forked from sonalrpatel/parking-slot-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visbbox.py
94 lines (74 loc) · 3.54 KB
/
visbbox.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import cv2
import colorsys
import argparse
import numpy as np
from PIL import Image, ImageDraw, ImageFont
parser = argparse.ArgumentParser(description='Visualizing annotation bounding boxes.')
parser.add_argument('image_path', help='Path to the image.')
parser.add_argument('annotation_txt_path', help='Path to the annotation text file.')
def read_lines(path):
with open(path) as f:
lines = f.readlines()
return lines
def draw_boxes(image, annotation):
num_classes = 4
# =====================================================================
# Picture frame set different colors
# =====================================================================
hsv_tuples = [(x / num_classes, 1., 1.) for x in range(num_classes)]
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
# =====================================================================
# Set font and border thickness
# =====================================================================
font = ImageFont.truetype(font='font/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = int(max((image.size[0] + image.size[1]) // np.mean(image.size), 1))
# =====================================================================
# Image drawing
# =====================================================================
for e, b in enumerate(annotation):
cls = b[4]
box = b[0:4]
left, top, right, bottom = box
top = max(0, np.floor(top).astype('int32'))
left = max(0, np.floor(left).astype('int32'))
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
right = min(image.size[0], np.floor(right).astype('int32'))
label = '{}'.format(cls)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, left, top, right, bottom)
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=colors[cls])
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=colors[cls])
draw.text(text_origin, str(label, 'UTF-8'), fill=(0, 0, 0), font=font)
del draw
return image
# %%
def _main(args):
image = Image.open(args.image_path)
annotation_lines = read_lines(args.annotation_txt_path)
annotation_pairs = [[args.annotation_txt_path.rsplit('/', 1)[0] + '/' + line.split()[0],
np.array([list(map(int, box.split(','))) for box in line.split()[1:]])]
for line in annotation_lines]
annotation = []
for pair in annotation_pairs:
if pair[0] == args.image_path:
annotation = [list(bbox) for bbox in list(pair[1])]
break
print(args.image_path)
print(annotation)
draw_boxes(image, annotation)
image.show()
if __name__ == '__main__':
# run following command (as per current folder structure) on terminal
# python visbbox.py data/demo/train/20160725-7-299.jpg data/demo/train_annotations.txt
# python visbbox.py data/demo/train/20160725-5-652.jpg data/demo/train_annotations.txt
# python visbbox.py data/demo/train/20160816-1-3003.jpg data/demo/train_annotations.txt
_main(parser.parse_args())