splits->template mutable_data<float>(), batch_size);
roi_batch_splits_map =
Eigen::Map<const EArrXi>(num_rois_per_batch.data(), batch_size)
.cast<float>();
}
return true;
}
} // namespace caffe2
using BBoxTransformOpFloatCPU =
caffe2::BBoxTransformOp<float, caffe2::CPUContext>;
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
BBoxTransform,
"_caffe2::BBoxTransform("
"Tensor rois, "
"Tensor deltas, "
"Tensor im_info, "
"float[] weights, "
"bool apply_scale, "
"bool rotated, "
"bool angle_bound_on, "
"int angle_bound_lo, "
"int angle_bound_hi, "
"float clip_angle_thresh, "
"bool legacy_plus_one"
") -> ("
"Tensor output_0, "
"Tensor output_1"
")",
BBoxTransformOpFloatCPU);
// clang-format on