-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmain.py
152 lines (132 loc) · 4.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
import model
import config
import evaluate
import data_utils
parser = argparse.ArgumentParser()
parser.add_argument("--lr",
type=float,
default=0.05,
help="learning rate")
parser.add_argument("--dropout",
default='[0.5, 0.2]',
help="dropout rate for FM and MLP")
parser.add_argument("--batch_size",
type=int,
default=128,
help="batch size for training")
parser.add_argument("--epochs",
type=int,
default=100,
help="training epochs")
parser.add_argument("--hidden_factor",
type=int,
default=64,
help="predictive factors numbers in the model")
parser.add_argument("--layers",
default='[64]',
help="size of layers in MLP model, '[]' is NFM-0")
parser.add_argument("--lamda",
type=float,
default=0.0,
help="regularizer for bilinear layers")
parser.add_argument("--batch_norm",
default=True,
help="use batch_norm or not")
parser.add_argument("--pre_train",
action='store_true',
default=False,
help="whether use the pre-train or not")
parser.add_argument("--out",
default=True,
help="save model or not")
parser.add_argument("--gpu",
type=str,
default="0",
help="gpu card ID")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
############################# PREPARE DATASET #########################
features_map, num_features = data_utils.map_features()
train_dataset = data_utils.FMData(config.train_libfm, features_map)
valid_dataset = data_utils.FMData(config.valid_libfm, features_map)
test_dataset = data_utils.FMData(config.test_libfm, features_map)
train_loader = data.DataLoader(train_dataset, drop_last=True,
batch_size=args.batch_size, shuffle=True, num_workers=4)
valid_loader = data.DataLoader(valid_dataset,
batch_size=args.batch_size, shuffle=False, num_workers=0)
test_loader = data.DataLoader(test_dataset,
batch_size=args.batch_size, shuffle=False, num_workers=0)
############################## CREATE MODEL ###########################
if args.pre_train:
assert os.path.exists(config.FM_model_path), 'lack of FM model'
assert config.model == 'NFM', 'only support NFM for now'
FM_model = torch.load(config.FM_model_path)
else:
FM_model = None
if config.model == 'FM':
model = model.FM(num_features, args.hidden_factor,
args.batch_norm, eval(args.dropout))
else:
model = model.NFM(
num_features, args.hidden_factor,
config.activation_function, eval(args.layers),
args.batch_norm, eval(args.dropout), FM_model)
model.cuda()
if config.optimizer == 'Adagrad':
optimizer = optim.Adagrad(
model.parameters(), lr=args.lr, initial_accumulator_value=1e-8)
elif config.optimizer == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=args.lr)
elif config.optimizer == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=args.lr)
elif config.optimizer == 'Momentum':
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.95)
if config.loss_type == 'square_loss':
criterion = nn.MSELoss(reduction='sum')
else: # log_loss
criterion = nn.BCEWithLogitsLoss(reduction='sum')
# writer = SummaryWriter() # for visualization
############################### TRAINING ############################
count, best_rmse = 0, 100
for epoch in range(args.epochs):
model.train() # Enable dropout and batch_norm
start_time = time.time()
for features, feature_values, label in train_loader:
features = features.cuda()
feature_values = feature_values.cuda()
label = label.cuda()
model.zero_grad()
prediction = model(features, feature_values)
loss = criterion(prediction, label)
loss += args.lamda * model.embeddings.weight.norm()
loss.backward()
optimizer.step()
# writer.add_scalar('data/loss', loss.item(), count)
count += 1
model.eval()
train_result = evaluate.metrics(model, train_loader)
valid_result = evaluate.metrics(model, valid_loader)
test_result = evaluate.metrics(model, test_loader)
print("Runing Epoch {:03d} ".format(epoch) + "costs " + time.strftime(
"%H: %M: %S", time.gmtime(time.time()-start_time)))
print("Train_RMSE: {:.3f}, Valid_RMSE: {:.3f}, Test_RMSE: {:.3f}".format(
train_result, valid_result, test_result))
if test_result < best_rmse:
best_rmse, best_epoch = test_result, epoch
if args.out:
if not os.path.exists(config.model_path):
os.mkdir(config.model_path)
torch.save(model,
'{}{}.pth'.format(config.model_path, config.model))
print("End. Best epoch {:03d}: Test_RMSE is {:.3f}".format(best_epoch, best_rmse))