forked from stupid-cloud/VGD-CG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDIFFUSION.py
203 lines (161 loc) · 8.29 KB
/
DIFFUSION.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from torch.utils.data import DataLoader
import torch
from DIFFUSION.model.unet import Unet
from DIFFUSION.model.diffusion import DiffusionModel, DDIM
import os
import yaml
from torch.optim import Adam
from tqdm.auto import tqdm
from utils.tool import set_random_seed, model_summary
from dataset.dataset import CompositionDataset
from torch.utils.data import DataLoader
import pickle
from pymatgen.core.composition import Composition
from utils.tool import *
from pandarallel import pandarallel
import pandas as pd
def generate_samples(
model_path,
epochs=1,
batch_size=2500,
which_class=0,
device="cuda",
is_icsd=False,
is_semic=False
):
""" Helper function to iteratively generate valid samples """
comp_list = []
model = torch.load(model_path)
model.to(device)
model.eval()
for i in range(epochs):
# samples = model.sample(batch_size, device).cpu().squeeze().detach()
# 条件编码
if model.class_label or model.icsd_label or model.semic_label:
labels = torch.zeros(batch_size, model.n_class+model.icsd_label+model.semic_label,
device=device
)
if model.class_label:
labels[:, which_class] = 1
if model.icsd_label:
labels[:, model.n_class] = is_icsd
if model.semic_label:
labels[:, model.n_class+model.semic_label] = is_semic
fake_gen = model.sample(batch_size, device, labels).cpu().squeeze().detach()
else:
fake_gen = model.sample(batch_size, device).cpu().squeeze().detach()
comp_list += feature2composition(fake_gen, model.elements_list)
data = pd.DataFrame({'composition': comp_list})
data = data.dropna()
print("删除None后:{}/{}".format(data.shape[0], len(comp_list)))
# data = data.drop_duplicates()
# print("删除重复后:{}/{}".format(data.shape[0], len(comp_list)))
pandarallel.initialize(progress_bar=False, nb_workers=48)
data['element_num'] = data['composition'].parallel_apply(lambda comp: len(comp.elements))
print(data['element_num'].value_counts())
data = data[data['element_num']>1]
data = data[data['element_num']<6]
print("2~5之间的化合物:{}/{}".format(data.shape[0], len(comp_list)))
temp = data['composition'].parallel_apply(check_valid)
data['charge neutrality'] = temp.parallel_apply(lambda comp: comp[0])
data['electronegativity balance'] = temp.parallel_apply(lambda comp: comp[1])
data['valid'] = temp.parallel_apply(lambda comp: comp[2])
print("charge neutrality: {}/{} {}".format(data['charge neutrality'].sum(), data.shape[0],
data['charge neutrality'].sum()/data.shape[0])
)
print("electronegativity balance: {}/{} {}".format(data['electronegativity balance'].sum(),
data.shape[0], data['electronegativity balance'].sum()/data.shape[0])
)
print("valid: {}/{} {}".format(data['valid'].sum(), data.shape[0], data['valid'].sum()/data.shape[0]))
data['composition'] = data['composition'].parallel_apply(lambda comp: comp.formula)
data.to_csv("./output/DIFFUSION/generate_sample_cond.csv", index=False)
def train(config):
train_dataset = CompositionDataset(target_name="train.csv", n_class=config['n_class'],
class_flag=config['class_flag'], icsd_label=config['icsd_label'],
semic_label=config['semic_label']
)
test_dataset = CompositionDataset(target_name="test.csv", n_class=config['n_class'],
class_flag=config['class_flag'], icsd_label=config['icsd_label'],
semic_label=config['semic_label']
)
print("train length:", len(train_dataset), "test length:", len(test_dataset))
train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], shuffle=True,
pin_memory=True, num_workers=24, persistent_workers=True, prefetch_factor=24
)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], shuffle=False,
pin_memory=True, num_workers=24, persistent_workers=True, prefetch_factor=24
)
torch.save((train_loader, test_loader), "./data/train_test_loader.pt")
epochs = config['epochs']
device = config['device']
timesteps = config['timesteps']
beta_start = config['beta_start']
beta_end = config['beta_end']
dim_mults = (1, 2, 4)
denoise_model = Unet(
dim=32,
channels=1,
dim_mults=dim_mults,
c_dim=train_dataset.n_class+train_dataset.icsd_label+train_dataset.semic_label
).to(device)
model = DDIM(schedule_name=config['schedule_name'],
timesteps = timesteps,
beta_start = beta_start,
beta_end = beta_end,
denoise_model=denoise_model,
data_size=train_dataset.data_size,
elements_list=train_dataset.elements_list,
n_class=config['n_class'], class_flag=config['class_flag'], icsd_label=config['icsd_label'],
semic_label=config['semic_label']
)
print('Model architectures')
model_summary(model)
optimizer = Adam(model.parameters(), lr=config['lr'])
print("\n\n Starting DDPM training\n\n")
for i in range(epochs):
losses = []
loop = tqdm(enumerate(train_loader), total=len(train_loader))
for step, (x_real, labels) in loop:
x_real = x_real.to(device)
batch_size = x_real.shape[0]
labels = labels.to(device)
# Algorithm 1 line 3: sample t uniformally for every example in the batch
t = torch.randint(0, timesteps, (batch_size,), device=device).long()
# loss = model(mode="train", x_start=x_real, t=t, loss_type="huber")
noise = torch.randn_like(x_real)
x_noisy = model.q_sample(x_start=x_real, t=t, noise=noise) # 添加噪声之后的
if model.class_label or model.icsd_label or model.semic_label:
predicted_noise = model.denoise_model(x_noisy, t, labels)
else:
predicted_noise = model.denoise_model(x_noisy, t)
loss = torch.nn.functional.smooth_l1_loss(noise, predicted_noise)
losses.append(loss)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 更新信息
loop.set_description(f'Epoch [{i}/{epochs}]')
loop.set_postfix(loss=loss.item())
# if "model_save_path" in kwargs.keys():
# self.save_best_model(model=model, path=kwargs["model_save_path"])
torch.save(model, os.path.join("./saved_model/DIFFUSION", config['model_name']))
print("\nFinished DDPM training")
if __name__ == "__main__":
import time
config = {'seed': 6, "beta_end": 0.02, "timesteps": 500, "semic_label": True,
'batch_size': 256, 'beta_start': 0.0001, "schedule_name": "linear_beta_schedule",
'lr': 0.0005, 'epochs': 20, "n_class": 2, "class_flag": "stability", "icsd_label": True,
'model_name': 'DIFFUSION.pt'}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
set_random_seed(config['seed'])
# device = 'cpu'
config['device'] = device
# time1 = time.time()
# train(config)
time2 = time.time()
generate_samples(model_path=f"./saved_model/DIFFUSION/{config['model_name']}", batch_size=100, epochs=1,
is_icsd=True, is_semic=True
)
time3 = time.time()
# print(time2-time1)
print(time3-time2)