Skip to content

Latest commit

 

History

History
98 lines (75 loc) · 2.6 KB

README.md

File metadata and controls

98 lines (75 loc) · 2.6 KB

ts-splay-tree

A TypeScript implementation of the splay heap data structure.

Note that the primary purpose of this library is education but it should work in a production environment as well. It's certainly not as performant as it could be as it optimises for readability, abstraction and safety over raw performance.

Features

  • 100% test coverage
  • Supports common tree operations
  • Store keys with optional associated values
  • Optional custom compare function

Install

The package is published to the GitHub Package Registry, it first requires an .npmrc that specifies that @gwtw packages are to be fetched from there:

@gwtw:registry=https://npm.pkg.github.com

Then authenticate using a GitHub personal access token that contains the read:packages:

npm login

Then install as normal:

npm install --save @gwtw/splay-tree

Usage

See the typings file for the full API.

// Import npm module
import { SplayTree } from '@gwtw/splay-tree';

// Construct SplayTree
const tree = new SplayTree<number, any>();
// Insert keys only
tree.insert(3);
tree.insert(7);
// Insert keys and values
tree.insert(8, {foo: 'bar'});
tree.insert(1, {foo: 'baz'});

// Search the tree for a key
const found = tree.search(8);
console.log(`key: ${found.key}, value: ${found.value}`);
// > key: 8, value: {foo: 'bar'}

// Extract all nodes in order
while (!tree.isEmpty()) {
  const node = tree.findMinimum();
  console.log(`key: ${node.key}, value: ${node.value}`);
}
// > key: 1, value: {foo: 'baz'}
// > key: 3, value: undefined
// > key: 7, value: undefined
// > key: 8, value: {foo: 'bar'}

// Construct custom compare SplayTree
const tree2 = new SplayTree<string, string>((a, b) => b - a);
tree2.insert(2);
tree2.insert(1);
tree2.insert(4);
tree2.insert(3);

// Extract all nodes in order
while (tree2.size > 0) {
  const node = tree2.findMinimum();
  tree2.delete(node);
  console.log(`key: ${node.key}`);
}
// > key: 4
// > key: 3
// > key: 2
// > key: 1

Operation time complexity

Operation Complexity
delete O(log n)*
findMaximum O(log n)*
findMinimum O(log n)*
insert O(log n)*
search O(log n)*
size Θ(1)

* amortized