Skip to content

Latest commit

 

History

History
212 lines (150 loc) · 6.15 KB

workshop.md

File metadata and controls

212 lines (150 loc) · 6.15 KB

Workshop MLOps

Welcome aboard the MLOpsPython team !

You will contribute to the MLOpsPython project.

0. Prerequisite

1. Introduction

Introduction

2. Getting Started with Postman

You can download some sample .pdf from here :

https://github.com/guillaume-chervet/dataset-cats-dogs-others

Use Postman to call the API with HTTP POST:

You can also check health check route with HTTP GET:

http://cats-dogs-yolw.northeurope.azurecontainer.io:5000/health

3. Initialize your own project

3.1 Create your Azure Account (For Student)

Use your email student :

3.1. Create your Azure Account

Important point:

  • About azure coupon:
    • DO NOT redeem promo code with an email account that is attached to an EA, the pass will not work.
    • Promo code needs to be redeemed within 90-days of being received.
    • Customer Live ID/Org ID will be limited to one concurrent Azure Pass Sponsorship at a time.
    • Monetary credit can't be used toward third party services, premier support or Azure MarketPlace and cannot be added to existing subscriptions.
    • If you add a payment instrument to the subscription and the subscription is active at the conclusion of the offer it will be converted to Pay-As-You-Go.
    • Subscriptions are activated within minutes of the promo code being redeemed.
  • Select northeurope region

https://www.microsoftazurepass.com/?WT.mc_id=DOP-MVP-5003370

Documentation: https://www.microsoftazurepass.com/Home/HowTo?WT.mc_id=DOP-MVP-5003370

3.2. Fork the GitHub project MLOpsPython

On Windows:

  1. Download https://github.com/guillaume-chervet/MLOpsPython/blob/main/bin/init_repository.ps1 PowerShell Script
  2. Open a PowerShell Terminal then run
Set-ExecutionPolicy -Scope CurrentUser RemoteSigned -Force
./init_repository.ps1
  1. Go to GitHub Action Tab and activate it !

On Mac:

jq and sed are required

  1. Download https://github.com/guillaume-chervet/MLOpsPython/blob/main/bin/init_repository.sh Bash Script
  2. Open a Bash Terminal then run
brew install jq
chmod +x ./init_repository.sh
./init_repository.sh

On Linux(Ubuntu):

jq and sed are required

  1. Download https://github.com/guillaume-chervet/MLOpsPython/blob/main/bin/init_repository.sh Bash Script
  2. Open a Bash Terminal then run
sudo apt update
sudo apt install jq
sudo apt install sed
chmod +x ./init_repository.sh
./init_repository.sh

3.3. Adapt GitHub Action Parameters

Inside "./.github/workflows/main.yml" file

env:
  AZURE_RESOURCE_GROUP_NAME: "azure-ml-<your-name>"
  AZURE_ML_WORKSPACE_NAME: "cats-dogs-<your-name>"
  AZURE_WEBAPP_NAME: "cats-dogs-<your-name>"

3.4. Run GitHub Action

Commit and push your code

git add .
git commit -m "Initial commit"
git push origin main

This will trigger the GitHub Action.

4. Getting Started on your laptop

Follow "Get Started" section to run the project on your laptop :

https://github.com/your-github-login/MLOpsPythonWorkshop

Run the web interface and the API from docker-compose, then you can play with it.

5. First Contribution : Images Labelling

We need you to annotate 200 images of classification of :

  • cat
  • dog
  • other

Authenticate information :

  • login: bob
  • password: bob

https://axaguildev-ecotag.azurewebsites.net/projects/2329f843-fa3d-45df-bec5-08db0799d5b5

For you culture, Ecotag is an awesome Open Source tool available here : https://github.com/AxaGuilDEv/ecotag

6. Second Contribution : CleanCode & PullRequest

Our team Kanban:

https://github.com/users/guillaume-chervet/projects/1/views/1?layout=board

  1. Choose a clean code card on the bord
  2. Configure Pycharm to be able to debug existing Tests which are not very clean
  3. Create a git branch with a specific unique name
# Adapt the branch name 
git checkout -b refactor/my_custom_branch_name
  1. Once task done, push your code and create a PullRequest from GitHub
git add .
# Please follow a commit convention: https://www.conventionalcommits.org/en/v1.0.0/
git commit -m "refactor(myfonctionnality): commit message"
git push

7. How to check your API result

  1. Follow "ml-cli" readme and download "ml-cli" version v0.54.2 for your OS https://github.com/AxaFrance/ecotag/blob/master/README-ML-CLI.md
  2. Download https://github.com/guillaume-chervet/dataset-cats-dogs-others-mlcli as a zip and unzip content in "demo" folder
    • tasks.json should be in demo directory like "./demo/tasks.json"
  3. Adapt tasks.json file to call your API then run ml-cli
  4. Once compare file generated, compare the result using ml-cli web UI, you can use the script bellow to navigate inside data
try {
    let body = JSON.parse(rawBodyInput);
    const simplerBody = body.map((element) => {
        return {prediction : element.prediction};
    })
    // rawBodyOutput can be updated to format data as you need
    rawBodyOutput = JSON.stringify(simplerBody);
    // writing "isSkipped=true" will remove the item from the results
    isSkipped=false;
} catch(ex) {
    console.log("Left parsing crash");
    console.log(ex.toString());
    rawBodyOutput = rawBodyInput;
}

8. More AzureML

  1. Create a AzureML Compute Instance
  2. Open JupyterLab with Python 3.10 and SDK v2
  3. Clone the AzureML SDK v2 repository
git clone https://github.com/Azure/azureml-examples
cd azureml-examples/sdk/python

You are ready to go !