字符串处理是生物信息当中经常遇到的问题。常见的操作有:赋值,获取字符串长度,截取,替换,联接,分割,比较,排序,匹配,部分匹配,正则匹配,格式化,分行
#赋值
mychar <- c("ACTACCACTAACCACT","TCATCCATTCGTGGG","GTTGTTCCATAG")
#获取字串长度
nchar(mychar)
## [1] 16 15 12
length(mychar)
## [1] 3
#截取
substr(mychar, 2, 4)
## [1] "CTA" "CAT" "TTG"
substr(mychar, 2, 4)<-"TTT"
mychar
## [1] "ATTTCCACTAACCACT" "TTTTCCATTCGTGGG" "GTTTTTCCATAG"
#替换
dna2rna<-function(inputStr){
if(!is.character(inputStr))
stop("need character input")
is = toupper(inputStr)
chartr("T", "U", is)
}
dna2rna(mychar)
## [1] "AUUUCCACUAACCACU" "UUUUCCAUUCGUGGG" "GUUUUUCCAUAG"
#联接
paste("prefix",mychar,"postfix",sep="-")
## [1] "prefix-ATTTCCACTAACCACT-postfix" "prefix-TTTTCCATTCGTGGG-postfix"
## [3] "prefix-GTTTTTCCATAG-postfix"
paste(mychar,collapse="--")
## [1] "ATTTCCACTAACCACT--TTTTCCATTCGTGGG--GTTTTTCCATAG"
#分割
strsplit(mychar,"C")
## [[1]]
## [1] "ATTT" "" "A" "TAA" "" "A" "T"
##
## [[2]]
## [1] "TTTT" "" "ATT" "GTGGG"
##
## [[3]]
## [1] "GTTTTT" "" "ATAG"
strsplit(mychar,"[CG]")
## [[1]]
## [1] "ATTT" "" "A" "TAA" "" "A" "T"
##
## [[2]]
## [1] "TTTT" "" "ATT" "" "T" "" ""
##
## [[3]]
## [1] "" "TTTTT" "" "ATA"
strsplit(mychar, "")
## [[1]]
## [1] "A" "T" "T" "T" "C" "C" "A" "C" "T" "A" "A" "C" "C" "A" "C" "T"
##
## [[2]]
## [1] "T" "T" "T" "T" "C" "C" "A" "T" "T" "C" "G" "T" "G" "G" "G"
##
## [[3]]
## [1] "G" "T" "T" "T" "T" "T" "C" "C" "A" "T" "A" "G"
#比较
mychar[1]>mychar[2]
## [1] FALSE
#排序
sort(mychar)
## [1] "ATTTCCACTAACCACT" "GTTTTTCCATAG" "TTTTCCATTCGTGGG"
#匹配
exT<-c("Intron", "Exon", "promoter","enhancer")
match("Exon", exT)
## [1] 2
"promoter" %in% exT
## [1] TRUE
#部分匹配
pmatch("E", exT)
## [1] 2
pmatch("X", exT)
## [1] NA
charmatch("E", exT)
## [1] 2
charmatch("x", exT)
## [1] NA
pmatch(c("Exo","enh"), exT)
## [1] 2 4
#格式化
format(1:10)
## [1] " 1" " 2" " 3" " 4" " 5" " 6" " 7" " 8" " 9" "10"
format(1:10, trim = TRUE)
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
## (row names)
## 1 aaaaa
## 2 b
format(zz, justify = "left")
## (row names)
## 1 aaaaa
## 2 b
format(13.7, nsmall = 3)
## [1] "13.700"
format(c(6.0, 13.1), digits = 2)
## [1] " 6" "13"
format(c(6.0, 13.1), digits = 2, nsmall = 1)
## [1] " 6.0" "13.1"
## use of scientific
format(2^31-1)
## [1] "2147483647"
format(2^31-1, scientific = TRUE)
## [1] "2.147484e+09"
## a list
z <- list(a=letters[1:3], b=(-pi+0i)^((-2:2)/2), c=c(1,10,100,1000),
d=c("a", "longer", "character", "string"))
format(z, digits = 2)
## a
## "a, b, c"
## b
## "-0.32+0.00i, 0.00-0.56i, 1.00+0.00i, 0.00+1.77i, -3.14+0.00i"
## c
## "1, 10, 100, 1000"
## d
## "a , longer , character, string "
format(z, digits = 2, justify = "left", trim = FALSE)
## a
## "a, b, c"
## b
## "-0.32+0.00i, 0.00-0.56i, 1.00+0.00i, 0.00+1.77i, -3.14+0.00i"
## c
## " 1, 10, 100, 1000"
## d
## "a , longer , character, string "
#分行
x <-paste(readLines(file.path(R.home(), "COPYING")), collapse="\n")
strwrap(x, 30, prefix = "BIOCONDUCTOR: ")[1:6]
## [1] "BIOCONDUCTOR: GNU GENERAL" "BIOCONDUCTOR: PUBLIC LICENSE"
## [3] "BIOCONDUCTOR: Version 2, June" "BIOCONDUCTOR: 1991"
## [5] "BIOCONDUCTOR: " "BIOCONDUCTOR: Copyright (C)"
writeLines(strwrap(x, 30, prefix="BIOCONDUCTOR: ")[1:6])
## BIOCONDUCTOR: GNU GENERAL
## BIOCONDUCTOR: PUBLIC LICENSE
## BIOCONDUCTOR: Version 2, June
## BIOCONDUCTOR: 1991
## BIOCONDUCTOR:
## BIOCONDUCTOR: Copyright (C)
正则的使用主要涉汲以下7个函数:grep, grepl, sub, gsub, regexpr, gregrexpr, regexec。而象strsplit, apropos以及browseEnv都是基于这7个函数基础之上的。
pattern="^[A-Za-z0-9\\._%+-]+@[A-Za-z0-9\\.-]+\\.[A-Za-z]{2,4}$"
str<-c("abc","[email protected]","efg","[email protected]","[email protected]")
#grepl会返回一个逻辑值,l就代表logical, g就代表global
grepl(pattern,str)
## [1] FALSE TRUE FALSE TRUE TRUE
#grep会返回匹配的id
grep(pattern,str)
## [1] 2 4 5
#regexpr会返回一个数字,1表示匹配,-1表示不匹配,还会返回两个属性,匹配的长度以及是否使用useBytes。useBytes一般很少会使用到false,因为我们不处理宽字符。
regexpr(pattern,str)
## [1] -1 1 -1 1 1
## attr(,"match.length")
## [1] -1 24 -1 20 17
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE
#regexec会返回一个list,下面的内容是第一个匹配及其长度
regexec("\\w+@\\w+\\.[a-zA-Z]{2,4}","[email protected],[email protected]")
## [[1]]
## [1] 1
## attr(,"match.length")
## [1] 20
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE
正则的使用已经看到了,但是让人看不明白就是字符. \ | ( ) [ { ^ $ * + - ? 这些符号都是什么意思呢?下面就来仔细讲讲perl中的正则符号。
. # 除了换行以外的任意字符
^ # 一行字符串的起始,它并不代表第一个字符,只代表这里开始新的一行字符串。
$ # 一行字符串的结束,它并不代表最后一个字符(因为换行符并不会被包含进匹配当中),只代表一行字符串到这里结束。
* # 零个或者多个之前的字符
+ # 一个或者多个之前的字符
? # 零个或者一个之前的字符
# 示例部分
t.e # t后面跟任意一个非换行字符然后跟字符e
# 它可以匹配 the
# tre
# tle
# 但是不匹配 te
# tale
^f # 一行字符以f起始
^ftp # 一行字符以ftp起始
e$ # 一行字符以e结尾
tle$ # 一行字符以tle结尾
und* # un跟着零个或者多个d字符
# 它会匹配 un
# und
# undd
# unddd (etc)
.* # 任意一个无换行的字符串,
# . 匹配任何一个非换行字符
# * 将匹配一个或者多个之前的字符.
^$ # 一个空行.
# 在正则中有方括号[],代表可以匹配其中任何一个字符。而^在[]中就有了新的意义,代表“非”, -代表了“之间”
[qjk] # q,j,k中任意一个字符
[^qjk] # 非q,j,k的任意其它字符
[a-z] # a至z中任意一个小写字符
[^a-z] # 非任意一个a至z小写字符的其它字符(可以是大写字符)
[a-zA-Z] # 任意一个英文字母
[a-z]+ # 一个或者多个小写英文字母
# |代表或者 小括号(...)可以把或者的部分括起来。注意小括号可能还有别的用途,但是在R当中先不使用。
jelly|cream # jelly或者cream
(eg|le)gs # eggs或者legs
(da)+ # da或者dada或者dadada 或者更多个da的重复
# 大括号括住1至2个数字,代表重复次数。
* # 零个或者多个之前的字符
+ # 一个或者多个之前的字符
? # 零个或者一个之前的字符
{n} # n个之前的字符
{n,} # 大于等于n个之前的字符
{n,m} # n至m个之前的字符
# 下面的是一些字符被转义符\转义会赋以了一些新的(有可能是约定俗成的)意义
\n # 换行符
\t # tab
\w # 任意字母(包括下划线)或者数字
# 等同于[a-zA-Z0-9_]
\W # \w的反义.
# 等同于[^a-zA-Z0-9_]
\d # 任意一个数字,等同于[0-9]
\D # \d的反义,等同于[^0-9]
\s # 任意一个空格,比如,
# space, tab, newline, 等
\S # \s的反义,任意一个非空格
\b # 单词的边界, 不能使用在[]内
\B # \b的反义
# 很明显,对于保留字符$, |, [, ), \, / 等等都需要转义字符\来转义表示:
\| # 竖线
\[ # \[左方括号 \]右方括号
\) # \(左小括号 \)右小括号
\* # 星号
\^ # 开号
\/ # 反斜杠
\\ # 斜杠
POSIX中定义的一些特殊意义的字符
[:alnum:] # [:alpha:]和[:digit:]的组合
[:alpha:] # [:lower:]和[:upper:]的组合
[:blank:] # 空格(space, tab),不包括换行符
[:cntrl:] # 控制符,在ASCII码中000~037或者177
[:digit:] # 任意数字:0-9
[:graph:] # [:alnum:]和[:punct:]的组合
[:lower:] # 当前字符集的小写字母
[:print:] # 可打印出来的字符,[:graph:]以及空格
[:punct:] # 标点符号,包括:^ ! " # $ % & ' ( ) * + - . / : ; < = > ? @ [ ] \ _ { } ` ~
[:space:] # 空格,包括tab, newline, vertical tab, form feed, carriage return, and space
[:upper:] # 当前字符集的大写字母
[:xdigit:] # 16进制数 0-9a-fA-F
锚点特殊字符
^ # 一行字符串的起始,它并不代表第一个字符,只代表这里开始新的一行字符串。
$ # 一行字符串的结束,它并不代表最后一个字符(因为换行符并不会被包含进匹配当中),只代表一行字符串到这里结束。
\< # 单词左边界
\> # 单词右边界
依据上面的介绍,网址的简单匹配可以写为: pattern <- "^[A-Za-z0-9\\._%+-]+@[A-Za-z0-9\\.-]+\\.[A-Za-z]{2,4}$" 可以改写为 pattern <- "^[\\w\\._%+-]+@[\\w\\.-]+\\.[A-Za-z]{2,4}$" 或者 pattern <- "^[[:alnum:]\\._%+-]+@[[:alnum:]\\.-]+\\.[[:alpha:]]{2,4}$" 为什么转义字符()都要写两次呢?因为R本身也把\当成转义字符,所以在写pattern的时候,就需要使用\\来表示转义字符。还有一种办法就是设置fixed为TRUE。
那么参数中perl是什么意思呢?其实就是指是否使用PCRE的算法,我们来看实例:
#gregexpr也会返回一个list, 下面的内容是每一个匹配及其长度以及useBytes。g就代表global
gregexpr("\\w+@\\w+\\.[a-zA-Z]{2,4}","[email protected],[email protected]")
## [[1]]
## [1] 1 22
## attr(,"match.length")
## [1] 20 20
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE
#sub和gsub都用来做正则替换,其区别只在于g所代表的global。sub只替换遇到的第一个匹配,而gsub会替换所有的匹配。
#需要注意的是,这里的匹配都是对应的一个字符串而言的,如果是多个字符串,要区别为每一个来单独对待。
sub("\\w+@\\w+\\.[a-zA-Z]{2,4}","sub_function","[email protected],[email protected]")
## [1] "sub_function,[email protected]"
gsub("\\w+@\\w+\\.[a-zA-Z]{2,4}","gsub_function","[email protected],[email protected]")
## [1] "gsub_function,gsub_function"
regexpr("foo|foobar","myfoobar")
## [1] 3
## attr(,"match.length")
## [1] 6
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE
regexpr("foo|foobar","myfoobar", perl=TRUE)
## [1] 3
## attr(,"match.length")
## [1] 3
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE
生物字符串的常见操作比如求互补序列,反向序列,反向互补序列,翻译,转录,逆转录,碱基频率统计,序列比对等. 提供这些常操作的软件包是Biostrings。它有一个基础类,BString,下面有三个继承类:DNAString, RNAString以及AAString。比对的结果会放在BStringAlign类当中.
library(Biostrings)
dna<-DNAString("TCTCCCAACCCTTGTATAAGTATAAATCGT")
RNAString(dna) ## DNA转RNA,只是将T换成U
## 30-letter "RNAString" instance
## seq: UCUCCCAACCCUUGUAUAAGUAUAAAUCGU
reverse(dna) ## 反向
## 30-letter "DNAString" instance
## seq: TGCTAAATATGAATATGTTCCCAACCCTCT
complement(dna) ## 互补
## 30-letter "DNAString" instance
## seq: AGAGGGTTGGGAACATATTCATATTTAGCA
reverseComplement(dna) ## 反向互补
## 30-letter "DNAString" instance
## seq: ACGATTTATACTTATACAAGGGTTGGGAGA
rna<-RNAString(complement(dna)) ## 转录,注意它与dna2rna的不同
rna
## 30-letter "RNAString" instance
## seq: AGAGGGUUGGGAACAUAUUCAUAUUUAGCA
DNAString(rna) ## RNA转DNA,只是将U换成T
## 30-letter "DNAString" instance
## seq: AGAGGGTTGGGAACATATTCATATTTAGCA
DNAString(complement(rna)) ## 逆转录为cDNA
## 30-letter "DNAString" instance
## seq: TCTCCCAACCCTTGTATAAGTATAAATCGT
codons(rna) ## 密码子
## Views on a 30-letter RNAString subject
## subject: AGAGGGUUGGGAACAUAUUCAUAUUUAGCA
## views:
## start end width
## [1] 1 3 3 [AGA]
## [2] 4 6 3 [GGG]
## [3] 7 9 3 [UUG]
## [4] 10 12 3 [GGA]
## [5] 13 15 3 [ACA]
## [6] 16 18 3 [UAU]
## [7] 19 21 3 [UCA]
## [8] 22 24 3 [UAU]
## [9] 25 27 3 [UUA]
## [10] 28 30 3 [GCA]
translate(rna) ## 翻译
## 10-letter "AAString" instance
## seq: RGLGTYSYLA
alphabetFrequency(dna) ## 碱基频率统计
## A C G T M R W S Y K V H D B N - + .
## 9 8 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
hasOnlyBaseLetters(dna)
## [1] TRUE
uniqueLetters(dna)
## [1] "A" "C" "G" "T"
letterFrequency(dna, letters="ACG")
## A|C|G
## 20
## 计算GC比
GC_content <- letterFrequency(dna, letters="CG")/letterFrequency(dna, letters="ACGT"); GC_content
## C|G
## 0.3666667
##搜索
(mT <- matchPattern("TATA", dna))
## Views on a 30-letter DNAString subject
## subject: TCTCCCAACCCTTGTATAAGTATAAATCGT
## views:
## start end width
## [1] 15 18 4 [TATA]
## [2] 21 24 4 [TATA]
## 比对
aa1<-AAString("HXBLVYMGCHFDCXVBEHIKQZ")
aa2<-AAString("QRNYMYCFQCISGNEYKQN")
pairwiseAlignment(aa1, aa2, substitutionMatrix="BLOSUM62", type="global")
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: HXBLVYMGCHFDCXVBEHIKQZ
## subject: QRN--YMYC-FQCISGNEYKQN
## score: 9
## 局部比对
pairwiseAlignment(aa1, aa2, substitutionMatrix="BLOSUM62", type="local")
## Local PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: [6] YMGCHFDCXVBEHIKQ
## subject: [4] YMYC-FQCISGNEYKQ
## score: 24
s1 <-
DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATCAAAGGAAACGCAAAGTTTTCAAG")
s2 <-
DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")
mat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -3, baseOnly = TRUE)
pairwiseAlignment(s1, s2, substitutionMatrix = mat,
gapOpening = -5, gapExtension = -2)
## Global PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG
## subject: GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC
## score: -52
pairwiseAlignment(s1, s2, type = "local", substitutionMatrix = mat,
gapOpening = -5, gapExtension = -2)
## Local PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: [20] GGTAAGT
## subject: [20] GGTAAGT
## score: 7
pairwiseAlignment(s1, s2, type = "overlap", substitutionMatrix = mat,
gapOpening = -5, gapExtension = -2)
## Overlap PairwiseAlignmentsSingleSubject (1 of 1)
## pattern: [54] G
## subject: [1] G
## score: 1