Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multiple Samples Mode fails with given test samples #5

Open
dade7 opened this issue Dec 21, 2023 · 1 comment
Open

Multiple Samples Mode fails with given test samples #5

dade7 opened this issue Dec 21, 2023 · 1 comment

Comments

@dade7
Copy link

dade7 commented Dec 21, 2023

Hi @ZunsongHu,
I was testing the MD-ALL shiny app using the multiple sample mode combining the MEF2D and PAX5 alt sample given. It failed.
Running the samples in the single sample mode works fine.
Below please find the info from R-studio and the sessionInfo().
Thanks in advance for your help!
Best, Dagmar

> run_shiny_MDALL()

Listening on http://127.0.0.1:6930
Rows: 2 Columns: 5── Column specification ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: "\t"
chr (5): id, count, VCF, fusioncatcher, cicero
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.Rows: 2 Columns: 5── Column specification ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: "\t"
chr (5): id, count, VCF, fusioncatcher, cicero
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.Rows: 2 Columns: 5── Column specification ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Delimiter: "\t"
chr (5): id, count, VCF, fusioncatcher, cicero
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.Joining with `by = join_by(feature)`Joining with `by = join_by(feature)`Running vst
Done vst

All features found, no need to do imputation.
Joining with `by = join_by(feature)`Run Phenograph: Used Feature N= 1000 ; Used Sample N= 1822 ; Neighbor_k= 10 
Run Rphenograph starts:
  -Input data of 1822 rows and 1000 columns
  -k is set to 10
  Finding nearest neighbors...DONE ~ 2.541 s
  Compute jaccard coefficient between nearest-neighbor sets...DONE ~ 0.063 s
  Build undirected graph from the weighted links...DONE ~ 0.08 s
  Run louvain clustering on the graph ...DONE ~ 0.045 s
Run Rphenograph DONE, totally takes 2.72899999999936s.
  Return a community class
  -Modularity value: 0.9249285 
  -Number of clusters: 27Joining with `by = join_by(obs)`Joining with `by = join_by(cluster)`Warning: Setting row names on a tibble is deprecated.Run Phenograph: Used Feature N= 1058 ; Used Sample N= 1822 ; Neighbor_k= 10 
Run Rphenograph starts:
  -Input data of 1822 rows and 1058 columns
  -k is set to 10
  Finding nearest neighbors...DONE ~ 2.63 s
  Compute jaccard coefficient between nearest-neighbor sets...DONE ~ 0.064 s
  Build undirected graph from the weighted links...DONE ~ 0.082 s
  Run louvain clustering on the graph ...DONE ~ 0.042 s
Run Rphenograph DONE, totally takes 2.81799999999566s.
  Return a community class
  -Modularity value: 0.92436 
  -Number of clusters: 27Joining with `by = join_by(obs)`Joining with `by = join_by(cluster)`Warning: Setting row names on a tibble is deprecated.Joining with `by = join_by(ENSG)`[1] "Normalization for sample: TestSample completed"
[1] "Preparing file with snv information for: TestSample"
Reading in vcf file..
Extracting depth..
Extracting reference allele and alternative allele depths..
Needed information from vcf extracted
Finished reading vcf
[1] "Estimating chromosome arm CNV: TestSample"

All features found, no need to do imputation.
Joining with `by = join_by(feature)`Run Phenograph: Used Feature N= 1000 ; Used Sample N= 1822 ; Neighbor_k= 10 
Run Rphenograph starts:
  -Input data of 1822 rows and 1000 columns
  -k is set to 10
  Finding nearest neighbors...DONE ~ 2.566 s
  Compute jaccard coefficient between nearest-neighbor sets...DONE ~ 0.064 s
  Build undirected graph from the weighted links...DONE ~ 0.081 s
  Run louvain clustering on the graph ...DONE ~ 0.046 s
Run Rphenograph DONE, totally takes 2.75700000000143s.
  Return a community class
  -Modularity value: 0.9249751 
  -Number of clusters: 27Joining with `by = join_by(obs)`Joining with `by = join_by(cluster)`Warning: Setting row names on a tibble is deprecated.Run Phenograph: Used Feature N= 1058 ; Used Sample N= 1822 ; Neighbor_k= 10 
Run Rphenograph starts:
  -Input data of 1822 rows and 1058 columns
  -k is set to 10
  Finding nearest neighbors...DONE ~ 2.634 s
  Compute jaccard coefficient between nearest-neighbor sets...DONE ~ 0.064 s
  Build undirected graph from the weighted links...DONE ~ 0.079 s
  Run louvain clustering on the graph ...DONE ~ 0.042 s
Run Rphenograph DONE, totally takes 2.81899999999951s.
  Return a community class
  -Modularity value: 0.923829 
  -Number of clusters: 26Joining with `by = join_by(obs)`Joining with `by = join_by(cluster)`Warning: Setting row names on a tibble is deprecated.Joining with `by = join_by(ENSG)`[1] "Normalization for sample: TestSample completed"
[1] "Preparing file with snv information for: TestSample"
Reading in vcf file..
Extracting depth..
Extracting reference allele and alternative allele depths..
Needed information from vcf extracted
Finished reading vcf
[1] "Estimating chromosome arm CNV: TestSample"
Joining with `by = join_by(feature)`Reading in vcf file..
Extracting depth..
Extracting reference allele and alternative allele depths..
Needed information from vcf extracted
Finished reading vcf
Joining with `by = join_by(mutation)`Joining with `by = join_by(fusion_ordered)`Joining with `by = join_by(fusion_ordered)`Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
Warning: Error in if: argument is of length zero  3: runApp
  2: print.shiny.appobj
  1: <Anonymous>
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] tibble_3.2.1                readr_2.1.4                 shinyFeedback_0.4.0         shinydashboard_0.7.2        shinyjs_2.1.0               shiny_1.8.0                
 [7] umap_0.2.10.0               cowplot_1.1.2               ggrepel_0.9.4               SingleR_2.0.0               Seurat_5.0.1                SeuratObject_5.0.1         
[13] sp_2.1-2                    Rphenograph_0.99.1          igraph_1.6.0                ggplot2_3.4.4               DESeq2_1.38.3               SummarizedExperiment_1.28.0
[19] Biobase_2.58.0              MatrixGenerics_1.10.0       matrixStats_1.2.0           GenomicRanges_1.50.2        GenomeInfoDb_1.34.9         IRanges_2.32.0             
[25] S4Vectors_0.36.2            BiocGenerics_0.44.0         stringr_1.5.1               dplyr_1.1.4                 MDALL_2.0                  

loaded via a namespace (and not attached):
  [1] scattermore_1.2           ModelMetrics_1.2.2.2      R.methodsS3_1.8.2         ragg_1.2.7                tidyr_1.3.0.9000          bit64_4.0.5              
  [7] knitr_1.45                R.utils_2.12.3            irlba_2.3.5.1             DelayedArray_0.24.0       data.table_1.14.10        rpart_4.1.19             
 [13] KEGGREST_1.38.0           hardhat_1.3.0             RCurl_1.98-1.13           generics_0.1.3            ScaledMatrix_1.6.0        callr_3.7.3              
 [19] usethis_2.2.2             RSQLite_2.3.4             RANN_2.6.1                future_1.33.0             bit_4.0.5                 tzdb_0.4.0               
 [25] spatstat.data_3.0-3       lubridate_1.9.3           httpuv_1.6.13             fontawesome_0.5.2         gower_1.0.1               xfun_0.41                
 [31] hms_1.1.3                 jquerylib_0.1.4           LiblineaR_2.10-23         evaluate_0.23             promises_1.2.1            fansi_1.0.6              
 [37] DBI_1.1.3                 geneplotter_1.76.0        htmlwidgets_1.6.4         spatstat.geom_3.2-7       purrr_1.0.2               ellipsis_0.3.2           
 [43] RSpectra_0.16-1           annotate_1.76.0           deldir_2.0-2              sparseMatrixStats_1.10.0  vctrs_0.6.5               remotes_2.4.2.1          
 [49] ROCR_1.0-11               abind_1.4-5               caret_6.0-94              cachem_1.0.8              withr_2.5.2               progressr_0.14.0         
 [55] vroom_1.6.5               sctransform_0.4.1         goftest_1.2-3             cluster_2.1.4             dotCall64_1.1-1           lazyeval_0.2.2           
 [61] crayon_1.5.2              spatstat.explore_3.2-5    labeling_0.4.3            recipes_1.0.9             pkgconfig_2.0.3           nlme_3.1-160             
 [67] pkgload_1.3.3             nnet_7.3-18               devtools_2.4.5            rlang_1.1.2               globals_0.16.2            lifecycle_1.0.4          
 [73] miniUI_0.1.1.1            fastDummies_1.7.3         rsvd_1.0.5                randomForest_4.7-1.1      polyclip_1.10-6           RcppHNSW_0.5.0           
 [79] lmtest_0.9-40             Matrix_1.6-4              zoo_1.8-12                ggridges_0.5.5            processx_3.8.3            png_0.1-8                
 [85] viridisLite_0.4.2         bitops_1.0-7              R.oo_1.25.0               pROC_1.18.5               KernSmooth_2.23-20        spam_2.10-0              
 [91] Biostrings_2.66.0         blob_1.2.4                DelayedMatrixStats_1.20.0 parallelly_1.36.0         spatstat.random_3.2-2     beachmat_2.14.2          
 [97] scales_1.3.0              memoise_2.0.1             magrittr_2.0.3            plyr_1.8.9                ica_1.0-3                 zlibbioc_1.44.0          
[103] compiler_4.2.2            Allspice_1.0.7            RColorBrewer_1.1-3        fitdistrplus_1.1-11       cli_3.6.2                 XVector_0.38.0           
[109] urlchecker_1.0.1          listenv_0.9.0             patchwork_1.1.3           pbapply_1.7-2             ps_1.7.5                  MASS_7.3-58.1            
[115] tidyselect_1.2.0          stringi_1.8.3             textshaping_0.3.7         yaml_2.3.8                BiocSingular_1.14.0       askpass_1.2.0            
[121] locfit_1.5-9.8            grid_4.2.2                sass_0.4.8                tools_4.2.2               timechange_0.2.0          future.apply_1.11.0      
[127] parallel_4.2.2            rstudioapi_0.15.0         foreach_1.5.2             gridExtra_2.3             prodlim_2023.08.28        farver_2.1.1             
[133] Rtsne_0.17                digest_0.6.33             BiocManager_1.30.22       lava_1.7.3                Rcpp_1.0.11               later_1.3.2              
[139] RcppAnnoy_0.0.21          httr_1.4.7                AnnotationDbi_1.60.2      colorspace_2.1-0          XML_3.99-0.16             fs_1.6.3                 
[145] tensor_1.5                reticulate_1.34.0         splines_4.2.2             uwot_0.1.16               spatstat.utils_3.0-4      plotly_4.10.3            
[151] sessioninfo_1.2.2         systemfonts_1.0.5         xtable_1.8-4              jsonlite_1.8.8            timeDate_4032.109         ipred_0.9-14             
[157] R6_2.5.1                  profvis_0.3.8             pillar_1.9.0              htmltools_0.5.7           mime_0.12                 glue_1.6.2               
[163] fastmap_1.1.1             BiocParallel_1.32.6       class_7.3-20              codetools_0.2-18          pkgbuild_1.4.3            utf8_1.2.4               
[169] lattice_0.20-45           bslib_0.6.1               spatstat.sparse_3.0-3     curl_5.2.0                leiden_0.4.3.1            openssl_2.1.1            
[175] survival_3.4-0            rmarkdown_2.25            desc_1.4.3                munsell_0.5.0             GenomeInfoDbData_1.2.9    iterators_1.0.14         
[181] reshape2_1.4.4            gtable_0.3.4 
@gu-lab20
Copy link
Owner

Hi Dagmar,
Thanks for trying the MD-ALL. Now we have updated the code with the command-line usage. You can create a test listing file like https://github.com/gu-lab20/MD-ALL/blob/master/test/file_list.tsv and use the function run_multiple_samples to run the analysis.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants