-
Notifications
You must be signed in to change notification settings - Fork 9
/
test_vanilla_v2.py
executable file
·159 lines (127 loc) · 5.6 KB
/
test_vanilla_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
'''
Controllability evaluation of Music FaderNets, vanilla VAE version.
'''
import json
import torch
from model_v2 import *
import os
from sklearn.model_selection import train_test_split
from ptb_v2 import *
from torch.utils.data import Dataset, DataLoader
import numpy as np
from IPython.display import Audio
from tqdm import tqdm
from polyphonic_event_based_v2 import *
from test_class import *
from collections import Counter
import random
def run_through(dl):
r_mean, n_mean, t_mean, v_mean = [], [], [], []
r_lst, n_lst = [], []
c_r_lst, c_n_lst, c_t_lst, c_v_lst = [], [], [], []
z_r_lst, z_n_lst = [], []
r_density_lst, n_density_lst = [], []
r_density_lst_actual, n_density_lst_actual = [], []
temp_count = 0
for j, x in tqdm(enumerate(dl), total=len(dl)):
d, r, n, c, r_density, n_density = x
d, r, n, c = d.cuda().long(), r.cuda().long(), \
n.cuda().long(), c.cuda().float()
r_lst.append(r)
n_lst.append(n)
r_density_lst.append(r_density.float())
n_density_lst.append(n_density.float())
d_oh = convert_to_one_hot(d, EVENT_DIMS)
r_oh = convert_to_one_hot(r, RHYTHM_DIMS)
n_oh = convert_to_one_hot(n, NOTE_DIMS)
res = model(d_oh, r_oh, n_oh, c)
# package output
output, dis, z_out = res
z_r, z_n = z_out
dis_r, dis_n = dis
out, r_out, n_out = output
z_r_lst.append(z_r.cpu().detach())
z_n_lst.append(z_n.cpu().detach())
r_mean.append(dis_r.mean.cpu().detach())
n_mean.append(dis_n.mean.cpu().detach())
r_mean = torch.cat(r_mean, dim=0).cpu().detach().numpy()
n_mean = torch.cat(n_mean, dim=0).cpu().detach().numpy()
r_density_lst = torch.cat(r_density_lst, dim=0).cpu().detach().numpy()
n_density_lst = torch.cat(n_density_lst, dim=0).cpu().detach().numpy()
r_lst = torch.cat(r_lst, dim=0).cpu().detach().numpy()
n_lst = torch.cat(n_lst, dim=0).cpu().detach().numpy()
z_r_lst = torch.cat(z_r_lst, dim=0).cpu().detach().numpy()
z_n_lst = torch.cat(z_n_lst, dim=0).cpu().detach().numpy()
# find value to set at z_r_0
z_r_0_lst = z_r_lst[:, 0]
z_r_rest_lst = z_r_lst[:, 1:]
z_n_0_lst = z_n_lst[:, 0]
z_n_rest_lst = z_n_lst[:, 1:]
r_min, r_max = np.amin(z_r_0_lst), np.amax(z_r_0_lst)
n_min, n_max = np.amin(z_n_0_lst), np.amax(z_n_0_lst)
return r_density_lst, n_density_lst, \
r_lst, n_lst, \
r_mean, n_mean, \
z_r_0_lst, z_r_rest_lst, z_n_0_lst, z_n_rest_lst, \
r_min, r_max, n_min, n_max
def train_test_evaluation(dl):
r_density_lst, n_density_lst, \
r_lst, n_lst, \
r_mean, n_mean, \
z_r_0_lst, z_r_rest_lst, z_n_0_lst, z_n_rest_lst, \
r_min, r_max, n_min, n_max = run_through(dl)
z_r_lst = np.concatenate([np.expand_dims(z_r_0_lst, axis=-1), z_r_rest_lst], axis=-1)
z_n_lst = np.concatenate([np.expand_dims(z_n_0_lst, axis=-1), z_n_rest_lst], axis=-1)
z_lst = np.concatenate([z_r_lst, z_n_lst], axis=-1)
# get r and n std
r_std = np.std(r_density_lst.squeeze())
n_std = np.std(n_density_lst.squeeze())
return r_min, r_max, n_min, n_max, r_std, n_std
if __name__ == "__main__":
# some initialization
with open('model_config_v2.json') as f:
args = json.load(f)
save_path = "params/music_attr_vae_reg_vanilla.pt"
model = MusicAttrRegVAE(roll_dims=EVENT_DIMS, rhythm_dims=RHYTHM_DIMS, note_dims=NOTE_DIMS,
chroma_dims=CHROMA_DIMS,
hidden_dims=args['hidden_dim'], z_dims=args['z_dim'],
n_step=args['time_step'])
if os.path.exists(save_path):
print("Loading {}".format(save_path))
model.load_state_dict(torch.load(save_path))
else:
print("No save path!!")
if torch.cuda.is_available():
print('Using: ', torch.cuda.get_device_name(torch.cuda.current_device()))
model.cuda()
else:
print('CPU mode')
step, pre_epoch = 0, 0
batch_size = args["batch_size"]
# model.train()
# dataloaders
data_lst, rhythm_lst, note_density_lst, chroma_lst = get_classic_piano()
tlen, vlen = int(0.8 * len(data_lst)), int(0.9 * len(data_lst))
train_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="train")
train_dl_dist = DataLoader(train_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
val_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="val")
val_dl_dist = DataLoader(val_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
test_ds_dist = YamahaDataset(data_lst, rhythm_lst, note_density_lst,
chroma_lst, mode="test")
test_dl_dist = DataLoader(test_ds_dist, batch_size=batch_size, shuffle=False, num_workers=0)
dl = test_dl_dist
print(len(train_ds_dist), len(val_ds_dist), len(test_ds_dist))
# ================= Normal implementation =================== #
print("Train")
_, _, _, _, r_std, n_std = train_test_evaluation(train_dl_dist)
print("Test")
r_min, r_max, n_min, n_max, _, _ = train_test_evaluation(test_dl_dist)
print("STD: ", r_std, n_std)
rhythm_evaluator = RhythmEvaluator(test_ds_dist, epochs=2)
note_evaluator = NoteEvaluator(test_ds_dist, epochs=2)
print("Rhythm Generation")
rhythm_evaluator.evaluate(model, r_min, r_max, r_std, n_std)
print("Note Generation")
note_evaluator.evaluate(model, n_min, n_max, r_std, n_std)