-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
560 lines (489 loc) · 24.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
# Cross-view transformers for multi-view analysis of unregistered medical images
# Copyright (C) 2021 Gijs van Tulder / Radboud University, the Netherlands
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import argparse
import collections
import os
import sys
import time
import numpy as np
import json
import h5py
import matplotlib.pyplot as plt
import re
import sklearn.metrics
import scipy.special
import tqdm
import torch
import torch.nn as nn
import torch.cuda.amp
import torch.utils
import torch.utils.tensorboard
import net
import ddsm_data
import chexpert_data
import util
import two_view_attention
parser = argparse.ArgumentParser()
parser.add_argument('--train-data', metavar='HDF5', nargs='+',
help='training samples (hdf5)')
parser.add_argument('--val-data', metavar='HDF5', nargs='+',
help='validation samples (hdf5)')
parser.add_argument('--test-data', metavar='HDF5', nargs='+',
help='test samples (hdf5)')
parser.add_argument('--epochs', metavar='N', type=int, default=100)
parser.add_argument('--lr', metavar='LR', type=float, default=0.001)
parser.add_argument('--lr-schedule', metavar='SCHEDULER',
choices=['StepLR', 'CosineAnnealingLR'],
help='use a learning rate scheduler')
parser.add_argument('--lr-schedule-step-size', metavar='STEP', type=int,
help='step size for the learning rate scheduler')
parser.add_argument('--lr-schedule-gamma', metavar='GAMMA', type=float,
help='gamma for the learning rate scheduler')
parser.add_argument('--lr-schedule-eta-min', metavar='LR', type=float,
help='the final learning rate for the annealing scheduler')
parser.add_argument('--lr-warmup-epochs', metavar='EPOCHS', type=int,
help='implement linear warmup for the first epochs')
parser.add_argument('--optimizer', metavar='OPTIM', choices=['Adam', 'SGD'], default='Adam',
help='set the optimizer')
parser.add_argument('--swa', action='store_true',
help='enable stochastic weight averaging')
parser.add_argument('--swa-start-epoch', metavar='EPOCH', type=int,
help='start stochastic weight averaging from this epoch')
parser.add_argument('--swa-lr', metavar='LR', type=float,
help='learning rate for stochastic weight averaging')
parser.add_argument('--freeze-batch-norm', action='store_true',
help='sets the model to eval() during training')
parser.add_argument('--mb-size', metavar='N', type=int, default=6)
parser.add_argument('--device', metavar='DEVICE', type=str, default='cpu')
parser.add_argument('--tensorboard-dir', metavar='DIR')
parser.add_argument('--checkpoints-dir', metavar='DIR')
parser.add_argument('--best-checkpoints-only', action='store_true',
help='only keep the best and final checkpoints')
parser.add_argument('--augment', choices=['flip', 'rot90', 'cropzoom', 'elastic',
'rotate', 'crop20', 'coflip'], nargs='+')
parser.add_argument('--model', choices=net.models, required=True)
parser.add_argument('--pretrained', action='store_true', default=None,
help='use ImageNet-pretrained models')
parser.add_argument('--no-pretrained', action='store_false', dest='pretrained', default=None,
help='do not use ImageNet-pretrained models')
parser.add_argument('--pretrained-weights', metavar='WEIGHTS',
help='load the weights for a complete model')
parser.add_argument('--classes', required=True, type=int)
parser.add_argument('--tasks', type=int, default=1)
parser.add_argument('--weighted-loss', action='store_true',
help='use a weighted loss function based on class balance')
parser.add_argument('--label-smoothing', action='store_true',
help='set target labels to 0.1 and 0.9')
parser.add_argument('--data', choices=list(ddsm_data.datasets) + \
list(chexpert_data.datasets), required=True)
parser.add_argument('--ddsm-views', default=['cc', 'mlo'], nargs='+')
parser.add_argument('--chexpert-views', default=['frontal', 'lateral'], nargs='+')
parser.add_argument('--view-dropout', action='store_true', default=None)
parser.add_argument('--dropout', metavar='P', type=float, default=None,
help='enable dropout on some models')
parser.add_argument('--attention-heads', type=int, default=None)
parser.add_argument('--attention-downsampling', type=int, default=None)
parser.add_argument('--attention-combine', choices=('add', 'add-linear',
'ln-add-linear-do',
'linear-linear',
'concatenate'), default=None)
parser.add_argument('--attention-bidirectional', action='store_true', default=None)
parser.add_argument('--attention-l1-loss', type=float, default=None,
help='weight for the L1 loss on the transformer coefficients')
parser.add_argument('--attention-tokens', type=int, default=None,
help='enables tokenization of B before attention')
parser.add_argument('--attention-token-layers', type=int, default=None,
help='enables tokenization of B before attention')
parser.add_argument('--attention-tokenize-a', action='store_const', const=True, default=None,
help='enables tokenization of A as well')
parser.add_argument('--attention-implementation', default='samplewise-directsum',
choices=('traditional', 'samplewise-directsum'),
help='seleect the two-view attention implementation')
parser.add_argument('--normalize', action='store_true', default=False)
parser.add_argument('--num-workers', metavar='N', type=int, default=0)
parser.add_argument('--autocast', action='store_true', default=False,
help='enable the torch.cuda.amp autocasting')
parser.add_argument('--git-commit', metavar='HASH',
help='can be used to store the current git commit hash')
args = parser.parse_args()
vargs = vars(args)
print(args)
print()
dtype = torch.float
device = torch.device(args.device)
# compute number of outputs
if args.classes > 2:
classes = 3
tasks = args.tasks
outputs = classes * tasks
else:
assert args.tasks == 1
classes = 2
tasks = 1
outputs = 1
# compute number of input channels
if 'MNIST' in args.data:
in_channels = 3
else:
in_channels = 1
# additional model parameters?
model_args = {}
if args.attention_heads:
model_args['heads'] = args.attention_heads
if args.attention_l1_loss is not None:
model_args['attention_l1_loss'] = True
for argname in ('attention_downsampling', 'attention_combine',
'attention_bidirectional', 'attention_tokens',
'attention_token_layers', 'attention_tokenize_a',
'dropout', 'view_dropout', 'pretrained'):
if vargs[argname] is not None:
model_args[argname] = vargs[argname]
# select attention implementation
if args.attention_implementation:
two_view_attention.TwoViewAttentionModule.implementation = args.attention_implementation
# initialize classification network
if args.model in net.models:
net_class = net.models[args.model]
else:
raise Exception('Unknown net: %s' % args.model)
model = net_class(in_channels=in_channels, outputs=outputs, **model_args).to(device)
print(model)
# load pretrained weights
if args.pretrained_weights:
print('Load pretrained weights from %s' % args.pretrained_weights)
d = torch.load(args.pretrained_weights, map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(d['model_state_dict'], strict=False)
print('Missing keys:', missing_keys)
print('Unexpected keys:', unexpected_keys)
del d
# loss functions
def accuracy_fn(y_pred, y_true, ignore_index=None):
y_pred = y_pred.detach().cpu().numpy()
y_true = y_true.detach().cpu().numpy()
if ignore_index is not None:
# skip targets with this target label
y_pred = y_pred[y_true != ignore_index]
y_true = y_true[y_true != ignore_index]
return np.mean(np.equal(y_pred, y_true))
def roc_auc_fn(y_score, y_true):
y_score = y_score.detach().cpu().numpy()
y_true = y_true.detach().cpu().numpy()
return sklearn.metrics.roc_auc_score(y_true, y_score,
multi_class='ovo', average='macro')
# optimizer
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optimizer == 'SGD':
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
else:
raise Exception('Unknown optimizer: %s' % args.optimizer)
# learning rate scheduler
if args.lr_schedule == 'StepLR':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_schedule_step_size,
gamma=args.lr_schedule_gamma)
elif args.lr_schedule == 'CosineAnnealingLR':
eta_min = args.swa_lr if args.swa else (args.lr_schedule_eta_min or 0)
T_max = args.epochs - (args.lr_warmup_epochs or 0)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=T_max,
eta_min=eta_min, verbose=True)
else:
assert args.lr_schedule is None
scheduler = None
# additional learning rate warmup
if args.lr_warmup_epochs is not None:
# linear increase until args.lr_warmup_epochs
warmup_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, verbose=True,
lr_lambda=lambda epoch: min(1.0, epoch / args.lr_warmup_epochs))
# enable stochastic weight averaging (if required)
if args.swa:
swa_model = torch.optim.swa_utils.AveragedModel(model)
swa_scheduler = torch.optim.swa_utils.SWALR(optimizer, swa_lr=args.swa_lr)
# scaler
scaler = torch.cuda.amp.GradScaler(args.autocast)
# initialize loaders
def worker_init_fn(w):
# workers need different random seeds to produce independent samples
worker_seed = torch.utils.data.get_worker_info().seed % (2**32)
np.random.seed(worker_seed)
datasets = {}
if hasattr(ddsm_data, args.data):
# DDSM data
dataset_class = ddsm_data.datasets[args.data]
for key in ('train', 'val', 'test'):
augmentation = args.augment if 'train' in key else []
datasets[key] = [dataset_class(filename,
augment=augmentation,
normalize=args.normalize,
dtype_x=dtype,
dtype_y=dtype,
views=args.ddsm_views)
for filename in vargs['%s_data' % key]]
number_of_views = len(args.ddsm_views)
elif hasattr(chexpert_data, args.data):
# CheXpert data
dataset_class = chexpert_data.datasets[args.data]
for key in ('train', 'val', 'test'):
augmentation = args.augment if 'train' in key else []
datasets[key] = [dataset_class(filename,
augment=augmentation,
dtype_x=dtype,
dtype_y=dtype,
views=args.chexpert_views)
for filename in vargs['%s_data' % key]]
number_of_views = len(args.chexpert_views)
else:
raise Exception('Unknown data: %s' % args.data)
# compute loss weights
if args.weighted_loss:
# give a weight of 1 to the largest class, > 1 for the others
class_weight = sum([d.class_freq() for d in datasets['train']]).to(torch.float)
class_weight = class_weight.max() / class_weight
print('Weighted loss:', class_weight)
else:
class_weight = None
# construct objective function
if args.classes > 2:
loss_fn = torch.nn.CrossEntropyLoss(weight=class_weight, ignore_index=99)
else:
if class_weight is None:
loss_fn = torch.nn.BCEWithLogitsLoss()
else:
loss_fn = torch.nn.BCEWithLogitsLoss(pos_weight=class_weight[1])
loss_fn = loss_fn.to(device)
# construct loaders
loaders = {}
for key in ('train', 'val', 'test'):
print('Loading %s data' % key)
ds = datasets[key]
if isinstance(ds, list):
ds = torch.utils.data.ConcatDataset(ds)
loaders[key] = torch.utils.data.DataLoader(ds, batch_size=args.mb_size,
shuffle='train' in key,
num_workers=args.num_workers,
worker_init_fn=worker_init_fn,
pin_memory=True)
print('Dataset %s: %d samples' % (key, len(ds)))
# initalize directories
if args.tensorboard_dir:
tensorboard_writer = torch.utils.tensorboard.SummaryWriter(args.tensorboard_dir)
tensorboard_writer.add_text('args', json.dumps(vars(args)))
else:
tensorboard_writer = None
if args.checkpoints_dir:
os.makedirs(args.checkpoints_dir, exist_ok=True)
# keep track of the best validation accuracy and roc_auc found so far,
# so we can save the parameters of the best model
best_val_score = {'accuracy': None, 'roc_auc': None}
# training
# run one extra epoch for the final SWA model to learn the batch normalization parameters
for epoch in range(args.epochs + (1 if args.swa else 0)):
if args.swa and epoch == args.epochs:
print('Final epoch %d for SWA' % epoch)
model = swa_model
# see torch.optim.swa_util.update_bn
# this run is to optimize the batch normalization parameters,
# so we should reset them first
for module in model.modules():
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.running_mean = torch.zeros_like(module.running_mean)
module.running_var = torch.ones_like(module.running_var)
module.momentum = None
module.num_batches_tracked *= 0
else:
print('Epoch %d' % epoch)
time_start = time.time()
all_losses = {}
all_histograms = {}
all_figures = {}
epoch_class_balance_estimates = collections.defaultdict(float)
epoch_class_balance_true = collections.defaultdict(float)
# collect predictions for all samples in this epoch
epoch_y = collections.defaultdict(list)
epoch_predictions = collections.defaultdict(list)
epoch_predicted_labels = collections.defaultdict(list)
# training/validation
for phase in ('train', 'val', 'test'):
# reset counters
losses = collections.defaultdict(float)
histograms = collections.defaultdict(list)
confmat = np.zeros((classes, classes), dtype='int')
n = 0
model.train(phase == 'train' and not args.freeze_batch_norm)
torch.set_grad_enabled(phase == 'train')
for (*x_views, y) in tqdm.tqdm(loaders[phase], leave='true', desc=('%-6s' % phase), disable=None, dynamic_ncols=True):
prediction = {}
class_loss = {}
# convert type and move to gpu
x_views = [x.to(device=device, dtype=dtype, non_blocking=True) for x in x_views]
y = y.to(device=device, dtype=(torch.long if outputs > 1 else dtype), non_blocking=True)
with torch.cuda.amp.autocast(args.autocast):
# compute forward pass
prediction = model(*x_views)
if args.attention_l1_loss is not None:
prediction, *extra_outputs = prediction
# compute loss
if outputs == 1:
# binary classification
if args.label_smoothing:
# scale targets to 0.1 and 0.9
y_for_loss = y * 0.8 + 0.1
else:
y_for_loss = y
if prediction.ndim == 2:
# standard case: one output per sample
class_loss = loss_fn(prediction[:, 0], y_for_loss)
prediction_label = (prediction[:, 0].detach() > 0)
accuracy = accuracy_fn(prediction_label, y)
prediction_label = prediction_label.to(int)
loss = class_loss
else:
assert prediction.ndim == 3
# special case with multiple outputs
# each output has the same target
class_loss = loss_fn(prediction[:, :, 0], y_for_loss[:, None].expand(-1, prediction.shape[1]))
# the first output is the main output
prediction = prediction[:, 0, :]
prediction_label = (prediction[:, 0].detach() > 0)
accuracy = accuracy_fn(prediction_label, y)
prediction_label = prediction_label.to(int)
loss = class_loss
elif tasks > 1:
# multi-task, multi-class, one-hot encoding
prediction = prediction.view(-1, classes, tasks)
class_loss = loss_fn(prediction, y)
prediction_label = torch.argmax(prediction, dim=1)
accuracy = accuracy_fn(prediction_label, y, ignore_index=99)
loss = class_loss
else:
# multi-class, one-hot encoding
class_loss = loss_fn(prediction, y)
prediction_label = torch.argmax(prediction, dim=1)
accuracy = accuracy_fn(prediction_label, y)
loss = class_loss
# add attention L1 losses if required
if args.attention_l1_loss is not None:
# two outputs for bidirectional attention
assert len(extra_outputs) in (1, 2)
attention_l1_loss = sum(torch.mean(eo) for eo in extra_outputs)
loss = loss + args.attention_l1_loss * attention_l1_loss
# add losses
losses['loss/%s' % phase] += loss.item()
losses['class_loss/%s' % phase] += class_loss.item()
losses['accuracy/%s' % phase] += accuracy
if args.attention_l1_loss is not None:
losses['attention_l1_loss/%s' % phase] += attention_l1_loss.item()
# update confmat
for true_label in range(classes):
for pred_label in range(classes):
confmat[true_label, pred_label] += torch.sum((y == true_label) * (prediction_label == pred_label)).item()
# store predictions
epoch_y[phase].append(y.detach().cpu().numpy())
epoch_predictions[phase].append(prediction.detach().cpu().numpy())
epoch_predicted_labels[phase].append(prediction_label.detach().cpu().numpy())
# increment minibatch counter
n += 1
if phase == 'train' and not (args.swa and epoch == args.epochs):
# next: compute and apply updates
optimizer.zero_grad()
if args.autocast:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
del x_views, y, loss, class_loss, prediction, prediction_label, accuracy
# add to list of scores
for k in losses.keys():
all_losses[k] = losses[k] / n
all_figures['confmat/%s' % phase] = util.plot_confmat(confmat)
time_end = time.time()
if args.lr_warmup_epochs and epoch < args.lr_warmup_epochs:
# warmup during initial steps
warmup_scheduler.step()
elif args.swa and epoch == args.epochs:
# apply stochastic weight averaging
# final epoch only to learn batch normalization parameters
pass
elif args.swa and epoch > args.swa_start_epoch:
# apply stochastic weight averaging
# update the swa model
swa_model.update_parameters(model)
swa_scheduler.step()
elif scheduler is not None:
# update the learning rate using the normal scheduler
scheduler.step()
# compute roc_auc and f1 scores
for phase in epoch_y:
epoch_y[phase] = np.concatenate(epoch_y[phase], 0)
epoch_predictions[phase] = np.concatenate(epoch_predictions[phase], 0)
epoch_predicted_labels[phase] = np.concatenate(epoch_predicted_labels[phase], 0)
if 'CheXpert' in args.data:
# take negative/positive outputs only, compute softmax for each task,
# then take the prediction for the positive class
chexpert_pred_prob = scipy.special.softmax(epoch_predictions[phase][:, 1:, :], axis=1)[:, 1, :]
# compute ROC-AUC for each task
for task_idx, task in enumerate(chexpert_data.CheXpertDataset.TASKS):
# find only targets with a negative (1) or positive (2) label
sample_mask = np.logical_or(epoch_y[phase][:, task_idx] == 1, epoch_y[phase][:, task_idx] == 2)
if len(np.unique(epoch_y[phase][sample_mask, task_idx])) > 1:
all_losses['roc_auc_task/%s/%s' % (phase, task)] = \
sklearn.metrics.roc_auc_score(epoch_y[phase][sample_mask, task_idx] > 1,
chexpert_pred_prob[sample_mask, task_idx])
if outputs == 1:
# this only works for binary classification problems
all_losses['roc_auc/%s' % phase] = sklearn.metrics.roc_auc_score(epoch_y[phase] > 0.5, epoch_predictions[phase][:, 0].flatten())
all_figures['roc_curve/%s' % phase] = util.plot_roc_curve(epoch_y[phase] > 0.5, epoch_predictions[phase][:, 0].flatten())
all_losses['f1_score/%s' % phase] = sklearn.metrics.f1_score(epoch_y[phase] > 0.5, epoch_predicted_labels[phase])
all_histograms['predictions/%s' % phase] = epoch_predictions[phase][:, 0].flatten()
# is this the best model so far?
for metric in best_val_score:
if ('%s/val' % metric) not in all_losses:
continue
if best_val_score[metric] is None or all_losses['%s/val' % metric] > best_val_score[metric]:
best_val_score[metric] = all_losses['%s/val' % metric]
# save weights
if args.checkpoints_dir:
torch.save({
'epoch': epoch,
'vargs': vargs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'losses': all_losses,
}, '%s/best_val_%s.tar' % (args.checkpoints_dir, metric))
# save weights for final epoch and every fifth epoch
if args.checkpoints_dir and ((epoch >= args.epochs - 1) or
(epoch % 5 == 0 and not args.best_checkpoints_only)):
torch.save({
'epoch': epoch,
'vargs': vargs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'losses': all_losses,
}, '%s/%03d.tar' % (args.checkpoints_dir, epoch))
for k, v in sorted(all_losses.items()):
print(' %s: %f' % (k, v))
print(' time: %0.2fs' % (time_end - time_start))
if tensorboard_writer:
for k, v in all_losses.items():
tensorboard_writer.add_scalar(k, v, epoch)
for k, v in all_histograms.items():
tensorboard_writer.add_histogram(k, v, epoch)
for k, v in all_figures.items():
tensorboard_writer.add_figure(k, v, epoch)
tensorboard_writer.add_scalar('time per epoch', time_end - time_start, epoch)
plt.close('all')